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Quantum state measurement using phase-sensitive amplification in a driven three-level
atomic system
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Phase-sensitive amplification in a three-level atomic system exhibits interesting features. For example, in the
zero-detuning limit and for sufficiently strong driving field, this system becomes an ideal parametric amplifier,
whereas, for a weak driving field it is a phase-insensitive amplifier@Ansari et al., Phys. Rev. A41, 5179
~1990!#. In this paper, we show that this system could be used to measure the quantum state of the radiation
field inside a cavity. To reconstruct the quantum state, we amplify it through a three-level atomic system and
in the parametric limit, when noise in both the quadratures approaches to zero measure the amplified field
quadrature. The complete quadrature distribution is obtained by measuring the quadratures for different values
of the driving field phases. The inverse Radon transformation is then employed to reconstruct the original
quantum state. Our scheme is insensitive to the problems associated with nonunit detector efficiency in homo-
dyne detection measurement.

DOI: 10.1103/PhysRevA.64.023811 PACS number~s!: 42.50.Dv, 42.50.Ct
pr
el
ue

f

d
re
an
re
R

e

su
fie
a
in

s

e
tio
c

s
ld
n
th
Fu
ze
ge
-
ur
te

m
e

on-
on

or
tem

ibu-
a

of
the

for-
is

on
it.
due
ea-
re-
r-
eme
re-
tical
the
ec-
ws
vity.
rva-
he
m

de
I. INTRODUCTION

During recent years, a number of models have been
posed for the measurement of nonclassical states of the
tromagnetic field. These models incorporate techniq
based upon absorption and emission spectroscopy@2#, dis-
persive atom-field coupling@3#, conditional measurement o
an atom in a micromaser@4# and others@5#. A measurement
scheme based upon quantum tomography was propose
Vogal and Risken@6#. In this scheme, the field quadratu
distribution is measured via optical homodyne detection,
the Wigner function of the given quantum state is then
constructed from these measurements by using inverse
don transformation. A knowledge of the Wigner function r
veals the complete quantum state of the system@7,8#. This
scheme was applied successfully to experimentally mea
the vacuum and the squeezed states of the radiation
@9,10#. However, measurements of the quantum states
highly sensitive to the noise associated with the detector
efficiencies@11,12#. An important question in this regard i
how to overcome the nonunit efficiency of the detectors.

In this paper, we present a model for quantum state m
surement using a two-photon phase-sensitive amplifica
by three-level atoms in the cascade configuration, where
herence is induced between the top and the bottom level
driving the atoms continuously with a strong external fie
Under the limits of the strong driving field and zero detu
ing, this system amplifies one quadrature of the field at
expense of deamplification in the conjugate quadrature.
thermore, the noise in both the quadratures approaches
and hence the amplifier becomes identical to an ideal de
erate parametric amplifier@1#. Under the two-photon reso
nance condition, the amplification for a particular quadrat
phase can be obtained by controlling the phase of the ex
nal driving field. In this study it is shown that this syste
could be used for the reconstruction of the quantum stat
the field inside the cavity.
1050-2947/2001/64~2!/023811~7!/$20.00 64 0238
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The Wigner function of the quantum state can be rec
structed by calculating the complete distribution functi
v(x,u) for the quadrature valuesx(u) with u varying from 0
to p. The maximum amplification with reduced noise f
different quadrature phases is obtained by driving the sys
for different values of the phasew of the classical field,
correspondingly. We have calculated the quadrature distr
tion for an arbitrary quantum state after its amplification by
phase-sensitive linear amplifier. The distribution function
the noise-free quadrature is then used to reconstruct
quantum state of the field using the inverse Radon trans
mation, well known in quantum tomography. We apply th
model to a Schro¨dinger-cat state@13–15#, and discuss its
reconstruction after its amplification through a two-phot
phase-sensitive linear amplifier in the zero-detuning lim
This model enables us to overcome the problems arising
to the nonunit efficiency of detectors in the homodyne m
surement scheme. It is worthwhile to mention here that,
cently, Leonhardt and Paul@16# have also proposed an inte
esting scheme for quantum state measurement. Their sch
was based on antisqueezing the propagating field with
spect to the quadrature of interest, using a degenerate op
parametric amplifier that also allows one to overcome
problems associated with the nonunit efficiency of the det
tors. Here we would like to point out that our scheme allo
us to measure the quantum state of the field inside the ca
In our earlier papers, we proposed a model for the obse
tion of quantum interferences associated with t
Schrödinger-cat state@17# and the measurement of quantu
state@18# using two-photon correlated emission laser~CEL!
@19–22#.

II. MODEL AND EQUATION OF MOTION
FOR FIELD-DENSITY MATRIX

Our amplifier consists of three-level atoms in casca
configuration as shown in Fig. 1. The atoms in stateua& are
©2001 The American Physical Society11-1
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injected into the cavity in such a manner that only one at
at a time is present inside the cavity. The transitionsua&
→ub& and ub&→uc& are dipole allowed, whereas the trans
tion ua&→uc& is dipole forbidden. We assume that the tra
sition ua&→uc& may be induced by employing a sufficient
strong resonant external driving field. We are considerin
linear amplifier; therefore, we treatua&→ub& and ub&→uc&
transitions quantum mechanically up to second order in
coupling constant, and theua&→uc& transition semiclassi-
cally to all orders.

The Hamiltonian for the atom-field system is given by

H5H01V, ~1!

where

H05 (
i 5a,b,c

\v i u i &^ i u1\na†a, ~2!

and the interaction Hamiltonian is given by

V5\gF ~ ua&^bu1ub&^cu!a1a†~ ub&^au1uc&^bu!

2
\V

2
~e2 iw2 in1tua&^cu1eiw1 in1tuc&^au!G . ~3!

Herea (a†) is the destruction~creation! operator for the field
mode of frequencyn, g is the atom-field coupling constan
which is assumed to be equal for both transitionsua&→ub&
and ub&→uc&; and V is the Rabi frequency of the driving
classical field withn1 and w as its frequency and phas
respectively. We assume that the atoms are initially pum
incoherently to the upper levelua& at rater . For simplicity,
the decay rateg is considered to be the same for all thr
levels. In the zero-detuning and two-photon resonancen

FIG. 1. Energy diagram of a three-level atomic system in
cascade configuration.
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5n1) conditions, the evolution of the reduced density mat
for the field is given by the master equation@1#

ṙF52@a11* aa†rF2~a111a* 11!a
†rFa1a11rFaa†#

2@a22* a†arF2~a221a* 22!arFa†1a22rFa†a#

2@a12* aarF2~a12* 1a 21!arFa1a21rFaa#e2 iF

2@a21* a†a†rF2~a121a* 21!a
†rFa†

1a12rFa†a†#e2 iF, ~4!

where

a115
g2r

~g21V2!
, ~5!

a125 i
g2rV~V222g2!

g~g21V2!~4g21V2!
, ~6!

a215 i
g2rV

g~g21V2!
, ~7!

and

a225
3g2rV2

~g21V2!~4g21V2!
. ~8!

The first term in Eq.~4! corresponds to the gain, and th
second to the absorption in the system. The third and fou
terms are due to the coherent excitation of the atomic sta
This coherence is produced by the classical driving field, a
is responsible for the phase sensitivity in the system. T
phaseF in Eq. ~4! is given asF5w1(n122n)t. In the
following, we assume a two-photon resonance, i.e., 2n5n1.
Under this condition, we haveF5w.

In order to reconstruct the quantum state of the field,
need a noise-free amplification of the cavity field. In hom
dyne detection, we measure only one quadrature compo
of the field, therefore, we require noise-free amplificati
only with respect to that particular quadrature. Here we c
culate the amplifier gain for a field quadraturex(u) for our
three-level atomic system, where the coherence is establi
by driving it through a strong external field of phasew. Us-
ing Eq. ~4!, we obtain

d^a&
dt

5r1^a&1r2^a
†&, ~9!

where

r15~a112a22* !, ~10!

r25~a122a21* !exp~ iw!. ~11!

The parametersa11 anda12 are the same as defined via Eq
~5! and ~6!, and a21* and a22* can be obtained by taking th

a

1-2
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QUANTUM STATE MEASUREMENT USING PHASE- . . . PHYSICAL REVIEW A 64 023811
complex conjugate of Eqs.~7! and ~8!. The generalized
quadrature of the field is defined as

x~u!5
1

2
@a exp~2 iu!1a†exp~ iu!#, ~12!

Using Eq.~4!, we obtain

d^x~u!&
dt

5Ar1
21ur2u212r1ur2ucosS w22u1

p

2 D
3^x~u1c!&, ~13!

where

c5tan21S ur2usinS w22u1
p

2 D
r11ur2ucosS w22u1

p

2 D D . ~14!

It is clear from Eq.~13! that an exact solution can be ob
tained forc50. Under this condition, the solution of the E
~13! reads as

^x~u!& t5AG^x~u!&0 . ~15!

where

G5expF2tAr1
21ur2u212r1ur2ucosS w22u1

p

2 D G .
~16!

For c50, we have two possible choices of@w22u
1(p/2)# i.e., 0 orp. Under these conditions, the parame
G reduces to the same expressions for the gain paramete
mentioned in Ref.@1#. It follows form Eq.~16! that an opti-
mum gain can be obtained for@w22u1(p/2)#50. This
condition indicates that an amplified quadrature with phasu
can be obtained by adjusting the phasew of the classical
driving field accordingly. In order to reconstruct the quantu
state, we require a set of amplified noise-free quadrature
02381
r
as

l-

ues x(u), with u varying from 0 top. In the homodyne
detection measurements, the phaseu of the quadrature field
is given by the phase of the local oscillator.

III. RECONSTRUCTION OF THE WIGNER FUNCTION

In this section, we discuss the reconstruction of t
Wigner function of the initial quantum state after its amp
fication through a three-level atomic system in the ze
detuning limit. The zero-detuning condition requires th
level ub& lies exactly in between the upper levelua& and the
ground-state leveluc&. To reconstruct the Wigner function
we need the quadrature distributionv(x,u) for values of
x(u) which can be measured in the homodyne detect
scheme. The quadrature distributionv(x,u) for the amplified
field can be obtained from the Wigner functionW(a,t) of
the cavity field. The time evolution of the Wigner function o
the field can be evaluated by writing the master equation~4!
in terms of its Fokker-Planck equation for the Wigner dist
bution, and by finding its time-dependant solution. T
Wigner functionW(a,t) in terms of the density operatorrF
is given by the equation@23#

W~a,t !5p22E
2`

1`E
2`

1`

d2bTr@exp$2b~a* 2a†!

1b* ~a2a!%rF#. ~17!

Using Eq.~17!, we can rewrite the master equation~4! as a
Fokker-Planck equation for the Wigner function,

]

]t
W52

A

2 F ]

]ax
A11ax1

]

]ax
A12ay1

]

]ay
A21ax

1
]

]ay
A22ay1

]2

]ax
2

B111
]2

]ay
2

B221
]2

]ax]ay
B12

1
]2

]ay]ax
B21GW, ~18!

where
A5

2agH g2~2g22V2!21V2~g21V2!212gV~2g22V2!~g21V2!cosS w22u1
p

2 D J 1/2

~g21V2!~4g21V2!
, ~19!

A115
2ag@2g32gV22~g2V1V3!sinw#

A~g21V2!~4g21V2!
, ~20!

A125A215
2agV cosw

A~4g21V2!
, ~21!

A225
2ag@2g32gV21~g2V1V3!sinw#

A~g21V2!~4g21V2!
, ~22!
1-3
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B115
2ag2

2A~4g21V2!
S 2~g21V2!23gV sinw

~g21V2!
D , ~23!

B125B215
2ag2

2A~4g21V2!

3gV cosw

~g21V2!
, ~24!

B225
2ag2

2A~4g21V2!
S 2~g21V2!13gV sinw

~g21V2!
D , ~25!
ce
anda52g2r /g2 is the linear gain coefficient in the absen
of the driving field. The formal solution of Eq.~18! for any
arbitrary initial quantum state is given by@24#

W~a,t !5E
2`

1`E
2`

1`

d2bW~b,0!Wc~a,t;b,0!, ~26!

where the conditional probabilityWc(a,t;b,0) is given by

Wc~a,t;b,0!5
A4K1K22K12

2

2p~G21!
expF 1

G21
K1~ax2AGbx!

2

1K2~ay2AGby!2

1K12~ax2AGbx!~ay2AGby!G . ~27!

ParametersK1 ,K2, andK12 in Eq. ~27! are given by
02381
K15
A21B122A11B22

2~B12B212B11B22!
, ~28!

K25
A12B212A22B11

2~B12B212B11B22!
, ~29!

and

K125
A11B211A22B122A12B222A21B11

2~B12B212B11B22!
. ~30!

ParameterG in Eq. ~27! is the same as defined by Eq.~16!.
On substituting the values ofr1 andr2 from Eqs.~10! and
~11! in Eq. ~16!, and using the values ofa11,a12,a21* , and
a22* from Eqs.~5!–~8!, we obtain the following expression
for the gain parameterG:
d
en by Eq.
al
re

raphy
G5expS 2agtH g2~2g22V2!21V2~g21V2!212gV~2g22V2!~g21V2!cosS w22u1
p

2 D J 1/2

~g21V2!~4g21V2!
D . ~31!

Here we are interested in the measurement of the quadrature distributionv(x,u) when the initial quantum state is amplifie
through a phase-sensitive three-level atomic system. A homodyne detector measures the quadrature component giv
~12!. In a balanced homodyne detection measurement scheme, the quadrature phaseu is characterized by the phase of the loc
oscillator. A complete distributionv(x,u) for the quadrature componentx(u) is determined by scanning the field quadratu
over a range of phaseu varying from 0 top. Such distributions have recently been measured in quantum optical tomog
@9#. It was shown by Vogel and Risken that the Wigner functionW(a,t) and the generalized quadrature distributionw(x,u) for
the field hold a one-to-one correspondence with each other, which is given by the following@6#:

v~x,u!5
1

2pE2`

` E
2`

` E
2`

`

d2adhW~a,t !exp@2 ih~x2axcosu2ay sinu!#. ~32!

On substituting the expression for the Wigner functionW(a,t) from Eq. ~26! into Eq. ~32!, we obtain

v~x,u!5A 2

p~G21!jE2`

` E
2`

`

d2bW~b,0!expS 2
2

~G21!j
@x2AG~bx cosu1by sinu!#2D , ~33!

where the parameterG is the gain factor as defined earlier via Eq.~31! and the parameterj is given by the following:

j5
~4g62g4V214g2V4!$~4g62g4V225g2V4!2~4g5V27g3V322gV5!sin~w22u!%

~4g62g4V225g2V4!22~4g5V27g3V322gV5!2
. ~34!
1-4
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It is clear from the expression for the gain parameterG
@given by Eq.~31!# that an optimum gain can be obtained
we choosew22u52p/2. Under this condition, the quadra
ture distribution becomes

v~x,u!5A 2

p~G821!j8
E

2`

` E
2`

`

d2bW~b,0!

3expS 22~x2AG8~bx cosu1by sinu!!2

~G821!j8
D ,

~35!

where

G85expS 2agt$g~2g22V2!1V~g21V2!%

~g21V2!~4g21V2!
D ~36!

and

j85
@4g62g4V214g2V4#

@4g62g4V225g2V4#2@4g5V27g3V322gV5#
.

~37!

When V@g i.e., when the Rabi frequency of the classic
driving field is much larger than the atomic level widthg,
the expressions for the parametersG8 and j8 reduce asG8
→exp(2atg/V) andj8→0. However, the gain in the conju
gate quadratureG9 ~which can be obtained by choosingw
22u5p/2) would reduce as exp(22atg/V). Under the con-
ditions V/g→` and at→`, atg/V becomes finite, the
noise in both the quadratures approaches to zero andG8
51/G9. Thus the amplifier becomes identical to a degene
parametric amplifier@1#. The noise free amplification is ob
tained by driving the system with a classical field of phasew
for V@g. The quadrature with maximum gain can be o
tained by choosing the phase of the local oscillatoru such
thatu5w/22p/4. The complete distribution forv(x,u) can
then be obtained by driving the amplifier with a classic
field of phasew ranging formp/2 to 5p/2. Once the noise-
free quadrature distribution of the amplified quantum stat
measured in balanced homodyne detection scheme, the
corresponding Wigner function can be reconstructed by
rying out the inverse Radon transformation familiar in op
cal tomographic imaging@6#:

W~ax ,ay!5
1

4p2E2`

` E
2`

` E
0

p

v~x,u!uhu

3exp@ ih~x2axcosu2aysinu!#dxdhdu.

~38!

The Wigner function of the amplified quantum state can
obtained if we substitute Eq.~35! into Eq. ~38!, and this
results
02381
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W~ax ,ay!5
1

4p2E2`

` E
2`

` E
2`

` E
0

p

d2bW~b,0!uhudhdu

3expF2
~G821!j8

8
h22 ih@~ax2AG8bx!

3cosu1~ay2AG8by!sinu#G . ~39!

For G851, which corresponds toat50 @see Eq.~36!#, we
obtain the Wigner function for the original quantum sta
Equation~39! can be rewritten in terms of the rescaled va
ablesax85ax /AG8, ay85ay /AG8, and h85h/AG8 as fol-
lows

W~ax8 ,ay8!5
1

4p2E2`

` E
2`

` E
2`

` E
0

p

d2bdh8duW~b,0!uh8u

3expS 2
~121/G8!j8

8
h822 ih8

3@~ax82bx!cosu1~ay82by!sinu# D . ~40!

In the parametric limit, whenG8 approaches a finite valu
andj8→0 @see Eqs.~36! and~37!#, it is clear that we recover
the original quantum state. This shows that the quantum s
can be fully recovered after its amplification through
phase-sensitive three-level atomic system in the param
limit. Only an appropriate rescaling of the measured dis
bution is required.

Here, we consider the Schro¨dinger-cat state, which is the
superposition of two coherent statesuj0& and u2j0&, which
are 180° out of phase with respect to each other,

C05AN@ uj0&1u2j0&], ~41!

whereN2152@11exp(22j0
2)# is the constant of normaliza

tion andj0 is taken as real for the sake of simplicity. Th
Wigner functionW(b,0) of this state is defined as@25#

W~b,0!5
1

p@11exp~22j0
2!#

$exp@22~bx2j0!222by
2#

1exp@22~bx1j0!222by
2#

12 exp~22bx
222by

2!cos~4j0by!%. ~42!

The Wigner function of the amplified Schro¨dinger-cat state
can be obtained by using the expression forW(b,0) in Eq.
~40!. In terms of the rescaled variablesax85ax /AG8, ay8
5ay /AG8, andh85h/AG8, it is given by
1-5
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W~ax8 ,ay8!5
1

8p2~11exp~22j0
2!!

E
2`

1`E
0

p

dh8duuh8uFexpS 2~11~121/G8!j8!

8
h822 ih8@~ax81j0!cosu1ay8sinu# D

1expS 2~11~121/G8!j8!

8
h822 ih8@~ax82j0!cosu1ay8sinu# D

1exp~22j0
2!3H expS 2~11~121/G8!j8!

8
h822 ih8@ax8cosu1~ay81 i j0!sinu# D

1expS 2~11~121/G8!j8!

8
h822 ih8@ax8cosu1~ay82 i j0!sinu# D J G . ~43!

FIG. 2. Plots of the Wigner
distribution function W(ax ,ay)
for a Schro¨dinger-cat state in the
zero-detuning limit,~a! for j052
and at50. Here, we obtain the
well-known structure associate
with the Wigner function of the
Schrödinger-cat state. In~b!–~d!,
we show the plots forj052, at
51, and V/g51,15 and 30, re-
spectively. Due to the increase i
V/g, the system grows from a
phase-insensitive amplifier to
parametric amplifier and the origi
nal Schro¨dinger-cat state is almos
fully recovered forV/g530. In
~e!–~g!, we show the plots of the
Wigner function for the same se
of parameters as mentioned in~a!
except for at510 and V/g
51,30, and 90, respectively. Th
figure clearly shows that the origi
nal Schro¨dinger-cat state is almos
fully recovered forV/g590.
r
-
ic

r

It is clear that in the parametric limit, whenG8 ap-
proaches a finite value andj8→0, we recover the Wigne
function for the original Schro¨dinger-cat state. In the forth
coming section, we present the results of our numer
simulations.
02381
al

IV. RESULTS AND DISCUSSION

In Fig. 2~a!, we show the plot of the Wigner function fo
j052 and at50 in the zero-detuning limit. The figure
clearly shows the Wigner function of the initial Schro¨dinger-
1-6
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QUANTUM STATE MEASUREMENT USING PHASE- . . . PHYSICAL REVIEW A 64 023811
cat state. Here two Gaussian hills atax562 correspond to
the location of the two coherent states, and the oscillati
perpendicular to the line joining the two hills arise due to t
superposition of these states. These oscillations are an u
biguous signature of the quantum interference in
Schrödinger-cat state. The finite efficiency of the detecto
tends to wipe out these nonclassical features during the m
surement process. Figures 2~b!–2~d! show the plots of
Wigner function forj052, at51, andV/g51,15, and 30,
respectively, in the limit of zero detuning. The results sh
that for V/g51 ~when the system exhibits the behavior
phase-insensitive amplifier! the well known oscillatory be-
havior of the Wigner function completely vanishes. Ho
ever, with the increase inV/g the system approaches a par
metric limit, and the oscillations start to appear. ForV/g
530, the original Wigner function is almost fully recovere
In Figs. 2~e!–2~g!, we present plots of the Wigner functio
for j052, at510, andV/g51, 30, and 90, respectively. A
comparison of Figs. 2~e!–2~g! with Figs. 2~b!–2~d! shows
that forat510, the complete Wigner function is obtained f
V/g590. This shows that an increase inat requires a larger
value of V/g for a complete reconstruction of the origin
quantum state.

The Wigner function is reconstructed by measuring
quadrature distribution of the amplified quantum state, a
then taking the inverse Radon transformation. The meas
ment of the quadrature distribution can be realized in a b
e

N

t.

v.
,
n-
.

-
r,

i,
ch
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anced homodyne detection scheme@26#. During the mea-
surement, the field leaks through the end mirror of the cav
To ensure that the field does not leak through the ca
during amplification, the time scales in the experiment ha
to be properly adjusted. We havea52g2r /g2 and G8
→exp(2atg/V) ~in the parametric limit!; combining these,
we obtain

t→ gV ln G8

4g2r
, ~44!

which corresponds to the total time for amplification. Th
time should be small compared to the life time (tc) of the
cavity, i.e.,t!tc .

In conclusion, we propose a scheme for the measurem
of the Wigner function of the quantum state of radiation fie
inside a cavity. Our scheme is based on amplification of
signal through a three-level atomic system~in the zero-
detuning limit!, where the coherence is established by dr
ing the atoms continuously through a strong external cla
cal field. It is shown that in the parametric limit this syste
will allow us to fully recover the Wigner function of the
initial quantum state. Only an appropriate rescaling of
measured distribution is required. As an example, we ap
this scheme to a Schro¨dinger-cat state and successfully r
construct its Wigner function. This scheme overcomes
problems of non-ideal detector efficiency.
,
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