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 ABSTRACT 

Development of a Bridge Fault Extractor Tool. (December 2004) 

Nandan Bhat, B. Tech, Indian Institute of Technology, Bombay 

                  Co-Chairs of Advisory Committee: Dr. D. M. H. Walker 
                                                                            Dr. Jiang Hu   
 

 
Bridge fault extractors are tools that analyze chip layouts and produce a realistic list of 

bridging faults within that chip. FedEx, previously developed at Texas A&M University, 

extracts all two-node intralayer bridges of any given chip layout and optionally extracts 

all two-node interlayer bridges. The goal of this thesis was to further develop this tool. 

The primary goal was to speed it up so that it can handle large industrial designs in a 

reasonable amount of time. A second goal was to develop a graphical user interface 

(GUI) for this tool which aids in more effectively visualizing the bridge faults across the 

chip. The final aim of this thesis was to perform FedEx output analysis to understand the 

nature of the defects, such as variation of critical area (the area where the presence of a 

defect can cause a fault) as a function of layer as well as defect size.   
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 CHAPTER I 

 INTRODUCTION 

In order to remain competitive, integrated circuit (IC) manufacturers must be able to 

handle customer demand for faster and more complex designs brought to market faster. 

This requires packing more and more transistors in a single chip; greater chip complexity, 

smaller transistor geometries and more interconnect layers [1].   

Table 1 shows a comparison between past, current and future technologies [2]. 

Complex integrated circuit designs implemented in new technologies are more sensitive to 

manufacturing defects, which cause deformation to the ideal IC. Manufacturing defects 

are divided into two groups: global and local defects. Global defects cause global 

deformations such as variation in line width that results in parametric yield loss, such as 

inadequate speed or noise margin [3], and are also called parametric defects. They also 

affect electrical characteristics of the circuit such as bias voltages or leakage currents. On 

the other hand, local defects such as particles cause local deformations such as extra or 

missing material and affect functional yield, e.g. change circuit topology and cause the 

chip to fail. These are called catastrophic or spot defects. 

Both, global and local defects can affect manufacturing yield, e.g. the ratio of the 

number  of  good  chips  per  wafer  and  total  chips  on  the  wafer.  With lower yield, the  
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manufacturing costs become higher, which affects company competitiveness in the 

marketplace. So it is very important for the manufacturer to get to a high yield before it 

starts manufacturing chips in volume, by quickly finding and removing defect sources in a 

new manufacturing process. Since parametric defects affect large areas of the wafer, small 

test structures can be used to identify many of them. For example, excessive variation in 

transistor effective channel length can be detected by measuring individual transistors. 

 

Table 1. Previous, present and future semiconductor technology roadmap 

Year 1997-2001 2003-2006 2009-2012

Feature size, nm 250-180 130-70 45-32
Millions of transistors per cm2 4-10 18-39 84-180

Number of wiring layers 6-7 7-9 9-10
Clock rate, MHz 200-1684 3088-5631 11511-19348

Voltage, V 1.2-2.5 0.9-1.2 0.9-1.0
Power, W 1.2-61 2.8-98 3-138
Pin cound 100-1200 500-1936 780-3616

Die size, mm2 50-385 60-520 70-750  

 
 
 

In contrast, the source of spot defects can only be determined with certainty by 

analyzing defects. This is referred to as defect diagnosis. This first requires locating them 

within the chip. This process can be simplified through the use of test structures [2][3]. An 

example is static RAM whose bad bits are easily located. However the low defect 

densities required for competitive manufacturing mean that spot defect test structures are 

too large to be used during the manufacturing volume ramp. They can only be used during 
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process development. During production, defects must be located within the product itself. 

This process is referred to as defect localization. 

Failure analysis is the process of determining the cause of detected failures, and a 

logical search to determine the likely source of error is called fault diagnosis. Fault 

localization or fault isolation is the process of identifying a region within an integrated 

circuit that contains a circuit fault, such as a short or open circuit. This region must be 

small enough that the defect causing the fault can be found and analyzed. This is very 

important for quickly debugging new products, ramping yields, identifying test and 

reliability problems in customer returns, and resolving quality assurance (QA) part 

failures. Use of advanced IC technology greatly increases the complexity of fault 

isolation. Often a direct view of the defect from the front or backside of the chip is not 

available. This makes it increasingly difficult to locate the defect using defect localization 

methods that detect light or heat given off by the defect. Fault isolation has become the 

most time-consuming part of defect diagnosis, and often a diagnosis cannot be performed 

since the fault cannot be localized. As a result, fault isolation is listed as a difficult 

challenge in the International Technology Roadmap for Semiconductors (ITRS), with its 

complexity projected to grow by 142 times by 2014 [2]. 

Industry experience has shown that a very common circuit fault is the bridging fault, 

which is caused by a short between two or more normally unconnected nets. Examples of 

some bridging fault models are shown in Figure 1. The most used bridge models are 

Wired-AND, when the gate pull-down network that drives one net is stronger than the 

gate pull-up network that drives the other net; Wired-OR, when the gate pull-up network 



4 

 

that drives one net is stronger than the gate pull-down network that drives the other net; 

and Dominant, when the gate that drives one net is stronger than the gate that drives the 

other net.  

Wired -OR Wired-AND DominantWired -OR Wired-AND Dominant

 

                                    Figure 1. Different bridge models 

  
FedEx, developed at Texas A&M University, [4] is a bridge fault extractor which 

extracts two-node intralayer as well as interlayer faults. An example of an intralayer fault 

is a bridge between two adjacent metal1 lines. An example of an interlayer fault is a short 

between overlapping polysilicon and metal1 lines. 

The rest of this thesis is organized as follows: Chapter 2 gives an overview of previous 

work, including the motivation for FedEx. Chapter 3 outlines the performance 

enhancements to FedEx. Chapter 4 lists the applications for FedEx, including the 

development of a Graphical User Interface (GUI) and critical area sensitivity analysis. 

Chapter 5 finally concludes the report. 
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 CHAPTER II 

 PREVIOUS WORK 

Understanding how chips fail is the first step toward identifying and eliminating the 

causes of the failure. The objective is to understand failures well enough to prevent them 

from recurring. Diagnosing a failure means locating the fault and analyzing the defect 

causing it. Two types of approaches are available for fault diagnosis. The first approach is 

a cause-effect analysis, which enumerates all the possible faults existing in an applied 

fault model and determines, before the testing experiment, all their corresponding 

responses to a given applied test [5]. The second approach uses an effect-cause analysis. 

This approach processes the actual response of the chip and tries to determine exactly only 

the faults that could produce that response. Ideally the initial part of the analysis is done in 

a model-independent fashion to avoid diagnostic failure due to an inadequate fault model. 

We will have a brief look at previous work done using both approaches. 

 High real fault coverage [6] and accurate fault diagnosis [7] are most efficiently 

achieved when the software tools have a realistic list of the possible circuit faults. A 

number of software tools to identify potential realistic faults within a circuit have been 

developed [8][9][10][11][12][13][14]. These tools are termed fault extractors. They 

analyze the mask layout to determine what faults could realistically occur, given a 

description of possible manufacturing defects. Defects are assumed to occur randomly on 

the chip, with defects following a size distribution, and causing either intralayer or 

interlayer faults. An example of an intralayer fault is a bridge between two adjacent 
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metal1 lines. An example of an interlayer fault is a short between overlapping polysilicon 

and metal1 lines. A recent survey of fault extractors describes their different features [15]. 

Some tools such as VLASIC [16] attempt to provide an accurate circuit model for 

complex bridges and opens. In practice this is very expensive, and most subsequent tools 

cannot handle such complex models. Open circuits are often not extracted since they can 

be enumerated given a circuit topology, and because the stuck-at or stuck-open fault 

model is often a good model for their behavior. 

Some fault extractors provide a list of possible faults, while others rank them based on 

their relative likelihood of occurrence. This is computed using the critical area and defect 

size distribution. The critical area is the area of the chip where the center of a defect must 

occur to cause a fault. The critical area is a function of the defect size - the larger the 

defect, the larger the critical area. The critical area between two adjacent wires is shown in 

Figure 2. The critical area is usually combined with the defect size distribution to compute 

the weighted critical area (WCA). Some tools use a surrogate for critical area, such as 

length of parallel wire runs that is correlated to critical area, but cheaper to compute. 

 



7 

 

                 
                              Figure 2. Critical area between two wires 
 

For a given fault (e.g. a bridge between two nets), there could be several disjoint 

critical area regions at different locations and on different layers. We term these fault 

sites. It has been found that typically there are about two fault sites per intralayer bridging 

fault, while there is typically one site for interlayer bridges [1]. 

Catastrophic faults such as shorts and opens are caused primarily by spot defects, that 

is, regions of extra or missing material. In this work we restrict ourselves to bridging 

faults caused by spot defects of extra material. These are modeled as circular disks on 

different layers, with a diameter distribution. The process disturbance causing the defect is 

usually a three-dimensional particle, but modern chemical mechanical polishing limits 

their effect to primarily the mask layer in which they occur or neighboring layers [17], 

particularly in the metal layers.  

The exact computation of critical areas for typical layouts is costly. This is primarily 

because the circular defect model implies a Euclidean polygon expansion to compute the 

critical area between two polygons, as shown in Figure 3. Each polygon is expanded by 

half the diameter in a Euclidean fashion and intersected. The intersection area is the 

Metal Lines

D

Extra metal defect not causing a fault

Extra metal defects in locations to cause shorts

Critical Area for extra
metal defects of diameter D

Metal Lines

D

Extra metal defect not causing a fault

Extra metal defects in locations to cause shorts

Critical Area for extra
metal defects of diameter D
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critical area. A common approximation is to assume a square defect and its associated 

orthogonal expansion, as shown in Figure 4.  

 

  
                             Figure 3. Euclidean polygon expansion 
 

Orthogonal expansions are relatively inexpensive. An alternative is to use a circular 

defect and sample the layout with a Monte Carlo process to estimate the critical area [16]. 

The drawback of a Monte Carlo procedure is that large sample sizes are required to ensure 

that faults with small critical area are identified. The computation of weighted critical 

areas adds the further complication of computing the critical area as a function of defect 

diameter, and then convolving that with the defect diameter distribution. A Monte Carlo 

analysis can simplify this since the defects can be drawn from the diameter distribution. 

 

 

 

 

Critical area

Net1

Net2

Critical area

Net1

Net2
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                                   Figure 4. Orthogonal polygon expansion 

 

Although much prior work has been expended on exact or near-exact critical area 

computations [18], in practice there is little need for them. The defect diameter 

distribution is poorly characterized, varies from factory to factory, and changes over time. 

The fabricated chip structures do not match the mask artwork due to process variations 

and the limitations of the patterning process. What is more important from a test and 

diagnosis viewpoint is ensuring that the more probable faults are on the fault list. ATPG 

will likely not target all possible realistic faults. In fact, it has been shown that when faults 

are sorted in descending order of critical area, only the top few ones which add up to 

around half the total critical area actually contribute to the faulty chip [19]. The remaining 

faults usually don’t occur in the production. Some fault extractors use the ranking 

information to keep only a most likely subset of the faults [20]. However in most designs 

there are a very large number of similar-probability faults. The WCA uncertainty is such 

that faults of similar WCA can be treated as equally important, and there is no need to 

accurately compute which fault has slightly higher WCA. In other words, the fault list 

should be viewed as a ranked list of equivalence classes, with faults of similar WCA 

Critical area

Net1

Net2

Critical area

Net1

Net2
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within each class. Experimental results show that ranking information such as WCA is not 

useful for diagnosis [21]. What is very important for diagnosis is that all faults that could 

reasonably occur be on the fault list. This is essential for quality assurance failure or 

customer return parts, where diagnostic success must be quickly achieved on that 

particular part. 

An alternative to a special-purpose bridging fault extractor is to use a coupling 

capacitance extractor. The list of coupling capacitances can be used as an unordered list of 

two-node bridging faults. Long, close parallel wire runs have both higher capacitance and 

higher critical area, so capacitance extractor rules can be used to target the most probable 

bridging faults [22]. If the extractor is sufficiently flexible, an approximate WCA can be 

computed by replacing the capacitance extraction rules with WCA extraction rules. 

The advantage of using a capacitance extractor to generate a bridging fault list is that 

the capacitance extraction is part of the design flow, so no extra step is needed. The 

drawback is that capacitance extractors reduce their computational effort by making 

approximations, such as lumping many small capacitance values together. Hierarchical 

extractors may approximate the capacitance of cells when computing the capacitance of 

global nets. These approaches may be sufficient for obtaining a list of the most probable 

faults, but preclude obtaining a nearly complete list of realistic two-node bridging faults. 

The DEFAM (Defect to Fault Mapper) fault extractor tool [23] was one of the first 

hierarchical fault extractors. The DEFAM tool consists of three main parts: 

1) Hierarchy Identification 
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2) Hierarchical Circuit Extraction 

3) Circuit Analysis 

In the first step the design hierarchy is analyzed using the hierarchical chip database 

(HCDB) [24] in order to identify the unique parts of the design. HCDB stores the design 

as several levels of unique nonoverlaping tiles. Each tile is a corner-stitched rectangle 

database [25]. Since the whole design can be reconstructed by attaching together instances 

of these tiles, analysis of these tiles is equivalent to analysis of the whole chip. 

Hierarchical circuit extraction is applied on the tiles, identifying connections among tiles, 

and transistors and nets within each tile.  

The critical area is calculated using a Monte Carlo method where defect sampling is 

applied on the tiles. The Monte Carlo method introduces defects uniformly on the layout 

using defects drawn from the size distribution. Defects of different sizes are modeled as 

circular regions of extra or missing material. The analysis first finds the probability that a 

defect of type i causes a fault of type f in tile k (POFi,k,f) and then these results are 

combined to compute the same probability for the entire chip (POFi,f).   

The DEFAM system works well on very regular layout designs where the area of the 

tiles is small compared to the chip area. However in an ASIC design style, there is little 

regularity in the logic sections of a chip layout, particularly when above-the-cell routing is 

considered. DEFAM cannot handle this design style in reasonable memory or time, since 

the work of finding the regularity is not paid back by reduced analysis time. It is these 

irregular logic sections of the chip that were the subject of the initial research [1], since 

the memory arrays can be diagnosed by bitmapping [26][27]. 
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The considerations above led to the development of a bridging fault extractor with the 

following characteristics: 

Extract all two-node intralayer bridges. 

Optionally extract two-node interlayer bridges.  

Compute approximate weighted critical area for each bridge.  

Compute approximate fault locations and layers. 

Trade WCA accuracy for speed and memory.  

  

Since the primary goal was to be able to handle the largest designs on a large 

workstation overnight, the fault extractor was named FedEx.  

A. FedEx System 

The FedEx system performs the following functions: 

• Parse mask layout. The parser reads a hierarchical Calma GDSII Stream or 

Caltech Intermediate Form (CIF) [28] layout file. 

• Extract circuit topology using a technology file. The netlist is extracted using the 

layout connectivity. The rectangles on a net are labeled using the text labels that 

intersect the rectangles on the same layer. The technology file specifies 

connectivity and transistor structure rules. Since we are extracting bridging faults, 

we do not retain transistor extraction information. 
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• Identify fault sites. All nets within the user-specified window are considered 

possible bridges. 

• Compute the weighted critical area of each bridge pair. This analysis can be 

omitted if it is not needed for the application. 

• Write fault sites to output file. As described below, this step must merge net 

numbers together, and record any equivalence information. 

The information flow between these functions is shown in Figure 5.                                              

. 

Parse Mask Layout

Extract Circuit

Identify Bridges

Compute WCA

Write Fault Sites

Fault sites
w/WCA per net

Fault sites
w/equivalent nets

Fault sites
per net

Labeled
rectangles

Y-sorted Labels
and rectangles

 
                                            Figure 5. FedEx flow diagram 
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A scanline algorithm [29] was used for both circuit extraction and fault extraction, as 

shown in Figure 6. The parser reads the hierarchical layout description, converts polygons 

into rectangles, incrementally flattens the design, and sorts the rectangles by their top y-

coordinate. These y-sorted rectangles enter the scanline where the circuit extraction is 

performed. The labeled rectangles then enter an array of bins where fault extraction is 

performed, and then rectangles exit the system. Fault sites associated with a net are 

written to the output file when the scanline passes the bottom of the net. 

Design Layout
Hierarchical format

Technology
file

Parsing
input file

Sort by x-coordinate
and merge rectangles
on  the same scan-line

Merge nets on
different layers

Step size

Window
size

Calculate new 
window

No

Yes Is the bottom of 
the chip?

Write bridges

Bin
Insertion

End

Put in the buffer
and sort by top

coordinate

Is the top of
rectangle on the

scan line?

Extract
bridges

Calculate
critical area

Update
bins

Update
bridge lists

No

Yes

Design Layout
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Parsing
input file

Sort by x-coordinate
and merge rectangles
on  the same scan-line

Merge nets on
different layers

Step size

Window
size

Calculate new 
window
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Yes Is the bottom of 
the chip?

Is the bottom of 
the chip?

Write bridges

Bin
Insertion

End

Put in the buffer
and sort by top

coordinate

Is the top of
rectangle on the

scan line?

Is the top of
rectangle on the

scan line?

Extract
bridges

Calculate
critical area

Update
bins

Update
bridge lists

No

Yes

   
                                                 Figure 6. FedEx scanline algorithm 
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B. Parser 

The parser reads the mask layout into memory, incrementally flattens, and sorts it by y-

coordinate. A stairstep algorithm that horizontally slices any non-orthogonal section of the 

polygon converts polygons into rectangles. The user specifies the maximum vertical step 

size for this slicing process. The step must be small enough that two neighboring polygons 

do not touch after the conversion process, which is typically half the minimum spacing. 

 The parser stores cell definitions as unsorted linked lists. Once parsing is complete, the 

bounding boxes of all cell definitions are recursively computed by computing the 

bounding box of the geometry and cell instances contained within the definition. These 

bounding boxes are stored with each definition. 

The layout is flattened and sorted by rectangle top y-coordinate as follows: 

1. The top level cell instance is placed into a priority queue using the top y-coordinate. 

The cell definition bounding box is transformed to global chip coordinates first. 

2. The rectangle, label or cell instance at the top of the queue (highest y-coordinate) is 

removed. 

3. If it is a rectangle or label, it is given to the scanline processing code. 

4. If it is a cell instance, the cell definition is opened, and its contents (rectangles, 

labels and cell instances) are transformed to global coordinates and inserted into the 

queue. Transformation of labels includes prefixing it with the global pathname. 

5. Steps 2-4 are repeated until the queue is empty. 
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C. Circuit Extraction 

Circuit extraction is performed using the scanline. The scanline is a scalar value that 

keeps track of the y-coordinate of rectangles currently being processed. Associated with 

the scanline are linked lists of rectangles, two for each mask layer - new and active. The 

procedure is as follows: 

1. Receive geometry. A rectangle or label comes from the parser in y-sorted order. 

2. Insert into new list. If the rectangle or label top y-coordinate is the same as the 

scanline value, it is inserted into the new list on the appropriate layer using an 

insert sort based on the left x-coordinate. If the top y-coordinate is below the 

scanline, the rectangle or label is saved in the y-sorted buffer list, and processing of 

the new list halts. 

3. The new list is merged into the active list.  The active list contains all rectangles 

that intersect the scanline. The idea of using a new and active list is that the 

superlinear cost of sorting is paid only for the smaller new list, and then the linear 

cost of merging is paid in the larger active list.  

4. The label and via lists are processed. They are used to attach labels to nets and 

merge conducting layers together. The first label encountered on each net is 

recorded. Other labels could be recorded, but the assumption is that this is handled 

in the layout versus schematic (LVS) application that maps the bridging fault list to 

the netlist for use in ATPG or fault diagnosis. The circuit extraction does not make 
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use of the net labels, in that it does not assume that two nets with the same label are 

connected. Only geometry can connect two net segments together. 

5. The scanline is moved down. It stops at the highest rectangle bottom y-coordinate, 

or the top of the buffer list, whichever is highest. A sorted list of rectangle bottom 

y-coordinates is used to quickly determine the new scanline value. Any rectangles 

that are now above the scanline are removed from it (and passed to the bins 

discussed below). All labels on the scanline are discarded. Any rectangles in the 

buffer list that now coincide with the scanline are moved to the new list. 

The above procedure is repeated until all geometry is exhausted. If there are a finite 

number of scanline stops per rectangle, then the cost is linear in the number of rectangles, 

except for the insertion sort in step #2. In the original FedEx design, it was assumed that 

there are a relatively small number of rectangles in the new list, so the x-sorting cost is 

relatively small. Label processing in step #4 is also quadratic in time, but relatively small. 

Hooks to extract directly overlapping interlayer critical area are located in extraction 

step #4, since the problem of identifying which nets overlap one another is essentially the 

same problem as determining whether a conductor overlaps a via. There is only a small 

additional cost to check for overlaps with adjacent conductor layers. The primary cost of 

interlayer bridges is in inserting them into the net data structures. The reason is that a net 

on one layer tends to be perpendicular to nets on adjacent layers, so the number of 

interlayer bridges will typically be much larger than the number of intralayer bridges. As 

above, a more complex data structure could be used to reduce this cost. 
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D. Fault Extraction 

The rectangles leaving the scanline are inserted into an array of bins, shown in Figure 

7. There are two rows of bins, each with height and width equal to the user-specified fault 

extraction window size Smax. This is the maximum defect size considered for bridges. The 

bin processing procedure is as follows: 

1. As the scanline moves down, the bottom row of bins accumulates rectangles until 

it reaches full height (the scanline is more than Smax below the top row of bins). 

2. Fault extraction is performed on the geometry within the bottom row of bins, 

including analysis of bridges to geometry in the top row of bins. 

3. The geometry in the top row of bins is discarded. 

4. The geometry in the bottom row of bins is moved to the top row with a pointer 

swing.  

Each bin contains a linked list for each layer pointing to all rectangles that intersect the 

bin on that layer. Thus rectangles within the bin array have pointers to them from each bin 

they intersect. Rectangles that still intersect the scanline but protrude into the bins are 

pointed to as well. 

Fault extraction is performed for each bin in the lower row. For each layer, each 

rectangle on that list is considered. It is checked against all the other rectangles on that 

layer within its bin, and the five neighboring bins (left, right, and three above). This means 

that rectangles as far as max22 S apart are considered. The analysis for rectangles that are 
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within this distance is shown in Figure 8. For each rectangle, only rectangles to the left, 

upper left corner, top, and upper right corner are considered for intralayer bridges. This is 

to avoid double-counting critical areas as the rectangles are moved from the bottom to the 

top row of bins. 

 

Scan line

Smax

Scan
direction

Scan processing direction
Scan line

Smax

Scan
direction

Scan processing direction
 

                                               Figure 7. Fault extraction bins 
 

In looking for other rectangles, the algorithm considers pairs, without considering 

intervening rectangles. These critical areas cannot occur in practice, but provide the two-

node approximation for multi-way bridges. So given three adjacent parallel lines A, B, 

and C, bridges A-B, B-C, and A-C will be reported, even though the latter should be A-B-

C. 
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Figure 8. Critical area calculation using a geometrical method 

 
 

The weighted critical area for intralayer bridges is calculated using a geometrical 

method. Geometry corresponding to each of the nets is inflated by Smax/2. The intersection 

region corresponds to the critical area, as shown in Figure 8. The spacing s and length l 

are used to compute the weighted critical area in Equation (1).  

( )
∫

−
=

max

3
2

0

S

s

ldxsxA
xx             (1) 

This equation is used for the top and left critical areas. This equation assumes a 1/x3 

defect size distribution. The 2
0x  term is the user-supplied proportionality constant for the 

WCA. Corner critical areas are computed with Equation (2), using the sx and sy values.   
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Equation (2) doesn’t handle “end” effects though; it clips the critical area at the edges, 

so it underestimates the critical area for top side (Net1-Net2 in figure 8), but overestimates 

the critical area for corners (Net2-Net5 in figure 8). 

 

E. Postprocessing 

In order to minimize memory consumption, the FedEx algorithm writes out the bridges 

for a net as soon as the net has passed the scan line. Each entry in the bridge file contains 

the two bridged net numbers, critical area, bridge layer, and bridge bounding box. The 

label associated with the net number is written to a label file. 

It can happen that two net segments start and then merge at a lower y-coordinate on the 

chip. Since we relabel the merged nets with the smaller of the two net numbers, as shown 

in Figure 9, all the bridges to the relabeled net that have already been written to the bridge 

file are incorrect. This is handled by recording net equivalence information with the net. 

When the net is completed, this equivalence information is written to an equivalence file. 
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                                                        Figure 9. Nets merging 

 
 

  In order to generate the list of all two-node bridges in terms of unique net numbers or 

labels, it is necessary to first process the equivalence information. This was done with a 

combination of simple C programs and shell scripts. For a list of several million bridges 

this processing takes a few minutes. 
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 CHAPTER III 

 FEDEX PERFORMANCE IMPROVEMENTS 

As explained in the previous chapter, the code written for FedEx is not optimal due to 

the use of inefficient data structures. This is not a big problem for small chips, but if large 

chips are to be handled in reasonable amounts of time, the existing data structures would 

limit the speed of the code considerably. 

Code profiling showed two primary bottlenecks as far as algorithm efficiency was 

concerned. The first one was in the circuit extraction. After the rectangle or label comes 

from the parser in y-sorted order, it was inserted into the new list on the appropriate layer 

using an insert sort based on the left x-coordinate. This list is maintained as a doubly-

linked list. This data structure is inefficient since the search time to insert a new rectangle 

or label is linear in the list length. The length is O(√N) for N rectangles in the chip [30]. 

Since insert time is O(L) for list length L, then insertion time is O(√N), and total list 

processing time for the chip is O(N3/2). As discussed later, for large chips, most time was 

spent on list insertion. 

The insertion sort was replaced with a radix and then insertion sort as shown in Figure 

10. For critical area analysis, the scanline is divided into an array of bins Smax in width. 

Insertion is performed by indexing to the bin that holds the left rectangle edge. Each bin 

has a pointer to the leftmost rectangle in the active list that intersects the bin. This is used 

as a starting point for insertion into the list. Since the rectangle density is relatively 
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constant, each bin has a roughly constant number of rectangles, so overall insertion time is 

constant. This reduces the total rectangle insertion time to O(N). 

If a bin contains no rectangles, the insertion performs a linear search of the bins to the 

left of the starting bin, to find the rectangle to the left of the new rectangle. Typically, 

there will be very few empty bins, so this bin search takes little time.  

 

 

 

 

Rectangles                                                  (a)                                              Bins 

                                                                    

                             

                     NULL                                                               NULL 

 

 

 

Rectangles                                                  (b)                                               Bins 

Figure 10. (a) Linked list for rectangles (original code)  (b) Indexing into first rectangle 

for each bin (modified code) 
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The second and bigger bottleneck was related to the dumping of bridges in the bridge 

file. After a net has been processed, all the bridges to it are written out to the bridge file. 

These bridges to the net are maintained in a linked list in sorted order so as to help in the 

searching time when the same bridge is reported again. So every time a bridge is to be 

added, it has to be inserted into the sorted linked list. For nets with a small number of 

bridges (which happens in the case of small chips), this does not take much time. But 

when large chips such as Controller (see results table) are processed, there are many nets 

with a large number of bridges. Maintaining large linked lists for such nets slows down 

the code considerably. Code profiling also confirmed that bridge processing indeed takes 

up a significant percentage of the total time. The following modification was made to 

tackle this bottleneck. 

Experimental data showed that most nets have few bridges (e.g. fewer than 10). 

Processing these nets takes relatively little time and the algorithm modification is not 

going to have an effect on these nets as far as speedup is concerned. However, there are 

some nets (mainly global) which have a large number (thousands) of bridges to them. 

These are the nets which consume a lot of time. The algorithm modification is directed 

primarily to take care of such nets. The algorithm uses dynamically grown hash tables 

since search time for hash tables is constant. The algorithm is as follows: 

1. For each net, start off with a small size hash table. (Our code started off with 

size 1 since many nets have only 1 bridge). 
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2. If the number of bridges exceeds the size of the hash table, dynamically 

allocate a new hash table with size greater by a factor of 10. (By doing so, it is 

ensured that the number of bridges in a hash table is not very large and hence 

search time for a bridge in the hash table remains essentially constant.) Else go 

to step 5.  

3. Insert all the bridges from the existing hash table into the newly allocated table. 

If more than one bridge maps to a hash table entry, maintain those bridges as 

an ordered linked list. 

4. Free the previous hash table. 

5. If no more bridge processing is to be done (this happens when the scanline has 

moved to the bottom of the chip), exit. Else go to step 2. 

 These two algorithm modifications resulted in a significant speedup of the code, by a 

factor of 8 in the best case. The experiments were run on a Linux machine (Pentium IV 

2.26 GHz with 256 MB of memory). Tables 2, 3 and 4 show the results for several chips 

without extraction of the interlayer bridges for the insertion modification, bridging 

modification and the final (both put together) respectively. Tables 5, 6 and 7 show similar 

results with extraction of intra- as well as interlayer bridges. 
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           Table 2: FedEx improvements (insertion – only intralayer bridges) 
 

 Chip Transistor 

count 

Modified code    

(insertion) (s) 

Original code  

    (s) 

Serial 70k 25 26 

Hopfield 22k 13 14 

Frame 64k 33 33 

Array 85k 45 54 

Mosaic 1200k 255 273 

Controller 500k 4025 4035 

   

 
 

           Table 3. FedEx improvements (bridging – only intralayer bridges) 
 

Chip Transistor 

count 

Modified code    

(bridging) (s) 

Original code  

   (s) 

Serial 70k 26 26 

Hopfield 22k 13 14 

Frame 64k 33 33 

Array 85k 47 54 

Mosaic 1200k 205 273 

Controller 500k 2070 4035 
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                   Table 4. FedEx improvements (final - only intralayer bridges) 

         Chip Transistor 

count 

Final code  

(s) 

Original code  

   (s) 

Serial 70k 25 26 

Hopfield 22k 13 14 

Frame 64k 33 33 

Array 85k 44 54 

Mosaic 1200k 193 273 

Controller 500k 2055 4035 

                          

           

             Table 5. FedEx improvements (insertion – intra- and interlayer bridges) 

  
Chip Transistor 

count 

Modified code    

(insertion) (s) 

Original code  

  (s) 

Serial 70k 37 38 

Hopfield 22k 260 264 

Frame 64k 104 107 

Array 85k 94 99 

Mosaic 1200k 765 771 

Controller 500k 13753 13761 
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             Table 6. FedEx improvements (bridging – intra- and  interlayer bridges) 

Chip Transistor 

count 

Modified code    

(bridging) (s) 

Original code  

  (s) 

Serial 70k 34 38 

Hopfield 22k 30 264 

Frame 64k 90 107 

Array 85k 78 99 

Mosaic 1200k 502 771 

Controller 500k 4441 13761 

 

 

               Table 7. FedEx improvements (final – intra- and interlayer bridges) 

 
Chip Transistor 

count 

Final code  

(s) 

Original code  

  (s) 

Serial 70k 34 38 

Hopfield 22k 29 264 

Frame 64k 90 107 

Array 85k 76 99 

Mosaic 1200k 499 771 

Controller 500k 4439 13761 
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Multiple copies of the Serial chip were used to see how the time taken to process a chip 

varies with the size of the chip. The copies were laid out horizontally. This creates an 

effectively bigger scan line, so this tests the complexity of scanline processing. All other 

parts of the code only grow linearly in time (e.g. fault extraction, bridge processing, 

rectangle sorting) or are nearly constant time (parsing). These other parts of the code are 

already linear time on larger chips. Since the Serial chip is made up of 70k transistors, the 

11-copies test has a scanline as wide as a 11*11*70k = 8.5 million transistor chip. 

Table 8 shows the results for multiple copies of the Serial chip without extraction of 

the interlayer bridges. Figure 11 graphs the time taken versus the number of Serial chips. 

It can be seen that the time taken for processing is almost linear as was expected by the 

algorithm modifications.  

 

 

 

 

 

 

 

 

 



31 

 

                      Table 8. Results for serial chips (without interlayer bridges) 

Copies of  

The serial chip 

Final code  

      (s) 

Original code  

         (s) 

1 25 26 

2 51 57 

3 78 90 

4 106 131 

5 137 176 

6 168 231 

7 202 300 

8 241 381 

9 276 484 

10 316 602 

11 361 738 
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                              Figure 11. FedEx time for multiple copies of the Serial chip 

 

 

From Figure 11, it can be seen that the algorithmic modifications have resulted in the 

near-elimination of the quadratic factor. The original code graph follows the equation:  

                                 y = 6.0494x2 – 3.9937x + 37.951; 

whereas the modified code graph follows the equation: 

                                     y = 0.9547x2 + 21.827x + 3.4483. 

Code profiling showed that this small quadratic factor is due to the label processing 

part in the code which uses an insertion sort. To address this problem, a modification 
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similar to the one used in the rectangle insertion part of the code can be used to eliminate 

the quadratic factor. 
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 CHAPTER IV 

 GUI DEVELOPMENT AND SENSITIVITY ANALYSIS 

A. Graphical User Interface 

The second part of FedEx development was the building of a Graphical User Interface 

(GUI) using the Tool Command Language/Tool Kit (Tcl/Tk) [31]. This was done to aid in 

the more effective visualization of the FedEx output. The idea here was to provide the 

users with the option to view the variation of bridge fault densities across the chip. This 

would help in understanding which parts of the layout are more prone to defects. Once 

that is done, those particular parts could be targeted for defect diagnosis. This kind of 

information would not be obtained with just the textual output as was the case with the 

original version of FedEx.  

The flow diagram for the tool created is shown in Figure 12. The user specifies the 

settings needed for FedEx through the GUI, selects the circuit and gives the command to 

run FedEx. This invokes FedEx, which uses the selected circuit file as input and writes the 

faults in the bridge fault output file. The input processor reads the generated output file of 

FedEx and extracts the bridge faults corresponding to the layer number specified by the 

user. The chip is divided into a grid and the bridge fault density is calculated for each grid 

cell. Colors are assigned to each grid cell depending on its bridge fault density. The grid is 

displayed on a canvas (which is the part of the GUI in which the chip layout is displayed). 

The canvas initially represents the entire chip area, and variation of color (grayscale) on 

the grid shows the bridge fault density. 
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                                      Figure 12. Flow diagram for GUI tool 

 
Once the initial display is done, the user can zoom in and zoom out to reach a particular 

area of the chip and analyze the bridge fault density in that region. This zoom does not 

change the grid resolution but merely magnifies the grid. The bridge fault density is 

calculated again when a different layer number (or different chip altogether) is selected 

and FedEx is invoked again. 

The bridge fault density is calculated in the following manner: 

The chip is divided into a rectangular grid. The organization of grid cells is shown 

in Figure 13. The bridge fault density is calculated by finding the minimum and maximum 

row number and minimum and maximum column number corresponding to the bounding 

Input  
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box given in the FedEx output file for each bridge, and then incrementing the bridge fault 

density of all the grid cells that enclose the region.  

                                        Figure 13. Grids organization on the chip 

 

 

 The algorithm for bridge fault density calculation is as follows: 

 Algorithm: CalCriticalArea (resolution) 
 
             1.     Divide the chip into a grid according to the given resolution (with the   
                     appropriate grid cell height and width) 

2.   foreach bridge fault of the selected layer  
                            Find the values of RowMin, RowMax, ColMin 
                            and ColMax from the  bounding box . 

               for  RowMin to RowMax do 
                                  for ColMax to ColMin do 
                                        increment Grid(RowNum, ColNum) by 1 
             3.    for  1 to MaxRowOfChip do 
                         for 1 to MaxColOfChip do 

Rows  

Columns 

Grids(RowNum,ColNum) 

Grids(0,0) 



37 

 

                               Grid(RowNum, ColNum)  +=  Grid value of neighbors 
                               Grid(RowNum, ColNum)   =  Grid(RowNum, ColNum) /  
                                                                               (Number of neighbors + 1) 
 

In the above algorithm, Step 2 calculates the bridge fault density and Step 3 

performs the smoothening function. The smoothening ensures that the variation of bridge 

fault density across the grid is displayed in a continuous manner which makes the 

visualization of the variation easier. The organization of grid cells as rows and columns 

ensures that we traverse only those grid cells which enclose the bounding box of the fault. 

 Once the bridge fault density is calculated, a color coding scheme is needed 

through which density variation can be easily visualized. Initially, multiple color 

representation was considered, but that required a color look-up table. Instead, a gray 

scale color scheme was chosen, with intensity proportional to the bridge fault density. 

White represents the lowest fault density and black represents the highest fault density. 

     The algorithm for color coding first finds the maximum fault density of all the grid 

cells and normalizes the grayscale with respect to the maximum density. Ten equally 

spaced gray levels are used, covering the range 0 to 1, so as to normalize the densities. All 

the grid cells are traversed and each grid cell is assigned the appropriate color number 

depending on its fault density. 

 
 
Algorithm: ColorCoding ( ) 
 

1. Find MaxFaultDensity, the maximum fault density of all the grids. 
             2.     for  1 to MaxRowOfChip do 
                         for 1 to MaxColOfChip do 
                               Grids (RowNum, ColNum)  /=  MaxFaultDensity 
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                               IntervalNum =  Grayscale Interval in which Grids(RowNum, ColNum)   
                                                         lies. 

                               GridColor(RowNum, ColNum)   =  IntervalNum 

 

The user interface with grids  displayed is shown in Figure 14. 

 

 

                                           Figure 14. Initial display 
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    The GUI provides the user with the option to select the layer number and resolution for 

which display is to be done. Once the display is done, zoom-in and zoom-out is 

considered next. 

    The row and column numbers corresponding to the area selected (by the mouse) is 

found. During this process, the following cases were considered for the user-selected area: 

• Has some part outside the canvas (i.e. the area selected extends beyond the grid 

cells displayed on the canvas); 

• The mouse selected area is from right to left;  

• The mouse selected area is from left to right. 

    Once the starting and ending row and column numbers of the user-selected area are 

known, some rows or columns are added to make full use of the available canvas area. 

This resulted in two cases: 

• Case1: The number of rows is greater than the number of columns in the user 

selected area. More columns are added on left and right of the user-selected area. 

During this process of addition of columns only valid column numbers are added. 

Update the start column and end column. 

• Case2: The number of rows is smaller than the number of columns in the user 

selected area. More rows are added on top and bottom of the user-selected area. 

During this process of addition of rows only valid row numbers are added. . 

Update the start row and end row. 

    The updated starting row and column, and ending row and column are displayed on the 

canvas (Figure 15). 
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                                            Figure 15. The display after zoom-in 
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    Fixed zoom-out is implemented in which the zoom-out is by hundred percent of the 

current display (i.e. 2x zoom-out). Using the current row and column numbers displayed 

on the canvas, the new starting and ending row and column numbers are calculated. The 

row and column numbers are adjusted to make sure that the displayed row and column 

numbers are valid. The updated starting row and column, and ending row and column are 

displayed on the canvas (Figure 16). 

                                                

                      Figure 16. The display after zoom-out of Figure 15. 
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B. Sensitivity Analysis 

      FedEx, in its original from, writes out the list of bridges. However, there are certain 

kinds of information which can be useful to users who want to know which parts of the 

chip layout are more prone to defects. For example, users might want to know the 

variation of critical area as a function of defect size; or the variation of critical area as a 

function of line width. The goal of sensitivity analysis was to provide such information. 

Towards this end, the code was modified to incorporate variation in critical area as a 

function of defect size as well as line width in addition to calculating the critical area 

itself. 

The equation for the critical area calculation used in the code is given in equation (3).  

                      CA = x0
2*l*(Smax – s)2/(2* Smax

2*s)                                            (3) 

where x0 and l are constants, Smax is the maximum defect size as given by the user and s 

is the spacing between nets. Equation (3) is the integrated version of equation (1). 

To calculate the variation in critical area as a function of defect size, equation (3) is 

differentiated with respect to def to obtain equation (4). 

                     d(CA)/d(Smax) = x0
2*l*( Smax – s)/( Smax

3)                                      (4)         

Similarly, to calculate the variation in critical area as a function of line width (which 

causes a variation in the spacing), equation (3) is differentiated with respect to s to obtain 

equation (5). Variation in line width by ∆l corresponds to variation in line spacing by ∆l. 

                    d(CA)/d(s) = x0
2*l*(s2 – Smax

2)/(2* Smax
2*s2)                               (5)         
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The variations were computed and written out into the bridge file for each bridge. The 

percent variation in critical area as a function of defect size i.e. (variation in critical area 

due to unit change in defect size)*100/total area, and the percent variation in critical area 

as a function of line width i.e. (variation in critical area due to unit change in line 

width)*100/total area are shown in Tables 9 and 10 respectively.  

 

                    Table 9. Sensitivity analysis – defect size variation 
 

% change in critical area due to unit defect size variationChip Transistor 

count Poly Metal 1 Metal 2 

Serial 70k 0.0769 0.152 0.0554 

Hopfield 22k 0.0574 1.13 0.413 

Frame 64k 0.0809 0.323 0.444 

Array 85k 0.0752 0.237 0.456 

Mosaic 1200k 0.0448 0.0634 0.0168 

Controller 500k 0.00341 0.00476 0.00220 
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                            Table 10. Sensitivity analysis – line width variation 
 

% change in critical area due to unit line width variation Chip Transistor 

count Poly Metal 1 Metal 2 

Serial 70k 0.546 0.793 0.226 

Hopfield 22k 0.422 5.95 1.75 

Frame 64k 0.549 1.99 1.94 

Array 85k 0.539 1.23 1.83 

Mosaic 1200k 0.910 0.594 0.119 

Controller 500k 0.076 0.313 0.0747 

 

 

The sensitivity analysis was incorporated into the GUI as well. So the user has options 

to not only view the critical area layerwise, but also the variations in the same with respect 

to defect size (Figure 17) and line width (Figure 18). 
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           Figure 17. Variation in defect size sensitivity across the chip 
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           Figure 18. Variation in line width sensitivity across the chip 
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 CHAPTER V 

 CONCLUSIONS AND FUTURE WORK 

In this thesis, contributions were made to fault extraction by using the tool FedEx, 

which was previously developed here at Texas A&M University.  

A. Contributions 

The specific contributions of this work were as follows: 

• The primary contribution was to speed up FedEx by algorithmic modifications 

since the original version could not handle large chip layouts in reasonable 

amounts of time. The performance improvement was by a factor of 8 in the best 

case. This improvement was obtained by modifying the parts of the FedEx code 

which handle the rectangle insertion and bridge processing routines. Due to the 

use of inefficient data structures, the code slowed down considerably while 

handling large chips. The modifications made to these routines removed these 

inefficiencies.  

• A GUI was also developed which aids in effectively visualizing the bridging 

faults across the chip. Different portions of the chip are shown in different 

shades (grayscale) depending on the bridge fault density in those portions. This 

gives users an idea of which portions of the chip are particularly prone to 

bridging faults. Besides, critical area variation as a function of defect size and 

line width are also displayed. The GUI can be used to effectively target select 

portions of the chip. For example, if the memory part of a particular chip layout 
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is shown in darker color, it shows that there is a heavy congestion of potential 

bridging faults in that part and steps can be accordingly taken to target that 

particular part.  

• Critical area analysis was performed to evaluate the sensitivity of the chip to 

variations in defect size and line width (this was incorporated into the GUI as 

well). This analysis gives the variation in critical area due to the variation in 

defect size or line width. This information can be used to understand, for 

example, the percent variation in critical area due to say, 1% variation in 

polysilicon line width. This can be used to estimate the accuracy of the critical 

area calculated.    

 

B. Future Work 

For future work, FedEx needs improvements primarily in the memory usage. As of 

now, FedEx stores all hierarchy in memory, so this dominates memory usage. One option 

would be to cache off of disk to reduce virtual memory usage. To further improve speed, 

one could also skip cells/nets that are not of interest. For example, many times one might 

not require the analysis of the entire chip but only some select portions. In such cases, 

provision would have to be made for the user to select specific cells of the chip and then 

analyze only those cells. This would definitely reduce the time taken for bridge fault 

extraction. Similarly, one could provide the user with the option to select specific nets. 
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One could then perform fast analysis of bridges to those specific nets. The idea here is to 

not analyze the entire chip in order to reduce the time taken. 

 With such improvements and the improvements to the memory usage, FedEx would 

be further optimized both on speed as well as on memory to effectively handle large chips 

in reasonable amounts of time. 
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