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Controllable optical switch using a Bose-Einstein condensate in an optical cavity
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The optical bistability of an ultracold atomic ensemble located in a small-volume ultrahigh-finesse optical
cavity is investigated. We find that a transverse pumping field can be used to control the bistable behavior of
the intracavity photons induced by the input pumping along the cavity axis. This phenomenon can be used as a
controllable optical switch.
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I. INTRODUCTION

Recently, ultracold atomic ensembles located in a small-
volume ultrahigh-finesse optical cavity have been studied from
many different points of view. If the cavity resonance is far
detuned from the atomic resonance, the dispersive regime is
realized. The atom-photon interaction then induces an optical
lattice for the atoms and affects their mechanical motion. In
turn, the atoms imprint a position-dependent phase shift on
the cavity field. This highly nonlocal nonlinearity is quite
different from the usual local atom-atom interactions and
has been exploited for a number of interesting results such
as self-organization of atoms [1–6], optical bistability [7–9],
cavity-enhanced super-radiant Rayleigh scattering [10], or the
mapping between the atoms’ ensemble-cavity system and the
canonical optomechanical system [11,12]. Also, the analogy
to a Dicke quantum phase transition has been studied [13–17].

The optical bistability of the intracavity photon number is
typically studied for a system with only one pumping field,
which is along the cavity axis. In this work, we consider a
system with transverse pumping also (see Fig. 1). We show
that the bistable behavior can be controlled by this transverse
pumping field. For low transverse pumping, the intracavity
photon number shows clear bistability for a particular range
of the input pump along the cavity axis. When increasing the
transverse pumping field, the range of the bistable behavior
is diminished. In particular, above a critical value of the
transverse pumping, the bistable behavior disappears. This
result provides the possibility of realizing a controllable optical
switch. For this, the two stable branches of the output photon
number conditioned on the parallel input field act as the optical
switch. The transverse pump can then be used to enable or
disable this switch. If the switch is disabled, only one of the
two possible switch states can be realized, independent of
the input field. We verify the operation of the switch using
numerical solutions of the underlying Gross-Pitaevskii (GP)
equation, and additionally we interpret the results based on a
discrete mode approximation (DMA) method [18].

This paper is organized as follows. In Sec. II, we present the
system and the general mean-field description. Then in Sec. III,
we focus on the bistable behavior of the intracavity photon
number when adding the parallel pump field and show how it
is controlled by the perpendicular pump. For this, we apply two
methods. The GP equation method provides a full description
of the problem and leads to an exact solution, while the DMA

method reveals a better physical interpretation. In Sec. IV, the
effect of the atom-atom interaction on the bistable behavior
is analyzed. In Sec. V, the effect of the parallel pumping on
the self-organization phase transition is studied. We briefly
summarize the results in Sec. VI.

II. THE SYSTEM

The system we consider is a pure Bose-Einstein condensate
(BEC) of N two-level atoms with mass m and transition
frequency ωa located inside a high-Q optical cavity with
length L and cavity mode frequency ωc. For the sake of
simplicity, we consider the dynamics in the dimension x along
the cavity axis only. The cavity field mode function is then
described simply by cos(kx), with wave number k. The model
applies to a cigar-shaped BEC, which is tightly confined in
the transverse direction by a strong dipole or magnetic trap,
such that the transverse size of the condensate is smaller than
the waist of the cavity field. Two external pumping laser fields
at frequency ωp are added as shown in Fig. 1, one along
the cavity axis and the other perpendicular to the cavity axis.
The atom-pump detuning and the cavity-pump detuning are
denoted as �a = ωa − ωp and �c = ωc − ωp, respectively.
The two pump fields are polarized along the same axis.

In the large-detuning limit and in the rotating frame at the
pump frequency, the Hamiltonian for the condensate system
can be written as (h̄ = 1) [5]

Ĥ =
∫

dx�̂†(x)

[
− 1

2m

d2

d2x
+ U0 cos2(kx)â†â

+ η⊥ cos(kx)(â† + â) + gc

2
�̂†(x)�̂(x)

]
�̂(x)

+�câ
†â + η‖(â† + â). (1)

Here �̂† and â† are the creation operators for the atoms
and the cavity photons, respectively. The atom-cavity photon
interaction induces an additional potential U0 cos2(kx)â†â for
the atoms, where U0 = −g2

0/�a is the maximal light shift
per photon that an atom may experience, with g0 being
the atom-photon coupling constant. Scattering between the
transverse pump field and the cavity mode is described by
η⊥ cos(kx)(â† + â), where η⊥ = −g0�p/�a is the maximum
scattering rate, with �p being the Rabi frequency of the
transverse pump field. We assume the transverse pump laser
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FIG. 1. (Color online) The considered setup of a BEC in a cavity,
driven by two pump fields. The transverse pump field is reflected by
a mirror indicated in the top of the figure, leading to a standing wave.
The characteristics of the pump fields control whether or not the
cavity-BEC system exhibits optical bistability.

to be homogeneous along the cavity axis and therefore �p is
taken to be constant. η‖ is the field amplitude of the parallel
driving laser and gc is the atom-atom interaction strength.

In the mean-field approximation, we take the matter-wave
field and the cavity electromagnetic field as classical fields,
i.e., �̂(x,t) ∼ �(x,t) and â ∼ α. The GP equation for the
condensate then becomes

i
∂�(x,t)

∂t
=

[
− 1

2m

d2

d2x
+ U0 cos2(kx)|α|2

+ η⊥ cos(kx)(α + α∗) + gc|�(x,t)|2
]
�(x,t),

(2)

and the corresponding equation of motion for the cavity field
is

∂α

∂t
= −i

[
�c + U0

∫
dx|�(x,t)|2 cos2(kx)

]
α

− κα − iη⊥
∫

dx|�(x,t)|2 cos(kx) + η‖. (3)

Here we have included the cavity loss κ , which is the dominant
dissipation process since spontaneous emission is suppressed
under the large-atom-pump-detuning approximation.

In experiments, the cavity damping is usually much faster
than the mechanical motion of the condensate, such that the
cavity field can follow the condensate adiabatically. We can,
therefore, assume the steady state for the cavity field in Eq. (3),
i.e.,

α =
η‖ − iη⊥

∫
dx|�(x,t)|2 cos(kx)

i[�c + U0

∫
dx|�(x,t)|2 cos2(kx)] + κ

. (4)

Substituting Eq. (4) into Eq. (2), we obtain a highly nonlocal
and nonlinear GP equation. We choose the imaginary-time
propagation method [19] to solve this equation numerically.
The strategy is to first replace the real time t with τ = it .
Then we choose a trial function ψ(x,t) for the GP equation

solution, which can be expanded as a linear combination of all
the eigenfunctions of the Hamiltonian Ĥ ,

ψ(x,τ t) =
∑

i

φi(x)e−iEi t =
∑

i

φi(x)e−Eiτ . (5)

Evolving the state in imaginary time, the excited states with
larger Ei will decay exponentially faster than the ground state.
After each small step of the propagation along the imaginary
time, we normalize the eigenfunction, which eventually leads
to an increase of the ground-state contribution of the evolved
state. Ideally, after a certain evolution period, only the ground
state survives.

III. OPTICAL BISTABILITY

The cavity photon number is given by

n = |α|2 =
η2

‖ + [η⊥
∫

dx|�(x,t)|2 cos(kx)]2

[�c + U0

∫
dx|�(x,t)|2 cos2(kx)]2 + κ2

.

(6)

The integrals in the above equation depend on the photon
number through the GP equation (2). To the lowest order, we
can expect a linear dependence. However, Eq. (6) is a third-
order equation in n, such that in general three roots exist. This
leads to the appearance of bistability. The bistable behavior
relative to the parallel pump strength for the case without
transverse pumping has been studied in Ref. [18]. In our setup,
we add a transverse pumping field, which provides a second
source of cavity photons. As studied in Ref. [6], the self-
organization mechanism helps the atoms accumulate in the
optical potentials generated by the cavity photons. At a certain
transition point, the cavity photon number undergoes a sharp
change with the increasing transverse pumping field. From
this general behavior, we expect that the bistability of the
parallel pump will be suppressed if the transverse pumping
field alone fills the cavity with enough photons to establish the
upper branch of the bistability. In Fig. 2, we plot the cavity
photon number as a function of the parallel pumping field
with different but fixed perpendicular pumping fields. It is
clear that the bistability of the cavity photon number with
the change of the parallel pumping field can be controlled by
the perpendicular pumping field. This phenomenon provides
a candidate for a controllable optical switch, with the parallel
pump field as the input and the perpendicular pump field as
the control.

In order to interpret the physics behind our findings we
introduce, in addition to the numerical GP calculation, the
DMA method for the atom modes at the current step [18]. The
ground state of the condensate without the pumping field is
a homogeneous macroscopic state with zero momentum. The
effect of the transverse pumping field is to diffract this ground
state into a symmetric superposition of the ±h̄k momentum
states. By absorption and stimulated emission of cavity
photons the condensate can be excited to the superposition
of ±2h̄k momentum states from the ground state. Taking
into account the lowest order perturbation to the uniform
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FIG. 2. (Color online) The cavity photon number as a function
of the input pump along the cavity axis. For (a) to (c), the parameters
are N = 4.8 × 104, Ũ0 = 0.25, δ̃c = 1.2 × 103, κ̃ = 0.4 × 103, and
(a) η̃⊥ = 0, (b) η̃⊥ = 0.1, (c) η̃⊥ = 0.5. For (d) to (f), the parameters
are N = 1 × 104, Ũ0 = 0.5, δ̃c = 1.1 × 103, κ̃ = 0.2 × 103, and
(a) η̃⊥ = 0, (b) η̃⊥ = 0.4, (c) η̃⊥ = 1. In all cases, we neglect the
atom-atom interaction to allow for a direct comparison with the DMA
method. The red dotted lines are added to guide the eye.

condensate wave function, we select the subspace expanded
by the basis functions

φ0 =
√

1/L, (7a)

φ1 =
√

2/L cos(kx), (7b)

φ2 =
√

2/L cos(2kx), (7c)

where L is the length of the cavity. Substituting �̂(x) =∑2
i=0 φiĉi into the Hamiltonian, we obtain (see the Appendix)

Ĥ = ωr ĉ
†
1ĉ1 + 4ωr ĉ

†
2ĉ2 + U0

4
â†â[

√
2(ĉ†0ĉ2 + ĉ

†
2ĉ0)

+ 2N + ĉ
†
1ĉ1] + η⊥

2
(â† + â)[

√
2(ĉ†0ĉ1 + ĉ

†
1ĉ0)

+ (ĉ†1ĉ2 + ĉ
†
2ĉ1)] + �câ

†â + η‖(â† + â), (8)

where ωr = k2/2m is the atomic recoil energy and

N = ĉ
†
0ĉ0 + ĉ

†
1ĉ1 + ĉ

†
2ĉ2 (9)

characterizes the total number of atoms. Note that if there is
no pump field along the cavity axis, then we assume the two
modes approximation, i.e., ĉ

†
2 = ĉ2 = 0. In this case, we

recover the Dicke Hamiltonian considered in Ref. [17]. On
the other hand, if we take the transverse pump field to be zero,
which means there is no excitation proportional to cos(kx),

we recover the cavity optomechanical-like Hamiltonian as in
Ref. [12].

Applying the mean-field approximation ĉi ∼ √
NXi , â ∼

α, the equation of motion for the condensate can be found as

i
d

dt̃
X = H (α)X

= [H0 + |α|2H1 + 2Re(α)H2]X, (10)

with X = (X0,X1,X2)T and

H0 =
⎛
⎝ 0 0 0

0 1 0
0 0 4

⎞
⎠ , (11a)

H1 = Ũ0

4

⎛
⎝ 0 0

√
2

0 1 0√
2 0 0

⎞
⎠ , (11b)

H2 = η̃⊥
2

⎛
⎝ 0

√
2 0√

2 0 1
0 1 0

⎞
⎠ , (11c)

where t̃ = ωrt , Ũ0 = U0/ωr , and η̃⊥ = η⊥/ωr are rescaled
dimensionless quantities. Here H0 is the unperturbed Hamil-
tonian of the three states, H1 is the coupling between the
homogeneous state and the state φ2 due to the absorption and
reemission of cavity photons, and H2 describes the coupling
between φi and φi+1 (i = 0,1) because of the scattering of
perpendicular pumping photons. Since∫

dx|�(x,t)|2 cos(kx) = N

∫
dx

[√
1

L
X0 +

√
2

L
cos(kx)X1

+
√

2

L
cos(2kx)X2

]2

cos(kx)

= N (
√

2X0X1 + X1X2)

= 1

η̃⊥
NX†H2X, (12)

and∫
dx|�(x,t)|2 cos2(kx) = N

∫
dx

[√
1

L
X0 +

√
2

L
cos(kx)X1

+
√

2

L
cos(2kx)X2

]2

cos2(kx)

= 1

2
N

(
1 + 1

2
X2

1 +
√

2X0X2

)

= 1

2
N + 1

Ũ0
NX†H1X, (13)

the coherent photon amplitude is

α =
η‖ − iW0

∫
dx|�(x,t)|2 cos(kx)

i[�c + U0

∫
dx|�(x,t)|2 cos2(kx)] + κ

= η̃‖ − iNX†H2X

i(δ̃c + NX†H1X) + κ̃
, (14)

where δ̃c = (�c + 1
2NU0)/ωr and κ̃ = κ/ωr .
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FIG. 3. (Color online) The cavity photon number as a function of
the input pump along the cavity axis by the three-level DMA method.
The parameters are N = 4.8 × 104, Ũ0 = 0.25, δ̃c = 1.2 × 103, κ̃ =
0.4 × 103, and (a) η̃⊥ = 0, (b) η̃⊥ = 0.1, (c) η̃⊥ = 0.5.

Next, we determine the atomic condensate ground state
Xs(t) = Xse

−iE0 t̃ , where

[H0 + |α|2H1 + 2Re(α)H2]Xs = E0Xs. (15)

This is a nonlinear problem because the Hamiltonian H

depends on the eigenstate Xs through α. The procedure is
to first take an arbitrary trial photon amplitude αtr , and then
solve for the ground state of the Hamiltonian H (αtr ). Next, we
substitute the solution Xs in Eq. (14) and get an output photon
amplitude αout. If αout = αtr , a self-consistent solution has
been obtained. Figure 3 shows the distinct bistable behavior
of the cavity photon number as a function of the input pump
along the cavity axis for different transverse pumping fields.
Qualitative differences with Fig. 2 arise since the method
described above can only solve for the eigenvalues, but it
cannot discriminate whether or not the state is stable. In
contrast, the GP method leads to stable solutions due to the
intrinsic properties of the imaginary time method. If we use
the GP results as the start trial photon amplitude, we obtain
results as shown in Fig. 4. It can be seen that the DMA and
the GP methods agree well. As we include more states in the
DMA basis, the results of the approximate method approach
those of the exact solution of the GP equation.

When there is no perpendicular pumping, H2 = 0, the
cavity photon number

n = |α|2 = η̃‖2

(δ̃c + NX†H1X)2 + κ̃2
. (16)

Here X†H1X is a function of the cavity photon number and
can be expanded linearly as X†H1X � βn, to the lowest order.
So

n = nin

1 + (δ̃c + Nβn)2/κ̃2
, (17)

where nin ≡ η̃‖2/κ̃2. This can be mapped exactly to the relation
of dispersive optical bistability [20,21]. The scattering of
photons due to the atomic gases causes an extra optical length
and, thus, a phase change, which depends on the field intensity
and produces the bistable states. In Fig. 5(a) we plot the

FIG. 4. (Color online) The cavity photon number as a function of
the input pump along the cavity axis. The parameters are N = 4.8 ×
104, Ũ0 = 0.25, δ̃c = 1.2 × 103, κ̃ = 0.4 × 103, and (a) η̃⊥ = 0,
(b) η̃⊥ = 0.1, (c) η̃⊥ = 0.5.

right-hand side of Eq. (16), which can be interpreted as the
output cavity photon number nout predicted from Eq. (16) given
the input trial photon number ntr . The intersection points of
nout(ntr ) and the bisection of the first quadrant determined by
nout = ntr provide a graphic solution for the cavity photon
number. The bistable behavior emerges when there is more
than one intersection. One can easily find that the upper branch
corresponds to the intersections on the right side of the peaks,
where the number of cavity photons is sufficient to excite the
condensate to φ2 with a certain extent [see Fig. 5(b)]. This can
be understood from the fact that the bistability comes mainly
from the value of β and the quadratic form of the denominator
on the right-hand side of Eq. (17).

If perpendicular pumping is added, a new channel for the
introduction of cavity photons is set up. It can be easily
seen that the perpendicular pumping enters the Hamiltonian,

(a) (b)

(c) (d)

FIG. 5. (Color online) (a) and (c) The cavity output photon
number nout as a function of the trial input photon number ntr . (b) and
(d) Plots of 〈cos(2kx)〉 as a function of the parallel pumping strength.
The parameters are N = 4.8 × 104, Ũ0 = 0.25, δ̃c = 1.2 × 103, κ̃ =
0.4 × 103, and (a) and (b) η̃⊥ = 0 and (c) and (d) η̃⊥ = 0.5. The
curves in (a) and (c) correspond to η̃‖ = (0.5,0.9,1.2,1.4,1.6) × 103,
respectively.
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like the parallel pumping term, as a displacement operator.
The difference is that the pumping rate now depends on the
feedback of the atoms and, thus, the cavity photon number,
while it is constant for parallel pumping. The reason is that the
scattering rate of the perpendicular photons depends on the
configuration of the condensate. This point also distinguishes
our system from the classical case in which the change of the
media’s configuration can be neglected and the scattering rate
of perpendicular pumping would be a constant too. With the
perpendicular field, we find

n = nin + (Nβ ′n)2/κ̃2

1 + (δ̃c + Nβn)2/κ̃2
, (18)

where X†H2X � β ′n. Comparing Fig. 5(c) with Fig. 5(a),
we find that the output photon number as a function of the
input photon number, nout(nin), is not modified much from
the case without parallel pumping. However, the condensate
can now be excited from the homogeneous state φ0 to φ2

through scattering of two perpendicular pump photons into
the cavity even if no parallel pumping is added. This leads
to a nonzero intercept of the vertical axis in Fig. 5(d).
Accordingly, potential intersection points located at the left
wing of the curves nout(ntr ) in Fig. 5(c) cannot be accessed if
a sufficient number of cavity photons is introduced due to the
perpendicular pumping, since this leads to a displacement of
the cavity photon number to larger values. In particular, the
value of nout at ntr = 0 determines a cutoff, which explains
the disappearance of the bistability [see Fig. 5(c)].

IV. THE ROLE OF THE ATOM-ATOM INTERACTION

So far, we have neglected the atom-atom interaction by
considering the case gc = 0. But in real systems this coupling is
usually present and it is helpful in stabilizing the homogeneous
phase when the pump power is low. Collisions between atoms
with positive scattering lengths tend to diffuse the atoms away
from each other. Therefore, the optical lattice generated by
the cavity photons can rearrange the atoms only if it is strong
enough to overcome the diffusion caused by the atom-atom
interaction. Thus, with repulsive atom-atom interactions, more
photons are needed to produce a deeper trap to confine the
atoms. From this argument we expect that the bistability will
still be present with atom-atom interactions, but the parallel
pumping field strength needs to be increased to overcome
the interaction. This would lead to a shift of the bistability
transition to higher values along the parallel pump axis. At the
same time, the higher photon number at the transition point
also shifts the upper branch upward. This is confirmed in Fig. 6.
Since the critical point of self-organization increases with Ngc

as shown in Eq. (22), a stronger transverse input is required to
remove the bistability.

V. INFLUENCE OF THE PARALLEL PUMP ON THE
DICKE PHASE TRANSITION

By defining

θ = 〈cos(kx)〉, (19a)

β = 〈cos2(kx)〉, (19b)

FIG. 6. (Color online) The influence of atom-atom interactions
on the bistability. Two lines each with the same line style correspond
to the two branches of the bistable behavior for a given value of
Ngc = 0, 10, 20, 30, 40, 50, and 60, in units of ωrλ/2π from bottom to
top. Other parameters are N = 4.8 × 104, Ũ0 = 0.25, κ̃ = 0.4 × 103,
η̃⊥ = 0, and δ̃c = 1.1 × 103.

the optical lattice potential generated by the cavity photons
can be written as

V (x) = U0 cos2(kx)|α|2 + η⊥ cos(kx)(α + α∗)

= V1 cos(kx) + V2 cos2(kx), (20)

with

V1 = 2η⊥
η‖κ − η⊥θ (�c + NU0β)

(�c + NU0β)2 + κ2
, (21a)

V2 = U0

η2
‖ + (η⊥θ )2

(�c + NU0β)2 + κ2
. (21b)

As discussed previously [6] for the case without pumping
along the cavity axis, the steady state of the condensate atoms
is either a homogeneous distribution or a λ periodic ordered
pattern. The two regimes correspond to different transverse
pumping strengths and are well separated by a critical point.
This sharp transition can be traced back to a self-organization
mechanism [6] as follows. If there is no parallel pumping, and
if �c + NU0β > 0, the sign of the potential V1 becomes the
opposite of the sign of θ . Therefore, if more atoms happen to
be close to the odd (even) sites than to the even (odd) sites due
to fluctuations, the produced potential V1 cos(kx) will have
minima at the odd (even) sites, which attract even more atoms
there, leading to an amplification of the fluctuations and, thus,
to organization. It follows that apart from the reorganization
of the wave function, if the pumping strength is increased over
some critical value, the intracavity photon number also shows
an abrupt change at the threshold pump power [see Fig. 7(a)].
This phase transition has been shown to be analogous to the
Dicke quantum phase transition [16,17]. The critical transition
point is determined by

√
Nη⊥ =

√
(�c + NU0/2)2 + κ2

2�c + NU0

√
ωr + 2Ngc. (22)

When an extra input pump field is added along the cavity
axis, the feedback mechanism works a little differently. The
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(a)

(b)

(c)

(d)

FIG. 7. (Color online) The cavity photon number as a function of
the input pump perpendicular to the cavity axis. The parameters are
N = 1 × 104, Ũ0 = 0.5, δ̃c = 1.1 × 103, κ̃ = 0.2 × 103, Ngc = 0,
and (a) η̃‖ = 0, (b) η̃‖ = 50, (c) η̃‖ = 1 × 103, and (d) η̃‖ = 1.5 × 103.

parallel pumping provides another channel for cavity photons
and forms an additional λ/2 periodic potential to confine the
atoms. Thus, the atoms to the lowest order are in a state
ψ0, which is a coherent superposition of the homogeneous
state and φ2. In contrast, without the parallel pump field,
the condensate initially is in the homogeneous state only.
Furthermore, for the case without the parallel pumping field,
the initial homogeneous state is always a self-consistent so-
lution for the combined GP equation and amplitude equation,
even with perpendicular pumping. However, this is not true
if parallel pumping is added. Then the initial state ψ0 is
not a self-consistent solution for the GP equation as long
as perpendicular pumping is added. Therefore, a gradual
increase of the perpendicular pumping from zero also leads
to a gradual buildup of the λ periodic potential V1 if a parallel
pumping field is applied. From this we expect that no phase
transition occurs if parallel pumping is added. This expectation
is confirmed by our numerical calculations. Figure 7(b) shows
a smooth change of the cavity photon number as we increase
η⊥ when parallel pumping, η‖ = 50, is added. And, since
η‖κ > |η⊥θ (�c + NU0β)| if η⊥ is small, the sign of V1 is
positive at the beginning. So the effect of V1 is to weaken
the odd peaks of the λ/2 periodic potential and strengthen
the even peaks. Thus, the atoms will be gradually confined
at the odd sites. Alternatively, the sign of −η⊥θ (�c + NU0β)
will be positive if �c + NU0β is positive. Then the λ periodic
potential will be enhanced as the atoms are attracted to the odd
sites. Thus, in this case the atoms will be fixed at the odd sites.
We, thus, find that with parallel pumping, the parameters of
the system uniquely determine the structure of the condensate
after the reorganization. This is in contrast to the case without
parallel pumping in which the atoms can be attracted to
either of the two equivalent but spatially offset lattice con-
figurations depending on an initial symmetry breaking due to
fluctuations.

We recall that bistability can be observed for some
particular values of η‖ and η⊥, as explained in Sec. III. Thus,
if we increase the pump strength along the cavity axis further,
bistability is also expected with the change of transverse
pumping [see Fig. 7(c)]. Above a certain critical value of
η‖, the λ/2 periodic potential will dominate and there is no
bistability [see Fig. 7(d)]. So the controllable optical switch

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

η⊥/ω
r

η ||/ω
r

Upper
branch

Bistability

Lower
branch

FIG. 8. (Color online) The regions of lower branch, bistability,
and upper branch of the cavity photon number. The parameters
are N = 1 × 104, Ũ0 = 0.5, δ̃c = 1.1 × 103, κ̃ = 0.2 × 103, and
Ngc = 0.

can also operate with the parallel pumping as the control and
the perpendicular pumping as the signal.

The exact critical point at which the bistable behavior
disappears is determined by the highly nonlinear equation

α = η‖ − iη⊥g(α)

i[�c + U0f (α)] + κ
, (23)

where

f (α) ≡
∫

dx|�(x,t)|2 cos2(kx), (24a)

g(α) ≡
∫

dx|�(x,t)|2 cos(kx), (24b)

for which only numerical results can be calculated. Close
to the critical points, the numerical analysis is complicated
by the fact that the ground state and the first excited state
become almost degenerate [6]. This increases the likelihood
of numerical errors and reduces the efficiency of the algorithm.
As a solution, we applied an “adiabatic” evolution of the
system, namely, once a wave function is found, we use it as the
next trial amplitude after a small parameter change. Figure 8
depicts the regions of the lower branch, bistability, and the
upper branch in the parameter space spanned by the two pump
fields. We see that for lower pumping fields in both parallel and
perpendicular directions, the cavity photon number is mainly in
the lower branch. For some intermediate values of the pumping
fields, there is bistability for the cavity photon number. If
we further increase either the parallel pumping field or the
perpendicular pumping field, the cavity photon number is in
the upper branch and the bistability disappears. The vertical
cross sections of Fig. 8 at η⊥ = 0, 0.1, and 1.0 and horizontal
cross sections at η‖ = 0, 50, 1000, and 1500 coincide with
Figs. 2(d)–2(f) and Fig. 7, respectively.

VI. SUMMARY

In conclusion, we have discussed theoretically the bistable
behavior of the cavity photon number for a combined cavity-
BEC system. We showed that one can use a perpendicular
driving field as a control for bistability of the cavity photons
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relative to the parallel pump. If no perpendicular driving field
is added, the cavity photons show strong bistable behavior
for a large range of the parallel pumping field strength.
However, if the perpendicular driving exceeds a critical
value, this bistability will disappear. Vice versa, we can also
use the parallel pumping as a control of the bistability of
the perpendicular pumping. While optical bistability with
conventional media such as atomic gases and dense crystals
has been suggested as a mechanism for an optical switch,
this phenomenon may provide a candidate for a controlled
optical switch. Further studies are needed for the physics of
the dissipation channels and analysis of the switching time of
the bistable behavior.
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APPENDIX: DERIVATION OF THE DISCRETE MODE
HAMILTONIAN

The derivation of the discrete mode Hamiltonian equa-
tion (8) follows from Eq. (1) and Eqs. (7) as

Ĥ =
∫

dx

[√
1

L
ĉ
†
0 +

√
2

L
cos(kx)ĉ†1 +

√
2

L
cos(2kx)ĉ†2

] [
− 1

2m

d2

d2x
+ U0 cos2(kx)â†â + η⊥ cos(kx)(â† + â)

]

×
[√

1

L
ĉ0 +

√
2

L
cos(kx)ĉ1 +

√
2

L
cos(2kx)ĉ2

]
+ �câ

†â + η‖(â† + â)

=
∫

dx

[√
1

L
ĉ
†
0 +

√
2

L
cos(kx)ĉ†1 +

√
2

L
cos(2kx)ĉ†2

]
×

[√
1

L
cos2(kx)U0â

†âĉ0 +
√

1

L
cos(kx)η⊥(â† + â)ĉ0

+ k2

2m

√
2

L
cos(kx)ĉ1 +

√
2

L
cos3(kx)U0â

†âĉ1 +
√

2

L
cos2(kx)η⊥(â† + â)ĉ1 + 4k2

2m

√
2

L
cos(2kx)ĉ2

+
√

2

L
cos2(kx) cos(2kx)U0â

†âĉ2 +
√

2

L
cos(kx) cos(2kx)η⊥(â† + â)ĉ2

]
+ �câ

†â + η‖(â† + â)

= U0

2
â†âĉ

†
0ĉ0 + U0

2
√

2
â†âĉ

†
2ĉ0 + η⊥√

2
(â† + â)ĉ†1ĉ0 + k2

2m
ĉ
†
1ĉ1 + 3U0

4
â†âĉ

†
1ĉ1 + η⊥√

2
(â† + â)ĉ†0ĉ1 + η⊥

2
(â† + â)ĉ†2ĉ1

+4k2

2m
ĉ
†
2ĉ2 + U0

2
√

2
â†âĉ

†
0ĉ2 + U0

2
â†âĉ

†
2ĉ2 + η⊥

2
(â† + â)ĉ†1ĉ2 + �câ

†â + η‖(â† + â)

= ωr ĉ
†
1ĉ1 + 4ωr ĉ

†
2ĉ2 + U0

4
â†â[

√
2(ĉ†0ĉ2 + ĉ

†
2ĉ0) + 2N + ĉ

†
1ĉ1] + η⊥

2
(â† + â)[

√
2(ĉ†0ĉ1 + ĉ

†
1ĉ0) + (ĉ†1ĉ2 + ĉ

†
2ĉ1)]

+�câ
†â + η‖(â† + â). (A1)

The atom-atom interaction contains terms such as ĉ
†
1ĉ1ĉ

†
0ĉ0,

which mix the discrete modes that we retain as well as
other modes that we discard and, therefore, impairs the DMA
method. Since the energy scale of the atom-atom interactions

is of the order of the chemical potential µ = (3gω/4)2/3 (in
units of ωr ), we can neglect such interactions on the time scale
of 1/ωr when µ � 1 [18]. This condition is fulfilled in a recent
experiment [12].
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