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The spontaneous decay of a multilevel atom interacting with the electromagnetic field in free space is
investigated with a unitary transformation method, which is introduced in order to include all rotating and
counter-rotating terms in the Hamiltonian. By using the ground state of the total Hamiltonian, the evolution of
the effective decay rate and the energy shift are calculated. When the atomic transition frequency is smaller
than the central frequency of the spectrum, the Zeno effect dominates, and if the atomic transition frequency is
larger than the central frequency, the anti-Zeno effect will dominate. The time evolution of the energy shift is
obtained. The counter-rotating terms lead to a shift toward the low frequency region for the frequency distri-
bution of the emitted photon.
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I. INTRODUCTION

It is well known that the counter-rotating terms are not
important in the resonant interaction between an atomic sys-
tem and an electromagnetic field and also in the spontaneous
emission in the long-time limit. However, the counter-
rotating terms are important for the energy shift �1–3� and it
was recently found that, for the short time, the dynamic evo-
lutions of the spontaneous emission without and with the
rotating wave approximation �RWA� are different �1,4�. In
this time regime, the quantum Zeno and quantum anti-Zeno
effects �5–7� for the spontaneous emission from an atom are
deeply affected by the counter-rotating terms. For the hydro-
gen atom, due to the counter-rotating terms, the Zeno time is
longer by two orders of magnitude than that obtained with
RWA and there is no anti-Zeno effect �1�. Consequently, the
experimental measurement of the quantum Zeno effect may
be much easier than what was determined with the RWA
�8–11�. Recently the quantum Zeno and anti-Zeno effects in
spontaneous decay have been used in the investigation of
how to control the thermodynamic evolution �12�.

In this paper, we present detailed calculations and present
the analytical study for the multilevel atom coupled to the
electromagnetic field in free space without making the RWA.
Our approach in which the Hamiltonian that contains the
counter-rotating terms is reduced to a Hamiltonian of the
same form as obtained with RWA allows us to handle many
problems of interest. An interesting question related to the
ground state of the whole system, as the atom is always
immersed in the vacuum reservoir, is addressed in a more
natural and simple way. The effect of the counter-rotating
terms for the system coupled to a thermal bath was discussed
in �4,7,12�, but they are all based on an improper ground
state, the ground state of the bare atom with no photon. The
energy of this ground state of the bare atom is higher than the
ground state of the whole system �13�; see Appendix A. If
we put the atom in the ground state of the bare atom, we find
that it evolves into a state with population in the excited state
of the bare atom due to the interaction with the vacuum �with

entropy increasing�; see Appendix A. We also find that the
energy of the excited state of the bare atom is higher than the
energy of the excited state of the whole system �Appendix
A�. Therefore, instead of starting with the ground state of the
bare atom, we start with the ground state of the whole sys-
tem, which can be obtained with our unitary transformation
method. For our studies, on the spontaneous emission, we
consider the atom to be initially in an excited state which is
obtained by acting a Hermitian operator on the ground state
of the whole system. The time evolution of the system in-
cluding the population decay and the energy shifts of the
excited and the ground states are obtained. The dependence
of the quantum Zeno and anti-Zeno effects on the transition
frequency and the spectrum of the vacuum are investigated.
The contribution to the energy shift from the emission and
reabsorption of virtual photons with the vacuum and from
the emission of a real photon is discussed and the time de-
pendence of the energy shift is calculated. The spectrum of
the field emitted by the atom is discussed which is different
from that obtained in previous methods. The method used in
this paper is convenient to calculate a lot of problems where
RWA is not valid such as the nonresonant light scattering
problems besides the short-time evolution.

II. BASIC THEORY

The interaction between a multilevel atom and the
vacuum reservoir can be described by the Hamiltonian �set-
ting �=1�

H = H0 + H1, �1�

H0 = �
i

�i�i��i� + �
k

�kbk
†bk, �2�

H1 = �
i,j�i,k

gk,ij�bk
† + bk��i��j� , �3�

where �i is the energy of the �i� state, bk
†�bk� is the creation

�annihilation� operator of the kth EM mode with frequency
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�k �k= �k��, and êk is the unit polarization vector. Here gk,ij

=− e
m	 1

2�0�kL
3 êk ·pij is the coupling constant between the

atomic transition ��i�↔ �j�� and the kth EM mode with pij
being the transition matrix element of the momentum opera-
tor. The interacting spectrum is defined by �8,9�

Gij��� = �
k

gk,ij
2 ��� − �k� . �4�

Please note that the ground state �the eigenstates� of H0 is not
the ground state �eigenstates� of the total Hamiltonian due to
the counter-rotating terms. When an atom is put in the free
vacuum, the atom is in the ground state of the total system
�13�. Starting with the ground state �or an eigenstate� of H0 is
not realistic.

The above Hamiltonian includes both the rotating terms
and counter-rotating terms. In order to eliminate the counter-
rotating terms in the interaction Hamiltonian H1, we make
the following unitary transformation of, HS=exp�iS�H exp�
−iS�, with

S = �
i,j�i,k

gk,ij�k,ij

i�k
�bk

† − bk��i��j� . �5�

Here �k,ij, which depends on k and �ij =�i−� j, is chosen
such that the counter-rotating terms cancel out �1,14�. For
this purpose, we expand HS in a power series of gk,ij, i.e.,
HS=H0+H1

S+H2
S+O�gk

3�, where O�gk
3� contains terms of the

third and higher orders in gk and will be neglected.
The first-order term in gk,ij is

H1
S = H1 + �iS,H0� . �6�

It follows from the definition of S and the Hamiltonians H0
and H1 that

H1
S = �

i,j�i,k
gk,ij�k,ij
�� ji�bk

† − bk�
1

�k
− �bk

† + bk���i��j�

+ �
i,j�i,k

gk,ij�bk
† + bk��i��j�

= �
i,j,k

i�j

gk,ij� �k,ij

�k
� ji − �k,ij + 1��bk

†�i��j� + bk�j��i��

+ �
i,j,k

i�j

gk,ij� �k,ij

�k
�ij − �k,ij + 1��bk

†�j��i� + bk�i��j�� , �7�

where the second term is the counter-rotating one. For the
purpose of eliminating the counter-rotating terms in H1

S, we
choose

�k,ij

�k
�ij −�k,ij +1=0 for �ij�0. This leads to the choice

�k,ij =
�k

��ij� + �k
. �8a�

The coefficient of the first term becomes �note �ij =−� ji�

�k,ij

�k
� ji − �k,ij + 1 =

2�k,ij

�k
� ji, �8b�

and consequently, H1
S has the same form as the interaction

Hamiltonian of the RWA

H1
S = �

i,j,k

i�j
2gk,ij�k,ij

�k
� ji�bk

†�i��j� + bk�j��i�� , �9�

with the new coupling constant
2gk,ij�k,ij

�k
� ji.

The second order H2
S= �iS ,H1�+ 1

2 [iS , �iS ,H0�] can be
written as

H2
S = − �

i,j,k

i�j
gk,ij

2

�k

2�k,ij − �k,ij

2 −
�k,ij

2

�k
�� j − �i��i��i� ,

�10�

where we have dropped all the nondiagonal terms �i��j��i
� j�, whose contribution to physical quantities is of the
fourth order in gk. The details of the calculation can be found
in Appendix B.

The self-energy of a free electron �2,14� is due to the
exchange of virtual photons with the vacuum and is given by
Ese=− 1

4��0

4e2

3�mc3 �0
�c p2

2md�, where �c�mec
2 is the uv cutoff

frequency with me as the rest mass of electron, which de-
pends on the kinetic energy of the free electron. The kinetic
energy of the electron at the atomic state �i� is �i�p2�i�

2m . There-
fore, the self-energy of the electron at state �i� can be written
as

Ese = −
1

4��0

2e2

3�m2c3�
0

�c

�i�p2�i�d�

= −
2�

3�m2c2�
0

�c

d��
j

�pij�2

= − �
j�i,k

gk,ij
2

�k
, �11�

where �= e2

4�c�0
is the fine structure constant. In the last step,

we changed the integration to the summation via
2�

3��mc�2 pij
2 �0

	d�kh��k�=�k
gk,ij

2

�k
h��k� �2� where h��� is an arbi-

trary function. It follows, on subtracting the self-energy from
H2

S, for the mass renormalization, we have

H2
S − Ese = − �

i,j,k

i�j
gk,ij

2

�k
�2�k,ij − �k,ij

2 − 1 −
�k,ij

2

�k
�� j − �i���i��i� .

�12�

We can separate the transformed Hamiltonian,

HS � H0
S + H1

S, �13�

into an off-diagonal part H1
S �Eq. �9�� and a diagonal part H0

S,

H0
S = H0 + H2

S − Ese = �
i

�i��i��i� + �
k

�kbk
†bk, �14a�

with the new eigenfrequency �i�=�i+
End
�i�, with
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End
�i� = �

k
�
j�i

2gk,ij
2

�k

�ij
2

��k + ��ij��2 + �
k

�
j

gk,ij
2

�k

� ji

��k + ��ij��

= �
k

�
j�i

gk,ij
2

�k

��ij
2 − �ij�k�

��k + �ij�2 + �
k

�
j�i

gk,ij
2

�k

� ji

��k + � ji�

= �
k

�
j�i

gk,ij
2

�k

� ji�� ji + �k�
��k + ��ij��2 . �14b�

Due to the renormalization, the energy of the atom is shifted
from �i to �i� by an amount 
End

�i�. This is the so-called
nondynamic shift as it is not related to any decay process.
We note that the effects of the counter-rotating terms are
included in the new coupling constant and the new eigenfre-
quencies. The Hamiltonian �Eq. �13�� is in the RWA form
and is valid for any multilevel quantum system.

III. GROUND STATE

Before studying the dynamic evolution of the atom, we
consider the ground states of the interaction picture Hamil-
tonian H0

S=H0+H2
S−Ese, where Ese is the self-energy of the

free electron. The ground state of H0
S is �gS�= �g���0k�� with

the eigenenergy �g�=�g+ ��0k���g�H2
S−Ese�g���0k��, where �g�

is the ground state of the bare atom �H0�g�=�g�g�� and ��0k��
is the vacuum state of the field. This ground state �gS�
= �g���0k�� is also the ground state of the total Hamiltonian,
HS�H0

S+H1
S, because H1

S�g���0k��=0. The state ��S�t�� in HS

and the corresponding state ���t�� in H are related via
��S�t��=eiS���t��. Therefore, the corresponding state of �gS�,
for a two-level system �assuming �e� be the excited state of
the atom with H0�e�=�e�e��, is

���t�� = e−iS��S�t�� = �g���0k�� − �
k

gk

��k − �eg�
�e��1k�

−
1

2�
k

gk
2

��k − �eg�2 �g���0k�� , �15�

which is the same as in Ref. �13�. The state ���t�� in H can be

expressed by the state ��S�t�� in HS by ���t��=e−iS��S�t��.
Therefore, the state �gH�= �g���0k�� in H with eigenenergy �g
is not the ground state of the total system. If the atom ini-
tially is in �gH�= �g���0k��, the atom will evolute some popu-
lation to other states due to the counter-rotating terms.

IV. DYNAMIC EVOLUTION

We consider an atom initially in the excited state �ei
S�

= �i���0k��, which can be achieved by acting the Hermitian
operator ��i��g�+ �g��i�� on the ground state. Here we calcu-
late the time-dependent probability amplitude �t�
= ��0k���i�exp�−iHSt��i���0k��.

The wave function can be written as

���t�� = �t��i,�0�k� + �
j�i

�
k

� j,k�t��j,1k� , �16�

where the state vector �j ,1k� represents the atom in the lower
level �j� with the emission of a photon �1k�. Applying
Schrödinger equation to Eq. �16�, we obtain

i
d�t�

dt
= �

j�i
�
k

2�ijgk,ij�k,ij

�k
ei��ij�−�k�t� j,k�t� , �17�

i
d� j,k�t�

dt
=

2�ijgk,ij�k,ij

�k
e−i��ij�−�k�t�t� , �18�

where �ij� ��i�−� j�. Integrating Eq. �18� and then substitut-
ing into Eq. �17�, we get

d�t�
dt

= − �
j�i

�
k

4�ij
2 gk,ij

2 �k,ij
2

�k
2 �

0

t

ei��ij�−�k��t−t���t��dt�. �19�

This equation can be solved by formally integrating Eq. �19�,
iterating and keeping terms up to gk,ij. We then obtain

�t� = 1 − �
0

t

�t − t���
j�i

�
k

4�ij
2 gk,ij

2 �k,ij
2

�k
2 ei��ij�−�k�t�dt�. �20�

We can approximately write

�t� � exp�− �
0

t

�t − t���
j�i

�
k

4�ij
2 gk,ij

2 �k,ij
2

�k
2 ei��ij�−�k�t�dt��

= exp
− t�−
1

t
�
j�i

�
k

4�ij
2 gk,ij

2 �k,ij
2

�k
2

ei��ij�−�k�t� − 1 − i��ij� − �k�t
��ij� − �k�2 �

= exp�− t��
j�i

�
k

4�ij
2 gk,ij

2 �k,ij
2

�k
2

2 sin2��ij� − �k

2
t�

��ij� − �k�2t
+ i�

j�i
�
k

4�ij
2 gk,ij

2 �k,ij
2

�k
2 � 1

�ij� − �k

−
sin��ij� − �k�t
��ij� − �k�2t

���
= exp�− ��i�t�/2 + i
Edyn

�i� �t��t� , �21�

where �i�t� is the time-dependent decay rate �effective decay rate� and the second term �the imaginary part� is the time-
dependent dynamic energy shift due to the phase accumulation of the probability amplitude of the upper state during the
dynamical evolution �decay�.
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V. EFFECTIVE DECAY RATE

According to Eq. �21�, the survival population in the ini-
tial state is

P�t� = ��t��2 = exp�− �i�t�t� . �22�

Here �i�t� is the effective decay rate

�i�t� = 2��
j�i

�
k

4�ij
2 gk,ij

2 �k,ij
2

�k
2

2 sin2��ij� − �k

2
t�

���ij� − �k�2t
�23�

=2��
0

	

�
j�i

�
k

4�ij
2 gk,ij

2 �k,ij
2

�k
2 ��� − �k�

�

2 sin2��ij� − �

2
t�

���ij� − ��2t
d�

= 2��
0

	

�
j�i

Gij���f ij���F�� − �ij� ,t�d�

� 2��
0

	

�
j�i

Gij� ���F�� − �ij,t�d� , �24�

where Gij���=�kgk,ij
2 ���−�k�as given in Eq. �4� and

Gij� ��� =
4Gij�����ij�2

�� + �ij�2 = Gij���f ij��� , �25�

F�� − �ij,t� =

2 sin2��ij − �

2
t�

���ij − ��2t
. �26�

Here we replaced �ij� by �ij as their difference is of the order
gk

2.
It follows, on comparing Eq. �24� with the results

under RWA �2,3,13�, i.e., �i,RWA�t�=2��0
	� j�iGij���F��

−�ij , t�d�, we find the counter-rotating terms are effectively
taken into account by modulating the spectrum Gij��� with
multiplying a function �1�

f ij��� = �1 − �� − �ij�/�� + �ij��2. �27�

Note here �ij = ��ij�. The second term in Eq. �27� comes from
the counter-rotating terms: it is proportional to 1 / ��+�ij�
and is zero at �=�ij. For ���ij, f ij����1, and for �
��ij, f ij����0, which means the higher frequency part of
the interacting spectrum is greatly suppressed by the counter-
rotating terms. However it is important to note that the con-
tributions of the counter-rotating terms turn to be important
only for very short time, because the function F��−�ij , t�
becomes ���−�ij� in the long-time limit, and we have the
decay rate ��	�=�RWA�	�=2�� j�iGij��ij�, the decay rate
under the Weisskopf-Wigner approximation.

Next we consider the dynamic evolution of the decay pro-
cess. Here we adopt the commonly used spectrum for the
free vacuum, Gij���=

aij�/2
�1+��/�c�2�4 , as given in Refs. �1,8–10�,

where aij is the coupling strength �a dimensionless constant�.

This spectrum has a peak at �=�c /	7. We note that the
spectrum function in Eq. �25� is modified from Gij��� to

Gij� ���=Gij���
4�ij

2

��ij+��2 . We consider the transition from the
first excited state ��e�� to the ground state ��g�� with transition
frequency �ij =�e−�g=�0, such as 2P to 1S of hydrogen
atom. In Fig. 1, we plot the effective decay rate ��t� /�0 for
different �0 �where �0=2�Geg��0� is the decay rate for �e�
→ �g� for a long time�. For comparison, we also plot
�RWA�t� /�0 shown as the dotted line. It is known that for the
hydrogen atom �0��c, we have only the Zeno effect �1�,
see Fig. 1�a�. For �0��, the Zeno effect always dominates
and there is no anti-Zeno effect for �0 below �. With the
transition frequency increasing to the peak of the spectrum
���, the result without RWA is closer to the result of RWA.
When the transition frequency is larger than �, the anti-Zeno
effect will be easier to realize as compared to the result from
RWA.

The difference between the result with and without the
RWA comes from the two counter-rotating terms
bk

†ei�kt��e��g�ei�0t� and bke−i�kt��g��e�e−i�0t�. For ���0, the
main part of the spectrum is in the region of �k��0, and we
have bk

†ei�kt��e��g�ei�0t��bk
†ei�kt��e��g��, whose role is just

opposite to the role of the rotating term that can be written
as bk

†ei�kt��g��e�e−i�0t��bk
†ei�kt��g��e��. Consequently, the

counter-rotating term slows down the decay so that the
Zeno effect dominates. For ���0, the main part of the
spectrum is in the region of �k��0, and we have
bke−i�kt��g��e�e−i�0t��bk��g��e�e−i�0t�, whose role is also
making a decay, the same as the rotating terms
bk

†ei�kt��g��e�e−i�0t��bk
†��g��e�e−i�0t�. Consequently, the

counter-rotating term accelerates the decay and anti-Zeno ef-
fect dominates. The role of the counter-rotating terms are
well represented by the factor, f��k�= �1− ��k−�0� / ��k
+�0��2. For �k��0, we have f��k�→0, slowing the decay
�Zeno effect�, while for �k��0, we have f��k�→4, acceler-
ating the decay �anti-Zeno�.

In the above, we change the transition frequency while
keeping the same spectrum. A similar result will be obtained
if we change the spectrum while keeping the transition fre-
quency constant. In general, there is no anti-Zeno effect but
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FIG. 1. �Color online� The effective decay rate ��t� /�0 for dif-
ferent �0.
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only Zeno effect when the transition frequency is smaller
than the center frequency of the spectrum. When the transi-
tion frequency is larger than the center frequency of the spec-
trum, the anti-Zeno effect dominates. In the case that the
transition frequency is near the center frequency of the spec-
trum, the counter-rotating terms seem to have no influence
due to the opposite roles of the two parts of the high fre-
quency and the low frequency in the spectrum. The quantum
Zeno effect and quantum anti-Zeno effect will be found
within the time scale of 10 /��100 /� with � being the
spectrum center of the reservoir. This time scale also depends
on the detailed spectrum and the atomic transition frequency.

VI. LAMB SHIFT

The time-dependent dynamic shift for state �i�, the second
term in Eq. �21�, is


Edyn
�i� �t� = �

j�i
�
k

4gk,ij
2 �ij

2

��ij + �k�2� 1

�ij� − �k

−
sin��ij� − �k�t
��ij� − �k�2t

�
=�

j�i
�
k

4gk,ij
2 �ij

2

��ij + �k�2

1

�ij − �k
�1 −

sin��ij − �k�t
��ij − �k�t

� ,

�28�

where �i�=�i+
End taking into account the nondynamic
level shift. However, the difference between �i� and �i is on
the order of g2 and then �i� can be replaced by �i in Eq. �28�.
The total energy shift at time t is the sum of the nondynamic
shift, Eq. �14b�, and the dynamic shift �Eq. �28��,


Etotal
�i� �t� = 
Edyn

�i� �t� + 
End
�i�

= �
k

�
j�i

4�ij
2

��ij + �k�2

gk,ij
2

�ij − �k
�1 −

sin��ij − �k�t
��ij − �k�t

�
+ �

k
�
j�i

gk,ij
2

�k

� ji�� ji + �k�
��k + ��ij��2 . �29�

At the long-time limit, 
Etotal�	� can be written as �for de-
tails see Appendix C�


Etotal
�i� �	� = 
Edyn

�i� �	� + 
End
�i� = �

k
�
j�i

gk,ij
2

�k

�ij

��ij − �k�
,

�30�

which is the same as in �2�, but different from that in �3�.

VII. SPECTRUM OF THE FIELD EMITTED
BY THE ATOM

Considering the transition from the first excited state �e�
to the ground state �g� with the transition frequency �0� in S
picture, the equation for the probability amplitude of the
ground state, �k�t� �set i=e, j=g� becomes i

d�k�t�
dt

=
2�0gk

�0+�k
e−i��0�−�k�t�t�, see Eq. �18�, where �ij� =�eg� =�0�. Sub-

stituting Eq. �21� into Eq. �18� and taking the long-time limit,
we have

�k�	� =
gk

��0� + 
Edyn
�e� − �k� + i�0/2

2�0

��k + �0�
, �31�

where �0=
�0

3��0c3 � e
m �peg��2 is the decay rate under the Wigner-

Weisskopf approximation �15�. The spectral of the field emit-
ted by the atom is

���t��E−�t�E+�t����t��t=	 = ���t���
k,k�

bk
†bk�e

i�kte−i�k�t���t��t=	

= �
k

�k
��	��k�	�

= �
−	

	

D��k�
�k

��	��k�	�
gk

2 d�k

=� d�kS��k� , �32�

where E−�t� and E+�t� are the electric field operators, gk
2

= � 1
2�0L3 � e

m êk ·pij�2� 1
�k

and D��k�=
�k

6�2�0c3 � e
m �peg��2. Using Eq.

�31� we have

S��k� =
�k

6�2�0c3� e

m
�peg��2

�
1

��0� + 
Edyn
�e� − �k�2 + �0

2/4
4�0

2

��k + �0�2

=
�k

��0

�0/2
���0� + 
Edyn

�e� � − �k�2 + �0
2/4

4�0
2

��k + �0�2 ,

=
�k

��0

�0/2
���0 + 
End

�e� − 
End
�g� + 
Edyn

�e� � − �k�2 + �0
2/4

�
4�0

2

��k + �0�2 ,

=
�k

��0

�0/2
���0 − 
End

�g� + 
Etotal
�e� � − �k�2 + �0

2/4
4�0

2

��k + �0�2 ,

�33�

where the energy shift for the first excited state �e� is

Etotal

�e� =
End
�e�+
Edyn

�e� . The spectral obtained from previous
methods, such as in �2�, is

Spre��k� =
�k

��0

�0/2
���0 + 
Etotal

�e� � − �k�2 + �0
2/4

. �34�

Please note two differences, the term of −
End
�g� in the de-

nominator, which leads to different peak positions, and the
additional factor of f��k�=4�0

2 / ��k+�0�2, which leads to a
shift of the distribution toward the low frequency region,
because of f��k��0��1, and f��k��0��1.

In Fig. 2, we plot the spectral distribution for the 2P1/2
state of the hydrogen atom, 
Etotal

�e� =0, �2P�4.04�10−8�PS
=1.01�108 Hz ��PS�1.55�1016 rad /s=2.5�1015 Hz�,
and 
End

�g��8�109 Hz �16�, the solid line for Eq. �33� and
dashed line for Eq. �34�. Someone may argue that the shift of
−
End

�g� can be included in the previous methods, as eventu-
ally the atom will decay to the ground state. However, in the
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previous method, the energy shift of the ground state is also
accompanied by the transition to upper states due to the
counter-rotating terms, which results in zero decay rate at the
long-time limit but not zero population in the upper states.
The key problem in the previous method is that the bare
ground state of the atom with no photon is not the ground
state of the whole system as we discussed in Sec. III. If we
add the energy shift of the ground state by hand in the pre-
vious methods, Eq. �34� can be revised as

Spre� ��k� =
�k

��0

�0/2
���0 + 
Etotal

�e� − 
End
�g�� − �k�2 + �0

2/4
.

�35�

The difference in the denominator will be eliminated. The
energy shift of the ground state is the contribution of the
counter-rotating terms and the nondynamical shift 
End

�g� is
just the Lamb shift �1S1/2�, which is self-consistently in-
cluded in our method without manual correction. The differ-
ence �about 8�109 Hz� between the peaks between S��k�
and Spre��k� is achievable by current technology.

VIII. SUMMARY

We presented a method based on a unitary transformation
that can take into account the counter-rotating as well as the
rotating terms in the Hamiltonian. By using the ground state
of the total Hamiltonian, we have derived the effective decay
rate and the Lamb shift without the RWA. The counter-
rotating terms have important contribution to the short-time
dynamic evolution in the atomic decay. If the atomic transi-
tion frequency is smaller than the central frequency of the
spectrum, the Zeno effect dominates, and if the atomic tran-
sition frequency is larger than the central frequency of the
spectrum, the anti-Zeno effect will dominate. The time evo-
lution of the energy shift is also obtained. The statistical
frequency distribution of the photon emitted by the atom is
shifted to the low frequency region compared with the same
distribution obtained under the rotating wave approximation.
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APPENDIX A: THE CORRECT GROUND STATE
OF THE WHOLE SYSTEM

1. Time evolution of the ground state of the bare atom
with no photon, �gH

‹= �g‹�{0k}‹

Consider a two-level system with ground state �g� and
excited state �e� of the bare atom, respectively. After
subtracting the self-energy of the free electron, ESE_i
=−�kgk

2 /�k �i=g ,e�, the Hamiltonian in Schrödinger picture
is

H = �e��e��e� + �g��g��g� + �
k

�kbk
†bk + �

k
gk�bk

† + bk���e��g�

+ �g��e�� , �A1�

where �i�=�i−ESE_i. Note ESE_i is the same for �e� and �g� in
the two-level system. With the wave function ���t��
=�t��g , �0k��+�

k

�k�t��e ,1k� in the interaction picture and the

initial state ��0�= �g���0k��, we can obtain

i
d�t�

dt
= �

k
gkei�−�0−�k�t�k�t� , �A2�

i
d�k�t�

dt
= gke−i�−�0−�k�t�t� , �A3�

where �0=�e−�g. Integrating Eq. �A3� and then substituting
it into Eq. �A2�, we have

d�t�
dt

= − �
k

gk
2�

0

t

ei�−�0−�k��t−t���t��dt�. �A4�

Integrating Eq. �A4� and with the similar calculation in Sec.
IV, we have

�t� = �0�exp�− t��
k

gk
2

2 sin2��0 + �k

2
t�

��0 + �k�2t

+ i�
k

gk
2�−

1

�0 + �k
+

sin��0 + �k�t
��0 + �k�2t

��� . �A5�

The survival population of the ground state �g , �0k�� is

Pg�t� = ��t��2 = exp�− 2�
k

gk
2

2 sin2��0 + �k

2
t�

��0 + �k�2 � �
t→	

1

− 2�
k

gk
2 1

��0 + �k�2 , �A6�

In the last, 2 sin2�
�0+�k

2 t� was replaced by its average value
�equal to 1�. In Fig. 3 we plot the evolution of the population,
where we use the spectrum function G���=

a0�/2
�1+��/�c�2�4 with

2.499990 2.499995 2.500000

0.00

0.02

0.04

0.06
pre

(1015Hz)

S(ωk)

ωωωωk

S (ωk)S(ωk)

FIG. 2. �Color online� The spectrum S��k� in arbitrary unit for
the hydrogen transition from 2P to 1S state.

LI et al. PHYSICAL REVIEW A 80, 023801 �2009�

023801-6



the parameter a0=0.02 and the cutoff frequency �c=100�0.
It is clear that �gH�= �g���0k�� is not the ground state of the
whole system, which is given in Sec. III, �gS� in S picture.
The ground state of the whole system in the H picture can be
obtained by the unitary transformation,

�G� = e−iS�gS� � �1 − iS − S2��g,�0k��

� �1 −
1

2�
k

gk
2

��k + �0�2��g,�0k��

− �
k

gk

��k + �0�
�e,1k� , �A7�

where the two-photon terms are dropped. It is not difficult to
find that there is no population evolution if the system ini-
tially is in the �G� state, except a phase depending on the
energy of the �G� state.

2. Energies of the �g , {0k}‹ state and the �G‹ state

The energy of �g , �0k�� is

�g,�0k��H�g,�0k�� = �g� = �g + �
k

gk
2

�k
. �A8�

The energy of �G� is

�G�H�G� = �G�
�e��e��e� + �g��g��g� + �
k

�kbk
†bk + �

k
gk�bk

† + bk���e��g� + �g��e���G�

= �G���e��e��e� + �g��g��g� + �
k

�kbk
†bk��G� + �G��

k
gk�bk

† + bk���e��g� + �g��e���G�

= �I� + �II� = �g + �
k

gk
2

�k
− �

k

gk
2

��k + �0�
= �g + �

k

gk
2�0

�k��k + �0�
, �A9�

where

�I� = �e��
k

gk
2

��k + �0�2 + �
k

�kgk
2

��k + �0�2 + �g��1 − �
k

1

2

gk
2

��k + �0�2�2

� �e��
k

gk
2

��k + �0�2 + �
k

�kgk
2

��k + �0�2 + �g��1 − �
k

gk
2

��k + �0�2�
= �g + �

k

gk
2

�k
+ �

k

gk
2

��k + �0�
,

�II� = �G��
k

gk�bk
†�e��g� + bk

†�g��e� + bk�e��g� + bk�g��e���G�

= �G��
k

gk�bk
†�e��g� + bk�g��e���G�

= − �
k

gk
gk

��k + �0��1 − �
k

1

2

gk
2

��k + �0�2�
− �

k
gk�1 − �

k

1

2

gk
2

��k + �0�2� gk

��k + �0�

� − �
k

2gk
2

��k + �0�
,

Note the second term in Eq. �A9� is the nondynamical shift of the state �g� with the self-energy subtracted. The energy

difference between the two states is �g , �0k��H�g , �0k��− �G�H�G�=�k
gk

2

�k+�0
�0.

0 5 10 15 20

0.88

0.92

0.96

1.00
gP (t)

ωωωω0t

FIG. 3. The evolution of the survival population, Pg�t�.
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3. Energies of two excited states

The excited state can be achieved by acting �x= ��e��g�
+ �g��e�� on the ground state in H picture. For the state
�g , �0k��, which is �e , �0k��. Its energy is

�e,�0k��H�e,�0k�� = �e� = �e + �
k

gk
2

�k
. �A10�

The other excited state is obtained by acting �x
S=�x on the

state �G�, �eS�=�x�G�= �e , �0k�� in the S picture. This excited
state in H picture can be obtained:

�E� = e−iS�e,�0k�� � �1 − iS − S2��e,�0k�� � �e,�0k��

− �
k

gk

��k + �0�
�g,1k� −

1

2�
k

gk
2

��k + �0�2 �e,�0k�� .

�A11�

The energy of the state �E� is

�E�H�E� = �E���e��e��e� + �g��g��g� + �
k

�kbk
†bk��E� + �E��

k
gk�bk

† + bk���e��g� + �g��e���E� = �I�� + �II��

= �e� + �
k

gk
2��k − �0�
��k + �0�2 − �

k

2gk
2

��k + �0�
= �e� + �

k

gk
2�k�− �k − 3�0�
�k��k + �0�2 = �e� + �

k

gk
2�0��0 − �k�
�k��k + �0�2 − �

k

gk
2

�k
, �A12�

where

�I�� = �g��
k

gk
2

��k + �0�2 + �
k

�kgk
2

��k + �0�2 + �e��1 − �
k

1

2

gk
2

��k + �0�2�2

= �e� + �
k

gk
2��k − �0�
��k + �0�2 ,

�II�� = − �
k

gk
gk

��k + �0��1 − �
k

1

2

gk
2

��k + �0�2� − �
k

gk�1 − �
k

1

2

gk
2

��k + �0�2� gk

��k + �0�
� − �

k

2gk
2

��k + �0�
.

Note the second term in Eq. �A12� is the nondynamical shift of the state �e� with the self-energy subtracted. The energy

difference between the two states is �e , �0k��H�e , �0k��− �E�H�E�=�k
gk

2�k��k+3�0�
�k��k+�0�2 �0.

APPENDIX B: THE CALCULATION OF H2
S

We recall that

H2
S = �iS,H1� +

1

2
†iS,�iS,H0�‡ . �B1�

First, we calculate the commutation relation �iS ,H1�. It follows from Eqs. �3� and �5� that

�iS,H1� = ��
i,j,k

i�j
gk,ij�k,ij

�k
�bk

† − bk��i��j���
i,j,k

i�j

gk,ij�bk
† + bk��i��j� − ��

i,j,k

i�j

gk,ij�bk
† + bk��i��j���

i,j,k

i�j
gk,ij�k,ij

�k
�bk

† − bk��i��j�

= �
k

��bk
† − bk��bk

† + bk� − �bk
† + bk��bk

† − bk�� �
i,j,j�

i�j,j�j�
gk,ij�k,ij

�k
gk,j j��i��j�� , �B2�

which includes the diagonal as well as the off-diagonal terms. The diagonal terms will have the contribution to the energy shift,
while the nondiagonal terms ��i��j�� with i� j�� are neglected as their contribution to the transition is of the fourth order in gk.
We note that �bk

† −bk��bk
† +bk�− �bk

† +bk��bk
† −bk�=2�bk

†bk−bkbk
†�=−2. Therefore, we have

�iS,H1� = 2�
i,j,k

i�j
gk,ij

2 �k,ij

�k
�i��i� . �B3�

Next we consider the term 1
2 [iS , �iS ,H0�]. It follows from Eqs. �2� and �5� that
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1

2
†iS,�iS,H0�‡ =

1

2
��
i,j,k

i�j
gk,ij�k,ij

�k
�bk

† − bk��i��j�� �
i,j�i,k

gk,ij�k,ij��� j − �i��bk
† − bk�

1

�k
− �bk

† + bk���i��j�

− 
 �
i,j�i,k

gk,ij�k,ij��� j − �i��bk
† − bk�

1

�k
− �bk

† + bk���i��j��
i,j,k

i�j
gk,ij�k,ij

�k
�bk

† − bk��i��j�
=

1

2
− ��
i,j,k

i�j
gk,ij�k,ij

�k
�bk

† − bk��i��j����
i,j,k

i�j
gk,ij�k,ij

�k
�bk

† + bk��i��j�� + ��
i,j,k

i�j
gk,ij�k,ij

�k
�bk

† + bk��i��j��
���

i,j,k

i�j
gk,ij�k,ij

�k
�bk

† − bk��i��j�� +
1

2
��
i,j,k

i�j
gk,ij�k,ij

�k
�bk

† − bk��i��j����
i,j,k

i�j
gk,ij�k,ij

�k
�� j − �i��bk

† − bk��i��j��
− ��

i,j,k

i�j
gk,ij�k,ij

�k
�� j − �i��bk

† − bk��i��j����
i,j,k

i�j
gk,ij�k,ij

�k
�bk

† − bk��i��j�� = F1 + F2, �B4�

where

F1 =
1

2
− ��
i,j,k

i�j
gk,ij�k,ij

�k
�bk

† − bk��i��j����
i,j,k

i�j
gk,ij�k,ij

�k
�bk

† + bk��i��j��
+ ��

i,j,k

i�j
gk,ij�k,ij

�k
�bk

† + bk��i��j����
i,j,k

i�j
gk,ij�k,ij

�k
�bk

† − bk��i��j��
and

F2 =
1

2
��
i,j,k

i�j
gk,ij�k,ij

�k
�bk

† − bk��i��j����
i,j,k

i�j
gk,ij�k,ij

�k
�� j − �i��bk

† − bk��i��j��
− ��

i,j,k

i�j
gk,ij�k,ij

�k
�� j − �i��bk

† − bk��i��j����
i,j,k

i�j
gk,ij�k,ij

�k
�bk

† − bk��i��j�� .

For F1, we have

F1 =
1

2
−��
i,j,k

i�j
gk,ij�k,ij

�k
�bk

† − bk��i��j����
i,j,k

i�j
gk,ij�k,ij

�k
�bk

† + bk��i��j��+��
i,j,k

i�j
gk,ij�k,ij

�k
�bk

† + bk��i��j����
i,j,k

i�j
gk,ij�k,ij

�k
�bk

† − bk��i��j��
= −

1

2�
k

��bk
† − bk��bk

† + bk� − �bk
† + bk��bk

† − bk����
i,j

i�j
gk,ij�k,ij

�k
�i��j��� �

i�,j�

i��j� gk,i�j��k,i�j�

�k
�i���j���

= �
k

�
i,j

i�j
gk,ij�k,ij

�k
�
i�,j�

i��j� gk,i�j��k,i�j�

�k
�i��j��i���j��

= �
k

�
i,j,j�

i�j,j�j� gk,ij�k,ijgk,j j��k,j j�

�k
2 �i��j�� = �

i,j,k

i�j
gk.ij

2 �k,ij
2

�k
�i��i� �B5�

where Eq. �7� was used, and in the last step the off-diagonal terms were neglected. For F2, we have

F2 =
1

2
��
i,j,k

i�j
gk,ij�k,ij

�k
�bk

† − bk��i��j����
i,j,k

i�j
gk,ij�k,ij

�k
�� j − �i��bk

† − bk��i��j��
− ��

i,j,k

i�j
gk,ij�k,ij

�k
�� j − �i��bk

† − bk��i��j����
i,j,k

i�j
gk,ij�k,ij

�k
�bk

† − bk��i��j��
=

1

2
�
k

�bk
† − bk�2��

i,j

i�j
gk,ij�k,ij

�k
�i��j��� �

i�,j�

i��j� gk,i�j��k,i�j�

�k
�� j� − �i���i���j���
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− ��
i,j,k

i�j
gk,ij�k,ij

�k
�� j − �i��i��j����

i,j,k

i�j
gk,ij�k,ij

�k
�i��j��

=
1

2�
k

�bk
† − bk�2� �

i,j,j�

i�j,j�j�
gk,ij�k,ij

�k
2 gk,j j��k,j j��� j� − � j��i��j�� − �

i,j,j�

i�j,j�j�
gk,ij�k,ij

�k
2 gk,j j��k,j j��� j − � j���i��j��� . �B6�

Neglecting the off-diagonal terms in the atomic operators, we have

F2 =
1

2�
k

�bk
† − bk�2��

i,j

i�j
gk,ij

2 �k,ij
2

�k
2 ��i − � j��i��i� − �

i,j

i�j
gk,ij

2 �k,ij
2

�k
2 �� j − �i��i��i��

=
1

2�
k

�bk
† − bk�2��

i,j

i�j
gk,ij

2 �k,ij
2

�k
2 ��i − � j��i��i� + �

i,j

i�j
gk,ij

2 �k,ij
2

�k
2 ��i − � j��i��i��

= �
k

�bk
† − bk�2�

i,j

i�j
gk,ij

2 �k,ij
2

�k
2 ��i − � j��i��i� . �B7�

If we neglect the off-diagonal terms bk
†bk

†, bkbk and also use bk
†bk��0�k�=0 in our consideration for the renormalization by the

vacuum, F2 can be written as

F2 = �
i,j,k

i�j
gk.ij

2 �k,ij
2

�k
2 �� j − �i��i��i� . �B8�

Combining F1 and F2, we have

1

2
†iS,�iS,H0�‡ = �

i,j,k

i�j
gk.ij

2 �k,ij
2

�k
�i��i� + �

i,j,k

i�j
gk.ij

2 �k,ij
2

�k
2 �� j − �i��i��i� . �B9�

From Eqs. �A3� and �A9�, we have

H2
S = �iS,H1� +

1

2
†iS,�iS,H0�‡

= − 2�
i,j,k

i�j
gk,ij

2 �k,ij

�k
�i��i� + �

i,j,k

i�j
gk.ij

2 �k,ij
2

�k
�i��i� + �

i,j,k

i�j
gk.ij

2 �k,ij
2

�k
2 �� j − �i��i��i�

= − �
i,j,k

i�j
gk,ij

2

�k
�2�k,ij − �k,ij

2 −
�k,ij

2

�k
�� j − �i���i��i� , �B10�

which is Eq. �10� in the text.

APPENDIX C: THE NONDYNAMIC SHIFT

By using Eqs. �B10� and �11�, we have


End
�i� = �i�H2

S − Ese�i� = �i − �i�
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which is Eq. �14b� in the text. For the long-time limit, the dependent dynamic shift 
Edyn�	� can be easily found from Eqs.
�28� and �8a� in the text,
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Combining Eqs. �B1� and �B2�, we have the total energy shift 
Etotal
�i� �	� for the long-time limit,
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which is Eq. �30� in the text.
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