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We have measured the spin-transfer parameters E~I., E~l. , Al. p, and Egg at 635 MeV from 50'
to 178' c.m. and at 485 MeV from 74' to 176' c.m. These new data have a significant impact on the
phase-shift analyses. There are now sufticient data near these energies to overdetermine the elastic
nucleon-nucleon amplitudes.

PACS number(s): 21.30.+y, 13.75.Cs, 24.70.+s

I. INTRODUCTION

The 1991 status of the np elastic phase-shift analy-
sis near 650 MeV was summarized by Bugg and Bryan
[1] as follows. "There are not enough accurate spin-
dependent data to give a secure solution and most of
the phase shifts are strongly correlated, with correlation
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coefficients as high as 76%." "To stabilize the solution,
Wolfenstein (spin-transfer) parameter data are required
of similar quality to those at 800 MeV. " We present these
new data here. With the inclusion of these data, Bugg
reports stable solutions with small correlations at 650
MeV.

Previous spin-dependent data near 650 MeV include
the analyzing power [2], the four spin-correlation parame-
ters [3—6], and the four spin-transfer parameters reported
here. These data are sufhcient to over determine the elas-
tic nucleon-nucleon amplitudes [7].

Previous measurements of the spin-transfer param-
eters are discussed in Sec. IV. The normalization of
both present and previous LAMPF data is discussed in
Sec. III.
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II. EXPERIMENTAL METHOD

The experimental method used for this measurement
is identical to that used for our recent measurement at
788 MeV and is described in detail in our previous paper
[8]. Briefly, polarized protons from the LAMPF acceler-
ator are used to produce a polarized neutron beam via
the ~H(p, n) reaction from liquid deuterium. The polar-
ized neutrons are precessed to L or S spin (parallel or
perpendicular to the momentum vector in the horizontal
scattering plane) by a dipole magnet and collimated onto
a liquid-hydrogen target. Elastically scattered neutrons
and protons are detected by a neutron detector [9] and
by the Scylla magnetic spectrometer. The 30' vertical
bend in Scylla precessed the L-spin component through
approximately 90' while leaving the S-spin component
unchanged, thus allowing us to measure both the L and
S components (Pl, and Ps) with the Janus carbon po-
larimeter [10—12]. If BI, is the L-spin component of the
neutron beam then the spin transfer parameter KLs is
defined by

I&I,s = Ps/Bl,

and similarly for KLL& E~sL and Kss
The sign conventions are confusing, so Table I from

our previous paper is included here to define these pa-
rameters in terms of Amdt's widely used sAID scatter-
ing analysis and phase-shift program [13] and in terms
of the comprehensive review paper by Bystricky, Lehar,
and Winternitz [14].

A. Spin direction

(ILLS + ICSL)/(I'LL —I&ss) = tan Ol b

TABLE I. Sign convention and notation.

This paper
Ags
~LL
~ss
~SL

Amdt
AT

APT
RT

RPT

Bystricky
—&o xo

+~oa~o
+~oaso
—~o~.o

The spin direction of the 788-MeV polarized neutron
beam at LAMPF as measured in our earlier experiment
[8] disagreed by 1.5 standard deviations from previous
measurements [15] and this disagreement was discussed
in detail in Sec. II H of Ref. [8]. Following the procedures
of Spinka [15] we determine a neutron-spin precession in
the line-B bending magnets LBBM6 and 7 (see Fig. 1) of
0.0307p/P deg, where p is the beam proton momentum in

MeV/c and P = v/c is the neutron velocity. The preces-
sion in the newly installed permanent magnet BRBMO
was measured and found to be 12.3/P deg.

The neutron-spin direction was determined with the
neutron polarimeter (QPAN) and the data at 485, 635,
and 788 MeV were consistent with these equations within
the uncertainty of +0.5'. Also, as in the 788-MeV paper
[8], we used the relation

C.Dz
Target. BRBMO

Veut, ron beam

FIG. 1. Layout of BR neutron-production beam line at
LAMPF. The primary proton beam is swept aside by LBBM6
and 7. The neutron beam is precessed by the fringes of
LBBM6 and 7 and by BRBMO.

to calculate a correction to the spin direction that would
minimize yz. This agreed both with QPAN and with
the above equations within the statistical uncertainty of
+1.2'.

In summary the present spin-precession data are con-
sistent with our earlier paper [8] but differ by 1.5 stan-
dard deviations from the older data [15]. We have as-
signed the same 0.7' uncertainty to the spin direction as
for the 788-MeV data.

B. Background

As in our previous measurement [8] good np elastic
events were selected by cuts on proton momentum and
both incident neutron and scattered proton time of flight.
The final data were obtained without requiring the neu-
tron detector in coincidence, but the neutron detector
was used as a check on the background.

The background measured by extrapolating under the
peak of good events was less than 2%. We measured
the spin transfer for the background in the tails of the
momentum spectra to be 0.6 6 0.1 times that for the
elastic events so this implies background corrections of
I'% or less.

Data acquired with a neutron in coincidence had less
background (see Fig. 2 of our previous paper [8])but had
larger statistical uncertainties. The average ratio of the
spin-transfer parameters measured with and without the
neutron detector in coincidence was 1,04+0.02, compared
with a ratio of 1.00 + 0.01 at 788 MeV.

The main sources of background are the plastic win-

dows of the liquid-hydrogen target. There are three win-

dows that are visible to the detectors with a total thick-
ness of 0.16 g/cm2 of plastic compared with 2.5 g/cm
of liquid hydrogen. Since plastic is approximately half
neutrons and half protons, and since half of the protons
are shadowed within the nucleus, the background from
bound protons is 0.04/2. 5 = 1.6%. The spin transfer for
quasifree scattering from bound protons is expected to
be similar to free scattering. So we estimate that back-
ground corrections are less than 1%. No background cor-
rections have been made to the data, but an uncertainty
of 1% has been added quadratically to the overall nor-
malization uncertainty (Sec. III) to account for the back-
ground.
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TABLE II. Spin-transfer parameters from np elastic scattering at 635 MeV. The overall nor-
malization uncertainty is 2%%uo.

(deg)

178.03
176.46
174.82
170.31
168.63
166.71
159.58
157.59
155.43
148.23
146.15
143.75
137.53
134.70
131.65
126.67
123.49
120.10
115.89
112.85
109.38
105.27
102.01
98.61
94.71
91.56
88.20
84.83
81.71
78.34
74.55
71.34
68.11
65.18
62.19
59.15
55.94
53,04
50.13

(«s)
0.85
1.53
2.24
4.19
4.92
5.75
8.85
9.72
10.66
13.82
14.74
15.80
18.57
19.83
21.21
23.47
24.92
26.48
28.43
29.85
31.48
33.43
34.99
36.63
38.52
40.07
41.73
43.41
44.99
46.70
48.64
50.29
51.98
53.51
55.10
56.71
58.44
60.00
61.58

Kl.s

-0.012+0.040
0.038+0.056
0.009+0.046
0.049+0.057
0.117+0.057
0.055+0.057
-0.034+0.052
0.003+0.047
0.004+0.047
-0.098+0.054
-0.091+0.048
-0.119+0.044
-0,262+0.033
-0.239+0.031
-0.208+0.031
-0.302+0.038
-0.321+0.036
-0.217+0.034
-0.281+0.036
-0.278+0.036
-0.268+0.029
-0.282+0.042
-0.315+0.040
-0.324+0.038
-0.339+0.039
-0.231+0.040
-0.242+0.035
-0.236+0.037
-0.217+0.033
-0.182+0.031
-0.210+0.039
-0.134+0.041
-0.187+0.051
-0.037+0.032
-0.068+0.041
-0.008+0.047
0.021+0.060
0.091+0.068
0.086+0.093

KLL

-0.555+0.031
-0.494+0.038
-0.506+0.031
-0.385+0.057
-0.295+0.057
-0.338+0.057
-0.325+0.052
-0.300+0.047
-0.482+0.047
-0.562+0.055
-0.545+0.050
-0.625+0.046
-0.650+0.036
-0.642+0.033
-0.688+0.033
-0.789+0.039
-0.704+0.038
-0.687+0.036
-0.643+0.039
-0.631+0.039
-0.612+0.032
-0.570+0.046
-0.559+0.042
-0.505+0.040
-0.511+0.042
-0.392+0.040
-0.395+0.037
-0.265+0.040
-0.240+0.035
-0.272+0.032
-0.186+0.042
-0.134+0.043
-0.092+0.054
-0.075+0.036
-0.143+0.045
-0.064+0.052
-0.028+0.068
0.047+0.075
-0.072+0.099

Kss

-0.042+0.061
-0.073+0.077
-0.169+0.072
-0.519+0.053
-0.612+0.054
-0.732+0.054
-0.586+0.057
-0.465+0.052
-0.508+0.049
-0.190+0.056
-0.146+0.052
-0.033+0.046
0.035+0.037
0.113+0.035
0.096+0.035
0.109+0.035
0.107+0.035
0.143+0.033
0.044+0.038
0.059+0.038
0.006+0.031
-0.065+0.039
-0.009+0.036
-0.064+0.034
-0.037+0.042
-0.082+0.039
-0.121+0.035
-0.090+0.038
-0.109+0.036
-0.160+0.031
-0.042+0.039
-0,196+0.041
-0.166+0.052
-0.136+0.033
-0.197+0.066
-0.099+0.046
-0.134+0.062
0.029+0,057
0.024+0.075

Ksg

-0.005+0.047
-0.048+0.059
-0.085+0.059
0.119+0.055
0.053+0.053
0.075+0.053
0.118+0.056
0.026+0.052
0.057+0.049
0.021+0.056
0.047+0.052
0.092+0.047
0.034+0.039
-0.008+0.036
-0.016+0.036
-0.045+0.037
-0.096+0.037
-0.053+0.034
-0.143+0.040
-0.041+0.039
-0.104+0.032
-0.094+0.041
-0.027+0.037
-0.055+0.040
0.096+0.045
0.053+0.041
0.096+0.036
0.100+0.040
0.070+0.035
0.083+0.033
0.043+0.028
0.099+0.044
0.078+0.054
0.156+0.036
0.089+0.043
0.113+0.049
-0.012+0.057
0.013+0.061
-0.047+0,080

TABLE III. Spin-transfer parameters from np elastic scattering at 485 MeV. The overall nor-
malization uncertainty is 270.

(«g)
176.1
157.0
146.5
135.4
114.2
93.1
74.2

~lab

(«g)
1.7
10.3
15.0
20.1
30.0
40.2
49.7

Kgs

0.034+0.046
0.094+0.030
-0.006+0.028
-0.184+0.030
-0.347+0.039
-0.133+0.043
-0.038+0.084

-0.450+0.029
-0.309+0.031
-0.449+0.031
-0.590+0.032
-0.524+0.041
-0.345+0.046
-0.016+0.091

Kss

-0.220+0.062
-0.659+0.036
-0.469+0.040
-0.134+0.032
0.190+0.040

Ksg

0.000+0.050
-0.014+0.034
0.044+0.039
0.069+0.033
-0.092+0.041
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FIG. 2. Spin-transfer observables KLS at 635 MeV com-
pared with recent phase-shift fits by Amdt and Bugg.

FIG. 5. Spin-transfer observables KSL at 635 MeV com-
pared with recent phase-shift fits by Amdt and Bugg.
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FIG. 3. Spin-transfer observables KLL at 635 MeV com-

pared with recent phase-shift fits by Amdt and Bugg.

FIG. 6. Spin-transfer observables KLS at 485 MeV with
Axen's data, compared with recent phase-shift fits by Amdt
and Bugg.
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FIG. 4. Spin-transfer observables KSS at 635 MeV com-
pared with recent phase-shift fits by Amdt and Bugg.

FIG. 7. Spin-transfer observables KLL at 485 MeV corn-

pared with recent phase-shift fits by Amdt and Bugg.
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FIG. 8. Spin-transfer observables KSS at 485 MeV with
Axen's data, compared with recent phase-shift fits by Amdt
and Bugg.

FIG. 9. Spin-transfer observables KSL at 485 MeV com-
pared with recent phase-shift fits by Amdt and Bugg.

III. NORMALIZATION

As discussed in detail in Ref. [8] the overall normal-
ization is tied to the measurement [16] of KL,L, for the
zH(p, n) reaction, which has a 1.8% uncertainty. When
we add quadratically the 1% uncertainty in background
subtraction as discusssed in Sec. IIB, the total normal-
ization uncertainty is 2%.

The remeasurement of the LAMPF neutron-beam po-
larization [16] also affects the normalization of much of
the previous LAMPF spin-dependent data, as discussed
in Ref. [16].

IV. RESULTS AND PREVIOUS DATA

The measured observables are de6ned in Table I, listed
in Tables II and III, and are illustrated in Figs. 2—9 in
comparison with recent phase-shift analyses before [13]
and after [1] including these data.

There are two previous measurements of spin-transfer

parameters near these energies. Leung [17] measured
Epg and KpL, at 520 and 600 MeV at Berkeley in 1970.
The 635-MeV data reported in this paper have ten times
the number of points and one quarter the uncertainty for
each point, i.e. , more than one hundred times the statis-
tical weight as Leung's data. Axen [18] measured Kss
and Er,s at 495 MeV at TRIUMF in 1980. Axen's data
are generally in agreement with our 485-MeV data.
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