PHYSICAL REVIEW A, VOLUME 64, 023811

Quantum state measurement using phase-sensitive amplification in a driven three-level
atomic system

Mashhood Ahmad,Shahid Qamaf,and M. Suhail Zubairy?
lDepartment of Electronics, Quaid-i-Azam University, Islamabad, Pakistan
’Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Nilore,
Islamabad, Pakistan
3Department of Physics, Texas A&M University, College Station, Texas 77843-4242
(Received 15 March 2001; published 13 July 2001

Phase-sensitive amplification in a three-level atomic system exhibits interesting features. For example, in the
zero-detuning limit and for sufficiently strong driving field, this system becomes an ideal parametric amplifier,
whereas, for a weak driving field it is a phase-insensitive ampliffarsari et al, Phys. Rev. A41, 5179
(1990]. In this paper, we show that this system could be used to measure the quantum state of the radiation
field inside a cavity. To reconstruct the quantum state, we amplify it through a three-level atomic system and
in the parametric limit, when noise in both the quadratures approaches to zero measure the amplified field
quadrature. The complete quadrature distribution is obtained by measuring the quadratures for different values
of the driving field phases. The inverse Radon transformation is then employed to reconstruct the original
guantum state. Our scheme is insensitive to the problems associated with nonunit detector efficiency in homo-
dyne detection measurement.

DOI: 10.1103/PhysRevA.64.023811 PACS nuntder42.50.Dv, 42.50.Ct

I. INTRODUCTION The Wigner function of the quantum state can be recon-
structed by calculating the complete distribution function
During recent years, a number of models have been prow(Xx, 6) for the quadrature valueq 6) with 6 varying from 0
posed for the measurement of nonclassical states of the ele 7. The maximum amplification with reduced noise for
tromagnetic field. These models incorporate techniquedifferent quadrature phases is obtained by driving the system
based upon absorption and emission spectros¢@hydis-  for different values of the phase of the classical field,
persive atom-field coupling3], conditional measurement of correspondingly. We have calculated the quadrature distribu-
an atom in a micromasé#| and otherg5]. A measurement tion for an arbitrary quantum state after its amplification by a
scheme based upon quantum tomography was proposed phase-sensitive linear amplifier. The distribution function of
Vogal and Risker{6]. In this scheme, the field quadrature the noise-free quadrature is then used to reconstruct the
distribution is measured via optical homodyne detection, andjuantum state of the field using the inverse Radon transfor-
the Wigner function of the given quantum state is then resmation, well known in quantum tomography. We apply this
constructed from these measurements by using inverse Rerodel to a Schrdinger-cat statg13—15, and discuss its
don transformation. A knowledge of the Wigner function re-reconstruction after its amplification through a two-photon
veals the complete quantum state of the sysf@rl]. This  phase-sensitive linear amplifier in the zero-detuning limit.
scheme was applied successfully to experimentally measurehis model enables us to overcome the problems arising due
the vacuum and the squeezed states of the radiation field the nonunit efficiency of detectors in the homodyne mea-
[9,10]. However, measurements of the quantum states areurement scheme. It is worthwhile to mention here that, re-
highly sensitive to the noise associated with the detector ineently, Leonhardt and Pa[l6] have also proposed an inter-
efficiencies[11,12. An important question in this regard is esting scheme for quantum state measurement. Their scheme
how to overcome the nonunit efficiency of the detectors. was based on antisqueezing the propagating field with re-
In this paper, we present a model for quantum state measpect to the quadrature of interest, using a degenerate optical
surement using a two-photon phase-sensitive amplificatioparametric amplifier that also allows one to overcome the
by three-level atoms in the cascade configuration, where cgroblems associated with the nonunit efficiency of the detec-
herence is induced between the top and the bottom levels kprs. Here we would like to point out that our scheme allows
driving the atoms continuously with a strong external field.us to measure the quantum state of the field inside the cavity.
Under the limits of the strong driving field and zero detun-In our earlier papers, we proposed a model for the observa-
ing, this system amplifies one quadrature of the field at theion of quantum interferences associated with the
expense of deamplification in the conjugate quadrature. FuiSchralinger-cat stat¢17] and the measurement of quantum
thermore, the noise in both the quadratures approaches zesiate[ 18] using two-photon correlated emission las€EL)
and hence the amplifier becomes identical to an ideal degef19-22.
erate parametric amplifigrl]. Under the two-photon reso-
nance condition, the amplification for a particular quadrature
phase can be obtained by controlling the phase of the exter-
nal driving field. In this study it is shown that this system
could be used for the reconstruction of the quantum state of Our amplifier consists of three-level atoms in cascade
the field inside the cavity. configuration as shown in Fig. 1. The atoms in stateare

IIl. MODEL AND EQUATION OF MOTION
FOR FIELD-DENSITY MATRIX
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la) =1,) conditions, the evolution of the reduced density matrix
A \ for the field is given by the master equatifii
r

pr=—[ataa pe—(aq+ a*1)apra+ aypraa’l
v —[asa’ape—(axpt a* y)apra’+ axppra’al
—[ataape—(afy+ az)apeat azpraale”®
2 —[ata'a’pe— (ot a*zapea’
y Ib) +aypraa’le”?, (4)
where
v
2
gr
ap=——-, ()
(¥ +0?)
C9rQ(02-297) ®
a1p=i ,
A 4 y Ic) (Y402 (4924 02)
FIG. 1. Energy diagram of a three-level atomic system in a )
cascade configuration. 970
a21_|—( 2102’ )
injected into the cavity in such a manner that only one atom 7y
at a time is present inside the cavity. The transitijas  and
—|b) and|b)—|c) are dipole allowed, whereas the transi-
tion |a)—|c) is dipole forbidden. We assume that the tran- 3g2rQ?2
sition |a)—|c) may be induced by employing a sufficiently a22=( 07421 0D (8)
strong resonant external driving field. We are considering a Y Y

linear amplifier; therefore, we tred@)— |b) and|b)—|c)
transitions quantum mechanically up to second order in th
coupling constant, and thg)—|c) transition semiclassi-
cally to all orders.

The Hamiltonian for the atom-field system is given by

Jhe first term in Eq.(4) corresponds to the gain, and the

Second to the absorption in the system. The third and fourth
terms are due to the coherent excitation of the atomic states.
This coherence is produced by the classical driving field, and
is responsible for the phase sensitivity in the system. The

H=Ho+V, (1)  phased in Eq. (4) is given as® =g+ (v,—2v)t. In the
following, we assume a two-photon resonance, i.e5 2.
where Under this condition, we havé® = ¢.

In order to reconstruct the quantum state of the field, we
need a noise-free amplification of the cavity field. In homo-
dyne detection, we measure only one quadrature component
of the field, therefore, we require noise-free amplification
and the interaction Hamiltonian is given by only with respect to that particular quadrature. Here we cal-
culate the amplifier gain for a field quadratwgd) for our
three-level atomic system, where the coherence is established
by driving it through a strong external field of phaseUs-
ing Eq. (4), we obtain

Q) S S
- e e ay(cl e o) al) | (3) d(a)
T:P1<a>+P2<aT>v C)

Ho= haoii)i|+hva'a, )

i=a,b,c

V=tig| (la)(b|+|b)(c)a+a’(|b)(al+|c)(b])

Herea (a') is the destructioticreation operator for the field
mode of frequency, g is the atom-field coupling constant, where
which is assumed to be equal for both transitipas— |b)

and |b)—|c); and Q is the Rabi frequency of the driving p1= (a1~ a3y, (10
classical field withv; and ¢ as its frequency and phase,
respectively. We assume that the atoms are initially pumped po=(a—a3)explio). (1)

incoherently to the upper levéh) at rater. For simplicity,
the decay ratey is considered to be the same for all three The parametera,; and«,, are the same as defined via Egs.
levels. In the zero-detuning and two-photon resonance (2 (5) and (6), and a3,and a3, can be obtained by taking the
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complex conjugate of Eqs(7) and (8). The generalized uesx(#), with § varying from 0 tow. In the homodyne
guadrature of the field is defined as detection measurements, the phasef the quadrature field
is given by the phase of the local oscillator.

1 . .
x(0)=5[aexp(—i6)+ a'exp(i0)], (12) Ill. RECONSTRUCTION OF THE WIGNER FUNCTION

In this section, we discuss the reconstruction of the
Wigner function of the initial quantum state after its ampli-
d(x(6)) = ficatio_n throqgh a three-level atomic system in t_he zero-

= \/Pi+|p2|2+291|p2|005<<P—29+— detuning limit. The zero-detuning condition requires that
dt 2 level |b) lies exactly in between the upper leval) and the
ground-state levelc). To reconstruct the Wigner function,
XX+ ), (13 we need the quadrature distributiesn(x,#) for values of
where x(#) which can be measured in the homodyne detection
scheme. The quadrature distributiefix, #) for the amplified
field can be obtained from the Wigner functid(«,t) of
the cavity field. The time evolution of the Wigner function of
(14)  the field can be evaluated by writing the master equatdon
in terms of its Fokker-Planck equation for the Wigner distri-
bution, and by finding its time-dependant solution. The
Wigner functionW(«,t) in terms of the density operatpi
is given by the equatiof23]

Using Eq.(4), we obtain

T
|p2|Sin( ¢—20+ >

y=tan !

v
P1+|P2|CO{ p-20+ 5

It is clear from Eq.(13) that an exact solution can be ob-
tained fory= 0. Under this condition, the solution of the Eq.
(13) reads as

W(a,t)= Trfzjjw JjwdzﬂTr[exp{— B(a*—al)

(X(0))=VG(x(6))o. (15)
Using Eq.(17), we can rewrite the master equati@f) as a
T - . . g
G=exr{ ot \/Pi*‘ |p2|2+2p1|p2|003( o—20+ E) J Fokker-Planck equation for the Wigner function,
(16) aW AaA +(9A +(9A
T W= T o T AN O T T Ay T T A Uy
For =0, we have two possible choices dfp—26 o 2| dax da day
+(m/2)] i.e., 0 ormr. Under these conditions, the parameter 2 2 2
G reduces to the same expressions for the gain parameters as +i Agpary+ —5 By + J Byt J By,
mentioned in Ref[1]. It follows form Eq.(16) that an opti- d L y dayday
mum gain can be obtained fitw—260+ (7/2)]=0. This
condition indicates that an amplified quadrature with phase 9 g
can be obtained by adjusting the phaseof the classical + dayday Ba1 | W, (18)

driving field accordingly. In order to reconstruct the quantum
state, we require a set of amplified noise-free quadrature valwhere

) 12

2ay 72(2y2—92)2+92( 'y2+Qz)2+ZyQ(ZyZ—QZ)(yZ-I—QZ)COS( o—20+ 5

A= , 19
(Y?+ Q%) (49y*+ 0% (

B 2ay[2y%— vQ2%— (y2Q+Q3)sing]

H A(Y2+02)(47%+Q2)
2ay() cose
Apy=Ay= T (21)
2T A (492102
2ay[2y3— Q%+ (2Q+Q3)sing]
20= , (22

A( 72+QZ)(4y2+ 5]
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__
2A(4y*+0?)

Bu (23

2(2+02) -390 Sin(p)
(¥ +0Q2) ’
—ay?>  3yQcose

B1o=Bo1= , 24
2T A4y2 102 (2409 29

—ay? 2(y*+ 0% +3yQ sing
Boo= > 2 Y , (25
2A(4y°+ Q%) (v+Q°)
|
anda=2g°r/y? is the linear gain coefficient in the absence AyBio—ABy,
of the driving field. The formal solution of Eq18) for any K1:2(B By BB,y (28)
arbitrary initial quantum state is given g4] 12721 Bl
W(a,t) = Jwrwdz W(BOW (e t;8,0), (26 Kym oDz Ao (29
(=] ] CANBOWL@ A0, (20 2" 2(BiBor BuBz)
where the conditional probabilitW,(«,t;3,0) is given by and
VAK K, — K%, F{ 1 A11Ba1+ ApBio— ABoy— AyB
w a,t; ’0 — ex Ki(ao— /G 2 _ 11P21 2212 12222 21P11
C( :8 ) 27T(G_ 1) G-1 l( X \/—BX) K12 2(812821—811822) . (30)
_ 2
+Kalay ‘/E’BV) ParameteG in Eq. (27) is the same as defined by Ed6).
On substituting the values ¢f; and p, from Egs.(10) and
+ Kol ax— G B (ay—GBy) . (27)  (11) in Eq. (16), and using the values af;;,aq,,a%;, and
a’, from Egs.(5)—(8), we obtain the following expression
Parameter&,,K,, andK,, in Eq. (27) are given by for the gain paramete®:
aT 1/2
Za"yt[ Y2(292—Q?)%2+ Q%(y?+ 022+ 290 (29°— Q?) (y*+ QZ)CO{ ¢—20+ 5
G=exp (3D

(Y2+ Q%) (49*+Q?)

Here we are interested in the measurement of the quadrature distribiftiof) when the initial quantum state is amplified
through a phase-sensitive three-level atomic system. A homodyne detector measures the quadrature component given by Eq
(12). In a balanced homodyne detection measurement scheme, the quadrature igldseacterized by the phase of the local
oscillator. A complete distributiom(x, #) for the quadrature componex(6) is determined by scanning the field quadrature
over a range of phasg varying from 0 tow. Such distributions have recently been measured in quantum optical tomography
[9]. It was shown by Vogel and Risken that the Wigner funciiéfr,t) and the generalized quadrature distributie(x, 8) for
the field hold a one-to-one correspondence with each other, which is given by the folld@{ing

1 ) © S
w(X,0)= zf_mf_wf_wdzad nW(a,t)exd —i n(X— aycosf—a, sing)]. (32

On substituting the expression for the Wigner functidia,t) from Eq. (26) into Eq. (32), we obtain

2 w (o 2
w(X,0)= \/mﬁw wdz,BW(,B,O)exr< - m[x— VG(B, coso+ B, sind)1?|, (33

where the parametés is the gain factor as defined earlier via Eg§1) and the parametef is given by the following:
(= (49°=y'Q%+4920H{(47°— y*Q% - 5/20%) — (4y°Q - 77*Q%—-2y0°)sin( o — 20)}

(34)
(4,)/6_ 7402_5,)/294)2_ (4750_77393_ 2,}/95)2
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It is clear from the expression for the gain parame®er 1 (o (o (= (=

[given by Eq.(31)] that an optimum gain can be obtained if W(ay,a,)= _2f f j f d2BW(3,0)| 7|dnd 6

we choosep—26= — 7r/2. Under this condition, the quadra- R

ture distribution becomes F{ (G'—1)¢'
xXexpg —

L T
2 o) 0
)=\— d?BW(,0
0.0 7T(G'—l)f'foo f*” PVED) X cos6+ (ay,— /G’ B,)sind]

p( —2(x—/G'(B, cosh+ B sin 6))2)
X ex :
(G'-1)¢

. (39

For G’ =1, which corresponds tat=0 [see Eq.(36)], we
(35) obtain the Wigner function for the original quantum state.
Equation(39) can be rewritten in terms of the rescaled vari-

where %t\)lllesm;wx/@, ay=ay/\[G’, and n'=5/\/G’ as fol-

p(2ayt{y<272—92>+9<y2+92)}
G'=ex

(Y +Q?)(4y*+Q2) ) (30

1 o0 0 S T
Weapap=—[ [ | | wsandowisoly|
477' —ooJ—wJ—-—xJ0

and p( (1-16"¢ ,,
Xexg ———g—n =in’
5/ [476_)’492+47294]
T AP A2 E204 [ A0 — 7303 5 _
[47° =y Q=5 0 ]~ [4y°0 =7y 07 =290 (]37) ><[(a)’(—BX)COSf)-I-(a)',—,By)Slnﬂ]). (40)

When >y i.e., when the Rabi frequency of the classical
driving field is much larger than the atomic level widih
the expressions for the paramet&$ and ¢’ reduce asa’
—exp(Zaty/Q)) and ¢’ —0. However, the gain in the conju-
gate quadratur&” (which can be obtained by choosing
—260=w/2) would reduce as exp{2aty/Q)). Under the con-
ditions Q)/y— and at—ow, aty/) becomes finite, the

en bution is required.
noise in both the quadratures approaches to zero@hd ) o S
=1/G". Thus the amplifier becomes identical to a degenerate Here, we consider the Schifinger-cat state, which is the

parametric amplifief1]. The noise free amplification is ob- superposition of two coherent stat) and| — &), which

tained by driving the system with a classical field of phase are 180° out of phase with respect to each other,

for A>+y. The quadrature with maximum gain can be ob-

tained by choosing the phase of the local oscillaiasuch o= \/N[|§o>+|_§o>]a (41)
that 6= ¢/2— /4. The complete distribution fap(x, ) can

then be obtained by driving the amplifier with a classical

field of phaS&p ranging forma/2 to 57/2. Once the noise- WhereNfl: 2[1+exp(_2§(2))] is the constant of normaliza-
free quadrature distribution of the amplified quantum state igjgn and &, is taken as real for the sake of simplicity. The

measured in balanced homodyne detection scheme, then ggner functionw(,0) of this state is defined 485]
corresponding Wigner function can be reconstructed by car-

rying out the inverse Radon transformation familiar in opti-
cal tomographic imaging6]:

In the parametric limit, wherG’ approaches a finite value
and¢’ —0 [see Eqgs(36) and(37)], it is clear that we recover
the original quantum state. This shows that the quantum state
can be fully recovered after its amplification through a
phase-sensitive three-level atomic system in the parametric
limit. Only an appropriate rescaling of the measured distri-

W(B,0)= —2(By— &9)%— 232
R (BO= a2 O 2B €0 28]
Wasa)=5] | ], oot +exXH —2( B+ £0)°~26]]
X exqli 7(X— a,cosf— aysin§) ]dxdndé. +2 exp(— 285~ 28;)c08 460, )} (42)

(38
The Wigner function of the amplified Schiimger-cat state
The Wigner function of the amplified quantum state can becan be obtained by using the expression\¢(3,0) in Eq.
obtained if we substitute Eq35) into Eq. (38), and this  (40). In terms of the rescaled variableg = a,/\G’', ay
results =a,/\G’, andn'=5//G, it is given by
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FIG. 2. Plots of the Wigner
distribution function W(ea, , )
for a Schralinger-cat state in the
zero-detuning limit,(a) for &,=2
and at=0. Here, we obtain the
well-known structure associated

(b

S -”‘l.:‘\‘\\ \ with the Wigner function of the
e Z IR 2 o
) ::zs;ggzgg,fz,fo.ct‘gtgggggégggz:gzz:;. ) ,.,.:,3;{",‘““‘ X % Schralinger-cat state. Ir(b)—(d),
R R R RS RS Lo SNSRI _
) ...:,33.:;:2::3:::.~::g.~:~:~.~.~..z-.~ © o e o we show the plots fog,=2, at
=

=1, andQ/y=1,15 and 30, re-
spectively. Due to the increase in
Q/vy, the system grows from a
phase-insensitive amplifier to a
parametric amplifier and the origi-
nal Schralinger-cat state is almost
fully recovered forQ}/y=30. In

O
I\
s '“\\\ (e)—(g), we show the plots of the
7/ .“\\\i\g‘&: Wigner function for the same set
s .
,,,,gﬁ:tﬁ‘::‘;:;g;};;z.,.yu o of parameters as mentioned (@)

except for at=10 and Q/vy
=1,30, and 90, respectively. The
figure clearly shows that the origi-
nal Schralinger-cat state is almost
fully recovered forQ)/y=90.

‘\&‘:‘3‘3}:’;:;.;.::;:;:.;...,. 2
RERIRRLILEpRE 0
0 g ; (o 5%
Oy
W(a! al) 1 erd dol'| p((1+(11/G’)§’) 2 (a4 £0)COSO+ alsin ]
ay, )= n'dl|n'|| ex n =in'[(ay+ &y CcosH+ a,sin
YT gm(1+exp(—2&2))) = Jo 8 x50 y
—(LHA-UGHE) _
+ex;{ 5 7 =iy’ [ (ay—&)cost+ a,sinb]
, —(1+(1-1G6HeY L, L
+exp(—2£5) X1 ex 8 7 <in'[aycosd+ (ay+iéy)sing]
~(1+(1-UGHE) L, e
+ex 8 7 = in'[aycos0+ (ay—ié&)sing] (43
It is clear that in the parametric limit, whe@' ap- IV. RESULTS AND DISCUSSION
proaches a finite value angl —0, we recover the Wigner
function for the original Schidinger-cat state. In the forth- In Fig. 2(a@), we show the plot of the Wigner function for
coming section, we present the results of our numericafo=2 and at=0 in the zero-detuning limit. The figure
simulations. clearly shows the Wigner function of the initial Scdioger-
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cat state. Here two Gaussian hillsat=*2 correspond to anced homodyne detection schef®]. During the mea-
the location of the two coherent states, and the oscillationsurement, the field leaks through the end mirror of the cavity.
perpendicular to the line joining the two hills arise due to theTo ensure that the field does not leak through the cavity
superposition of these states. These oscillations are an unahdring amplification, the time scales in the experiment have
biguous signature of the quantum interference in ao be properly adjusted. We have=2g’r/y?> and G’
Schralinger-cat state. The finite efficiency of the detectors— exp(2aty/Q) (in the parametric limjt combining these,
tends to wipe out these nonclassical features during the meae obtain
surement process. Figuregbp-2(d) show the plots of
Wigner function foré,=2, at=1, andQ/y=1,15, and 30, yQInG’
respectively, in the limit of zero detuning. The results show t— 4g%r ' (44)
that for O/ y=1 (when the system exhibits the behavior of
phase-insensitive amplifiethe well known oscillatory be- which corresponds to the total time for amplification. This
havior of the Wigner function completely vanishes. How-time should be small compared to the life timig)(of the
ever, with the increase i)/ y the system approaches a para-cavity, i.e.,t<t..
metric limit, and the oscillations start to appear. Fofy In conclusion, we propose a scheme for the measurement
=30, the original Wigner function is almost fully recovered. of the Wigner function of the quantum state of radiation field
In Figs. 2e)-2(g), we present plots of the Wigner function inside a cavity. Our scheme is based on amplification of the
for £&,=2, at=10, andQ}/y=1, 30, and 90, respectively. A signal through a three-level atomic systgin the zero-
comparison of Figs. @)—2(g) with Figs. 2b)—2(d) shows detuning limiy, where the coherence is established by driv-
that forat=10, the complete Wigner function is obtained for ing the atoms continuously through a strong external classi-
Q/y=90. This shows that an increaseadnrequires a larger cal field. It is shown that in the parametric limit this system
value of QO/y for a complete reconstruction of the original will allow us to fully recover the Wigner function of the
guantum state. initial quantum state. Only an appropriate rescaling of the
The Wigner function is reconstructed by measuring themeasured distribution is required. As an example, we apply
quadrature distribution of the amplified quantum state, andhis scheme to a Schdinger-cat state and successfully re-
then taking the inverse Radon transformation. The measure&onstruct its Wigner function. This scheme overcomes the
ment of the quadrature distribution can be realized in a balproblems of non-ideal detector efficiency.

[1] N.A. Ansari, J. Gea-Banacloche, and M.S. Zubairy, Phys. Rev. [8] M. Hillery, R.F. O’Connell, M.O. Scully, and E.P. Wigner,
A 41, 5179(1990. Phys. Rep106, 123(1984).

[2] M.S. Zubairy, Phys. Lett. 222 91 (1996; Phys. Rev. A57, [9] D.T. Smithey, M. Beck, M.G. Raymer, and A. Faridani, Phys.
2066(1998; T. Azim and M.S. Zubairy, Phys. Lett. 250, 344 Rev. Lett. 70, 1244(1993.

] . o ) [10] S. Schiller, G. Breitenbach, S.F. Pereira, T. Iy and J.
(1998; M. Mahmoudi, H. Tajalli, and M.S. Zubairy, Quantum Miynek, Phys. Rev. Lett77, 2933(1996.

Semiclassic. Opt2, 315(2000. [11] W. Vogel and J. Grabow, Phys. Rev.4&, 4227(1993.
[3] M. Brune, S. Haroche, V. Lefevre, J.M. Raimond, and N.[12] U. Leonhardt and H. Paul, Phys. Rev48, 4598(1993.
Zagury, Phys. Rev. LetB5, 976(1990. [13] E. Schralinger, Naturwissenschafte?8, 807 (1939; 23, 823
[4] P.J. Bardroff, E. Mayr, and W.P. Schleich, Phys. Re\51& (1935; 23, 844(1935.
4963 (1995; W. Vogel, D.-G. Welsch, and L. Leine, J. Opt. [14] H. Huang, S.Y. Zhu, and M.S. Zubairy, Phys. Re\63 1027
Soc. Am. B4, 1633(1987. (1996.
[5] A.M. Herkommer, V.M. Akulin, and W.P. Schleich, Phys. Rev. [15] x'gsé:;'m’ KS. Lee, and V. Buzek, Phys. Rev. &, 4302

Lett. 69, 3298 (1992; M. Freyberger and A.M. Herkomer, 14}y | eonhardt and H. Paul, Phys. Rev. L&, 4086(1994.
ibid. 72, 1952(1994; U. Leonhardt and H. Paul, Prog. Quan- [17] M.S. Zubairy and S. Qamar, Opt. CommuiT9, 257 (2000).
tum Electron.19, 89 (1999; H. Paul, P. Torma, T. Kiss, and I. [18] M. Ahmad, S. Qamar, and M.S. Zubairy, Phys. Rev62
Jex, Phys. Rev. Letf6, 2464(1996; L.G. Lutterbach and L. 043814(2000.

Davidovich, ibid. 78, 2547 (1997; K. Banaszek and K. [19] M.O. Scully and M.S. Zubairy, Opt. Commu66, 303(1988.
Wodikewicz, ibid. 76, 4344 (1996; D. Leibfried, D.M.  [20] K. Zaheer and M.S. Zubairy, Opt. Commu69, 37 (1988.
Meekhof, B.E. King, C. Monroe, W.M. Itano, and D.J. Wilne- [21] M. Majeed and M.S. Zubairy, Phys. Rev.44, 4688(1991.
and, ibid. 77, 4281 (1996: C.T. Bodendorf, G. Antesberger, [22] K. Zaheer and M. S. Zubairy, iRkrontier of Quantum Elec-

. ) tronics and Quantum Opticedited by A. O. Baru{Plenum
M.S. Kim, and H. Walther, Phys. Rev. 37, 1371(1998; P.J. Press, New York, 1990p. 203.

Bardroff, M.T. Fontenelle, ar.1d S Stenholibjd. 59 R950 [23] M. O. Scully and M. S. ZubairyQuantum Optic§Cambridge
(1999; B. Rohwedder, L. Davidovich, and N. Zaguiyid. 60, University Press, Cambridge, 199and references therein.
480(1999 and G. Nogues, A. Rauschenbeutel, S. Osnaghi, P24] U. Leonhardt, Phys. Rev. A8, 3265(1993.

Bertet, M. Brune, J.M. Raimond, S. Haroche, L.G. Lutterbach,[25] V. Buzek, A. Vidiella-Barranco, and P.L. Knight, Phys. Rev. A

and L. Davidovich,bid. 62, 054101(2000. 45, 6570(1992.
[6] K. Vogel and H. Risken, Phys. Rev. 40, 2847(1989. [26] H.P. Yuen and J.H. Shapiro, IEEE Trans. Inf. The@§ 78
[7] E.P. Wigner, Phys. Revi0, 749 (1932. (1980.

023811-7



