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Spectra and magnetic properties of large sgiiis.g., spins possessed by ions or molegulglaced into a
crystal electric field(CEP of an arbitrary symmetry point group, are shown to change drastically Wwhen
changes by 1/2 or 1. At a fixed field symmetry and configuration ofNitextrema situated at thp-fold
symmetry axis, physical characteristics of the spin depend periodicallyvaith the period equal t@. The
problem of the spectrum and eigenstates of the large Bjsirequivalent to an analogous problem for a scalar
charged particle confined to a sph&%eand placed into the magnetic field of the monopole with the charge
This analogy, as well as the strong difference between close valuiesteins from the Berry phase occurring
in the problem. For energies close to the extrema of the CEF, the problem can be formulated as Harper's
equation on the sphere. TheJ2 1)-dimensional space of states is split into smaller multiplets of classically
degenerated states. These multiplets in turn are split into submultiplets of states transforming according to
specific irreducible representations of the symmetry group determindgdabg p. We classify possible con-
figurations and corresponding spectra. Experimental realizations of large spins in a symmetric environment are
proposed and physical effects observable in these systems are angB/i@60-294@9)00709-X]

PACS numbgs): 03.65.Sq, 03.65.Bz, 75.10.Dg, 02.20.Df

[. INTRODUCTION tates around its axis. The rotation phase distinguishes the
rotator from a quantum or classical particle confined on a
Conventional wisdom accepts that large spins or orbitabphere. The rotator problem can be reduced to the particle
momental (in units of4) are almost classical. In particular, problem, but the representing particle must have an electric
if J>1, their measurable properties do not change substarcharge of unity and must be subjected to the homogeneous
tially if J changes by 1/2 or 1. This common belief was magnetic field of a monopole with the magnetic chadge
undermined by Haldang¢l], who demonstrated that the placed into the center of the sphere. In quantum mechdnics
ground state and spectrum of the low-energy states in onexccepts integer and half-integer values. Since the phases are
dimensional spin chains are absolutely different for integedetermined modulo 2, a change ofl by 1/2 or 1 can sub-
and half-integer spins. stantially change phase factors, eved i§ large. Therefore,
In this paper we show that similar phenomena can béhe tunneling amplitudes for close largecan differ signifi-
observed on the level of an individual spin placed into extercantly by their phase, leading to different spectra.
nal electric field. If the field possesses high symmétrybic Harter and Pattersoi2] considered a similar problem in
or icosahedralthe distinction between spins becomes morethe context of the rotation-vibrational spectrum of cubically
subtle. For example, in the case of cubic symmetry not onlysymmetric molecule SF[3]. Since Berry’s phase was not
do integer spins differ from half integdthis difference is invented at that time, their approach was ingenious but not
intuitively obvious due to the Kramers degenenadyut the  physically transparent. They have invented a clever trick as-
remainder at division of the spin by 4 determines the specsociated with the Frobenius duality theorem to avoid explicit
trum and degeneracy of the low-lying states. These strikingntroduction of Berry’s phases, as we understand it today.
differences can be found in experiment either by spectralhough the lack of clarity did not allow them to solve the
analysis or by magnetic measurements. We will show thaproblem completely, it is really surprising how far they were
spins 1000, 1001, and 1002 placed into a cubic environmergble to penetrate into the problem.
have 100% different magnetic susceptibilities at low tem- This paper is composed as follows. In the next section we
perature. Moreover, we will show that a kind of randomnessntroduce a quasiclassical description of large spins. Berry’s
appears in properties of large spins in some cases and variphase, Berry’s connection, and reduction to the problem of a
tion of large spins by one can change magnetic and spectraharged particle in the monopole field are considered in Sec.
properties in an uncontrollable way. lI. In the fourth section we perform the group analysis of the
Certainly, the conventional wisdom we started with isproblem. The fifth section contains the derivation of the low-
presumably correct. It is wrong only in a very small range ofenergy spectrum and magnetic properties of large spins. We
energy or temperature, the smaller the largel. isleverthe-  separated the case of random levels in Sec. VI. Numerical
less, as already happened with the Haldane theory, these dealculations for a special potential in a wide range of spin
viations from classical behavior may be important for thevalues are given in Sec. VII. In Sec. VIII we propose experi-
experiment. mental realizations of large spins. Our conclusions can be
The source of all these peculiarities is Berry’s phasefound in Sec. IX.
Physically, it is associated with the fact that, when the clas- Brief reports on a part of this work were published earlier
sical rotator moves on its unit sphere, it simultaneously ro{7,15].
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II. QUASICLASSICAL DESCRIPTION OF LARGE SPINS

The classical image of a large spin is the classical rotator,
i.e., a vector with a fixed length Its position is determined
by two spherical coordinateg and ¢». Sometimes coordi-
nates],=J cosé and ¢ are more convenient since they have
simple Poisson bracket§],,¢}=1. Classical motion is de-
termined by the Hamiltonian

H=F(I)—h-J, (1)

where h is magnetic field(with a precision of a constant
facton andf(J) is an arbitrary function of, invariant with
respect to inversionJ——J. The latter requirement is
equivalent to the time-reversal symmefdj. Together with
the standard Poisson brackeftd; ,J;} =g Jx the Hamil-
tonian(1) contains full information on classical spin dynam- . i .
ics. Periodical trajectories on the sphere can be quantizedd configurations oD.
according to the Bohr quantization rule:

FIG. 1. Tunneling trajectories of the spisingle paths The

because no reliable information about functiqd) is avail-
able. We present here general facts, independent of the spe-
jg J($,E)dp=(n+yg)m, (2 cific form of f(J), but only on its symmetry group and spe-
cific configuration of the extrema. The only requirement for
whereJ,(¢,E) can be found from the equatidgJ)=E with ~ our theory isJ>1.
the substitutiond, = \/32—J2 cos, Jy= JI2=32sin¢, and Thus, classically a localized stationary state is multiply

g is a constant. (N-fold) degenerate. Quantum fluctuations provide a finite
Let us first consider general properties of spin trajectoriegadius for each of these states which can be enumerated as
in zero magnetic field. The functiof(J), being continuous  |1):/2), - .. [N). For the large] considered all these states

on the sphere, has at least two minima and two maxima. 1€ oscillatory ones within the precision]1LA more subtle,
the external crystal field has a nontrivial symmetry group,put not least essential, quantum effect is the tunneling be-
the number of equivalent minima is larger. For example, ittween these states. The tunneling amplitude between two
can be equal to 4 for tetragonal symmetry, 6 for hexagona$tates [i) and [j), i#j, is exponentially small, w;;
symmetry. In the case of cubic symmetry it can be 6, 8, or 12¢ €Xp(—C;J), where ¢;; are constants for a giveri(J).
(directed along fourfold, threefold, and twofold axes, respecTherefore, we take into account only tunneling between the
tively). The number of equivalent minima for icosahedral Nearest-neighbor states, i.e., the ones with the smai|est
symmetry can be 12, 20, and 3@lirected along fivefold, =¢, and neglect tunneling between more remote states with
threefold, and twofold axes, respectivelWe considered the Cij>C. To estimate the value daf, we need to specify the
situations when extrema are located in the symmetrical poFlamiltonian. For simplicity we consider the case of the cu-
sitions. In principle, it is possible that they are in more gen-bic symmetry with the Hamiltonian
eral asymmetric positions. o 4 a4

Classical trajectories can be separated into two classes: Hi=—a(J+dy+dy), ()
“localized” and “delocalized.” If energy is close enough to . . o -
the minimum (maximum of f(J), the trajectories are con- Wherea>0 is a constant. The minimum value 8t; is
fined in the vicinity of one of the minimémaxima. We call Emiq:_af- There are six minima corresponding to the di-
such trajectories localized. In the intermediate region of thdections of the fourfold axes:(J,0,0), (0:+J,0), (0,0,
energy trajectories are “delocalized,” they are not confined®J). Let us consider, for example, tunneling between
near any of the extrema. It is obvious that delocalized trajecinima (J,0,0), (0J,0). By symmetry the tunneling trajec-
tories are highly model dependent, i.e., they depend on Ty is the smaller arc of the big circle passing through these
specific form off(J). Localized trajectories are much more Points (Fig. 1). Setting?{?=E;, we find from Eq.(3)
universal: they depend only on the symmetry and on the
positions of the minima. The same remark is correct with 3,(d)=+iJ |1—cos4d @
respect to quantized levels: low-lying levels, closé tg,, or z - 7+cos4p
almost maximal values of energy, closeftg,, have univer-
sal features, whereas levels in between are rather nonunivefhe tunneling amplitude is proportional to the exponent;
sal. Therefore, we will study only a part of the spectra close -
to fmin OF fax. Note that the spectrum of the quantum prob- T _ _ _ _—055)
lem is discrete and limited bfj, and f ay. W“eXp( ! Jo Jz(¢)d¢> =exi —(JIn3)/2]=e"""%,

Before we proceed to detailed study of these levels let us (5)
make an important remark. For any fixddand any given
f(J) the quantum problem consists in the diagonalization of~or @ more realistic Hamiltonian
the (2J+1)X(2J+1) matrix. Therefore, the question arises o o 6. 6 6 922
whether the general theory is necessary. The answer is yes, Hz=H1-b(Ix+Jy+JI;+305,377), (6)
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L e — The minimum value ofH] is aJ®/5 (a<0). There are 12
0.6 L ] minima corresponding to the vertices of an icosahedddn
rections of the fivefold axe¢s J(«,B8,0), J(0,a,8),
05| 1 J(B8,0,¢), where a?=(5+5)/10 andB2=(5—5)/10. A
04} . calculation similar to the one foH‘f gives the exponential
= 03 | | part of the tunneling amplitude exp(.287). Positive values
o of a yield the 20-fold configuration with the minima along
02y 1 the threefold axes.
01 | o Addition of the next nontrivial invariant of the icosahe-
dron group, a polynomial of the tenth order ovkrallows

the configuration with 30 minima along the twofold axes.
The tunneling partly lifts the classical degeneracy. What
was theN-fold degenerate state without tunneling is split into
~ FIG. 2. ¢(u) for the sixfold configuration oD. Region of the g multiplet of sublevels separated by exponentially small en-
single tunneling path regime. ergy intervalsxexp(—cJ), whereas the distances between
different multiplets are proportional tod/Each sublevel in
the multiplet corresponds to a finite-dimensional subspace of
states transforming according to an irreducible representation
of the symmetry group. However, as we mentioned already,
the realization of this group and the spectrum for the rotator
are very different from those for a quantum particle confined
on a sphere. Anyway the problem is reduced to diagonaliza-

. f h desi - dth . g ¢ tion of a square matrix of the rank (classical degeneracy of
viate from the geodesicsee Fig. 6 and the estimation of ¢ |6ye) with nonzero matrix elements between geometri-

the exponent becomes more complicated. Effects of the mulsy cosest states only. We neglect the tunneling between
tiple path tunneling, for the case of the octahedron configu:

. . : ; . . 9-more remote state®on-nearest-neighbarsnless otherwise
rations, will be considered in Sec. V. A numerical analysis ofg;,aq.
the Hamiltonian(6) and comparison to the predictions of the
semiclassical approximation is given in Sec. VII.

Another important feature of the Hamiltoni6) is that, lll. BERRY'S PHASE, BERRY'S CONNECTION
depending on signs & andb and the parametay, it dis- ; ; ; : ;
plays 6, 8. or 12 minima, The phase diagram for this, impor- In the framework of quasiclassical spin dynamics the spin

tant f licati Hamiltonian is sh in Fig. 3. On th Is treated as a rigid vector fixed by its directionThe clos-
ant for applicatons, ‘"im' 0”""‘,5‘ IS shown In Fig. 5. Un the o, quantum analog is the so-called coherent $tatevhich
boundaries of different “phases” different groups of minima

become equal to each other. Then, in the quantum proble IS defined as an eigenstate of operatod with the maximal

the degeneracy of the around state increases. for exam rlré’igenvalue\]. Such a state has minimal uncertainty of the
9 y 9 ! p.gpin components transverse to the spin quantization[%is

from 6 to 14._T_herefore one can expect some singularities L\ explicit construction for the coherent state refids
the close vicinity of the boundaries.

For the case of the icosahedral symmetry the simplest ) ) _ R
Hamiltonian is [n)=exp(id,p)expidx0)exp( —id,9)|2), 8

HIz—a{J§+J§+J§+3Q])2(J§J§—3\/§[J§J§(J§—J§) where ¢ and ¢ are spherical coordinates of |z) is the
212,92 12 212,12 12 coherent state with the direction of quantization axis along

Iy 32+ 3= J0 I} 0 the z axis. This definition assures single valuedness of the

spin wave function. An adiabatic motion of classical spin

n(t) can be described by the coherent stafg)) accompa-

nied with a phase facta@'” of purely geometrical origif8].

Namely, if the spin moves adiabatically along any platm

the unit spherés? of n, the geometrical phasg(l) is equal

to a linear integral:

-06 0.5 -04 -03 02 -01 0
u

the exponential factor in the tunneling amplitude is exp
[—c(u)J], wherec(u) is a function of the raticu=bJ?%a.
The graph ofc(u) is shown in Fig. 2 for values dfi in the
interval —2/3<u<1/15 (@>0), where the tunneling path
passes along the geodesics. In the region <153 (a
>0), the six minima are still global, however, the tunneling
trajectories(there are two of them due to the symmetde-

230 —

6/35

y= LA. (9)

The local change of the phase is described by Berry’'s con-
nectionA ,=(nlia/dx*|n). This vector field has two compo-
nents onS?:

FIG. 3. Phase diagram of Hamiltoni#6) in bJ?-a plane. The

dashed lines separate the regions of the single and double path P
tunneling. The numbers on the periphery are the slopes of the cor- A, < nli — n> =0,
responding lines. 6
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1 4 (1—cosb) XN matrix whose diagonal components are equal to a single-

A¢=m< n I% n> A well energy level and nondiagonal elements df};
=w;; . Further, we set the diagonal matrix elementsofo

The connectiom, as well as the geometric phase, are notzero. Then Eq(13) can be rewritten in the vector form
gauge invariant. At a local gauge transformatijn)
—exdin(n)]|n) they are transformed as followA—A
+d\, y— y+N;—\;, where\ is an arbitrary differentiable
function onS?, andi andf are its values at the initial and

final points of pathl, respectively. However, the phase be- Equation(14) is obviously invariant with respect to the dis-
comes gauge invariant if the path is closkd:dc, wherec is crete gauge transformatiowij_,Wi.ei(fi—fj)- cj—>c-e”i.

sing

N
E WijCj: ECi , Wij :We¢ij. (14)
=1

a surface supported Hy In this case Therefore, any set of phases; satisfying Eqs(12) can be
used to find the spectrum and the eigenstates.
y(c):j A:fdA:‘]f sin(6)dode=JQ, (11) _ We h_av_e seen already that the problem of the quasic_las—
ac c c sical spin is equivalent to the problem of a charged particle

. . o confined on the sphei® in the homogeneous magnetic field
where() is the solid angle subtended by at the origin of  of the monopole. It is a direct spherical analog to the prob-
the uplt sphere. The integrand in Ed1) is the field strength  |om of a charged particle moving on a plane in a homoge-
B=Jr/r2. This field is identical to magnetic field produced neous magnetic field, perpendicular to the plane. Restricting
on $? by Dirac’'s magnetic monopole with the charddo-  ourselves with the localized states, we consider a problem
cated in the center of the sphere. Thus, following Berry, wethe planar analog of which is the problem of a charged par-
formulated the problem of a localized large spin in terms ofticle on a two-dimentional2D) lattice placed in a homoge-

a scalar charged particle confined on the sphere in the field afeous magnetic field. It is known as the Harper equdi@in
a magnetic monopole. The main difference from this famous problem studied by
In the presence of a crystal field a further simplification Harper, Azbel, Hofstadter, Thouless, Wiegmann, and many
becomes possible. As was shown in Sec. Il, it leads to thether author$9,10] is that, in our case the lattice is embed-
localization of the low-energy states near the “easy” direc-ded in a sphere which is a compact manifold, in contrast to
tions or minima of the field and lowers the dimensionality the planar case. Nevertheless, many features of the Harper
from 2J+1 to N, whereN is the number of the easy posi- equations will be encountered here, e.g., sudden variations in
tions. The spin trapped near one of the easy directions caspectrum at a transition from a rational to an irrational flux
tunnel to the neighboring minima. The tunneling trajectoriesthrough an elementary plaguetisee Sec. Vl
are solutions of the classical equations of motion with imagi- The initial Hamiltonian7(J) is assumed to possess a
nary time or velocity. The amplitudes;; for the tunneling  point group symmetry. It should be noted th&(J) is in-
from the statdi) to a neighboring statl) can be written as  variant with respect to the inversion transformatidas —J,
w;jj =W expig; . Herew is a real, exponentially small factor whereas the reduced effective Hamiltonian is not. The reason
(see its calculation in Sec.)lnd ¢;; is the Berry’s phase is that this invariance which stems from the time-reversal
along the tunneling trajectory connecting the poinénd]. symmetry cannot be extended onto the quantum permutation
The set of Berry’s phaseg;; along the tunneling trajec- relations:[J;,Ji]=(%/i)€jqJ,. The time reversal requires
tories{i,j} connecting extrema labeled byandj must sat- also antilinear transformation of the state vec{drg| which
isfy a set of equations. Namely, let us consider a plaquette cannot be incorporated into a linear symmetry group. Thus
on the sphere bounded byk tunneling paths all groups of transformations under study consist of rotations
{igyighdio,ig}, ... Jik,iq}. Then only. The point groups in three dimensions have been stud-
ied thoroughly(see, for exampld,5]). Special attention will
be paid to the following point groupf,, n=2,4,6,0 (oc-
tahedron, andY (icosahedron
In the next section we show that the action of the symme-
wherei, =i, and{}(c) is the solid angle subtended by the try transformations on the effective Hamiltonian is not trivial
contourdc. The systeni12) is extended over all independent due to Berry’s phases.
plaquettes. Without loss of generality it is possible to con-

§¢i- =y(c)=J(Q(c)(mod4m)), (12

m"m+1

sider Eq.(12) only for r_n|n|mal (elementary plaquettes, i.e., _ V. GROUP THEORY ANALYSIS
plaquettes of the minimal non-zero area whose boundaries
do not have self-intersections. Equatidd®) do not define A. Construction of the main representation

the phasesg;; unambiguously. There remains a freedom of a Let G, a discrete subgroup of $8), be the point group of

discrete gauge transformatiei; — ¢;; + f; — f; containingN ) . ) : )
real parameter§; . One of them can be treated as a commonthe crystal field, i.e., the point group leaving functiof)

phase factor and is inessential. The Sdimger equation in invariant. It always includes the space inversloas a con-
this representation reads ' sequence of the time-reversal symmetry. Also, we introduce

a subgroupG of the full symmetry groupG=GXC; (C;

H|py=E|y), (13  ={E,I}) which includes rotation elements only. Further we
employ the notation “symmetry group,” namely, fd®.

Where|z//>=E]N:10j|j) is a vector in theN-dimensional space Each groupG has several sets of equivalent symmetric di-
spanned onto the basj$), j=1,2,... N andH is anN rections defined by the intersection of equivalgsfibld sym-
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metry axes with the unit sphere. Let us denote such a connetries isG extended by,: 1—Z,—G—G—1. Instead of
figuration C(G,p) and corresponding number of symmetry dealing with the projective representations ®@f one can

directionsN(G,p) (we denoted it earlier abl). It can be work with the linear re . = .
: - . presentations &f. An explicit con-
readily seen thaN(G,p) =|Gl/p, where|G] is the rank of struction of G will be given later in this section. In other

the groupG, i.e., the number of its elements. The setof language we must consider double-valued representations of
=N(G,p) localized stategk) corresponding to the configu- G [5] for half integerJ.

ration C(G, p) is the vector space for a linear unitary repre- .
sentation of the grou®. This representation depends also on,. The representatiol(G.,p,J) was c_ons_tructed for a par-
ticular gauge, however, one can easily find the required rep-

J. Let us call it the main representation and denote itresentation if the Hamiltonian undergoes a gauge transforma-
W(G,p,J). Its dimensionality is obviousiN(G,p). For J tion- 9 gaug

=0, W(G,p,J) is a matrix representation of some subgroup™

P of the permutation grou, . Each elemeng of G can be UHUT=H'.

put in one-to-one correspondence to a permutafi{g)

e P. The Hamiltonian of the system is invariant under theirThen a corrected representation leaves the Hamiltonian in-
action. ForJ#0 or J not equivalent to 0, the problem be- variant:

comes quite peculiar since, due to Berry’'s phase factors, the

Hamiltonian is no longer invariant under the action of the W =t

transformationsP(g):
Harter and Pattersdi2] used the Frobenius duality theo-

PHPT=H'+H. (15  rem[13] to find very elegantly the multiplicities of the low

o _ . (high) energetic level clusters without using characters.
Hamiltonian’ differs from H by a gauge transformation.

Therefore, it is possible to append such a gauge transforma-

. ; . ; B. Classification of configurations
tion /e U (unitary diagonal matrixto each rotation that the

Hamiltonian remains unchanged: Generally speaking, thil-dimensional main representa-
tion is reducible. To perform the reduction of the main rep-
UPHPTUT="H. (16 resentation we need to find its characters. They are found

explicitly in Appendix A. Here we issue final results. For
Thus, a proper representatidh(G,p,J) of the symmetry W(G,p,J), elements with non-zero characters are iderEity
group for large spid or for Harper’s equation on the sphere the rotation through an angle ofr2about an arbitrary axis
consists of operators/(g) =4(g) P(g). Since multiplication  Q, and rotation<C] about thep-fold axes.
of each/(g) by an arbitrary phase factor does not violate

Eq. (16), the matrices inW(G,p,J) constitute a projective x(E)=N, x(Q)=N(-1)%,
representation o6 in general, that is,
q 27Jq
W(G1)M(G) =C(91,92)M(0102). 91,926 G, (17) X(Cp)=2 cog ——/, (19
wherec(g;,0,) is a function onG X G with values in U1) 2739
(two-dimensional cochajn X(ch)zz(_l)ZJcog( ) (q=1,...p—1).

Now, a question arises of whether the factorcef; ,9,)
is equivalent to the trivial onec’(g,,g9,)=1 for any
01,9, G, as it is for the casd=0. By definition, two fac-
tor setsc andc’ are equivalent if there exists a functib(g)
on G with values in U1) (one-dimensional cochairsuch

Now we proceed to consideration of different point
groups and their configurations of extrema.

1. Configurations of the octahedron group O

that
Here, we classify possible configuratio660,p) of the
b(g1)b(g2) | octahedron symmetry group. In general, i.e., without ac-
€(91,92)= b(g1g,) (91,02)- (18)  cidental degeneracy, the mininfmaxima of the potential

are located either on the equivalent symmetry axes of the

We checked for finite group§&CSO(3) that Eq.(18)  cube or completely away from thentasymmetrically.
with ¢’(g;,9,) = * 1 is really satisfied. In mathematical lan- C(O,4), three axes of the fourth order passing through the
guage this means that the cochairis a cocycle but not a centers of opposite facedl=6; C(O,3), four axes of the
coboundary for a half-integer spin and it is a coboundary foithird order passing through opposite cornéis: 8; C(0O,2),
an integer spii12]. Therefore, the factor set is nontrivial in six axes of the second order through the midpoints of oppo-
general. It is equivalent to the multiplicative factdrs 1} site edges,N=12; C(0O,1), none of the symmetry axes
(isomorphic toZ,) which is a consequence of the Dirac passes through the minimé=24 or N=48. The represen-
guantization: 2=n, neN. This structure of the factor set tations W(O,p,J) of the octahedron group acting on the
might have been anticipated since the parameter space of apaces of states corresponding to the above described con-
arbitrary spin is not just S@) but its universal covering figurations are, respectively, 6, 8, 12, and(4B} dimen-
group SU2) which can be obtained as a nontrivial extensionsional.
of the former one: +2Z,—SU(2)—SO(3)—1. In our case, For a configuratiorC(O,p) only eIementsC‘g have non-
spin in crystal electric fieldCEPF), the proper group of sym- zero characters which were calculated earlier. They must be
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TABLE I. Irreducible components of the cubic representations TABLE Il. Irreducible components of the icosahedron represen-

Wy, N=6,8,12,24. tationsWy,, N=12,20,30,60.
J C(0,4) C(0,3) €(0,2) €(0,1) J  C(Y.5) C(Y,3) c(Y,2) c(yY,1)
ALLA, A, E A1 Az E(2) AF, AF1,F2 AF1F2  AF(3).F2(3)
0 Ay E.Fy 0
Fi.Fs F1.F2(2) F1(3).F2(3) Fa.H G(2).H G(2),H(3)  G(4).H(5)
Az E Fi.Fs F1(2),F2(2)
1 Fi.Fp E.F.,Fp 1 F1,G,H
Fi(2).F2 G,H(2) G(2),H(2)
2 A, .EF, 2 F,.G,H
E1(2).E2(2) E1.E; E1.E; E1(2).E5(2)
12  E,,G' E}E,G E;E;G'(2) 12 E;.G'I'
G'(4) G'I'(2) G'(2),1'(8) G'(4),1'(6)
32 E;G’ G'(2) 32 E,GLIT G'(2),1'(2)
512 1'(2)

divided into classes of conjugate elements. The classes with

nonzero charactefexceptE andQ) are six rotations€, and ~ Hamiltonian, for a configuratiod(Y,p), have the periog.

C3, and three rotation€3 for C(0,4); eight rotationsC; and ~ The irreducible components contained in representations

C% for C(0,3); six rotationsC, for C(0,2); and none for Wy, N=12,20,30,60 of the icosahedron group are given in
The characters are periodic functionsJofvith the period

equal top. This means that the multiplicities of the eigenval-

ues of the Hamiltonian have the same periodicity. The char- Next, we consider the configurations of three groups of

acters are invariant under the transformatibr —J (mod  symmetriesDy (N=2,4,6). Despite their simplicity, Ber-

p) (reflection. ry’s phase introduces here some interesting effects as well.
The irreducible components contained in representations The configurations oD, are quite simpleZ(D,,2), one

Wy, N=6,8,12,24 of the octahedron group are given inaxis of the second ordeN=2; and(C(D,,1), none of the

Table | for values of] inequivalent under the translations symmetry axes passes through the extrelNa4 or 8 The

over p and the reflection. These irreducible componentscharacters of th®, representations and the irreducible com-

along with the components @f, configurations, were found ponents contained in representatiobig, N=2, 4 are given

in [2]. For simplification we denote®V(O,p,J) as Wy, in Table 1l.

whereN=N(O,p). The irreducible components &%,5 are

not listed since there are twice as many of them as those for 4. Configurations of the tetragonal group P

W,,. This relationship is correct for representatidfig| of The configurations oD, are C(D,.4), one axis of the

any groupG. The charactgrs of_the accidental c:onflguratlons,fourth order,N=2: C(D,,2), two axes of the second order,
such as the 14-fold configurations on the boundary betwee —4; and C(D,1) none of the symmetry axes passes
C(0,4) andC(0,3), are merely sums of the characters of the ' @ y y P

constituting components and can be found from the giver'ﬁhrough the extremal=8 or 16. The irreducible compo-

tables for the basic configurations. nents .contalned in representationg,, N=2,4,8 ofD, are
given in Table IV.

. . . An interesting conclusion can be drawn from the data in

2. Configurations of the icosahedron group Y Table 1IV. The twofold classical degeneracy of the configu-

The classification of configuratioY,p) for the icosa- rations ofC(D,,4) is not lifted for all but even values ok
hedron group of symmetries is similar to that of the octahe-Thus, the tunneling is allowed only for even spins. This re-
dron group. Extrema can be located either along the direcSult cannot be accounted for by Kramers degeneracy, as was
tions of the symmetry axes or asymmetrical3(Y,5), six ~ Possible in14] for D, configuration, and is totally due to the
axes of the fifth order passing through opposite corners ofymmetry combined with Berry’s phase. Also, it shows im-
the icosahedrorl\=12; C(Y,3), ten axes of the third order Portance of the details of the background, i, (consid-
passing through the centers of opposite fades20; ¢(Y,2),  ered in the preceding section and[i4]), D4, andDg (con-

15 axes of the second order through the midpoints of opposidered in the next sectiprgroups of symmetries have the
site edgedN=230; andC(Y,1), none of the symmetry axes

passes through the minimé=60 or 120. The main repre- TABLE Ill. Irreducible components of th®, representations.
sentations of the icosahedron group acting on the spaces of

3. Configurations of B

the configurations are, respectively, 12, 20, 30, and B0 ¢(D,2) ¢(D,,1)
dimensional. The classes with nonzero characters, beEides A,B, A,B;,B,.Bs
andQ, are 12 rotation€2* and 12 rotation€2>for C(Y,5), 1 B,.B,

20 rotationsC3? for C(Y,3), 15 rotation<C, for C(Y,2), and 1/ E’ E'(2)

none forC(Y,1). The multiplicities of the eigenvalues of the
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TABLE IV. Irreducible components of thB, representations.

J C(Da,4) C(D4,2) C(Da)1)
0 ALLA, A,.B;,E A;,A,,B;,B,,E(2)
1 E A,,B,,E
Bl ' BZ
1/2 E; E;,E} E;(2).E4(2)
32 E}

easy axig(twofold) configuration, however, the tunneling is
allowed in theDy environment only fod=0 (modN/2) and

is defined by the anisotropy in the plane normal to the eas
axis.

FIG. 4. Configurations oD,. Filled circles and dashed lines
belong toC(D,4,4), and filled squares and solid lines belong to
¥(D4,2) respectively.

5. Configurations of the hexagonal group trajectories located symmetrically with respect to the geode-
sics. However, the two trajectories can be considered as one
effective path with the tunneling amplitude ovZos{J(}/2)

[see Eq(28)], wherew is the tunneling amplitude of a single
path and() is the solid angle subtended by the two trajecto-
ries.

Before proceeding to a detailed analysis of the spectra, we
obtain some relations between eigenvalues of the same con-
V. SPECTRUM figuration, but for differentl. These relations are of purely
rgeometric origin[15]. Let us assume that the parameter
spaceS? can be covered completely and without overlap by

gives the number of split sublevels in the inithdfold mul- t ol t h boundari the t i
tiplet and their degeneracies. In this section we find the ordey condruent plaqueties whose boundanes are the tunneling
ajectories. E.g., these are two hemisphere<{@r,2), N

of the sublevels and distances between them. It requires e¥: ) . .
plicit diagonalization of the reduced Hamiltonian. As we — 2:4:6. configurations\l orangelike segments fG(Dy ,N),
show below, the spectrum is a much more subtle matter thaf'9- 4: eight curved rlght-angle(_j triangles 140,4), Fig. 1
the number and degeneracy of the sublevels. It may deperg?Ch Plaquette subtends a solid angle af'd, and Berry's
on details of the Hamiltonian. phase for each loop is®J/s. Then, from Eq(12), it follows

We assume that all tunneling paths between neare§hat1the spectrum is a periodic function dfwith the period
minima are equivalent, that is, all nonzero tunneling ampli-/2~ The spectra of systems differing by transformation
tudes have equal absolute valies. Consequentlyw enters y(c)— —y(c) must t,>e identical due to the time-reversal
the Hamiltonian as a common multiplier and all eigenvaluesSymmetry. Hence, all's are divided intcs/2+ 1 equivalence
are multiples ofw in zero magnetic field. The solid angle classes defined by a set of numbers 0,1/2,1 s/4. A fixed
covered by the minimal nontrivial closed path will be as-J Pelongs to the class of equivalence labeled by
sumed known. It is, actually, a constant for all configurations
butC(G,2), G=0,Y, where it is a function of some dimen-
sionless combinations of the CEF parameters, e.g., tatio
Sec. Il

In some cases, not only in simple ones, sucti(®&;,N),
there are two tunneling trajectories connecting nearejereinafter, we will work only with the minimal nonequiva-
minima. E.g., in the vicinity of the boundary between sixfold |ent J's.
and eightfold configurations of the cubic gro(gee Fig. 3 In a more general setting, i.e., in the presenca differ-
the tunneling trajectory deviates from the geodesics connecknt elementary plaquettes, periodicity of the spectra depends
ing the minima and, due to the symmetry, there are twqyn the rationality of the flux quanta passing through each

plaguette: if a flux per each plaquette i®,=JQ;

Due to the similarity of this group wittD,, we just
present the data on thg; representationsl(Dg,6), one axis
of the sixth orderN=2; C(Dg,2), three axes of the second
order,N=6; andC(Dg,1), none of the symmetry axes passes
through the minimaN=12 or 24. See Table V.

The group-theoretical analysis of the preceding sectio

min|J+ns/2|. (20

ne’

TABLE V. Irreducible components of thBg representations. =2mIP;/Q;, i=1,...n, whereP; and Q; are mutually
prime integers, then the period of the spectra is the least
J (De.6) ¢(Ds.2) (De.1) common multiple ofQ;, i=1, ... n. Otherwise the spectra
0 AL A, A;B1.E;,E;  ApLA,,B1,B,y Eq(2),Ex(2) are not periodic and each represents a class. Thus,rif
1 E, A,,B, E;,E, =1 the spectra is always periodic andnif1 it is not in
2 E, general(unless an additional symmetry is present
3 B,.B,
1/2 E1 E1.Ez.E3 E1(2).E5(2).E5(2)
3/2 E; 1This statement is conventional; it is periodimifdoes not depend
5/2 E, on J. However, the ratios of the interlevel distances are periodic

functions ofJ.
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TABLE VI. Spectrum ofC(D,4,2) in magnetic field, the limit of TABLE VII. Spectrum ofC(Dg,2) in magnetic field, the limit of
small magnetic field, and low-temperature magnetic susceptibilitysmall magnetic field, and low temperature magnetic susceptibility.

[B=1/(kgT)].

J Eigenvalues Susceptibility

J Eigenvalues Susceptibility

+ (2w+ 3h23?/w)
0 *(2w+ $h23%w), =3h23%sin(2p)w  3(gdug)dw 0 + (w— 2h232/w) (9Iug)?/w

2 +(W+ 2h2J2/w
1/2 +(2w=ihJ+ \l/—;thzlw 1(93ue)?B (W+s ﬁ)
V2 0@, V3w 3ha+ 15 h?3w 1(9Jug)?/(kgT)

An extra symmetry of the spectra can be extracted by
considering an operation of the change of sign-—w. *2wcogmJ) for N=2
This transformation inverts energy levels inside of each  g_{ +4wcoqnJ)cognJ/2) for N=4
class. On the other hand, the spectra depend only on gauge _
invariantsw* cos{Q),), whereQ,=4mm/s (mis an integer *2wcogml)[1+2 cog2mIf3)] for N= 6'(22)
is the solid angle subtended by a closed contour contaking
tunneling paths and is a multiple of the solid angle subtendeth full agreement with the predictions of Sec. IV, the paths
by the elementary plaquetters. If all closed contours con- interfere destructively for all spin values except 0 (mod
tain an even number of pathk (s even, e.g., C(0O,3), N/2).
C(D,4,2), the levels are symmetric inside of each class, that The case of minimal symmeti§(D,,2) has been consid-
is, they come in pairs of opposite signE. For example, for ered by Losst al.[14] earlier. They argued that in the case
eigenvalues of’(0,3) the following relations are satisfied: Of half integerd the tunneling amplitudes along the two paths
E(J=0;A;)=—E(J=0;A,), E(J=0,1F,)=—E@ cancel each oth_er. One can see from Ef_az) that, when the
—0,1F,), E(J=1:E)=0, E(J=1/2E))=—E@ number of equivalent tunneling paths increases due to the

—1/2;E}), E(J=1/2;G") =0. If some of the closed contours symmetry, such a cancellation takes place for intehes

. well [with the exception of =0 (modN/2)], where the clas-
con5|§t of an odd number of paths, e@o4), C(Y’?’)’ then sical degeneracy of the ground-state level is twofold for all
the simultaneous change of signm——w and shiftJ—J ¢(Dy,N).

+s/4 leaves the invariant combinations unchanged. There-" |, the presence of magnetic field the eigenvalues are

fore, each leveE in the class ofl has its counterpart E in E(h)= = VEZ(0)+ (hJ)2, where h=gugH and H is the
the class of) +s/4. For example, iC(O,4): E(J=0;A1)= " component of magnetic field along the easy direction.
—E(J=2/Ay), E(J=0;F,)=—-E(J=2;F;), E(J=0;E)= For theC(Dy,2) N=4,6 configurations, the Hamiltonian
—E(J=2E), EQU=12E;)=—EQJ=3/2E)), E(J isthatof the one-dimensionaksite tight-binding mode7],
=1/2,G’)=—E(J=3/2;G"). If JandJ+s/4 belong to the with eigenvalues.
same equivalence class, their spectrum is symmetric, e.g., in
C(0,4): E(J=1;F,)=—-E(J=1;F,). Ey=2wcog2m(k+J)/N], k=0,1,...N—-1. (23
The analysis carried out by Harter and Pattefsied to
similar results for some configurations, e.g’(D,,2),
C(0,4), andC(0,3), but without magnetic field.
Later in this section we calculate the spectra for different Hy=—hJcog ¢p—27l/N), 1=0,1,...N—1, (24)
groups of symmetry and configurations.

The magnetic field enters the Hamiltonian as a site-
diagonal matrix:

whereh=gugH, H is the in-plane component of magnetic
field, and ¢y, is the angle of this component with respect to
A. Spectra of the O, (n=2,4,6) the easy direction of the CEF labeled by0. The eigenval-

The configurations oD, are shown in Fig. 4. In the case Ues of H+H, can be found analytically. Fa#(D,,2), one
of the Dg configurations, there are six minima on the equa—flnds
torial circle[ C(Dg,2)] and six tunneling paths connecting the w o
antipodal points[C(Dg,6)]. For C(D,,2), it is just two 2_ou2, \/ 4 T2,
minima connected by two tunneling trajectories. The totalE =2wt 2 =\ 4w'cos(md) + 2h*w’+ 4CO§(2¢")’
tunneling amplitude forC(Dy,N), from one pole to the .
other, is where we usech as a shorthand fohJ. The spectra of
C(D4,2) (previously calculated in7]) andC(Dg,2) in mag-
netic field are given in the limit of small magnetic fields in
Tables VI and VII, respectively. The last column of Tables
VI, VIl is the low-temperature magnetic susceptibility,

N—1
w2, expidmkJ/N), (21)
k=0

where we prescribed a phase factor of unity to one of the
tunneling paths. The Hamiltonian is a<2 matrix with the 2The labelk in Eq. (23) does not correspond to the algebraic value
following eigenvalues: of the level.
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TABLE VIIl. Spectra and low-temperature magnetic suscepti-
bilities of C(0,4) [B=1/(kgT), a common factor of dJug)?, is
omitted].

J Eigenvaluegdegeneracigs Susceptibility
0 —2w(2),0(3),4w(1) 1/(3w)
1 —2w(3),2w(3) Bl6
2 —4w(1),0(3),2n(2) 1/(6w)
1/2 —\2w(4),2\2w(2) 28/9
32 —2\2w(2),\2w(4) BI9

S ] ) ) FIG. 5. Paths of the spin on the unit sphere between the easy
which is a readily observable physical quantity. The susceppositions of the field. The case 6{0,3) configuration.

tibility saturates to a constant for the classes without a mag-

netic moment in the ground stateteger spinsand has a The fy|| Hamiltonian can be easily diagonalized for some
Curie-like behavior for the ones with a magnetic moment ingymmetric direction of the field, e.g., along easy direction
the ground staténalf-integer spins see Appendix C for de- (1 g 0. The direction of the field does not influence the low-

tails. _ _ ) temperature susceptibility since the latter is isotropic in a

_In the case of’(Dy,2) configurations, there is a spectral oypic CEF. However, individual levels of the ground-state
difference between integer and half-integer spins only whichy tiplet may have anisotropic magnetic susceptibility as
can be ascribed to Kramers degeneracy. In the next sectiofe|| ‘a5 anisotropic magnetization. The low-temperature

we consider non-Abelian cases, where more complex divigagnetic susceptibilities a#(O,4) are collected in the last
sion on equivalence classes occurs. column of Table VIIL.
In the case of th&(O,3) configuration, the minima are
B. Spectra of the O configurations located at the vertices of a cube inscribed into the unit

The cubic symmetries are quite common in nature. WeSPhere: si=y2/3,sin(2$)=0, where ¢ and ¢ are the
will perform a detailed study of the configurations of the SPherical coordinates of the mininisee Fig. 3. The tunnel-

has the following matrix elements: gruent plaquettes; each subtends a solid anglend82Five
independent equatiori&?) fix the tunneling phase shifts and
h;=0, i=12,...,6 the Hamiltonian up to an arbitrary gauge transformation. The

eight eigenvalues arfd 5]
hj=0, li—j|=1, i+j=3711 (25)

Ex = +2w¢[ m(J+3k)], k=0,1,2,3,
|hij|=|w| forother 1<i,j=<8,

where we adopted the enumeration shown in Fig. 1. The E(x)=
tunneling trajectories divide the sphere into eight plagquettes.
Relation(12), written for each plaquette, gives eight equa-

tions for the phaseg;; , where()(c) = 7/2 (an example of a X X 1/2

set of the phases for this configuration as well as a calcula- Q(X)=(4 sirf =sif = + 1) .

i g ; ) 273

tion of the spectra is given in Appendix BOnly seven equa-

tions are independent. Given definite phases, the diagonaliza-

tion is straightforward. The eigenvalues can be expressed in The ordered eigenvalues are presented in Table IX for the

3+2 2 4 X cos. - 2
+ COSXCOS?-F coszco%g(x) , (27

the following closed forni15]: nonequivalentd's (w>0). Analysis of the magnetic re-
sponse is quite straightforward as wike Appendix ¢ the
Ex(d)=(—1)*2wy[7(J+2k)], k=0,...,5, magnetic susceptibilities of the classes are given in the last
(26) column of Table IX.

2% X X ox  x\12 Consideration of’(0O,2) will be postponed until Sec. VI.
X(X)=cos—-cos; — co§§ +sir? ?sinzi
TABLE IX. Spectra and low-temperature magnetic susceptibili-

. " ¢ suscept
The ordered spectra @f(0,4) are given in Table VIII ties ofC(0,3) [=1/(keT), & common factor ofdJy)", is omit

>0) for the minimal set ofl’s; the spectra for othei’s can ted.
be obtained by the use of the equiva}Ience relgmﬂ). Note J Eigenvaluegdegeneraciés Susceptibility
that the spectra should be invertediifis negative.

The physical difference among the classes is manifested 0 —3w(1),—w(3),w(3),3w(1) 1/(3w)
when magnetic field is applied. The magnetic part of the 1 —2w(3),0(2),2n(3) BI6
Hamiltonian in this case is 1/2 —\J6w (2),0 (4) /6w (2) B9

3/2 —\3w(4),\/3w(4) 2/9

Hp=Jdiag —h,, h,,—h,, h,,—h,, h).
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@ - 6-fold (global minima)
w - 8-fold (local minima)
@ - 12-fold (global maxima)

FIG. 6. Tunneling trajectories of the spidouble paths The

sixfold configurations oD. The hexagons show the locations of the ~ FIG. 7. Tunneling trajectories of the spidouble paths The
maxima of the CEF potential. sixfold configurations of. The tunneling trajectories pass closely

to the local minimalocations of the eightfold configuration
1. Multiple tunneling path regime
i ) ) ) local minima(filled triangles, thus “avoiding” the 12-fold
In the C(O,4) configuration, a tunneling trajectory con- 45ha| maxima(filled hexagons The solid angle enclosed
necting two minima, e.g., minima 3 and 5 in Fig. 1, is N0ty he two trajectoriegshaded area in Fig.) ¥aries in the

necessarily a geodesic on the sphere. For example, if tr}%nge 6= Q< /3. Upon such a variation d® the spectrum
midpoint of the geodesics connecting minima 3 and 5 is Qvill make J/12 full oscillations.

maximum of the CEF potential then the tunneling trajectory Next we analyze the multiple tunneling trajectories of

connecting the minima will s_pl_it in two paths: one deviating C(0,3). Figure 8 depicts the splitting of the trajectory con-
towz;rdtsh th“e nt(?]rfh Fole_(mlnlmum D _an(ilq the pthFe_r t%' necting minima 1 and &solid curvesA andB). The situation
wards the south * po eminimum 2 as is Shown In F19. 6. s similar to that of the®(O,4) configuration(the oscillations
One patr_\ is a mirror copy of the other with respect to thetake place and their maximal number J&L2) except one
equatorial” plane. Thus, the absolute values of the tunnel—Subtle point: when a trajectory deviates strongly from the

ng %mp:!tu?e_f_ c?rr;\?ﬁondmg to tget two lf[rajector:j?sgx geodesics it approaches the trajectory connecting a next-
are iaentical. 10 Tind the compound tunneling ampiitude W?nearest-neighbo(rdashed lines in Fig.)8e.g., linesA’ and
assume that one of the trajectories, e.g., the one connecti

minima 3 and 5, and located in the “south” hemisphere, has@ which connect 1 with 4 and 8, respectively. This is a very

the phases, : w1 =|w|exple,). Then, due to the Berry con- drastic change in the tunneling regime which leads to a

X X 4 change of the connectivity matrix.
nection, the other amplitude must be,=|w|exdi(¢; g y

. : To calculate the spectrum we assume that the absolute
_‘].Q)]' yvhereQ IS thg solid angle §ubtended by the two values of the single tunneling amplitudes to the nearest- and
trajectories. The effective amplitude is

next-nearest-neighbor sites are the samelowever, the ef-
_ B (01— 3012) fective amplitude for the nearest-neighbor tunneling is
We=Wy+W,=2|w|e't cog JQ/2). (28 2w cosgQ/2) due to the double trajectories. The elementary
plaguette, in this case, is a triangle covering the solid angle
Interesting conclusions can be derived from form@8).  of #/3, e.g., triangle 1-5-8-1 in Fig. 8. In this case, plaquettes

First, the splitting of the trajectories does not change theover the sphere twice. Then, the periodicity of the spectra is
connectivity matrix of the configuration, it just modifies the

multiplier of Hamiltonian(25) and all results obtained for
configurationC(0O,4) hold true. Secondly, the spectrum may
be an oscillating function of or, if one were able to vary
parameters in such a way thatchanges from its maximum
value to zero, several oscillations of the spectrum could be
observed as well. To estimate the number of oscillations we
use the fact that different tunneling trajectories emanating
from a site and ending at some other @talo not intersect

at intermediate pointsthey can only intersect at the end
pointy. Then we can state that the maximal possible devia-
tion of the trajectories from the spherical geodesics connect-
ing the positions of th€(0O,4) configuration is reached when
the trajectories pass along the spherical geodesics connecting
the geometrically closest positions of #8€0,3) andC(0,4)
configurations. Figure 7 depicts this situation: the two tun- FIG. 8. Tunneling trajectories of the sp(double pathb The
neling trajectories connecting the sixfold global minima 3eightfold configurations 0D. The hexagons show the locations of
and 5(filled circleg are passing very closely to the eightfold the maxima of the CEF potential.
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TABLE X. Spectra ofC(O,3), region of the multiple tunneling TABLE XII. Spectra ofC(Y,3); all eigenvalues are multiples of

path regimg x=2 cos(€/2)]; all eigenvalues are multiples of. w.
J Eigenvaluegdegeneracigs J Eigenvaluegdegeneracigs
0 —3(1-x)(1),— (1+x)(3),(1-x)(3),3(1+x)(1) 0 —5(3), —2(4), 0(4), 1(5),\5(3), 3(1)
1 —2(1-x/2)(3),—3x(2),2(1+x/2) (3) 1 —(1+/13)/2(5), —1(4), (3-5)/2(3),
2 —2(1+x/2)(3),3(2),2(1-x/2)(3) (—1+13)/2(5), (3+5)/2(3)
3 —3(1+x)(1),— (1—x)(3),(1+x)(3),3(1-x)(1) 2 —(3++/5)/2(3), (1-13)/2(5), (3-/5)/2(3),
1/2 —(V6—-xy3)(2),—xy3(4), (/6+x43)(2) 1(4), (1+13)/2(5)
312 —V3(1+x)(4) 3(1+x%)(4) 3 —3(1), —5(3), —1(5), 0(4), 2(4),V5(3)
5/2 —(V6+xy3)(2) x\/3(4),(V6—x3)(2) 12 — (VB+\T7)/2(6), V3(1— B)/2(2),
(—V3+17)/2(6), V3(4), V3(1+/5)/2(2)
given bys=4x/(/3), which is half of the total number of gg B g;‘z)(z_) 1?%(14()6)('\/?_(‘37) 206)

the elementary plaquettes. Application of the symmetry ar-
guments given at the beginning of this section leads to the
following properties of the spectrum: the periodicity of the
spectral behavior i§=s/2=6, |J+6n|, neZ is equivalent
to J, the spectrum of+ 3 is the inverted spectrum df The  C(Y,5) given in Table Xl holds valid for both regimes. For
results of the diagonalization are summarized in Table X. the(C(Y,3) configuration, in a range of parameters the prox-
imity of the minima positions may be altered: each minimum
position(vertex of the dodecahedron where some three faces
intersect should be geometrically connected not just to the
three nearest neighbors but also to the six next-nearest neigh-

V3(—1+4/5)/2(2), (V3+\7)/2(6)

C. Spectra of the Y configurations

The analysis of the configurations of tive group is te-
dious, though similar to that for th® group. We present
only the results of the analysis here. Table XI contains the ~
spectra and the low-temperature susceptibilities of the
C(Y,5) configuration (the energies are multiples of).

Tables XIlI, XIll contain the spectra and the low-temperature
susceptibilities of the’(Y,3) configuration, respectively. For all configurations considered in the preceding section,

The multiple tunneling path regime is present in configu-the spectra were simple periodic functionsJofwhich was
rationsC(Y,5) andC(Y,3) as well. Its analysis is similar to due to the fact that a rational number of flux quapt
that of configuration£(0,4) andC(O,3). We present here =JO(c)=27JP/Q] passes through each plaquette. This is
its summary only: The regions of existence of configurationsot the case for more complex configurations such as
C(Y,5) andC(Y,3) in the parameter space of the CEF areC(G,2), G=0,Y. In Fig. 9 we present the spatial distribu-
divided into two parts for each configuration. One part cor-tion of minima of theC(0O,2) configuration. The segments
responds to the single tunneling path regime. The aboveonnecting the minima are not real tunneling trajectories but
theory is valid in this region. The other part is of the multiple rather guidelines. The tunneling paths may deviate strongly
tunneling path regime. The spectra are oscillating functionsrom the geodesics connecting corresponding minima both to
of J in this region sincew~ cosQ(}/2), 0=Q<2m/15. the locations of the sixfoldcenters of the cube faceand
Upon full monotonic variation of(}, the spectrum makes eightfold (vertices of the cubeconfigurations’ positions. The
~J/30 oscillations for both configurations. The spectrum ofexact form of the paths depends on the CEF constants, e.g.,

VI. RANDOM ENERGY LEVELS

TABLE XI. Spectra and low-temperature magnetic susceptibilitie§(of,5); all eigenvalues are mul-
tiples of w and all susceptibilities are multiples ofgdug)? [B=1/(kgT), c;=cos@@/10), and c,

=c0s(37/10)].

J Eigenvalueqdegeneracies Susceptibility
0 —/5(3), —1(5), V5(3), 51) (1+/5)/(6w)
1 —5(4), (56—3)/2(5), (5+/5)/2(3) B9

2 —5(4), (5—5)/2(3), (5+3)/2(5) BI9

3 —(5+3)/2(5), (5-5)/2(3), V5(4) 2319

4 —(5+1/5)/2(3), (3-\5)/2(5), V5(4) pBI6

5 —5(1), —/5(3), 1(5),/5(3) (5+5)/(30w)
3 —2¢,(6), (3—5)c1(4), 2y/5¢4(2) BI5

3 —2/5¢5(2), —2¢4(6), (3+/5)cs(4) (5+/5)c, /(15w)
—/5(6), \/5(6) B(5+15)/30
5 —(3+5)ca(4), 2c5(6), 2y/5c5(2), BI5

3 —2\5¢4(2), (5—3)cy(4), 2¢4(6) BI9
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TABLE XIll. Low-temperature magnetic susceptibilities of TABLE XIV. Spectra ofC(0O,2). All eigenvalues are multiples

C(Y,3) [a common factor of dJug)? is omitted, 3=1/(kgT)]. of w; x=J(a+2m)/4.
) Susceptibility IntegerJ Half integerJ
0 (7/6+11y5/18)w Energy (degeneracy Energy (degeneracy
; ALz Ty E—S(S\EM)]/%S 4 cosx (1) 2(cosx++2 sinx) (2,2)
3 (\5+3)/(6w) 2— Czocsis(s()z) ~ cosxt 2T 02X (4.4)
ég ﬁ[loﬁi(?: ng é?,f{zﬂmo —cosx=8—7 cosx (3,3)
5/2 BI9

The spectra described in this section have features of ran-
domness. Indeed, the functigaJ} (fractional part ofaJ)
for the simplest Hamiltonia(6), where configuratiod(O,2)  with an irrationala is known as a generator of random num-
is realized, it is a function of ratib/a. Instead of studying pers. Thus, the ratios of the transition frequencies for con-
nonuniversal tunneling trajeCtOfieS, we introduce a parametqrgurationsc(G,Z), G=0,Y vary in an uncontrollable way
a (0<a<2n/3): the solid angle subtended by a squarelikewhen largeJ changes by 1. This behavior differs dramati-
contour. The solid angle subtended by a trianglelike circuit iscally from that for other cubic and icosahedral configurations
m/2—3al4. A knowledge of this parameter together with  which display permanent ratios of the frequencies for a fixed
is sufficient to define the spectra of the 12-fold configurationconfiguration. Thus, the configuratio6G,2), G=0,Y re-
Sincea may be an irrational multiple ofr, the spectrum as  gjize the chaotic spectra of deterministic systems. This situ-
a function ofJ is not expected to be a finite set of values, butation is well known, e.g., for the hydrogen atom in a uniform
a fractal set. The spectra of the 12-fold configuration aremagnetic field 16]. The peculiarity of our problem is that it
given in Table XIV. The spectra underghilZ oscillations disp|ay3 chaos in a finite set of numbéi® or 30 and that
upon a monotonic variation ofQa<2x/3 for a given value  the chaotic behavior can be found analytically. Another spe-
of spinJ. cial feature of our system is that stochasticity in it is com-
The spectra found by Harter and Patterg@n for this  pined with deterministic multiplicity distribution. For ex-
configuration are incorrect, since the spectra should depengimple, in the case of th&(O,2) configuration the 12 levels
on two parameters, e.g., om and «, and not just on one are divided into submultiplets given in Table |, indepen-
(parameteiSin their work. However, the splitting schemes dently of «. However, their mutual arrangement is unpredict-
for C(0O,2) found in[2] are correc{they are parameter inde- gple.
pendenk For a two parametric Hamiltonian, e.g., Hamiltonigg)
ConfigurationC(Y,2) is even more complex tha{O,2).  for the octahedron group, the configuratio66G,2), G

Its minima directions correspond to the midpoints of the=Q,Y correspond to the single tunneling regime. The mul-
icosahedron edgesee Fig. 10 The parameterr (O<a tiple tunneling regime may occur if the invariants of higher
</3) here corresponds to the solid angle subtended by @rders are included.
pentagonlike contour. The spectra undedg80 oscillations In the presence of infinitely small magnetic field the
upon a monotonic variation of OQa<<m/3. The spectra of ground state of configuratio(O,2) acquires either a finite
the 30-fold configuration for odd values dfare given in  magnetic moment or a finite susceptibility. We analyzed this
Table XV. problem for the field directed along one of the fourth-order
axes and w>0. Then the finite magnetic moment
29Jug|sinX/[2(8—7 cogx)]*? is acquired at cos>—1/2
[x=J(a+2)/4], otherwise the finite magnetic susceptibil-
ity x=—(gJug)?/ (3w cosx) occurs for integed. For half

FIG. 9. Minima distribution of the 12-fold configurations ©f. FIG. 10. Minima distribution of the 30-fold configurations %f
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TABLE XV. Spectra ofC(Y,2) for odd values ofl. All eigen-
values are multiples ofv, x=cogJ(a+3m)/5].

Energy(degeneracy

*1+2x (4,4)
—x*/4-3x? (5,5)

(1+B)[ —x= Va+ (5—45)x2]/2 (3,3)
(1—\B)[ —x= 4+ (5+45)x%]/2 (3,3)

integerJ, the magnetic momergJug/3 is acquired at cas

<cos(37/8), otherwise this value of the moment is multi- ¥ 1g—fold
plied by a factor -2
Reduced parameter, ¢
c2+5+3cy2+c2+24/2|sin(x)|(3c+ 2+ c?) v
2(2+c2) ! FIG. 11. Spectrum of Hamiltonia(29); J=23.

_ Louck[19]. However, this group used a Hamiltonian similar
wherec=cosf). Note the random character of these values.,[0 Eq. (3) with the fourth-order term only. Avoiding this

limitation, we numerically study the Hamiltonian consisting
VIIl. NUMERICAL ANALYSIS. of terms of the fourth and sixth order for an arbitrary value of
THE CASE OF THE CUBIC CEF J. However, we use a different parametrization than that used
dn [18] for the same Hamiltonian:

cog$)0; 5 sin(4)Og
[JI+D1? M40+

The main obstacle to a reliable numerical analysis of th
problem is the fact that nobody knows what the Hamiltonian
looks like. The case of the rare-earth ions with large total HO=—
angular momenta interacting with the CEF represents an ex-
ception. Only the orbital pait of the total angular momen-
tum of a single magnetic electron interacts with the crystalwhereOg andOg are Stevens'’s operator equivalef2s,17,
line field. All terms, in the expansion of the crystalline and¢ is a parameter taking values in the interyal 7, 7].
potential with the degree larger thah, 2vherel is the orbital ~ Our parametrization corresponds to a unit circle on the phase
quantum number of the single magnetic electron, vanisigliagram of Hamiltonian(6) (see Fig. 3 a=cos(@),
[17], thus simplifying the analysis. For thef 4roup elec- b=sin(¢), whereas that chosen i8] corresponds to the
trons withl =3, this gives the highest non-vanishing terms ofsquare:a=x, 14b/5=*(1—[x|); —1=<x=<1. The coeffi-
the sixth order. Considering a CEF of a particular symmetrycient of 5/14 reflects the difference between our invariant of
group brings further simplification, e.g., in the cubic CEF,the sixth order in Eq(6) and the commonly used Stevens
there are only two independent invariants of the sixth ordeoperator equivalerﬂ)g.
and one of the fourth order. The two of the sixth order are For relatively small values of spinsJ2-1~N, whereN is
combined in one invariajsee Eq(6)] for a real interaction the number of extrema of the CEF, the quasiclassical de-
which is the Coulomb interaction between the charge carriscription fails and the spectrum of Hamiltonié29) does not
ers. follow the predicted dependence. However, o 10, one

It has been shown in Sec. Il that Hamiltoni&®) has can observe distinct regions @f with high density of level
configurationsC(0,4), C(0,3), and(C(0O,2) as sets of its crossing(these regions are distinctly seen[i8] for J=6).
classical extrema. In this meaning it is rather general. Theredpon an increase af these regions narrow down, giving the
fore, we apply numerical analysis to this Hamiltonian in apoints separating the sixfold, eightfold, and 12-fold configu-
wide range ofl’s. This means that we numerically diagonal- rations. Further increase dfleads to a “bunching” of low
ize the (2+ 1) X (2J+ 1) matrix for a one-parametric set of energetic levels into the predicted groupsultiplets of six,
Hamiltonians(29). The choice of this Hamiltonian is partly eight, or 12.
justified by the above consideration. Our purpose is to find Not only the numbers of the levels in the multiplets, but
numerically what) can be considered as large, i.e., startingalso the ratios of the spacings between the levels inside the
from whatJ our theory gives a satisfactory description. The multiplets, the oscillations of the spectra in the regime of the
second important problem is the crossover behavior of thenultiple tunneling path, and the tunneling amplitude in the
spectrum near configuration boundaries described in Sec. ltegime of a single tunneling path obey the predictions of our

Numerical studies of the crystal field effects on angulartheory.
momenta were performed in the early 1960s by Lea, Leask, For a demonstration we have chosen a set of close valued
and Wolf[18]. These authors studied a cubic crystal fieldJ's: J=23, 47/2, and 24. Figures 11, 12, and 13 are graphs
Hamiltonian similar to Eq(6). Their main interest was how of the spectra of Hamiltonia(29) for these values al. The
the angular momentum degeneracyfoélectrons is lifted. vertical dashed lines are the classical boundaries between the
For this purpose it was enough to consider valuesJof different configuratiorfsee the diagram of Hamiltonia®),
spanned from 3 to 8. Numerical studies for high valued of Fig. 3]. A small deviation of the dashed line separating the
(up to 100 were carried out by Fox, Galbraith, Krohn, and sixfold and eightfold configurationf¢g_g=arctan(3] to-

(29
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In(R)/J

Energy

12—fold
-2

Reduced parameter, ¢

Reduced parameter, ¢ FIG. 14. (a) Graph of InR)/J, whereR is the rescaling factor
FIG. 12. Spectrum of Hamiltoniaf@9): J=47/2. applied to the ground multipletp) rescaled ground-state multiplet
P @9 of Hamiltonian(29) (the legend shows the degeneracies of the lev-

I9); J=23.
wards the sixfold one is due to the fact that¢at ¢¢_g, the el

depth of the CEF potential in the minimum locations of the
sixfold configuration is equal to that of the eightfold configu-

ration. However, the intersection of the levels occurs whe regions of different configuration numbers but also the re-
the ground-state energies coincide. See Appendix D for d jions of the single and multiple tunneling path regimes. The

tails on this subject. fegions are enumerated by Roman numeralsC(652)

; . ., .(single tunneling path regime only II—C(0O,4) single,
From the pictures one can clearly see the “bunching OfIII—C(O,4) multiple, IV—c(0,3) multiple, and V—(O.3)
the highest- and lowest-energy levels into the predicted mu'éin le regimes, respectively. Pag) of each picture repre-
tiplets of six, eight, and 12. The excited multiplets have the 9 9 ' P Y. P P

same structure which fails only in the vicinity of the bound- sent§ the pIOt.Of the rescaling factor which is proportional to
céq&), part (b) is the rescaled spectrum.

aries between the configurations. The structure of the spectr e .
gven 1 Figs. 11 12, 12 100k qute simiar at s lvel AL PE0EL60S O e, v and e rdernge of e
of “magnification.” To see the subtle details predicted in L . P gs, i
. . M s . wc. Spectra in some regions, the numbers of the oscillations, and
previous sections we should “zoom in” the pictures, “fo- . ) . .
cusing” on the ground multiplet. the dependenc.e of the scaling paramél)eﬁnd qonf|rmat|on
here. The oscillations are not of the periodic form due to

First, we shift the “center of mass” of the ground mul- - . N
tiplet to zero(we are not interested in finding the single-well r;o(r;t(r;\s/)lal (but monotonig dependencies:=a(¢) and

localization energy Secondly, we rescale the shifted levels, A . lue of b iIv obtained f
so that a “visual” comparison of the spacings between the more precise value ai(¢) can be easily obtained from

levels can be done at different values of the reduced pararrlibe §ingle.tunnelling path part of the spectrum of the sixfold
eter ¢. The rescaling is necessary due to a large variation o onf|gl,_|rat|on. F|gu_re 17 compares the qua_S|cIaSS|caI result
woexg] —Jo(¢)]. The calculations of the tunneling amplitude ound in Sec. Il with the numerical calculations fér=24

: : e ; d 48. The plot is-In[(E;—Ey)/4]/J vs u=tan(¢), where
for the C(0,4) configuration of Hamiltoniaii6) (see Fig. 2 an 1 =0 ! .
predict efvari)ation o%v of order 16 for J~24. The resuslgts of Eo andE, are the energies of the ground and first excited

this program are shown in Figs. 14, 15, and 16 Jer23, states, respectively. The differenEg—E is 4w according
47/2, and 24, respectively. The vertical dashed li(iee

quasiclassical boundaries, see Fig.s8parate not only the

[l T
T I
- i
P\ dh
L) \
E I
oy ]
B W
g NU I
j=} iy s \ 1
i Jith Voo
L : : H I\
-2 0 2
1?—f01d . Reduced parameter, ¢
-2 0 2 FIG. 15. (a) Graph of InR)/J, whereR is the rescaling factor

applied to the ground multipletb) rescaled ground-state multiplet
of Hamiltonian(29) (the legend shows the degeneracies of the lev-
FIG. 13. Spectrum of Hamiltonia(29); J=24. ely); J=47/2.

Reduced parameter, ¢
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teraction between the magnetic moments the magnetic ions
should be diluted with similar but nonmagnetic ones such as
La®>", Lu®**", or Y3'. The CEF effects for this family of
compounds were studied in single crystals of
Lu;_4Ho.Ni»,B,C by Choet al. [21]. The calculated CEF
level scheme given there shows that the ground-state quadru-
plet is well separated from other excited states and corre-
sponds to the multiplet of(D,4,2) configuration withJ=0

(mod 2 andw~2 K.

Another family of rare-earth compounds, RESb, offers the
cubic environment. However, it is questionable whether the
quasiclassical requirement is satisfied since even for the
Reduced parameter, ¢ highest values of the angular momedt=(8 for Ho®*) the
multiplicity 2J+1=17 is not so large comparatively to the

applied to the ground multipleth) rescaled ground-state multiplet lowest dimension of the cubic configuratioNs=6. The nu-

of Hamiltonian(29) (the legend shows the degeneracies of the Iev-merical calculations performed in the preceding section indi-
els: J=24. cate that only forJ=12 are there regions of parametgér

where the sixfold and eightfold configurations are well de-

to predictions of Sec. V. A small discrepancy is due to thefined. To obtain the 12-fold configuration, in the framework

coefficient of the exponentiaf (u)(w= f(u)ex —Jou))), of Hamiltonian (29), the value ofJ should be increased to

whose contribution decreased/J. From these data, we can ab?\’/‘lﬂ 24.t' lust d molecul ﬁ ¢ ith
estimate that the values of the coefficié() are in a range agnetic clusters and molecules ofler systems with very
0.1-3.0. large total spins and a variety of symmetries. Theoretical

All these facts strongly emphasize the validity of the de_calculations[22] indicate that clusters of 13 atoms of transi-

veloped quasiclassical description of the large spins from thgog Tettellls such ‘35 Fe, Pd, ?ndf Tr:' ma)(/j have cubic stymmetry
theoretical point of view. Now questions arise: What is a@nd total magnetic moment ot the oraer @k per atom.

possible experimental realization? What are the limitations>2dolinium cIustersthd (n=11-92) [23] E?(hrib,it blalrge
of the theory when applied to the real systems? We willi@gnetic moments of (0.5-3,0) per atom(which is below
discuss these questions in the next section. the bulk value of 7.5mg but still offers a large value of the

total cluster spihwith behaviors ranging from tight locking
to the lattice by crystal anisotropy to superparamagnetism
VIIl. EXPERIMENTAL REALIZATION (almost free moment
Large spins were also observed in artificially grown mag-
netic dots used for observation of the magnetic tunneling
The experimental observation of the prEdiCted effects Ca[|24] So far, these Systems be|0nged to the lowest Symmetry
be done on any system with large values of the angular mac|ass. It is rather tempting to create environment of higher
mentum such as rare-earth-metal ionS, magnetic ClUSterS, gymmetry and to use smaller magnetic dots like the ones

nuclei. The main question is whether the valuela$ large  ysed by Schuller and co-workel85] to observe the effects
enough for a given configuration of the external field. predicted by our theory.

For a configuration with small number of mininiewo-
fold and fourfold configuration J~8 satisfies the quasi-
classical requirement. Such valuesJddre available, e.g., in . )
rare-earth-metal ions: By, Ho**, or ER*. An example of The experimental consequences of the difference among
compounds with the tetragonal symmetry, where the fourfoldn€ configurations and the spin values can be observed with
configuration is realized, is REpB,C, RE stands for a rare- Many experiments. To name a few these are measurements

earth magnetic element. To suppress the influence of the if?f the spin magnetic moment and magnetic susceptibility,
relaxation of the magnetization, electron paramagnetic reso-

07 . - nance(EPR), and nuclear magnetic resonan®MR).
First we discuss measurements of the magnetic suscepti-

In(R)/J

Energy

FIG. 16. (a) Graph of InR)/J, whereR is the rescaling factor

A. Feasible experimental systems

B. Practicable experiments. Magnetic measurements

06 (Classical bility. The magnetic susceptibility follows the Curie law for
05|  J=48 - temperatures higher than the characteristic splitting of the
o~ 0.4 ground-state multipleTkg>w (see Appendix € Thus, it is
= 03 (gued)?/(kgT) for one-dimensional configurations, i.e.,

S _

o C(Dy,N), N=2,4,6, Qugl)?(2kgT) for  two-

dimensional ones, i.e., C(D\,2), N=4,6, and
(gupd)?/(3kgT) for the three-dimensional ones, i.e., for the
rest of the configurations considered in this work. For tem-
peratures lower than the characteristic splitfifks<w, the
Curie dependence is no longer universal. The nonmagnetic
FIG. 17. Comparison of the quasiclassical and numerical tunnelelasses, that is, those without magnetic moment in the
ing amplitude exponentj=tan(¢). ground state, have their magnetic susceptibility saturated to

01}/

06 05 -04 -03 02 -01 0
u
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FIG. 18. Magnetic susceptibility vs inverse temperature. FIG.20. Magnetic susceptibility vs inverse temperaté(®,3)
C(D,,2) configuration. The dotted line is the high-temperatureconfiguration.
asymptote.

_ _ <w is accessible. This requirement means thate e is
csome constant at—0, whereas the magnetic on@gith @ ot too small. On the other hand,must be not less than

nonzero magnetization in the ground sjastill obey the N2 to guarantee the validity of quasiclassical approxima-

Curie-like behavior. Both the saturation values and th§jon At a fixed lower limit for experimentally accessible

slopes of the Curie-like curves depend upon the Conﬁgurafemperaturd] inequality N< J<In[s,/(ksT)J/c must be sat-

tion of the symmetry group as well as upon the eqUiVaIenC(?sfied For rare-earth ions, is the atomic scale of energy
class of the spin. For example, the twofold configurations . 0

_ - 74’\4 . - .
C(Dy,N) are nonmagnetic fai=N/2, N=2,4,6; the satura- anq N—6,8. I g|vesT|§sOe 100 K'. which IS easily
tion values of the magnetic susceptibility arg(T) §at|sf|ed. For L§LXH0XNI2.BZ.C the numgrlcally estimated
= (gusd)?/|E(0)|, whereE(0) are the corresponding eigen- is about 2 K[21]; prehr_nmary experimental results by
values for zero magnetic fiefee Eqs(22)]. The magnetic Naugle and co-workers give~1 K [26].

classes of these configurations, i.e., the ones WitiN/2, Gd* ion has zero orbital momentum, its anisotropy is
have the same Curie-like  dependencey(T) caused by the relativistic spin-other-orbit interaction, and the
=(gugd)?/ (kgT). correspondings, is about 104 time less than the atomic

In the case of the’(Dy,2) configurationsN=4,6, the Scale €o~1-10 K). The total spin of the Gd ion S
integer spin classes are non-magnetic and the half-integef 7/2 is not too large, but may be enough in the case of the
ones are magnetic. The low-temperature magnetic susceptetragonal symmetry. The estimated valjeis between 0.1
bilities of these configurations can be found in the last coland 1 K.
umn of Tables VI, VII for theC(D,,2) andC(Dg,2) configu- The anisotropy of a ferromagnetic cluster is induced
rations, respectively. A detailed temperature dependence @hainly by its boundaries. The anisotropy energy has the
the magnetic susceptibility is shown in Fig. 18 for the Same magnitude-1-10 K per a site near the boundary. For
C(D4,2) configuration. the cluster as a whole this value must be multiplied by the

The division into the classes of equivalence is more subti@umber of atoms on one of the faces of the clus#@r\hich
for the high-order symmetry groups. Tables VIII, IX, XI, and depends on the cluster geometry. An estimate can be attained
Xlll collect the low-temperature susceptibilities for the for the series of magic atom-number clustg2g]: M, N
C(0,4), €(0,3), C(Y,5), andC(Y,3) configurations, respec- =13,55,147... . These clusters are obtained by surround-
tively. Figures 19 and 20 show the details of the transitionng a core atom progressively with additional shells of at-

from the Curie high-temperature regime to the low-oms: S=10k*+2, k=1,2,3... . This procedure can be
temperature one for th€(0,4) andC(0,3) configurations, done for icosahedral, decahedral, and cuboctahedral pack-
respectively. ings, which have 20, 15, and 12 faces, respectively. Kor

For magnetic measurements it is important that the systerrs 55 we find 7~42/16 andey~3—-26 K. On the other
is in thermal equilibrium and the range of temperatlilgy ~ hand,J<{N. In the Gd clustef~ 0.5 and forA/=>55 we find
J~27. It is sufficiently large. The value af~gye™  with

0.6 : : — c~0.3 is between 0.001 and 0.01 K. F&f=13, w ranges
J=4n —
05 | Ieansir between 0.1 and 1 K.
~ J=4n+1
é‘i 0471 J=J4=n£1 31% C. Spectral analysis
=037 The most straightforward experimental approach is the
$o2l spectral analysis. The main difficulty with this method is that
o1 | the scale of the splitting is very different for different sys-
) tems and values al. Nevertheless, we can expect that the
0 . 0-5 1 1-5 2 s spectral frequencies are either in the submillimeter or in the

w/(ksT) uhf range. Apart from the direct attenuation measurements, it

is possible to apply EPR technique. It measures the splitting

FIG. 19. Magnetic susceptibility vs inverse temperatG(©,4) in magnetic field, i.e., magnetic moment in some state. The
configuration. advantage of this method is that it does not require too low
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temperatures. Certainly, its sensitivity drops with the growthmogeneous line broadening caused by the dipolar interaction
of temperature, but not too fast. [27]. Indeed, the random shift of the frequency due to the
dipolar interaction is of the order
D. Oscillations of magnetization

212 42,272
Let us consider many identical large spins placed in an Sw~ 9°1gd :g pgdNx

external magnetic field along one of the easy directidds ( #R3 h ’

sufficiently large to polarize them almost to saturation. If the

field is switched off abruptly, each spin remains in the samavhere R is the average distance between large spinis

state|k). Since|k) is not a stationary state, it will vary in their concentration per sitey is the density of the matrix

(39)

time according to the Schadinger picture: sites. Forg=2, J=3.5, andn=10?? cm 3 we find dw
~1.8x10'% s . Forx=0.001 it is three orders of magni-
|k,t)=2 |ja><ja|k>e—iEjt/ﬁ_ (30) tude I_ess t_ham)~101° sfl,_blut it cl%stroys the coherence for
ja the time interval 2r(dw) ~~10 " s. What can be ob-

_ served after this interval of time is the noise in a rather nar-
Hergj labels sublevels of onBI-pIet_anda labels state_s of row spectral rangéw given by Eq.(34) near the frequency
the jth sublevel. It leads to oscillation of the magnetic mo- ,,. The noise attenuates during the intervdEq. (33)] after

ment along thek direction in time: the pulse of magnetic field. Repeating the pulse of magnetic
field periodically with the period<<7, one can maintain a
M(t)=guglY, COSYw > {jalk) permanent average level of the noise. Also, one can use this
K’ jaj'a! narrow-line noise to generate coherent oscillations in a reso-
. . . i nator.
(i a’[k)* (alk')* ('K e i, (3D
where y, is the angle between the directions of classical E. Rotation-vibrational spectra of molecules

angular momentum in the extrerkeandk’, and wj; = (E; Harter and Patterson applied their the¢8} to experi-
—Ej)/f is the transition frequency. All spins had the samementally observedlaser absorption speciraplitting of ro-
initial state|k) at the moment when the field was switched (ational levels in a molecule ($Fwith the cubic symmetry
off, therefore, their magnetic moment will rotate coherently,[zg]_ In the leading approximation this molecule can be con-
creating the macroscopic rotating magnetization. Obviouslygjjered as a spherical top. Due to weak rotation-vibration

the rotation energy will dissipate. Let us estimate the attenug,aaction the first cubic invarian]i+J‘y"+J§ occurs in the

aion timer. We assume that ihe spins are embedded m.aBerturbed Hamiltonian. The splitting of the)2 1 rotational

insulator_. Then .only phonons lead to dissipation. The SPINstates into several clusters has been found in spectroscopic
phonon interaction energy can be written as follows: experimentg 28] for J=17, 18, and 19. The outer clusters
T 32 can be trga.ted as 6- and 8-p|ets.. Unfortunately the tiny tun-
Ts—pn apa’p (82 neling splitting of these clusters is too small to be resolved

whereu,, is the deformation tensor. The value of the cou-Spectroscopically.

pling constant can be estimatedas A/J?, whereA is the

energy difference of two oscillatory levels localized near one IX. CONCLUSION
minimum of the potentiaf (J). A routine calculation leads to

: SN s We have shown that large spiftstal orbital momentaJ
an estimate of the oscillation lifetime ge spifts R

placed into external fields of high symmetry gro@galisplay

5 o< unusual behavior of low-lying and high-lying parts of spectra
— PS (33) and magnetic susceptibility. These parts of spectra are repre-
A203’ sented by multiplets containin(G,p) states each, where

N(G,p) is the doubled number gi-fold axes. Each multip-

wherep is the mass density of the matrix aads the sound et is split into sublevels with multiplicities chosen from di-
velocity. For typical valuep=10 g cm 3, A=10 K, o mensionalities of the irreducible representations of the point
=w/A=10" s7!, and s=10° cm s!, we find 7 groupG and determined b, J, andp. The distances be-
~10"! s. The magnetic field must be switched off for atween sublevels in the multiplet are proportional to
shorter time interval. It seems feasible. For Gd we estimateéxp(—cJ), whereas the distances between multiplets are pro-
both A andw by a factor of 10 smaller than the values we portional to 1J. The multiplicities at a fixeds and p are
used for the above estimate. It gives the attenuation tiime  periodic functions of] with the periodp. The relative dis-
the range of a few hours. tances between levels are also periodic functionsl,obout

In our estimate we assumed that the temperafueeless  their period is equal to half of the number of the equivalent
than or of the order ov. If it is much larger, the value of,  plaquettes formed by the tunneling trajectories and covering
Eq. (33), must be multiplied by a small factdrew/(kgT). At the unit sphere. Interesting exclusions are the configurations
a temperature 1 K witlk «~0.01 it changes from a few  of the octahedron and icosahedron groups vgth2. In
hours to a minute, but still leaves this time long. Thus, thethese cases the mutual arrangement of the levels is stochas-
requirement for temperature is not too restrictive. tic, though the multiplicities remain fully deterministic.

Nevertheless, the observation of the macroscopic oscilla- In all situations considered with the exception of the tet-
tions of magnetization may be obstructed because of inharahedral and hexagonal symmetry with in-plane easy direc-
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tions, the change of large spih by 1 leads to a drastic
change in the spectrum and thermodynamic properties. We
demonstrated that at such a change the magnetic susceptibil-
ity can either change its behavior from Curie law to satura-
tion or change the coefficient in Curie law.

Rather special phenomena appear near hypersurfaces in
the space of the Hamiltonians which separate regions with
different configurations of the extrema of the potential, i.e.,
regions with differentN=N;,N,. Directly on these hyper-  FIG. 21. Transformation of a tunneling pathsi,—---—i,
surfaces the number of equivalent extrema is equalljo —1 ontoi—i;—---—iy—1. A solid angle of the filled area is
+N,. Thus, in a narrow vicinity of the hypersurface there 4malp.
appears a new “class of universality,” new set of sublevels
with new multiplicities. Moreover, we expect a kind of “tur- ACKNOWLEDGMENTS
bulent” behavior of levels near these hypersurfaces.

Given the classical Hamiltoniak/(J), one can indicate a
value J.(H), starting from which the multiplicities are cor-
rectly determined by our theory. Though this value is mode
dependent, our numerical calculations show that
~N(G,p).

All conclusions of the theory were checked numerically
for a model Hamiltonian of the cubic symmetry containing
two invariants(two free parametejap toJ=60. The agree-
ment for the relative distances between the levels is very
good starting fromJ~20. Multiplicities are well determined
by our theory starting frond~12 for the sixfold and eight-
fold configurations and froni~ 16 for the 12-fold configu-

ration. The character of the identity transformati@nis trivial,

We proposed three classes of experimental systems whicl\ £) = dim(W) =N. For a half integerJ, one has to find
can display the predicted effects. One of them is representgg}ojective representations of the corresponding group with
by alloys with participation of two lanthanides or actinides, ine factor set of =1} or, equivalently, linear representations
RandR’, so thatR has zero orbital momentum and its con- ¢ ihe group extended by a groyf,Q=exp(2mJ)E} (the
centration is close to 1, whereas the elemhhas large) ¢4 cajied two-valued representatipnahereQ is a rotation
an(_j Its (f:(l)ncentra_tlon IS very smqll. In t.h's way the Corll.f'gté'through an angle of 2 (here we adopt the notations of Ref.
ration of large spin in a symmetric environment is realize I5]). Obvi - . _

. . ; i . Obviously x(Q) = cos(2rJ)dim(W) = cos(27J)N. Other
Typical representatives are LaHo,Ni,B,C (tetragonal en elements having nonzero characters are the rotations with

vironmenj or Lu; _,Dy,Sb (cubic environment ) o .
The second cllags o)li systems is metallic or metallo—organiEeSpeCt to the axes passing through the directions belonging

clusters made from ferromagnetic metals. For such cluster? the SeC(G,p). Actually, it is sufficient to consider only
symmetry can be not only octahedral, but also icosahedral, &€ €lément from each class of conjugate elements. To cal-
it is for the cluster Fg. The clusters may have larger total CUlate the corresponding characters we employ the following
spin than lanthanide and actinide atoms. In both cases wisick. . o ]

propose to measure the spectrum of low-lying StéER=R or Let us consider an element Bfwhich, in our basis, cor-
NMR measurementsand also to measure magnetization andresponds to a rotatio@; with respect to g-fold axis. A set
magnetic susceptibility at low temperatur@bout 1-2 K. of rotations with respect to this axis forms a cyclic subgroup
Though experimental difficulties may arise on the way toof P, andq is a power of the generator of the subgrddp
realization of these experiments, we believe that the expectedninimal nontrivial rotation; g may take any integer value.

We are thankful to E. Miler-Hartmann and G. S. Uhrig
who initiated this subject, and to V. V. Dobrovitski for useful
|discussions. V.K. is grateful to I. V. Lavrinenko for the dis-
cussions on group theory and to J. D. Louck for the valuable
references on earlier works and discussion on this subject.
This work was supported by the NSF under Grant No. DMR-
97-05182 and by the U.S. DOE under Grant No. DE-F03-
96ER45598.

APPENDIX A: CHARACTERS
OF THE MAIN REPRESENTATION

physical phenomena are worthwhile to study. For a given configuratio@(G,p) a nonzero character may
The third class is magnetic dots used in experiments omccur only if Cg leaves at least two of the extremand I
magnetic tunneling24,25. unmoved. It means that either the rotation axis passes

Experimenters should choose optimal valueslab en-  throughi and 1, and q+#pn or the rotation is trivial:q
sure the validity of the qgasmlassmal_approach: reliable SePa:= pn, nis an integer. Let us choose a tunneling path con-
ration of theN-fold multiplets and simultaneously not too
small values of the tunneling exponent exg{) with c ) ] L= .
<0.55 for the cubic symmetry anc<0.29 for the icosahe- Neighbor extrema—i;—-.-—i,—1 (see Fig. 21 Note
dral symmetry. that some _of the minima may coincide, that is=i, for

An interesting experimental and maybe technical applicaSome pairsj # k. The rotationCy transfers each extremum
tion of our system is the excitation of magnetic oscillationsi; (j=1,2,...n) into ij’ leavingi and 1 unchanged. The
in a narrow spectral region by pulses of external magnetitwo paths form a closed loop on the sphere which subtends
field. The frequency of these oscillations ranges fromtb0  the solid angle of 4q/p. This fact leads to a relation for the
10' Hz. oriented sum of the phases along the circuit:

nectingi and 1, and passing through intermediate nearest-
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n-1 . connectivity structure. An example in which the geometri-
E (b i . —birir Yt dii.—diirtdi 7= dir, cally next-nearest neighbors must be incorporated into the
=1 jrj+1 IR 1 i n’ n .o . . . .
J connectivity matrix together with the nearest neighbors is

47 discussed in Sec. V B.

=J—. (A1) The connectivity matrix of the’(O,4) configuration is

P quite simple since only the geometric nearest neighbors

should be connected. For the minima enumeration given in

The same rotatio€? transforms the phases in the follow- > o S
P P Fig. 1 the connectivity matrix is

ing way: ¢i i =i =12, 0= di i

¢in,TH¢i;,T- To keep the phases unchangeabdulo 2r) 0 11
and the Hamiltonian invariant one should apply a gauge ~ A~ A .~ |00 . |1 1
transformation /=diaglexp(ay), . . . .€xplxy)}, then the 101, 0:0 O" - ‘ 1 1" (B1)
mappings turn into equations: 110
By = by T T This is, actually, the Hamiltonian fat=0 (mod 4, with-
out a multiplier ofw, since the phase structure is absent or of
bii,= b tai—ai, (A2)  no importance for the respective cases. For all offione
should find the 12 phases of the tunneling amplitudes. Five
bi = ¢irr],|—+ @ —ay. of the phases may be set to zero due to the gauge freedom
with the only constraint that Eq12) must be satisfied. In our
Substituting these equations into H&1) gives sample case, we null the following onesp; s, 14,
¢15,016:¢25. The rest of the phases are obtained from the
__4mq seven independent plaquetfesch plaquette gives an equa-
ai_a'_‘]T' tion of the type of the Eq(12)]; these arep, 5= — 7, ¢4
= 7TJ,¢2’6:27TJ,¢3’5: ’7TJ/2,¢3’6 = - 7T\]/2,(]54‘5 = - 7TJ/2,
which leads to ¢46=mI/2. Thus, the defined Hamiltonian is
a; ZJZLq-I-ﬁ,aT:—Jqu-I-ﬁ. (A3) 0 0 1 _1 1 _1
0 P 0 P 0 0 e*l'rrJ eI7T.] 1 eIZﬂ'J
Multiplying ¢/ with exp(—i8) removes the common factar o |1 e'm™ 0 0 e™2  grimi2
in Eq. (A3). Thus, the transformationV=exp(—i&UC] of Ha=|, g im 0 0 e imi gimi
the configuration space has only two diagonal elements 1 1 o iml2  gimir2 0 0
{W}iiz{W}T—I: exp(2mJg/p). The character of the element . s i
W is 2 cos(2mq/p). All other characters are zeros since the 1 e™™ em e '” 0 0
corresponding rotations do not leave any st of the (B2
configuration invariant. The characters of the representation ) ) )
do not depend upon the gauge: WW()=Tr@u" Finally, one needs to find the eigenvalues of the Hamil-

=Tr(W). Thus, one can study the reduction of the representonian. The diagonalization can be performed by any sym-

tation W in any specific gauge without loss of generality. bolic solving system or even “manually” since the Hamil-
tonian can be factorized. Also, a trick of a purely geometric

origin can be used: if one views Hamiltonidt [w=1 and
|(H)ij|=1 if (H);;#0] as a weighted connectivity matrix of
a graph, then

APPENDIX B: AN EXAMPLE OF A HAMILTONIAN
FOR THE C(0,4) CONFIGURATION
AND CALCULATION OF ITS SPECTRA

In this appendix we consider a detailed construction of the
reduced Hamiltonian for thé(0O,4) configuration. First we
define the connectivity matrix of the system determining
which minima ought to be connected by tunneling pathswheren=0,1,2 . .. [E; is theith distinct eigenvalue of{ of
This is usually done by connecting the nearest-neighbomultiplicity g;, the first sum on the right-hand side is over
minima. In some cases, however, the geometric closeness @fle vertices of the graph, the second is over all closed loops
the sphere is not a good criterion for connecting minima. Aof n walks running through verteg, and Q is the flux
“surefire” criterion is the path integral approach which de- passing through thie;th loop. If (H); #0,=1, ... N, some

termines the amplitude of a spin transition from one local-g, 5 \yeights need to be applied for each loop. An advantage
ized state to another by summation of the contributions of albf formula (B3) is thatl, are gauge invariant since al,
n .
]

trajectories connecting the minima. This technique gives the . . . I
exact solution of the problem, but it is very complicated. wed'® gauge invariant. Applied to Hamiltoni4B2) for n<4,
could use instead a semiclassical method of finding trajectot—he formula yields

ries with minimal imaginary classical action, but the action is

not known itself. However, the symmetry of the system is of > 9i=6,>, g:E;=0,

great help and is used throughout the paper to assess the i i

> gEN=TrH"=2> ; cogy)=l,, (B3
i J i

(B4)
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TABLE XVI. Spectra of a “hybrid” C(O,4)+C(O,3) configu-
> giE?=24>, gE=48cogml/2). ration.
1 I

[

Let us find the spectrum of Hamiltoniai®2) for J=0. Eigenvalueddegeneracigs

We know from Sec. IVB 1 thag,=1,9,=2, andgz=3. 0 +2/3w(1,1), +2w(3,3), 0(6)
Too, it is clear thatE;=4 [sum of the matrix elements in 1 +(1+3)W(3,3), = (1—3)w(3,3), 0(2)
each row or column of HamiltoniatB2) is equal to 4 for +6w(2,2), =2w(3,3), 0(4)
J=0]. Two equations foE, andE; are 3 +2w(6,6), 0(2)
4+2E,+3E,=0, 16+2E2+3E2=24.  (B5) 2 =w\6+213(2,2), *wy3-/3(4.4),0(2)
32 +w/6(4,4),0(6)
Solving Eg. (B5) and checking the roots against the last5/2 +w\6—213(2,2), w3+ 3(4,4),0(2)
equation of Eq(B4) givesE,=—2 andEz=0. ForJ=2,
the spectrum is invertetsee Sec. ¥ E;=—4,E,=0, and
E;=2. For_ aI_I othep] s the solution is trivial since there are ’H(234= —a—b+(2a+3b)(x2+y?), (D1)
only two distinct eigenvalues.
APPENDIX C: 1 11 4
LOW-TEMPERATURE MAGNETIC SUSCEPTIBILITY H(2)3: _ §a_ 3b_,_ §(4b—a)(x2+y2), (D2)
For high temperaturekgT>w, the moments are purely
classical and show Curie magnetic susceptibility:
yo=(1sgd)? (dksT), (C1) wherex andy are local Cartesian coordinates. Treating these

terms as the effective potential energy of the quantum-
whered is the dimensionality of the system is the Bohr  mechanical problem, one can identify it with that for a two-
magnetonkg is the Boltzmann constant, amgis the gyro-  dimensional isotropic harmonic oscillatthe kinetic energy
magnetic ratio. For low temperaturkgT<w, the quantum is due to the Wess-Zumino terfi29] or Berry phase, its
effects change the response drastically. The susceptibilitgxact form is of no importance here; it suffices to know that
saturates for the classes without magnetic moment in thehis term is identical for both Eq$D1) and(D2), thus pro-

ground state to the value viding identical effective massédd ]. The potential energies
1 % of the two harmonic oscillator problems are equal on a line
Xe=— E Xi s (C2) b=3a. The squares of the effective frequencies ara/RP
Jo i=1 and 8&/(3M) (a>0), respectively, for C(0,4) and

C(0,3), on this line. Hence, the energy of the ground as well
as the spacing between successive levels is larger for the
(0,3) configuration on this line. These arguments qualita-

vely explain the deviation of the line=3a from the point
of the level crossing towards the sixfold coordination region.

wheregy is the degeneracy of the ground state gnds the
susceptibility of theith member of the ground-state multip-
let. For the classes with the magnetic moment in the groun
state Curie susceptibility persistskgfT<w, but its slope is

different: The boundary of the transition from one configuration to
9 another(a line in our two-dimensionad—b space marks a
X':g_ 2 mi2/(kBT), (C3 singularity in the “flow” of the level multiplicities across
i=1

the parameter space. The levels of two different coordina-

wherem, is the moment of théth member of the ground- tions must match exactly at this surface. We find the spectra

state multiplet. of this intermediate configuration in the caseNof N(0O,4)
+N(0,3)=14.
APPENDIX D: ON THE INTERSECTION The'surface of the sphere is covergd with 12 congruent
OF THE MULTIPLETS OF €(O.4) AND C(O.3) even-sided plaquettes. Hence, the period of spectia=i6

and all spectra are symmetiwee Sec. ¥ The spectra of the
In the close vicinity of a minimum of(O,4) andC(0O,3) 14-fold configuration are collected in Table XVI for the non-
configurations, Hamiltonia6) has the following form: equivalentJ’s.
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