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ABSTRACT 

Preliminary Studies of the Influence of Forces and 

Kinetics on Interfacial Colloidal Assembly. (August 2004) 

Gregory Fernandes, B.E., Mumbai University 

Chair of Advisory Committee: Dr.Michael Bevan 

 

 

In this research we illustrate how particle-particle and particle-substrate 

interactions affect structure in interfacial colloidal systems.  A number of tools are used 

to quantify characteristics of deposited structures.  These results help understand the 

effects of colloidal system interactions and deposition kinetics on the degree of ordering 

in interfacial colloidal structures.  

The first set of experiments involve 2.34 µm silica colloids interacting with silica 

substrates in 0mM, 5mM, 10mM, and 100mM NaCl solutions.  Only the 100mM NaCl 

solution resulted in rapid deposition driven by van der Waals attraction, while residual 

electrostatic repulsion produced levitation at lower ionic strengths.  This allowed direct 

observation of the effects of varying magnitudes of attractive interactions on interfacial 

colloidal structures.  Rapid deposition of positively charged 1µm latex colloids on 

negatively charged silica substrates driven by Coulombic and van der Waals attraction 

produced surface structures similar to those obtained with only van der Waals attraction.  

Experiments on 2.34 µm silica colloids interacting with silica substrates in 10mM 

NaCl/pH 5.5 and 10mM NaCl/pH 10 conditions resulted in slower deposition rates.  It 

was also found that slower deposition rates produced more compact structures displaying 

a higher degree of order. 

Another set of experiments was aimed at understanding interactions and 

structures formed in systems of polymerically levitated particles.  Total internal 

reflection microscopy (TIRM) experiments revealed the influence of underlying 
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substrate chemistry on interaction profiles in these systems.  Basic experiments were 

also performed on the effects of varying amounts of specific ions on the dispersion 

stability in these systems.  At conditions producing instability in polymeric systems, a 

similar degree of order was observed in comparison to experiments involving rapid 

deposition via salt addition in electrostatically stabilized systems. 

The results of this research clearly indicate that particle-particle and particle-

substrate interactions are critical in determining structure formation by deposition.  

While the principal focus of this research is to study structures formed in various kinetic 

regimes, it also provides a basis for future studies aimed at tuning attractive interactions 

to produce equilibrium colloidal crystals on substrates. 
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1. THESIS INTRODUCTION 

1.1 Objectives and significance 

The broad goal of the proposed work is to understand how colloidal interactions 

influence assembly processes.  The central question related to attaining these objectives 

is an understanding of how particle-particle and particle-substrate interactions, mediated 

by solvent conditions, affect the kinetics of colloidal assembly processes.  This research 

takes a step in that direction by using a combination of Total Internal Reflection 

Microscopy (TIRM) and confocal laser scanning microscopy (CSLM) to understand and 

quantify the effects of subtle variations in interaction on assembled structures. 

In this research we focus on two systems in our efforts to understand the effects 

of interactions and kinetics on interfacial colloidal structures.  The first of these is a 

charge-stabilized system.  The objective is to induce instability in these systems by 

either removing repulsion or adding attraction and then observe the resulting deposited 

structures.  The aim here is to study two distinct deposition regimes, rapid and slow.  As 

with previous studies done on aggregates1-4, the goal is to be able to explain the packing 

characteristics of resulting structures by a fundamental knowledge of the particle-particle 

and particle-substrate interactions.  The desire is to be able to predict the type of 

structures expected form knowledge of solvent conditions, which directly determine 

system interactions and substrate properties. 

The other system of interest in this study is a sterically stabilized system.  The 

focus of this part of the research is to gain an insight into the nature of forces and 

interactions in these systems.  We want to study and measure the effects of substrate  

____________ 
This thesis follows the style of Langmuir. 
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chemistry and solvent conditions on the interactions in sterically stabilized colloidal 

systems.  Since the variation of adsorbed polymer layer thickness (attractive well depth) 

with specific ion concentrations is known5, we can use the knowledge gained from the  

first part of the research to get some preliminary insights into solvent conditions that 

cause system instability. 

Though the main focus of the research is studying structures formed under 

various kinetic regimes, it forms an important background for any study related to the 

assembly of perfect crystals.  By studying all regimes of colloidal deposition, it throws 

light on those conditions that are conducive to phase transition.  The work done on 

polymerically stabilized systems also serves an important purpose as such systems 

produce reversible effects6, allow for exquisite interaction tuning7 and therefore form 

excellent systems for crystal growth studies.  Since this research isolates regions of 

colloidal system stability and instability, it provides an ideal starting point for such 

research.  

1.2 Historical perspective 

The first observations of colloidal flocculation were by Faraday who noticed 

rapid, irreversible flocculation in systems of colloidal gold sol on addition of salt.  Shultz 

(1882) and Hardy (1900) later justified this by elucidating the role of added electrolytes 

in suppressing the effects of charge and inducing flocculation.  After it was known that 

dispersions could be flocculated by screening the electrostatic repulsion, Smoluchowski 

(1917) deduced expressions for the rate of formation of small aggregates by Brownian 

and shear-induced collisions.  In order to study colloidal stability, a representation of the 

interparticle potential was most crucial.  A representation of total interparticle potential 

as the sum of attractive and repulsive components was an important development in the 

theory of colloidal stability.  Work by Derjaguin and Landau (1941) and, Verwey and 

Overbeek (1948) led to the development of this theory called the DLVO theory. 

The synthesis of model colloids by Vanderhoff (1956), Matijevic (1976) and Iler 

(1979) removed complications due to polydispersity and enabled theories of flocculation 
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to be tested clearly.  The need to disperse particles at high ionic strengths or in non-

aqueous solvents led to improved techniques for polymeric stabilization in the 1960s.  

The development of block and graft copolymers revolutionized the process.  These 

molecules combined an insoluble component for attachment to the particle surface and a 

soluble chain for stabilization.  The pioneering work of Napper (1983) revealed the 

relation between the stability of the dispersion and the solution properties of the 

stabilizing block.8,9  

1.3 Recent literature review 

1.3.1 Colloidal assembly 

Colloidal systems have been studied extensively by physicists to gain an 

understanding into phase transitions.  Suspensions of uniform colloidal particles, which 

are good approximations to hard spheres, have been extensively used to provide an 

experimental model system for investigating hard-sphere systems.  It has been found that 

while the most thermodynamically favorable state for these systems is the crystalline 

state, the influence of gravity leads to the formation of a metastable glass state.  An 

important study in microgravity conditions justified this view.10,11   

Equilibrium thermodynamics predicts the occurrence of crystals as the stable 

thermodynamic phase upon crossing the solubility boundary.  The formation of glasses 

and gels has been attributed to purely kinetic phenomena.12,13  Studies conducted on 

systems with large attractive interactions showed the formation of kinetically trapped 

structures like aggregates. 14-18  It was found that fractal theory provided a good 

description of the morphology of structures formed during the two-dimensional and 

three-dimensional aggregation. 

An important development in this area was the isolation of reaction limited and 

diffusion limited regimes of irreversible colloid aggregation.  Lin et al. (1989) 

investigated the aggregation of three chemically different colloidal systems under both 

reaction-limited and diffusion-limited conditions and suggested that each limiting regime 
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was universal, independent of the chemical details of the particular colloid system.  

Various groups have done considerable work on this subject since then.1-4 

1.3.2 Chemical templates and their applications to colloidal deposition  

Whitesides and Kumar (1993) described a technique for producing patterned 

self-assembled monolayers (SAMs) with geometrically well-defined regions of different 

chemical functionality and thus different physical and chemical properties.  This 

technique, microcontact printing, uses an elastomeric ‘stamp’ and alkanethiol ‘ink’ to 

form patterned SAMs of alkanethiolates on gold films with dimensions ranging from 

200 nm to several cm.19-21  They also applied this method to pattern SAMs of silanes on 

glass.22  Several other groups have suggested slight variations in the original process.23,24   

Recent applications of microcontact printing involve studies in which multilayers 

of polyelectrolyte were deposited on chemically patterned surfaces.25  The 

polyelectrolyte was used to provide a platform on which colloids are strongly bound by 

electrostatic attraction.  Another important paper in this area is one by Aizenberg, Braun 

and Wiltzius (2000) in which charged colloidal particles were deposited on chemically 

micropatterned substrates with anionic and cationic regions.26  Opposite charge attraction 

between monolayers of microcontact printed silanes and silica spheres have been used to 

generate low-dimensional arrangements of colloidal particles.27  All these studies are 

examples of assembly of colloidal structures by diffusion-limited deposition.  Though 

such deposition experiments have been conducted, no effort has been made to 

systematically study the kinetic aspects and system interactions that result in the 

formation of such structures.                                                                                                                             

1.3.3 Adsorbing polymer systems 

Bevan and Prieve have done a good amount of work on polymerically stabilized 

systems.  Using TIRM and light scattering techniques Bevan has measured interactions 

and isolated critical flocculation temperatures in these systems.  The stabilizing polymer 

used was Pluronic triblock (PEO-PPO-PEO) with a PPO anchor block and two PEO tails 

extending into the solution as the stabilizing moiety.6,7,28-31  These systems allow both 
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attractive and repulsive interactions to be induced.  The effects in these systems are 

reversible which allows annealing of surface structures formed by these systems till 

surface defects are eliminated.  The other advantage of the adsorbing polymer systems is 

that attraction can be localized on particles and surfaces. 

1.3.4 Force measurements using TIRM 

Prieve et al. (1987) developed a technique, which performed ultra sensitive 

measurements of colloidal interactions.  Using TIRM it is possible to monitor the 

separation distance between a single microscopic sphere immersed in an aqueous 

solution and a transparent plate.  Because the distance is calculated from the intensity of 

light scattered by the sphere when illuminated by an evanescent wave, this technique 

provides a sensitive, non-intrusive, and instantaneous measure of the distance between 

the sphere and the plate.  Changes in distance as small as 1 nm can be detected.  From 

the equilibrium distribution of separation distances sampled by Brownian motion, the 

potential energy profile in the vicinity of the minimum formed by gravitational attraction 

and double-layer repulsion or steric repulsion caused by an adsorbed soluble polymer 

can be determined.  Van der Waals attraction, the radiation pressure exerted by a focused 

laser beam, receptor-mediated interaction between antigen and antibodies, and steric 

repulsion due to adsorbed polymer layers have been successfully measured with 

TIRM.32-34 

1.4 Summary of conclusions 

 In this research we have successfully shown that like in aggregation studies 

conducted earlier1, the particle-particle and particle-substrate interactions can be used to 

fundamentally explain the nature of structures formed by colloidal deposition at liquid-

solid interfaces.  This study shows that in systems that are initially charge stabilized, two 

distinct types of deposition kinetics are possible.  For cases where the net interaction 

potential between particle and substrate is attractive, diffusion limited kinetics govern, 

which result in the formation of structures that are different form those formed in the 

presence of a surmountable repulsive barrier (reaction limited deposition).  An important 
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observation in our studies is that like in aggregation, the diffusion limited kinetic regime 

is universal, independent of the chemical details of the particular colloid system. 

The research also studies polymerically stabilized systems.  An in depth 

understanding of substrate properties on adsorbed layer thickness is obtained.  The 

nature of the particle-particle and particle-substrate interactions is studied in detail and 

measured by use of TIRM.  Previous unpublished studies indicate the effect of specific 

ions on the polymer layer thickness (and particle-particle and particle-substrate 

interaction).  Various specific ion concentrations are used and it is found that at 0.5M of 

MgSO4, aggregates begin to form in the bulk of these systems.  Deposition at these 

solvent conditions is diffusion-limited and the resulting surface structures display the 

same random packing characteristics observed in previous studies on this kinetic 

deposition regime.       
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2. THEORY 

2.1 Colloidal forces 

2.1.1 Hydrodynamics  

It is a dynamical effect that arises when particles move in a liquid medium.  As a 

unit moves, it creates a flow in the surrounding incompressible liquid.  The presence of a 

second particle will influence the flow patterns in the liquid and will result in the two 

particles seeing each other through the flow of the intervening fluid.  This effect is called 

the hydrodynamic interaction.   

An important concept, which will be used in this research, is one of two spheres 

translating through a quiescent fluid.  Hydrodynamic correction factors used in Fuchs 

stability ratio calculations are obtained from hydrodynamic interactions for particle-

particle and particle-wall squeeze flow.  The expression of hydrodynamic interaction for 

particle-particle squeeze flow is given by:     

 
3 2

3 2

54( / ) 71( / ) 8( / )( )
54( / ) 154( / ) 60( / ) 4

l a l a l aG l
l a l a l a

+ +
=

+ + +
 (2.1) 

and for particle-wall squeeze flow is given by: 

 
2

2

6( / ) 2( / )( )
6( / ) 9( / ) 2

l a l aG l
l a l a

+
=

+ +
 (2.2) 

where G(l) is the hydrodynamic interaction for two spheres of radius a approaching each 

other or a sphere of radius a approaching a wall.  The surface separation is represented 

by l.8 

2.1.2 Brownian motion 

A liquid that is totally homogeneous on a macroscopic scale undergoes 

continuous fluctuations at the molecular level.  As a result of these fluctuations, the 

density of molecules at any location in the liquid varies with time and at any time varies 

with location in such a way that the mean density of the sample as a whole has its bulk 

value.  This pattern of “flickering” molecular densities will produce continually varying 
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pressures on the surface of any particle submerged in the liquid.  Since the fluctuations 

are confined to domains of the order of molecular dimensions, this randomly variable 

pressure is quite small.  A small particle will be displaced, however, by the resulting 

force unbalance at its surface.  The pattern of its displacements will also be totally 

random, a refection of the fluctuations which cause the motion.  Such movements are 

called Brownian motion.35 

2.1.3 Van der Waals interactions 

Atoms with fluctuating dipoles polarize nearby atoms and the time averaged 

interaction between these two atoms is attractive.  The potential of this attractive force is 

known as the dispersion (London) energy.  Molecules with permanent dipole undergo 

Brownian rotation.  They don’t have a time-averaged dipole moment because of this but 

a correlation with other Brownian dipoles results in a time averaged attractive energy 

called Keesom energy.  Neutral atoms can acquire an induced dipole from interaction 

with a molecule with a permanent dipole. The correlation between instantaneous dipoles 

also leads to a net attraction known as the induction (Debye) energy.  All these 

interaction energies decay as the negative sixth power of the center-to-center distance 

between the atoms.  All these energies collectively constitute the van der Waals 

interaction energy. 

In 1937, H. C. Hamaker computed the van der Waals interaction between two 

particles of a condensed phase by linearly superimposing the atom-atom interactions.  

This ignores the effect of intervening atoms on the correlation between the two 

interacting dipoles.  In 1955, E. M. Lifshitz devised a continuum theory to calculate the 

van der Waals interaction between condensed phases.  While the van der Waals 

interaction between two atoms separated by a vacuum is always attractive, the 

interaction between two half spaces composed of different materials, separated by a third 

material, can be either attractive or repulsive, depending on the relative dielectric spectra 

of the three materials.29 
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The van der Waals interaction potential measured for two 360nm PS spheres 

interacting across water with 0.5M NaCl is given by: 

 
2 4

, 2 3

489.9 8.917 0.1221 (5.236 10 )( , )
1 13.08 1.017 0.01530vdw PS

l ll a
l l l

φ
−− + − ×

=
+ + +

3l  (2.3) 

where l is the surface separation in nm.   This equation needs to be adjusted for any PS 

particle with radius a (nm) interacting with a PS surface: 

 
2 4 3

, 2 3

489.9 8.917 0.1221 (5.236 10 )( , ) 2
1 13.08 1.017 0.01530 180vdw PS

l l ll a
l l l

φ
− − + − ×

=  + + + 

a  (2.4) 

The equations represented here are fits to the values provided by the Lifshitz 

theory.  The equation for a silica sphere of radius a (nm) interacting with a silica surface 

across water is similarly given by: 7   

 ( ) 2.1543( , ) 2409.6925
1150vdwS

al a lφ − = −  
 

 (2.5) 

  
2.1.4 Electrostatics 

The charging of a surface in a liquid can come about either by the ionization of 

surface groups or by the adsorption of ions from the solution onto a previously 

uncharged surface.  Whatever the charging mechanism, the final surface charge is 

balanced by an equal but oppositely charged region of counterions, some of which are 

bound, usually transiently, to the surface within the so-called Stern layer, while others 

form an atmosphere of ions in rapid thermal motion close to the surface, known as the 

diffuse electrical double layer.36The electrostatic potential (Derjaguin approximation 

with non-linear superposition result) for spheres of radius a interacting with a surface is 

given by: 

 (
2

( )0 1 0 2

0

1( , ) 64 tanh tanh
4 4

C l
elec

e ekTl C a e
kT e kT kT

κψ ψφ π ε −
       =      

      

)  (2.6) 
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where C is the salt concentration, a is particle radius, ψ’s are surface potentials, l is 

surface separation, ε is the permittivity of the medium and κ is the Debye length.  For 

the case of two spheres, the potential is adjusted by a factor of ½. 

2.1.5 Polymeric forces 

Adsorbed polymer layers have a certain brush thickness, which is dependent on 

the solvent quality.  When two polymer brushes make contact, there is hard wall 

repulsion.  Polymer layers also contribute to van der Waals interactions.  For PS 

particles with Pluronic adsorbed on them, the modified van der Waals interaction is 

given by: 

 
2 3 3

, 2 3

28.97 39.02 0.4759 (1.6 10 )( , )
1 0.9158 0.0736 0.0577 180vdw PS

l l ll a
l l l

φ
− − + − + ×

=  − + + 

a  (2.7) 

For the case where a Pluronic coated PS particle is interacting with a Pluronic 

coated PS surface, the van der Waals interaction is adjusted by a factor of 2.7 

2.2 Fractal dimension 

The measurement of the ‘size’ of a set of points in space gives an idea of its 

dimension.  A curve can be measured by finding the number N (δ) of line segments of 

length δ needed to cover it.  The length of the curve is given by L = N (δ)δ → L0δ  0 (as 

δ→0).  In the limit δ→0,the measure L becomes asymptotically equal to the length of 

the curve and is independent of δ.  Area can also be associated with the set of points 

defining a curve by giving the number of disks or squares needed to cover the curve.  

The number of squares is N (δ), and each square has an area of δ 2.  The associated area 

is given by A = N (δ)δ 2→ L0δ 1 (as δ→0).  Volume may be associated with the line too.  

V = N (δ)δ 3→ L0δ 2 (as δ→0).  For ordinary curves both A and V tends to zero as δ 

vanishes, and the only interesting measure is the length of the curve.  A line or simple 

curve is therefore a one-dimensional object.  The only useful measure of a set of points 

defined by a surface in three-dimensional space is the area.  A surface is therefore a two-

dimensional object.     
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A set of points that is a curve which twists so badly that its length is infinite and 

fills the plane will have a dimension between one and two.  There are also surfaces that 

fold so wildly that they fill space.  Such strange sets of points have fractions of a 

dimension or non-integer dimensions and are called fractals.37  Fractal dimension is a 

direct measure of the amount of order in an image.  An infinite sheet made up of 

hexagonally close packed colloids would have a fractal dimension of two.  An image, 

which shows poor packing, will obviously have a fractal dimension lesser than two.   

It is already known from literature that for two-dimensional clusters formed by 

diffusion-limited kinetics, the value of fractal dimension is around 1.44 ± 0.04.2-4  

Knowledge of the radius of gyration (Rg) and the number of particles in a cluster (N) 

along with particle radius (Rp) is sufficient for obtaining the fractal dimension (Df).  The 

equations38 used are: 

 1

2

fD

g

p f

f

R
N

R D
D

 
 
= ⋅
 
 + 


  (2.8) 
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m x m y
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m m
= = i
∑ ∑
∑ ∑

 (2.10) 

2.3 Fuchs stability ratio 

Dispersion forces acting between similar particles suspended in a chemically 

different liquid are generally attractive.  This provides a driving force toward 

macroscopic phase separation.  The maintenance of a dispersed phase requires an 

opposing interparticle repulsion, achieved in this section through electrostatic forces.  At 

high ionic strengths the electrostatic repulsion becomes insignificant and the interparticle 
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potential reduces to that of dispersion effects alone.  Fuchs stability ratio is a measure of 

the degree of stability in a colloidal system.  It is comparison of the rapid rate of 

aggregation (if only attractive interactions exist between particles) with the actual rate of 

aggregation in the system (with the actual interactive potential).  The expression for 

Fuchs Stability Ratio is:  

 
( )

1000

2
0

2
2 ( )

a kTeW a d
l a G l

φ 
 
 

=
+∫ l  (2.11) 

where a is the particle radius, l is the surface-to-surface separation between the particles 

G (l) is the hydrodynamic correction factor for two spheres approaching each other and φ 

is the interaction potential between the colloids.8   

For particle-wall squeeze flow, shown in Figure 2.1 the equation is: 

 
2

2

6( / ) 2( / )( )
6( / ) 9( / ) 2

l a l aG l
l a l a

+
=

+ +
 (2.12) 

whereas for particle-particle squeeze flow, Figure 2.1 the equation is : 

 
3 2

3 2

54( / ) 71( / ) 8( / )( )
54( / ) 154( / ) 60( / ) 4

l a l a l aG l
l a l a l a

+ +
=

+ + +
 (2.13) 

The particle-wall interaction potential φ for silica particle-silica surface (obtained by 

DLVO) is: 

 

( )

( )

2
( )0 1 0 2

0

2.15433

1( , , ) 64 tanh tanh
4 4

                  2.41 10
1150

−

−

      =       
      
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C lkT e el a C a e
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a l

κψ ψφ π ε
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Figure 2.1.  Particle-wall squeeze flow and particle-particle squeeze flow. 

2.4 Triangulation 

Triangulation is a subdivision of the plane into triangles, hence the name.  The 

images analysed in this research are a set of points (particle centres) on a plane.  The 

triangulation algorithm used here draws lines between every particle center in the image.  

The shorter of two intersecting lines is retained while the longer is discarded until no 

more lines intersect.  An important concept here is the set of conditions that determine 

whether two line segments intersect or not.   

In general, the point of intersection of two lines y = a1+b1x and y = a2+b2x is 

given by xi = (a1 - a2)/(b1 - b2) and yi = a1+b1xi.  This is just a representation of the 

intersection point between two lines of infinite length passing through each pair of 

points.  In order to establish that the intersection point lies between the pairs of points 

(x1, y1) and (x2, y2) for line segment 1 and, (u1, v1) and (u2, v2) for the line segment 2, 

they must satisfy all of the following conditions: 

 

1 2

1 2

1 2

1 2

( )( )
( )( )
( )( )
( )( )

i i

i i

i i

i i
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 (2.15) 
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Figure 2.2.  Radial distribution function for liquid argon showing typical liquid like 

structure.  

2.5 Radial distribution function 

The radial distribution function g(r) is an important tool in evaluating the 

structure of deposited monolayers of colloidal particles.  The particle distribution 

functions measure the extent to which the structure deviates from complete randomness.  

An important example is structure in liquids because they show no ordering at all.  We 

expect the diffusion-limited deposition structures formed in our research to show the 

same g(r) nature as that of a liquid.  A liquid will show a g(r) similar to the one 

represented in Figure 2.2.   

From a knowledge of g(r) one may try to infer the coordination number Nc (the 

number of nearest neighbors) of a given particle.  The particle coordination number can 

be obtained by integrating the g(r) over a circular area of radius Rc (for two dimensional 

analysis) and dividing by area per particle N/A.  

 
0

( )
cR

c
NN g r
A
π= ∫ rdr  (2.16) 
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If Rc is set at the location of the first peak, the value of g(r) at Rc is proportional 

to the particle coordination number Nc.  We therefore do not need to perform the 

integration as we get a qualitative description of particle coordination number from the 

value of g(r) at the first peak.39,40 

2.6 Total internal reflection microscopy (TIRM) 

TIRM experiments shown schematically in Figure 2.3 measure the scattering 

intensities of a particle in an evanescent wave.  When an incident ray of light passes 

through a medium with refractive index higher than that of the medium on the other side 

of the interface at an angle greater than the critical angle, it undergoes total internal 

reflection.  Although no net energy is transferred to the water under conditions of total 

internal reflection, an optical disturbance occurs in the water, which takes the form of an 

evanescent wave.  Depending on the balance of attractive and the repulsive forces 

(electrostatic or steric), the particle will sample heights about an equilibrium value by 

Brownian motion. 

The sampling of elevations follows Boltzmann’s equation: 

 ( )( ) exp lp l A
kT
φ− =   

 (2.17) 

where p(l)dl is the probability of finding the sphere between l and l+dl, φ(l) is the 

potential energy of the sphere at elevation l, kT is the thermal energy and A is a 

normalization constant whose value is chosen such that ∫ p(l)dl=1.   

The particle scatters the evanescent wave at intensities that are dependent on its 

elevation.  A raw data from the experiments is a recording of intensities.  The intensity 

of the evanescent wave decays is the following way: 

 ( ) ( )0, expI l t I l tβ= −    (2.18) 
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Figure 2.3.  Schematic diagram showing particle scattering evanescent wave in TIRM. 

where I(l,t) is the scattered intensity at height l and time t, Io is the minimum scattered 

intensity and β is the decay length of the evanescent wave (113.67nm for a 633nm He-

Ne laser and 97.63nm for a 543nm He-Ne laser).  This equation is used to generate a 

histogram of heights from which the interaction potential is obtained by using 

Boltzmann’s equation.34 
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3. EXPERIMENTAL 

3.1 Stamp fabrication and microcontact printing 

Polydimethyl siloxane (PDMS, Sylgard 184, Dow Corning) planar stamps are 

fabricated by pouring a thoroughly mixed 10:1(w/w) mixture of the silicone elastomer 

and elastomer-curing agent into a petri dish.  The size of the petri dish is optional as the 

stamp is finally cut to the desired size.  To ensure good mixing of the elastomer and 

curing agent, the two are first weighed and mixed in the petri dish for about a minute.19 

The petri dish is placed in a vacuum chamber for about 3 hours.  The dish is then 

removed form the chamber and placed in an oven set at around 50oC for about 8 hours.  

The dish removed and allowed to cool.  The contents are completely cured by this time 

and the stamp is then cut out from the dish with a knife.  The size of the stamp is kept 

roughly equal to the diameter of the spin coater stage to be used later. 

Silanes are used to modify the properties of glass.  This research looks at the 

modification of glass coverslips using octadecyltrichlorosilane (OTS).  Microcontact 

printing is the preferred method of deposition of monolayer films of OTS on glass 

because they form better quality films in a much lesser amount of time than films formed 

by immersion in OTS solutions.  The OTS solutions used were prepared by mixing 21µL 

OTS in 5000µL toluene.  This results in a 10mM OTS solution.24 

Contact printed OTS films are obtained by spin casting the OTS solution onto the 

PDMS stamp using a conventional photoresist spinner.  The spinner is used to apply the 

solution uniformly without the risk of contaminating the surface with particles.  The 

wetted PDMS stamp is then dried with a stream of nitrogen for 30s, after which it is 

brought into contact with the substrate (20mm Χ 20mm zinc titania glass cover slips 

(SiO2 64%, B2O3 9%, ZnO 7%, K2O 7%, Na2O 7%, TiO2 3%, Al2O3 3%)(Corning)) for 

30s.24 

The cover slips used as substrates in the microcontact printing procedure are 

cleaned by immersing them in a NOCHORMIX solution overnight followed by a 
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thorough rinsing with deionized water.  The coverslips are dried in a stream of nitrogen. 

3.2 Polystyrene (PS) spin coating 

Clean glass slides (treated with NOCHORMIX) are coated with PS to change 

their surface properties.  The PS solution for spin coating is a 10% (w/w) mixture of PS 

crystals (Aldrich) in toluene (Fisher Scientific).  The mixture is sonicated for around 5 h 

to ensure complete dissolution of PS.  The glass slide is then spun at 1000rpm for 50s 

with the PS solution.  The spin-coated surface is then annealed at 120oC for about 16 

hours after which it is slowly brought to room temperature.29 

3.3 Cell preparation 

There are two different types of cells used in this research.  The first is prepared 

using a 1mm Χ 10mm (h Χ  id) O-ring while the second uses a piece of VWRBRAND 

5/16-inch i.d pipe.  Whatever the substrate, the procedure followed for cell preparation is 

the same. 

The O-ring or pipe piece is glued to the substrate with PDMS (Sylgard 184, Dow 

Corning).  After this the samples are allowed to cure overnight (16 hours).  Care must be 

taken to apply PDMS in small amounts to the outside of the O-rings / pipe pieces only.  

Use of too much PDMS causes spreading onto the area inside the O-ring, which is 

undesirable.    

3.4 Polymer adsorption 

The adsorbed polymer used in the experiments is F108 Pluronic triblock 

copolymer (poly (ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide), or PEO-

PPO-PEO) supplied by BASF.  Pluronic is adsorbed onto the 4.9 µm surfactant free 

white sulfate latex colloids (C.V. 4.2%) (Interfacial Dynamics Corporation) by placing 

them in a shaker with a 1000-ppm polymer solution for 16 h.  F108 Pluronic is adsorbed 

to the substrate surface by allowing approximately 85µL of the 1000ppm Pluronic 

solution to rest on the substrate surface for 16 h. 
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3.5 Confocal experiments 

A Ziess confocal scanning laser microscope is used to image the first layer of all 

the deposited structures.  The microscope is operated in reflection mode using a 633 nm 

He-Ne laser.  The pinhole is always kept at 1 airy unit.  Images are taken at zoom values 

of 0.7 (pixel/µm = 0.4), 1(pixel/µm = 0.29), 1.7(pixel/µm = 0.17) and 2.7(pixel/µm = 

0.11).   

The first set of experiments involved the deposition of 2.34 µm silica particles 

(C.V. 9.9%)(Bangs Laboratories. Inc.) on bare silica surfaces at salt concentrations 

(NaCl, Aldrich) of 0mM, 5mM, 10mM and 100mM.  The solutions used for these 

deposition experiments were prepared by dispersing 10µL silica sample in 100µL water 

of desired ionic strength.  The resultant solution gives a greater than monolayer surface 

coverage. 

The second set of experiments involved the deposition of 1.0 µm surfactant free 

white amidine latex colloids (C.V. 4.3%) (Interfacial Dynamics Corporation) on bare 

silica surfaces in deionized water.  The concentrations in this case were chosen so that 

monolayer surface coverage was achieved. 

The third set of experiments involved the deposition of 2.34 µm silica particles 

(C.V. 9.9%)(Bangs Laboratories. Inc.) on bare silica surfaces at a salt concentration 

(NaCl, Aldrich) of 10mM and pH values of 5.5 and 10mM.  The solutions used for these 

deposition experiments were prepared by dispersing 10µL silica sample in 100µL water 

of desired ionic strength.  The resultant solution gives a greater than monolayer surface 

coverage.  The fourth set of experiments involved deposition experiments involving 

polymer (F108 Pluronic, BASF) coated 4.9 µm surfactant free white sulfate latex 

colloids (C.V. 4.2%) (Interfacial Dynamics Corporation) at various salt concentrations. 

The analysis of the images was done in two steps.  The first involved obtaining 

particle coordinates.  A two-dimensional center program was used for this purpose.  The 

next step involved the determination of fractal dimension.  A Fortran program described 
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in the theory section was used for this purpose.  Other programs like triangulation, bond 

orientation order and radial distribution function were also run.     

3.6 TIRM experiments 

The first step in setting up the TIRM experiment involves the cleaning of the 

prism (Reynard Corporation) with acetone (purchased from Fisher Scientific and used 

without further purification).  Polymer solution is drawn off the substrate (cell) to be 

studied.  A drop of index matching oil (refractive index = 1.516±0.0002 purchased from 

SPI supplies) is placed on the cleaned prism and the cell is carefully lowered onto the 

drop in order minimize the trapping of air bubbles beneath the cell.  Approximately 

85µL of polymer coated PS particles in desired solvent is introduced into the cell.  The 

cell is closed off form above by a glass slide to minimize evaporation.  

The prism is placed on the microscope stage and is allowed to stand for 15min.  

This allows enough time for the PS particles to sediment.  A Hamamatsu ORCA-ER 

C.C.D. camera is used to capture images of the particles over the surface.  The particle 

scatters an evanescent wave produced by total internal refection of a 543 nm He-Ne 

laser.  The solutions of 0.5M concentrations were prepared by diluting the original 

polymer coated solution of PS spheres with a 1M NaCl solution.    

For each analysis, 90000 frames were captured.  The raw data form the 

experiment is in the form of an intensity distribution.  Equation (2.18) is used to convert 

the intensity distribution into a histogram of heights.  Particle-wall potential is obtained 

by using the histogram of heights and the Boltzmann equation given by Eq. (2.17).  We 

used image analysis codes available in the group to perform the above mentioned data 

manipulations. 
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4. DIFFUSION LIMITED DEPOSITION 

4.1 Introduction 

This part of the research deals with a specific class of colloidal interaction.  As 

stated earlier, an investigation into particle-particle and particle-surface interactions 

helps in determining the equilibrium configuration or the most thermodynamically 

favored state.  Kinetically trapped states formed in systems of hard spheres on the earth’s 

surface are not observed in space.41  An in-depth understanding of interactions that result 

in the occurrence of such states needs to be done.  Colloidal systems in which strong 

attractive interactions predominate are one such example.  Such systems always undergo 

diffusion-limited deposition. 

Diffusion limited deposition can be easily explained by looking at rapidly 

aggregating systems.17  Diffusion limited colloidal aggregation occurs when there is a 

negligible repulsive force between colloidal particles, so that the aggregation rate is 

limited solely by the time taken by particles to encounter each other by diffusion.  The 

particles stick to each other before they have sufficient time to rearrange and this results 

in the formation of disordered solid aggregates.  Past studies have evaluated the 

structures of diffusion limited colloidal aggregates by way of fractal theory.16,42   

The low fractal dimension of aggregates reflects their open structure.1,43 The most 

important finding of these studies is that for any system of colloids in which the 

predominant inter-particle force is a large attraction; (either electrostatic, van der Waals, 

or polymeric) the resulting structures all have approximately the same value of fractal 

dimension (1.44 ± 0.04).1,2 

This research characterizes the fractal dimension of structures formed on surfaces 

by deposition in the diffusion-limited regime.  As a preliminary check for the fractal 

dimension program used, fractal dimensions of simulated clusters (in diffusion 

controlled regime) are evaluated and checked against typical values for diffusion limited 

colloidal aggregates listed in the literature.1,2,43  Images obtained using CLSM allow 
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surface structures generated via diffusion-limited deposition to be characterized.  Fractal 

dimension, radial distribution, bond orientational order parameter and triangulation 

methods are used to characterize the amount of order in the images.   

Two different colloidal systems, both under diffusion-limited conditions, are 

investigated.  The first is a system of silica particles deposited on a silica surface at a 

very large salt concentration (100mM) (resulting in complete screening of electrostatics).  

The only inter-particle and particle-wall force acting on this system apart from 

hydrodynamics and the external gravity field is van der Waals attraction.  The second 

system involves the deposition of positively charged latex spheres on a negatively 

charged silica surface.  The predominant attractive interaction in this experiment is 

electrostatic. 

4.2 Theory 

4.2.1 Fractal dimension: evaluation and interpretation 

As discussed in the theory, sets of points that have non-integer dimensions or a 

"fraction of a dimension" and are called fractals.37  To analyze the fractal dimension of 

any cluster of colloids, a general Fortran code has been written, tested, and employed 

specifically in this work to analyze confocal images of surface structures generated via 

diffusion limited deposition.  The program uses a cluster sorting code to isolate clusters 

of particles and then finds the fractal dimension for each cluster.  The Fortran code uses 

Eq.(2.8-2.10) to evaluate fractal dimension of clusters. 
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Figure 4.1.  Sample images of diffusion limited aggregates of (L-R) 256, 512 & 1024 
particles respectively used for verification of the fractal dimension program. 

To verify the effectiveness of this program, we tested it for sample images 

formed from diffusion-limited kinetics.  It is already known from literature that for two-

dimensional clusters formed by diffusion-limited kinetics, the value of fractal dimension 

is around 1.44 ± 0.04.2-4 The images of the particles are in Figure 4.1.  The value of 

fractal dimension obtained after running the fractal dimension program on the three 
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Figure 4.2.  Triangulation (Image and histogram) for 2.34µm silica spheres on silica 
surface at 5mM NaCl. 

sample images is shown in Table 4.1.  The error is evaluated against the mean value of 

1.44 in each case.  The fractal dimensions shown by the program for all the cluster sizes 

are quite accurate but it is easy to see that the results are much more accurate for clusters 

with higher numbers of particles.  Since most of the images we will be evaluating have 

between 900 and 1200 particles we can confidently state that our program functions very 

accurately in this range. 

Table 4.1 Performance of the Fortran fractal program 

Number of Particles Fractal dimension given by 
program 

% Error 

256 1.54 6.94 
512 1.49 3.47 
1024 1.44 0 

4.2.2 Bond orientational order parameter, radial distribution function and triangulation 

These are the other methods used to characterize the amount of order in the 

confocal images.  Fortran codes available in the research group are modified and used 
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for this purpose.  Global bond orientational order parameter (ΨX) is a single parameter 

useful for characterizing two-dimensional order. X is an integer related to the coherence 

of X-fold symmetry (X = 6 for hexagonal 6-fold symmetry and X = 4 for square 4-fold 

symmetry).  Regardless of the symmetry type, ΨX approaches 1 for perfect order or a 

number approaching zero for random configurations.44  Local bond orientational order 

parameter is another important indicator of structure quality but is not used in this study.  

 1 jkXi
X

j k
e

N
θψ = ∑∑  (4.1) 

The triangulation program draws lines between every particle center in the 

image.  The shorter of two intersecting lines is retained while the longer is discarded 

according to Eq.(2.15) until no more lines are intersecting.  The program then generates 

a histogram of triangle area for the image.  For perfect two-dimensional order, there will 

be only one sharp peak in the histogram, as all triangles will have the same area.  For 

disordered structures, the peak is flatter as shown in Figure 4.2.  The program used has a 

few unresolved flaws but does a relatively good job of representing the amount of order 

in the system.    

4.2.3 Fuchs stability ratio 

Fuchs stability ratio will be used in this research section to verify the existence of 

diffusion-limited kinetics.  A MathCAD document was written for this purpose.  To 

validate the MathCAD worksheet, we first reproduced a plot of stability ratio at high 

ionic strengths against particle size for polystyrene particles from Russel et al. (Page 

276).8  The potentials and hydrodynamic interactions used are for particle-particle PS 

systems Eq.(2.3).  The plot is shown in Figure 4.3.  The MathCAD worksheet was then 

used to predict the onset of diffusion-limited kinetics in systems with silica particle-

silica surface interactions.  The worksheet used Eq.(2.11, 2.12, 2.14).  The onset of 

diffusion-limited kinetics is seen in Figure 4.4 to be at approximately 91.6mM.  The 

experiment conducted at 100mM therefore corresponds to diffusion-limited deposition. 
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Figure 4.3.  Fuchs Stability Ratio for rapid flocculation of PS lattices in water as a 
function of sphere radius generated by use of MathCAD worksheet and equations (2.3, 
2.11, 2.13). 
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Figure 4.4.  The onset of diffusion-limited kinetics for a system with 2.34µm silica 
spheres interacting with silica substrate generated using MathCAD spreadsheet and 
equations (2.11, 2.12, 2.14). 
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4.3 Experimental 

4.3.1 Materials 

2.34µm silica colloids (C.V. 9.9%)(Bangs Laboratories. Inc.) and 1.0µm 

surfactant free white amidine latex colloids (C.V. 4.3%) (Interfacial Dynamics 

Corporation) were used in the experiments.  Sodium chloride (NaCl), used to control the 

ionic strength in these experiments was purchased from Aldrich and used without 

purification.  20mm Χ 20mm zinc titania glass cover slips (SiO2 64%, B2O3 9%, ZnO 

7%, K2O 7%, Na2O 7%, TiO2 3%, Al2O3 3%)(Corning) were used as substrates in the 

deposition experiments.  

4.3.2 Cell preparation 

The colloidal deposition was carried out in sedimentation cells.  The cells used 

for the deposition experiments involving the silica particles were constructed by 

attaching 1mm Χ 10mm (h Χ  id) O-rings to 20mm Χ 20mm cover slips (Corning) using 

polydimethyl siloxane (PDMS, Sylgard 184, Dow Corning).  The cells used for the 

deposition experiments involving amidine particles were constructed by attaching cut 

pieces of VWRBRAND 5/16-inch i.d pipe to 20mm Χ 20mm cover slips (Corning) using 

polydimethyl siloxane (PDMS, Sylgard 184, Dow Corning).  The sedimentation cells 

were always covered with another 20mm Χ 20mm cover slip to avoid evaporation.  

Vacuum grease was used to seal the top cover slip onto the O-ring or pipe piece. 

The dispersions of silica colloids were prepared by mixing 25 µL of 9.9% (v/v) 

silica colloids with 250 µL water with a required amount of NaCl.  The dispersions of 

amidine particles used had concentrations that would give monolayer coverage.  The 

cover slips were cleaned by immersing them in Nochromix overnight and then washing 

them repeatedly in de-ionized water.  The cover slips were dried in a stream of nitrogen 

gas. 
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4.3.3 Confocal imaging 

A Ziess confocal scanning laser microscope was used to image the first layer of 

all the deposited structures.  The microscope was operated in reflection mode using a 

633 nm He-Ne laser.  The pinhole was always kept at 1 airy unit.  Images are taken at 

zoom values of 0.7 (pixel/µm = 0.4), 1(pixel/µm = 0.29), 1.7(pixel/µm = 0.17) and 

2.7(pixel/µm = 0.11).   

4.3.4 Procedure 

The first experiment involved varying the ionic strength of the solution of silica 

particles and observing the structures formed.  Images of the first layer of silica particles 

were recorded for 0mM, 1mM, 5mM, 10mM and 100mM NaCl concentrations.  The 

second experiment involved the deposition of amidine-latex particles on the cover slips.  

This experiment was performed for particles in de-ionized water. 

4.4 Results and discussion 

4.4.1 Surface structure in silica particles on glass as a function of ionic strength 

For all images captured, fractal dimension and bond-orientation order parameter 

were determined.  The radial distribution function and triangulation analyses were also 

performed for all the data recorded.  The structure of the surface layer of colloids 

becomes less ordered with increasing salt concentration.  This is clearly revealed by the 

values reported in Table 4.2 and Figure 4.5.   

Table 4.2 Effect of ionic strength on structure of deposited colloidal layers 

Salt Concentration 
(mM) 

Debye Length 
(nm) 

Fractal Dimension Ψ6 Ψ4 

0 mM 303.16  1.885 0.936 0.083 
5 mM 4.28 1.834 0.290 0.062 
10 mM 3.03 1.808 0.045 0.039 
100 mM 0.96 1.725 0.031 0.056 
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Figure 4.5.  Influence of rapid deposition kinetics on the structural characteristics of 
2.34µm deposited silica particles.  The line at 91.6Mm in each plot shows the onset of 
diffusion-limited kinetics as predicted by Fuchs stability ratio. 

As the ionic strength of the solution is increased, the electrostatic forces, which 

help to keep the particles apart, diminish. The Debye length reduces and the particles 
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have less space to move and less time to rearrange due to reduced diffusion coefficient 

via many-body hydrodynamic interactions with neighboring particles.  At 100mM, the 

electrostatics is completely screened and the only interaction in the system is van der 

Waals attraction.  Diffusion limited deposition occurs, resulting in a structure with lesser 

order.  The Fuchs stability ratio confirms that 100mM salt concentration corresponds to 

diffusion-limited case. 

 The system stability ratio is first determined for the case where the interaction 

potential only contains van der Waals attraction (W∞) (electrostatics is completely 

absent/high salt concentrations).  This corresponds to the diffusion-limited regime.  The 

stability ratio is then worked out for the actual interaction potential in the system, which 

depends on the salt concentration (W).  A ratio of these two quantities (W/W∞) is plotted 

against salt concentration (mM).  The point where the curve levels out to 1 represents the 

onset of diffusion limited kinetics.  It is clear from Figure 4.4 that 91.6mM is 

approximately where this onset occurs. 

The radial distribution functions as well as the triangulation histograms are 

obtained for each image recorded.  While the radial distribution function for the 0mM 

case clearly shows crystalline structure, the degree of ordering is destroyed as the salt 

concentration is increased to 100mM.  An important point to be noted here is that the 

crystal structure formed at 0 salt concentrations is purely repulsive and hence very week.  

The structure formed at 100mM is stronger on account of the predominance of attraction 

but also very disordered on account of the high degree of attraction as seen in Figure 4.6.  

The particle co-ordination number, which is related to the value of g(r) at the first peak 

shows a drastic change as the ionic strength is increased as shown in Table 4.3.  At low 

ionic strengths the value of g(r) at the first peak is almost 6 that represents an almost 

perfect crystal.  At 100mM salt concentration that corresponds to diffusion-limited 

kinetics, the value of g(r) at first peak is barely 2.   
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Figure 4.6.  Radial distribution functions for 2.34µm silica particles on silica substrate at 
(L-R): 0mM, 5mM, 10mM, and 100mM salt concentrations respectively. 

Table 4.3 Deviation from crystallinity with increase in ionic strength 

Salt Concentration (mM) g(r) at first peak 
0 mM 5.8 
5 mM 4.2 
10 mM 3.6 
100 mM 1.8 

 

 



 32

The triangulation histograms show a broadening of the peak as the salt 

concentration is increased.  This also indicates the diminishing order in the system.  The 

results for the triangulation histograms are in Figure 4.7.  All the analyses show that for 

systems in which the only interaction is van der Waals attraction, structures with lesser 

amounts of order form. 

Large single domain crystalline colloidal structures are easily assembled under 

low salt concentrations.  The main cause is the electrostatic repulsion, which keeps the 

colloids separated from each other.  The repulsion allows the particles greater space and 

time to diffuse around and adopt the lowest free energy configuration, which is the 

ordered state.  As the salt concentration is increased, the repulsive force diminishes and 

the particles sit at closer separations, which results in them having a reduced freedom of 

movement.  At salt concentrations where the only interaction is attractive, the particles 

have no time to adopt the lowest free energy configuration.  This is easily seen in Table 

4.2 and Figure 4.5 where the Debye length decreases rapidly with increasing ionic 

strength.  At low ionic concentrations, the large Debye lengths mean that the 

electrostatic repulsion ensures a large average interparticle separation.  The crystalline 

structures formed at low ionic strengths are not robust.   

At high salt concentrations, the predominance of attraction results in the 

formation of disordered structures.  The study was conducted for two different types of 

attractive interactions.  The observations from the first experiment with the silica 

particles show that strong attraction leads to the formation of disordered structures.  The 

predominant interparticle and particle substrate interaction in this set of experiments was 

van der Waals attraction.  The Fuchs stability ratio calculation shows that the images 

analyzed for the 100mM salt concentration case correspond to structures formed by 

diffusion-limited kinetics.  As expected the lack of time for particle rearrangement leads 

to the formation of random structures. 
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Figure 4.7.  Triangulation histograms for a system of 2.34µm silica particles on silica 
substrate at 5mM, 10mM and 100mM salt concentrations respectively. 
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4.4.2 Surface structure in amidine terminated latex particles on glass 

The next experiment involved another system in the diffusion-limited regime.  

The difference was that the predominant attractive interaction was electrostatic.  The 

other important difference was that this experiment was performed at monolayer surface 

coverage unlike the earlier experiments with the silica particles.  The system shows a 

fractal dimension value of about 1.462.  Also of importance are the bond orientational 

order parameter, radial distribution function, and triangulation analyses, all of which 

indicate a highly disordered structure.  The radial distribution function shows a typical 

profile for a disordered structure with a low first peak value of g(r) at 1.4 as compared to 

6 for perfect order.  (See Table 4.4 and Figure 4.8) 

To understand the effect of the nature of attractive interaction in this kinetic 

regime, it was essential to perform an experiment on a system that was governed by 

similar kinetics but had a different attractive force.  The experiments with the amidine-

latex particles deposited on the glass cover slips were performed for this purpose.  The 

predominant particle-substrate force in this case was the electrostatic attraction between 

the positively charged amidine spheres and the negatively charged glass.  The results 

show that for any system undergoing diffusion limited deposition, the nature of the 

structures formed was the same.  

 Table 4.4 Poor ordering due to large electrostatic attraction 

Type of System Predominant 
attractive 

interaction 

Fractal 
Dimension 

Ψ6 Ψ4 

Amidine 
terminated 
(positively 

charged) spheres 
deposited on glass 
in deionized water 

Electrostatic 1.462     0.016 0.014 
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Figure 4.8.  Radial distribution functions and triangulation analysis for diffusion limited 
deposition of positively charged 1µm amidine terminated latex colloids on negative 
glass surface.   

The bond orientational order parameters for both cases are almost zero.  The 

radial distribution functions have almost the same nature.  Figure 4.9 shows a plot of 

radial distribution functions for both systems.  The closed dots represent the amidine 

system while the open dots represent the silica system.  The low first peak g(r), 1.8 for 
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silica particles in 100mM solvent and 1.4 for amidine terminated latex spheres in 

deionized water) in both systems indicates random structures. 

Flat peaks in the triangulation histograms for both cases reveal a lack of order in 

systems with attraction as the predominant interaction.  The only difference between the 

two systems, apart form the nature of the attractive force, was the concentrations used.  

The amidine experiments were performed at monolayer concentrations while the silica 

experiments were conducted at much higher concentrations.  This is clearly evident in 

the values for fractal dimensions in the systems.  Pressure from the upper layers cause 

the silica particles in 100mM solvent to pack more tightly (but randomly) on the glass 

surface resulting in a noticeably higher value of fractal dimension.  The amidine 

particles are not under any such pressure and adopt a more open structure.  The value of 

fractal dimension reported in this case (1.462) is very close to the value reported in the 

literature (1.44 ± 0.04) for aggregating systems in the diffusion-limited regime. 

In conclusion, once the predominant particle-particle and particle-substrate 

interaction is strongly attractive, the nature of the attractive interaction is not important 

in determining the final structure.  It also reveals that large attractive interactions are not 

favorable for producing long-range order. 

4.5 Conclusions 

This research section shows two things.  The nature of the attractive force is 

immaterial in case of systems undergoing diffusion limited deposition.  Large attractive 

interactions allow no time for particles to diffuse and find the lowest free energy 

configuration on a substrate.  The result is the formation of disordered structures.   
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Figure 4.9.  Radial distribution functions for diffusion limited deposition of positively 
charged colloids on glass surface (closed dots, predominant attractive force is 
electrostatic) and diffusion limited deposition of silica spheres on glass at high ionic 
strength (open dots, predominant attractive force is van der Waals) where each data set is 
normalized by the separation at the first peak (particle diameter). 
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5. REACTION LIMITED DEPOSITION 

5.1 Introduction  

The research in the previous section clearly indicates that using large attractive 

interactions results rapid deposition and disordered structures. This section looks at 

deposition processes in which there is a substantial but not insurmountable repulsive 

barrier between particles and a homogeneous substrate.  The importance of the height of 

the repulsive barrier is illustrated in Figure 5.1.  The black curve is the reaction limited 

case while the gray curve represents the diffusion limited case.  In the reaction-limited 

case, it will take some time for the particles to obtain sufficient kinetic energy (by 

Brownian motion and particle-substrate collisions) to overcome the repulsive barrier.  In 

the diffusion limited case however, there is no potential energy barrier to overcome and 

the particles stick on their fist encounter.  

 The particles have no time to rearrange in the diffusion-limited case.  A barrier 

height that forces the particles to stay apart sufficiently long such that they have time to 

rearrange, will lead to more ordered structures.2-4  The rate of deposition in this case is 

limited by the time the particles take to overcome the particle-wall repulsive barrier.  

The settling particles will experience a number of collisions before they have an 

encounter of enough energy to overcome the energy barrier to produce deposition in the 

case of particle-wall interactions or aggregation for particle-particle interactions.1,45 

Reaction limited deposition processes allow a much longer time for 

rearrangement of particles on the surface of a substrate and therefore result in the 

formation of more organized and compact structures.  The current research section will 

study reaction-limited colloidal deposition by the use of TIRM and CLSM.  Results 

involve the TIRM analysis of silica particles interacting with a silica surface (glass 

slide).  The previous research section involved deposition of silica colloids on a silica 

surface.  This section studies the same system but the experiments are concentrated on a 

different set of conditions. 
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Figure 5.1.  Importance of the repulsive energy barrier, a kinetic barrier associated with 
electrostatics. 

  TIRM and CLSM analyses will be conducted for two solvent conditions.  The 

experimental conditions in the first run are 10mM salt concentration and pH 5.5(on 

account of dissolved carbon dioxide in de-ionized water) while the second has 10mM 

salt and pH 10. 

The surface charge of silica almost doubles when the pH is changed form 5.5 to 

10.  The experiments are setup to study the effect of increasing barrier height on the 

ordering of particles on the homogeneous substrate.  It is important to mention that the 

purpose of this study is to analyze and understand the reaction-limited regime.  A direct 

requirement of this study is therefore that the repulsive barrier be substantial but not 

insurmountable.  The system is therefore studied at a salt concentration of 10mM as 

lower salt concentrations result in an insurmountable barrier.  

 The CLSM experiments make the analysis of reaction-limited kinetics 

comprehensive.  The TIRM experiment allows the measurement of the particle-substrate 

interaction.  The aim in this research section is to show that particles form structures 
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with a different amount of order in the reaction-limited regime as compared to the 

diffusion controlled deposition regime.  The sub-monolayer-coverage concentrations 

used in TIRM experiments result in images that show an average of only 6-7 particles 

per window, which are not enough for performing an evaluation of the structures these 

systems form.  The final experiments in this research section involve the use of CLSM to 

evaluate the quality of the packing formed by this reaction-limited deposition system.   

5.2 Experimental 

5.2.1 Materials 

2.34µm silica colloids (C.V. 9.9%)(Bangs Laboratories. Inc.) were used in the 

experiments.  Sodium chloride (NaCl), used to control the ionic strength in these 

experiments was purchased from Aldrich and used without purification.  Potassium 

hydroxide (KOH), used to control the pH in these experiments was purchased form 

Fisher Scientific and used without purification.  20mm Χ 20mm zinc titania glass cover 

slips (SiO2 64%, B2O3 9%, ZnO 7%, K2O 7%, Na2O 7%, TiO2 3%, Al2O3 3%)(Corning) 

were used as substrates in the deposition experiments.  

5.2.2 Cell preparation 

The colloidal deposition was carried out in sedimentation cells.  The cells used 

for the deposition experiments were constructed by attaching 1mm Χ 10mm (h Χ  id) O-

rings to 20mm Χ 20mm cover slips (Corning) using polydimethyl siloxane (PDMS, 

Sylgard 184, Dow Corning). The sedimentation cells were always covered with another 

20mm Χ 20mm cover slip to avoid evaporation.  Vacuum grease was used to seal the top 

cover slip onto the O-ring or pipe piece. 

The dispersions of silica colloids were prepared by mixing 25 µL of 9.9% (v/v) 

silica colloids with 250 µL water with a required amount of NaCl.  The cover slips were 

cleaned by immersing them in a Nochormix overnight and then washing them repeatedly 

in de-ionized water.  The cover slips were dried in a stream of nitrogen gas. 

 



 41

The cells used in the TRIM experiments were prepared in exactly the same way 

as those used for the CLSM studies.  Before use in the TIRM experiment, the glass 

slides were immersed in a 0.1mM KOH solution for about ½ hour to maximize the 

surface charge of silica.  The prism used in the experiment was cleaned with acetone.  

5.2.3 Confocal imaging 

A Ziess confocal scanning laser microscope was used to image the first layer of 

all the deposited structures.  The microscope was operated in reflection mode using a 

633 nm He-Ne laser.  The pinhole was always kept at 1 airy unit.  Images were taken at 

various zoom values.  Images are taken at zoom values of 0.7 (pixel/µm = 0.4), 

1(pixel/µm = 0.29), 1.7(pixel/µm = 0.17) and 2.7(pixel/µm = 0.11).   

5.2.4 TIRM analysis 

          A Hamamatsu ORCA-ER C.C.D. camera was used to capture images of the sample 

over the surface.  The particle scatters an evanescent wave produced by total internal 

refection of a 543 nm He-Ne laser.    

5.2.5 Procedure 

The CLSM experiments involved varying the pH of the 10mM solution of silica 

particles and observing the structures formed.  Images of the first layer of silica particles 

were recorded for 10mM NaCl concentration and pH conditions of 5.5 and 10.  The 

TIRM experiment involved the levitation study of the same particles on the cover slips.  

This experiment was also performed for particles in 10mM NaCl and pH conditions of 

5.5 and 10.    
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5.3 Results and discussion 

5.3.1 Measurement of pH dependent deposition and structure on silica substrates (CLSM 

studies) 

By keeping the concentration of particles and the overall system the same, an 

effective determination of the effect of pH on the order in the deposited layers is 

possible.  For all images captured, fractal dimension and bond-orientational order 

parameter were determined.  The radial distribution function and triangulation analyses 

were also performed for all the data recorded.  The results clearly indicate a higher value 

of fractal dimension for pH 10 as compared to pH 5.5.  The six-fold bond orientation 

order parameter value shows a jump form almost zero to 0.117.  The results discussed in 

the paragraph are summarized in Table 5.1.  

The radial distribution functions as well as the triangulation histograms are 

obtained for each image recorded.  The radial distribution (Figure 5.2) function for the 

pH 10 case clearly shows a greater degree of ordering than the pH 5.5 case.  The value 

of g(r) at the first peak shows a drastic change as the pH is increased (Table 5.1).  At 

pH=5.5 the value of g(r) at the first peak is 3.6 while at pH=10 it increases to 3.8.  Both 

experimental conditions correspond to reaction-limited kinetics.   

The triangulation histograms give probably the best indication of the increase in 

the amount of order in the surface layer as the pH is increased.  For the same system, just 

a change in the pH causes the histogram to get less flat.  This is clearly seen in Figure 

5.3.  The triangulation histogram for the 10mM and 5.5-pH case shows a peak width of 

approximately 3 µm2 while the triangulation histogram at 10mM and 10-pH shows a 

peak width of only 1 µm2.  This clearly illustrates that the higher repulsive barrier leads 

to greater degrees of ordering.  The triangulation results are summarized in Figure 5.3. 
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Figure 5.2.  (L-R) Radial distribution functions for pH =5.5 and pH =10. (Bottom) 
Comparison of radial distribution functions clearly showing greater ordering at pH = 10 
(Closed dots) than at 
pH = 5.5 (Open dots). 

 

Table 5.1 Change of solvent conditions in reaction-limited regime to achieve higher 
amounts of order 

Salt 
Concentration 

(mM) 

pH Fractal 
Dimension 

Ψ6 Ψ4 g(r) at the first peak 

10 mM 5.5 1.808 0.045 0.039 3.6 
10 mM 10 1.846 0.117 0.039 3.8 
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Figure 5.3.  Triangulation histograms for pH =5.5 (Top) and pH = 10 (Bottom) clearly 
show a sharpening of the peak.  The triangulated images also clearly indicate an increase 
in the order in the surface layers as the pH is increased. 

  Both CLSM experiments performed were in the reaction-limited regime.  The 

difference is the higher repulsive barrier at pH 10 than at pH 5.5.  A direct consequence 

of this is that particles have a longer surface diffusion time tdiff at a pH of 10 than at pH 

of 5.5.  The TIRM experiments confirm that tdiff (10) > tdiff (5.5).  The natural consequence 
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of these increased diffusion times is the higher order in surface layers of deposited 

colloidal silica at pH 10 as compared to pH 5.5.  This is confirmed by the values of 

fractal dimension and bond-orientational order parameter reported in the previous 

section.  Radial distribution functions as well as triangulation studies reveal the same 

information.  A direct result of these studies is the understanding that while reaction 

limited regime deposition gives structures with higher order, careful variation of 

repulsive energy barrier within this regime can yield structures with even higher order. 

5.3.2 Measurement of pH dependent deposition and structure on silica substrates (TIRM 

studies) 

The purpose of the TIRM study was to get a complete understanding of the 

interaction-surface structure relationship.  By knowing exactly what repulsive barrier 

height leads to higher surface structure, reproducible results are made more likely.  

TIRM analyses were performed for both the 5.5 as well as the 10 pH case (both at 

10mM) in an attempt to understand the kind of interactions in the reaction limited 

regime and the dependence of these interactions on solvent conditions. 

The interaction profile is easily determined for the pH 10 case.  The interaction 

potential at pH 10 is recorded and reported in this research section.  This directly gives 

the interactions in colloidal systems in the reaction-limited regime (Figure 5.4).  The 

interaction potential reported is in terms of relative separation.  The part of the curve 

after about 50nm represents the gravitational interaction while the part after 0nm 

represents the electrostatic repulsion.  It is important to emphasize that we accurately 

know these values and this makes further analyses much more elegant and easy. 
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Figure 5.4.  The interaction potential between a 2.34 µm silica particle and a glass 
substrate at 10mM NaCl and pH 10 in terms of relative separation (nm) with (L) and 
without gravity (R).  

 

The TRIM analysis of the system at 10mM salt and pH 10 directly gives the 

actual particle wall interaction potential in the reaction-limited regime.  The only 

problem is that the initial results are reported in terms of relative separation.  An 

accurate representation of this interaction potential as a function of absolute separation 

would be most useful.  For this purpose it is very important to find the absolute 

separation at minimum potential energy.  A MathCAD document written in the research 

group was used for this purpose.  The absolute separation curve is shown in Figure 5.5. 

The curve in Figure 5.5 and the gray curve in Figure 5.1 have the same nature.  

The reason the entire barrier and the deep primary minimum are not seen in Figure 5.5 is 

that the particle does not sample those positions when it is levitated.  Those positions are 

sampled when it is in the process of overcoming the potential energy barrier. 
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Figure 5.5.  The interaction potential between a 2.34 µm silica particle and a glass 
substrate at 10mM NaCl and pH 10 in terms of absolute separation (nm).  

5.4 Conclusions 

This research section revealed two important pieces of information.  Reaction 

limited deposition results in the formation of higher ordered structures as compared to 

the diffusion limited deposition case (Figure 5.6).  The second important piece of 

information is that if the repulsive barrier height is increased such that the new barrier 

height is still surmountable then the system forms structures with even greater order 

while still remaining in the reaction limited regime.  Another important observation is 

that all structures formed in this section are irreversible. 
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Figure 5.6.  Reaction limited deposition structures (black triangles) show higher values 
of fractal dimensions than structures formed by diffusion-limited deposition (gray 
triangle). 
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6. LEVITATION & DEPOSITION WITH POLYMERIC FORCES 

6.1 Introduction 

In this part of the study we show how TRIM can be used to obtain a fundamental 

understanding of polymeric stabilization.  Adsorbed polymer layers generate repulsion 

analogous to a hard wall.  Under certain solvent conditions, the adsorbed polymer layers 

are thick enough to generate repulsion of sufficient range and magnitude to dominate 

van der Waals attraction.7  The thickness of these adsorbed polymer layers depends on 

the solvent conditions and the properties of the underlying substrate.  The changes in 

polymer layer thickness brought about by variation in solvent conditions are reversible.   

In this research section the influence of hydrophobicity/hydrophilicity of 

substrates on the interaction potential is studied (depth of the attractive well and position 

of potential energy minima).  This is a direct result of the thickness of the F108 Pluronic 

layers being dependent on how hydrophobic/hydrophilic the underlying substrates are.  

F108 is a triblock copolymer of the B/A/B type where the anchor block (A) is strongly 

attracted to the surface while the buoy blocks (B) are not.46,47  The B blocks are 

hydrophilic and as a result, they stretch out further into the solvent as the substrate 

becomes more and more hydrophobic.  The influence of substrate chemistry on adsorbed 

polymer layer thickness is studied using both TIRM and CLSM techniques.  

TIRM experiments for various surface chemistries namely polystyrene (PS) and 

octadecyltricholorosilane (OTS) are conducted.  Since OTS is more hydrophobic than 

PS, the adsorbed polymer layers must be thicker on OTS than on PS.  The results 

obtained in this section verify the theory.  The other experiments in this section involve 

the use of specific ions to control the polymer layer thickness and achieve bulk phase 

aggregation and deposition.  CLSM analyses are conducted to find out the packing order 

in diffusion limited deposition regime.   
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Figure 6.1.  Polymeric stabilization.  The polymer layers generate a hard wall repulsion 
of sufficient range to dominate core particle van der Waals attraction under good solvent 
conditions.   

6.2 Theory  

6.2.1 Polymeric stabilization  

Figure 6.1 schematically depicts the physical arrangement involved in polymeric 

stabilization of colloidal particles.  Under good solvent conditions, the polymer layers 

are highly solvated and therefore have dielectric properties that are similar to the 

medium and contribute a minimal amount to the van der Waals force.  The adsorbed 

polymer layers generate repulsion analogous to a hard wall.  To stabilize particles, 

adsorbed polymer layers must be thick enough to generate repulsion of sufficient range 

and magnitude to dominate van der Waals attraction. 7  

 In the event that a polymerically stabilized dispersion experiences a change from 

good solvent conditions for the adsorbed layer, a dimensional collapse and densification 

of the adsorbed polymer layers increase the polymeric van der Waals contribution.  This 

dimensional collapse can result is aggregation of the colloids in the event that the range 

of the van der Waals interaction exceeds the composite particle collision radius.  It has 

been shown that a change back to good solvent conditions results in re-dispersion of the 

colloids.30  The objective is to evaluate surface structure at conditions corresponding to 

complete layer collapse.  Another goal is to use a combination of bulk phase aggregation 
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results, past group research work and fundamentals learnt from the previous chapters to 

isolates various deposition regimes in these systems.  

6.2.2 Silica surface modification using silane chemistry 

The space between homogeneous phases is sometimes called the interphase.  In 

this region there is a steep gradient in local properties of the system.  By treating a 

substrate with silanes, the interphase can acquire specific surface energy, partition 

characteristics, mechanical and chemical properties.  Alkyl- and aryl-silanes are non-

functional materials that have profound effects of the interphase.  They are used to alter 

surface energy or wetting characteristics of the substrate.  For example, glassware can be 

dipped into a 5% to 10% solution of dimethyldiethoxysilane and heated for ten minutes 

at 120oC to render the surface hydrophobic. 

Silanes can alter the critical surface tension of a substrate in a well-defined 

manner.  Critical surface tensions are associated with the wettability or release qualities 

of a substrate.  Liquids with a surface tension below the critical surface tension (γc) of a 

substrate will wet the surface, i.e., show a contact angle of 0 (cosθc =1).  The critical 

surface tension is unique for any solid, and is determined by plotting the cosine of the 

contact angles of liquids of different surface tensions and extrapolating to 1.  The contact 

angle is given by Young’s equation: 

 coss sl eνγ γ θ− =  (6.1) 

where γsl = interfacial surface tension, γlν = surface tension of liquid, and γsν = γl when γsl 

= 0 and cosθe =1.  OTS will be used in this research section to make glass surfaces 

hydrophobic.48 

6.2.3 Specific ion effect 

Exquisite control of the interparticle potential can be obtained by reversible and 

continuous control of the balance of attractive dispersion forces and molecular 

interactions between polymer-coated colloids using specific ion effects.  The classic 

study by Napper on the effects of different electrolytes on the fractal aggregation of 
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polystyrene latexes coated by polymers is the basis for this study.  The study states that 

poly (N-isopropylacrylamide)(PNIPAM) is soluble in water at low temperatures, but on 

addition of electrolyte, it adopts a globular conformation and becomes hydrophobic.  

The effect is also dependent on the type of salt used.5,49,50 

6.3 Experimental 

6.3.1 Materials 

Nominally sized 4.9µm polystyrene colloids purchased from Interfacial 

Dynamics Corporation were used in these experiments.  Sodium chloride (NaCl), used to 

control the ionic strength in these experiments was purchased from Aldrich and used 

without purification.  F108 Prill Pluronic was purchased from BASF for use in the 

experiments.  The OTS used for chemical surface modification was purchased from 

Avocado Research Chemicals Ltd.  The Toluene (Histological Grade),used as a solvent 

for the OTS was purchased from Fisher Scientific and used without purification.  20mm 

Χ 20mm zinc titania glass cover slips (SiO2 64%, B2O3 9%, ZnO 7%, K2O 7%, Na2O 

7%, TiO2 3%, Al2O3 3%)(Corning) were used as substrates in the deposition 

experiments.  

6.3.2 Cell preparation 

The colloidal deposition was carried out in sedimentation cells.  The cells used 

for the deposition experiments involving the polymer coated particles were constructed 

by attaching 1mm Χ 10mm (h Χ  id) O-rings to 20mm Χ 20mm cover slips (Corning) 

using polydimethyl siloxane (PDMS, Sylgard 184, Dow Corning).  The sedimentation 

cells were always covered with another 20mm Χ 20mm cover slip to avoid evaporation.  

Vacuum grease was used to seal the top cover slip onto the O-ring or pipe piece.  The 

cover slips were cleaned by immersing them in Nochormix overnight and then washing 

them repeatedly in de-ionized water.  The cover slips were dried in a stream of nitrogen 

gas.   
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The PS particles were levitated above the flat PS surface by adsorbing layers of 

Pluronic onto both surfaces.  Pluronic was adsorbed onto the particles by shaking them 

in a 1000ppm polymer solution for 16 h.  The bulk concentration of 1000ppm is at least 

three times the concentration necessary to saturate the PS surfaces.  The particles were 

then diluted such that they finally were part of a 0.5M NaCl solution that was 

polymerically stabilized.   

6.3.3 Surface modification with PS 

Glass slides that had been cleaned as described earlier were spun at 1000rpm for 

60 s with a 10 wt % solution of  PS in toluene.  The spin coated surface was then 

annealed in an oven at 120oC for 16h before being brought to room temperature.  The O-

rings were then stuck on these PS  surfaces as described earlier.  Polymer was adsorbed 

on these surfaces by placing a 85µL of the 1000ppm polymer solution on them for about 

16 h.  Before the start of the experiments the drop was sucked off the surface.29,30    

6.3.4 Surface modification with OTS 

Microcontact printed OTS solution films were obtained by spin-casting a 10mM 

solution of OTS in toluene onto a polydimethylesiloxane(PDMS) stamp using a 

conventional photo resist spinner at 3000 rpm for 30s.  A spinner was used to apply the 

solution uniformly without the risk of contaminating the surface with particles.  The 

wetted PDMS stamp was then dried in a steam of nitrogen gas for 30s, after which it was 

brought in contact with the substrate for 30s.24  The PDMS stamps used for the planar 

microcontact printing were fabricated according to a previously reported procedure. The 

O-rings were then stuck on these OTS surfaces as described earlier.51  Polymer was 

adsorbed on these surfaces by placing a 85µL of the 1000ppm polymer solution on them 

for about 16 h.  Before the start of the experiments the drop was sucked off the 

surface.29,30    

6.3.5 TIRM studies 

          A Hamamatsu ORCA-ER C.C.D. camera was used to capture images of the sample 

over the surface.  The particle scatters an evanescent wave produced by total internal 

 



 54

refection of a 543 nm He-Ne laser.  The solutions of 0.5M concentrations were prepared 

by diluting the original polymers coated solution of PS spheres with a 1M NaCl solution.    

6.3.6 Confocal imaging 

A Ziess confocal scanning laser microscope was used to image the first layer of 

all the deposited structures.  The microscope was operated in reflection mode using a 

633 nm He-Ne laser.  The pinhole was always kept at 1 airy unit.  Images were taken at 

various zoom values. Images were taken at various zoom values.  Images are taken at 

zoom values of 0.7 (pixel/µm = 0.4), 1(pixel/µm = 0.29), 1.7(pixel/µm = 0.17) and 

2.7(pixel/µm = 0.11).   

 6.3.7 Procedure 

The TRIM experiment involved varying the nature of the underlying 

homogenous substrate and recoding the interaction potential and polymer layers 

thickness.  The analyses were performed for two different systems.  The first was for PS 

spheres with adsorbed polymer interacting with a PS surface with adsorbed polymer at 

0.5M NaCl.  The second experiment was for PS spheres with adsorbed polymer 

interacting with an OTS surface with adsorbed polymer at 0.5M NaCl.    

The second set of experiments in this section involved studies on bulk stability of 

these systems.  CLSM analysis of surface layer at 0.5M magnesium sulfate was 

performed.  Using past group data and knowledge form earlier sections in this research, 

isolation of diffusion limited and a reaction-limited regime is possible. 

6.4 Results and discussion 

6.4.1 Effect of substrate properties on polymeric stabilization. (TRIM studies) 

TRIM experiments were performed for PS colloids interacting with two kinds of 

substrates: PS and OTS.  The particle wall interaction potential is determined for both 

cases as is the polymer layer thickness.  It is clearly seen that the well depth for the PS-

PS system is greater than for the PS-OTS system.  Table 6.1 and Figure 6.2 serve to 

illustrate the point made. 
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Figure 6.2.  (L-R) Interaction potentials for PS-PS and PS-OTS cases clearly show a 
decrease in the attractive well depth.  This is attributed to OTS surface being more 
hydrophobic than PS (resulting is thicker polymer layers). 

Table 6.1 Influence of underlying substrate chemistry on the attractive well depth 
in polymerically stabilized systems 

Type of system Attractive well depth (kT) 
PS-PS -1.6 kT 

PS-OTS -0.8 kT 
 

 

The other important piece of information that was backed out from the TRIM 

data was the polymer layer thickness on the underlying substrate.  The high salt 

concentrations used ensured that the electrostatics were absent in these systems.  The 

only interactions in this system were the van der Waals attraction and the polymeric hard 

wall repulsion.  It is assumed that the minimum potential energy position lies at the point 

of contact of the adsorbed polymer layers.  At separations closer than this the hard wall 

repulsion generated by the polymer layers pushes the particles apart.  A simple 

MathCAD Document is written to determine the absolute separation and minimum 

potential energy separation.    
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The curve fitting for the raw data for both PS-PS as well as PS-OTS is shown in 

Figure 6.3.  The theoretical curves are of the form: 

 ( , ) ( ) ( ) ( )bx ef x hm ae y cx d x hm−= + + + +  (6.2) 

where bxae− is the fitting done to the repulsive part of the profile, and y cx+  is 

the fitting to the gravitational part of the profile.  d and  are the coefficients obtained 

from the power law fit to the van der Waals data given by Eq.(2.4).  

e

x represents the 

relative separation is nm and hm is the value of absolute minimum potential separation, 

which has to be found out. 

There are some differences in the coefficients in these equations.  The linear 

parts of the curve (gravity) have different intercepts and slopes.  The difference in slopes 

is due to particle polydispersity.  The difference in the intercepts is due to a variety of 

reasons.  Gravitational interaction is relative to zero separation and since the raw data is 

obtained as a function of relative separation, an intercept is obtained.  The other 

important cause is that the minimum separation sampled in the two cases is different.  

This is attributed to the difference in polymer layer thickness, which will be explained 

later. 

  The values of hm for which the fits are obtained, represent the minimum 

separation sampled by particles in those systems.  As stated earlier, the thickness of the 

adsorbed polymer layers is determined from this analysis.  Figure 6.4 shows the relevant 

separations defined in the TRIM experiments with polymeric stabilization.  On 

contact 2h hm δ= = and .  It is assumed that the particle and the substrate are the 

same material.  This applies directly to the PS-PS case.  The value of  here is 45nm, 

which results in the polymer layer thickness on the substrate being 22.5nm.  Pluronic 

adsorbed on PS surfaces therefore forms layers of thickness 22.5nm at a pH of 5.5, ionic 

strength of 0.5M and temperature of 25

0x =

hm

oC.  The value of  for the OTS-PS case is 

52nm.  Since the polymer layer thickness on PS is already known, the OTS polymer 

layer thickness is 29.5nm. 

hm
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Figure 6.3.  (Top) Fitting for the PS-PS interaction data with gravity (L) and without 
(R).  The value of hm for the fit shown is 45nm.  (Bottom) Fitting for the PS-OTS 
interaction data with gravity (L) and without (R).  The value of hm for the fit shown is 
52nm. 

The explanation for the change in adsorbed polymer layer thickness and the 

depth of the attractive well lies in the properties of the adsorbed polymer and those of 

the underlying substrates.  F108 is a triblock copolymer of the B/A/B type where the A 

block is strongly attracted to the surface while the B blocks are not.46 The B blocks are 

hydrophilic and as a result, they stretch out further into the solvent as the substrate 
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Figure 6.4.  The relevant separations in polymeric stabilization showing layer thickness 
and bare surface separation.  

becomes more and more hydrophobic.  PS surfaces are hydrophobic and as a result the 

hydrophobic PPO block lies flat on the surface whereas the hydrophilic PEO tails stretch 

out into the solvent.  OTS surfaces are even more hydrophobic than PS.  This is clearly 

evident form the critical surface tension values for both surfaces (PS: 33-43 dyne/cm & 

OTS: 25.9-27 dyne/cm).  The result states that at fixed solvent conditions, variations of 

substrate chemistry, change interactions in polymerically stabilized systems.  Tables 6.2. 

& 6.3. summarize all the results.  Changing the polymer layer thickness shifts the hard 

wall repulsion.  This is easily seen in Figure 6.5.   

Table 6.2 Influence of substrate chemistry 

Type of substrate Critical surface 
tension (dyne/cm) 

Thickness of 
adsorbed polymer 

on substrate 

Attractive well 
depth (kT) 

Polystyrene 33-43 dyne/cm 22.5 nm -1.6 kT 
OTS 25.9-27 dyne/cm 29.5 nm -0.8 kT 

Table 6.3 Influence of substrate properties 

Type of 
substrate 

a b y   c d e 

PS 0.68 0.13 1.38 0.0079 -11802.81 -2.287 
OTS 0.62 0.12 0.7223 0.0077 -11802.81 -2.287 
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Figure 6.5.  Interaction potentials for PS-PS (gray dash) and PS-OTS (black) showing 
the shifting of hard wall repulsion. 

6.4.2 Predicting diffusion limited deposition and aggregation 

Aggregation is caused by attractive wells of 5-10kT.8  From previous group 

research, the polymer layer thickness at 0.5M MgSO4 is found to be 5nm(on both PS or 

OTS).  The hard wall position in terms of interparticle separation is therefore 10nm.  On 

Figure 6.6, this defines a well depth of about 24kT (black dashed line).  The van der 

Waals curve in Figure 6.6 is generated from Eq.(2.3) with the necessary adjustments for 

particle size. We can therefore predict that at 0.5M MgSO4, a bulk suspension of 

polymer coated PS particles will undergo aggregation.  A system of polymer coated PS 

spheres interacting with a polymer coated PS surface is expected to undergo rapid 

deposition.  The predictions are supported by both the bulk aggregation observations and 

the deposition results.  

Preliminary experiments were conducted to test the stability of polymerically 

stabilized PS particles with increasing amounts of MgSO4.  The results show that while 

the system is stable at 0M and 0.25M MgSO4 (and total salt concentration of 0.5M), 

aggregates form at 0.5M MgSO4 concentrations (Figure 6.7).  The purpose of this study 
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Figure 6.6.  Predicting rapid-deposition from particle-wall interaction potential.  The red 
line represents position of hard wall at 0.5M MgSO4 (showing a deep attractive well of 
24kT) and the blue line represents the position of the hard wall at 0.5M NaCl. 

is to isolate diffusion limited kinetics regime in these systems from a fundamental 

understanding of the interactions involved.  Group data on specific ion effects shows that 

at 0.5M MgSO4, the polymer layers collapse totally, resulting in a system with only van 

der Waals attraction. 

Experiments with polymer coated PS particles and a polymer coated PS slide at 

0.5M MgSO4, reveal the deposition process to be diffusion limited.  The resulting 

structures, when analyzed with CLSM (light gray triangles in Figure 6.8), show the same 

characteristics (g(r) profile and fractal dimension) of previous diffusion-limited 

deposition structures.  The dashed gray line on Figure 6.6 represents the hard wall at 46 

nm that corresponds to the PS-OTS system at 0.5M NaCl. 
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Figure 6.7.  Bulk aggregation experiments performed at (L-R) 0.5M NaCl, 0.25M 
NaCl+0.25M MgSO4 and, 0.5M MgSO4 clearly showing aggregation at 0.5M MgSO4 as 
predicted. 
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Figure 6.8.  (L) Surface structure (represented by g(r)) for a PS particle on OTS 
diffusion limited deposition structure showing the typical random nature of such 
structures. (R) The fractal dimension of surface structures formed by rapid deposition 
kinetics is independent of the chemical nature of the system.  The light gray triangles are 
results for rapid deposition of polymer coated PS particles on polymer coated substrates 
and the dark gray triangles are results for rapid deposition of silica particles on silica 
substrate.  
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 6.5 Conclusion 

In this final research section, we have successfully shown that, detailed 

knowledge of interaction potential between particles (aggregation) or between particle 

and wall (deposition) is enough to predict the advent of diffusion-limited kinetics.  This 

section has also analyzed the effect of substrate chemistry on interactions in polymeric 

systems.  The result of change in substrate chemistry is a shift in the position of hard 

wall repulsion. 
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7. CONCLUSIONS 

7.1 Summary 

In the course of this research work, we have shown that large amounts of 

attraction lead to the formation of disordered states irrespective of the nature of the 

interaction.  We have also demonstrated the importance of repulsive barrier height in the 

assembly of two-dimensional structures with higher amounts of order.  We have 

successfully predicted solvent conditions that result in diffusion limited deposition from 

the fundamental interaction potential for polymeric systems.  TIRM measurements of 

interactions in such polymerically stabilized systems have been conducted and the 

influence of surface chemistry on the interactions has been studied. 

Using various analysis techniques including fractal dimension, bond-orientation 

order, radial distribution function and triangulation, it has been demonstrated that large 

attractive particle-particle and particle-wall interactions yield disordered structures.  This 

was found to be true for any kind of attractive interaction.  The conditions resulting from 

such high amounts of attraction were not at all conducive to building structures with 

long-range order.  Experiments were therefore conducted in the “reaction-limited” 

regime, which requires that a substantial but surmountable repulsive barrier be present to 

allow particles the necessary time to form ordered structures.  The surface diffusion time 

allowed was controlled by modification of the surface charge on the particles.  It was 

found that an increase in the surface charge/repulsive barrier height led to much longer 

surface sampling times which in turn led to the formation of structures with slight 

improvements in order. 

The switch to polymerically stabilized systems was made keeping in mind the 

irreversible nature of the deposition process in charge-stabilized systems.  Past studies 

have demonstrated the reversible nature of aggregation in polymerically stabilized 

systems.6  A brief study on the effect of substrate hydrophobicity on adsorbed polymer 

layer thickness/depth of attractive well was conducted.  It was observed that increasing 

the hydrophobic nature of the substrate made the polymer brush thicker and the well 
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shallower.  The final studies conducted involved the effect of specific ions on the 

interactions in these systems. 

The effect of increasing specific ion concentrations on the two dimensional order 

of colloidal structures was conducted.  The universality that exists in colloidal 

aggregates does exist is deposited structures as well.  The similar structural 

characteristics shown by three chemically different systems, all under diffusion limited 

deposition kinetics, justifies this claim.  
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8. FUTURE RESEARCH 

8.1 Diffusing colloidal probe microscopy (DCPM) 

DCPM is a novel method of imaging surfaces.  Past studies have used scanning 

force microscopy (SFM) with chemical specificity to do chemical imaging of surface 

functional groups.52  These studies involved chemical modification of the SFM probe 

with functional groups that provide a specific interaction with the functional groups of 

interest on the sample surface.  Relationships between friction and adhesion forces were 

used to image up to three different functional groups on the same surface.52  Other 

studies have used atomic force microscopes to measure interactions between a sphere 

glued to its tip and a surface.53  The drawback of all these methods is the sensitivity.  

TIRM is many orders of magnitude more sensitive than the previously used methods.34 

As shown in this research, TIRM can be used to accurately measure the 

interaction between a PS colloid and OTS surface, both with adsorbed layers of polymer 

on their surface.  The research also obtained data for the influence of substrate chemistry 

on adsorbed polymer layers thickness and particle-substrate interactions.  It was found 

that on increasing the hydrophobicity of the substrate, the thickness of the adsorbed 

polymer layer increased and the interaction profile changed.  In this research we only 

looked into homogeneous surfaces.  If experiments were performed on heterogeneous 

surfaces, we would expect to see some particles having different interactions than others 

depending on their surface positions.  The difference in interaction potentials can be 

used to image the surface. 

Some initial experiments have been attempted in this direction.  This 

experimental work is being done in collaboration with Hung Jen Wu.  We tried to see if 

this technique could be applied to the simplest of heterogeneous surfaces.  By 

microcontact printing OTS onto one half of the cover slip we made a surface that was 

heterogeneous but yet simple as shown in Figure 8.1.  The part with the OTS monolayer 

on it was hydrophobic whereas the part with bare silica was hydrophilic.  It is easy to 

imagine that when polymer is adsorbed to this surface, there will be a noticeable 
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difference in the layer architecture depending on where the layers attach.  The polymer 

will lie flat on the silica part but will extend out into the liquid on the OTS region.  Thus, 

depending on their position, particles will experience different interactions with the 

surface.  By knowing the position specific interactions, we can easily obtain a potential 

energy profile of the surface. 

8.2 Specific ion effects on polymer mediated interfacial structures 

In this research a few results for interaction potentials of polymer-coated colloids 

with polymer-coated OTS surfaces have been reported.  Initial studies into the structural 

effects of addition of specific ions have been conducted.  A detailed measurement of the 

interaction potentials at a number of specific ion concentrations needs to be done.  This 

will help to better understand the nature of the structures being formed by deposition. 

The objective here is to identify conditions producing an attractive minimum just 

sufficient to cause phase separation and avoid flocculation.  It is known that flocculation 

occurs when the interparticle potential changes from purely repulsive to strongly 

attractive with a minimum deeper than –5kT to –10kT.  Phase separation on the other 

hand requires a well attraction of –1kT to –5kT.8  The measurements conducted in this 

research show that at 0.5M NaCl, the particle-particle wells are about -0.7kT.  The 

particle-OTS interaction is –0.8kT.  A subtle change in the potential is all that is required 

to induce phase separation.  This will therefore be a very exciting research avenue for 

the future. 

To further motivate this research, initial work has already been done on these 

systems.7  Figure 8.2. is a summary of past work done by Dr.M.A.Bevan.  He has 

rheologically determined the fluid-gel transition for a fixed polymer layer thickness and 

core radius but with varying particle volume fraction.  The solid lines in the figures were 

constructed adhesive sphere potentials.  By TIRM we can directly measure the 

interaction potential.  At 25oC and a fixed volume fraction on the phase diagram, we can 

manipulate the attraction by use of specific ions to obtain phase transition. 
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Figure 8.1.  Diffusing Colloidal Probe Microscopy (DCPM) on a simple heterogeneous 

surface. 
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Figure 8.2.  Previous work on phase transition in polymerically stabilized systems.7 

 

8.3 Manipulation of self-assembly on chemical templates 

In order to control the orientation of adhesive colloidal crystals we plan to tune 

interactions between colloids and chemical templates.  The basic data form 

measurements carried out on homogeneous surfaces will be useful here.  This research 

work has already use microcontact printing for modifying glass surfaces.  The only 

difference will be the switch from the planar stamps used in this research to stamps with 

intricate patterns. 

Combinations of charged and neutral silanes can be used to generate electrostatic 

potential energy templates.26  Adsorbing pluronics on silane patterns of varying degrees 

of hydrophobicity will be used to create laterally varying layers with thick brush and thin 

brush for deposition of polymer coated particles.54  The colloid-template interaction can 

then be tuned sensitively and reversibly by using a combination of temperature and 

specific ion effects.  Problems with visualization of the silanes can be countered by the 
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use of fluorescent dyes.  These can be adsorbed to the silanes before microcontact 

printing is done. 

8.4 Protein interaction measurements 

The Tar Chemoreceptor of the E.Coli is one of the most thoroughly studied 

membrane proteins.  Interaction of ligand bound MBP with Tar enhances 

counterclockwise flagella rotation to favor smooth swimming and migration of cells 

towards higher maltose concentrations.  Because the MBP-Tar interactions is an 

example of a specific biomolecular interaction that cannot be observed or quantified 

with existing technologies, a DCPM method will be ideal for directly probing specific 

biomolecular interactions on the order of kT.  The experiment will be involve covalently 

attaching the MBP molecule to 5-10 nm gold nanoparticle surfaces and watching its 

interactions with a flat supported lipid bilayer.     

8.5 Combinatorial microarray experiments 

Microarray techniques allow simultaneous detection of the presence or absence 

of many combinations of biomolecules in a single experiment.  The current techniques 

for probing “microarrays” require large sample amounts and large feature sizes, which 

waste precious sample.  Ensembles of levitated colloidal probes will dramatically 

improve the sensitivity and rate at which specific biomolecules are detected on high 

information density nanoarrays.  The success of this research depends on the success of 

the DCPM techniques on simple synthetic polymer heterogeneous surfaces mentioned in 

the earlier paragraphs. 
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