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Spectra and magnetic properties of large spins in external fields
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Spectra and magnetic properties of large spinsJ ~e.g., spins possessed by ions or molecules!, placed into a
crystal electric field~CEF! of an arbitrary symmetry point group, are shown to change drastically whenJ
changes by 1/2 or 1. At a fixed field symmetry and configuration of itsN extrema situated at thep-fold
symmetry axis, physical characteristics of the spin depend periodically onJ with the period equal top. The
problem of the spectrum and eigenstates of the large spinJ is equivalent to an analogous problem for a scalar
charged particle confined to a sphereS2 and placed into the magnetic field of the monopole with the chargeJ.
This analogy, as well as the strong difference between close values ofJ, stems from the Berry phase occurring
in the problem. For energies close to the extrema of the CEF, the problem can be formulated as Harper’s
equation on the sphere. The (2J11)-dimensional space of states is split into smaller multiplets of classically
degenerated states. These multiplets in turn are split into submultiplets of states transforming according to
specific irreducible representations of the symmetry group determined byJ andp. We classify possible con-
figurations and corresponding spectra. Experimental realizations of large spins in a symmetric environment are
proposed and physical effects observable in these systems are analyzed.@S1050-2947~99!00709-X#

PACS number~s!: 03.65.Sq, 03.65.Bz, 75.10.Dg, 02.20.Df
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I. INTRODUCTION

Conventional wisdom accepts that large spins or orb
momentaJ ~in units of\) are almost classical. In particula
if J@1, their measurable properties do not change subs
tially if J changes by 1/2 or 1. This common belief w
undermined by Haldane@1#, who demonstrated that th
ground state and spectrum of the low-energy states in o
dimensional spin chains are absolutely different for inte
and half-integer spins.

In this paper we show that similar phenomena can
observed on the level of an individual spin placed into ext
nal electric field. If the field possesses high symmetry~cubic
or icosahedral! the distinction between spins becomes mo
subtle. For example, in the case of cubic symmetry not o
do integer spins differ from half integer~this difference is
intuitively obvious due to the Kramers degeneracy!, but the
remainder at division of the spin by 4 determines the sp
trum and degeneracy of the low-lying states. These strik
differences can be found in experiment either by spec
analysis or by magnetic measurements. We will show t
spins 1000, 1001, and 1002 placed into a cubic environm
have 100% different magnetic susceptibilities at low te
perature. Moreover, we will show that a kind of randomne
appears in properties of large spins in some cases and v
tion of large spins by one can change magnetic and spe
properties in an uncontrollable way.

Certainly, the conventional wisdom we started with
presumably correct. It is wrong only in a very small range
energy or temperature, the smaller the larger isJ. Neverthe-
less, as already happened with the Haldane theory, thes
viations from classical behavior may be important for t
experiment.

The source of all these peculiarities is Berry’s pha
Physically, it is associated with the fact that, when the cl
sical rotator moves on its unit sphere, it simultaneously
PRA 601050-2947/99/60~3!/1824~21!/$15.00
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tates around its axis. The rotation phase distinguishes
rotator from a quantum or classical particle confined on
sphere. The rotator problem can be reduced to the par
problem, but the representing particle must have an elec
charge of unity and must be subjected to the homogene
magnetic field of a monopole with the magnetic chargeJ
placed into the center of the sphere. In quantum mechaniJ
accepts integer and half-integer values. Since the phase
determined modulo 2p, a change ofJ by 1/2 or 1 can sub-
stantially change phase factors, even ifJ is large. Therefore,
the tunneling amplitudes for close largeJ can differ signifi-
cantly by their phase, leading to different spectra.

Harter and Patterson@2# considered a similar problem in
the context of the rotation-vibrational spectrum of cubica
symmetric molecule SF6 @3#. Since Berry’s phase was no
invented at that time, their approach was ingenious but
physically transparent. They have invented a clever trick
sociated with the Frobenius duality theorem to avoid expl
introduction of Berry’s phases, as we understand it tod
Though the lack of clarity did not allow them to solve th
problem completely, it is really surprising how far they we
able to penetrate into the problem.

This paper is composed as follows. In the next section
introduce a quasiclassical description of large spins. Ber
phase, Berry’s connection, and reduction to the problem
charged particle in the monopole field are considered in S
III. In the fourth section we perform the group analysis of t
problem. The fifth section contains the derivation of the lo
energy spectrum and magnetic properties of large spins.
separated the case of random levels in Sec. VI. Numer
calculations for a special potential in a wide range of s
values are given in Sec. VII. In Sec. VIII we propose expe
mental realizations of large spins. Our conclusions can
found in Sec. IX.

Brief reports on a part of this work were published earl
@7,15#.
1824 ©1999 The American Physical Society
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II. QUASICLASSICAL DESCRIPTION OF LARGE SPINS

The classical image of a large spin is the classical rota
i.e., a vector with a fixed lengthJ. Its position is determined
by two spherical coordinatesu and f. Sometimes coordi-
natesJz5J cosu andf are more convenient since they ha
simple Poisson brackets:$Jz ,f%51. Classical motion is de
termined by the Hamiltonian

H5 f ~J!2h•J, ~1!

where h is magnetic field~with a precision of a constan
factor! and f (J) is an arbitrary function ofJ, invariant with
respect to inversion:J˜2J. The latter requirement is
equivalent to the time-reversal symmetry@4#. Together with
the standard Poisson brackets$Ji ,Jj%5« i jkJk the Hamil-
tonian~1! contains full information on classical spin dynam
ics. Periodical trajectories on the sphere can be quant
according to the Bohr quantization rule:

R Jz~f,E!df5~n1gB!p, ~2!

whereJz(f,E) can be found from the equationf (J)5E with
the substitutionJx5AJ22Jz

2 cosf, Jy5AJ22Jz
2 sinf, and

gB is a constant.
Let us first consider general properties of spin trajecto

in zero magnetic field. The functionf (J), being continuous
on the sphere, has at least two minima and two maxima
the external crystal field has a nontrivial symmetry grou
the number of equivalent minima is larger. For example
can be equal to 4 for tetragonal symmetry, 6 for hexago
symmetry. In the case of cubic symmetry it can be 6, 8, or
~directed along fourfold, threefold, and twofold axes, resp
tively!. The number of equivalent minima for icosahed
symmetry can be 12, 20, and 30~directed along fivefold,
threefold, and twofold axes, respectively!. We considered the
situations when extrema are located in the symmetrical
sitions. In principle, it is possible that they are in more ge
eral asymmetric positions.

Classical trajectories can be separated into two clas
‘‘localized’’ and ‘‘delocalized.’’ If energy is close enough t
the minimum~maximum! of f (J), the trajectories are con
fined in the vicinity of one of the minima~maxima!. We call
such trajectories localized. In the intermediate region of
energy trajectories are ‘‘delocalized,’’ they are not confin
near any of the extrema. It is obvious that delocalized tra
tories are highly model dependent, i.e., they depend o
specific form off (J). Localized trajectories are much mo
universal: they depend only on the symmetry and on
positions of the minima. The same remark is correct w
respect to quantized levels: low-lying levels, close tof min , or
almost maximal values of energy, close tof max, have univer-
sal features, whereas levels in between are rather nonun
sal. Therefore, we will study only a part of the spectra clo
to f min or f max. Note that the spectrum of the quantum pro
lem is discrete and limited byf min and f max.

Before we proceed to detailed study of these levels le
make an important remark. For any fixedJ and any given
f (J) the quantum problem consists in the diagonalization
the (2J11)3(2J11) matrix. Therefore, the question aris
whether the general theory is necessary. The answer is
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because no reliable information about functionf (J) is avail-
able. We present here general facts, independent of the
cific form of f (J), but only on its symmetry group and spe
cific configuration of the extrema. The only requirement f
our theory isJ@1.

Thus, classically a localized stationary state is multip
(N-fold! degenerate. Quantum fluctuations provide a fin
radius for each of these states which can be enumerate
u1&,u2&, . . . ,uN&. For the largeJ considered all these state
are oscillatory ones within the precision 1/J. A more subtle,
but not least essential, quantum effect is the tunneling
tween these states. The tunneling amplitude between
states u i & and u j &, iÞ j , is exponentially small, wi j
} exp(2cijJ), where ci j are constants for a givenf (J).
Therefore, we take into account only tunneling between
nearest-neighbor states, i.e., the ones with the smallesci j
5c, and neglect tunneling between more remote states w
ci j .c. To estimate the value ofc, we need to specify the
Hamiltonian. For simplicity we consider the case of the c
bic symmetry with the Hamiltonian

H 1
O52a~Jx

41Jy
41Jz

4!, ~3!

where a.0 is a constant. The minimum value ofH 1
O is

Emin52aJ4. There are six minima corresponding to the d
rections of the fourfold axes: (6J,0,0), (0,6J,0), (0,0,
6J). Let us consider, for example, tunneling betwe
minima (J,0,0), (0,J,0). By symmetry the tunneling trajec
tory is the smaller arc of the big circle passing through th
points ~Fig. 1!. SettingH 1

O5Emin we find from Eq.~3!

Jz~f!56 iJA12cos 4f

71cos 4f
. ~4!

The tunneling amplitude is proportional to the exponent;

w}expS i E
0

p/2

Jz~f!df D 5exp@2~J ln 3!/2#5e20.55J.

~5!

For a more realistic Hamiltonian

H 2
O5H 1

O2b~Jx
61Jy

61Jz
6130Jx

2Jy
2Jz

2!, ~6!

FIG. 1. Tunneling trajectories of the spin~single paths!. The
sixfold configurations ofO.
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the exponential factor in the tunneling amplitude is e
@2c(u)J#, wherec(u) is a function of the ratiou5bJ2/a.
The graph ofc(u) is shown in Fig. 2 for values ofu in the
interval 22/3,u,1/15 (a.0), where the tunneling path
passes along the geodesics. In the region 1/15,u,3 (a
.0), the six minima are still global, however, the tunneli
trajectories~there are two of them due to the symmetry! de-
viate from the geodesics~see Fig. 6! and the estimation o
the exponent becomes more complicated. Effects of the m
tiple path tunneling, for the case of the octahedron confi
rations, will be considered in Sec. V. A numerical analysis
the Hamiltonian~6! and comparison to the predictions of th
semiclassical approximation is given in Sec. VII.

Another important feature of the Hamiltonian~6! is that,
depending on signs ofa and b and the parameteru, it dis-
plays 6, 8, or 12 minima. The phase diagram for this, imp
tant for applications, Hamiltonian is shown in Fig. 3. On t
boundaries of different ‘‘phases’’ different groups of minim
become equal to each other. Then, in the quantum prob
the degeneracy of the ground state increases, for exam
from 6 to 14. Therefore one can expect some singularitie
the close vicinity of the boundaries.

For the case of the icosahedral symmetry the simp
Hamiltonian is

H 1
Y52a$Jx

61Jy
61Jz

6130Jx
2Jy

2Jz
223A5@Jx

2Jy
2~Jx

22Jy
2!

1Jy
2Jz

2~Jy
22Jz

2!1Jz
2Jx

2~Jz
22Jx

2!#%. ~7!

FIG. 2. c(u) for the sixfold configuration ofO. Region of the
single tunneling path regime.

FIG. 3. Phase diagram of Hamiltonian~6! in bJ2-a plane. The
dashed lines separate the regions of the single and double
tunneling. The numbers on the periphery are the slopes of the
responding lines.
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-
f

-

m,
le,
in

st

The minimum value ofH 1
Y is aJ6/5 (a,0). There are 12

minima corresponding to the vertices of an icosahedron~di-
rections of the fivefold axes!: J(a,b,0), J(0,a,b),
J(b,0,a), wherea25(51A5)/10 andb25(52A5)/10. A
calculation similar to the one forH 1

O gives the exponentia
part of the tunneling amplitude exp(20.28J). Positive values
of a yield the 20-fold configuration with the minima alon
the threefold axes.

Addition of the next nontrivial invariant of the icosahe
dron group, a polynomial of the tenth order overJ, allows
the configuration with 30 minima along the twofold axes.

The tunneling partly lifts the classical degeneracy. Wh
was theN-fold degenerate state without tunneling is split in
a multiplet of sublevels separated by exponentially small
ergy intervals}exp(2cJ), whereas the distances betwe
different multiplets are proportional to 1/J. Each sublevel in
the multiplet corresponds to a finite-dimensional subspac
states transforming according to an irreducible representa
of the symmetry group. However, as we mentioned alrea
the realization of this group and the spectrum for the rota
are very different from those for a quantum particle confin
on a sphere. Anyway the problem is reduced to diagonal
tion of a square matrix of the rankN ~classical degeneracy o
the level! with nonzero matrix elements between geome
cally closest states only. We neglect the tunneling betw
more remote states~non-nearest-neighbors! unless otherwise
stated.

III. BERRY’S PHASE, BERRY’S CONNECTION

In the framework of quasiclassical spin dynamics the s
is treated as a rigid vector fixed by its directionn. The clos-
est quantum analog is the so-called coherent stateun& which
is defined as an eigenstate of operatorn•J with the maximal
eigenvalueJ. Such a state has minimal uncertainty of t
spin components transverse to the spin quantization axis@6#.
An explicit construction for the coherent state reads@7#

un&5exp~ iJzf!exp~ iJxu!exp~2 iJzf!uẑ&, ~8!

where u and f are spherical coordinates ofn; uẑ& is the
coherent state with the direction of quantization axis alo
the z axis. This definition assures single valuedness of
spin wave function. An adiabatic motion of classical sp
n(t) can be described by the coherent stateun(t)& accompa-
nied with a phase factoreig of purely geometrical origin@8#.
Namely, if the spin moves adiabatically along any pathl on
the unit sphereS2 of n, the geometrical phaseg( l ) is equal
to a linear integral:

g5E
l
A. ~9!

The local change of the phase is described by Berry’s c
nectionAm5^nu i ]/]xmun&. This vector field has two compo
nents onS2:

Au5 K nU i ]

]u UnL 50,

ath
r-
~10!
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Aw5
1

sinu K nU i ]

]w UnL 5J
~12cosu!

sinu
.

The connectionA, as well as the geometric phase, are n
gauge invariant. At a local gauge transformationun&
˜exp@il(n)#un& they are transformed as follows:A˜A
1dl, g˜g1l f2l i , wherel is an arbitrary differentiable
function onS2, and i and f are its values at the initial an
final points of pathl, respectively. However, the phase b
comes gauge invariant if the path is closed:l 5]c, wherec is
a surface supported byl. In this case

g~c!5E
]c

A5E
c
dA5JE

c
sin~u!du df5JV, ~11!

whereV is the solid angle subtended by]c at the origin of
the unit sphere. The integrand in Eq.~11! is the field strength
B5Jr̂ /r 2. This field is identical to magnetic field produce
on S2 by Dirac’s magnetic monopole with the chargeJ lo-
cated in the center of the sphere. Thus, following Berry,
formulated the problem of a localized large spin in terms
a scalar charged particle confined on the sphere in the fie
a magnetic monopole.

In the presence of a crystal field a further simplificati
becomes possible. As was shown in Sec. II, it leads to
localization of the low-energy states near the ‘‘easy’’ dire
tions or minima of the field and lowers the dimensional
from 2J11 to N, whereN is the number of the easy pos
tions. The spin trapped near one of the easy directions
tunnel to the neighboring minima. The tunneling trajector
are solutions of the classical equations of motion with ima
nary time or velocity. The amplitudewi j for the tunneling
from the stateu i & to a neighboring stateu j & can be written as
wi j 5w expifij . Herew is a real, exponentially small facto
~see its calculation in Sec. II! and f i j is the Berry’s phase
along the tunneling trajectory connecting the pointsi and j.

The set of Berry’s phasesf i j along the tunneling trajec
tories $ i , j % connecting extrema labeled byi and j must sat-
isfy a set of equations. Namely, let us consider a plaquetc
on the sphere bounded byk tunneling paths
$ i 1 ,i 2%,$ i 2 ,i 3%, . . . ,$ i k ,i 1%. Then

(
m

f i m ,i m11
5g~c!5J„V~c!~mod 4p!…, ~12!

wherei k115 i 1 andV(c) is the solid angle subtended by th
contour]c. The system~12! is extended over all independe
plaquettes. Without loss of generality it is possible to co
sider Eq.~12! only for minimal ~elementary! plaquettes, i.e.,
plaquettes of the minimal non-zero area whose bounda
do not have self-intersections. Equations~12! do not define
the phasesf i j unambiguously. There remains a freedom o
discrete gauge transformationf i j˜f i j 1 f i2 f j containingN
real parametersf i . One of them can be treated as a comm
phase factor and is inessential. The Schro¨dinger equation in
this representation reads

Huc&5Euc&, ~13!

whereuc&5( j 51
N cj u j & is a vector in theN-dimensional space

spanned onto the basisu j &, j 51,2, . . . ,N andH is an N
t

e
f
of

e
-

an
s
i-

-

es

n

3N matrix whose diagonal components are equal to a sin
well energy level and nondiagonal elements are$H% i j
5wi j . Further, we set the diagonal matrix elements ofH to
zero. Then Eq.~13! can be rewritten in the vector form

(
j 51

N

wi j cj5Eci , wi j 5wef i j . ~14!

Equation~14! is obviously invariant with respect to the dis
crete gauge transformationwi j˜wi j e

i ( f i2 f j ); cj˜cje
i f j .

Therefore, any set of phasesf i j satisfying Eqs.~12! can be
used to find the spectrum and the eigenstates.

We have seen already that the problem of the quasic
sical spin is equivalent to the problem of a charged part
confined on the sphereS2 in the homogeneous magnetic fie
of the monopole. It is a direct spherical analog to the pro
lem of a charged particle moving on a plane in a homo
neous magnetic field, perpendicular to the plane. Restric
ourselves with the localized states, we consider a prob
the planar analog of which is the problem of a charged p
ticle on a two-dimentional~2D! lattice placed in a homoge
neous magnetic field. It is known as the Harper equation@9#.
The main difference from this famous problem studied
Harper, Azbel, Hofstadter, Thouless, Wiegmann, and m
other authors@9,10# is that, in our case the lattice is embe
ded in a sphere which is a compact manifold, in contras
the planar case. Nevertheless, many features of the Ha
equations will be encountered here, e.g., sudden variation
spectrum at a transition from a rational to an irrational fl
through an elementary plaquette~see Sec. VI!.

The initial HamiltonianH(J) is assumed to possess
point group symmetry. It should be noted thatH(J) is in-
variant with respect to the inversion transformation:J˜2J,
whereas the reduced effective Hamiltonian is not. The rea
is that this invariance which stems from the time-rever
symmetry cannot be extended onto the quantum permuta
relations: @Jj ,Jk#5(\/ i )e jklJl . The time reversal require
also antilinear transformation of the state vectors@11# which
cannot be incorporated into a linear symmetry group. Th
all groups of transformations under study consist of rotatio
only. The point groups in three dimensions have been s
ied thoroughly~see, for example,@5#!. Special attention will
be paid to the following point groups:Dn , n52,4,6,O ~oc-
tahedron!, andY ~icosahedron!.

In the next section we show that the action of the symm
try transformations on the effective Hamiltonian is not trivi
due to Berry’s phases.

IV. GROUP THEORY ANALYSIS

A. Construction of the main representation

Let Ḡ, a discrete subgroup of SO~3!, be the point group of
the crystal field, i.e., the point group leaving functionf (J)
invariant. It always includes the space inversionI as a con-
sequence of the time-reversal symmetry. Also, we introd
a subgroupG of the full symmetry groupḠ5G3Ci (Ci
5$E,I %) which includes rotation elements only. Further w
employ the notation ‘‘symmetry group,’’ namely, forG.
Each groupG has several sets of equivalent symmetric
rections defined by the intersection of equivalentp-fold sym-
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metry axes with the unit sphere. Let us denote such a c
figuration C(G,p) and corresponding number of symmet
directionsN(G,p) ~we denoted it earlier asN). It can be
readily seen thatN(G,p)5uGu/p, whereuGu is the rank of
the groupG, i.e., the number of its elements. The set ofN
5N(G,p) localized statesuk& corresponding to the configu
ration C(G,p) is the vector space for a linear unitary repr
sentation of the groupG. This representation depends also
J. Let us call it the main representation and denote
W(G,p,J). Its dimensionality is obviouslyN(G,p). For J
50, W(G,p,J) is a matrix representation of some subgro
P of the permutation groupSN . Each elementg of G can be
put in one-to-one correspondence to a permutationP(g)
PP. The Hamiltonian of the system is invariant under th
action. ForJÞ0 or J not equivalent to 0, the problem be
comes quite peculiar since, due to Berry’s phase factors,
Hamiltonian is no longer invariant under the action of t
transformationsP(g):

PHP T5H8ÞH. ~15!

HamiltonianH8 differs fromH by a gauge transformation
Therefore, it is possible to append such a gauge transfor
tion UPU ~unitary diagonal matrix! to each rotation that the
Hamiltonian remains unchanged:

UPHP TU †5H. ~16!

Thus, a proper representationW(G,p,J) of the symmetry
group for large spinJ or for Harper’s equation on the sphe
consists of operatorsW(g)5U(g)P(g). Since multiplication
of eachW(g) by an arbitrary phase factor does not viola
Eq. ~16!, the matrices inW(G,p,J) constitute a projective
representation ofG in general, that is,

W~g1!W~g2!5c~g1 ,g2!W~g1g2!, g1 ,g2PG, ~17!

wherec(g1 ,g2) is a function onG3G with values in U~1!
~two-dimensional cochain!.

Now, a question arises of whether the factor setc(g1 ,g2)
is equivalent to the trivial one:c8(g1 ,g2)51 for any
g1 ,g2PG, as it is for the caseJ50. By definition, two fac-
tor setsc andc8 are equivalent if there exists a functionb(g)
on G with values in U~1! ~one-dimensional cochain! such
that

c~g1 ,g2!5
b~g1!b~g2!

b~g1g2!
c8~g1 ,g2!. ~18!

We checked for finite groupsG,SO(3) that Eq.~18!
with c8(g1 ,g2)561 is really satisfied. In mathematical lan
guage this means that the cochainc is a cocycle but not a
coboundary for a half-integer spin and it is a coboundary
an integer spin@12#. Therefore, the factor set is nontrivial i
general. It is equivalent to the multiplicative factors$61%
~isomorphic toZ2) which is a consequence of the Dira
quantization: 2J5n, nPN. This structure of the factor se
might have been anticipated since the parameter space
arbitrary spin is not just SO~3! but its universal covering
group SU~2! which can be obtained as a nontrivial extensi
of the former one: 1̃ Z2˜SU(2)̃ SO(3)̃ 1. In our case,
spin in crystal electric field~CEF!, the proper group of sym
n-

it

r

he
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metries isG extended byZ2 : 1˜Z2˜G̃˜G˜1. Instead of
dealing with the projective representations ofG, one can
work with the linear representations ofG̃. An explicit con-
struction of G̃ will be given later in this section. In othe
language we must consider double-valued representation
G @5# for half integerJ.

The representationW(G,p,J) was constructed for a par
ticular gauge, however, one can easily find the required r
resentation if the Hamiltonian undergoes a gauge transfor
tion:

UHU †5H8.

Then a corrected representation leaves the Hamiltonian
variant:

W85UWU †.

Harter and Patterson@2# used the Frobenius duality theo
rem @13# to find very elegantly the multiplicities of the low
~high! energetic level clusters without using characters.

B. Classification of configurations

Generally speaking, theN-dimensional main representa
tion is reducible. To perform the reduction of the main re
resentation we need to find its characters. They are fo
explicitly in Appendix A. Here we issue final results. Fo
W(G,p,J), elements with non-zero characters are identityE,
the rotation through an angle of 2p about an arbitrary axis
Q, and rotationsCp

q about thep-fold axes.

x~E!5N, x~Q!5N~21!2J,

x~Cp
q!52 cosS 2pJq

p D , ~19!

x~Cp
qQ!52~21!2JcosS 2pJq

p D , ~q51, . . . ,p21!.

Now we proceed to consideration of different poi
groups and their configurations of extrema.

1. Configurations of the octahedron group O

Here, we classify possible configurationsC(O,p) of the
octahedron symmetry groupO. In general, i.e., without ac-
cidental degeneracy, the minima~maxima! of the potential
are located either on the equivalent symmetry axes of
cube or completely away from them~asymmetrically!:
C(O,4), three axes of the fourth order passing through
centers of opposite faces,N56; C(O,3), four axes of the
third order passing through opposite corners,N58; C(O,2),
six axes of the second order through the midpoints of op
site edges,N512; C(O,1), none of the symmetry axe
passes through the minimaN524 or N548. The represen-
tations W(O,p,J) of the octahedron group acting on th
spaces of states corresponding to the above described
figurations are, respectively, 6, 8, 12, and 24~48! dimen-
sional.

For a configurationC(O,p) only elementsCp
q have non-

zero characters which were calculated earlier. They mus
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divided into classes of conjugate elements. The classes
nonzero characters~exceptE andQ) are six rotationsC4 and
C4

3, and three rotationsC4
2 for C(O,4); eight rotationsC3 and

C3
2 for C(O,3); six rotationsC2 for C(O,2); and none for
C(O,1).

The characters are periodic functions ofJ with the period
equal top. This means that the multiplicities of the eigenva
ues of the Hamiltonian have the same periodicity. The ch
acters are invariant under the transformationJ˜2J ~mod
p) ~reflection!.

The irreducible components contained in representat
WN , N56,8,12,24 of the octahedron group are given
Table I for values ofJ inequivalent under the translation
over p and the reflection. These irreducible componen
along with the components ofDn configurations, were found
in @2#. For simplification we denotedW(O,p,J) as WN ,
whereN5N(O,p). The irreducible components ofW48 are
not listed since there are twice as many of them as those
W24. This relationship is correct for representationWuḠu of
any groupG. The characters of the accidental configuratio
such as the 14-fold configurations on the boundary betw
C(O,4) andC(O,3), are merely sums of the characters of t
constituting components and can be found from the gi
tables for the basic configurations.

2. Configurations of the icosahedron group Y

The classification of configurationsC(Y,p) for the icosa-
hedron group of symmetries is similar to that of the octa
dron group. Extrema can be located either along the di
tions of the symmetry axes or asymmetrically:C(Y,5), six
axes of the fifth order passing through opposite corners
the icosahedron,N512; C(Y,3), ten axes of the third orde
passing through the centers of opposite facesN520; C(Y,2),
15 axes of the second order through the midpoints of op
site edgesN530; andC(Y,1), none of the symmetry axe
passes through the minimaN560 or 120. The main repre
sentations of the icosahedron group acting on the space
the configurations are, respectively, 12, 20, 30, and 60~120!
dimensional. The classes with nonzero characters, besidE
andQ, are 12 rotationsC5

1,4 and 12 rotationsC5
2,3 for C(Y,5),

20 rotationsC3
1,2 for C(Y,3), 15 rotationsC2 for C(Y,2), and

none forC(Y,1). The multiplicities of the eigenvalues of th

TABLE I. Irreducible components of the cubic representatio
WN , N56,8,12,24.

J C(O,4) C(O,3) C(O,2) C(O,1)

A1 ,A2 A1 ,E A1 ,A2 ,E(2)
0 A1 ,E,F1

F1 ,F2 F1 ,F2(2) F1(3),F2(3)
A2 ,E

1 F1 ,F2 E,F1 ,F2

F1(2),F2

2 A2 ,E,F2

E18(2),E28(2)
1/2 E18 ,G8 E18 ,E28 ,G8 E18 ,E28 ,G8(2)

G8(4)
3/2 E28 ,G8 G8(2)
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Hamiltonian, for a configurationC(Y,p), have the periodp.
The irreducible components contained in representati
WN , N512,20,30,60 of the icosahedron group are given
Table II.

3. Configurations of D2

Next, we consider the configurations of three groups
symmetriesDN (N52,4,6). Despite their simplicity, Ber
ry’s phase introduces here some interesting effects as w

The configurations ofD2 are quite simpleC(D2,2), one
axis of the second order,N52; andC(D2,1), none of the
symmetry axes passes through the extrema,N54 or 8 The
characters of theD2 representations and the irreducible com
ponents contained in representationsWN , N52, 4 are given
in Table III.

4. Configurations of the tetragonal group D4

The configurations ofD4 are C(D4,4), one axis of the
fourth order,N52; C(D4,2), two axes of the second orde
N54; and C(D4,1) none of the symmetry axes pass
through the extrema,N58 or 16. The irreducible compo
nents contained in representationsWN , N52,4,8 of D4 are
given in Table IV.

An interesting conclusion can be drawn from the data
Table IV. The twofold classical degeneracy of the config
rations ofC(D4,4) is not lifted for all but even values ofJ.
Thus, the tunneling is allowed only for even spins. This
sult cannot be accounted for by Kramers degeneracy, as
possible in@14# for D2 configuration, and is totally due to th
symmetry combined with Berry’s phase. Also, it shows im
portance of the details of the background, i.e.,D2 ~consid-
ered in the preceding section and in@14#!, D4, andD6 ~con-
sidered in the next section! groups of symmetries have th

s TABLE II. Irreducible components of the icosahedron repres
tationsWN , N512,20,30,60.

J C(Y,5) C(Y,3) C(Y,2) C(Y,1)

A,F1 A,F1 ,F2 A,F1 ,F2 A,F1(3),F2(3)
0

F2 ,H G(2),H G(2),H(3) G(4),H(5)
F1 ,F2 F1(2),F2(2)

1 F1 ,G,H
G,H(2) G(2),H(2)

2 F2 ,G,H
E18 ,E28 E18 ,E28 E18(2),E28(2)

1/2 E18 ,G8,I 8
G8,I 8(2) G8(2),I 8(3) G8(4),I 8(6)

3/2 E28 ,G8,I 8 G8(2),I 8(2)
5/2 I 8(2)

TABLE III. Irreducible components of theD2 representations.

J C(D2,2) C(D2,1)

0 A,B3 A,B1 ,B2 ,B3

1 B1 ,B2

1/2 E8 E8(2)
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easy axis~twofold! configuration, however, the tunneling
allowed in theDN environment only forJ50 ~modN/2) and
is defined by the anisotropy in the plane normal to the e
axis.

5. Configurations of the hexagonal group D6

Due to the similarity of this group withD4, we just
present the data on theD6 representations.C(D6,6), one axis
of the sixth order,N52; C(D6,2), three axes of the secon
order,N56; andC(D6,1), none of the symmetry axes pass
through the minima,N512 or 24. See Table V.

V. SPECTRUM

The group-theoretical analysis of the preceding sec
gives the number of split sublevels in the initialN-fold mul-
tiplet and their degeneracies. In this section we find the or
of the sublevels and distances between them. It requires
plicit diagonalization of the reduced Hamiltonian. As w
show below, the spectrum is a much more subtle matter t
the number and degeneracy of the sublevels. It may dep
on details of the Hamiltonian.

We assume that all tunneling paths between nea
minima are equivalent, that is, all nonzero tunneling am
tudes have equal absolute valuesuwu. Consequently,w enters
the Hamiltonian as a common multiplier and all eigenvalu
are multiples ofw in zero magnetic field. The solid angl
covered by the minimal nontrivial closed path will be a
sumed known. It is, actually, a constant for all configuratio
but C(G,2), G5O,Y, where it is a function of some dimen
sionless combinations of the CEF parameters, e.g., ratiou in
Sec. II.

In some cases, not only in simple ones, such asC(DN ,N),
there are two tunneling trajectories connecting nea
minima. E.g., in the vicinity of the boundary between sixfo
and eightfold configurations of the cubic group~see Fig. 3!,
the tunneling trajectory deviates from the geodesics conn
ing the minima and, due to the symmetry, there are t

TABLE IV. Irreducible components of theD4 representations.

J C(D4,4) C(D4,2) C(D4,1)

0 A1 ,A2 A1 ,B1 ,E A1 ,A2 ,B1 ,B2 ,E(2)
1 E A2 ,B2 ,E

B1 ,B2

1/2 E18 E18 ,E28 E18(2),E28(2)
3/2 E28

TABLE V. Irreducible components of theD6 representations.

J C(D6,6) C(D6,2) C(D6,1)

0 A1 ,A2 A1 ,B1 ,E1 ,E2 A1 ,A2 ,B1 ,B2 ,E1(2),E2(2)
1 E1 A2 ,B2 ,E1 ,E2

2 E2

3 B1 ,B2

1/2 E18 E18 ,E28 ,E38 E18(2),E28(2),E38(2)
3/2 E38

5/2 E28
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trajectories located symmetrically with respect to the geo
sics. However, the two trajectories can be considered as
effective path with the tunneling amplitude of 2w cos(JV/2)
@see Eq.~28!#, wherew is the tunneling amplitude of a singl
path andV is the solid angle subtended by the two trajec
ries.

Before proceeding to a detailed analysis of the spectra
obtain some relations between eigenvalues of the same
figuration, but for differentJ. These relations are of purel
geometric origin @15#. Let us assume that the paramet
spaceS2 can be covered completely and without overlap
s congruent plaquettes whose boundaries are the tunne
trajectories. E.g., these are two hemispheres forC(DN,2), N
52,4,6, configurations;N orangelike segments forC(DN ,N),
Fig. 4; eight curved right-angled triangles forC(O,4), Fig. 1.
Each plaquette subtends a solid angle of 4p/s, and Berry’s
phase for each loop is 4pJ/s. Then, from Eq.~12!, it follows
that the spectrum is a periodic function ofJ with the period
s/2.1 The spectra of systems differing by transformati
g(c)˜2g(c) must be identical due to the time-revers
symmetry. Hence, allJ’s are divided intos/211 equivalence
classes defined by a set of numbers 0,1/2,1, . . . ,s/4. A fixed
J belongs to the class of equivalence labeled by

min
nPZ

uJ1ns/2u. ~20!

Hereinafter, we will work only with the minimal nonequiva
lent J’s.

In a more general setting, i.e., in the presence ofn differ-
ent elementary plaquettes, periodicity of the spectra depe
on the rationality of the flux quanta passing through ea
plaquette: if a flux per each plaquette isF i5JV i
52pJPi /Qi , i 51, . . . ,n, where Pi and Qi are mutually
prime integers, then the period of the spectra is the le
common multiple ofQi , i 51, . . . ,n. Otherwise the spectra
are not periodic and eachJ represents a class. Thus, ifn
51 the spectra is always periodic and ifn.1 it is not in
general~unless an additional symmetry is present!.

1This statement is conventional; it is periodic ifw does not depend
on J. However, the ratios of the interlevel distances are perio
functions ofJ.

FIG. 4. Configurations ofD4. Filled circles and dashed line
belong to C(D4,4), and filled squares and solid lines belong
C(D4,2) respectively.
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An extra symmetry of the spectra can be extracted
considering an operation of the change of sign:w˜2w.
This transformation inverts energy levels inside of ea
class. On the other hand, the spectra depend only on g
invariantswk cos(JVk), whereVk54mp/s (m is an integer!
is the solid angle subtended by a closed contour containik
tunneling paths and is a multiple of the solid angle subten
by the elementary plaquette 4p/s. If all closed contours con-
tain an even number of paths (k is even!, e.g., C(O,3),
C(D4,2), the levels are symmetric inside of each class, t
is, they come in pairs of opposite sign6E. For example, for
eigenvalues ofC(O,3) the following relations are satisfied
E(J50;A1)52E(J50;A2), E(J50,1;F1)52E(J
50,1;F2), E(J51;E)50, E(J51/2;E18)52E(J
51/2;E28), E(J51/2;G8)50. If some of the closed contour
consist of an odd number of paths, e.g.,C(O,4), C(Y,5), then
the simultaneous change of signw˜2w and shift J˜J
1s/4 leaves the invariant combinations unchanged. The
fore, each levelE in the class ofJ has its counterpart2E in
the class ofJ1s/4. For example, inC(O,4): E(J50;A1)5
2E(J52;A2), E(J50;F1)52E(J52;F2), E(J50;E)5

2E(J52;E), E(J51/2;E18)52E(J53/2;E28), E(J
51/2;G8)52E(J53/2;G8). If J and J1s/4 belong to the
same equivalence class, their spectrum is symmetric, e.g
C(O,4): E(J51;F1)52E(J51;F2).

The analysis carried out by Harter and Patterson@2# led to
similar results for some configurations, e.g.,C(Dn,2),
C(O,4), andC(O,3), but without magnetic field.

Later in this section we calculate the spectra for differ
groups of symmetry and configurations.

A. Spectra of the Dn „n52, 4, 6…

The configurations ofD4 are shown in Fig. 4. In the cas
of the D6 configurations, there are six minima on the equ
torial circle@C(D6,2)# and six tunneling paths connecting th
antipodal points@C(D6,6)#. For C(D2,2), it is just two
minima connected by two tunneling trajectories. The to
tunneling amplitude forC(DN ,N), from one pole to the
other, is

w (
k50

N21

exp~ i4pkJ/N!, ~21!

where we prescribed a phase factor of unity to one of
tunneling paths. The Hamiltonian is a 232 matrix with the
following eigenvalues:

TABLE VI. Spectrum ofC(D4,2) in magnetic field, the limit of
small magnetic field, and low-temperature magnetic susceptib
@b51/(kBT)#.

J Eigenvalues Susceptibility

0 6(2w1
1
4 h2J2/w), 6

1
4 h2J2 sin(2fh)/w

1
2 (gJmB)2/w

1/2 6SA2w6
1
2 hJ1

A2

16
h2J2/wD 1

4 (gJmB)2b
y

h
ge

d

at

e-

in

t

-

l

e

E5H 62w cos~pJ! for N52

64w cos~pJ!cos~pJ/2! for N54

62w cos~pJ!@112 cos~2pJ/3!# for N56.
~22!

In full agreement with the predictions of Sec. IV, the pat
interfere destructively for all spin values exceptJ50 ~mod
N/2).

The case of minimal symmetryC(D2,2) has been consid
ered by Losset al. @14# earlier. They argued that in the cas
of half integerJ the tunneling amplitudes along the two pat
cancel each other. One can see from Eqs.~22! that, when the
number of equivalent tunneling paths increases due to
symmetry, such a cancellation takes place for integerJ as
well @with the exception ofJ50 ~modN/2)#, where the clas-
sical degeneracy of the ground-state level is twofold for
C(DN ,N).

In the presence of magnetic field the eigenvalues
E(h)56AE2(0)1(hJ)2, where h5gmBH and H is the
component of magnetic field along the easy direction.

For theC(DN,2) N54,6 configurations, the Hamiltonia
is that of the one-dimensionalN-site tight-binding model@7#,
with eigenvalues.2

Ek52w cos@2p~k1J!/N#, k50,1, . . . ,N21. ~23!

The magnetic field enters the Hamiltonian as a s
diagonal matrix:

Hh52hJ cos~fh22p l /N!, l 50,1, . . . ,N21, ~24!

whereh5gmBH, H is the in-plane component of magnet
field, andfh is the angle of this component with respect
the easy direction of the CEF labeled byl 50. The eigenval-
ues ofH1Hh can be found analytically. ForC(D4,2), one
finds

E252w21
h̄2

2
6A4w4cos2~pJ!12h̄2w21

h̄4

4
cos2~2fh!,

where we usedh̄ as a shorthand forhJ. The spectra of
C(D4,2) ~previously calculated in@7#! andC(D6,2) in mag-
netic field are given in the limit of small magnetic fields
Tables VI and VII, respectively. The last column of Tabl
VI, VII is the low-temperature magnetic susceptibilit

2The labelk in Eq. ~23! does not correspond to the algebraic val
of the level.

y
TABLE VII. Spectrum ofC(D6,2) in magnetic field, the limit of

small magnetic field, and low temperature magnetic susceptibil

J Eigenvalues Susceptibility

6(2w1
1
2 h2J2/w)

0 6(w2
3
8 h2J2/w) (gJmB)2/w

6(w1
1
8 h2J2/w)

1/2 0~2!,6SA3w6
1
2 hJ1

A3

12
h2J2/wD 1

4 (gJmB)2/(kBT)
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which is a readily observable physical quantity. The susc
tibility saturates to a constant for the classes without a m
netic moment in the ground state~integer spins! and has a
Curie-like behavior for the ones with a magnetic moment
the ground state~half-integer spins!; see Appendix C for de-
tails.

In the case ofC(DN,2) configurations, there is a spectr
difference between integer and half-integer spins only wh
can be ascribed to Kramers degeneracy. In the next sec
we consider non-Abelian cases, where more complex d
sion on equivalence classes occurs.

B. Spectra of the O configurations

The cubic symmetries are quite common in nature.
will perform a detailed study of the configurations of th
octahedron group. The Hamiltonian for configurationC(O,4)
has the following matrix elements:

hii 50, i 51,2, . . . ,6

hi j 50, u i 2 j u51, i 1 j 53,7,11 ~25!

uhi j u5uwu for other 1< i , j <6,

where we adopted the enumeration shown in Fig. 1. T
tunneling trajectories divide the sphere into eight plaquet
Relation ~12!, written for each plaquette, gives eight equ
tions for the phasesf i j , whereV(c)5p/2 ~an example of a
set of the phases for this configuration as well as a calc
tion of the spectra is given in Appendix B!. Only seven equa-
tions are independent. Given definite phases, the diagona
tion is straightforward. The eigenvalues can be expresse
the following closed form@15#:

Ek~J!5~21!k2wx@p~J12k!#, k50, . . . ,5,
~26!

x~x!5cos
2x

3
cos

x

2
2S cos2

x

3
1sin2

2x

3
sin2

x

2D 1/2

.

The ordered spectra ofC(O,4) are given in Table VIII (w
.0) for the minimal set ofJ’s; the spectra for otherJ’s can
be obtained by the use of the equivalence relation~20!. Note
that the spectra should be inverted ifw is negative.

The physical difference among the classes is manife
when magnetic field is applied. The magnetic part of
Hamiltonian in this case is

Hh5J diag~2hz , hz ,2hx , hx ,2hy , hy!.

TABLE VIII. Spectra and low-temperature magnetic suscep
bilities of C(O,4) @b51/(kBT), a common factor of (gJmB)2, is
omitted#.

J Eigenvalues~degeneracies! Susceptibility

0 22w(2),0(3),4w(1) 1/(3w)
1 22w(3),2w(3) b/6
2 24w(1),0(3),2w(2) 1/(6w)
1/2 2A2w(4),2A2w(2) 2b/9
3/2 22A2w(2),A2w(4) b/9
p-
g-

h
n,
i-

e

e
s.
-

a-

a-
in

d
e

The full Hamiltonian can be easily diagonalized for som
symmetric direction of the field, e.g., along easy directi
(1,0,0). The direction of the field does not influence the lo
temperature susceptibility since the latter is isotropic in
cubic CEF. However, individual levels of the ground-sta
multiplet may have anisotropic magnetic susceptibility
well as anisotropic magnetization. The low-temperatu
magnetic susceptibilities ofC(O,4) are collected in the las
column of Table VIII.

In the case of theC(O,3) configuration, the minima are
located at the vertices of a cube inscribed into the u
sphere: sinu5A2/3,sin(2f)50, where u and f are the
spherical coordinates of the minima~see Fig. 5!. The tunnel-
ing trajectories divide the surface of the sphere into six c
gruent plaquettes; each subtends a solid angle of 2p/3. Five
independent equations~12! fix the tunneling phase shifts an
the Hamiltonian up to an arbitrary gauge transformation. T
eight eigenvalues are@15#

Ek
6562wj@p~J13k!#, k50,1,2,3,

j~x!5S 312 cosx cos
2x

3
14 cos

x

2
cos

x

3
%~x! D 1/2

, ~27!

%~x!5S 4 sin2
x

2
sin2

x

3
11D 1/2

.

The ordered eigenvalues are presented in Table IX for
nonequivalentJ’s (w.0). Analysis of the magnetic re
sponse is quite straightforward as well~see Appendix C!; the
magnetic susceptibilities of the classes are given in the
column of Table IX.

Consideration ofC(O,2) will be postponed until Sec. VI

-

TABLE IX. Spectra and low-temperature magnetic susceptib
ties ofC(O,3) @b51/(kBT), a common factor of (gJmB)2, is omit-
ted#.

J Eigenvalues~degeneracies! Susceptibility

0 23w(1),2w(3),w(3),3w(1) 1/(3w)
1 22w(3),0(2),2w(3) b/6
1/2 2A6w (2),0 (4),A6w (2) b/9
3/2 2A3w(4),A3w(4) 2b/9

FIG. 5. Paths of the spin on the unit sphere between the e
positions of the field. The case ofC(O,3) configuration.
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1. Multiple tunneling path regime

In the C(O,4) configuration, a tunneling trajectory con
necting two minima, e.g., minima 3 and 5 in Fig. 1, is n
necessarily a geodesic on the sphere. For example, if
midpoint of the geodesics connecting minima 3 and 5 i
maximum of the CEF potential then the tunneling trajecto
connecting the minima will split in two paths: one deviatin
towards the ‘‘north’’ pole~minimum 1! and the other to-
wards the ‘‘south’’ pole~minimum 2! as is shown in Fig. 6.
One path is a mirror copy of the other with respect to
‘‘equatorial’’ plane. Thus, the absolute values of the tunn
ing amplitudes corresponding to the two trajectories (uwu)
are identical. To find the compound tunneling amplitude
assume that one of the trajectories, e.g., the one conne
minima 3 and 5, and located in the ‘‘south’’ hemisphere, h
the phasew1 : w15uwuexp(iw1). Then, due to the Berry con
nection, the other amplitude must bew25uwuexp@i(w1
2JV)#, where V is the solid angle subtended by the tw
trajectories. The effective amplitude is

we5w11w252uwuei (w12JV/2) cos~JV/2!. ~28!

Interesting conclusions can be derived from formula~28!.
First, the splitting of the trajectories does not change
connectivity matrix of the configuration, it just modifies th
multiplier of Hamiltonian~25! and all results obtained fo
configurationC(O,4) hold true. Secondly, the spectrum m
be an oscillating function ofJ or, if one were able to vary
parameters in such a way thatV changes from its maximum
value to zero, several oscillations of the spectrum could
observed as well. To estimate the number of oscillations
use the fact that different tunneling trajectories emana
from a site and ending at some other site~s! do not intersect
at intermediate points~they can only intersect at the en
points!. Then we can state that the maximal possible dev
tion of the trajectories from the spherical geodesics conn
ing the positions of theC(O,4) configuration is reached whe
the trajectories pass along the spherical geodesics conne
the geometrically closest positions of theC(O,3) andC(O,4)
configurations. Figure 7 depicts this situation: the two tu
neling trajectories connecting the sixfold global minima
and 5~filled circles! are passing very closely to the eightfo

FIG. 6. Tunneling trajectories of the spin~double paths!. The
sixfold configurations ofO. The hexagons show the locations of th
maxima of the CEF potential.
t
he
a
y

e
l-

e
ing
s

e

e
e
g

-
t-

ing

-

local minima~filled triangles!, thus ‘‘avoiding’’ the 12-fold
global maxima~filled hexagons!. The solid angle enclosed
by the two trajectories~shaded area in Fig. 7! varies in the
range 0<V,p/3. Upon such a variation ofV the spectrum
will make J/12 full oscillations.

Next we analyze the multiple tunneling trajectories
C(O,3). Figure 8 depicts the splitting of the trajectory co
necting minima 1 and 5~solid curvesA andB). The situation
is similar to that of theC(O,4) configuration~the oscillations
take place and their maximal number isJ/12) except one
subtle point: when a trajectory deviates strongly from t
geodesics it approaches the trajectory connecting a n
nearest-neighbor~dashed lines in Fig. 8!, e.g., linesA8 and
B8 which connect 1 with 4 and 8, respectively. This is a ve
drastic change in the tunneling regime which leads to
change of the connectivity matrix.

To calculate the spectrum we assume that the abso
values of the single tunneling amplitudes to the nearest-
next-nearest-neighbor sites are the samew. However, the ef-
fective amplitude for the nearest-neighbor tunneling
2w cos(JV/2) due to the double trajectories. The elementa
plaquette, in this case, is a triangle covering the solid an
of p/3, e.g., triangle 1-5-8-1 in Fig. 8. In this case, plaquet
cover the sphere twice. Then, the periodicity of the spectr

FIG. 7. Tunneling trajectories of the spin~double paths!. The
sixfold configurations ofO. The tunneling trajectories pass close
to the local minima~locations of the eightfold configuration!.

FIG. 8. Tunneling trajectories of the spin~double paths!. The
eightfold configurations ofO. The hexagons show the locations
the maxima of the CEF potential.
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given bys54p/(p/3), which is half of the total number o
the elementary plaquettes. Application of the symmetry
guments given at the beginning of this section leads to
following properties of the spectrum: the periodicity of th
spectral behavior isJ5s/256, uJ16nu, nPZ is equivalent
to J, the spectrum ofJ13 is the inverted spectrum ofJ. The
results of the diagonalization are summarized in Table X

C. Spectra of the Y configurations

The analysis of the configurations of theY group is te-
dious, though similar to that for theO group. We presen
only the results of the analysis here. Table XI contains
spectra and the low-temperature susceptibilities of
C(Y,5) configuration ~the energies are multiples ofw).
Tables XII, XIII contain the spectra and the low-temperatu
susceptibilities of theC(Y,3) configuration, respectively.

The multiple tunneling path regime is present in config
rationsC(Y,5) andC(Y,3) as well. Its analysis is similar to
that of configurationsC(O,4) andC(O,3). We present here
its summary only: The regions of existence of configuratio
C(Y,5) andC(Y,3) in the parameter space of the CEF a
divided into two parts for each configuration. One part c
responds to the single tunneling path regime. The ab
theory is valid in this region. The other part is of the multip
tunneling path regime. The spectra are oscillating functi
of J in this region sincew; cos(JV/2), 0<V,2p/15.
Upon full monotonic variation ofV, the spectrum make
'J/30 oscillations for both configurations. The spectrum

TABLE X. Spectra ofC(O,3), region of the multiple tunneling
path regime@x52 cos(JV/2)#; all eigenvalues are multiples ofw.

J Eigenvalues~degeneracies!

0 23(12x)(1),2(11x)(3),(12x)(3),3(11x)(1)
1 22(12x/2)(3),23x(2),2(11x/2)(3)
2 22(11x/2)(3),3x(2),2(12x/2)(3)
3 23(11x)(1),2(12x)(3),(11x)(3),3(12x)(1)
1/2 2(A62xA3)(2),2xA3(4), (A61xA3)(2)
3/2 2A3(11x2)(4),A3(11x2)(4)
5/2 2(A61xA3)(2),xA3(4),(A62xA3)(2)
r-
e

e
e

e

-

s

-
e

s

f

C(Y,5) given in Table XI holds valid for both regimes. Fo
theC(Y,3) configuration, in a range of parameters the pro
imity of the minima positions may be altered: each minimu
position~vertex of the dodecahedron where some three fa
intersect! should be geometrically connected not just to t
three nearest neighbors but also to the six next-nearest ne
bors.

VI. RANDOM ENERGY LEVELS

For all configurations considered in the preceding secti
the spectra were simple periodic functions ofJ, which was
due to the fact that a rational number of flux quanta@F
5JV(c)52pJP/Q# passes through each plaquette. This
not the case for more complex configurations such
C(G,2), G5O,Y. In Fig. 9 we present the spatial distribu
tion of minima of theC(O,2) configuration. The segment
connecting the minima are not real tunneling trajectories
rather guidelines. The tunneling paths may deviate stron
from the geodesics connecting corresponding minima bot
the locations of the sixfold~centers of the cube faces! and
eightfold~vertices of the cube! configurations’ positions. The
exact form of the paths depends on the CEF constants,

TABLE XII. Spectra ofC(Y,3); all eigenvalues are multiples o
w.

J Eigenvalues~degeneracies!

0 2A5(3), 22(4), 0(4), 1(5),A5(3), 3(1)
1 2(11A13)/2(5), 21(4), (32A5)/2(3),

(211A13)/2(5), (31A5)/2(3)
2 2(31A5)/2(3), (12A13)/2(5), (32A5)/2(3),

1(4), (11A13)/2(5)
3 23(1), 2A5(3), 21(5), 0(4), 2(4),A5(3)
1/2 2(A31A7)/2(6), A3(12A5)/2(2),

(2A31A7)/2(6), A3(4), A3(11A5)/2(2)
3/2 2A6(4), 21(6), 1(6),A6(4)
5/2 2A3(11A5)/2(2), 2A3(4), (A32A7)/2(6)

A3(211A5)/2(2), (A31A7)/2(6)
-
TABLE XI. Spectra and low-temperature magnetic susceptibilities ofC(Y,5); all eigenvalues are mul
tiples of w and all susceptibilities are multiples of (gJmB)2 @b51/(kBT), c15cos(p/10), and c3

5cos(3p/10)#.

J Eigenvalues~degeneracies! Susceptibility

0 2A5(3), 21(5), A5(3), 5~1! (11A5)/(6w)
1 2A5(4), (A523)/2(5), (51A5)/2(3) b/9
2 2A5(4), (A525)/2(3), (A513)/2(5) b/9
3 2(A513)/2(5), (52A5)/2(3), A5(4) 2b/9
4 2(51A5)/2(3), (32A5)/2(5), A5(4) b/6
5 25(1), 2A5(3), 1(5),A5(3) (51A5)/(30w)
1
2 22c1(6), (32A5)c1(4), 2A5c1(2) b/5
3
2 22A5c3(2), 22c3(6), (31A5)c3(4) (51A5)c1 /(15w)
5
2 2A5(6), A5(6) b(51A5)/30
7
2 2(31A5)c3(4), 2c3(6), 2A5c3(2), b/5
9
2 22A5c1(2), (A523)c1(4), 2c1(6) b/9
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for the simplest Hamiltonian~6!, where configurationC(O,2)
is realized, it is a function of ratiob/a. Instead of studying
nonuniversal tunneling trajectories, we introduce a param
a (0,a,2p/3): the solid angle subtended by a squarel
contour. The solid angle subtended by a trianglelike circu
p/223a/4. A knowledge of this parameter together withw
is sufficient to define the spectra of the 12-fold configurati
Sincea may be an irrational multiple ofp, the spectrum as
a function ofJ is not expected to be a finite set of values, b
a fractal set. The spectra of the 12-fold configuration
given in Table XIV. The spectra undergoJ/12 oscillations
upon a monotonic variation of 0,a,2p/3 for a given value
of spin J.

The spectra found by Harter and Patterson@2# for this
configuration are incorrect, since the spectra should dep
on two parameters, e.g., onw and a, and not just on one
~parameterS in their work!. However, the splitting scheme
for C(O,2) found in@2# are correct~they are parameter inde
pendent!.

ConfigurationC(Y,2) is even more complex thanC(O,2).
Its minima directions correspond to the midpoints of t
icosahedron edges~see Fig. 10!. The parametera (0<a
,p/3) here corresponds to the solid angle subtended b
pentagonlike contour. The spectra undergoJ/30 oscillations
upon a monotonic variation of 0,a,p/3. The spectra of
the 30-fold configuration for odd values ofJ are given in
Table XV.

TABLE XIII. Low-temperature magnetic susceptibilities o
C(Y,3) @a common factor of (gJmB)2 is omitted,b51/(kBT)#.

J Susceptibility

0 (7/6111A5/18)/w
1 b@12A51371A13(3A514)#/468
2 b/6
3 (A513)/(6w)
1/2 b@10A51831A21(5A522)#/630
3/2 b(4A519)/90
5/2 b/9

FIG. 9. Minima distribution of the 12-fold configurations ofO.
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The spectra described in this section have features of
domness. Indeed, the function$aJ% ~fractional part ofaJ)
with an irrationala is known as a generator of random num
bers. Thus, the ratios of the transition frequencies for c
figurationsC(G,2), G5O,Y vary in an uncontrollable way
when largeJ changes by 1. This behavior differs drama
cally from that for other cubic and icosahedral configuratio
which display permanent ratios of the frequencies for a fix
configuration. Thus, the configurationsC(G,2), G5O,Y re-
alize the chaotic spectra of deterministic systems. This s
ation is well known, e.g., for the hydrogen atom in a unifor
magnetic field@16#. The peculiarity of our problem is that i
displays chaos in a finite set of numbers~12 or 30! and that
the chaotic behavior can be found analytically. Another s
cial feature of our system is that stochasticity in it is co
bined with deterministic multiplicity distribution. For ex
ample, in the case of theC(O,2) configuration the 12 levels
are divided into submultiplets given in Table I, indepe
dently ofa. However, their mutual arrangement is unpredi
able.

For a two parametric Hamiltonian, e.g., Hamiltonian~6!
for the octahedron group, the configurationsC(G,2), G
5O,Y correspond to the single tunneling regime. The m
tiple tunneling regime may occur if the invariants of high
orders are included.

In the presence of infinitely small magnetic field th
ground state of configurationC(O,2) acquires either a finite
magnetic moment or a finite susceptibility. We analyzed t
problem for the field directed along one of the fourth-ord
axes and w.0. Then the finite magnetic momen
2gJmBusinxu/@2(827 cos2x)#1/2 is acquired at cosx.21/2
@x5J(a12p)/4#, otherwise the finite magnetic susceptib
ity x52(gJmB)2/(3w cosx) occurs for integerJ. For half

TABLE XIV. Spectra ofC(O,2). All eigenvalues are multiples
of w; x5J(a12p)/4.

IntegerJ Half integerJ

Energy~degeneracy! Energy~degeneracy!

4 cosx (1) 2(cosx6A2 sinx) (2,2)
22 cos (2) 2cosx6A21cos2x (4,4)
2 cosx (3)
2cosx6A827 cos2x (3,3)

FIG. 10. Minima distribution of the 30-fold configurations ofY.
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1836 PRA 60V. A. KALATSKY AND V. L. POKROVSKY
integerJ, the magnetic momentgJmB/3 is acquired at cosx
,cos(3p/8), otherwise this value of the moment is mul
plied by a factor

S c21513cA21c212A2usin~x!u~3c1A21c2!

2~21c2!
D 1/2

,

wherec5cos(x). Note the random character of these valu

VII. NUMERICAL ANALYSIS.
THE CASE OF THE CUBIC CEF

The main obstacle to a reliable numerical analysis of
problem is the fact that nobody knows what the Hamilton
looks like. The case of the rare-earth ions with large to
angular momenta interacting with the CEF represents an
ception. Only the orbital partL of the total angular momen
tum of a single magnetic electron interacts with the crys
line field. All terms, in the expansion of the crystallin
potential with the degree larger than 2l , wherel is the orbital
quantum number of the single magnetic electron, van
@17#, thus simplifying the analysis. For the 4f -group elec-
trons withl 53, this gives the highest non-vanishing terms
the sixth order. Considering a CEF of a particular symme
group brings further simplification, e.g., in the cubic CE
there are only two independent invariants of the sixth or
and one of the fourth order. The two of the sixth order a
combined in one invariant@see Eq.~6!# for a real interaction
which is the Coulomb interaction between the charge ca
ers.

It has been shown in Sec. II that Hamiltonian~6! has
configurationsC(O,4), C(O,3), and C(O,2) as sets of its
classical extrema. In this meaning it is rather general. Th
fore, we apply numerical analysis to this Hamiltonian in
wide range ofJ’s. This means that we numerically diagona
ize the (2J11)3(2J11) matrix for a one-parametric set o
Hamiltonians~29!. The choice of this Hamiltonian is partl
justified by the above consideration. Our purpose is to fi
numerically whatJ can be considered as large, i.e., start
from whatJ our theory gives a satisfactory description. T
second important problem is the crossover behavior of
spectrum near configuration boundaries described in Sec

Numerical studies of the crystal field effects on angu
momenta were performed in the early 1960s by Lea, Lea
and Wolf @18#. These authors studied a cubic crystal fie
Hamiltonian similar to Eq.~6!. Their main interest was how
the angular momentum degeneracy off electrons is lifted.
For this purpose it was enough to consider values oJ
spanned from 3 to 8. Numerical studies for high values oJ
~up to 100! were carried out by Fox, Galbraith, Krohn, an

TABLE XV. Spectra ofC(Y,2) for odd values ofJ. All eigen-
values are multiples ofw, x5cos@J(a13p)/5#.

Energy~degeneracy!

6112x (4,4)
2x6A423x2 (5,5)

(11A5)@2x6A41(524A5)x2#/2 (3,3)

(12A5)@2x6A41(514A5)x2#/2 (3,3)
.

e
n
l
x-

l-

h
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e

i-
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k,

Louck @19#. However, this group used a Hamiltonian simil
to Eq. ~3! with the fourth-order term only. Avoiding this
limitation, we numerically study the Hamiltonian consistin
of terms of the fourth and sixth order for an arbitrary value
J. However, we use a different parametrization than that u
in @18# for the same Hamiltonian:

H2
O52

cos~f!O4
0

@J~J11!#2
2

5

14

sin~f!O6
0

@J~J11!#3
, ~29!

whereO4
0 andO6

0 are Stevens’s operator equivalents@20,17#,
andf is a parameter taking values in the interval@2p,p#.
Our parametrization corresponds to a unit circle on the ph
diagram of Hamiltonian ~6! ~see Fig. 3!: a5cos(f),
b5sin(f), whereas that chosen in@18# corresponds to the
square:a5x, 14b/556(12uxu); 21<x<1. The coeffi-
cient of 5/14 reflects the difference between our invariant
the sixth order in Eq.~6! and the commonly used Steven
operator equivalentO6

0.
For relatively small values of spins 2J11;N, whereN is

the number of extrema of the CEF, the quasiclassical
scription fails and the spectrum of Hamiltonian~29! does not
follow the predicted dependence. However, forJ'10, one
can observe distinct regions off with high density of level
crossing~these regions are distinctly seen in@18# for J>6).
Upon an increase ofJ these regions narrow down, giving th
points separating the sixfold, eightfold, and 12-fold config
rations. Further increase ofJ leads to a ‘‘bunching’’ of low
energetic levels into the predicted groups~multiplets! of six,
eight, or 12.

Not only the numbers of the levels in the multiplets, b
also the ratios of the spacings between the levels inside
multiplets, the oscillations of the spectra in the regime of
multiple tunneling path, and the tunneling amplitude in t
regime of a single tunneling path obey the predictions of
theory.

For a demonstration we have chosen a set of close va
J’s: J523, 47/2, and 24. Figures 11, 12, and 13 are gra
of the spectra of Hamiltonian~29! for these values ofJ. The
vertical dashed lines are the classical boundaries betwee
different configuration@see the diagram of Hamiltonian~6!,
Fig. 3#. A small deviation of the dashed line separating t
sixfold and eightfold configurations@f6285arctan(3)# to-

FIG. 11. Spectrum of Hamiltonian~29!; J523.
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PRA 60 1837SPECTRA AND MAGNETIC PROPERTIES OF LARGE . . .
wards the sixfold one is due to the fact that, atf5f628, the
depth of the CEF potential in the minimum locations of t
sixfold configuration is equal to that of the eightfold config
ration. However, the intersection of the levels occurs wh
the ground-state energies coincide. See Appendix D for
tails on this subject.

From the pictures one can clearly see the ‘‘bunching’’
the highest- and lowest-energy levels into the predicted m
tiplets of six, eight, and 12. The excited multiplets have
same structure which fails only in the vicinity of the boun
aries between the configurations. The structure of the spe
given in Figs. 11, 12, and 13 looks quite similar at this lev
of ‘‘magnification.’’ To see the subtle details predicted
previous sections we should ‘‘zoom in’’ the pictures, ‘‘fo
cusing’’ on the ground multiplet.

First, we shift the ‘‘center of mass’’ of the ground mu
tiplet to zero~we are not interested in finding the single-we
localization energy!. Secondly, we rescale the shifted leve
so that a ‘‘visual’’ comparison of the spacings between
levels can be done at different values of the reduced par
eterf. The rescaling is necessary due to a large variation
w}exp@2Jc(f)#. The calculations of the tunneling amplitud
for the C(O,4) configuration of Hamiltonian~6! ~see Fig. 2!
predict a variation ofw of order 106 for J'24. The results of
this program are shown in Figs. 14, 15, and 16 forJ523,
47/2, and 24, respectively. The vertical dashed lines~the

FIG. 12. Spectrum of Hamiltonian~29!; J547/2.

FIG. 13. Spectrum of Hamiltonian~29!; J524.
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quasiclassical boundaries, see Fig. 3! separate not only the
regions of different configuration numbers but also the
gions of the single and multiple tunneling path regimes. T
regions are enumerated by Roman numerals: I—C(O,2)
~single tunneling path regime only!, II—C(O,4) single,
III— C(O,4) multiple, IV—C(O,3) multiple, and V—C(O,3)
single regimes, respectively. Part~a! of each picture repre-
sents the plot of the rescaling factor which is proportional
c(f); part ~b! is the rescaled spectrum.

All predictions of Secs. II, V, and VI~the orderings of the
levels, the ratios of the level spacings, the oscillations of
spectra in some regions, the numbers of the oscillations,
the dependence of the scaling parameterR) find confirmation
here. The oscillations are not of the periodic form due
nontrivial ~but monotonic! dependenciesa5a(f) and V
5V(f).

A more precise value ofc(f) can be easily obtained from
the single tunneling path part of the spectrum of the sixf
configuration. Figure 17 compares the quasiclassical re
found in Sec. II with the numerical calculations forJ524
and 48. The plot is2 ln@(E12E0)/4#/J vs u5tan(f), where
E0 and E1 are the energies of the ground and first excit
states, respectively. The differenceE12E0 is 4w according

FIG. 14. ~a! Graph of ln(R)/J, whereR is the rescaling factor
applied to the ground multiplet;~b! rescaled ground-state multiple
of Hamiltonian~29! ~the legend shows the degeneracies of the l
els!; J523.

FIG. 15. ~a! Graph of ln(R)/J, whereR is the rescaling factor
applied to the ground multiplet;~b! rescaled ground-state multiple
of Hamiltonian~29! ~the legend shows the degeneracies of the l
els!; J547/2.
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to predictions of Sec. V. A small discrepancy is due to
coefficient of the exponentialf (u)„w5 f (u)exp@2Jc(u)#…,
whose contribution decreases}1/J. From these data, we ca
estimate that the values of the coefficientf (u) are in a range
0.1–3.0.

All these facts strongly emphasize the validity of the d
veloped quasiclassical description of the large spins from
theoretical point of view. Now questions arise: What is
possible experimental realization? What are the limitatio
of the theory when applied to the real systems? We w
discuss these questions in the next section.

VIII. EXPERIMENTAL REALIZATION

A. Feasible experimental systems

The experimental observation of the predicted effects
be done on any system with large values of the angular
mentum such as rare-earth-metal ions, magnetic cluster
nuclei. The main question is whether the value ofJ is large
enough for a given configuration of the external field.

For a configuration with small number of minima~two-
fold and fourfold configuration!, J'8 satisfies the quasi
classical requirement. Such values ofJ are available, e.g., in
rare-earth-metal ions: Dy31, Ho31, or Er31. An example of
compounds with the tetragonal symmetry, where the fourf
configuration is realized, is RENi2B2C, RE stands for a rare
earth magnetic element. To suppress the influence of the

FIG. 16. ~a! Graph of ln(R)/J, whereR is the rescaling factor
applied to the ground multiplet;~b! rescaled ground-state multiple
of Hamiltonian~29! ~the legend shows the degeneracies of the l
els!; J524.

FIG. 17. Comparison of the quasiclassical and numerical tun
ing amplitude exponent,u5tan(f).
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teraction between the magnetic moments the magnetic
should be diluted with similar but nonmagnetic ones such
La31, Lu31, or Y31. The CEF effects for this family of
compounds were studied in single crystals
Lu12xHoxNi2B2C by Cho et al. @21#. The calculated CEF
level scheme given there shows that the ground-state qua
plet is well separated from other excited states and co
sponds to the multiplet ofC(D4,2) configuration withJ50
~mod 2! andw'2 K.

Another family of rare-earth compounds, RESb, offers
cubic environment. However, it is questionable whether
quasiclassical requirement is satisfied since even for
highest values of the angular moment (J58 for Ho31) the
multiplicity 2J11517 is not so large comparatively to th
lowest dimension of the cubic configurationsN56. The nu-
merical calculations performed in the preceding section in
cate that only forJ>12 are there regions of parameterf
where the sixfold and eightfold configurations are well d
fined. To obtain the 12-fold configuration, in the framewo
of Hamiltonian ~29!, the value ofJ should be increased to
about 24.

Magnetic clusters and molecules offer systems with v
large total spins and a variety of symmetries. Theoreti
calculations@22# indicate that clusters of 13 atoms of trans
tion metals such as Fe, Pd, and Rh may have cubic symm
and total magnetic moment of the order ofmB per atom.
Gadolinium clusters Gdn (n511–92) @23# exhibit large
magnetic moments of (0.5–3.0)mB per atom~which is below
the bulk value of 7.55mB but still offers a large value of the
total cluster spin! with behaviors ranging from tight locking
to the lattice by crystal anisotropy to superparamagnet
~almost free moment!.

Large spins were also observed in artificially grown ma
netic dots used for observation of the magnetic tunnel
@24#. So far, these systems belonged to the lowest symm
class. It is rather tempting to create environment of hig
symmetry and to use smaller magnetic dots like the o
used by Schuller and co-workers@25# to observe the effects
predicted by our theory.

B. Practicable experiments. Magnetic measurements

The experimental consequences of the difference am
the configurations and the spin values can be observed
many experiments. To name a few these are measurem
of the spin magnetic moment and magnetic susceptibil
relaxation of the magnetization, electron paramagnetic re
nance~EPR!, and nuclear magnetic resonance~NMR!.

First we discuss measurements of the magnetic susc
bility. The magnetic susceptibility follows the Curie law fo
temperatures higher than the characteristic splitting of
ground-state multipletTkB.w ~see Appendix C!. Thus, it is
(gmBJ)2/(kBT) for one-dimensional configurations, i.e
C(DN ,N), N52, 4, 6, (gmBJ)2/(2kBT) for two-
dimensional ones, i.e., C(DN,2), N54, 6, and
(gmBJ)2/(3kBT) for the three-dimensional ones, i.e., for th
rest of the configurations considered in this work. For te
peratures lower than the characteristic splittingTkB,w, the
Curie dependence is no longer universal. The nonmagn
classes, that is, those without magnetic moment in
ground state, have their magnetic susceptibility saturate

-

l-
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csome constant atT˜0, whereas the magnetic ones~with a
nonzero magnetization in the ground state! still obey the
Curie-like behavior. Both the saturation values and
slopes of the Curie-like curves depend upon the configu
tion of the symmetry group as well as upon the equivale
class of the spin. For example, the twofold configuratio
C(DN ,N) are nonmagnetic forJ>N/2, N52,4,6; the satura-
tion values of the magnetic susceptibility arex(T)
5(gmBJ)2/uE(0)u, whereE(0) are the corresponding eigen
values for zero magnetic field@see Eqs.~22!#. The magnetic
classes of these configurations, i.e., the ones withJ>N/2,
have the same Curie-like dependence:x(T)
5(gmBJ)2/(kBT).

In the case of theC(DN,2) configurations,N54,6, the
integer spin classes are non-magnetic and the half-int
ones are magnetic. The low-temperature magnetic susc
bilities of these configurations can be found in the last c
umn of Tables VI, VII for theC(D4,2) andC(D6,2) configu-
rations, respectively. A detailed temperature dependenc
the magnetic susceptibility is shown in Fig. 18 for th
C(D4,2) configuration.

The division into the classes of equivalence is more su
for the high-order symmetry groups. Tables VIII, IX, XI, an
XIII collect the low-temperature susceptibilities for th
C(O,4), C(O,3), C(Y,5), andC(Y,3) configurations, respec
tively. Figures 19 and 20 show the details of the transit
from the Curie high-temperature regime to the lo
temperature one for theC(O,4) andC(O,3) configurations,
respectively.

For magnetic measurements it is important that the sys
is in thermal equilibrium and the range of temperatureTkB

FIG. 18. Magnetic susceptibility vs inverse temperatu
C(D4,2) configuration. The dotted line is the high-temperatu
asymptote.

FIG. 19. Magnetic susceptibility vs inverse temperature.C(O,4)
configuration.
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,w is accessible. This requirement means thatw;«0e2cJ is
not too small. On the other hand,J must be not less than
;N/2 to guarantee the validity of quasiclassical approxim
tion. At a fixed lower limit for experimentally accessibl
temperatureTl inequalityN,J, ln@«0 /(kBT)#/c must be sat-
isfied. For rare-earth ions«0 is the atomic scale of energ
and N56,8. It gives Tl,«0e24;100 K, which is easily
satisfied. For La12xHoxNi2B2C the numerically estimatedw
is about 2 K @21#; preliminary experimental results b
Naugle and co-workers givew'1 K @26#.

Gd31 ion has zero orbital momentum, its anisotropy
caused by the relativistic spin-other-orbit interaction, and
corresponding«0 is about 1024 time less than the atomic
scale («0;1 –10 K). The total spin of the Gd31 ion S
57/2 is not too large, but may be enough in the case of
tetragonal symmetry. The estimated valueTl is between 0.1
and 1 K.

The anisotropy of a ferromagnetic cluster is induc
mainly by its boundaries. The anisotropy energy has
same magnitude;1 –10 K per a site near the boundary. F
the cluster as a whole this value must be multiplied by
number of atoms on one of the faces of the cluster (F) which
depends on the cluster geometry. An estimate can be atta
for the series of magic atom-number clusters@22#: MN , N
513,55,147, . . . . These clusters are obtained by surroun
ing a core atom progressively with additional shells of
oms: Sk510k212, k51,2,3, . . . . This procedure can be
done for icosahedral, decahedral, and cuboctahedral p
ings, which have 20, 15, and 12 faces, respectively. FoN
555 we find F'42/16 and«0'3226 K. On the other
hand,J}zN. In the Gd clusterz;0.5 and forN555 we find
J;27. It is sufficiently large. The value ofw;«0e2cJ with
c'0.3 is between 0.001 and 0.01 K. ForN513, w ranges
between 0.1 and 1 K.

C. Spectral analysis

The most straightforward experimental approach is
spectral analysis. The main difficulty with this method is th
the scale of the splitting is very different for different sy
tems and values ofJ. Nevertheless, we can expect that t
spectral frequencies are either in the submillimeter or in
uhf range. Apart from the direct attenuation measurement
is possible to apply EPR technique. It measures the split
in magnetic field, i.e., magnetic moment in some state. T
advantage of this method is that it does not require too

. FIG. 20. Magnetic susceptibility vs inverse temperature.C(O,3)
configuration.
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temperatures. Certainly, its sensitivity drops with the grow
of temperature, but not too fast.

D. Oscillations of magnetization

Let us consider many identical large spins placed in
external magnetic field along one of the easy directions (k),
sufficiently large to polarize them almost to saturation. If t
field is switched off abruptly, each spin remains in the sa
stateuk&. Since uk& is not a stationary state, it will vary in
time according to the Schro¨dinger picture:

uk,t&5(
j a

u j a&^ j auk&e2 iE j t/\. ~30!

Here j labels sublevels of oneN-plet anda labels states of
the j th sublevel. It leads to oscillation of the magnetic m
ment along thek direction in time:

M ~ t !5gmBJ(
k8

cosgkk8 (
j a, j 8a8

^ j auk&

3^ j 8a8uk&* ^ j auk8&* ^ j 8a8uk8&e2 iv j j 8t, ~31!

wheregkk8 is the angle between the directions of classi
angular momentum in the extremak and k8, andv j j 85(Ej
2Ej 8)/\ is the transition frequency. All spins had the sam
initial state uk& at the moment when the field was switch
off, therefore, their magnetic moment will rotate coherent
creating the macroscopic rotating magnetization. Obviou
the rotation energy will dissipate. Let us estimate the atte
ation timet. We assume that the spins are embedded in
insulator. Then only phonons lead to dissipation. The sp
phonon interaction energy can be written as follows:

Hs2ph5luabJaJb , ~32!

whereuab is the deformation tensor. The value of the co
pling constant can be estimated asl;D/J2, whereD is the
energy difference of two oscillatory levels localized near o
minimum of the potentialf (J). A routine calculation leads to
an estimate of the oscillation lifetimet:

t;
\rs5

D2v3
, ~33!

wherer is the mass density of the matrix ands is the sound
velocity. For typical valuesr510 g cm23, D510 K, v
5w/\51010 s21, and s5105 cm s21, we find t
;1021 s. The magnetic field must be switched off for
shorter time interval. It seems feasible. For Gd we estima
both D and w by a factor of 10 smaller than the values w
used for the above estimate. It gives the attenuation timet in
the range of a few hours.

In our estimate we assumed that the temperatureT is less
than or of the order ofw. If it is much larger, the value oft,
Eq. ~33!, must be multiplied by a small factor\v/(kBT). At
a temperature 1 K with\v;0.01 it changest from a few
hours to a minute, but still leaves this time long. Thus,
requirement for temperature is not too restrictive.

Nevertheless, the observation of the macroscopic osc
tions of magnetization may be obstructed because of in
h
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mogeneous line broadening caused by the dipolar interac
@27#. Indeed, the random shift of the frequency due to
dipolar interaction is of the order

dv;
g2mB

2J2

\R3
5

g2mB
2J2nx

\
, ~34!

where R is the average distance between large spins,x is
their concentration per site,n is the density of the matrix
sites. Forg52, J53.5, and n51022 cm23 we find dv
'1.831010x s21. For x50.001 it is three orders of magni
tude less thanv;1010 s21, but it destroys the coherence fo
the time interval 2p(dv)21;1027 s. What can be ob-
served after this interval of time is the noise in a rather n
row spectral rangedv given by Eq.~34! near the frequency
v. The noise attenuates during the intervalt @Eq. ~33!# after
the pulse of magnetic field. Repeating the pulse of magn
field periodically with the periodt,t, one can maintain a
permanent average level of the noise. Also, one can use
narrow-line noise to generate coherent oscillations in a re
nator.

E. Rotation-vibrational spectra of molecules

Harter and Patterson applied their theory@2# to experi-
mentally observed~laser absorption spectra! splitting of ro-
tational levels in a molecule (SF6) with the cubic symmetry
@28#. In the leading approximation this molecule can be co
sidered as a spherical top. Due to weak rotation-vibrat
interaction the first cubic invariantJx

41Jy
41Jz

4 occurs in the
perturbed Hamiltonian. The splitting of the 2J11 rotational
states into several clusters has been found in spectrosc
experiments@28# for J517, 18, and 19. The outer cluste
can be treated as 6- and 8-plets. Unfortunately the tiny t
neling splitting of these clusters is too small to be resolv
spectroscopically.

IX. CONCLUSION

We have shown that large spins~total orbital momenta! J
placed into external fields of high symmetry groupG display
unusual behavior of low-lying and high-lying parts of spec
and magnetic susceptibility. These parts of spectra are re
sented by multiplets containingN(G,p) states each, where
N(G,p) is the doubled number ofp-fold axes. Each multip-
let is split into sublevels with multiplicities chosen from d
mensionalities of the irreducible representations of the po
group G and determined byG, J, andp. The distances be
tween sublevels in the multiplet are proportional
exp(2cJ), whereas the distances between multiplets are p
portional to 1/J. The multiplicities at a fixedG and p are
periodic functions ofJ with the periodp. The relative dis-
tances between levels are also periodic functions onJ, but
their period is equal to half of the number of the equivale
plaquettes formed by the tunneling trajectories and cove
the unit sphere. Interesting exclusions are the configurat
of the octahedron and icosahedron groups withp52. In
these cases the mutual arrangement of the levels is stoc
tic, though the multiplicities remain fully deterministic.

In all situations considered with the exception of the t
rahedral and hexagonal symmetry with in-plane easy dir
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tions, the change of large spinJ by 1 leads to a drastic
change in the spectrum and thermodynamic properties.
demonstrated that at such a change the magnetic suscep
ity can either change its behavior from Curie law to satu
tion or change the coefficient in Curie law.

Rather special phenomena appear near hypersurfac
the space of the Hamiltonians which separate regions w
different configurations of the extrema of the potential, i.
regions with differentN5N1 ,N2. Directly on these hyper-
surfaces the number of equivalent extrema is equal toN1

1N2. Thus, in a narrow vicinity of the hypersurface the
appears a new ‘‘class of universality,’’ new set of sublev
with new multiplicities. Moreover, we expect a kind of ‘‘tur
bulent’’ behavior of levels near these hypersurfaces.

Given the classical HamiltonianH(J), one can indicate a
valueJc(H), starting from which the multiplicities are cor
rectly determined by our theory. Though this value is mo
dependent, our numerical calculations show thatJc

'N(G,p).
All conclusions of the theory were checked numerica

for a model Hamiltonian of the cubic symmetry containi
two invariants~two free parameters! up toJ560. The agree-
ment for the relative distances between the levels is v
good starting fromJ'20. Multiplicities are well determined
by our theory starting fromJ'12 for the sixfold and eight-
fold configurations and fromJ'16 for the 12-fold configu-
ration.

We proposed three classes of experimental systems w
can display the predicted effects. One of them is represe
by alloys with participation of two lanthanides or actinide
R andR8, so thatR has zero orbital momentum and its co
centration is close to 1, whereas the elementR8 has largeJ
and its concentration is very small. In this way the config
ration of large spin in a symmetric environment is realize
Typical representatives are La12xHoxNi2B2C ~tetragonal en-
vironment! or Lu12xDyxSb ~cubic environment!.

The second class of systems is metallic or metallo-orga
clusters made from ferromagnetic metals. For such clus
symmetry can be not only octahedral, but also icosahedra
it is for the cluster Fe13. The clusters may have larger tot
spin than lanthanide and actinide atoms. In both cases
propose to measure the spectrum of low-lying states~EPR or
NMR measurements! and also to measure magnetization a
magnetic susceptibility at low temperatures~about 1–2 K!.
Though experimental difficulties may arise on the way
realization of these experiments, we believe that the expe
physical phenomena are worthwhile to study.

The third class is magnetic dots used in experiments
magnetic tunneling@24,25#.

Experimenters should choose optimal values ofJ to en-
sure the validity of the quasiclassical approach: reliable se
ration of theN-fold multiplets and simultaneously not to
small values of the tunneling exponent exp(2cJ) with c
<0.55 for the cubic symmetry andc<0.29 for the icosahe-
dral symmetry.

An interesting experimental and maybe technical appli
tion of our system is the excitation of magnetic oscillatio
in a narrow spectral region by pulses of external magn
field. The frequency of these oscillations ranges from 107 to
1011 Hz.
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APPENDIX A: CHARACTERS
OF THE MAIN REPRESENTATION

The character of the identity transformationE is trivial,
x(E)5dim(W)5N. For a half integerJ, one has to find
projective representations of the corresponding group w
the factor set of$61% or, equivalently, linear representation
of the group extended by a group$E,Q[exp(i2pJ)E% ~the
so-called two-valued representations!, whereQ is a rotation
through an angle of 2p ~here we adopt the notations of Re
@5#!. Obviouslyx(Q)5cos(2pJ)dim(W)5cos(2pJ)N. Other
elements having nonzero characters are the rotations
respect to the axes passing through the directions belon
to the setC(G,p). Actually, it is sufficient to consider only
one element from each class of conjugate elements. To
culate the corresponding characters we employ the follow
trick.

Let us consider an element ofP which, in our basis, cor-
responds to a rotationCp

q with respect to ap-fold axis. A set
of rotations with respect to this axis forms a cyclic subgro
of P, andq is a power of the generator of the subgroupCp
~minimal nontrivial rotation!; q may take any integer value
For a given configurationC(G,p) a nonzero character ma
occur only if Cp

q leaves at least two of the extremai and ı̄
unmoved. It means that either the rotation axis pas
through i and ı̄ , and qÞpn or the rotation is trivial:q
5pn, n is an integer. Let us choose a tunneling path co
necting i and ı̄ , and passing through intermediate neare
neighbor extremai˜ i 1˜•••˜ i n˜ ı̄ ~see Fig. 21!. Note
that some of the minima may coincide, that is,i j5 i k for
some pairsj Þk. The rotationCp

q transfers each extremum

i j ( j 51,2, . . . ,n) into i j8 leaving i and ı̄ unchanged. The
two paths form a closed loop on the sphere which subte
the solid angle of 4pq/p. This fact leads to a relation for th
oriented sum of the phases along the circuit:

FIG. 21. Transformation of a tunneling pathi˜ i 1˜•••˜ i n

˜ ı̄ onto i˜ i 18˜•••˜ i n8˜ ı̄ . A solid angle of the filled area is
4pq/p.
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(
j 51

n21

~f i j ,i j 11
2f i

j8 ,i
j 118 !1f i ,i 1

2f i ,i
18
1f i n , ı̄2f i

n8
, ı̄

5J
4pq

p
. ~A1!

The same rotationCp
q transforms the phases in the follow

ing way: f i j ,i j 11
°f i

j8 ,i
j 118 , j 51,2, . . . ,n21, f i ,i 1

°f i ,i
18
,

f i n , ı̄ °f i
n8 , ı̄ . To keep the phases unchanged~modulo 2p!

and the Hamiltonian invariant one should apply a gau
transformation U5diag$exp(ia1), . . . ,exp(aN)%, then the
mappings turn into equations:

f i j ,i j 11
5f i

j8 ,i
j 118 1a i j

2a i j 11
,

f i ,i 1
5f i ,i

18
1a i2a i 1

, ~A2!

f i n , ı̄5f i
n8 , ı̄1a i n

2a ı̄ .

Substituting these equations into Eq.~A1! gives

a i2a ı̄5J
4pq

p
,

which leads to

a i 0
5J

2pq

p
1d,a ı̄ 0

52J
2pq

p
1d. ~A3!

Multiplying U with exp(2id) removes the common factord
in Eq. ~A3!. Thus, the transformationW5exp(2id)UCp

q of
the configuration space has only two diagonal eleme
$W% i i 5$W% ı̄ ı̄

* 5exp(i2pJq/p). The character of the elemen
W is 2 cos(J2pq/p). All other characters are zeros since t
corresponding rotations do not leave any stateuk& of the
configuration invariant. The characters of the representa
do not depend upon the gauge: Tr(W8)5Tr(UWU †)
5Tr(W). Thus, one can study the reduction of the repres
tation W in any specific gauge without loss of generality.

APPENDIX B: AN EXAMPLE OF A HAMILTONIAN
FOR THE C„O,4… CONFIGURATION

AND CALCULATION OF ITS SPECTRA

In this appendix we consider a detailed construction of
reduced Hamiltonian for theC(O,4) configuration. First we
define the connectivity matrix of the system determini
which minima ought to be connected by tunneling pat
This is usually done by connecting the nearest-neigh
minima. In some cases, however, the geometric closenes
the sphere is not a good criterion for connecting minima
‘‘surefire’’ criterion is the path integral approach which d
termines the amplitude of a spin transition from one loc
ized state to another by summation of the contributions of
trajectories connecting the minima. This technique gives
exact solution of the problem, but it is very complicated. W
could use instead a semiclassical method of finding traje
ries with minimal imaginary classical action, but the action
not known itself. However, the symmetry of the system is
great help and is used throughout the paper to asses
e
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connectivity structure. An example in which the geomet
cally next-nearest neighbors must be incorporated into
connectivity matrix together with the nearest neighbors
discussed in Sec. V B.

The connectivity matrix of theC(O,4) configuration is
quite simple since only the geometric nearest neighb
should be connected. For the minima enumeration given
Fig. 1 the connectivity matrix is

U 0̂ 1̂ 1̂

1̂ 0̂ 1̂

1̂ 1̂ 0̂
U , 0̂5U0 0

0 0
U, 1̂5U1 1

1 1
U. ~B1!

This is, actually, the Hamiltonian forJ50 ~mod 4!, with-
out a multiplier ofw, since the phase structure is absent or
no importance for the respective cases. For all otherJ’s one
should find the 12 phases of the tunneling amplitudes. F
of the phases may be set to zero due to the gauge free
with the only constraint that Eq.~12! must be satisfied. In ou
sample case, we null the following ones:f1,3,f1,4,
f1,5,f1,6,f2,5. The rest of the phases are obtained from
seven independent plaquettes@each plaquette gives an equ
tion of the type of the Eq.~12!#; these aref2,352pJ,f2,4
5pJ,f2,652pJ,f3,55pJ/2,f3,6 52pJ/2,f4,5 5 2pJ/2,
f4,65pJ/2. Thus, the defined Hamiltonian is

H 4
O5U0 0 1 1 1 1

0 0 e2 ipJ eipJ 1 ei2pJ

1 eipJ 0 0 eipJ/2 e2 ipJ/2

1 e2 ipJ 0 0 e2 ipJ/2 eipJ/2

1 1 e2 ipJ/2 eipJ/2 0 0

1 e2 i2pJ eipJ/2 e2 ipJ/2 0 0

U .

~B2!

Finally, one needs to find the eigenvalues of the Ham
tonian. The diagonalization can be performed by any sy
bolic solving system or even ‘‘manually’’ since the Hami
tonian can be factorized. Also, a trick of a purely geomet
origin can be used: if one views HamiltonianH @w51 and
u(H) i j u51 if (H) i j Þ0# as a weighted connectivity matrix o
a graph, then

(
i

giEi
n5TrH n52(

j
(
kj

cos~Vkj
![I n , ~B3!

wheren50,1,2, . . . ,Ei is thei th distinct eigenvalue ofH of
multiplicity gi , the first sum on the right-hand side is ov
the vertices of the graph, the second is over all closed lo
of n walks running through vertexj, and Vkj

is the flux

passing through thekj th loop. If (H) i i Þ0,i 51, . . . ,N, some
extra weights need to be applied for each loop. An advant
of formula ~B3! is that I n are gauge invariant since allVkj

are gauge invariant. Applied to Hamiltonian~B2! for n,4,
the formula yields

(
i

gi56,(
i

giEi50,
~B4!
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(
i

giEi
2524,(

i
giEi

3548 cos~pJ/2!.

Let us find the spectrum of Hamiltonian~B2! for J50.
We know from Sec. IV B 1 thatg151, g252, andg353.
Too, it is clear thatE154 @sum of the matrix elements in
each row or column of Hamiltonian~B2! is equal to 4 for
J50#. Two equations forE2 andE3 are

412E213E350, 1612E2
213E3

2524. ~B5!

Solving Eq. ~B5! and checking the roots against the la
equation of Eq.~B4! gives E2522 andE350. For J52,
the spectrum is inverted~see Sec. V!: E1524, E250, and
E352. For all otherJ’s the solution is trivial since there ar
only two distinct eigenvalues.

APPENDIX C:
LOW-TEMPERATURE MAGNETIC SUSCEPTIBILITY

For high temperatureskBT.w, the moments are purel
classical and show Curie magnetic susceptibility:

xC5~mBgJ!2/~dkBT!, ~C1!

whered is the dimensionality of the system,mB is the Bohr
magneton,kB is the Boltzmann constant, andg is the gyro-
magnetic ratio. For low temperatureskBT,w, the quantum
effects change the response drastically. The susceptib
saturates for the classes without magnetic moment in
ground state to the value

xs5
1

g0
(
i 51

g0

x i , ~C2!

whereg0 is the degeneracy of the ground state andx i is the
susceptibility of thei th member of the ground-state multip
let. For the classes with the magnetic moment in the gro
state Curie susceptibility persists atkBT,w, but its slope is
different:

x l5
1

g0
(
i 51

g0

mi
2/~kBT!, ~C3!

wheremi is the moment of thei th member of the ground
state multiplet.

APPENDIX D: ON THE INTERSECTION
OF THE MULTIPLETS OF C„O,4… AND C„O,3…

In the close vicinity of a minimum ofC(O,4) andC(O,3)
configurations, Hamiltonian~6! has the following form:
t

ity
e

d

H 2
O452a2b1~2a13b!~x21y2!, ~D1!

H 2
O352

1

3
a2

11

9
b1

4

3
~4b2a!~x21y2!, ~D2!

wherex andy are local Cartesian coordinates. Treating the
terms as the effective potential energy of the quantu
mechanical problem, one can identify it with that for a tw
dimensional isotropic harmonic oscillator†the kinetic energy
is due to the Wess-Zumino term@29# or Berry phase, its
exact form is of no importance here; it suffices to know th
this term is identical for both Eqs.~D1! and ~D2!, thus pro-
viding identical effective massesM ‡. The potential energies
of the two harmonic oscillator problems are equal on a l
b53a. The squares of the effective frequencies are 22a/M
and 88a/(3M ) (a.0), respectively, for C(O,4) and
C(O,3), on this line. Hence, the energy of the ground as w
as the spacing between successive levels is larger for
C(O,3) configuration on this line. These arguments qual
tively explain the deviation of the lineb53a from the point
of the level crossing towards the sixfold coordination regio

The boundary of the transition from one configuration
another~a line in our two-dimensionala2b space! marks a
singularity in the ‘‘flow’’ of the level multiplicities across
the parameter space. The levels of two different coordi
tions must match exactly at this surface. We find the spe
of this intermediate configuration in the case ofN5N(O,4)
1N(O,3)514.

The surface of the sphere is covered with 12 congru
even-sided plaquettes. Hence, the period of spectra isJ56
and all spectra are symmetric~see Sec. V!. The spectra of the
14-fold configuration are collected in Table XVI for the no
equivalentJ’s.

TABLE XVI. Spectra of a ‘‘hybrid’’ C(O,4)1C(O,3) configu-
ration.

J Eigenvalues~degeneracies!

0 62A3w(1,1), 62w(3,3), 0(6)
1 6(11A3)w(3,3), 6(12A3)w(3,3), 0(2)
2 6A6w(2,2), 62w(3,3), 0(4)
3 62w(6,6), 0(2)
1/2 6wA612A3(2,2), 6wA32A3(4,4), 0(2)
3/2 6wA6(4,4), 0(6)
5/2 6wA622A3(2,2), 6wA31A3(4,4), 0(2)
se
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