
INCREASING TLB REACH USING TCAM CELLS

A Thesis

by

ANUJ KUMAR

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2004

Major Subject: Computer Engineering

INCREASING TLB REACH USING TCAM CELLS

A Thesis

by

ANUJ KUMAR

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

Rabi N. Mahapatra
(Chair of Committee)

Jianer Chen
(Member)

A.L.Narasimha Reddy
(Member)

Valerie E. Taylor
(Head of Department)

December 2004

Major Subject: Computer Engineering

iii

ABSTRACT

Increasing TLB Reach Using TCAM Cells. (December 2004)

Anuj Kumar, B. Tech., Indian Institute of Technology, Kanpur, India

Chair of Advisory Committee: Dr. Rabi N. Mahapatra

We propose dynamic aggregation of virtual tags in TLB to increase its coverage

and improve the overall miss ratio during address translation. Dynamic aggregation

exploits both the spatial and temporal locality inherent in most application programs.

To support dynamic aggregation, we introduce the use of ternary-CAM (TCAM) cells

at the second-level TLB. The modified TLB architecture results in an increase of TLB

reach without additional CAM entries. We also adopt bulk prefetching concurrently

with aggregation technique to enhance the benefits due to spatial locality. The perfor-

mance of the proposed TLB architecture is evaluated using SPEC2000 benchmarks

concentrating on those that show high data TLB miss ratios. Simulation results

indicate a reduction in miss ratios between 59% and 99.99% for all the considered

bench-marks except for one benchmark, which has a reduction of 10%. We show that

the L2 TLB when enhanced using TCAM cells is an attractive solution to high miss

ratios exhibited by applications.

iv

To My Parents

v

ACKNOWLEDGMENTS

I would like to thank Dr. Rabi Mahapatra for all the help and guidance that he

offered. I am grateful to him for letting me take up this interesting work.

I would like to thank Dr. Jianer Chen and Dr. Reddy for serving on my com-

mittee. In addition, I am grateful to both of them for the excellent courses offered

by them. I would also like to thank Dr. Dmitri Loguinov for his technical guidance

and financial support in the first year of my graduate program.

I have greatly enjoyed my time spent in the office with Vivek, Sai and Seraj. I

thank them for all their help and for the numerous conversations we had together.

I am extremely grateful to all my friends who always were there for me and

have made graduate life memorable. In particular, I thank Shravan, Rishi, Abhijit,

Kaushik, and Abhiram.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II BACKGROUND . 4

A. Superpages . 4

B. Shadow Memory . 5

C. Prefetching Schemes . 6

D. TCAM Cells . 8

III EXPERIMENTAL SETUP . 11

IV OBSERVATIONS FROM TWO-LEVEL TLB 13

A. Will Bulk Prefetching Help? 13

B. Will Aggregation Help? . 15

V BULK PREFETCHING AND STATIC AGGREGATION 19

VI DYNAMIC AGGREGATION 22

A. L2 TLB LookUP . 24

B. TCAM Enabled Dynamic Aggregation 24

C. Effect on Overall Miss Rate 31

D. Temporal Property of Dynamic Aggregation 33

VII TIMING ANALYSIS . 37

A. Average Cost of Translation 37

B. Prefetching Window . 39

VIII SUPPORT FOR VARIABLE SIZED PAGES 41

IX CONCLUSION AND FUTURE WORK 42

REFERENCES . 44

VITA . 49

vii

LIST OF TABLES

TABLE Page

I Overall miss rate for two-level CAM based TLB with L1 = 32 and

L2 = 256 entries. 14

II Comparison of overall miss rate for two-level CAM based TLB

with entries in L1 VTT = 32 and L2 VTT = 128 for the two

schemes L2 static aggregation and L1 L2 static aggregation. The

overall miss rate is same for both the schemes. 21

III Overall Miss Rate with TCAM enabled L2 TLB architecture sup-

porting dynamic aggregation. Sizes of L1 and L2 VTT are 32 and

128 respectively. The maximum number of TCAM bits for each

virtual tag is three (i.e., N = 3). 32

IV Prefetch Accuracy for two designs: static aggregation and dy-

namic aggregation. 33

V Total Number of L2 TLB replacement for two designs: static and

dynamic aggregation . 34

VI Percentage of blocks with different ranges of block occupancy. 35

VII Percentage of blocks with various ranges of LBRC. 36

VIII Ratio of the variable parameters determining cost of translating

a virtual address between the two schemes for various overhead ratios. 38

IX Overall Miss Rates for all the three schemes: (1) CAM based

two-level TLB with 32 and 256 entries. (2) CAM based two-

level TLB that supports bulk prefetching and static aggregation

with 32 and 128 entries. (3) 2-level TLB with CAM based L1

and CAM+TCAM based L2 that supports dynamic aggregation

in addition to bulk prefetching and static aggregation with 32

and 128 entries. Also shown in the table is the percentage miss

reduction of scheme (2) and (3) over scheme (1). 43

viii

LIST OF FIGURES

FIGURE Page

1 TCAM cell. 9

2 Cumulative Density Function of misses for different miss-distances

of two-level CAM based TLB with L1 = 32 and L2 = 256 entries. . . 15

3 Example of aggregation process. 16

4 Cumulative Density Function (CDF) of space-gain of two-level

CAM based TLB with L1 = 32 and L2 = 256 entries. (a) aggre-

gation with Z = 3 bits. (b) aggregation with Z = 2 bits. 17

5 High Level Design of CAM based L2 TLB showing VTT and PTT

that supports aggregation with bulk prefetching of size four. 20

6 (a) Schematic of L2 VTT that supports dynamic aggregation by

using TCAM cells along with CAM cells. Maximum number of

dont care bits allowed is N (i.e., N TCAM cells per VTT entry).

(b) The DAM module shown with input and output parameters. . . . 22

7 Steps involved during look up in L2 TLB that supports dynamic

aggregation. Number of dont care bits allowed here is 3 so that

one virtual tag in L2 VTT can map to a maximum of 32 translations. 25

8 Example of missed look-up showing maximum of N possible matches. 28

9 Missed Look-Up Examples. Entries in L2 VTT is 12. W = 12.

Only W -2 = 10 bits are stored in the VTT. Maximum number

of dont care bits allowed due to dynamic aggregation is 3 i.e., a

tag in VTT can map to a maximum of 32 entries (e.g., R7). Five

examples of missed look-up are given. Three of them are look up

due to block coming from memory while rests are due to L1 TLB

replaced blocks.. 30

ix

FIGURE Page

10 Process of merging during dynamic aggregation. (W 2) significant

bits are stored in L2 VTT. Maximum number of dont care bits

allowed are 3 so a total of 8 PTT banks. 31

11 Cumulative Density Function of miss-separation. (a) two-level

CAM based TLB. (b) two-level TLB proposed in this paper sup-

porting dynamic aggregation. 40

1

CHAPTER I

INTRODUCTION

The increase in size and complexity of the application programs driven by the recent

advancement in the DRAM technology has led to manifold increase in virtual address

space. Therefore, a significant amount of memory spanning up to several pages is now

required to store the much increased virtual to physical address translations. However,

a small cache of recently used translation is stored in Translation Lookaside Buffer

(TLB) to hide the memory latency. On every instruction fetch or data reference, TLB

is looked up for address translation. If the mapping is not found then it results in a

TLB miss upon which the miss handler looks up the page containing the translation in

the main memory. The new mapping is then stored in the TLB for future references by

replacing one of the previously stored mappings that is chosen based on a replacement

policy.

The address translation is one of the most critical operations in modern proces-

sors. Previous studies show the most frequent kernel operation is TLB miss handling

leading to significant processing time being spent to handle the TLB misses [1], [2],

[3]. Due to the continuous increase in instruction level parallelism, clock frequency,

and size of working set of applications, the impact of TLB performance on the overall

application processing time will continue to grow.

The performance of any TLB design is evaluated in terms of two metrics - access

time and miss ratio. Since the address translation is in the critical path of instruction

fetch and data reference, the TLB look up needs to be completed as soon as possi-

ble. The TLB miss rate should be minimized because of severe miss penalty (30-50

The journal model is IEEE Transactions on Automatic Control.

2

clock cycles). This penalty is sure to increase further due to the ever-increasing gap

between the processor and the memory access speed. Consistent efforts are being

made to reduce the TLB miss rate. Two popular approaches to decrease TLB miss

rate that have emerged in the research community are increasing TLB reach and

prefetching. Use of superpages has been proposed to increase the TLB reach. The

subblock TLB [4] and use of shadow memory [5], [6], [7] are some of the schemes that

implement superpages. These schemes either place a considerable overhead on the

memory management unit of the operating system or require significant architectural

changes. Even though TLBs of most modern processors support multiple page sizes,

the use of superpages in prevalent operating systems is rather limited due to their

associated complexities. The subblock TLB further has a limitation of supporting

only fixed sized superpages. Recency based prefetching [8] and distance prefetching

[9] have been proposed to reduce miss rate but at the expense of complex prediction

strategies. Furthermore, a TLB architecture should also support simultaneous mul-

tiple accesses to satisfy execution of multiple instructions in a single cycle to provide

high throughput [10].

We show that majority of SPEC2000 benchmarks exhibit a considerable amount

of spatial locality at the page level granularity and have a large scope of aggregation.

Aggregation is the process of merging several virtual tags in TLB into a single entry

thus freeing many TLB entries so that they can be filled up by other address trans-

lations. Based on these observations, we propose a modified TLB architecture that

supports bulk prefetching and static aggregation similar to the concept of complete-

subblock proposed in [4]. Further, we employ dynamic aggregation of virtual tags in

the L2 TLB to increase TLB reach. To support dynamic aggregation, we introduce

the use of TCAM cells [11] along with CAM cells at the second-level TLB. To the

best of our knowledge, this is the first attempt to use TCAM cells in a TLB design

3

to enhance TLB reach. We show that dynamic aggregation not only exploits spatial

locality but also exploits temporal locality present in the applications. A significant

reduction in the overall TLB miss rate is achieved without additional CAM overhead

(i.e., no change in the number of virtual tags in the TLB). The aggregation technique

proposed here is a hardware-controlled approach. Each virtual tag in TLB maps to

a variable number of physical pages due to the use of TCAM cells. In addition, the

TCAM cells allow mapping of larger sized pages (e.g., Itanium CPU provides ten

different page sizes from 4KB to 256MB) in a single TLB entry. Thus, our proposed

scheme provides the benefits of increasing the TLB reach as in the case of superpages

but without most of the limitations and associated complexities.

The rest of the paper is organized as follows. Chapter II discusses related work.

The details of experimental setup are presented in Chapter III. Chapter IV describes

some of our observations regarding L2 TLB. Bulk prefetching and static aggregation

strategies are described in Chapter V. Chapter VI introduces the dynamic aggregation

process in detail. The timing analysis of the proposed architecture is given in Chapter

VII. Chapter VIII describes the usage of TCAM cells in the TLB to support variable

sized pages. Chapter IX concludes the paper with important results and a discussion

on future research directions.

4

CHAPTER II

BACKGROUND

Over the past few years, lot of research has been done to improve TLB access time and

miss rate. Most common solution to reduce the access time is to support multi-level

TLB with a small L1 TLB followed by a larger L2 TLB [3], [12]. The second-level

TLB is looked up only when there is a L1 TLB miss. Looking up a smaller TLB

decreases the access time. Like the cache hierarchical structure, TLB hierarchy also

follows the inclusion property (entries present in lower level is also present in higher

level).

Two popular approaches to decrease TLB miss rate are increasing TLB reach

and prefetching. TLB reach is the total physical memory mapped in the TLB that is

equal to the product of number of entries in the TLB and the page size of each entry.

The simple solutions to increase TLB reach are increase in page size and number of

TLB entries but both of them are not practical. Increasing the page size worsens the

page internal fragmentation and memory utilization and thus the overall performance

of the system. Increase in size of TLB has not been able to keep pace with the increase

of virtual address space due to constraints in chip area, access time and cycle time.

A. Superpages

Use of superpages has been proposed to increase TLB reach. Superpage is a page in

memory that is created by bringing several properly aligned pages that have contin-

uous virtual address space together in the main memory. By doing so, several pages

constituting the superpage will have a single TLB entry that frees up entries for

other mappings thereby increasing TLB coverage. The issues involved in superpage

management are allocation (copying or reservation based), fragmentation control,

5

promotion, demotion and eviction of superpages [13]. Making best use of multiple

sized pages is also a challenge. The benefit of increasing TLB reach can be eclipsed by

increase in internal fragmentation and high disk traffic. Online superpage promotion

[14] is a scheme for dynamically supporting superpage management by monitoring

TLB misses to decide when to create a superpage. This scheme takes into account

both the benefit of superpage promotion (reduction in TLB misses) and the cost (page

copying). The analysis takes place during the TLB miss handling thereby increasing

the cost of TLB miss. The paper proposes several promotion policies – OFFLINE,

ONLINE, APPROX-ONLINE and ASAP. Supporting superpages places a significant

overhead on the memory management unit of the operating system.

B. Shadow Memory

Use of shadow memory [5], [6], [7] has been proposed to support superpages without

much support from operating system. Many modern processors have 32-40 phys-

ical address bits, which can address four GB to one TB of actual memory. This

greatly exceeds the amount of physical memory available. The scheme makes use of

the unused physical address range to virtualize physical memory. Shadow memory

is another address space between virtual and physical address space. TLB stores

mapping of virtual address space and shadow address space. The scheme requires a

secondary MMU and TLB in the main memory controller. This memory-controller

TLB (MTLB) translates shadow address to physical addresses. The advantage here

is it allows superpages to be created from discontinuous base physical pages by using

continuous shadow pages without any modification to the processor MMU.

However, this scheme is also difficult to manage and requires many architec-

tural changes. First, it requires MTLB (a new component) for implementation. The

6

high-end machines that need most support of superpages use all addressable physi-

cal memory preventing the use of shadow address space. Use of MTLB can lead to

imprecise exceptions. The memory issues (load and store instructions) that pass the

TLB translation successfully can be identified as improper in the MTLB. In such a

case, the CPU must back-off all the instructions that have been executed in advance.

Operating system can use only rough reference information. Cache flush needs to be

performed whenever pages are deallocated. The authors in [6] address these draw-

backs by integrating partial sub-block TLB with shadow memory. The limitation of

the new scheme is that maximum superpage size is fixed by the superpage factor of

its partial sub-block TLB.

Fang et.al. [5] compares creating superpages via copying and remapping pages

within the memory controller [15], [16], [17]. Remapping based promotion outper-

forms copying based promotion most of the time. Copying based promotion is slightly

more effective on superscalar processors than single-issue processors.

C. Prefetching Schemes

Another direction to decrease TLB miss rate is prediction and prefetching. Various

prefetching techniques have been proposed mainly in context of caches and I/O. The

study related to TLB is fairly recent. Prefetching can be classified based on the

following two criterions:

• The schemes that predict strided reference patterns (sequential [18], [19] and

arbitrary stride prefetching [20], [21]).

• The schemes that use much longer history to make predictions. (markov prefetch-

ing [22]).

7

Prediction schemes have different degree of effectiveness for different reference pat-

terns. The authors in [2], [23] consider prefetching TLB entries only for cold start.

However, TLB misses have been seen to exhibit some regularity [8] thus detecting the

pattern can significantly help in reducing TLB misses. Several prefetching schemes

have been proposed such as recency based [8], and distance prefetching [9].

The prediction is based on TLB miss streams otherwise prediction would come

in the critical path of TLB access. All the prefetched entries are stored in a prefetch

buffer. At the time of a miss, this buffer is looked up in parallel with the TLB to find

out if the entry has already been prefetched. Prediction accuracy is the metric used

to compare the effectiveness of the prefetching techniques. Prediction accuracy is the

fraction of misses for which the translations can be found in the prefetch buffer (due to

accurate prediction i.e., the translation for the address causing the miss is prefetched

before the miss actually occurs). Since prefetching causes additional memory traffic,

one wants a high accuracy from any prefetching scheme. Mispredictions throw away

prefetched entries from prefetch buffer (not from TLB) since an entry is removed from

prefetch buffer and placed in TLB only upon a prefetch buffer hit.

Recency Prefetching is the first mechanism proposed exclusively for TLB. The

idea behind the mechanism is that pages referenced at around the same time in the

past will also be referenced at around the same time in the future. A LRU stack of

page table entries is maintained to keep the information needed for prediction. Each

page table entry has two pointers, previous and next, pointing to two page table

entries that were evicted out just before and after this entry. These pointers are

actually stored in the page tables. An entry is put on the top of the stack on being

evicted out of the TLB and its next pointer is set to the previous entry that was

removed (whose previous pointer is set to this entry). On a TLB miss, the prefetch

mechanism fetches the entries corresponding to the next and previous pointers into

8

the prefetch buffer expecting that these entries would also be needed. The advantage

of this scheme is no additional storage cost on-chip since all the prediction information

is kept in the page table. However, it comes at the cost of an increased page table

size.

Distance prefetching is a mechanism that try to detect many patterns that re-

cency and markov schemes can detect in addition to the regular strided reference

behavior. The advantage is requirement of little space and no extra memory oper-

ations for prefetching. This mechanism works by tracking the differences between

successive addresses (spatial separation or distance). Distance Prefetching maintains

a table of distance values and each such value maps to few other distances that oc-

curred immediately after this distance was encountered. On a TLB miss, the scheme

indexes the table based on the current distance (difference in page number between

current miss and previous miss) and prefetch the tags corresponding to all the dis-

tances that are mapped by current distance.

The prediction accuracy for all the above-mentioned techniques are compared

in [9] over a diverse set of applications (SPEC 2000 benchmarks, MediaBench, Etch

traces and Pointer Intensive benchmark suite). Distance prefetching was found to be

more effective than the other schemes in majority of the applications.

D. TCAM Cells

Normal memory devices access data according to the address of the memory location.

This memory model is not suitable for lookup applications, which require search-

ing capability based on content rather than address. Some of the examples of such

applications include IP address lookup, TLB lookup, packet classification, pattern

recognition, firewall implementation. In order to accomplish content-based lookup,

9

they instead rely upon a suitable retrieval data structure. This may cause several

memory accesses for a single lookup operation and can become a serious bottleneck

in demanding lookup applications.

One of the solutions to address this bottleneck is to use memories with built

in comparison capabilities known as Content Addressable Memories (CAMs). They

bring down the complexity of content-based lookup operation to a single memory

access and provide one lookup each memory cycle if implemented in pipelined fashion.

However CAMs based solution run into problems if the lookup key is allowed to have

variable length. The packet classification, access control list and address lookup in

Internet exhibit such characteristics.

Fig. 1. TCAM cell.

For such applications, CAM architecture has been extended to store a “don’t care”

state in addition to ‘0’ and ‘1’ state. These memories are called Ternary Content

10

Addressable Memory (TCAM) and they match both 0 and 1 if the don’t care bit is

set. TCAMs are increasingly being used in high performance backbone IP routers to

achieve IP lookup at line speed typically 100 million lookups per second.

A NOR based TCAM cell is shown in Figure 1 1. It uses two SRAM based binary

storage cell to store states 0, 1 and don’t care. It has four transistor switches T1-T4

to assist comparison and includes a total of 16 transistors in comparison to a SRAM

cell that is made of 6 transistors. Therefore, use of TCAM results in higher gate

count and larger chip area. An array of TCAM cells are arranged to form a TCAM

word. A TCAM word can be used to store a virtual tag in the TLB that assist in

variable length matching. An array of TCAM word forms a TLB.

1Adapted from http://www.eecg.toronto.edu/ pagiamt/cam/camintro.html

11

CHAPTER III

EXPERIMENTAL SETUP

Some of the SPEC 2000 benchmarks exhibit high data TLB miss rate as pointed

out in [24]. In this paper, we consider nine application benchmarks from SPEC2000

[25] to study the effectiveness of our approach. Five of them (galgel, twolf, vpr,

lucas and mcf) show high data TLB miss rate while the other four (swim, bzip, gzip

and crafty) belong to the set of benchmarks that show relatively lower miss rates.

Three (galgel, lucas and swim) of these are floating-point benchmarks while the rest

(twolf, vpr, mcf, gzip, bzip and crafty) are integer benchmarks. All the binaries

are taken from [26]. These benchmark are compiled on an Alpha 21264 machine

using Compaq’s cc V5.9-008, cxx V6.2-024, f90 V5.3-915 and f77 V5.3-915. These

benchmarks are run using SimpleScalar-3.0 toolset that supports Alpha architecture.

The sim-cache component of the toolset which is a multi-level cache simulator has

been used for functional (not cycle-by-cycle) simulations of instructions. Separate

TLBs are considered for instructions and data references. However, only the data-

TLB references are examined in this paper since the instruction-TLB miss rates for

the SPEC2000 benchmarks are very low. We do not consider the effect of operating

system (i.e., no interference from OS, no entries reserved for OS pages in TLB, no

context switch). We are mainly interested in the characteristics of the applications

involved with address translation in data TLB. We do not run the benchmarks to

completion. Instead, we execute almost 232 (∼ 4.29 billion) instructions and take

average of their outcomes. We believe that this many instructions should be sufficient

to capture the true behavior of the applications. Throughout the paper, we consider

fully associative TLB and least recently used (LRU) policy for replacement. The

page size is fixed at 4KB for all the simulations. The term miss rate is defined as the

12

ratio of total number of TLB miss to total number of data memory references. We

represent total number of bits in virtual tag as W and |L2| to denote the size of the

second-level TLB.

13

CHAPTER IV

OBSERVATIONS FROM TWO-LEVEL TLB

Two-level TLBs provide reduced access time as shown in [3], [24], [12] when compared

to a single-level TLB architecture. Modern processors such as Itanium (32-entry L1,

96-entry L2), AMD Athlon (32-entry L1, 256-entry L2) and others provide multi-level

TLB structures. Table I gives the overall miss rates in nine SPEC2000 benchmarks

using a two-level TLB archi-tecture. We observed a high percentage of TLB misses

for the first five benchmarks while the rest have a very low miss rate. In fact, four of

the nine benchmarks show very poor L2 hit rates in spite of its large size. To improve

the TLB hit rates, we examine properties related to TLB misses and virtual tag values

to get an indication of the benefits that can be achieved by exploiting spatial locality

available in the benchmarks.

A. Will Bulk Prefetching Help?

We introduce a metric called miss-distance to examine if bulk prefetching can help

in reducing overall TLB miss rates. Miss-distance is the difference between the tag

value that results in a L2 TLB miss and the nearest tag value stored in L2 TLB. The

following equation defines miss-distance:

|VL − Vi| such that |VL − Vi| ≤ |VL − Vj| ∀j, j ∈ {1,, |L2|}

where

VL = value of the looked up tag that resulted in a L2 TLB miss and

Vi= value of the tag stored in ith entry of L2 TLB.

Smaller miss-distance values indicate higher spatial locality present in the bench-

marks.

14

Table I. Overall miss rate for two-level CAM based TLB with L1 = 32 and L2 = 256

entries.

Benchmarks L1 Miss Rate L2 Hit Rate Overall Miss Rate

GALGEL 13.13% 0.89% 13.01%

TWOLF 2.94% 84.14% 0.466%

MCF 5.25% 21.8% 4.105%

VPR 7.52% 96.54% 0.259%

LUCAS 1.13% 2.26% 1.10%

SWIM 0.14% 11.68% 0.126%

BZIP 1.33% 89.25% 0.14%

GZIP 0.53% 98.6% 0.0073%

CRAFTY 2.49% 98.27% 0.043%

Figure 2 shows the cumulative density distribution of miss-distances (i.e., y-axis

shows the fraction of misses that have a miss-distance less than or equal to a given

value on the x-axis). We measure miss-distance on each TLB miss up to a value of

32. All miss-distances larger than 32 are shown at the miss-distance value of 33.

For all the benchmarks except lucas, a high percentage of misses take place

within a very small miss-distance. In fact, galgel and gzip have over 99% of their

misses within a miss-distance of two. Moreover, the benchmarks twolf, swim, bzip

and crafty show more than 92% of their misses within miss-distance of four. The

curves for mcf and vpr show sharp rises up to a miss-distance of four after which the

CDF increases gradually. These results signify a lot of spatial locality for most of the

benchmarks when we look at data references at the page level granularity. Based on

these observations, it seems that bulk prefetching will help reduce miss rates for a

15

majority of the benchmarks.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 3 6 9 12 15 18 21 24 27 30 33
Miss-Distance

C
D

F
 o

f
M

is
se

s

galgel
twolf
swim
mcf
vpr
lucas
bzip
gzip
crafty

Fig. 2. Cumulative Density Function of misses for different miss-distances of two-level

CAM based TLB with L1 = 32 and L2 = 256 entries.

B. Will Aggregation Help?

We define space-gain as the total number of TLB entries that can be freed due to ag-

gregation. We would like to aggregate virtual tags that differ in their least significant

bits and map them to a single entry in the TLB. By doing so, many TLB entries can

be freed to accommodate additional mappings and enhance the TLB coverage.

We measure the space-gain by counting the number of entries in the L2 TLB

that have only their Z least significant bits different. We explain the process of

aggregation with an example having the value of Z= 3. Let (10010001, 01101000,

01101010, 00110110, 01110111, 00110100, 00110001, and 01101100) be the tag values

in a TLB of size 8. We see that the tag values 01101000, 01101010, and 01101100

are the same value except for their 3 least significant bits. After aggregation, a single

entry corresponds to these three tags thus freeing two TLB entries. Similar is the case

with 00110110, 00110100 and 00110001 tag values. Overall, we can have a space-gain

16

of four. Figure 3 presents the above example of aggregation with 3 bits.

Four rows
becomes
free due to
aggregation

After

Aggregation

10010001

01101000

01101010

00110110

01110111

00110100

00110001

01101100

10010001

 01101[000-111]

01101000

01101010

01110111

00110110

00110100

00110001

 01110111

00110[000-111]

Fig. 3. Example of aggregation process.

Figure 4 shows the cumulative density distribution of space-gain (i.e., y−axis shows

the fraction of time space-gain is less than or equal to the value on the x−axis). The

CDF is plotted by measuring the space-gain after every 50 TLB miss. The L2 TLB

used in the simulation contains 256 entries. Space-gain is maximized when all the

entries in the L2 TLB can be aggregated. If this is the case, then we will require only

32 entries with each of these 32 entries mapping 8 translations. The rest of the TLB

entries then become free. Therefore, the maximum space-gain that can be achieved

in this example is 224. Figure 4(a) shows the CDF of space-gain for aggregation with

Z =3 bits. CDF plots for most of the benchmarks show a sharp rise indicating that

a majority of the time the space-gain has a constant value indicated by the location

of the steep rise. On an average, a space-gain of 210-220 entries is seen for swim

and gzip while 180-190 entries is gained for galgel, twolf, bzip and crafty. Mcf and

vpr show a moderate space-gain of 120-130 entries. Lucas does not seem to benefit

much from aggregation. Figure 4(b) shows the CDF of space-gain for the aggregation

with Z= 2 bits. The CDF plots follow the same trend as in Figure 4(a), except the

17

maximum space-gain is 192. However, both cases show a large scope of aggregation

for most of the benchmarks.

0

0.2

0.4

0.6

0.8

1

0 40 80 120 160 200

Space-Gain

C
D

F g alg el
t wo lf
s wim
mcf
vp r
lucas
b zip
g zip
craft y

(a)

0

0.2

0.4

0.6

0.8

1

0 40 80 120 160

Space-Gain

C
D

F

g alg el
t wo lf
s wim
mcf
vp r
lucas
b zip
g zip
crafty

(b)

Fig. 4. Cumulative Density Function (CDF) of space-gain of two-level CAM based

TLB with L1 = 32 and L2 = 256 entries. (a) aggregation with Z = 3 bits. (b)

aggregation with Z = 2 bits.

Both bulk prefetching and aggregation techniques exploit spatial locality among the

data references to a large extent that would surely help in reducing the overall TLB

miss rate. In the next section, we propose the architectural changes needed in TLB

18

to incorporate these schemes.

19

CHAPTER V

BULK PREFETCHING AND STATIC AGGREGATION

A TLB structure has two parts: virtual tags and data (physical addresses) with their

attributes. Virtual tags are stored in the CAM array which we refer to as the virtual

tag table (VTT) and the data portion is stored in SRAM which we refer to as the

physical tag table (PTT). Based on the results presented in Chapter IV, we adopt

the size of bulk prefetching to be four since all benchmarks except lucas show a

very high percentage of misses with a miss-distance equal to or less than four. The

four page table entries fetched from main-memory in response to a TLB miss are

collectively referred as a block. One of the entries in a block contains the physical

address corresponding to the virtual tag that resulted in a miss. The translations

included in a block have virtual tag values such that they differ only in their two

least significant bits. The remaining (W– 2) virtual tag bits common to all four

translations represent the virtual tag for the entire block; we refer to it as block tag

and store it as an entry in the VTT. The data portion corresponding to a block tag

(physical memory addresses and attributes for four pages) is stored in consecutive

entries in the PTT. We refer to this scheme as static aggregation.

Figure 5 shows the high level design of a CAM based L2 TLB that supports

bulk prefetching and static aggregation. Each block tag in VTT maps to 4 entries

in the PTT. Since a block is brought from memory to the TLB and evicted out of

the TLB back to memory in a group, we have a single reference bit for the block

in the VTT. The physical memory addresses for all the four pages in the block are

stored sequentially in the PTT in ascending order of their virtual tag addresses. Each

entry in the VTT contains a pointer to a PTT entry that stores the physical address

of first translation of the block. We refer to this pointer as the PTT block pointer.

20

The PTT stores the physical memory address, valid bit and attribute bits for each

page entry. On a TLB hit, the PTT block pointer and the two least significant bits

of the looked up virtual address determine the location in the PTT containing the

physical address. On a TLB miss, the least recently used block in the L2 TLB is

replaced by the block that is fetched in response to the miss. We refer to this scheme

as L2 static aggregation.

PTT

 PTT
 Virtual Reference Block
 Block Tag Bit Pointer

 Physical Memory Valid Attr
 Address Bit Bits

 VTT

 W – 2 bits

PTT Block
Pointer

 PTT
 Address

 PTT Address
 Generator

Block

W W-2

2 Least significant bits of virtual lookup tag

Fig. 5. High Level Design of CAM based L2 TLB showing VTT and PTT that supports

aggregation with bulk prefetching of size four.

To improve the L1 hit rate, we can also incorporate the static aggregation scheme

into the L1 TLB. In this case, both the L1 and L2 VTTs can share a common PTT.

We refer this process as L1 L2 static aggregation. The overall miss rate for both

schemes remains the same due to the common PTT that holds all the translations.

However, the L1 TLB reach is increased four times which leads to an increase in the

L1 hit rate (decrease in L2 hit rate) and a reduction in the overall access time. Table

II shows the overall miss rate for CAM based two-level TLB architecture with bulk

prefetching and static aggregation. While we consider the size of VTT in L1 TLB to

be 32 entries, the VTT size in the L2 TLB has been kept at 128 instead of 256 as in

21

Chapter IV. Even with half of the VTT size in the L2 TLB, we are able to reduce

the miss rates significantly compared to the overall miss-rates listed in Table I.

Table II. Comparison of overall miss rate for two-level CAM based TLB with entries in

L1 VTT = 32 and L2 VTT = 128 for the two schemes L2 static aggregation

and L1 L2 static aggregation. The overall miss rate is same for both the

schemes.

Benchmarks L2 static aggregation L1 L2 static aggregation Overall

L1 Miss Rate L2 Hit Rate L1 Miss Rate L2 Hit Rate Miss Rate

GALGEL 13.13% 51.33% 6.42% 0.447% 6.39%

TWOLF 2.94% 99.99% 1.09% 99.99% 0.00000826%

MCF 5.25% 43.15% 4.43% 32.87% 2.98%

VPR 7.52% 97.7% 2.77% 93.75% 0.173%

LUCAS 1.13% 9.79% 1.05% 3.67% 1.01%

SWIM 0.14% 71.67% 0.04% 0 0.04%

BZIP 1.33% 97.14% 0.56% 93.1% 0.038%

GZIP 0.53% 99.65% 0.00188% 3.3% 0.0018%

CRAFTY 2.49% 99.99% 0.77% 99.98% 0.00000842%

22

CHAPTER VI

DYNAMIC AGGREGATION

In this section, we show how to dynamically aggregate virtual block tags. Unlike

static aggregation, each virtual block tag in the VTT maps to multiple blocks in the

case of dynamic aggregation. To support dynamic aggregation, we employ TCAM

cells along with CAM cells to store the virtual tag bits in the L2 VTT. A TCAM cell

allows the storage of “don’t care” state in addition to the 0 and 1 states. When the

don’t care bit is set, the tag bit becomes a wild card and matches on both 0 and 1.

Thus, an entry in the VTT with don’t care bits can match multiple look up tags. This

way the TLB reach can be enhanced without increasing the VTT size. This benefit

comes at the cost of additional PTT entries (SRAM space) and dynamic aggregation

overhead.

 Dynamic
 Aggregator

 Module
(DAM)

(Y/N) Total of
N input

 Reference
 Bit

 W-2 super-block
 virtual tag bits

 2N PTT Block Pointers
 pointing to different PTT bank

If Y, two
entries in L2
TLB to be
aggregated

CAM TCAM

No. of don’t
 care bits N bits

Fig. 6. (a) Schematic of L2 VTT that supports dynamic aggregation by using TCAM

cells along with CAM cells. Maximum number of dont care bits allowed is N

(i.e., N TCAM cells per VTT entry). (b) The DAM module shown with input

and output parameters.

23

Figure 6(a) shows one of the many possible designs to support dynamic aggregation

using TCAM cells. We store only the (W– 2) most significant bits of a virtual tag

in the VTT. We use TCAM cells for storing the N least significant bits out of these

(W– 2) bits. The rest of the virtual tag bits are stored using CAM cells. The extent

of dynamic aggregation depends on the number of TCAM cells in the VTT. This

way, a tag entry can map up to a maximum of 2N blocks (i.e., 2N+2 physical page

addresses as each block stores four of them). We refer to all the blocks that are

mapped by a single entry in VTT as a super-block and we refer to its tag entry

as a super-block virtual tag. Therefore, the number of physical page addresses in a

super-block might be 4, 8, 16. . . .2N+2 corresponding to 1, 2, 4,. . . , 2N blocks. Rather

than sequentially storing all the physical addresses belonging to a super-block, which

would require extra overhead in terms of managing the PTT, we propose to use a

bank of PTTs (total of 2N) each of size four times that of the VTT. Aggregation takes

place between the virtual tags of two entries in the VTT having the same number of

don’t care bits with one TLB entry merging with the other. As was the case with

static aggregation, we keep a single reference bit for the super-block. The number

of translations fetched from main-memory on a TLB miss is always four; however,

the number of translations that get replaced from L2 TLB may be 4, 8, 16 . . . 2N+2

depending on the super-block size. The VTT also stores the number of don’t care bits

for each entry as a separate field which is used by the dynamic aggregator module

(DAM). DAM assists in searching for super-block virtual tags in the L2 VTT that

are suitable for aggregation. In Section 6.2 we examine the details of DAM.

24

A. L2 TLB LookUP

The second-level TLB is looked up only when there is a L1 TLB miss. The steps

involved in a L2 TLB look up given in Figure 7.

1. (W – 2) most significant bits of the looked up virtual tag are searched in the

L2 VTT.

2. Bits (2 to 4) are passed as input to the PTT bank selector and the mux module.

3. Bits (0 and 1) are passed as input to the PTT address generator.

4. The mux selects the PTT block pointer pointing to the block containing the

physical address of the required page.

5. The PTT address generator provides the exact PTT address where the physical

address of the looked up tag is stored.

6. The physical address corresponding to the virtual address is obtained from the

PTT bank.

The steps 1 to 3 occur simultaneously. Steps 2 to 4 are carried out on a TLB

hit. The only extra step involved in a look up that supports dynamic aggregation is

the multiplexer stage in Step 2. This was not present in static aggregation as there

was only one PTT block pointer.

B. TCAM Enabled Dynamic Aggregation

Dynamic aggregation takes place in response to the following events:

• Bulk prefetching after a TLB miss, and

• Replacement of a tag from the L1 TLB.

25

 PTT Bank
 Selector

PTT Block Pointer

Address in PTT where the
translation of the looked up
tag is stored

Look up Virtual Tag

8 PTT Banks for 3 bit aggregation i.e., 3 don’t care bits

 MUX

PTT Address Generator

 L2 VTT

W-2 bits

 Tag Value

0 2 5 W

 1a

2

3

4

 1b

 1c

 N = 3

 } Matched Entry

 1b

 8 PTT Block Pointers to each
 individual block in the super-block

Fig. 7. Steps involved during look up in L2 TLB that supports dynamic aggregation.

Number of dont care bits allowed here is 3 so that one virtual tag in L2 VTT

can map to a maximum of 32 translations.

26

The (W– 2) most significant bits of an incoming block from memory or a L1 TLB

replaced block are looked up in the L2 TLB. We refer to this look up as a missed

look-up and differentiate it from the normal look up coming from processor that we

discussed in Section 5. For a missed look-up, the bit next to the most significant

don’t care bit in a super-block virtual tag is set as don’t care and later restored back

to its original state of 0 or 1 after a missed look-up is served. If there is an entry with

no don’t care bits, the least significant bit among the N TCAM bits is set as don’t

care. This logic can be implemented in TCAM cells. The number of don’t care bit

field in the VTT as shown in Figure 6 is not changed during the missed look-up. The

matched entries due to the missed look-up become input to the DAM. Some of the

properties regarding missed look-up include:

Lemma 1 : Maximum number of entries that matches on a missed look-up is

equal to N .

Notations

Let the jth virtual tag in L2 TLB be represented by Bj = [bW−1
j bW−2

jbN+1
jb2

jb
1
j

b0
j] where bits bW−1

j . . . bN+2
j are store using CAM cells, bN+1

j . . . b2
j are store using

TCAM cells and the last two bits b1
j b0

j are not stored in TLB. Let the lookup tag

be L = [lW−1lW−2. . . lN+1. . . .l2 l1 l0].

Background

• The last two bits are not considered in lookup.

• The bits (N+1). . . .2 are stored using TCAM cells. They can be set as don’t

care.

• Entry with all the TCAM cells set as don’t care do not participate in dynamic

aggregation.

27

• Aggregation of an entry with zero don’t care to one don’t care is always due to

missed lookup of block prefetched tag and happens as soon as (at the earliest

possible instant) the second entry involved in aggregation is fetched from mem-

ory. Therefore, we cannot have two entries in the TLB for which all the bits

except bit 2 are same.

• Aggregation of an entry from one don’t care to more (aggregation always happen

in steps of one) is due to missed lookup of L1 replaced block tag. Two rows

(having at least one don’t care bits) can be further aggregated (even though

present in the TLB at the same time) only when one of the two tags gets

replaced from L1 TLB (not at the earliest possible instant).

First, we look at the missed lookup due to L1 replaced block tag. The following

reasoning can be easily extended to missed lookup due to block-prefetched tag.

Step 1. For matching to take place with any entry (say i): following bits have to be

same -

bW−1
i = lW−1, bW−2

i = lW−2. . . bN+2
i = lN+2

Step 2.

Maximum numbers of matches occur if one of the entries has all the N bits same

as that of lookup bits (i.e., bN+1
i = lN+1,., b3

i = l3, b2
i = l2) or the only bit that

may not be same is the least significant bit that can be a don’t care bit (i.e., b2
i = *).

Both the cases cannot occur together. Remaining (N– 1) matched entries are such

that:

For k = 2 to N

The kth bit, bk =∼ lk and all the bits less significant to the kth as don’t care.

For each k, we have one entry.

28

Therefore, maximum possible match on a missed lookup due to L1 replaced

block tag is N . No other entry is possible since these N entries cover all possible

combination of N bits.

The only difference between missed lookup of L1 replaced block tag and block

prefetched tag is Step 2. As opposed to two possible matches in previous case (b2
i =

l2or b2
i = *), we have only one possible case with b2

i =∼ l2.

The above proof is illustrated using an example in Figure 8. Only the possible

matched entries and the N bits in those entries are given in the figure. The N= 6

bits of the lookup tag are 011011. Two entries corresponding to Step 2.1 are 01101*

and 011011. Any one of them can be present but not both. The remaining possible

entries corresponding to Step 2.2 are 01100*, 0111**, 010***, 00****, and 1*****.

 0 1 1 0 *

 0 1 1 0 *

 0 1 1 * *

 0 1 * * *

 0 * * * *

 * * * * *

 1

 0

 1

 0

 0

 1

[] – 0 1 1 0 1 1 – []

 0 1 1 0 1 1 Or

N bits of a virtual tag
stored using TCAM cells

 Look Up Virtual Tag

Bit represented within the box is set as
don’t care before the missed look-up and reset
to its original state after missed look-up.

Fig. 8. Example of missed look-up showing maximum of N possible matches.

Lemma 2 : Due to the inclusion property, at least one match will always be found

in L2 TLB for a missed look-up of L1 TLB replaced block tag. However, for a bulk

prefetched block, the missed look-up might not result in any match.

Lemma 3 : Out of a maximum N possible matches, at most two matches will

have the same number of don’t care bits. If we have two such matched entries,

29

they become candidates for dynamic aggregation. Moreover, these two entries will

have the minimum number of don’t care bits among all the matched entries. Bulk

prefetched block will aggregate only with blocks that have zero don’t care bits. On

the other hand, the L1 TLB replaced tag can aggregate with another entry that has

same number of don’t care bits as the entry containing the replaced tag.

Proof of Lemma 3 follows from the proof of lemma 1.

The various steps involved in dynamic aggregation are:

1. The matched super-block tags from a missed look-up become the input to DAM.

2. The DAM decides on aggregation by finding two matched entries having the

same number of don’t care bits. Figure 9 shows examples of missed look-ups

and the resulting matched entries. The examples also show if the matched

entries result in aggregation. Out of the five examples shown in the figure,

the first three missed look-ups are due to an incoming block tag from memory

because of a TLB miss while the last two are due to the replaced block tag from

the L1 TLB.

3. If aggregation is possible, one of the two entries to be aggregated (preferably one

that is less recently used among the two) is merged with the other one. The PTT

block pointers from the merging entry are copied to the other entry involved

in aggregation. The merging entry is reset and becomes the least recently used

entry in the L2 TLB. Figure 10 illustrates an example. R1 and R2 are two

entries selected by the DAM for aggregation. Both the entries have one don’t

care bit i.e., they map to total of eight translations. After merging, R1 has two

don’t care bits. The tag value after aggregation is 1000101-1** and maps to

sixteen translations. R2 is reset and no longer maps to any translations. The

figure shows how two PTT block pointers are copied from R2 to R1. As an

30

 0111011-10*

 1001101-10*

 0110110-000

 0111011-11*

 0111011-0**

 1001100-***

 1001101-0**

 0111010-***

 0011111-00*

 [1904-1911]

 [2480-2487]

 [1728-1731]

 [1000-1003]

 [1912-1919]

 [1888-1903]

 [2432-2463]

 [2464-2479]

 [1856-1887]

 [0992-0999]

 R1:

 R2:

 R3:

 R4:

 R5:

 R6:

 R7:

 R8:

 R9:

 R10:

Missed Look Up Tag:
1) From Memory: 1001111-010 [2536-2539]
 No Match. Therefore no aggregation
2) From Memory: 0011111-011 [1004-1007]
 No. of Match = 2
 Matched Tag #1 = 0011111-010 (R4) (No. of don’t care bits = 0)
 Matched Tag #2 = 0011111-00* (R10) (No. of don’t care bits = 1)
 Missed Look Up Tag aggregates with Matched Tag #1.
 Final Value of Matches Tag#1 = 0011111-01* [1000-1007]
3) From Memory: 1001101-110 [2488-2491]
 No. of Match = 2
 Matched Tag#1 = 1001101-10* (R2) (No. of don’t care bits = 1)
 Matched Tag#2 = 1001101-0** (R8) (No. of don’t care bits = 2)
 No aggregation since no. of don’t care bits does not match.
• Tag = 1001100-*** (R7) would also result in a match but since we

do not aggregate further than 3 don’t care bits, this tag is not
involved in dynamic aggregation.

4) From L1 TLB replacement: 0111011-101 [1908]
 No. of Match = 3
 Matched Tag#1 = 0111011-10* (R1) (No. of don’t care bits = 1)
 Matched Tag#2 = 0111011-11* (R5) (No. of don’t care bits = 1)
 Matched Tag#3 = 0111011-0** (R6) (No. of don’t care bits = 2)
 Matched Tag#1 and #2 aggregates to 0111011-1** [1904-1919]
5) From L1 TLB replacement: 0110110-000 [1728]
 No. of Match = 2
 Matched Tag#1 = 0110110-000 (R3) (No. of don’t care bits = 0)
 Matched Tag#2 = 0110110-01* (R12) (No. of don’t care bits = 1)
 No aggregation since no. of don’t care bits does not match.

 0011111-010

 R11:

 R12:

 0110100-000

 0110110-01*

 [1664-1667]

 [1736-1743]

Fig. 9. Missed Look-Up Examples. Entries in L2 VTT is 12. W = 12. Only W -2 =

10 bits are stored in the VTT. Maximum number of dont care bits allowed due

to dynamic aggregation is 3 i.e., a tag in VTT can map to a maximum of 32

entries (e.g., R7). Five examples of missed look-up are given. Three of them

are look up due to block coming from memory while rests are due to L1 TLB

replaced blocks..

31

application continues to run, R1 might aggregate with another entry say R3

that has a virtual tag of 1000101-0**. R3 (not shown in the figure) will have

four pointers pointing to the first four PTT banks. After merging R1 and R3,

the merged entry will have eight pointers pointing to all the PTT banks and will

map to a total of 32 translations. The merged entry will have tag as 1000101-

*** and will no longer participate in the process of dynamic aggregation as it

has reached the maximum allowed don’t care bits.

Two TLB entries
that are candidate
for aggregation

8 PTT Banks each
of size |L2|*4.

TLB entries after
aggregation. R1 now
points to 4 blocks.
R2 becomes free.

 W-2 significant
 bits of tag

 1000101-11*

 1000101-10*

 1000101-1**

 R1:

 R2:

 R1:

 R2:

PTT Block Pointers to each of the PTT bank if translations
available. () indicates translation not available.

Fig. 10. Process of merging during dynamic aggregation. (W 2) significant bits are

stored in L2 VTT. Maximum number of dont care bits allowed are 3 so a total

of 8 PTT banks.

C. Effect on Overall Miss Rate

For simulations, we considered the sizes of the L1 and L2 VTT as 32 and 128 entries

respectively. The size of bulk prefetching is set to four. The maximum number of

don’t care bits allowed in the simulation is three. Therefore, an entry can map to a

32

maximum of 32 translations. Table III shows the effect of dynamic aggregation on

the overall miss rate. For galgel, bzip, mcf and vpr miss rate is reduced by 99.86%,

96.31%, 65.77%, 38.77% respectively compared to a TLB architecture with only static

aggregation. As a result the overall miss rates for galgel and bzip become negligible.

Twolf, swim, gzip and crafty do not have much scope for further reduction as they have

negligible miss rate after static aggregation. Lucas benefit very little from dynamic

aggregation. The overall miss rates for galgel and bzip are almost negligible.

Table III. Overall Miss Rate with TCAM enabled L2 TLB architecture supporting

dynamic aggregation. Sizes of L1 and L2 VTT are 32 and 128 respectively.

The maximum number of TCAM bits for each virtual tag is three (i.e., N

= 3).

Benchmarks L1 Miss Rate L2 Hit Rate Overall Miss Rate

GALGEL 6.42% 99.99% 0.00863%

TWOLF 1.09% 99.99% 0.00000826%

MCF 4.43% 76.98% 1.02%

VPR 2.77% 96.17% 0.106%

LUCAS 1.05% 6.56% 0.981%

SWIM 0.04% 8.89% 0.036%

BZIP 0.56% 99.74% 0.0014%

GZIP 0.00188% 6.4% 0.00176%

CRAFTY 0.77% 99.98% 0.00000842%

33

D. Temporal Property of Dynamic Aggregation

Next we look at the accuracy of bulk prefetching (i.e., out of four translations brought

together from memory how many of them are looked up before they are replaced).

We expected to see a significant increase in accuracy due to the improvement in miss

rate. However, looking at Figure 8, we see there is not much difference in accuracy

between static and dynamic aggregation. The first four rows correspond to percentage

of blocks replaced from L2 TLB with only one, two, three and all the four translations

having been looked up. It is important to note that total tags replaced from L2 TLB

are not same. Table IV gives the total number of block tags replaced from L2 TLB

during simulation period. In fact, the values in Table VI and Table VII are also

percentage of the value in Table V. Twolf is not considered in this experiment as

the number of miss is negligible after static aggregation only and all the entries of

L2 TLB is not used up; therefore no replacement takes place. Two columns (static

and dynamic) for each benchmark denote the prefetch accuracy (in percentage) with

static and dynamic aggregation respectively.

Table IV. Prefetch Accuracy for two designs: static aggregation and dynamic aggre-

gation.

MCF GALGEL SWIM VPR LUCAS

Static Dynamic Static Dynamic Static Dynamic Static Dynamic Static Dynamic

1 71.6 79.2 1.18 96.2 16.4 13.64 65.65 62.64 94.72 94.45

2 17.97 8.9 94.1 1.785 19.1 15.76 25.3 26.44 3.11 3.36

3 6.1 4.1 4.66 0.545 0.72 0.207 6.7 7.6 0.013 0.004

4 4.33 7.75 0.067 1.466 63.75 70.38 2.33 3.32 2.15 2.19

34

Table V. Total Number of L2 TLB replacement for two designs: static and dynamic

aggregation

Static Dynamic

MCF 5.68 * 107 1.94* 107

GALGEL 1.145*108 1.54*105

SWIM 5.58*105 5.07*105

VPR 3.12*106 1.90*106

LUCAS 9.17*106 8.89*106

We use the term block occupancy to refer to the duration between a block be-

ing fetched from main-memory and the block being evicted out of L2 TLB. Using

SimpleScalar, we measured this in terms of the total number of data-TLB look ups

occurring in that duration. We noticed a considerable difference in the block occu-

pancy between static and dynamic aggregation. Table VI gives the percentage of

blocks with different block occupancy ranges for mcf, galgel and swim. We consider

only these benchmarks as they benefit more from the temporal property of dynamic

aggregation.

Next, we measure how many times a block is replaced from L1 TLB without being

replaced from L2 TLB, which we refer to as L1-block-replacement-count (LBRC).

When a block is fetched from memory, it is placed in the L1 as well as the L2 TLB.

After some time, it is removed from L1 due to the LRU policy but remains in L2

until it is referenced again, upon which it is placed back into L1. Every time this

happens, LBRC for the block is incremented. This process continues until the block

gets evicted out from the L2 TLB.

Table VII shows the percentage of blocks with various LBRC ranges. We see

35

Table VI. Percentage of blocks with different ranges of block occupancy.

Block MCF GALGEL SWIM

Occupancy Static Dynamic Static Dynamic Static Dynamic

< 1000 44.25 40.57 0.35 0 27.37 0

< 10000 52.02 41.11 99.15 1.4 0.089 18.14

< 50000 2.475 10.26 0.29 95.7 0.537 0.42

< 100000 0.904 2.16 0.016 0.1 0.586 0.33

< 1000000 0.308 5.08 0.185 0.17 71.4 6.83

> 1000000 0.032 0.807 0.002 2.6 0.015 74.3

a higher percentage of blocks having larger LBRC when using dynamic aggregation

versus static aggregation for three benchmarks. These behaviors contribute to the

reduction in overall miss rate. The increase in LBRC is attributed to both benchmark

characteristics and the increase in block occupancy.

From the above study, we see many applications look up the same pages re-

peatedly with different time-gaps in between references. If the gap is very small,

the mapping for the page will remain in L1 TLB; however if it is too large, it will

be replaced from L2 TLB. If the gap is between these two extremes, the LBRC will

depend on the block’s occupancy. As the block occupancy on average is greater in

the case of dynamic aggregation, the LBRC increases result in a better hit rate.

Thus, we see that TCAM enabled dynamic aggregation not only helps in exploit-

ing spatial locality by storing more translations for the same size of L2 VTT but also

helps in exploiting temporal locality by increasing the block occupancy.

36

Table VII. Percentage of blocks with various ranges of LBRC.

LBRC
MCF GALGEL SWIM

Static Dynamic Static Dynamic Static Dynamic

1 72.01 76.16 99.956 97.3 100 96.74

2-5 26.9 18.1 0.043 0.40 0 2.91

6-10 0.986 1.95 0 0.025 0 0.0002

11-50 0.075 2.18 0 0.368 0 0.342

51-100 0.00083 0.92 0 0.014 0 0

101-500 0.0027 0.68 0.00035 0.737 0 0

501-1000 0 0.044 0.00024 0.28 0 0

> 1000 0 0.015 0 0.83 0 0

37

CHAPTER VII

TIMING ANALYSIS

A. Average Cost of Translation

In this section, we compare the average cost of translations between a CAM based

two-level TLB and two-level TLB as presented in this paper. The overall cost of

translation for any two-level TLB architecture is given by:

L1 AccessT ime+L1 MissRate× [L2 AccessT ime + L2 MissRate×MissPenalty]

The L1 TLB for both cases are identical in terms of access time and miss rate. Both

are of the same size and implemented using CAM cells. In this section, we do not

include static aggregation in the TLB so that the miss rate is same for both cases.

We assume that the access time for the L2 VTT for both cases is almost the

same due to the following reasons. Arsovski et.al. [27] show TCAM access time to be

almost the same as CAM access time. We are using only N TCAM cells per virtual

tag in the L2 VTT; the remaining bits are stored using CAM cells. Further, the size

of TCAM supported L2 VTT is half the size of the CAM based L2 VTT for all the

simulations. Therefore, the only variable parameters involved in cost of translation

for the two schemes are the L2 TLB miss rate and their respective miss penalties.

Therefore, the ratio of the variable parameters determining the cost of translation

between the two schemes is given by:

L2 MissRate Ratio × Overhead Ratio

where

L2 MissRate Ratio =
L2 MissRate (TCAM along with CAM based L2 TLB)

L2 MissRate (CAM based L2 TLB)

38

and

Overhead Ratio =
Total Penalty (bulk prefetching and dynamic aggregation)

Penalty (fetching one entry)

From Table VIII, we see that for all the benchmarks except lucas the ratio of the

variable factor is less than one. Therefore, the average cost of translation is lower for

our scheme in all these benchmarks. The reduction in miss rate is able to hide the

overhead of bulk prefetching and dynamic aggregation.

Table VIII. Ratio of the variable parameters determining cost of translating a virtual

address between the two schemes for various overhead ratios.

Benchmarks L2 MissRate OVERHEAD RATIO

Ratio 1.1 1.2 1.3 1.4 1.5

GALGEL 0.000663 0.00073 0.00080 0.00086 0.00093 0.000995

TWOLF 0.0000177 0.0000195 0.0000213 0.000023 0.000248 0.0000265

MCF 0.2484 0.273 0.298 0.323 0.348 0.373

VPR 0.2581 0.284 0.31 0.3356 0.3614 0.387

LUCAS 0.8821 0.977 1.06 1.15 1.24 1.33

SWIM 0.2911 0.32 0.349 0.378 0.407 0.436

BZIP 0.0098 0.01077 0.0117 0.0127 0.0137 0.0147

GZIP 0.237 0.261 0.284 0.308 0.332 0.355

CRAFTY 0.00019 0.00022 0.00023 0.00025 0.00027 0.00029

39

B. Prefetching Window

Miss-separation has been defined as the number of instructions executed between two

consecutive TLB misses [24], and it provides an insight into the timing constraints

under which prefetching mechanisms need to operate. If this time interval is too small,

prefetching based on complex prediction schemes may not be able to hide the miss

latency. Figure 11(a) gives the CDF of temporal miss-separation (i.e., y-axis shows

the fraction of misses that are separated by at most a given value in x-axis) for the two-

level CAM based TLB. For galgel and mcf, the prefetching windows for more than half

of the total misses are 5 and 8 instructions respectively. These prefetching windows

increase to 20 and 50 respectively when using dynamic aggregation as shown in Figure

11(b). The frequency of prefetching in galgel is low as the miss-rate is negligible due

to dynamic aggregation as compared to the CAM-based two level TLB. The CDF

plot is flat between 20 and 1000 signifying that the remaining 50% of misses have

miss-separation of more than 1000 instructions. It was observed that CDF curves

for all the benchmarks shifted to higher values of miss-separations. Due to dynamic

aggregation, all the misses in gzip and bzip occur with miss-separation larger than

10,000 and 100,000 respectively resulting in a flat curve. The CDF plot for twolf and

crafty are not shown in Figure 11(b) as there was no replacement of tags from L2 TLB

for these two benchmarks (i.e., some of the 128 entries in L2 TLB went unutilized).

Thus, the increased miss-separations provide a larger window for bulk prefetching.

Moreover, the overhead of prefetching four entries on each TLB miss can be reduced

by using Clustered Page Tables as introduced in [28].

40

0

0.2

0.4

0.6

0.8

1

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06

Miss-Separat ion

C
D

F
of

 m
is

se
s

g alg el
mcf
vp r
lucas
s wim
b zip
t wo lf
craft y
g zip

(a)

0

0.2

0.4

0.6

0.8

1

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06

Miss-Separat ion

C
D

F
of

 m
is

se
s

g alg el
mcf
vp r
lucas
s wim
b zip
g zip

(b)

Fig. 11. Cumulative Density Function of miss-separation. (a) two-level CAM based

TLB. (b) two-level TLB proposed in this paper supporting dynamic aggrega-

tion.

41

CHAPTER VIII

SUPPORT FOR VARIABLE SIZED PAGES

Some operating systems use different page sizes (e.g., 64KB, 256KB or 1MB sized

pages) for certain page mappings such as kernel data structures and frame buffers.

Most modern processor implementations include support for multiple page sizes in

their TLBs. TCAM based implementation of TLBs can also support variable page

sizes with a single VTT entry by varying the number of don’t care bits. Typical

TLB implementations that support multiple page sizes require that the pages are

always a power-of-two multiple of base page size and both the virtual and physical

base addresses are aligned to the page size. A TCAM based implementation of TLBs

can support page sizes of any arbitrary multiple of base page size by appropriately

setting the don’t care bits. This enables TCAM based implementations to adjust

to the dynamic behavior of applications and the system environment thus providing

better performance without increasing operating system complexity and associated

overhead of supporting superpages. We intend to evaluate effectiveness of TCAM

based implementation of variable page sizes against other such implementations in

subsequent work.

42

CHAPTER IX

CONCLUSION AND FUTURE WORK

We proposed a two-level TLB architecture that improves the TLB reach with the

same number of virtual tag stored in the TLB. Application programs seem to benefit

significantly from bulk prefetching and static aggregation. Using TCAM cells in

the L2 TLB further improves the hit rate due to dynamic aggregation. Support for

large sized pages can be easily accommodated due to the use of TCAM cells. Table

IX summarizes the results showing the reduction in miss rates due to the various

schemes proposed in this paper compared to the existing prevalent 2-level TLB. It

is noteworthy to mention that four out of nine benchmarks achieve more than 99%

reduction in their miss rates.

As future work, we would like to investigate the impact of the proposed design on

chip area and power consumption. We would like to extend the timing analysis using

the CACTI model. We intend to study the effectiveness of the proposed scheme un-

der multi-programming, multi-threading and run-time environments that frequently

change virtual to physical memory mappings (such as dynamic linking, and run-time

environments like Java).

43

Table IX. Overall Miss Rates for all the three schemes: (1) CAM based two-level TLB

with 32 and 256 entries. (2) CAM based two-level TLB that supports bulk

prefetching and static aggregation with 32 and 128 entries. (3) 2-level TLB

with CAM based L1 and CAM+TCAM based L2 that supports dynamic

aggregation in addition to bulk prefetching and static aggregation with 32

and 128 entries. Also shown in the table is the percentage miss reduction

of scheme (2) and (3) over scheme (1).

Benchmarks CAM based Bulk Prefetching + Bulk Prefetching + Static +

2-level TLB Static Aggregation Dynamic Aggregation

L1=32,L2= 256 L1 =32, L2 = 128 (CAM + TCAM based L2 TLB)

L1 = 32, L2 = 128

Overall Overall Miss Overall Miss

Miss Rate Miss Rate Reduction Miss Rate Reduction

GALGEL 13.01% 6.39% 50.88% 0.00863% 99.93%

TWOLF 0.466% 0.00000826% 99.99% 0.00000826% 99.99%

MCF 4.105% 2.98% 27.4% 1.02% 75.15%

VPR 0.259% 0.173% 33.2% 0.106% 59.07%

LUCAS 1.10% 1.01% 8.18% 0.981% 10.81%

SWIM 0.126% 0.04% 68.25% 0.036% 71.4%

BZIP 0.14% 0.038% 72.8% 0.0014% 99%

GZIP 0.0073% 0.0018% 75.3% 0.00176% 75.89%

CRAFTY 0.043% 0.00000842 99.98% 0.00000842 99.98%

44

REFERENCES

[1] T. E. Anderson, H. M. Levy, B. N. Bershad, and E. D. Lazowska, “The interac-

tion of architecture and operating system design,” in International Conference

on Architectural Support for Programming Languages and Operating Systems

ASPLOS, Santa Clara, CA (USA), 1991, pp. 108–120.

[2] K. Bala, M. F. Kaashoek, and W. E. Weihl, “Software prefetching and caching

for translation lookaside buffers,” in Proc. of the Usenix Symposium on Oper-

ating Systems Design and Implementation, Monterey, California, Nov 1994, pp.

243–253.

[3] J. B. Chen, A. Borg, and N. P. Jouppi, “A simulation based study of TLB per-

formance,” in Proc. of the 19th Annual International Symposium on Computer

Architecture, Gold Coast, Australia, 1992, pp. 114–123.

[4] M. Talluri and M. D. Hill, “Surpassing the tlb performance of superpages with

less operating system support,” in Proc. of the 6th International Conference

on Architectural Support for Programming Languages and Operating Systems,

California, USA, December 1994, vol. 28, pp. 171–182.

[5] Z. Fang, L. Zhang, J. B. Carter, W. C. Hsieh, and S. A. McKee, “Reevaluating

online superpage promotion with hardware support,” in International Sympo-

sium on High Performance for Computer Architecture, Nuevo Leone, Mexico,

2001, pp. 63–72.

[6] C. H. Park, J. Chung, B. H. Seong, Y. Roh, and D. Park, “Boosting superpage

utilization with the shadow memory and the partial-subblock tlb,” in Proc. of

45

the 14th International Conference on Supercomputing, Santa Fe, New Mexico,

USA, 2000, pp. 187–195, ACM Press.

[7] M. Swanson, L. Stoller, and J. Carter, “Increasing tlb reach using superpages

backed by shadow memory,” in Proc. of the 25th Annual International Sym-

posium on Computer Architecture, Barcelona, Spain, 1998, pp. 204–213, IEEE

Computer Society.

[8] A. Saulsbury, F. Dahlgren, and P. Stenstrom, “Recency-based tlb preloading,”

in Proc. of the 27th annual International Symposium on Computer Architecture,

Vancouver, Canada, 2000, vol. 28, pp. 117–127, ACM Press.

[9] G. B. Kandiraju and A. Sivasubramaniam, “Going the distance for tlb prefetch-

ing: an application-driven study,” in Proc. of the 29th Annual International

Symposium on Computer Architecture, Anchorage, Alaska, 2002, pp. 195–206,

IEEE Computer Society.

[10] T. Austin and G. S. Sohi, “High-bandwidth address translation for multiple-issue

processors,” in Proc. of the 23rd Annual International Symposium on Computer

Architecture, Pennsylvania, USA, 1996, pp. 158–167.

[11] J.P. Wade and C.G. Sodini, “A ternary content addressable search engine,”

IEEE Journal of Solid-State Circuits, August 1989.

[12] Y. A. Khalidi, M. Talluri, M. N. Nelson, and D. Williams, “Virtual memory

support for multiple page sizes,” in Proc. of the Fourth IEEE Workshop on

Workstation Operating Systems (WWOS), Napa, California, USA, Oct 1993,

pp. 104–109.

[13] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical, transparent operating

46

system support for superpages,” in Symposium on Operating Systems Design

and Implementation OSDI, Boston, USA, 2002, pp. 89–104, ACM Press.

[14] T. H. Romer, W. H. Ohlrich, A. R. Karlin, and B. N. Bershad, “Reducing TLB

and memory overhead using online superpage promotion,” in Proc. of the 22nd

Annual International Symposium on Computer Architecture, Santa Margherita

Ligure, Italy, 1995, pp. 176–187.

[15] J. B. Carter, W. C. Hsieh, L. Stoller, M. R. Swanson, L. Zhang, E. Brunvand,

A. Davis, C. Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and T. Tateyama,

“Impulse: Building a smarter memory controller,” in International Symposium

on High Performance for Computer Architecture, Orlando, FL, USA, 1999, pp.

70–79.

[16] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo,

J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum,

and J. Hennessy, “The stanford flash multiprocessor,” in Proc. of the 25th

Annual International Symposium on Computer Architecture, Barcelona, Spain,

1998, pp. 485–496, ACM Press.

[17] M. Oskin, F. T. Chong, and T. Sherwood, “Active pages: A computation model

for intelligent memory,” in Proc. of the 25th annual international symposium on

Computer architecture, Barcelona, Spain, 1998, pp. 192–203.

[18] S. P. VanderWiel and D. J. Lilja, “Data prefetch mechanisms,” ACM Computing

Surveys, vol. 32, no. 2, pp. 174–199, 2000.

[19] F. Dahlgren, M. Dubois, and P. Stenstrom, “Fixed and adaptive sequential

prefetching in shared memory multiprocessor,” in International Conference on

Parallel Processing, Syracuse, New York, USA, Aug 1993, pp. 56–63.

47

[20] T. Chen and J. Baer, “Effective hardware based data prefetching for high perfor-

mance processors,” IEEE Transactions on Computers, pp. 609–623, May 1995.

[21] J. W. C. Fu, J. H. Patel, and B. L. Janssens, “Stride directed prefetching in

scalar processors,” in Proc. of the 25th Annual International Symposium on

Microarchitecture, Portland, Oregon, United States, 1992, pp. 102–110, IEEE

Computer Society Press.

[22] D. Joseph and D. Grunwald, “Prefetching using markov predictors,” IEEE

Transactions on Computers, vol. 48, no. 2, pp. 121–133, 1999.

[23] J. S. Park and G. S. Ahn, “A software-controlled prefetching mechanism for

software-managed tlbs,” Microprocessors and Microprogramming, vol. 41, no. 2,

pp. 121–136, 1995.

[24] G. B. Kandiraju and A. Sivasubramaniam, “Characterizing the d-tlb behavior

of spec cpu2000 benchmarks,” in Proc. of the International Conference on Mea-

surement and Modeling of Computer Systems SIGMETRICS, Marina Del Rey,

California, 2002, pp. 129–139, ACM Press.

[25] S.P.E.C Corporation, http://www.spec.org.

[26] D. Burger and T. Austin, SimpleScalar Toolset, Version 3.0,

http://www.simplescalar.com.

[27] I. Arsovski, T. Chandler, and A. Sheikholeslami, “A ternary content-addressable

memory (tcam) based on 4t static storage and including a current-race sensing

scheme,” IEEE Journal Of Solid-State Circuits, vol. 38, no. 1, pp. 121–133,

January 2003.

48

[28] M. Talluri, M. D. Hill, and Y. A. Khalidi, “A new page table for 64-bit address

spaces,” in Symposium on Operating Systems Principles, Colorado, USA, 1995,

pp. 184–200.

49

VITA

Anuj Kumar was born in Madhubani, India on the 14th of October, 1977. He

completed his Bachelor of Technology degree in electrical engineering from the In-

dian Institute of Technology, Kanpur, India in May 1999. He subsequently worked

for three years as a software engineer before starting his graduate studies as a com-

puter engineering major at Texas A&M University in the fall of 2002. His research

interests are in field of networking and computer architecture. He can be reached at

the following email address: kumar.anuj@gmail.com

Permanent Address:

F-27, Sector 3,

Dhurwa,

Ranchi 834004,

Jharkand,

India.

The typist for this thesis was Anuj Kumar.

