STATEWIDE ELECTRICITY AND DEMAND CAPACITY SAVINGS FROM THE IMPLEMENTATION OF IECC CODE IN TEXAS: ANALYSIS FOR SINGLE-FAMILY RESIDENCES

Hyojin Kim Research Associate

Juan-Carlos Baltazar, Ph.D. Associate Research Engineer

Jeff S. Haberl, Ph.D., P.E. Professor/Associate Director

Cynthia Lewis TERP Manager

Bahman Yazdani, P.E. Associate Director

Energy Systems Laboratory Texas A&M University System

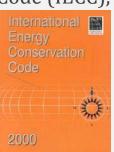
Outline

2

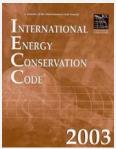
Introduction

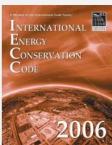
Methodology

Base-Case Building


Results

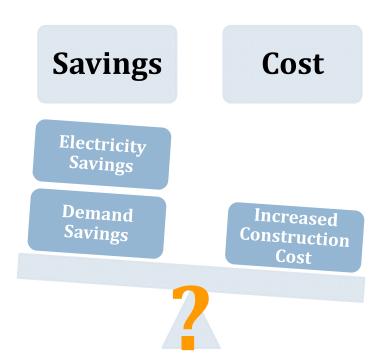
Summary


Introduction (1/2)


In September 2001, Texas adopted the 2000 International Energy Conservation Code (IECC),

including the 2001 Supplement as the first statewide energy code.

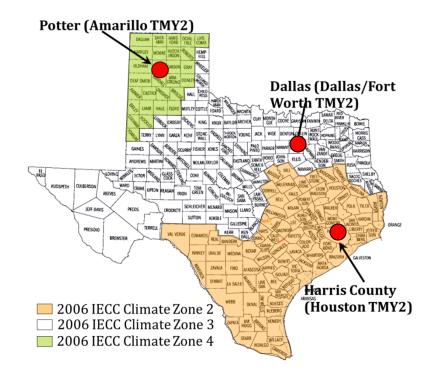
Improved versions of IECC have been published and adopted by individual jurisdictions.



Has energy code improved the energy efficiency of housing in TX? How much savings has been achieved from the code adoption?

Hence, this paper presents

an analysis of the **statewide electricity and electric demand savings achieved from the adoption of the different IECC versions for single-family residences in Texas,** including the corresponding **construction cost increases** over the eight-year period from 2002 through 2009.



Methodology (1/4)

Building-Level Analysis

- Calculated "per-house" energy savings and peak demand reductions
- ESL simulation model based on the DOE-2.1e of a single-family residence
- Two options by the type of heating fuel
 - Electric/gas house: Electric cooling, Natural gas heating
 - Heat pump house:
 Electric cooling, Heat pump heating
- Three representative counties in Texas
 - Harris Count y(CZ 2)
 - Tarrant County (CZ 3)
 - Potter County (CZ 4)

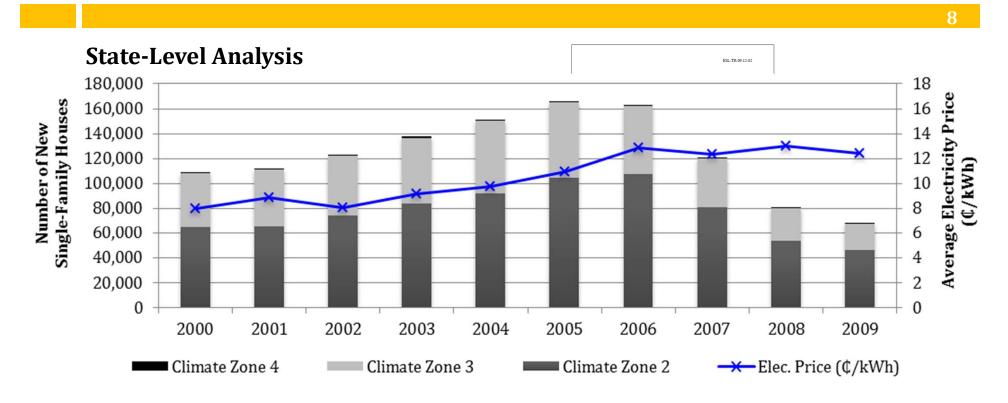
5

Methodology (2/4)

6

State-Level Analysis 1) Statewide Electricity Savings

 Calculated using annual MWh savings from code-compliant, new single-family housing in Texas reported in the Laboratory's Annual Reports submitted to the Texas Commission on Environmental Quality (TCEQ)


State-Level Analysis 1) Statewide Electricity Savings

 Calculated using annual MWh savings from code-compliant, new single-family housing in Texas reported in the Laboratory's Annual Reports submitted to the Texas Commission on Environmental Quality (TCEQ)

- •Annual statewide MWh savings
 - $=(E_{pre-code} E_{year}) \times Number of new single-family houses$
- •E_{pre-code}: annual electricity consumption of a house that has the average characteristics of single-family residences for Texas published by the National Association of Home Builders (NAHB) of 1999
- •E_{year}: annual electricity consumption of a house that has the average characteristics of single-family residences for Texas published by the National Association of Home Builders (NAHB) of the **corresponding year**

Methodology (2/4)

- Annual statewide electricity savings (\$/yr)
 - = MWh savings/yr x annual average electricity price (\$/kWh)¹

¹U.S. DOE EIA (2011)

State-Level Analysis

2) Statewide Demand Savings (Avoided construction cost of a peaking plant)

- Calculated using "Per-house" peak demand reduction (kW) calculated at the buildinglevel analysis
- Three adjustment factors
 - 10% initial discount factor
 - 7% transmission and distribution loss factor
 - 5% annual degradation factor
- Annual statewide electric demand savings (\$/yr)
 - = "Per-house" demand reduction (kW)
 - x Number of new single-family houses¹
 - x average capital cost of a NG combined cycle power plant (= \$1,165 /kW)²
 - x 15% reserve margin³

2006 IECC was assumed to be adopted across Texas in 2007

¹RECenter 2011

²Kaplan 2008

³Faruqui et al. 2007

Methodology (4/4)

Incremental Cost Analysis

- Increased costs for upgrading major residential building components and systems to comply with the 2001 IECC and the 2006 IECC
- Sources
 - R.S. Means Residential Cost Data
 - Building Codes Assistance Project (BCAP) Incremental Construction Cost Analysis for New Homes
 - American Council for an Energy-Efficient Economy (ACEEE) Consumer Guide to Home Energy Savings
 - Other individual studies conducted by the Laboratory (Malhotra et al. 2008; Kim et al. 2010)
- Annual increased construction costs (\$/yr)
 - = "Per-house" increased costs
 - x Number of new single-family houses¹

¹RECenter 2011

11

Base-Case Building (1/3)

Building Envelope

- 2,325 ft², square-shape, one story, single-family detached house
- Vented, unconditioned attic
- Light weight wood frame construction
- 18% window-to-floor ratio (27.1% window-to-wall ratio)
- Other envelope characteristics: climate-specific characteristics as specified in
 - NAHB survey for 1999 construction in TX for pre-code
 - 2001 IECC Chapter 4
 - 2006 IECC Chapter 4

	Pı	e-Code 199	99	p. a	2001 IEC		2006 IECC			
Characteristics	CZ 2	CZ 3	CZ 4	CZ 2	CZ 3	CZ 4	CZ 2	CZ 3	CZ 4	
	Harris	Tarrant	Potter	Harris	Tarrant	Potter	Harris	Tarrant	Potter	
Construction										
Ceiling Insulation (hr-sq.ft°F/Btu) ¹	R-27.08 R-26.75		R-30	R	-38	R-27.84		R-32.51		
Wall Insulation (hr-sq.ft°F/Btu) ¹	R-13.99 R-14.18		4.18	R-11		R-12/3 c.i.	R-11.8			
Slab Perimeter Insulation	None R		R-6	None		R-6	None		R-10	
U-Factor of Glazing (Btu/hr-sq.ft°F) ¹	1.11	0.87		0.47		0.41	0.75	0.65	0.40	
Solar Heat Gain Coefficient (SHGC) ¹	0.71 0.66		0.	40	0.68	0.40				
Exterior Shading			None							
Roof Radiant Barrier				***	No					

Base-Case Building (2/3)

HVAC/DHW System

- HVAC/DHW characteristics: characteristics as specified in
 - NAHB survey for 1999 construction in TX for pre-code
 - 2001 IECC Chapter 4
 - 2006 IECC Chapter 4

	Pı	e-Code 199	99	4.00	2001 IEC		2006 IECC		
Characteristics	CZ 2		CZ 4	CZ 2	CZ 3	CZ 4	CZ 2	CZ 3	CZ 4
	Harris	Tarrant	Potter	Harris	Tarrant	Potter	Harris	Tarrant	Potter
Mechanical Systems									
HVAC System Efficiency ¹	SEER 11 A	ectric/Gas H AC, 0.80 AFU	JE furnac <u>e</u>	SEER 10 A	lectric/Gas AC ⁴ , 0.78 AF	UE furnace	(a) Electric/Gas House: SEER 13 AC, 0.78 AFUE furnace		
**		eat Pump H 11 AC, 6.8			Heat Pump H		(b) Heat Pump House: SEER 13 AC, 7.7 HSPF heat pump		
Cooling Capacity (Btu/hr)				55,800	0 (= 500 sq.	ft./ton)			
Heating Capacity (Btu/hr)				55,800 (=	1.0 x coolir	ng capacity)			
DUM Cratam Tuna		4	0-gallon tar	(a) Electric/Gas House: k type gas water heater with a stand			ng pilot light		
DHW System Type		.5(0-gallon tan		leat Pump I ric water he		a pilot light)		
DUW Heater Every Factor			. ,	/Gas House 544	::		(a) Electric/Gas House: 0.594		
DHW Heater Energy Factor			. ,	ımp House: 364			(b) Heat Pump House: 0.904		
Duct Distribution System Efficiency					0.80				
Supply Air Flow (CFM/ton)					360	_			
Infiltration Rate (SG)	SLA=			0.00057			SLA= 0.00036		

Base-Case Building (3/3)

13

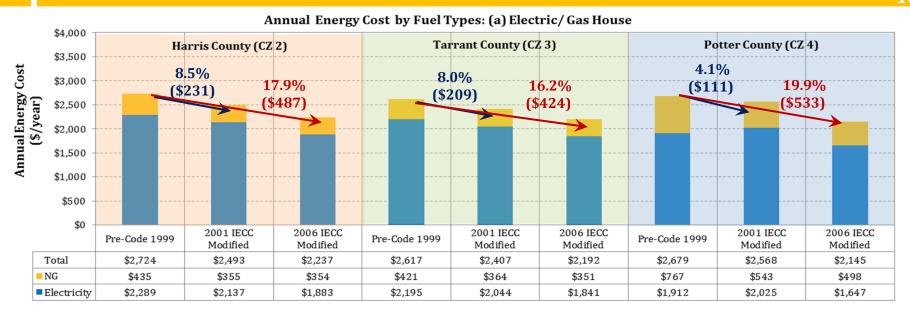
Space Conditions (Modified)

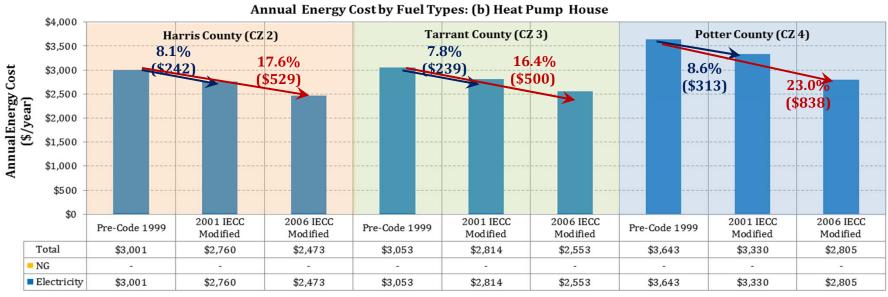
- Thermostat per IECC 2009 Table 405.5.2(1)
 - 72 F for heating
 - 75 F for cooling
 - No set-back/set-up
- Internal gains per IECC 2006 Table 405.5.2(1)
 - 1.095 kW for lighting and equipment

Results

14

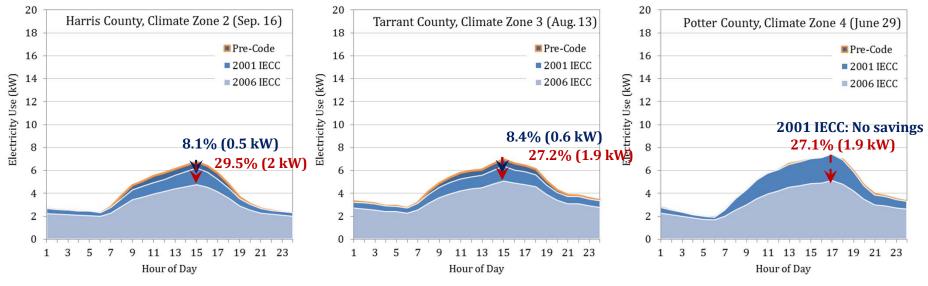
- 1. Per-House Analysis
- 2. Incremental Cost Analysis
- 3. Statewide Cost Savings

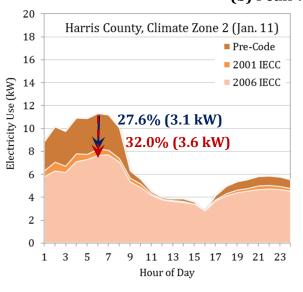

Results

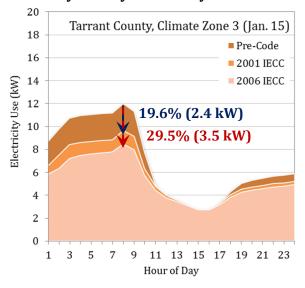

15

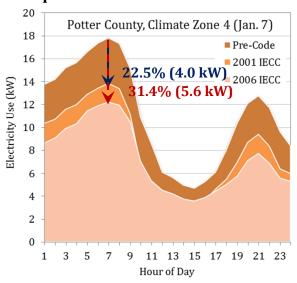
1. Per-House Analysis

- 2. Incremental Cost Analysis
- 3. Statewide Cost Savings


Results: Per-House Analysis (1/2)




17


(a) Peak Summer Day Hourly Electricity Use for both Electric/Gas and Heat Pump House

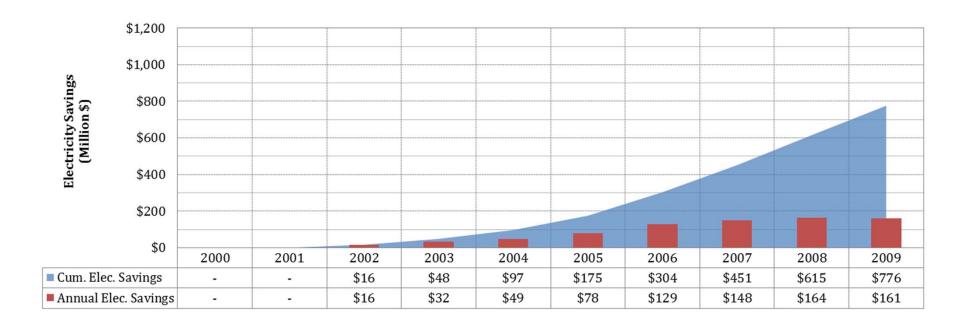
(b) Peak Winter Day Hourly Electricity Use for a Heat Pump House

Results

18

- 1. Per-House Analysis
- 2. Incremental Cost Analysis
- 3. Statewide Cost Savings

Results: Incremental Cost Analysis


						Cli	mate Zo	ne 2					
			Change Per Sq. Ft.			Sq. Ft		Total Change					
Components	Pre-Code	2001 IECC	2006 IECC	20	01 IEC	C 20	006 IECC	/Linear Ft	20	01 IEC	C 20	06 IECC	Reference
Ceiling Insulation 🔧	R-27	R-30	R-30	\$	0.09	\$	0.11	2,548	\$	229	\$	280	RSMeans 2002 and 2007
Window U/SHGC	1.11/0.71	0.52/0.40	0.75/0.40	\$	1.50	\$	1.00	247	\$	371	\$	247	BCAP 2010; ESL-TR-10-11-01
Wall Insulation	R-14	R-11	R-13	\$	-	\$	-	1,778	\$	-	\$	-	-
Slab Insulation	NR	NR	NR	\$	-	\$	-	202	\$	-	\$	-	
AC SEER	11	10	13	\$	-	\$	-		\$	-	\$	300	10% of 5 ton AC cost (\$2900), RSMeans 2007
Gas DHW EF	0.54	0.54	0.59	\$	-	\$	-		\$	-	\$	175	ACEEE 2007 (0.60 EF to 0.65 EF)
Electric DHW EF 🧳	0.86	0.86	0.90	\$	-	\$	-		\$	-	\$	75	ACEEE 2007 (0.90 EF to 0.95 EF)
					• 1	Cliv	mate Zo	no 2					
Calling Land Land	D 25	D 20	D 20	I _c	-				\$.	210	œ.	267	DCM 2002 1 2007
Ceiling Insulation	R-27	R-30	R-30	\$	0.09	\$	0.11 1.00	2,426 373	1	218	\$ \$	373	RSMeans 2002 and 2007
Window U/SHGC Wall Insulation	0.87/0.66 R-14	0.50/0.40 R-11	0.65/0.40 R-13	\$ \$	1.50	\$ \$	1.00	3/3 1,814		560	\$ \$	3/3	BCAP 2010; ESL-TR-10-11-01
Slab Insulation	NR	NR	NR	1.	-	.		1,814	P	-			
AC SEER	11	10	13	\$ \$	-	ф ф	-	197	P.	-	\$	300	400/ of 5 to 2000 AC cost (\$2000) BCMccas 2007
Gas DHW EF	0.544	0.544	0.594	\$ \$	-	ф ф	-			-	\$ \$	300 175	10% of 5 ton AC cost (\$2900), RSMeans 2007 ACEEE 2007 (0.60 EF to 0.65 EF)
-		0.544	0.594	\$ \$	-	\$	-			-	\$		`
Electric DHW EF	0.86	0.86	0.90	>		\$	-		*	-	\$	75	ACEEE 2007 (0.90 EF to 0.95 EF)
					•								
				_		Cli	mate Zo			411111			
Ceiling Insulation 🐪	R-27	R-38	R-38	\$	0.27	\$	0.19	2,426	\$.*	655	\$		RSMeans 2002 and 2007
Window U/SHGC	0.87/0.66	0.37/NR	0.40/NR	\$	1.50	\$	1.50	373	\$	560	\$	560	BCAP 2010; ESL-TR-10-11-01
Wall Insulation	R-14	R-11	R-12/3.1 c.i.	\$	-	\$	-	1,814	\$	-	\$	-	BCAP 2010
Slab Insulation	R-6, 2ft	R-6, 2ft	R-10, 2ft	\$	-	\$	1.26	197	\$	-	\$	248	BCAP 2010 (R5 to R10: \$1.26)
AC SEER	11	10	13	\$	-	\$	-	-	\$	-	\$	300	10% of 5 ton AC cost (\$2900), RSMeans 2007
Gas DHW EF	0.544	0.544	0.594	\$	-	\$	-		\$	-	\$	175	ACEEE 2007 (0.60 EF to 0.65 EF)
Electric DHW EF 🧳	0.86	0.86	0.90	\$	_	\$	_		¢_	_	\$	75	ACEEE 2007 (0.90 EF to 0.95 EF)

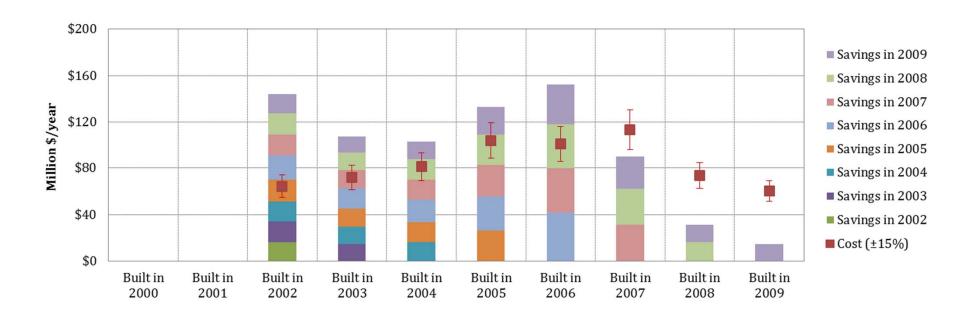
Results

20

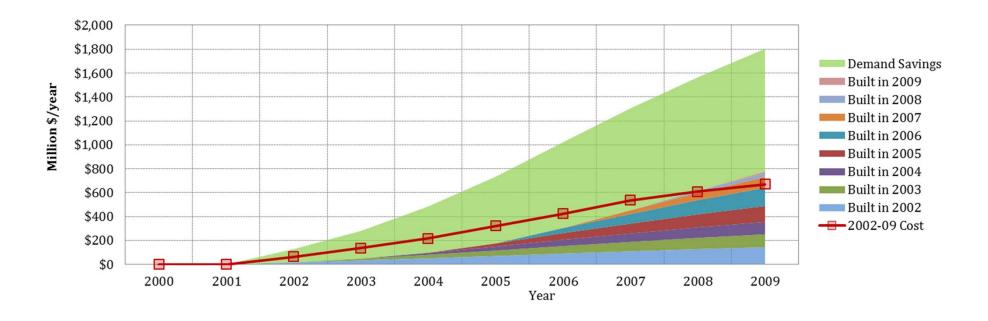
- 1. Per-House Analysis
- 2. Incremental Cost Analysis
- 3. Statewide Cost Savings

Annual and Cumulative Statewide Electricity Savings from the IECC Code Adoption for New SF Residences in Texas: 2002-2009

Results: Statewide Cost Savings (2/4)


Annual Statewide Electric Demand Reductions and Electric Demand Savings from the IECC Code Adoption for New SF Residences in Texas: 2002-2009

Demand saving calculated using summer reduction: \$929 million (90% of winter savings)


Results: Statewide Cost Savings (3/4)

Annual Increased Costs and Statewide Electricity Savings by Construction Year of Houses

Results: Statewide Cost Savings (4/4)

Cumulative Increased Costs, Statewide Electricity Savings, and Electric Demand Savings Associated with the IECC Code Adoption for SF Residences in Texas: 2002-2009

Summary (1/2)

Statewide electricity savings and electric demand savings from the IECC code adoption for SF residences in Texas (2002-2009)

- ESL simulation model based on the DOE-2.1e of a single-family residence
- Three adjustment factors
 - 10% initial discount factor
 - 7% transmission and distribution loss factor
 - 5% annual degradation factor
- Annual average prices of Texas residential electricity published by the U.S. DOE EIA
- Avoided construction cost of a peaking plant:
 Capital cost of a NG combined-cycle power plant with a 15% reserve margin

Summary (2/2)

Results

Building level analysis for three representative counties

	Electricity savings	Electric demand savings	Increased construction costs		
2001 IECC	\$111 ~ \$313	$0 \sim 0.6$ kW for summer $2.4 \sim 4$ kW for winter	\$600 ~ \$1215		
2006 IECC	\$424 ~ \$838	$1.9 \sim 2.0$ kW for summer $3.5 \sim 5.6$ kW for winter	\$902 ~ \$1,744		

Statewide level analysis

	Electricity savings	Electric demand savings	Total Savings	Increased construction costs	
Statewide	¢77(million	\$929 million OR (summer reductions)	\$1,705 million OR	\$670 million	
(2002 -2009)	\$776 million	\$1,027 million (winter reductions)	\$1,803 million		

Acknowledgement

27

Acknowledgement

 Funding for this study was provided by the Texas State Legislature through the Texas Emissions Reduction Program (TERP).

Thank You!