
Aharonov-Casher and spin Hall effects in mesoscopic ring structures with strong
spin-orbit interaction

M. F. Borunda,1 Xin Liu,1 Alexey A. Kovalev,1 Xiong-Jun Liu,1 T. Jungwirth,2,3 and Jairo Sinova1,2

1Department of Physics, Texas A&M University, College Station, Texas 77843-4242, USA
2Institute of Physics ASCR, Cukrovarnická 10, 162 53 Praha 6, Czech Republic

3School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
�Received 4 September 2008; published 16 December 2008�

We study the quantum interference effects induced by the Aharonov-Casher phase in asymmetrically con-
fined two-dimensional electron and heavy-hole ring structure systems, taking into account the electrically
tunable spin-orbit �SO� interaction. We have calculated the nonadiabatic transport properties of charges �heavy
holes and electrons� in two-probe thin-ring structures and compare how the form of the SO coupling of the
carriers affects it. We show that both the SO splitting of the bands and the carrier density can be used to
modulate the conductance through the ring. We show that the dependence on carrier density is due to the
backscattering from the leads, which shows pronounce resonances when the Fermi energy is close to the
eigenenergy of the ring. We also calculate the spin Hall conductivity and longitudinal conductivity in four-
probe rings as a function of the carrier density and SO interaction, demonstrating that for heavy-hole carriers
both conductivities are larger than for electrons. Finally, we investigate the transport properties of mesoscopic
rings with spatially inhomogeneous SO coupling. We show that devices with inhomogeneous SO interaction
exhibit an electrically controlled spin-flipping mechanism.
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I. INTRODUCTION

In recent decades, advances in technology have allowed
the fabrication of electronic components of mesoscopic di-
mensions. Given the nanometer spatial confinement of the
charge carriers, some of the important features exhibited are
due entirely to quantum-mechanical effects. Notwithstanding
the future applications that will exploit such effects, several
areas of fundamental physics will benefit from the study of
such devices.1

One such area is the study of geometric phases.2 When a
quantum particle undergoes cyclic evolution motion in the
system’s parameter space, it acquires a geometric phase that
will strongly influence the transport properties of the system.
Pancharatnam,3 when studying polarized light in crystals,
found from interference experiments that the path that the
light travels �or the sequence of measurements performed
during that path� was responsible for an additional phase
component. In the same manner, the path taken by a beam of
electric charges is important when in the presence of electro-
magnetic vector potentials. Even in the case of the potential
not producing a field that results in a force acting on the
particles, the particles may gain a quantum phase that de-
pends on the path traversed. Examples of such phase gains
are the Aharonov-Bohm �AB� effect4 and its relativistic
cousin the Aharonov-Casher �AC� effect.5 In the AB effect
the particle gains a phase as it moves in a path enclosing a
magnetic flux.4 In the AC effect the phase acquired follows
readily from spin-orbit �SO� coupling instead of a magnetic
field.5 The generalized explanation to these phase-dependent
phenomena in adiabatically and nonadiabatically evolving
quantum systems was given by Berry6 and by Aharonov and
Anandan,7 respectively.

These geometric phases can be studied most readily in
mesoscopic ring structures. Studies on mesoscopic rings with

inhomogeneous magnetic fields showed analogies between
geometric phases due to SO interaction and the phases ac-
quired by moving electrons in an effective inhomogeneous
magnetic field with opposite sign for each spin.8 At the same
time, it was found that SO interaction shifts the AB oscilla-
tions and adds destructive interference to the conducting
rings.9

Applications arising from tuning the phase of the carriers
have been widely discussed,10–16 starting with the proposal
by Nitta et al.10 of a spin-interference device to modulate the
current flow. The proposed device consists of a paramagnetic
electrode lead injecting charge into a ring section fitted with
a gate and another lead that would extract the charge carriers.
In narrow-gap semiconductor systems �electron or heavy
hole� the SO coupling strength can be controlled by applying
a gate voltage.17 Thus, the phase difference acquired in each
of the arms of the ring and the ensuing interference effect
can be modified by the gate voltage, which results in periodic
oscillations of the conductance.10

Recent experiments have confirmed that a gate bias modi-
fies the oscillations in the magnetoconductance curves,
which demonstrates gate-controlled changes in the geometric
phase.18–20 The magnetoconductance oscillations as a func-
tion of both magnetic field and gate voltage that controls the
SO interaction strength in HgTe ring structures have been
studied by König et al.19 Their measurements exhibit a non-
monotonic phase change as a function of the gate voltage
and establish the connection between this observation and
the AC effect by finding a quantitative agreement between
their experimental results and Landauer-Büttiker numerical
calculations of a multichannel ring with Rashba SO
interaction.19 Koga et al.18 measured the sheet conductivity
of square loop arrays observing a gate voltage mechanism
influencing the spin interference of electrons. Habib et al.20

also measured resistance oscillations in a two-dimensional
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�2D� hole ring structure. The oscillations depend on a front
gate voltage but are not completely attributed to SO splitting
due to asymmetry in the structure and the low density of the
system.20 Similarly AB oscillations in the magnetoconduc-
tance have been measured in p-type ring structures lacking a
gate to control the SO splitting but in systems with consid-
erable SO splitting ��SO /EF�0.3� where the SO-induced
field is reported to be as strong as Beff=0.25 T.21

In the theoretical front the modulation of the electric cur-
rent driven by quantum interference effects in one-
dimensional �1D� coherent electron systems was calculated
analytically and compared to numerical simulations of a 2D
ring in which only one mode is conducting.11–13 The calcu-
lation by Shen et al.11 shows the study of a ring in textured
electric fields with two leads and shows that the AC phase
can be used to control the polarization of the current and its
orientation. Calculations using the linear Rashba model con-
firmed that the spin-dependent transport results in strong
quasiperiodic modulations to the conductivity.12,13 Molnar et
al.13 calculated the conductance as a function of the Fermi
wave vector of the incident electrons and the SO coupling in
the mesoscopic rings. Souma and Nikolić14 numerically
compared the conductance modulation of the mesoscopic
rings as more channels open for conduction, and they found
that the modulation pattern remains but is affected as more
modes become available. Moreover, they concluded that the
spin interference of the channels is not cumulative, given
that for single-channel devices the conductivity can be null at
certain values of the SO interaction and the same does not
hold in the multichannel devices.14 In addition, Souma and
Nikolić15 calculated the spin Hall conductance of ring struc-
tures and found that the spin Hall conductance is also modu-
lated by the SO interaction. In their proposed four-probe
ring, a pure spin current is induced in the transverse probes
when unpolarized current flows in the longitudinal probes. A
recent calculation also considers the effect of an inhomoge-
neous SO coupling in the two-dimensional electron-gas
�2DEG� ring structures.16 By mapping the SO interaction to a
spin-dependent magnetic field, Tserkovnyak and Brataas16

found that in the weak SO regime quantum interference ef-
fects can be stronger due to the inhomogeneity of the field.

In this paper, we revisit the problem of transport charac-
teristics of ring structures in electron and hole doped sys-
tems. In Sec. II we present Hamiltonians that describe elec-
tron and heavy-hole systems in thin-ring geometries and
outline the two methods used to calculate their transport
properties. In Sec. III we confirm numerically analytical
results22 for a single-channel ring embedded in a narrow
quantum well. Section III A focuses on the consequences for
the conductance of the change in the Hamiltonian from
wave-vector k-linear spin splitting term compared to a
k-cubic term. We also explain the results and the dependence
on the carrier concentration. In Sec. III B we present the
calculation of the spin Hall conductivity in a four-probe ring
geometry for heavy-hole carriers and compare it to the con-
ductivity obtained for electrons. Section IV explores numeri-
cally the effect of inhomogeneous SO in mesoscopic rings.
We study how the AC effect is affected by having a region
with no SO coupling within the ring and show increases in
the strength of the signals obtained from the conductivities.

In this section we also demonstrate that devices with inho-
mogeneous SO interaction exhibit an electrically controlled
spin-flipping mechanism not present in the case of homoge-
neous SO coupling. In Sec. V we summarize the results and
present our conclusions.

II. MODEL HAMILTONIANS AND CALCULATION
METHODS

A. Hamiltonians

In two-dimensional systems the effective-mass Hamil-
tonian in the presence of both SO coupling and a perpendicu-
lar magnetic field, Bz, is

H =
�2

2m
+ Hz + Hconf + HSO, �1�

where �=p+ �e /c�A, Hz= 1
2g�g�zBz, and the electrostatic

confining potential is given by Hconf. The SO terms in the
single-particle Hamiltonian are given by HSO

e =�1��̂
���z /� for electrons and HSO

hh =�3��̂+�−
3 −�−�+

3� /�3 for
heavy holes. We limit our study to Rashba-type SO coupling
in narrow quantum wells, i.e., the structure inversion asym-
metry is responsible for SO. The strength of the spin-orbit
interaction is given by �n. The system is illustrated in Fig. 1.

As outlined in Ref. 23, to obtain the effective one-
dimensional Hamiltonian and due to the subtleties introduced
by the SO interactions, it does not suffice to discard the
derivatives in the radial direction and set r=r0 in the 2D
Hamiltonian. The single-particle 1D Hamiltonian is found by
assuming that the confining potential of the 2D system is
such that the electron wave functions are confined to a 1D
ring,23

FIG. 1. �Color online� Semiconductor quantum well patterned as
a ring of radius r0 in the presence of a magnetic field B0 and of
spin-orbit coupling. An electron �hole� spin traveling around the
ring acquires phase due to the sum of the magnetic fields acting on
it. The effective field, Beff, is given by the yellow �� markings�
arrow, the applied out-of-plane magnetic field, B0, is represented by
the gray �x markings� arrow, and the momentum-dependent in-
plane magnetic field due to spin-orbit interaction, BSO, seen in green
�� markings� arrow. The orientation of the spin-orbit field changes
at different rates depending on the carriers due to the holes �solid
arrow� having a cubic in momentum spin splitting and the electrons
�dashed arrow� having a spin splitting that depends linearly on the
momentum.
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He�	,
� =
���̃	�2

2m�r0
2 + Hz −

�2Qe

2m�r0
2��̂1,r�̃	 −

i

2
�̂1,	� , �2�

where Qe�2m��1r0 /�2 characterized the strength of the
spin-orbit coupling splitting in the thin-ring limit relative to
the angular leading term. The same process was used in find-
ing the effective 1D heavy-hole Hamiltonian,22

Hhh�	,
� =
���̃	�2

2m�r0
2 +

�3

r0
3 �̂3,r���̃	�3 + �̃	�3r0

3

w2 −
7

2
��

+
i�3

2r0
3 �̂3,	�3r0

3

w2 + 1 + 3��̃	�2� + Hz �3�

with r0 being the radius of the ring, w is the half width of the
ring channel, m� is the effective particle mass, 	 is the an-
gular coordinate, �̃	= i �

�	 +
, and the Pauli-spin operators
��̂x and �̂y� assume their usual values. To allow a cleaner
notation, we use the following generalization of the Pauli-
spin operators in cylindrical coordinates: �̂n,r=cos�n	��̂x
+sin�n	��̂y and �̂n,	=cos�n	��̂y −sin�n	��̂x. The magnetic
field is included by its corresponding magnetic flux, 

=�r0

2B /
0, where 
0=hc /e is the magnetic-flux quantum.
We model the heavy-hole character of the band in that the
SO interaction is cubic in momentum and the 2D Hamil-
tonian contains terms with rn and nth derivatives with respect
to r, n=1,2 ,3.

The projection of the lowest radial solution of the 2D
Hamiltonian into a 1D Hamiltonian has as a consequence
that in the heavy-hole calculation, there are terms that de-
pend on the width of the channel. As a contrast, in the elec-
tron system there are only terms dependent on the first power
of r and the first derivatives with respect to r; thus, the de-
sired 1D Hamiltonian does not have the dependence on the
width. In order to have a fully 1D system the radius of the
ring has to be larger than the width of the arms. In the elec-
tron systems the limit w=0 can be taken; this is not possible
in the heavy-hole systems. Nevertheless, we can obtain a
simpler Hamiltonian than the one in Eq. �3� by assuming that
the width of the channel is of the order of the Fermi wave-
length �kFw�1�,22

Hhh�	,
� =
���̃	�2

2m�r0
2 + Hz +

�2Qhh

2m�r0
2��̂3,r�̃	 +

3i

2
�̂3,	� , �4�

where Qhh�6�3m�r0 / ��2w2� characterized the strength of
the spin-orbit coupling splitting in the thin-ring limit relative
to the angular leading term and controlled the precession
angle over the circumference of the ring. If the lateral con-
finement is not very strong leading to thick rings �the width
of the channel is comparable to the Fermi wavelength�, then
we are not truly in the lowest radial mode. Although from
Eq. �3� it is possible to write a Hamiltonian where the terms
w−2 are not dominant, this will not be realistic unless those
higher radial modes are taken into account. Unfortunately,
current experiments have not reached the limit of single-
channel rings. We also consider structures where the SO in-
teraction varies along the azimuthal direction. Then an addi-
tional term appears in the Hamiltonian,

He�	,
� = −
�

2m�r0
2 �̃	

2 −
i

r0
�1�	���̂1,r�̃	 +

1

2
�̂1,	�

−
i�̂1,r

2r0

��1�	�
�	

. �5�

Our calculations do not consider the mixing of heavy-hole
and light-hole states that is induced by the confinement. This
neglected coupling has been shown to be responsible for an
additional energy-dependent nonadiabatic phase.24

B. Landauer-Büttiker formalism

Numerical modeling of the rings is performed using the
Landauer-Büttiker formalism.14,25,26 We assume that the ring
is attached to semi-infinite paramagnetic leads that act as
reservoirs for the quasiparticles. The procedure is as follows.
First, the one-dimensional Hamiltonians of the ring structure
	Eqs. �2�, �4�, and �5�
 are discretized in a tight-binding
model27 and used to find the retarded or advanced Green’s
function,

GR/A�E� = �E − H − 
R/A�−1. �6�

The last term is the self-energy �
R/A�. It holds the connec-
tion between the structure and the semi-infinite leads. 
R

=�p
p
R involves a sum over all leads because we are assum-

ing that all the leads are independent and, thus, their effects
are additive. The description of the probes �ideal leads with
no spin-orbit interaction� attached to our sample is made by
solving Green’s function of a semi-infinite strip analytically.
To do so, we need to calculate the self-energy terms, which
involves solving for the wave functions of the quasiparticles
flowing from each lead into and out of the sample. With both
Green’s functions and self-energies at hand, we can write the
transmission function,

Tpq = Tr	�pGR�qGA
 , �7�

where

�p = i	
p
R − 
p

A
 . �8�

Green’s function describes the dynamics of the charge carrier
in the conductor, taking the leads into account where �p rep-
resents the strength of the coupling of the leads to the
sample. The total current flowing in each lead is obtained
from the Landauer-Büttiker formula,25,26

Ip =
e2

h
�
q�p

Tpq�Vp − Vq� = Ip
↑ + Ip

↓ . �9�

The spin current can be defined as28,29

Ip,�
spin =

�

2e
�Ip

↑ − Ip
↓� =

e

4�
�

q�p,��

Tpq
����Vp − Vq� , �10�

where � ,�� are the spin indices and the transmission func-

tion Tpq
��� gives us the probability of a particle where spin ��

injected in lead q is extracted from lead p with spin �. In the
four-probe structure current is injected in the right lead and
extracted in the left lead. The transverse leads �top and bot-
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tom� act as voltage probes. Thus, the longitudinal and spin
Hall conductances are

GL =
IR

VL − VR
, �11�

GsH =
IT,↑

spin − IT,↓
spin

VL − VR
. �12�

C. Boundary condition tight-binding model

In a ring system, the point where a lead and a ring sub-
section join can be considered as a three-way junction, as
illustrated in Fig. 2. In this section we show how this method
works in one-dimensional structures but it can be easily ex-
tended to more dimensions. We first find the boundary con-
dition for a three-way junction by assuming that the wave
function used in the scattering S matrix is also the eigenfunc-
tion of the system. Generally, the lattice distances in the three
leads are a1, a2, and a3, with tn=�2 /2mnan and n=1,2 ,3.
The potential at the joint point, where the three leads come
together, is t0. Under this assumption, the eigenfunction and
eigenenergy of the electron in each lead can be obtained
except at the joint point. Our aim is to find the boundary
condition that will combine the three eigenfunctions in the
leads and at the joint point to obtain the wave function for
the whole system. Let us assume that the three eigenfunc-
tions corresponding to the three leads are �1, �2, and �3
and the function at the joint point is ��0�. Thus, we have
four equations,

�E − 2tn��n�an� + tn�n�2an� + tn��0� = 0, �13�

�E − 2t0���0� + �
i=1,2,3

ti�i�ai� = 0, �14�

where n=1,2 ,3 represents each of the leads. Since �n sat-
isfies �E−2tn��n�an�− tn�n�2an�− tn�n�0�=0 and comparing
this with Eq. �13�, we obtain the first boundary condition,

�1�0� = �2�0� = �3�0� , �15�

which is equivalent to the condition that the wave function is
continuous at the boundary. As a result, Eq. �14� can be
rewritten as

	E − �2t0 − t1 − t2 − t3�
��0� + t1	�1�a1� − �1�0�


+ t2	�2�a2� − �2�0�
 + t3	�3�a3� − �3�0�
 = 0,

�16�

and we see that Eq. �16� is equivalent with saying that the
first derivative is continuous except for a � function at the
junction point.30

Using these boundary conditions in the tight-binding
model, the S matrix of a three-way or multiway junction can
be calculated. It should be noted that the matrix we directly
calculate is the so-called S� matrix which is not unitary.25

The relation between the S matrix and the S� matrix can be
given as

Smn = Smn� �vm

vn
, �17�

where vm,n is the velocity of the particle in the m�n�th lead.
The ring system attached to two leads can be considered as
two three-way junctions, each of which connects to one lead.
These two junction S matrices can be combined using the
boundary conditions 	Eqs. �13� and �14�
. With both S ma-
trices, the transmission function can be calculated by com-
bining S matrices with the advantage that we are able to see
the contribution of each Feynman paths, as outlined in Ref.
25. Having computed this S matrix under proper boundary
conditions, we can use it recursively to compute the trans-
mission probabilities in order to study the effects of the
transparent lead approximation done in prior analytical
works.

III. EFFECTS DUE TO THE HEAVY-HOLE NATURE OF
THE CARRIERS

A. Aharonov-Casher effect

Approximate analytical forms for the conductance in ring
structures have been found for electrons10,12,13 and heavy-
hole systems,22

G =
e2

h
	1 − cos���1 + Qe

2�
 , �18�

G =
e2

h
�1 − cos�3��1 +

Qhh
2

9
�� . �19�

The key approximation of the formulas above is that the
coupling between the lead and the ring is perfectly transpar-
ent, neglecting direct backscattering effects that may lead to
resonances and other self-interference effects. Self-
interference effects whether due to particle scattering at the
lead-ring interphase or to the backscattering due to AC phase
acquired are interesting and can lead to useful effects. For
instance, the current in a ring31 or ring arrays32 can be ma-
nipulated into spin-polarized currents and it is even possible
to change the spin direction of the electrons as they exit the
device. We would like to remark that analytical studies of the
conductance in a multiprobe ring and generalized to ring
array have been conducted with the transparent lead approxi-
mation and with random scatterers at the junction between

FIG. 2. �Color online� The ring attached to two leads can be
modeled as two three-way junctions. Each of these three-way junc-
tions connects to one lead and the subsections corresponding to
each of the arm in the ring.
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rings in the array.33 Another assumption is that the transport
of the quasiparticles is just from one lead to the other, trav-
eling in one of the two arms only once, i.e., it does not take
into account that the quasiparticles could wind around the
ring structure more than half the ring’s circumference. Equa-
tion �19� is derived under the assumption of a thin channel
ring �kFw�1�.22

In Fig. 3 we show the contour plot of the zero-
temperature conductance in single-mode rings as a function
of both the electron density and the dimensionless SO inter-
action strength using the full Landauer-Büttiker formalism.
The left plot corresponds to electrons traveling in the ring
	uses the Hamiltonian in Eq. �2�
, and the right plot corre-
sponds to the heavy-hole system 	uses the Hamiltonian in
Eq. �4�
. In this and all subsequent calculations we consid-
ered a ring of radius r0=1 �m, an effective mass m�

=0.031m0, and starting from zero, we ramp up the dimen-
sionless parameter controlling the strength of the SO split-
ting energy to 8. In the plots presented in Fig. 3, we vary the
carrier concentration from n2D=1.873�1012 cm−2 to n2D
=1.912�1012 cm−2. These parameters correspond to the
system measured in Ref. 19. Further, we have chosen the
carrier concentration assuming an infinite 2D gas, the situa-
tion in the semi-infinite leads which are the particle reser-
voirs. As is evident in Fig. 3, the character of the SO cou-
pling of the particles traversing the ring is of importance. As
a function of the dimensionless parameter Qe /Qhh the heavy
holes start at a slower rate, reaching the same rate at higher
values as the electron system. However, in experiments,
where these parameters are a function of the gate voltage, we
speculate that the oscillations as a function of gate voltage
will likely be higher in the thin-ring heavy-hole system since
the effective spin-orbit coupling is enhance with respect to
the bulk value due to the confinement.

A comparison of the relative oscillation frequency in ex-
periments, assuming a splitting proportional to the top gate
voltage in most setups where spin-orbit coupling can be

tuned, would require a translation of the above figures to
those parameters together with an accounting of the rate of
change in the carrier density with gate voltage. For typical
parameters, ignoring the carrier dependence on the oscilla-
tions, same parameters for electrons give a slower frequency
of oscillation in the conductance as compared to the heavy-
hole system when �kF�1�.22

Our calculation is in partial agreement with the analytical
formulas in that the conductance is modulated by the
strength of the SO parameter and also exhibits, at certain
values of Q �but independent of the particle density, i.e.,
Fermi energy�, a zero conductance. As Souma and Nikolić14

pointed out, these null values correspond to the zeroes of Eq.
�18� and in the heavy-hole case to zeroes of Eq. �19�. Simi-
larly, in the numerical results of Molnar et al.13 found for a
single ring and for a chain of rings,34 there is a periodic
dependence of the conductance in the Fermi wave vector.
These conductance oscillations as a function of the particle
concentration not captured by the analytical treatment are
due to the neglect of direct backscattering from the leads and
related to resonance energies of the rings as we will show
below.

Using a recursive S matrix method we have performed
calculations assuming the boundary-condition tight-binding
model to study the effects of backscattering at the leads and
the validity of the transparent lead approximation. Here we
assume Ohmic contacts �i.e., t0 is unchanged and no addi-
tional barrier is assumed in the contact point� in order to
investigate the numerical solution which contains the same
assumption. With this method we are able to obtain the con-
ductance for different paths taken by the particles. In Fig. 4
we present contour plots of the conductance as a function of
both the electron density and the dimensionless SO interac-
tion strength for the same electron system as in Fig. 3 while
increasing the number of allowed backscattering events. In
these calculations, one lead is used for injecting electrons
and the other will allow the electrons to exit the ring once
they completed at most N scattering events from that same
lead. The transparent lead case corresponds to Fig. 4�a�,
where no backscattering is allowed, in exact agreement with
Eq. �18�. If we allow for at most a single scattering event at
the right lead before exiting the structure while accounting
for all such possible paths, we obtain the contour plot in Fig.
4�b�. The continuous structure now gives way to a conduc-
tance that depends on the carrier density and it is further
divided into periodic substructures. Each of these substruc-
tures shows that as a function of the SO coupling, the con-
ductance has either one or two peaks, depending on the car-
rier density. If the carrier concentration is chosen so that the
Fermi energy is in resonance with an eigenenergy of the
discretized ring, then there is only one peak in the substruc-
ture and it happens at the same maximum value as when the
lead was transparent. When the carrier density is chosen so
that the Fermi energy is not very close to a value of the
eigenvalues of the ring, then the electron gets backscattered
once and as it travels around the ring the path taken and the
same path but time reversed are interfering with each other,
similar to weak localization corrections to the conductance.35

The Qe=0 result is also in agreement with the results ob-
tained by Lucignano et al.36 for AB rings where once they

FIG. 3. �Color online� Calculation of the zero-temperature con-
ductance in a single-mode ring connected to two leads based on the
Landauer-Büttiker formula. The conductance in both electron and
heavy-hole systems is modulated as a function of the spin-orbit
coupling and the carrier concentration. In the left panel we present
the result for an electron system and in the right panel for a heavy-
hole system; both systems have an effective mass of m�=0.031m0.
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allowed scattering at the leads, the Fourier spectrum of the
magnetoconductance displays an additional peak at double
the fundamental frequency �2 /
0�.

The rest of the panels show the result of more backscatter-
ing events being allowed. Finally, the periodic structures
seen with these “path” calculations get closer to the struc-
tures found using the full Landauer-Büttiker calculation, and
these two methods are the same in the limit where the num-
ber of allowed backscattering events is taken to infinity. One
thing we need to note is that in the calculations, as Qe/hh is
increased there is a small curvature followed by the substruc-
tures in the SO coupling axis. The reason for that deviation is
a numerical artifact. We have repeated the calculation vary-
ing the number of lattice points used to represent the dis-
cretized ring and as more points are used the substructure
shift is reduced. This curvature is apparent in previous nu-
merical calculations14 but not recognized as numerical arti-
fact. In our calculations we have chosen the carrier concen-
tration such that the Fermi energy of the system is close to
the bottom of the band and, hence, model in this way the
continuous effective-mass model appropriate for these semi-
conductor systems.

B. Spin Hall effect

The proposal of intrinsic spin Hall effect37 and the experi-
mental observation of the effect �both extrinsic and

intrinsic�38 has generated a lot of interest in the semiconduc-
tor spintronics community. Numerical calculations based on
the Landauer-Büttiker formalism on quantum coherent bal-
listic rings have shown that the spin Hall conductance exhib-
its quasiperiodic oscillations as a function of the Rashba SO
coupling.15 The calculation found several interesting predic-
tions including the possibility of generating a spin Hall cur-
rent in a ring with two longitudinal probes that inject or
extract current and two transverse probes that would measure
the voltage. Although experimental realization of such four-
probe rings could prove difficult, we are interested in how
the cubic SO term would affect the spin Hall effect.

As we show in Fig. 5, there are oscillations in the spin
Hall conductance as the carrier density is increased. These
oscillations have similar nature as those found in the conduc-
tance of the two-probe rings. The pattern seen by Souma and
Nikolić15 is recognized from the figure, as we also observe
that the spin Hall conductance oscillates in sign and that as
the SO interaction increases the oscillations in the spin Hall
conductance dampen. The longitudinal conductance of the
four-probe ring shows common features with the conduc-

FIG. 4. �Color online� Calculation based on the tight-binding
model of the zero-temperature conductance in a single-mode ring
connected to two leads using a recursive S matrix method. Each
panel shows the conductance modulation as a function of both the
spin-orbit interaction and the carrier density of the electrons when
backscattering from the exit lead N times. N→� corresponds to the
full calculation shown in Fig. 3.

FIG. 5. �Color online� Calculation of the zero-temperature spin
Hall and longitudinal conductances in four terminal ring structure
based on the Landauer-Büttiker formula. The spin Hall conductance
�top panels� and longitudinal conductance �bottom panels� in elec-
tron and heavy-hole systems are modulated as a function of the
spin-orbit coupling and carrier concentration. We present on the left
the electron system where the spin Hall conductivity has a maxi-
mum value of A=0.72e / �8�� and the longitudinal conductance has
a maximum value of B=1.2e2 /h. In the heavy-hole system, shown
on the right, the maximum value of the spin Hall conductivity is
A=1.0e / �8�� and the longitudinal conductance reaches a maximum
value of B=1.7e2 /h.
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tance of the two-probe ring with two distinct features: �1� it
does not vanish at specific values of the SO interaction and
�2� the maximum value of the conductance is now lower than
2e2 /h due to the dephasing effects of the additional voltage
probes. The addition of the transverse leads has shifted the
structures to the left and now the structures we see are over-
lapping. It is at this overlap that the spin Hall conductance
shows the x-like structures. The parameters used in these
plots are similar to those used in the two-probe rings: the
effective mass m�=0.031m0 is the same in both systems, we
vary the carrier concentration from n2D=1.873�1012 cm−2

to n2D=1.912�1012 cm−2, and starting from zero, we ramp
up the dimensionless parameter controlling the strength of
the SO splitting energy to 8. We note that the strength of the
signal is larger for the heavy-hole system: maximum spin
Hall conductances are Ge

sH=0.72e / �8�� for electrons and
Ghh

sH=e / �8�� for heavy-hole system and the longitudinal con-
ductances have maximum values of Ge

L=1.2e2 /h and Ghh
L

=1.7e2 /h. As explained in Sec. III A, the curvature followed
by the substructures as SO increases in the heavy-hole plots
is a numerical artifact.

IV. INHOMOGENEOUS SPIN-ORBIT COUPLING

Experimental efforts in mesoscopic rings have manipu-
lated the SO splitting �in both the ring structure and the
leads� via a gate voltage. Since the SO interaction depends
on the surface electric field, there is a natural interest in
studying the effects of a gate that covers only part of the
system.39,40 Tserkovnyak and Brataas16 predicted the en-
hancement of the interference effects in mesoscopic rings
with inhomogeneous SO splitting for weak SO coupling sys-
tems. We study those effects with our numerical techniques
in spatially varying SO coupling systems. We observe an
enhancement in the spin Hall conductivity in the four-probe
rings and an unexpected modulation of the conductivity in
the two-probe rings.

In Figs. 6 and 7, we present the conductivities for a ring
with a constant SO coupling ��0� and compare it to the con-
ductivities obtained in a ring where the electrostatic gate
covers half of the ring. The SO coupling depends on the
position as

��x� =
�0

2
�1 + tanh

x − x0

�
� . �20�

Although not shown in the sketches in Figs. 6 and 7, the
value of � in the calculation allows for a transition region in
the range of one tenth of the radius of the ring. Also, we
assume that in the leads the spin-orbit interaction is not
present. This transition region would account for the electric
field from the gate affecting parts of the ring not covered by
the gate. Previous studies have shown that if the SO interac-
tion is turned on abruptly there are strong scattering effects
in the two regions.29,41 We have found that the sharpness of
the transition region does not significantly change the con-
ductivity patterns apart from the noticeable effect of a higher
“effective” SO coupling along the ring.

Figure 6 shows the spin Hall conductivity as a function of
Qe and carrier density for a fully covered and a partially

covered configuration. The oscillations are slower in the par-
tially covered one due to the fact that the configuration of the
right ring has a lower effective SO coupling. Yet, the pattern
is significantly stronger ��35%�. Also important is that the
spin Hall conductivity does not dampen as the SO interaction
is raised.

Next we study the spin-dependent conductivity for inho-
mogeneous SO interaction. The configuration we consider
for the measurement would require the injection of spin-
polarized electrons into the ring structure and a means to
detect their polarization as they exit the ring. Both the spin
injection and the detection of the spin direction could be
probed by electrical42 or optical43 means with current experi-
mental techniques.

In Fig. 7, we show the contour plot of zero-temperature
conductances �total and spin resolved� in single-mode rings
as a function of both the electron density and the dimension-
less SO interaction strength for three different spatial con-
figurations of the SO interaction. In the top panel we show
the homogeneous case, which has been previously
analyzed.14 As the SO increases from zero, the injected elec-
trons flip their spin direction. While the total conductance
has the familiar periodic structure, these oscillations are only
present in the spin-flipped �spin-up injected on left lead and
spin-down detected on the right lead� conductivity. The spin
conductivity for spin-conserved components �spin-up in-
jected and spin-up detected� decays rapidly. The next two
panels present the same calculation when only half of the

FIG. 6. �Color online� Calculation of the zero-temperature spin
Hall conductance �four terminal device� based on the Landauer-
Büttiker formula. The spin Hall conductance in electron systems is
modulated as a function of the spin-orbit coupling and electron
density. When the spin-orbit coupling is homogeneous �left picture�,
the spin Hall conductivity has a maximum value of A
=0.72e / �8��. When the spin-orbit coupling is present in only one
half of the ring structure �right picture�, the maximum value of the
spin Hall conductivity is A=1.07e / �8��.
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ring is covered by the gate. As we see, the total conductivity
is devoid of null values and is identical for the two configu-
rations. In contrast, the spin-flipped and the same-spin con-
ductivities show a marked difference from the homogeneous
SO case. The spin-conserved conductivity does not decay as
the SO increases but rather oscillates. Meanwhile, the spin-
flipped conductivity is also oscillating and both conductivi-
ties contribute to the total value equally. This behavior illus-

trates that the reversal of the spin polarization could be
controlled in ring structures by changing the voltage in a top
gate.

V. SUMMARY

We have studied the quantum interference effects induced
by the Aharonov-Casher phase5 in asymmetrically confined
two-dimensional electron and heavy-hole ring structure sys-
tems, taking into account the electrically tunable SO interac-
tion. We calculated the nonadiabatic transport properties of
charges in ring structures and confirm the analytic result.22

We have found that the interference effects depend both on
the SO splitting of the bands and the carrier density. Further,
we are able to show that the contribution to the conductivity
of nontransparent leads affects the conductivity and fully ex-
plains the Landauer-Büttiker result dependence on carrier
density. We have calculated the spin Hall conductivity and
longitudinal conductivity in four-probe rings. Our analysis
suggests that for hole-doped systems both conductivities are
stronger than the conductivities found in electron-doped sys-
tem. Finally, we have investigated the conductance of meso-
scopic rings with spatially inhomogeneous SO coupling. In
this case the spin Hall conductivity oscillates in a similar
fashion as in the homogeneous SO case, but as the gate volt-
age is increased, the signal strength does not weaken, in con-
trast to the homogeneous case. We have also found that de-
vices with inhomogeneous SO interaction exhibit intriguing
spin-resolved conductivities, which could lead to the modu-
lation of the spin direction of polarized carriers.
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