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Quantum-state measurement of two-mode entangled field-state in a high-Q cavity
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We propose a scheme for the measurement of a two-mode entangled field-state in a high-Q cavity. The
scheme utilizes the momentum distribution spectrum in the Raman-Nath regime of a three-level atom in V
configuration. Due to the two modes of the electromagnetic field the atom may have x interactions with mode
A, and y interactions with mode B, causing a complex momentum distribution. The momentum distribution of
the atom after interaction with the quantized cavity fields contains the information of the field photon statistics.
We reconstruct the joint photon statistics of the entangled field with the help of recorded momentum spectrum.
We also propose to reconstruct the Wigner function of a two-mode entangled field state by injecting two
coherent states resonant to each mode into the cavity and then measuring the joint photon statistics of the

displaced field.
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I. INTRODUCTION

The quantum theory of physics has been a fascinating
playground to study the nature of electromagnetic radiations.
The recent interests in this subject arose not only because of
the interests in basic atom-field interaction but also the
stream of study is due to the fascination in the measurement
of the quantum state of an unknown field-state in high-Q
cavities. The great interest in the measurement of the cavity
field is due to its application in the newly progressing field of
quantum informatics [1-4]. For the measurement of the
quantum state one needs to do a set of experiments on the
identically prepared quantum systems. The reason to do so is
the fundamental constraint of the quantum physics which
states that a single experiment on a quantum system reveals
only limited aspects of the system.

Smithy and co-workers [5] have given the first experi-
mental report on the reconstruction of the quantum state of a
radiation field. They used optical tomography proposed by
Vogel and Risken [6] for the reconstruction of quantum state
of a single mode radiation field. The Wigner function of the
field mode has been obtained (from the distribution mea-
sured in balance homodyne) using Radon transformation [6].

Besides the homodyne detection method several other
possibilities have also been explored for the reconstruction
of the quantum state of an electromagnetic field. These
schemes are based on the Ramsey method of separated os-
cillatory fields [7], absorption and emission spectra [8], and
the atomic beam deflection [9-14]. The atomic deflection
method, which uses the momentum distribution of the atoms
in order to reveal the quantum state of light inside the cavity,
provides a nice tool for this purpose. It is well-known that
the momentum distribution of the deflected atoms is a func-
tion of field photon numbers [10,12—14]. The atomic diffrac-
tion from the electromagnetic field may be divided into two
regimes, one in which the recoil energy of the field is much
less then the Rabi frequency (Raman-Nath regime [10,13])
and the other in which the recoil energy is much greater than
the Rabi frequency (the Bragg’s regime [12,14-16]). Here
we are concerned with the atomic beam diffraction with the
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cavity field in the Raman-Nath regime, which is used for the
reconstruction of two entangled modes of the cavity field.

Several types of entangled field states [17] have been dis-
cussed in literature and also there are many schemes for the
measurement of the quantum statistical properties of the en-
tangled field modes [18-24]. Among them the scheme of
Kim and Agarwal [19] uses the probability of atomic inver-
sion and relates it to the Wigner characteristic function [20].
Ikram and Zubairy use Autler-Townes spectroscopy to recon-
struct the two-mode entangled state in a high-Q cavity [22],
and Davidovich et al. use the Ramsey type setup to recon-
struct the GHZ state [23]. Having a well justified and math-
ematically tractable measure of entangled field-state is likely
to be of high value in new developing fields of quantum
computing [1], quantum teleportation [2], dense coding [3],
and quantum cryptography [4]. The feasibility of some of
these applications has been demonstrated in recent experi-
ments.

The model we propose here concerns the measurement of
the joint photon statistics and the Wigner function of the
bi-mode quantized entangled electromagnetic fields in a
single high-Q cavity. The scheme utilizes the Raman-Nath
diffraction of the three-level atoms from the standing wave
field. Previously we have suggested a scheme for the recon-
struction of the single mode cavity field [13]. Now, we ex-
tend the idea to a two-mode entangled field-state. The pro-
posal suggests to put a slit with width much smaller than the
wavelengths of the two modes in front of the cavity as was
used by Herkommer et al. [10]. The atoms are injected
through the slit so that they may interact with a small portion
of the standing wave field. After the interaction we measure
the momentum distribution of the atoms behind the cavity.
The momentum distribution of the atomic beam shows a
complex behavior as compared to the single mode field in a
high-Q cavity [13]. This uneven distribution is due to the
simultaneous interaction of n photons of mode A and m pho-
tons of mode B with a three-level atom. We utilize this spec-
trum which yields a successful reconstruction of the joint
photon statistics of the two-mode entangled electromagnetic
field.
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The joint photon statistics of the two-mode entangled
field-state gives only the diagonal elements of the density
matrix. For the off-diagonal density matrix elements we pro-
pose to reconstruct the Wigner function of the entangled
field-state. For this we propose to displace the photon statis-
tics of each mode of the field by injecting the resonant co-
herent states [25] into the cavity. This displaced photon sta-
tistics may be used to reconstruct the Wigner function W (a,
a, B, BY) of the entangled state of the cavity modes in a
straightforward manner [22,26].

II. THE CONDITIONS FOR RAMAN-NATH AND BRAGG’S
DIFFRACTION

In the Raman-Nath regime the atom after the interaction
with the field may have many possible diffraction orders si-
multaneously [10,13], while in Bragg’s regime the atom has
only two possible output states [12,14,16] (i.e., it may go
undeflected or get deflected with the same order). The reason
for many possible diffraction orders in the Raman-Nath dif-
fraction process is that the atomic de Broglie wave is very
sharply focused (which is contrary to Bragg’s scattering).
The absorption and stimulated emission of photon pairs
causes the change in the direction of momentum of the atom
along the wave propagation direction.

The condition for the Raman-Nath regime is that the re-
coil energy must be much less than the energy associated
with the Rabi frequency and it is achieved in the limit

hik? \e%

=<8 (1)
2M 2

while the condition for the Bragg’s regime is contrary to the

Raman-Nath regime, i.e.,

e gim
2M 2

where M is the mass of the atom, g is the coupling constant,

and m is the number of photons in the cavity.

III. MODEL FOR THE RECONSTRUCTION

We consider the case of a high-Q cavity containing two
entangled modes of standing wave electromagnetic field. In
this section, we propose a scheme for the measurement of the
joint photon statistics, i.e., p(n,m), of the entangled modes
of the cavity field, where n and m represent the number of
photons in mode A and B, respectively.

A three-level atom in V configuration interacts with the
standing wave field of the two entangled modes as shown in
Fig. 1. The upper two levels of the atoms are labeled as |a)
and |c) and the lower level is denoted by |b). We choose the
atoms that have |b)«|a) transition resonant with mode A
and |b)« |c) transition resonant with mode B of the cavity
field, while |a) < |c) transition is forbidden. The Hamiltonian
of the atom-field system in interaction picture under dipole
and rotating-wave approximation is
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FIG. 1. Schematics of a three-level atom in V configuration
interacting with a bi-mode standing wave entangled field in high-Q
cavity. After the interaction with the standing wave fields, the dif-
fracted atoms show a momentum distribution spectrum. A slit of
width dx<<\; allows the atoms to interact with a small portion of
the standing wave electromagnetic field. The Wigner function can
be reconstructed for the cavity entangled modes by injecting the
same mode coherent state for different phases.

b2
Ry +hg, sin(kaX)(og,a + o4_a’) + hgp sin(kgt) (op.b
+ O‘B_bT) N (3)

where oy, =|a)b|, o4_=|b)Xal|, og,=|c)b|, and oy_=|b)c|
are the usual atomic raising and lowering operators, and
a(a’) and b(b") are the creation (annihilation) operators of
the mode A and B, respectively. Similarly g4 and gp are the
coupling constants of the atom-field interaction with mode A

and B, respectively. P2/2M is the kinetic energy which con-
tains the momentum contribution in the Hamiltonian.

On their way to the cavity, the atoms pass through a slit
which we place in front of the standing modes of the field.
We propose to use the slit of width much less than the wave-
lengths of the standing wave cavity modes, i.e., dx<<\, and
Ox << \g, where Ox is the width of the slit, and N4 and A\ are
the wavelengths of mode A and B, respectively [10]. This
situation leads to the approximation in which one can replace
the usual sin(k;X) dependence with kX, where k;=k,,kg
(wave vectors of the cavity modes A and B, respectively).
Furthermore, we consider the Raman-Nath regime, where it
is assumed that the momentum component of the atoms
along the transverse direction is very large so it can be
treated classically and the contribution of the momentum
term in the Hamiltonian can be neglected [10,13]. Here we
neglect the incoherent processes such as the damping of the
cavity and the spontaneous emission from the atoms, which
are achievable with the current technology under the appro-
priate selection of the parameters.

We deal with the problem in density matrix approach gov-
erned by

p=="TH.p]. 4)

We find the equations of motion for the density matrix ele-
ments in the case of proposed three-level atom interacting
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with two quantized cavity modes. This set of coupled differ-
ential equations is solved using Laplace transform. We make
use of the initial condition that the atoms are prepared in
ground state |b) before interaction with the cavity modes.
The solution to the set of equations is given in the Appendix.
Here we write only the density matrix elements of the three
atomic states that we want to exploit for the measurement of
the joint photon statistics of the cavity field, i.e.,

1
Pmam(X,X' 1) = E{COS[(x - x")nt]
+ cos[(x +x )nt]}pnm n0x,0), (5)

2

772{C<>S[(x x')mt]

a,a
pn 1m,n— lm(xx t

—cos[(x+x") nt]}pnm m(x",0), (6)

ﬁZ
p;;:l-—l,nm—l(x7x,’t) = ﬁ{cos[(x - x')nt]

—cos[(x +x") mtL}pll . (x.x",0), (7)

where in the above set of equations

n=\a’+ B, (8)

along with a=g,k, \n and B=ggkp \m. We realize that the n
[expressed in Eq. (8) and a function of the two wave vectors
k, and kp along with the two vacuum Rabi frequencies asso-
ciated with the cavity mode A and B] can be expressed as a
function of a one wave vector and one coupling constant. We
obtain this by defining k,=¢ekp, and g,=&gp, where € and &
are dimensionless constants. This substitution in Eq. (8)
leads to

n=kpgpn, 9)

where the new function 7’ depends only on the set of joint
photon numbers, i.e.,

7 =V +m. (10)

The expression of 7 in the form of Eq. (9) makes the calcu-
lations very simple for further proceedings.

The density operator in the momentum representation is
defined as

o= f a9 f —p<o b.0expli (6 - 6)],
(11)

where p=p/fik and O=kx denote the normalized momentum
and position, respectively. The resulting expressions for the
density matrix elements [Egs. (5)-(7)] in momentum space
are given by
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where k=gpgt. We find the momentum distribution of the at-
oms at the detection system by taking the trace over the
internal atomic states and the field-states. Thus the probabil-
ity of the atom with momentum ¢ is given by

W) = 2 0% o im (950 + Pt (92,0 + P et (9,0)].
n,m

(15)

Now let g( 603/ kp) be the distribution function of the atoms
at the slit. The modulus square of g(6g/kg) gives the prob-
ability of finding the atoms at position x. We consider
p(n,m) to be the joint probability of the n photons in the
cavity mode A and m photons in the cavity mode B. Also we
consider the situation where the atoms and the cavity field
are unentangled at r=0. This situation is expressed as fol-
lows:

pnm nm(ab” 6370) E g(aB/kB)(g aB/kB)p(n m) (16)

n,m

A substitution of the density matrix elements [i.e., Egs.
(12)—(14)] along with the initial condition defined in Eq. (16)
for the probability of atoms with momentum ¢ [i.e., Eq.
(15)] gives

042106-3



A. H. KHOSA AND M. S. ZUBAIRY

W(p) = 2 [lfw? + [fo2pnm)], (17)

where

1 “do, . ,
fo=T7—= J 2T 50 (k) (18)
2\ —o0 kB

is the momentum distribution function. Let us consider a
normalized Gaussian distribution for the atoms at the slit,
i.e.,

1 1/4
g(6p/kp) = (@) exp[— 0%/26x°k3], (19)

we arrive at the following expression of the momentum dis-
tribution function:

5)62 1/4
f(t):(m) exp[— (p/k = ') 2> ax%k5/2].  (20)

The expression (20) indicates that we get the peaks whenever
7', which is basically a set of joint photon numbers, equates
to the normalized momentum ¢ divided by «. This expres-
sion makes the fact evident that the momentum distribution
is dependent on the set of joint photon numbers present in
the cavity. Hence one can reconstruct the joint photon statis-
tics of the cavity field-state from the recorded momentum
distribution. From Eq. (20) it is also clear that the separation
between the peaks of the momentum spectrum depends on
the parameters of the atom-field interaction, especially «,
which contains the vacuum Rabi frequency gz. The graphs
indicate that f,, selects the negative side of the momentum
axis and f(_, results to the positive side. Both of them have
identical peaks. For ¢/k=0 the peak height is double due to
the contribution of both terms, i.e., f(,) and f(_). One can use
either the positive or negative side of the momentum distri-
bution spectrum for the reconstruction of the joint photon
statistics of the cavity field.

The selection of the product of constants in 7 is tricky.
For finding these constants, we plot the momentum distribu-
tion of the atoms expressed in Eq. (15). Here we plot one
side of the momentum axis by retaining the term f_). The
reason to do so is that the f(,) term has the same type of
momentum distribution on the other side of the momentum
axis. The graph is shown in Fig. 2 for k=60, and dx=1/10.
In this graph we take uniform probability of the photon dis-
tribution. This plot shows that the peaks corresponding to the
set of joint photon number (n,m) are dependent on the prod-
uct of & and £ [see Eq. (9)]. We analyze %’ that contains the
dimensionless constants (i.e., € and ¢) and the joint photon
numbers in mode A and B. There is a set of peaks in mo-
mentum spectrum for a constant m and over the whole range
of n (as we take the example n=0—9). We note that if the
product of these constants is less then a certain number say g
then the few peaks (in the momentum distribution spectrum)
from the set of adjacent m groups overlap. We show this
behavior in Fig. 2(a). In this situation one cannot separate the
photon number probability corresponding to these merged
peaks. Conversely, if the products of these constants become
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FIG. 2. Momentum distribution spectrum for different values of
q. This shows that there is only one value of ¢ at which the number
of peaks in the spectrum are equal to the number of set of joint
photon numbers in the cavity.

greater than ¢, then the peaks become very much apart from
one another [i.e., Fig. 2(b)]. There is a unique ¢ (under cer-
tain conditions that are discussed below) which possesses the
characteristics that at this value of ¢ the momentum spectrum
peaks have a regular, well-separated structure. We also note
that at these specific values of g the momentum patterns
become quite similar to the momentum patterns of a single-
mode cavity field [Fig. 2(c)]. We realize that at these values
of g the recovery of the joint photon statistics is much better.

The selection of ¢ also depends on the summation over
the joint field photon number n and m. This selection de-
pends upon the value of the average photon population cho-
sen. As g=¢&, e and ¢ are inversely proportional to each
other. This shows that at smaller values of coupling ratio
(i.e., é&=g4/gp), we obtain a larger value of the ratio of wave
vectors (i.e., e=k4/kp), that is, at lower values of &, the wave
vectors are separated apart while at a bigger value of ¢ the
wave vectors are closer to each other.

We note another point also: If we take the case of single-
mode cavity photon statistics [13] and consider a coherent
state having an average of three photons then we need to take
the summation up to nine over the photon number. The rea-
son for taking the summation up to nine is that the probabil-
ity of the photons above nine is very small. So, we neglect
the contribution of the higher photon number and restrict
ourself to up to nine. This gives us data of ten points corre-
sponding to each photon number on the momentum axis. The
situation may be compared with the case of two entangled
coherent modes, then the summation over the mode A and
mode B up to the same number nine gives us the data of 100
points, with each point corresponding to a set of unique joint
photon numbers. In conclusion we need to resolve a large
number of peaks in momentum distributions spectrum during
the measurement of the joint photon statistics of the en-
tangled fields. This requires a very high coupling between
the fields and the atom, consequently the g should be a large
number. For small average photon numbers, however, we
need a relatively small value of g. It should be noted that the
number of peaks for the case of entangled field is the square
of the number of peaks as compared to a single-mode field-
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FIG. 3. (Color online) The considered joint photon statistics of
the entangled field modes.

state, so we need a large value of the vacuum Rabi frequency
in the case of an entangled field-state to resolve these peaks.

Here is another point, that is, if we define the wave vector
of mode A in terms of mode B and the coupling constant of
mode B in terms of mode A (which is contrary to the situa-
tion we have discussed earlier) then the situation remains the
same. In other words the ratio of the & and & remains the
same. We have to use the same type of environment in which
the coupling of one mode is large than the other.

As an example, we reconstruct the joint photon statistics
of the entangled field-state shown in Fig. 3. The number of
photons in both modes varies from O to 4 as is clear from
Fig. 3. We find ¢=2.24 in this particular case. The momen-
tum distribution of the atoms after interacting with the cavity
field is shown in Fig. 4. This graph is taken for k=60, ox
=1/10, and ¢g=2.24. The choice of ¢ and ¢ in ¢ are relative,
if one chooses the wave vectors of the two modes close to
each other then their should be strong coupling of one mode
with respect to the other (i.e., roughly double). This graph
also shows that the momentum distribution peaks at the

W(p)
0.03 ¢
0.02 F

0.01 f

- I ,

100 200 300

FIG. 4. The momentum distribution spectrum of the atoms when
there are two entangled modes in the high-Q cavity. In this graph
we chose the parameters g=2.24, dx=1/10, and k=60, moreover
the summation is taken up to four on both the modes.
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FIG. 5. (Color online) The reconstructed joint photon statistics
of the cavity field.

lower photon numbers are well separated and they are nearly
merging at higher values of photon numbers. The reason for
this behavior is that we need more and more high value of
coupling constants to resolve the momentum distribution
peaks for higher value. This shows that at higher values of
joint photon numbers the error probability will be greater
then the lower values of the joint photon numbers. One can
resolve this problem by using the high values of the coupling
constants. As each peak in the momentum distribution spec-
trum corresponds to the unique set of joint photon numbers,
by knowing the probabilities of the momentum states we can
determine the state of the cavity field. We use the same logic
to reconstruct the joint photon statistics of the entangled
field-state shown in Fig. 5. This graph is taken by using the
same set of the values of the different parameters as dis-
cussed earlier. The recovery is in good agreement with the
original one.

Wigner function of two-mode entangled field-state

The joint photon statistics alone cannot give the full in-
formation of the entangled field-state. To get the information
about the off-diagonal density matrix elements one needs to
reconstruct the Wigner function. We start with the definition
of the Wigner function described in [26]. In this reference
Cahill and Glauber have suggested that the Wigner function
of the single mode field [whose photon statistics is p(m)] can
be reconstructed by displacing the cavity field-state. They
have obtained an expression for the Wigner function in terms
of displaced photon statistics of the field [26,27].

We realize that the definition of the Wigner function [26]
can also be extended for the case of the two-mode field by
injecting coherent states a and (. The corresponding dis-
placement operator D(«) and D(B) are defined as

D(a) =explaa’ - a'al, (21)
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D(B) =exp[Bb" - B'D]. (22)

The quasiprobability distribution corresponding to the two-
mode entangled field-states is defined as

- o1
(I)(a,a',ﬂ’ﬂ'): ?TY[PT(Q,@S)]’ (23)

where s is the order of products of the field operators. The
term T(«,B,s) given in [22] is the two-dimensional Fourier
transform of the displacement operators D(«a;) and D(B;).
We use an alternative expression for T(a, B8,s), which is use-
ful for our purpose [27],

4 s+ farb'h .
T(a,B,s) = l—_sD(ﬁ)D(a)<s_—l> D'(a)D'(B).

(24)

For s=0 one obtains the Wigner distribution. The qua-
siprobability distribution function defined in Eq. (23) gets the
form of the Wigner distribution function for a general state

p=|T)W¥

bl

* * 4
W(aaa ’ﬁ’ﬁ ) = ;E (_ 1)n+m7)(n’m’a’ﬂ)’ (25)

n,m

where P(n,m,a,B) is the displaced photon statistics of the
entangled cavity field, i.e.,

P(n,m,a, ) = [(n,m|D"(B)D"(a)|¥)|*. (26)

Thus the Wigner function of the field can be found directly if
the displaced photon statistics p(n,m,a, B) is known for all
values of « and .

In the previous section we have given a scheme for the
measurement of the joint photon statistics of the undisplaced
entangled field-state in two cavities. To get the Wigner func-
tion of the entangled state we propose to displace each mode
by injecting coherent states |a) and |B). Experimentally cou-
pling two resonant classical oscillators to the cavity modes
carries out this operation. The joint photon statistics of the
displaced entangled field can be obtained by the procedure
mentioned earlier, i.e., by the interaction of the three-level
atoms with the fields in the Raman-Nath regime. The mea-
suring of the momentum distribution gives the joint photon
statistics of the displaced entangled state. By repeating the
experiment on an ensemble of identically prepared systems
but with different values of « and 8, we can reconstruct the
Wigner function W(a, ", 8, 87) in a straightforward way as
shown in Eq. (25).

IV. CONCLUSION

In this paper, we have discussed a simple scheme for the
reconstruction of the joint photon statistics and hence the
Wigner function of the bi-mode entangled field in a cavity.
The probe in this scheme is the momentum states of the atom
in the Raman-Nath regime. As a first step towards the mea-
surement of the full quantum state, we propose the recon-
struction of the joint photon statistics of the entangled
modes. The proposed method can be extended very easily for
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the measurement of the displaced photon statistics of the
cavity fields which leads to the full quantum information in
the form of the Wigner function of the bi-mode entangled
field.

We propose to utilize a V configuration three-level atom
in ground state |b). We also suggest to put a slit of width
Ox <<\, (i.e., the wave vectors of the electromagnetic modes)
so that the atoms are incident on a small portion of the stand-
ing wave cavity field. We have seen from our calculations
that the momentum probability of the diffracted atoms has a
comb of peaks around x=0. These peaks show the change in
the longitudinal component of the momentum of the atoms
and they depend upon the number of interactions (exchange
of photon numbers) with the cavity modes. We plot this be-
havior in Fig. 4 for two entangled modes in the cavity. The
critical point in this setup is the selection of the parameters in
the equation of the spectrum of the momentum distribution
[i.e., Eq. (20)]. The selection should be such that each mo-
mentum peak corresponds to a unique set of joint photon
number.

We investigate that the momentum peaks corresponding
to the different set of joint photon number becomes very
much clear and separated from each other if we take the
large separation between the coupling constants g, and gp.
For a given set of g, and gg there is a unique value of g .
This value of g depends upon the summation over the joint
photon number # and m. If we go for a different set of values
of g4 and gg then we have to search for a different value of
q. The values of the vacuum Rabi frequencies should be such
that the peaks of the momentum distribution corresponding
to m=0 and n=0—9 (for example) should be separated from
the peaks corresponding to the momentum distribution se-
lected to m=1 and n=0—9 and so on. In other words, there
should be groups of the momentum distribution peaks which
have the values n over the whole range and a constant value
of m. In the next group of the peaks in the momentum dis-
tribution spectrum the values of the n are again over the
same whole range but the m is one more then the previous
value. Under the conditions discussed above the best recov-
ery of the joint photon statistics of the entangled fields is
attained.

As the information of the field photon numbers is present
in the momentum distribution, well-separated momentum
peaks lead to a nice recovery of the field photon statistics.
We get the momentum distribution spectrum of the three-
level atoms for g=2.24, k=60, dx=1/10, and summation is
taken up to four. Figure 5 illustrates the reconstructed joint
photon statistics on the basis of the obtained momentum dis-
tribution spectrum. A comparison of original distribution
with the reconstructed one displays a good agreement. We
also suggest to keep the injection rate of the atoms very low
so that there is only one atom interacting with the cavity
mode at a time.
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APPENDIX

The equations of motion for the density matrix elements
are obtained:

. b
(x,x",0) == igaky \rg{xpz_]m,nm(x,x',t)

pn;n,nm
b,
- x’pnnz n— lm('x"x,’t)}

. b
- lgBkB\' m{xp;m—lynm(-x,x ! s t)

b,
_‘x’pnni,nm—l(x’x,»t)}» (Ala)
o o r’,_ b,
pz—ulm,n—lm(x’x,’t) =- lgAkA\*n{xpnn‘:,n_lm(x,x',t)
b
=X oy (XX D)}, (A1D)
—
~Cy . b,
picmcq—l,nm—l(x’x,’t) == lgBkB\’/m{-xpnni,nm—l(x’x,’t)
b
_x’p;m—l,nm(x’x,’t)}v (AIC)

. ~
(X’X’J) =- lgAkAVn{xpzfllm,n—lm(x’x,’t)

pn;rt,n—lm
b,b
x,pnm n}n(‘x9-x,’t)}

- igBkB\//mxp;;Z—l,n—lm(x’x”t)’
(A1d)

igpkp \’/"_1{XP;C1};_ L1 (6,X 1)

b,b
_x,pnm nm .X,.X/,l)}

(x,x",1) =—

pn;n,nm—l

- igAkA \’EXPZ’—CI m,nm—1 (‘x"x, ’ t) ’ (A 1 e)

. [r.. bb
(x,x",0) = = igaky\Nn{xp,, (2, X" 1)

a,
pn—lm,nm

- x/pzflm,n—lm(x’xlvt)}

. r a,c
+igpkp\mx' p,5 1, e (X,X7,1),

(A1f)

(x,x",1) =—iggkp\

x,ptcmcq 1,nm— l(x’x,’t)}

b.b
%{xpnm’nm(x,x’ 1)

pn;n—l,nm

+ igAkA\"nx Pt n-1m (XX s1),
(Alg)

.a.c . [~ be
pZ—le,nm—l(x’x”t) == lgAkA\"nxpnncz,nm—l(x’x”t)

+ igBkB\‘”mx/PZ’-blm,nm(x’x,’t)’
(Alh)

—
-c,a ’ . / b,a ’
pnm—l,n—lm(x’x ’t) - lgBkB\"mxpnm,n—lm(x’x ’t)

io .k /_ 1 c,b 2
+igakaNnx'pyy ) 1, (6x'1),
(A1)

where we use the notation for the density matrix elements as
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pnm nm

a,a
pn Im,n—1m

s

Prmt 16X, 1) = (x'n,m ~ 1),
Prmn—1m - 1,m,x),
-1,
Pyt ,
Pt 0,2 1) = (x"n,m

c,n,m—1,x),

Pyt netm (0" 1) ={x",n,m = 1,¢|pla,n—1,m,x).

The Laplace transform of Egs. (Ala)—(Ali) is given by the
following set of equations:

SE) i (0.2 1) + i0x£(p) Y, (X 1)

—iax £(p)2;ﬁf o m6X 1)+ iBxE(p) D Lam(6X"51)
- le,£(p)nm nm-— l(x x’ t) pnm nm(x x! 0) (Aza)
SEP)  neim(XX t)+lax£(p)nmn imxx’ 1)
—iax'£(p)*h i (XX, 1) =0, (A2b)
S£(p nm-1,nm— l(x )C t) + lﬁx‘f(p)nm nm— I(X,X’,l‘)
—iBx'£(p)<t netam(6,x" 1) =0, (A2¢)
Sf(p)nmn lm(x x’ t) + lax‘f(p)n almn lm(x’xl’t)
—iax £(p)nm nm(x’x,’t) + lﬁx£ P n,m—l,n—lm('x"x,’t) = 0’
(A2d)

Sf(P)Z;rLz nm— l(x x' t) + lﬁx£(p);;:z 1,nm— l(x xl’t)

—iBx £(p)l L (x" 1) + Eax () (6, 1) = 0,

(A2e)
a,b ’ . b,b ’
S, e’ 1) + it () (e’
- iax,i‘(p)zfllm,n—lm(x’x,’t) - iﬁx,f(p)zflm,nm—l(x’x,’t)

=0, (A2f)

SE(P) it (XX 1) + IBXE(p) (56" 1)
ZBX £(p)nm 1,nm— l(x x! t) —iax £(p)nm 1,n— lm(x’x,’t)
=0, (A2g)

s‘£(p)n 1m,nm— 1(.XX t)+lax£(p)nmnm l(x’x”t)

—iBx’' £(p o tmam(6,x" 1) =0, (A2h)
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SE(P)SE_ | X’ ) +iBxE(p)d 1 (X', 1)

—iax'£(p)S? (x,x",1) =0, (A2i)

nm-1,nlm

where in the above set of equations a= gAkA\rn and B
—gBkB\m We also make use of the initial condition that at
t=0, the atoms are in ground state, i.e.,

leWl nm(x 'x 0) pnm nm(x’x,’o) (A3)

and

5 . b,
pZ—alm,n—lm(x’x,’O) = p;cmc;_l,nm_l(-xvxr,o) = pmin_lm(x,x’,O)
b.c b
= pnni,nm—l(x’x,’o) = PZ-M,nm(X,X/,O)
= PZ’Clm nm— l(x x’ 0) = Pﬁ}ﬁ_l,n_lm(x,xl,o)

(x,x",0)=0. (A4)

= pnm 1,nm

Now we solve the set of linear coupled differential equations
[i.e., (A2a)—(A2i)] and get the solution in terms of the Lapla-
cians of the density matrix elements

£(p)n alm n— lm(x’x,,t)
2a%sxx’
x'2)?2+2(a?+ BA)sP(x* +x'?)

(A5a)

= sy (a2+,82)2(x2—
X P(6:%",0),
(p)nm nm(x’x,’t)

B s[s?+ (?+ B (¥ +x"?)]
- S4+ (a2+,82)2(x2—x’2)2+2(a2+Bz)sz(x2+x’2)

X P (66" ,0), (A5b)
£(p);;16;—1,nm—l(x’x”t)
B 28%sxx’
- P (a2+32)2(x2_x/2)2 +2(a2+ B2)S2(x2+xl2)
Xpﬁ’rﬁ,nm('x’x,’o)’ (ASC)
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‘£(p)n 1m, nm(x’x,’t)
) —iax[s*+ (a? + B)(x* = x'?)]
4+ (a,2 + ﬁ2)2(x2 _x/2)2 + 2(0[2 + ,82)52(x2 +xr2)

X Pl (5" ,0), (A5d)

‘£(p)nmn lm(x’x,’t)
ia'[s* = (@ + B) (& = x'?)]
4+ (a2+,(32)2(x2—x’2)2+2(a2+,82)52(x2+x’2)

Xpnm nm(xx 0) (ASe)
£(p)Zflm,n171—l(x7x’ »t)
— 2aBsxx’
T (@4 B x4 2P + ISP 4 )
Xpnmnm(-x-x 0) (ASf)
£(p)m:lt 1,n— lm(x’x/J)
_ 2aBsxx’
= S4+ (a2+B2)2(x2_x12)2+2(a2+ﬁ2)s2(x2+x,2)
Xpﬁﬁ,nm(x5x”0); (Asg)

=£(P nm,nm— l(x’xl’t)
) —iBx'[s* = (&2 + B -x'))]
- S4+ (a,2+BZ)z(xz_x12)2+2(a2+B2)s2(x2+xr2)

Xpht (x.x".0), (A5h)

‘£(p)fl’n}i—l,nm(x’xl’t)
—iBxls’ + (o + B)(x* = x'?)]
4+ (a,2 + ﬁ2)2(x2 _x/2)2 + 2(0[2 + ,82)52(x2 +xr2)

Xpih L ex',0), (A5i)

Now the set of equations (A5a)—(A5i) are no longer coupled,
so, we solve only the equations of interest. These are the
equations of the populations of the atoms in either of their
internal states. The inverse Laplace transform of this set of
equations gives the equations of motion for the density ma-
trix elements of the atomic states expressed in Egs. (5)—(7).

[1] P. W. Shor, SIAM J. Comput. 26, 1484 (1997); L. K. Grover,
Phys. Rev. Lett. 79, 325 (1997); 79, 4709 (1997).

[2] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres,
and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

[3] C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881
(1992).

[4] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B.
Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, 3865 (1997); S.
Bose, V. Vedral, and P. L. Knight, Phys. Rev. A 57, 8§22
(1998); M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P.
L. Knight, ibid. 57, R4075 (1998); A. Karlsson, M. Koashi,

and N. Imoto, ibid. 59, 162 (1999); P. W. Shor, Phys. Rev. A
52, R2493 (1995).

[5] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, Phys.
Rev. Lett. 70, 1244 (1993); S. Schiller, G. Breitenbach, S. F.
Pereira, T. Muller, and J. Mlynek, ibid. 77, 2933 (1996).

[6] K. Vogel and H. Risken, Phys. Rev. A 40, R2847 (1989).

[7] M. Brune, S. Haroche, V. Lefevre, J. M. Raimond, and N.
Zagury, Phys. Rev. Lett. 65, 976 (1990); M. Brune, S.
Haroche, J. M. Raimond, L. Davidovich, and N. Zagury, Phys.
Rev. A 45, 5193 (1992).

[8] M. S. Zubairy, Phys. Lett. A 222, 91 (1996); P. J. Bardroff, E.

042106-8



QUANTUM-STATE MEASUREMENT OF TWO-MODE...

Mayr, and W. P. Schleich, Phys. Rev. A 51, 4963 (1995); M. S.
Zubairy, ibid. 57, 2066 (1998); T. Azim and M. S. Zubairy,
Phys. Lett. A 250, 344 (1996); M. Mahmoudi, H. Tajalli, and
M. S. Zubairy, J. Opt. B: Quantum Semiclassical Opt. 2, 315
(2000).

[9] M. J. Holland, D. F. Walls, and P. Zoller, Phys. Rev. Lett. 67,
1716 (1991); A. M. Herkommer, V. M. Akulin, and W. P.
Schleich, ibid. 69, 3298 (1992).

[10] M. Freyberger and A. M. Herkommer, Phys. Rev. Lett. 72,
1952 (1994).

[11] P. J. Bardroff, E. Mayr, and W. P. Schleich, Phys. Rev. A 51,
4963 (1995); P. J. Bardroff, E. Mayr, W. P. Schleich, P. Domo-
kos, M. Brune, J. M. Raimond, and S. Haroche, ibid. 53, 2736
(1996).

[12] A. A. Khan and M. S. Zubairy, Phys. Lett. A 254, 301 (1997).

[13] Ashfaq H. Khosa and M. S. Zubairy (unpublished).

[14] Ashfaq H. Khosa, M. Tkram, and M. S. Zubairy, Phys. Rev. A
70, 052312 (2004).

[15] A. F. Bernhardt and B. W. Shore, Phys. Rev. A 23, 1290
(1981); R. J. Cook and A. F. Bernhardt, ibid. 18, 2533 (1978).

[16] M. Marte and S. Stenholm, Appl. Phys. B: Photophys. Laser
Chem. B54, 443 (1992).

[17] B. C. Sanders, Phys. Rev. A 45, 6811 (1992); N. A. Ansari and
V. 1. Man’ko, ibid. 50, 1942 (1994); S. M. Tan, D. F. Walls,

PHYSICAL REVIEW A 72, 042106 (2005)

and M. J. Collett, Phys. Rev. Lett. 66, 252 (1991); M. O.
Scully, B. G. Englert, and H. Walther, Nature (London) 351,
111 (1991).

[18] M. G. Raymer, D. F. McAlister, and U. Leonhardt, Phys. Rev.
A 54, 2397 (1996).

[19] M. S. Kim and G. S. Agarwal, Phys. Rev. A 59, 3044 (1999).

[20] M. S. Kim, G. Antesberger, C. T. Bodendorf, and H. Walther,
Phys. Rev. A 58, R65 (1998); M. Wilkens and P. Meystre,
ibid. 43,3832 (1991); S. M. Dutra, P. L. Knight, and H. Moya-
Cessa, ibid. 48, 3168 (1993).

[21] H. Kuhn, D.-G. Welsch, and W. Vogel, Phys. Rev. A 51, 4240
(1995).

[22] M. Tkram and M. S. Zubairy, Phys. Rev. A 65, 044305 (2002).

[23] M. Franga Santos, L. G. Lutterbach, and L. Davidovich, J. Opt.
B: Quantum Semiclassical Opt. 3, 15214 (2001).

[24] M. Vasilyev, S. K. Choi, P. Kumar, and G. MauroDAriano,
Phys. Rev. Lett. 84, 2354 (2000).

[25] K. Banaszek and K. Wodkiewicz, Phys. Rev. Lett. 76, 4344
(1996).

[26] K. E. Cahill and R. J. Glauber, Phys. Rev. 177 , 1857 (1969);
177, 1882 (1969).

[27] L. G. Lutterbach and L. Davidovich, Phys. Rev. Lett. 78, 2547
(1997).

042106-9



