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Propagation dynamics of controlled cross-talk via interplay between χ (1) and χ (3) processes
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We investigate theoretically and experimentally the propagation dynamics of a nonlinear cross-talk effect
between two probe channels in a double-ladder system and show that an interplay between χ (1) and χ (3) processes
leads to the control of cross-talk. We derive analytical solutions to describe the propagation dynamics of the
probe fields with the cross-talk effect built in. From the analytical results we identify and examine the regimes of
interest where contributions of either χ (1) or χ (3) or both are significant. The control of cross-talk is demonstrated
experimentally, and good quantitative agreement is found between the analytical solutions and the experiment.
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I. INTRODUCTION

Nonlinear optical processes in light-matter interactions can
be greatly enhanced and controlled via resonant processes
such as electromagnetically induced transparency (EIT) [1–4].
In a typical three-level ladder-type EIT system, the optical
response of the medium to a weak probe field is determined
by the atomic susceptibility χ (1) to the first order in the
probe field, which is manipulated by a control laser field
[5]. With an additional control field coupling to a fourth
atomic level, the χ (3) process can significantly affect the
dispersion [6] and absorption [7,8] properties of the probe field.
The efficient parametric generation of a four wave-mixing
(FWM) field using the resonant χ (3) process in a four-level
double-ladder atomic system has been recently demonstrated
[6,8–14]. In particular, this system allows efficient frequency
up-conversion [10–12] and down-conversion [13,14] through
the use of low-power continuous-wave lasers that can be
used for ultraviolet generation and quantum communication
[11–14]. Previous experimental and theoretical studies of the
double-ladder system have also revealed many remarkable
properties that are sensitive to the phase and amplitude of
the control laser and can be used for polarization control
and laser-frequency stabilization [15–23]. Wielandy and Gaeta
demonstrated the use of quantum coherence to control the
polarization state of the probe field [15]. They reported
large birefringence and hence large polarization rotation for
generating any arbitrary polarization state of a laser beam.
Patnaik and Agarwal theoretically showed that the polarization
state of the probe can be dynamically controlled using a static
magnetic field in conjunction with control laser fields in both
homogeneously [16] and inhomogeneously [17] broadened
double-ladder media. Several experimental and theoretical
studies have been demonstrated recently on large laser-induced
birefringence and magneto-optical rotation in ytterbium and
cesium atoms [18–21]. Morigi and co-workers theoretically
showed that a double-ladder system (which is termed a
closed-loop diamond configuration) allows one to control
the optical properties of the medium using the phase of the
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laser fields [22,23]. Similar phase-sensitive control has been
experimentally demonstrated in a closed double-� system
using sodium atom [24,25].

Recently, we have experimentally demonstrated the effi-
cient generation of a FWM field in the double-ladder system
via the resonant χ (3) process [8,9]. In our theoretical studies,
we showed that with two control fields in such systems, the
medium polarization of each probe transition is dominated
by both χ (1) and χ (3) processes [8]. However, the propagation
effects dominated by a strong cross-talk between the two probe
channels have never been discussed in the literature. In an
earlier theoretical study, Menon and Agarwal have reported
gain and weak transparency due to cross-talk between optical
transitions in a driven � system, where both the probe and drive
fields couple to the same transition [26]. They considered a thin
medium and used dressed-state analysis to demonstrate the
rich interference effects in absorption spectra of the system. In
this paper, we present analytical solutions for the propagation
dynamics of two probe fields coupled to the double-ladder
configuration taking the cross-talk effect into account and also
experimentally demonstrate control of the cross-talk.

The outline of this paper is as follows: We describe the
system and present the corresponding dynamical equation
in Sec. II. In Sec. III we derive the analytical solutions for
describing the dynamics of propagation of the probe fields in
the double-ladder atomic system, and show that the behavior
of the probe field during propagation in the medium is strongly
affected by the interplay of the χ (1) and χ (3) processes.
In Sec. IV we experimentally demonstrate the control of
cross-talk and show that the experimental results and the
theoretical calculations are in good quantitative agreement.
In Sec. V, we conclude with a summary of the results.

II. ATOMIC DYNAMICS

In this section we present a theoretical formulation that
describes the dynamics of a double-ladder atomic system
(shown in Fig. 1) and investigate the effect of cross-talk
on the susceptibility of the medium. We consider the cas-
caded transitions |b〉(|j = 0,mj = 0〉)←→|i〉(|j = 1,mj =
±1〉)←→|c〉(|j = 0,mj = 0〉) (i = a,a′). Here |a〉 and |a′〉
are magnetic sublevels with mj = ±1. A linearly polarized
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FIG. 1. (Color online) Energy-level diagram of the double-ladder
system under consideration. Here 2�i (2γi) is the radiative decay of
the drive (probe) transition (i = a,a′), and �d± (�p±) and � (δ) are
the Rabi frequency and the frequency detuning of the drive (probe)
field, respectively. The intermediate states |a〉 and |a′〉 correspond to
Zeeman sublevels with mj = ±1.

weak probe field Ep couples the transitions |b〉 to |a〉 and
|a′〉, while a strong drive field Ed couples |a〉 and |a′〉 to |c〉.
Considering the circular component of each field, we have
four monochromatic fields coupling to their corresponding
polarization channels; e.g., Ep+ (Ep−) couples |b〉 ←→ |a〉
(|b〉 ←→ |a′〉) and Ed+ (Ed−) couples |a′〉 ←→ |c〉 (|a〉 ←→
|c〉) transitions.

The equation of motion for the double-ladder system is
given by the density-matrix equation as [17]

∂ρ

∂t
= −i

h̄
[Ho + HI ,ρ]

−
∑

i=a,a′
(�i{|c〉〈c|,ρ}+ + γi{|i〉〈i|,ρ}+

− 2�iρcc|i〉〈i| − 2γiρii |b〉〈b|). (1)

Note that the decay coefficients are inserted phenomeno-
logically. The radiative decay rates for the drive and probe
transition are 2�i and 2γi (with i = a,a′), respectively. The
curly brackets {}+ are anticommutators of the operators.

To eliminate the rapid temporal oscillations in the density-
matrix equation, we use the following transformation ρ → ρ̃

with elements given by

ρjb = ρ̃jbe
−iwpt , ρcj = ρ̃cj e

−iwd t ,
(2)

ρcb = ρ̃cbe
−i(wp+wd )t , ρj ′j ′ = ρ̃j ′j ′ ,

where j = a,a′ and j ′ = j,b,c. Here, wp (wd ) represents the
central frequency of the probe (drive) laser field. Then, the
matrix equation for ρ̃ can be rewritten as

˙̃ραβ = −i

h̄
〈α|[Heff,ρ̃]|β〉

−
∑

i=a,a′
〈α|[�i{|c〉〈c|,ρ̃}+ + γi{|i〉〈i|,ρ̃}+

− 2�iρ̃cc|i〉〈i| − 2γiρ̃ii |b〉〈b|]|β〉, (3)

with the effective Hamiltonian in the transformed frame

Heff = h̄(δ + �)|c〉〈c| + h̄δ(|a〉〈a| + |a′〉〈a′|)
− h̄(�p+|a〉〈b| + �p−|a′〉〈b|
+�d−|c〉〈a| + �d+|c〉〈a′| + H.c.). (4)

Here, δ (�) and �p± (�d±) are the frequency detunings
and the coupling Rabi frequencies of the probe (drive) field,
respectively. For simplicity �i = � and γi = γ are assumed
in the following calculations. Please note that the tilde sign in
ρ̃ has been removed in the following for the sake of brevity.

Next, the complex susceptibility at the probe frequency is
obtained from the atomic polarization P± = N℘pρ±. Here
ρ± is the density-matrix element corresponding to the probe
transition (ρ+ ≡ ρab, ρ− ≡ ρa′b), ℘p is the reduced dipole
matrix element involved in the probe transition, and N is
the atomic density. To obtain the atomic polarization P± cre-
ated by atomic coherence in the probe transition, we calculate
the steady-state solutions of the off-diagonal coherence terms
ρab and ρa′b. Assuming |�d±|�|�p±|, the analytical solutions
for the coherences are calculated to the first order in both weak
fields �p+ and �p− by solving Eq. (3). The coherence matrix
elements are obtained as

ρab = �
(1)
ab�p+ + �

(3)
ab�p−, (5)

ρa′b = �
(1)
a′b�p− + �

(3)
a′b�p+, (6)

where

�
(1)
ab = i{|�d+|2 + (γ + iδ)[2� + i(� + δ)]}

D
,

�
(3)
ab = −i�∗

d−�d+
D

,

�
(1)
a′b = i{|�d−|2 + (γ + iδ)[2� + i(� + δ)]}

D
,

�
(3)
a′b = −i�d−�∗

d+
D

,

and

D = {|�d+|2 + |�d−|2 + (γ + iδ)[2� + i(�+ δ)]}(γ + iδ).

(7)

The above solutions (5) and (6) are special cases of the
solutions obtained in Ref. [8] in the absence of the magnetic
field. As summarized in Ref. [8], the atomic polarizations
Pab and Pa′b are linear combinations of the χ (1) and χ (3)

processes. Here �
(1)
ab corresponds to the first-order contribution

from the weak probe �p+ in the transition |a〉 ←→ |b〉. The
second term �

(3)
ab in ρab depicts the three-photon process via the

absorption of �p− and �d+, followed by stimulated emission
in �d− that results in a nonzero third-order contribution to the
atomic coherence. A similar explanation can be used for �

(1)
a′b

and �
(3)
a′b in ρa′b.

This paper has distinctly different goals and physics
compared to Ref. [8]. (a) Even though both probe fields �p±
are taken into account in the calculation in Ref. [8], there the
theoretical analysis was focused on generation of a χ (3) field
in the presence of only one probe field in the double-ladder
system. In this paper, we investigate the effect of interplay of
χ (1) and χ (3) processes on both the probe transitions when both
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the probe fields are simultaneously coupled. (b) The resonant
three-photon processes �

(3)
ab and �

(3)
a′b can efficiently transfer

energy between the two probe transitions, which establish the
cross-talk between the two probe channels. The cross-talk
and hence the probe behaviors are strongly affected by the
interplay of the χ (1) and χ (3) processes during the propagation
of the fields inside the medium. The corresponding probe
field propagation dynamics will be discussed in the following
section. Note that these dynamical solutions are valid for
denser medium, which is in contrast to Ref. [8], where the
calculated susceptibilities χ (1) and χ (3) were good only for
low-density thin cell or few atoms cases.

III. CONTROLLED PROPAGATION DYNAMICS
OF CROSS-TALK

The propagation dynamics of the probe fields along the z
direction in the medium that explicitly include the cross-talk
effect are obtained by solving the Maxwell-Bloch equation
[27]

∂�p±
∂z

= −kp℘p

2ε0h̄
Im[P±]

= −ηIm[ρ±], (8)

where kp corresponds to the propagation constant of the probe
field, and η = kp℘p

2N/2h̄ε0 is a constant obtained from
system parameters that is proportional to the inverse of the
optical depth. Using the analytical solutions (5) and (6), the
Maxwell-Bloch equations (8) can be expressed in matrix form
as

∂

∂z

(
�p+(z)
�p−(z)

)
= iη

(
�

(1)
ab �

(3)
ab

�
(3)
a′b �

(1)
a′b

)(
�p+(z)
�p−(z)

)
. (9)

The 2 × 2 matrix is a cross-talk matrix that describes the
interplay between the χ (1) and χ (3) processes. In the absence
of any one of the drive fields �d±, �

(3)
αβ = 0, and hence no

cross-talk occurs between the two probe channels. The probe
field dynamics are calculated by obtaining the eigenvalues and
eigenfunctions of the cross-talk matrix. Thus, the solution for
�p± obtained from solving Eq. (9) is(

�p+(z)
�p−(z)

)
=C+e−(αLT )ηz

(
�∗

d−
�∗

d+

)
+ C−e−(α2L)ηz

(−�d+
�d−

)
,

(10)

where αLT is the susceptibility dominated by terms that
describe the transparency in a ladder system, α2L corresponds
to the susceptibility of a two-level system, and C± is a constant
that is obtained from input field parameters. They are given by

αLT = 2� + i(� + δ)

|�d+|2 + |�d−|2 + (γ + iδ)[2� + i(� + δ)]
,

α2L = 1

γ + iδ
,

(11)

C+ = �p−(0)�d+ + �p+(0)�d−
|�d+|2 + |�d−|2 ,

C− = �p−(0)�∗
d− − �p+(0)�∗

d+
|�d+|2 + |�d−|2 .

Note that these solutions are obtained assuming �d± remains
unchanged during propagation through the medium; �d±(z =
0) = �d±(z = l), where l is the length of the medium. The
solutions derived for the evolution of the probe σp+ and σp−
fields along the z direction in the medium can be written
explicitly as

�p+(z) = �p+(0)|�d−|2 + �p−(0)�d+�∗
d−

|�d+|2 + |�d−|2 e−(αLT )ηz

︸ ︷︷ ︸
Ladder Transparency

+ �p+(0)|�d+|2 − �p−(0)�d+�∗
d−

|�d+|2 + |�d−|2 e−(α2L)ηz

︸ ︷︷ ︸
Two-Level Absorption

,

(12)

�p−(z) = �p−(0)|�d+|2 + �p+(0)�d−�∗
d+

|�d+|2 + |�d−|2 e−(αLT )ηz

+ �p−(0)|�d−|2 − �p+(0)�d−�∗
d+

|�d+|2 + |�d−|2 e−(α2L)ηz.

(13)

Note that the first terms in both Eqs. (12) and (13) represent
the transparency experienced by �p± due to two drive fields
�d±. The solution has a form equivalent to the transparency
in a ladder system but with a modification due to the presence
of a second drive field. The second terms in both equations
represent absorption in two-level systems, but the amplitude
is being modified by the amplitudes of the input fields.

To separate specifically the χ (1) and χ (3) contributions to
�p±, we rewrite the expression for �p+(z) as

�p+(z) = �p+(0)

( |�d−|2e−(αLT )ηz + |�d+|2e−(α2L)ηz

|�d+|2 + |�d−|2
)

︸ ︷︷ ︸
χ (1) contribution

+ �p−(0)�d+�∗
d−

(
e−(αLT )ηz − e−(α2L)ηz

|�d+|2 + |�d−|2
)

︸ ︷︷ ︸
χ (3) contribution

.

(14)

A similar expression is obtained for �p−(z). The χ (3) term
in Eq. (14) represents the cross-talk control term. Clearly,
the cross-talk between the two components of the probe field
�p±(z) can be controlled via the amplitude (�d±) as well as
the phase of the two drive fields (considering the complex Rabi
frequencies �α�∗

β) as shown in Eq. (14).
To extract the physical meaning from the above equations,

we analyze Eqs. (12) and (13) for the following conditions :
(i) When only the weak probe field �p+ and the strong
drive field �d− are present [and �p−(0) = �d+ = 0] and
both are on resonance with their respective transitions, the
probe experiences increased transmission through the medium
around δ = 0 because of the EIT experienced by �p+ in the
ladder configuration as shown in Fig. 2(a). The increased
transmission of the probe field can be understood because
of the creation of the dark state between the states |c〉 and |b〉.
This result can be seen directly from our analytical solution
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FIG. 2. (Color online) Rabi frequency of the probe field at the exit

of the medium as a function of probe detuning from resonance under
various conditions. The solid lines represent probe |�p+|, and the
dashed lines represent probe |�p−|, with � = 0, � = 0.3, and ηz = 2.
(a) �p+(0) = 0.1, �d− = 1, �p−(0) = �d+ = 0; (b) �p+(0) = 0.1,
�d− = �d+ = 1, �p−(0) = 0; (c) �p+(0) = �p−(0) = 0.1, �d− =
�d+ = 1. All frequencies are scaled with γ .

by dropping the two-level absorption term from Eq. (12), such
that only the ladder-transparency term

�p+(z)

= �p+(0) exp

[ −[2� + i(� + δ)]ηz

|�d−|2 + (γ + iδ)[2� + i(� + δ)]

]
(15)

survives. Furthermore, if we let �d− = �p−(0) = 0 and
�d+ 	= 0, Eq. (12) reduces to

�p+(z) = �p+(0) exp

[ −ηz

γ + iδ

]
, (16)

which is a typical solution for a field propagating inside a
two-level system.

(ii) If the strong resonant drive field �d+ is applied to the
ladder-EIT configuration in addition to �d− while maintaining
�p−(0) = 0 [as shown in the inset of Fig. 2(b)], then the
dark state created by �p+ and �d− is perturbed, increasing
the absorption of the probe �p+. The absorption of �p+

followed by �d− optically pumps the population to state |c〉,
which is then coherently transferred to state |a′〉 via the �d+
field; this generates third-order polarization ρa′b and hence
�p− field, shown as a dashed line in Fig. 2(b). If the optical
depth is large for �p−, then the generated �p− field can also
be absorbed along the z direction during propagation. This
leads to a gain in �p+ field due to the three-photon process
(�p−�d+�∗

d−) via the transition |b〉 → |a′〉 → |c〉 → |a〉,
which causes the cross-talk between the two probe channels.
For long propagation distances, the amplitude and width of
the spectra for both the generated field and the probe field are
similar around δ = 0.

(iii) Next, we consider the case where all four fields (�p±
and �d±) are present. Let us consider the case where the
amplitudes of the drive fields are the same [�d+ = �d− =
�d ], the amplitudes of the input probe fields also are the
same [�p+(0) = �p−(0) = �p(0)], all of the drive fields are
resonant with their respective transitions (� = 0), and all of
the probe fields have the same detuning. Under such conditions
the transmission spectra for the two probe fields are identical
because of the symmetric configuration of the double-ladder
system, shown in Fig. 2(c). Equations (12) and (13) for the
probe field can be reduced to

�p+(z) = �p(0) exp

[ −(2� + iδ)ηz

2|�d |2 + (γ + iδ)(2� + iδ)

]
= �p−(z). (17)

The width of the transmission spectra of the two probe fields
is broader than those of the ladder-EIT configuration as shown
in Fig. 2(a). It should further be noted that the amplitude
of the probe transmission of �p+ is higher than that in
the regular ladder-EIT. This may be understood as follows:
With the established dual-ladder coherences in the two probe
transitions, the dark state (the antisymmetric state of |c〉 and
|b〉) is more robust with the symmetric configuration in the
double-ladder system. Details of the enhancement in probe
transmission will be discussed elsewhere. The increase in
transmission linewidth could be due to power broadening by
the two strong drive fields.

In (iii) we studied the case of symmetric configuration in
the double-ladder system, where the two probes are symmetric
and the two drives are symmetric [�p−(0) = �p+(0),�d− =
�d+]. In the following we consider the cases of asymmetric
probe and drive amplitudes in the system where all of the
fields are present with either the probe fields being asym-
metric [�p−(0) 	= �p+(0),�d− = �d+] or the drive fields
being asymmetric [�d− 	= �d+,�p−(0) = �p+(0)] or both
the probe and drive fields being asymmetric [�p−(0) 	=
�p+(0),�d− 	= �d+]. Here, all of the drive fields are resonant
with their respective transitions � = 0, and all of the probe
fields have the same frequency detunings. Furthermore, the
dynamics of probe propagation in the double-ladder media
for the three cases above are discussed to bring out the clear
physics of controlled cross-talk.

(iv) Let us first discuss the case of probe asymmetry
and drive symmetry [�p−(0) = 2�p+(0),�d− = �d+]. In
Fig. 3(a), we present the probe fields �p± at the exit
of the medium as a function of their detunings for three
different propagation distances. For ηz = 2γ , at δ = 0 in
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FIG. 3. (Color online) Rabi frequency of the probe field at
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addition to the transparency of �p+, it is clear that a gain
occurs in �p+ because of the cross-talk via the third-order
process (�p−�d+�∗

d−) that is associated with a net loss
of �p−. For a longer medium length (ηz = 6γ or 10γ ),
the residual absorption of both the probes at δ = 0 reduces
the transmission of �p± fields. Also, for a longer medium
length, the transmission spectra of both the probes are similar
around δ = 0 because the resonant energy transfer between
the two probe fields equilibrates along the medium length via
cross-talk. This effect becomes insignificant for off-resonant
probes.

(v) Next, we consider the case where the probes are sym-
metric [�p−(0) = �p+(0)] and the two drives are asymmetric
(�d+ = 2�d−). Under such conditions the transmission of
�p− is higher than that of �p+ around δ = 0 because of a
stronger ladder transparency created by the strong drive �d+
field, as shown in Fig. 3(b). Even though the strengths of the
probe fields are the same, the stronger ladder transparency of

�p− is maintained along the length of the medium such that
�p−(z) > �p+(z).

(vi) For both drive and probe being asymmetric fields
[�p−(0) 	= �p+(0),�d− 	= �d+], let us consider two cases
where (a) a weak (strong) drive field couples to the correspond-
ing weak (strong) probe field (�p−(0) = 2�p+(0),�d+ =
2�d−) and (b) a strong (weak) drive field couples to
the corresponding weak (strong) probe field [�p−(0) =
2�p+(0),�d− = 2�d+]. In case (a) both the probe �p+ and
�p− fields show high transmission throughout the medium
because of the strong EIT created by the drive �d− and �d+ in
the σp+ and σp− transitions, respectively [see Fig. 3(c)]. In case
(b) the transmission of �p+ is higher than that of �p− around
δ = 0 even though the initial �p−(0) is greater than �p+(0),
as shown in Fig. 3(d). Such high transmission of �p+ can be
understood as due to the strong ladder transparency created by
the strong �d− and the gain via the strong cross-talk that results
from the absorption of �p−. The weak transmission of �p−
results from the net loss for �p− due to χ (3) assisted energy
transfer to �p+. It was found that when the fields propagate
farther into a longer medium (ηz > 6γ ), the transmission of the
spectral wings of �p− (at δ ∼ ±2γ ) is reduced significantly.

IV. EXPERIMENTAL RESULTS

In this section we demonstrate experimentally the control
of cross-talk. The double-ladder system is realized experi-
mentally using a cesium atomic vapor cell with the energy
levels shown in Fig. 4(a). The probe laser is tuned near
the 62S1/2(j = 0, mj = 0) −→ 62P3/2(j = 1, mj = ±1) D2
transition at a wavelength of 852.2 nm, and the drive laser
is tuned near the 62P3/2(j = 1, mj = ±1) −→ 82S1/2(j = 0,
mj = 0) transition at a wavelength of 794.3 nm. The natural
linewidth γ for the cesium D2 line is ∼2π × 5.2 MHz, and
the natural linewidth � of the transition between the states
62P3/2 and 82S1/2 is ∼2π × 1.7 MHz. The experimental
setup is shown in Fig. 4(b). The 5-cm-long cesium vapor
cell is installed inside a double-layer magnetic shield to
eliminate the laboratory magnetic field. The density of the
cesium vapor is controlled by the temperature of the cell. The
transition of the drive field is driven by a single-frequency
Ti:sapphire laser (Coherent 899, linewidth of ∼500 kHz), and
the laser beam is focused to a spot size of 500 µm. The
probe transition is driven by an external-cavity diode laser
(homemade ECDL, linewidth of ∼1 MHz) that is focused
to a spot size of 200 µm. In our experimental arrangement,
the focus of the probe-beam waist is smaller than the drive;
thus, the probe beam is present all the way inside the drive
beam within the cell section. To maximize two-photon Doppler
cancellation, the drive and probe beams are arranged in
a counterpropagation configuration. The transmitted probe
beam is separated from the drive beam using a 50:50 beam
splitter, with a compensating half-wave plate to ensure that
the polarization state is not disturbed by the Brewster angle
from the beam splitter. To measure the transmitted spectra
that correspond to the left- and right-circular polarized light,
we employ two detectors and a quarter-wave plate that is
oriented 45◦ to the polarization of the polarized beam splitter
to form a balanced detection. The power of the probe and drive
fields is controlled by adjusting the half-wave plate before the
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FIG. 4. (Color online) (a) Diagram showing the cesium atom
energy levels. (b) Schematic diagram of the experimental setup:
I, isolator; C, chopper; P, polarizer; HW, half-wave plate; QW,
quarter-wave plate; PD, photodiode detector; L, focal lens; BS, beam
splitter; PBS, polarized beam splitter; DF, dichroic filter.

polarizer, and the polarization of the probe and drive fields can
be varied using a rotating polarizer and a quarter-wave plate.
The probe transmission spectra that correspond to the left- and
right-circular fields are recorded simultaneously by a digital
oscilloscope.

In Fig. 5(a) we demonstrate that the transmission of the
probe can be effectively controlled by an applied elliptically
polarized drive field. Here, the drive fields are resonant with
respect to their transitions, and the probe fields are tuned
around resonance. In our experiment the input intensity of the
linear probe is maintained at 6 mW/cm2 ∼ 0.72γ 2 (|�p+|2 =
|�p−|2 = 0.36γ 2), and the total intensity of the elliptical drive
field is maintained at 3 × 104 mW/cm2 ∼ 940γ 2 (|�d+|2 +
|�d−|2 = 940γ 2). If only the drive σd+ and two probes σp+
and σp− are present (|�d−|2 ∼ 0), then our system is composed
of two distinct processes that drive the atomic dynamics—one
with a standard ladder EIT for the σp− transition and the other
with a two-level system for the σp+ transition. Hence, the
transmission of probe σp− is maximum and that of σp+ is min-
imum. As the field strength of drive σd− increases (note that the
strength of σd+ field decreases simultaneously), both the spec-
tral shape (i.e., linewidth and center frequency) and the inten-
sity of the transmitted probe change. When the two drive fields
are present with similar intensity, the transmissions of both of
the probes reach maxima, and the spectra of the two probes are
very similar—in agreement with the theoretical results shown
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FIG. 5. (Color online) (a) The transmission of σp+ and σp−
probe fields is effectively controlled by the input intensity of the
two control fields σd+ and σd−. The experimental parameters are:
input linear probe with an intensity of 0.72γ 2 (|�p+|2 = |�p−|2 =
0.36γ 2) and an elliptical drive field with a total intensity of 940γ 2

(|�d−|2 + |�d+|2 = 940γ 2). The cesium atomic density in the cell
is N = 6 × 1010 cm−3. (b) Plot of maximum transmission power
of probe σp− field as a function of drive field σd−. The dashed
curve is the theoretical calculation using Eq. (13). The parameters
used for the theoretical fit are ηeff = 0.003η, �eff

p± = 0.7�p±, and
�eff

d± = 0.01�d±. The chi-squared value of the fit for |�p−| is 0.006.
All laser-field intensities are presented in the form of Rabi frequencies
squared, and all frequencies are scaled with γ .

in Fig. 2(c). The transmission of probe field σp− at δ ∼ 0 as
a function of the input drive field intensity of σd− is shown in
Fig. 5(b). The experimental results in this figure are in good
agreement with the analytical solutions presented in Eq. (13).

In Ref. [9] the simple model for describing generation of
a χ (3) field via the resonant FWM process in the double-
ladder system was used, where absorption of the generated
field σp− along the propagation direction and the cross-talk
effect were ignored. In the present study, inclusion of both
effects in the analytical calculation yields a finer and better
quantitative agreement between the theoretical calculations
and the experimental results as shown in Fig. 6.

To describe the experimental results [shown in Figs. 5(b)
and Fig. 6] properly using the analytical solutions obtained, the
effective Rabi frequency of probe �p± and drive �d± as well
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FIG. 6. (Color online) The transmission of the probe field σp+
and the generated field σp− as a function of the input intensity of
the drive σd+. All of the laser fields are on resonance with their
respective transitions. Experimental parameters: Ip+ = 3 mW/cm2

(|�p+(0)| = 0.6γ ), Id+ = 1.5 × 104 mW/cm2 (|�d−| = 21γ ), and
the cesium atomic density in the cell is N = 3 × 1010 cm−3. The
solid circles represent the experimental data, and the dashed curves
represent the theoretical calculation using Eqs. (12) and (13). The
parameters used for the theoretical fit are ηeff = 0.006η, �eff

p± =
0.90�p±, and �eff

d± = 0.85�d±. The chi-squared values of the fit for
probe |�p+| and the generated field |�p−| are 0.0048 and 0.0056,
respectively. All frequencies are scaled with γ .

as the effective optical depth η were used. Thus, the coupling
strength of the probe and drive transitions, the absorption
of the drive field, and the atomic population distribution in
the real atomic system of the cesium atom were taken into
consideration. It was found that �eff

d± becomes small in the
optically dense medium because of the absorption of the drive
fields. The small discrepancy between theory and experiment

may be attributed to the complicated multiple-level structure
of the cesium atom and line mixing due to the inhomogeneous
broadening effect [28].

V. SUMMARY

In summary, we have studied both theoretically and exper-
imentally the propagation dynamics of two weak probes in
a double-ladder system. We have demonstrated the explicit
manifestation of the three-photon term in our analytical
solutions for atomic polarization in the double-ladder system
and also shown an interplay between χ (1) and χ (3) leading
to the control of cross-talk. We have obtained analytical
solutions for describing the dynamics of the probe field in
the regimes where the contributions of χ (1) and/or χ (3) are
significant and presented numerical results to demonstrate the
controlled propagation dynamics of the cross-talk. We have
also experimentally demonstrated control of the cross-talk and
have shown that the analytical solutions presented yield good
quantitative agreement with the experiment. Effective control
of cross-talk in the double-ladder system could find many
potential applications in optical communication [29] and in
quantum information processing as a controllable correlated
photon source [30].
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