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ABSTRACT 
 
 
 

Chemical and Biological Methods for the Analysis and Remediation of 

Environmental Contaminants Frequently Identified at Superfund Sites.  (August 2004) 

Melinda Christine Wiles, B.A., College of Wooster 

Co-Chairs of Advisory Committee:   Dr. Timothy Phillips  
Dr. Robert Burghardt 

 
 
 

Substantial environmental contamination has occurred from coal tar creosote and 

pentachlorophenol (C5P) in wood preserving solutions.  The present studies focused on 

the characterization and remediation of these contaminants.  The first objective was to 

delineate a sequence of biological changes caused by chlorinated phenol (CP) exposure.  

In Clone 9 cells, short-term exposure to 10 µM C5P decreased pH, GJIC, and GSH, and 

increased ROS generation.  Long-term exposure caused mitochondrial membrane 

depolarization (25 µM), increased intracellular Ca2+ (50 µM), and plasma membrane 

depolarization (100 µM).  Cells were affected similarly by C5P or 2,3,4,5-C4P, and 

similarly by 2,3,5-C3P or 3,5-C2P.  Endpoints were affected by dose, time, and the 

number of chlorine substituents on specific congeners.  Thus, this information may be 

used to identify and quantify unknown CPs in a mixture to be remediated.  

Due to the toxic effects observed due to CP exposure in vitro, the objective of the 

second study was to develop multi-functional sorbents to remediate CPs and other 

components of wood preserving waste from groundwater.  Cetylpyridinium-exchanged 

low pH montmorillonite clay (CP-LPHM) was bonded to either sand (CP-LPHM/sand) 
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or granular activated carbon (CP-LPHM/GAC).  Laboratory studies utilizing aqueous 

solution derived from wood preserving waste indicated that 3:2 CP-LPHM/GAC and 

CP-LPHM/sand were the most effective formulations.  In situ elution of oil-water 

separator effluent indicated that both organoclay-containing composites have a high 

capacity for contaminants identified in wood preserving waste, in particular high 

molecular weight and carcinogenic PAHs.  Further, GAC did not add substantial 

sorptive capacity to the composite formulation.   

Following water remediation, the final aim of this work was to explore the safety 

of the parent clay minerals as potential enterosorbents for contaminants ingested in water 

and food.  Calcium montmorillonite and sodium montmorillonite clays were added to the 

balanced diet of Sprague-Dawley rats throughout pregnancy.  Based on evaluations of 

toxicity and neutron activation analysis of tissues, no significant differences were 

observed between animals receiving clay supplements and control animals, with the 

exception of slightly decreased brain Rb in animals ingesting clay.  Overall, the results 

suggest that neither clay mineral, at relatively high dietary concentrations, influences 

mineral uptake or utilization in the pregnant rat.   
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CHAPTER I 

INTRODUCTION  
 
 
 

In response to public concern over abandoned hazardous waste sites, the 

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 

also known as Superfund, was passed by Congress in 1980 (USDHHS, 1996; USEPA, 

2002; USHR, 2002).  CERCLA established regulations for closed and/or abandoned 

hazardous waste sites, provided for the assessment of liability for releases of hazardous 

waste at these sites, and established a trust fund to cover the costs of remediation if the 

responsible party is not identified.  The most serious of these hazardous waste sites make 

up the National Priorities List (NPL) of Superfund sites.  These sites are targeted by the 

Environmental Protection Agency (EPA) for long-term federal cleanup that is designed 

to permanently and significantly reduce the dangers associated with releases or threats of 

releases of hazardous substances that are serious, but not immediately life threatening.  

At many of these Superfund sites, groundwater quality has been adversely impacted to 

some degree.    

 

1.1 Wood preserving waste 

Coal tar creosote and C5P have both been used as wood preservative pesticides in 

the U.S. for 100 years due to their strong fungicidal and antibacterial activity (USDHHS, 

1996, 1999).  Coal tar creosote is primarily used as a wood preservative and water-
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proofing agent in log homes, railroad ties, telephone poles, marine pilings, and fence 

posts, and is a component of roofing pitch, fuel oil, lamp black, and pharmaceutical 

agents in the treatment of psoriasis.  C5P was once one of the most widely used biocides 

in the U.S., available for home and commercial use in herbicides, disinfectants, 

insecticides, algaecides, molluscicides, and as an ingredient in antifouling paint.  In the 

U.S., C5P is now considered a restricted-use pesticide and use is limited to the wood 

preservation industry, primarily for the treatment of utility poles.  Among other 

contaminants, creosote has been identified at approximately 46 of 1,613 NPL sites 

within the U.S. (USDHHS, 2002), and pentachlorophenol (C5P) at 313 of 1,585 sites 

(USDHHS, 2001).  However, it is unknown how many NPL sites have been evaluated 

for these substances. 

 

1.2 Coal tar creosote 

1.2.1 Sources and chemical composition 

 The term “creosote” is used to designate a variety of products that are mixtures 

of many chemicals.  Rarely formed in nature, creosotes are created through the high-

temperature treatment of beech and other woods (i.e., beechwood creosote), or coal (i.e., 

coal tar creosote), or from the resin of the creosote bush (i.e., creosote bush resin) 

(USDHHS, 1996).  Specifically, coal tar creosote designates a product created by the 

distillation of coal tar that consists of a variable mixture of chemicals, with some 

estimates reporting as many as 10,000 individual components (Pollard et al., 1992).  In 

general, the mixture is composed of approximately 85% polycyclic aromatic 
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hydrocarbons (PAHs), 10% phenolics, and 5% other N-, S-, and O-heterocyclics 

(Nestler, 1974; Mueller et al., 1989) and may range in color from yellowish-dark green 

to brown (USDHHS, 1996).   

 

1.2.2 Governmental regulations and health advisories  

Both the U.S. Environmental Protection Agency (EPA) and the International 

Agency of Research on Cancer (IARC) classify creosote as a probable human 

carcinogen (Class B1 and Group 2A, respectively), while coal tar is also classified as 

being carcinogenic to humans by IARC (Group 1) (IRIS, 2004).  Further, the National 

Toxicology Program classifies coal tar including coke oven emissions, coal tar, coal tar 

pitch, and creosotes, as known human carcinogens (NTP, 1998).  

 

1.3 Polycyclic aromatic hydrocarbons (PAHs) 

1.3.1 Sources and chemical composition 

Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds 

made up of two or more fused benzene rings.  In addition to being a major constituent of 

creosote, the compounds may be produced as a result of incomplete combustion of wood 

and fuel, or combustion from motor vehicles and gas-burning engines, wood-burning 

stoves and furnaces, cigarette smoke (Adams et al., 1987), industrial smoke or soot, and 

charcoal-broiled foods (Kazerouni et al., 2001).  Natural sources of PAHs include 

volcanoes, forest fires, crude oil, and shale oil (Lee et al., 1977; USDHHS, 1995).  These 

contaminants frequently occur in mixtures and PAHs with greater molecular masses 
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(>228) are most often found partly or fully sorbed to airborne particulate matter (Lesage 

et al., 1987). 

In general, PAHs are characterized by chemical stability, low to very low water 

solubility, and low to moderate volatility (USDHHS, 1995).  They are relatively resistant 

to degradation and the half lives vary from 1 week to 2 months for those found in aquatic 

environments, 2 months to 2 years for soil, and 8 months to 6 years in sediment.  The log 

n-octanol/water partition coefficients (log Kows) range from approximately 3.0 to 7.0 and 

increase with increasing molecular mass, indicating high hydrophobicity for the high 

molecular weight PAHs.  The 16 priority PAHs identified by the U.S. EPA include:  

naphthalene, acenaphthalene, acenaphthene, fluorene, phenanthrene, anthracene, 

fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, 

benzo[k]fluoranthene, benzo[a]pyrene (BaP), indeno[1,2,3-c,d]pyrene, 

dibenz[a,h]anthracene, and benzo[g,h,i]perylene (Figure 1).  

 

1.3.2 Exposure  

Exposure to PAHs occurs primarily through direct inhalation of polluted air and 

tobacco smoke, dietary intake of smoked and other foodstuffs and polluted water, and 

dermal contact with soot, tars, and polluted soils (IARC, 1983).  Coal tar is contained in 

products for the treatment of psoriasis and atopic dermatitis, however use of these 

products is generally limited to relatively short periods of time (Veenhuis et al., 2002).  

Occupational exposures occur in several industries, most notably those involving the 

production of aluminum, iron, and steel (Bjoresth and Becher, 1986).  In the steel  
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Naphthalene 
MW = 128 

Acenaphthalene
MW = 152 

Acenaphthene 
MW = 154 

Fluorene 
MW = 166 

Phenanthrene 
MW = 178 

Anthracene
MW = 178

Fluoranthene
MW = 202 

Pyrene 
MW = 202 

Benz[a]anthracene 
MW = 228 

Chrysene 
MW = 228 

Benzo[b]fluoranthene
MW = 252 

Benzo[k]fluoranthene
MW = 252 

Indeno[1,2,3-c,d]pyrene 
MW = 276 

Benzo[g,h,i]perylene
MW = 276 

Benzo[a]pyrene 
MW = 252 

Dibenz[a,h]anthracene 
MW = 278 

Figure 1.  Two-dimensional structure and molecular weight of 16 priority PAHs 
identified by the U.S. EPA. 



 
 

 

6

industry, coke-oven workers are heavily exposed to PAHs through both inhalation and 

skin contact (Grimmer et al., 1993; Boffetta et al., 1997; Pyy et al., 1997). 

Dietary exposure, estimated at 2 to 3 µg/day, is the most important non-

occupational source of PAHs in non-smokers (Hatterman-Frey and Travis, 1994; 

Mumtaz et al 1996; Vyskocil et al., 2000).  Due to its high carcinogenicity and common 

occurrence in PAH mixtures, BaP is often used as a surrogate marker for the 

carcinogenic potential of these mixtures (Sun et al., 1982; Naylor et al., 1990; Culp et 

al., 1998; Singh et al., 1998b; Shimizu et al., 2000; Kazerouni et al., 2001; Saunders et 

al., 2001).  High levels of BaP are found primarily in very-well-done grilled or 

barbecued steaks, hamburgers, and chicken with skin (4 µg/kg), while in a variety of 

other food products BaP levels ranging from 0.09 to 30 µg/kg have been reported 

(Kazerouni et al., 2001).  The maximum daily BaP intake from food has been estimated 

to be 1 µg with the values for pyrene and phenanthrene estimated to be 3 to 10 times 

higher (Jacob and Seidel, 2002).  Levels in drinking water range from 0.1 to 1 ng/L BaP, 

and correspond to a daily intake of 2 to 3 ng BaP and 10 to 20 times that amount for 

pyrene.   

Concentrations in the atmosphere vary across geographical areas but range from 

0.01 to 100 ng/m3 BaP (Vyskocil et al., 1997) and daily inhalation from ambient air has 

been estimated to be approximately 15 ng BaP, 200 ng pyrene, and 100 ng phenanthrene 

(Jacob and Seidel, 2002).  In particular, BaP levels in mainstream smoke range from 10 

to 50 ng/cigarette, although the concentration in side-stream smoke is approximately 4 

times higher than that in main stream smoke (IARC, 1986).   
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1.3.3 Absorption and metabolism  

Inhaled PAHs are absorbed mainly through the bronchial epithelium.  Inhalation 

of 500 µg/L 3H-BaP for 1 h showed high concentrations of radioactivity in the nasal 

turbinates, trachea, larynx, lungs, tracheobronchial lymph nodes, kidneys, and liver, 

while lower concentrations were detected in the brain, testes, and spleen of exposed rats 

(Mitchell, 1982).  Individuals using coal tar-containing products for the treatment of 

dermatological conditions showed dose-dependent excretion of PAH metabolites in 

urine related to the amount of coal tar applied to the skin and the amount of total skin 

coverage, and indicated skin absorption was not dependent upon the condition of the 

epidermal barrier (Veenhuis et al., 2002).  Oral absorption in the lobster was assessed 

with 3H-BaP and showed the highest levels of radioactivity in the hepatopancreas and 

the muscle, although radioactivity was also detected in the intestine, antennal glands and 

gonads (James et al., 1995).   

PAHs must be activated by metabolic enzymes to produce chemically reactive 

epoxy- and hydroxy-derivatives in order to exert toxicity.  In general, the compounds are 

metabolized by phase I metabolizing enzymes (i.e., cytochromes P450) to form arene 

oxides and phenols (Hecht, 1999; Simpson et al., 2000).  PAH-inducible cytochromes 

P450 include CYP1A1 (Nebert, 1989), CYP1A2 (Landi et al., 1999), CYP1B1 (Spink et 

al., 2002), CYP2A (Kimura et al., 1989), CYP2C (Fisslthaler et al., 1999), and CYP2S1 

(Rivera et al., 2002).  The arene oxides may rearrange spontaneously to form phenols or 

undergo hydration catalyzed by epoxide hydrolase to form dihydrodiols that may then be 

further conjugated by phase II metabolizing enzymes in preparation for excretion 
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(Shimada and Fujii-Kuriyama, 2004).  PAH metabolites are predominantly conjugated 

with glucuronic acid or glutathione by phase II enzymes and excreted as hydroxylated or 

sulfated metabolites (Jongeneelen, 1997).  However, a small proportion is excreted as 

sulfated products or even unconjugated. 

The importance of metabolic activation in BaP carcinogenesis was illustrated 

with a study showing that both dermal and subcutaneous injection of BaP induced skin 

tumors in AhR (+/+) mice, but not in AhR (-/-) mice (Shimizu et al., 2000).  BaP is 

metabolically activated by cytochromes P450 to form (±)-BaP-7,8-oxides (Shimada and 

Fujii-Kuriyama, 2004).  Microsomal epoxide hydrolase catalyzes the conversion to (±)-

BaP-7,8-dihydrodiols which then undergo additional oxidation catalyzed by 

cytochromes P450 and other enzymes to produce (±)-BaP-7,8-dihydrodiol-9,10-oxides.  

Of the four enantiomers possible in these reactions, (+)-anti-BaP-7,8-dihydrodiol-9,10-

oxide (BPDE) is formed to the greatest extent and shows the highest carcinogenic 

activity. 

 

1.3.4 Biological monitoring  

The most commonly used biomarkers of PAH exposure are urinary metabolites 

of PAHs and PAH-DNA adducts.  Urinary thioethers may also be used as biomarkers, 

but this method lacks sensitivity and is not suitable for routine monitoring of levels 

presently identified in occupational exposure settings (Reuterwall et al., 1991; Ferreira et 

al., 1994).   
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Although the composition of PAH mixtures varies, the partial pyrene content is 

fairly constant, and is therefore considered an indicator of the total PAH contaminant 

load (Butler and Crossley, 1987; Jongeneelen, 1994).  In humans, the principal product 

of pyrene metabolism is 1-hydroxypyrene (1-OHP), which represents approximately 

90% of pyrene metabolites (Jongeneelen et al., 1985, 1987; Levin et al., 1995; Wu et al., 

1998).  1-OHP is further conjugated to a glucuronide and eliminated in the urine where it 

has been used to monitor low level exposure to environmental PAHs, despite being a 

metabolite of only one particular PAH (van Rooij et al., 1994; Gundel et al., 1996).  The 

elimination half-life of 1-OHP in human urine has been estimated at 4 to 35 h 

(Jongeneelen et al., 1990; Buchet et al., 1992; Buckley and Lioy, 1992; van Schooten et 

al., 1995; Viau et al., 1995; Brzeźnicki et al., 1997), and was not affected by the 

presence of naphthalene or BaP in binary and ternary mixtures at customary exposure 

levels (Bouchard et al., 1998).   

In one study in the Netherlands, 1-OHP in the urine of non-occupationally 

exposed males was found to be approximately 0.29 µmol/mol creatinine for non-smokers 

and 0.79 µmol/mol creatinine for smokers (van Rooij et al., 1994).  While female 

residents of an industrial area of Germany showed levels of 0.24 µmol/mol creatinine in 

non-smokers and 0.76 µmol/mol creatinine in smokers (Gundel et al., 1996).  This is the 

lowest reported 95th percentile levels for non-occupationally exposed individuals.   

PAHs are excreted mainly through the feces, with only about 10% eliminated in 

the urine (Withey et al., 1991, 1992, 1993).  In one study, only about 5% of an oral or 

dermal pyrene exposure dose was excreted as 1-OHP in the urine of human volunteers 
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(Viau et al., 1995), and in smokers about 1 to 4% of pyrene inhaled in cigarette smoke 

was excreted in the same manner (Kang et al., 1995).  Despite this small percentage, 

studies have reported a good correlation, with a linear relationship over a large range of 

doses, between PAHs and urinary 1-OHP in a variety of exposure routes (Ovrebo et al., 

1994; Zhao et al., 1995b; Kuljukka et al., 1997; Viau et al., 1999).   

A small proportion of PAHs may react with nucleophilic sites in DNA to produce 

PAH-DNA adducts or with protein to produce PAH-protein adducts.  Studies examining 

PAH exposure through smoking or in occupational settings have shown that at high BaP 

levels there is good correlation between urinary 1-OHP and DNA adducts (Dor et al., 

1999).  BaP is often used as a surrogate marker for the carcinogenic potential of PAH 

mixtures (Gomes and Santella, 1990; Culp et al., 1998) because it has been shown to be 

the major carcinogen in coal tar (Cook et al., 1933).  Oxidative DNA damage is 

produced when the major metabolite, BPDE, reacts with DNA at the N2-position of 

deoxyguanosine (BPDE-N2-dG) (Weinstein et al., 1976).  In addition, individual PAHs 

have been shown to interact in a synergistic manner (enhancement or inhibition) 

(Hermann, 1981; Munoz and Tarazona, 1993).  For example, co-application of either 

fluoranthene or pyrene with 3H-BaP to the skin of mice increased 3H-BaP-DNA adducts 

as compared to application of 3H-BaP alone.  In contrast, co-application with 

phenanthrene decreased 3H-BaP-DNA adduct formation (Rice et al., 1984).  In addition 

to DNA adducts, BaP forms adducts with albumin (Day et al., 1992) and hemoglobin 

(Naylor et al., 1990), but there is substantial analytical and biological variation and, in 
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many cases, a clear relationship between adduct formation and PAH exposure is absent 

(dell’Omo et al., 1993).   

 

1.3.5 Signs and symptoms of exposure  

 C57BL/6 (Ah+/+) mice exposed to 100 mg/kg of benz[a]anthracene, chrysene, 

benzo[b]fluoranthene, benzo[k]fluoranthene, BaP, indeno[1,2,3-c,d]pyrene, or 

dibenz[a,h]anthracene alone showed greater than 50% immunosuppression within 12 h 

of dosing (Silkworth et al., 1995).  In another study, female B6C3F1 mice exposed for 

14 days to benz[a]anthracene, BaP, or dibenz[a,h]anthracene showed significant 

immunosuppression, whereas exposure to anthracene or chrysene did not produce these 

effects (White et al., 1985).  However, much of the research is focused specifically on 

BaP.  

Both the acute and subchronic toxicities of BaP are relatively low, although in 

vitro treatment has been shown to induce cytotoxicity in a variety of cell types including 

vascular smooth muscle cells (Ou and Ramos, 1992) renal mesangial cells, (Bowes and 

Ramos, 1994) hepatocytes (Zhao and Ramos, 1995), SY5Y (Tang et al., 2003).  When 

administered as a single gavage dose to F-344 rats, the chemical showed dose-, sex-, and 

time-dependent effects (Saunders et al., 2001).  Within 2 and 4 h after dosing changes 

were observed in neuromuscular, autonomic, sensorimotor and physiological functions 

and motor activity was suppressed with doses above 12.5 mg/kg.  Males showed greater 

sensitivity to the compound than females, although all treated animals recovered within 

72 h.  Acute exposures up to 1000 mg/kg BaP resulted in suppression of white blood 
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cells and subchronic exposure (90 days) resulted in additional decreases to red blood 

cells and hematocrit hemoglobin, and caused elevation of blood urea nitrogen and 

creatinine, indicating immunosuppression (Knuckles et al., 2001).   

 

1.3.6 Phototoxicity  

There is evidence that individual PAHs, as well as mixtures, are phototoxic 

toward microorganisms, plants, cells, and animals, and toxicity can increase up to 100 

times with light exposure (Morton et al., 1942; Pelletier et al., 1997).  Photooxidation of 

PAHs leads to production of the respective quinone moieties, ring opening products, or 

hydroxyl-substituted products (Yu, 2002).  Photomutagenicity tested with Salmonella 

typhimurium TA102 and light without metabolic activation indicated that of the 16 

priority PAHs anthracene, benz[a]anthracene, benzo[g,h,i]perylene, benzo[a]pyrene, 

indeno[1,2,3-c,d]pyrene, and pyrene were strongly photomutagenic, while acenaphthene, 

acenaphthalene, benzo[k]fluoranthene, chrysene, and fluorene were weakly 

photomutagenic (Yan et al., 2004).  In particular, mammalian cells exposed to BaP and 

fluorescent light showed 3 to 10 fold increases in 8-oxydeosyguanosine (8-OHdG) 

adducts than were induced with BaP alone (Mauthe et al., 1995).   

 

1.3.7 Mutagenicity  

Vapor escaping from creosote and coal tar tested positive in the taped-plate 

assay, a modification of the Ames assay designed for detection of volatile mutagens, in 

Salmonella typhimurium strains TA98 and TA100 in the presence of S9 mix (Bos et al., 
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1985).  In addition, some of the individual PAH components, fluoranthene, 

phenanthrene, and pyrene have tested positive for mutations with the same assay (Bos et 

al., 1987, 1988).  Fluoranthene, pyrene, and BaP were shown to be highly mutagenic in 

reverse mutation assays in Salmonella typhimurium strains TA97 in the presence of 

metabolic activation (Sakai et al., 1985; Bos et al., 1988), while dibenz[a,h]anthracene, 

chrysene, indeno[g,h,i]perylene benzo[k]fluoranthene, and benzo[b]fluoranthene have 

tested positive for reverse mutations in strains TA100 and TA98 (McCann et al., 1975; 

LaVoie et al., 1979, 1980).  Dibenz[a,h]anthracene has also induced forward mutations 

in Chinese hamster embryo cells (Krahn and Heidelberger, 1977) and Syrian hamster 

embryo cells (Pienta et al., 1977), and BaP has exhibited mutagenicity in E. coli 

(Bernelot-Moens, 1990) and Hep G2 cells (Diamond et al., 1980).   

 

1.3.8 Genotoxicity  

Increased chromosome breaks following exposure to PAH mixtures in vitro were 

detected in Chinese hamster cells (Kato et al., 1969).  In separate studies using pure 

compounds, anthracene, fluoranthene, benz[a]anthracene, chrysene, 

benzo[b]fluoranthene, benzo[k]fluoranthene, BaP, indeno[1,2,3-c,d]pyrene, 

benzo[g,h,i]perylene, and dibenz[a,h]anthracene were shown to be genotoxic in E. coli 

PQ37 in the presence of metabolic activation (Mersch-Sundermann et al., 1992) and 

anthracene, naphthalene, and phenanthrene were shown to be genotoxic in Drosophila 

melanogaster (Dalgado-Rodriguez et al., 1995).  Epidemiologic studies show increased 

sister chromatid exchanges (Buchet et al., 1995), DNA-strand breaks (Popp et al., 1997), 
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and PAH-DNA adducts (van Schooten et al., 1995) in lymphocytes of workers 

occupationally exposed to PAH mixtures.   

 

1.3.9 Carcinogenicity 

Evidence demonstrating a clear association between PAH exposure and cancer is 

difficult to obtain with certainty due to the complexity and inconsistency of the mixtures.  

In vitro analyses of primary or secondary cultures of Syrian hamster embryo cells 

suggested that PAH exposure produced morphological transformations associated with a 

capacity to induce tumors when inoculated into adult hamsters (Berwald and Sachs, 

1965).  In mouse skin, the application of coal tar, creosote or bitumen products led to 

PAH-DNA adducts in both the skin and lungs (Schoket et al., 1988).  A study in 

newborn female mice exposed to a PAH-enriched exhaust by inhalation over 10 months 

showed increased lung tumors with a dose-dependent increase in malignant lung tumors 

(Schulte et al., 1994), and lifetime ingestion studies of coal tar in the diet of B6C3F1 

mice showed a dose-dependent increase in tumor incidence in the lung, forestomach, and 

small intestine (Culp et al., 1998).   

In humans, epidemiological information has been used to link PAHs to cancer 

following inhalation and dermal exposure but data is inadequate in the case of oral 

exposure, although the carcinogenic potential for this route is anticipated.  Occupational 

exposure to PAHs has been linked to bladder cancer in aluminum plant workers 

(Tremblay et al., 1995; Romundstad et al., 2000), lung and bladder cancers in coal 

gasification workers, in particular coal carbonization workers (Doll, 1952; Doll et al., 
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1965), and lung cancer in coke production workers (Wu et al., 1988; Costantino et al., 

1995) and iron and steel foundry workers (Sorahan et al., 1994).  Further, several 5-ring 

PAHs frequently identified in the mixtures are classified as possible or probable human 

carcinogens by various U.S. and international agencies.  Specifically, benz[a]anthracene, 

chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, BaP, indeno[1,2,3-c,d]pyrene, 

and dibenz[a,h]anthracene are classified as probable human carcinogens by the U.S. 

EPA (IRIS, 2004).   

Benzo[b]fluoranthene, benz[a]anthracene, dibenz[a,h]anthracene, chrysene, BaP, 

and indeno[1,2,3-c,d]pyrene have shown positive results for initiating activity and 

complete carcinogenic activity in mouse skin-painting assays (Cook et al., 1933; Wynder 

and Hoffman, 1959; IARC, 1973; LaVoie et al., 1982; Rice et al., 1985, 1986), while 

benzo[k]fluoranthene yielded positive results only for initiating activity following 

promoting treatments with croton resin (LaVoie et al., 1982).  A dose-response 

relationship was observed for carcinomas in a lung implantation study in Osborne-

Mendel rats following treatment with pure BaP, benzo[b]fluoranthene, indeno[1,2,3-

c,d]pyrene, or benzo[k]fluoranthene (Deutsch-Wenzel et al., 1983).  Gavage treatment 

with benz[a]anthracene has yielded increased lung tumors (Klein, 1963) and 

forestomach papillomas (Bock and King, 1959) in mice, and dibenz[a,h]anthracene 

produced lung and mammary carcinomas and lung adenomas in mice with 

administration in an olive oil vehicle in drinking water (Snell and Stewart, 1962, 1963) 

or by gavage (Biancifiori and Caschera, 1962).  Benzo[a]pyrene added to the diet of 

male and female CFW-Swiss mice or Sprague-Dawley rats has been shown to produce 
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increased forestomach tumors (Neal and Rigdon, 1967; Brune et al., 1981), and an 

elevated incidence of respiratory tract and upper digestive tract tumors upon 

intratracheal instillation or inhalation in guinea pigs, hamsters, and rats (USEPA, 1991).   

 

1.3.10 LOAEL and NOAEL  

The lowest-observed-effects-level (LOAEL) and the no-observed-adverse-

effects-level (NOAEL) have been determined for the pure forms of individual PAHs not 

identified as possible human carcinogens in a 90 day subchronic study in CD-1 mice 

(Table 1) (IRIS, 2004).  In addition, the U.S. EPA has used the data to calculate the oral 

reference dose (RfD), defined as an estimate of the daily oral exposure to the human 

population over a lifetime that is likely to be without an appreciable risk of deleterious 

effects even in sensitive populations.  However, single contaminant exposure is rare.   

Epidemiologic studies have been carried out to determine the LOAEL and 

NOAEL for specific genotoxic effects in occupationally exposed workers.  The earliest 

biological effects in cokeoven workers in Belgium heavily exposed to PAHs were high-

frequency cells and sister chromatid exchanges (HFC-SCE) in lymphocytes (Buchet et 

al., 1995).  The NOAEL in which no increased HFC-SCE were observed in non-

smoking workers was found to be 2.7 µg/g creatinine (1.4 µmol/mol).  The LOAEL in 

German cokeoven workers exposed to average BaP concentrations of 1.7 µg/m3 was 3.6 

µg/g creatinine (1.9 µmol/mol) (Popp et al., 1997).  This level was measured as the 

lowest exposure concentration that showed increased DNA-strand breaks in 

lymphocytes.  An additional study measuring PAH-DNA adducts and urinary 1-OHP  
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Table 1   
LOAEL, NOAEL, RfD, and carcinogenicity characterization for 16 priority PAHs based on available data by the U.S. EPA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a The no-observable-adverse-effects levels (NOAEL) and the lowest-observable-adverse-effects levels (LOAEL) were calculated by the U.S. EPA based 
on a 90 day subchronic oral exposure study in CD-1 mice (USEPA, 1989; IRIS, 2004). 
b The oral reference dose (RfD) is a calculated estimate of the daily exposure to the human population over a lifetime that is likely to occur without an 
appreciable risk of deleterious effects (IRIS, 2004). 
c The U.S. EPA weight of evidence characterization: B2 = probable human carcinogen, D = not enough data to assign carcinogenicity. 

 LOAELa 
(mg/kg/day) 

NOAELa 
(mg/kg/day) 

Criteria for NOAEL (mg/kg/day) RfDb 
(mg/kg/day) 

Weight of evidence 
characterizationc 

Naphthalene 200 100 decreased mean terminal body weight in males 2x10-2 D 

Acenaphthalene     D 
Acenaphthene 350 175 hepatoxicity 6x10-2 unavailable 
Fluorene 250 125 decreased red blood cell packed cell volume and 

hemoglobin 
4x10-2 D 

Phenanthrene     D 
Anthracene None 1000 no observed effects at highest dose tested 3x10-1 D 
Fluoranthene 250 125 nephropathy, increased liver weights, 

hematological alterations, and clinical effects 
4x10-2 D 

Pyrene 125 75 kidney effects including renal tubular pathology, 
and decreased kidney weights 

3x10-2 D 

Benz[a]anthracene     B2 
Chrysene     B2 
Benzo[b]fluoranthene     B2 
Benzo[k]fluoranthene     B2 
Benzo[a]pyrene     B2 
Indeno[1,2,3-c,d]pyrene     B2 
Dibenz[a,h]anthracene     B2 
Benzo[g,h,i]perylene     D 
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determined that the LOAEL for genotoxic effects in primary aluminum plant workers 

was 3.8 µmol/mol creatinine (van Schooten et al., 1995).  

  

1.3.11 Governmental regulations and health advisories  

 IARC classifies benz[a]anthracene and benzo[a]pyrene as probable human 

carcinogens (Group 2A),  benzo[b]fluoranthene, benzo[k]fluoranthene, and 

indeno[1,2,3-c,d]pyrene as possible human carcinogens (Group 2B), and lists 

anthracene, benzo[g,h,i]perylene, chrysene, fluoranthene, fluorene, phenanthrene, and 

pyrene as having not enough information to assess carcinogenicity (Group 3) (IRIS, 

2004).  The U.S. EPA classifies benz[a]anthracene, indeno[1,2,3-c,d]pyrene, 

dibenz[a,h]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, and 

benzo[a]pyrene as probable human carcinogens (Group B2) and lists fluoranthene, 

anthracene, and, like IARC, acenaphthalene as having not enough information to assess 

carcinogenicity (Group D) (Table 1).  Further, the EPA has derived a maximum 

contaminant level (MCL) in drinking water for selected PAHs.  The MCL is 0.1 µg/L for 

benz[a]anthracene, 0.2 µg/L for benzo[a]pyrene, benzo[b]fluoranthene, 

benzo[k]fluoranthene, and chrysene, 0.3 µg/L for dibenz[a,h]anthracene, and 0.4 µg/L 

for indeno[1,2,3-c,d]pyrene.  The European standard for PAHs in drinking is 0.2 µg/L 

(WHO, 1971, 2001).  
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1.3.12 Analytical measurement 

 Analytical methodology has been developed to measure PAHs in soil (Lundstedt 

et al., 2000; Szolar et al., 2002), marine sediment (Pino et al., 2000), atmospheric 

particulate matter (Piñeiro-Iglesias et al., 2000), food (Grimmer and Bohnke, 1975; 

Wang et al., 1999), fly ash (Arditsoglou et al., 2003), biological tissues (Modica et al., 

1982; Ali and Cole, 1998), plasma (Singh et al., 1998a), surface waters (Crozier et al., 

2001), drinking water (Davis et al., 1999), and urine (Jongeneelen et al., 1987, 1990).  

Techniques include:  solvent extraction (Gay et al., 1980; Modica et al., 1982), Soxhlet 

extraction (Szolar et al., 2002; Arditsoglou et al., 2003), static subcritical water 

extraction (McGowin et al., 2001), pressurized liquid extraction (PLE) to extract ketones 

of PAHs (Zdrahal et al., 2000; Lundstedt et al., 2000), fluidized-bed extraction (Gfrerer 

et al., 2002), and ultrasonication techniques (Kayali-Sayadi et al., 2000; Rababah and 

Matsuzawa, 2002).   

Newer quantitative methodology utilizing high temperatures and pressures to 

take advantage of increased analyte solubility and desorption under these conditions can 

accelerate the extraction procedure, but may also lead to the degradation of some 

compounds.  Accelerated solvent extraction (ASE) uses conventional solvents (Fisher et 

al., 1997; Tao et al., 2002), whereas supercritical fluid extraction (SFE) replaces these 

hazardous solvents with CO2 (Langenfeld et al., 1994, Librando et al., 2004).  

Microwave solvent extraction (Vázquez-Blanco et al., 2000; Shu et al., 2003), 

specifically microwave assisted extraction (MAPTM) (Li et al., 1996), reduces solvent 

usage and shortens extraction times by heating solid samples quickly in a polar solvent 
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via microwave energy.  However, water interferes so samples must be standardized for 

moisture content (Shu and Lai, 2001).   

Solid phase extraction (SPE) may be used for purification of sample extracts 

(Dabrowska et al., 2003) or extraction of PAHs from aqueous solution (Biziuk et al., 

1996; Singh et al., 1998b; Crozier et al., 2001; Ake et al., 2003).  SPE media may 

include C18 (Crozier et al., 2001; McGowin et al., 2001), florisil (Singh et al., 1998b), 

alumina (Modica et al., 1982), silica (Gay et al., 1980), XAD (Biziuk et al., 1996), glass 

fiber (Urbe and Ruana, 1997), and polystyrene-divinylbenzene (Bernal et al., 1997).    

Airborne PAHs are frequently collected on XAD resin, while those sorbed to particulate 

matter are collected on glass fiber filters and desorbed with solvent (Heikkila et al., 

1987; Brzeźnicki et al., 1997).   

PAH identification and quantification is primarily carried out using gas 

chromatography – mass spectrometry (GC/MS) (Lee et al., 1977; Gfrerer et al., 2002; 

Tao et al., 2002; Librando et al., 2004) or high performance liquid chromatography 

(HPLC) coupled with fluorescence detection (Kayali-Sayadi et al., 2000).  However, 

HPLC separation may also be coupled to UV detection (Pino et al., 2000) and GC 

separation may be coupled to a flame ionization detector (FID) (Hyotylainen and Oikari, 

1999), ion trap mass spectrometry (GC-ITMS) (Crozier et al., 2001) or time of flight 

mass analysis (GC-TOF-MS) (Davis et al., 1999; Zou et al., 2003).  Liquid 

chromatography (LC) has also been coupled to MS (Dark et al., 1977) or to electrospray 

ionization mass spectrometry (LC-ESI-MS) (Takino et al., 2001). 
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As a measure of oxidative DNA damage, PAH-DNA adducts in blood and tissue 

are frequently detected using 32P- (Ovrebo et al., 1990; Kondraganti et al., 2003) or 35S- 

(Baird et al., 1993) postlabeling with radioactivity counting, especially in the case of the 

larger, bulkier compounds.  Coupling to HPLC may increase sensitivity, improve 

resolution, and allow for quantification of specific adducts (Miege et al., 1999).  For 

specific DNA adducts, enzyme-linked immunosorbent assay (ELISA) is used to detect 

antibodies in serum bound to BPDE-DNA adducts (Gomes and Santella, 1990) while 

radioimmunoassay (Hutcheon et al., 1983) and ultrasensitive enzyme radioimmunoassay 

(USERIA) measure the immune response of BPDE-DNA in the presence of rabbit anti-

serum (Ovrebo et al., 1990).  Synchronous fluorescence spectroscopy (SFS) measures 

the physical properties (e.g., fluorescence) of the carcinogen-DNA adduct, as their 

aromaticity makes PAHs highly fluorescent (Weston et al., 1993).  Immunoaffinity 

solid-phase extraction columns may be used for separation and purification prior to any 

of these techniques (Miege et al., 1999).   

 

1.4 Pentachlorophenol (C5P) 

1.4.1 Sources and chemical composition 

 Chlorinated phenols (CPs) constitute a series of 18 mono-, di-, tri-, and tetra-

chlorinated isomers and one penta-chlorinated compound (Figure 2) (Ahlborg and 

Thunberg, 1980; Seiler, 1991; IARC, 1991; USDHHS, 1999).  As a group of industrial 

chemicals they have been used worldwide as fungicides, bactericides, herbicides, 

insecticides, and precursors in the synthesis of other pesticides since the early 1930s.   
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Pentachlorophenol  
MW = 264 

2,3,4,5-Tetrachlorophenol
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Figure 2.  Two-dimensional structure and molecular weight of 5 chlorinated phenols 
(CPs) selected as representative positional isomers and phenol.   



 

 

23

During this period, CP production has lead to well-known industrial hygiene incidents, 

for example the tragic accident in Seveso, Italy in 1976, but otherwise has not been 

blamed for major environmental problems.  Technical grade pentachlorophenol (C5P) 

has been shown to contain a large number of impurities depending on the method of 

manufacture including various lower chlorinated phenols, polychlorinated biphenyls, 

polychlorinated dibenzo-p-dioxins, polychlorinated dibenzo-p-furans, chlorinated 

cyclohexenones, chlorinated cyclohexadienones, chlorinated phenoxyphenols, and 

hexachlorobenzene, and many of the health effects associated with CP exposure may be 

attributed to these impurities.  However, improved analytical methodology revealing the 

ubiquitous occurrence of C5P has led to worldwide concern over the safety of these 

compounds and their persistence in the environment.  

 Although CPs containing less than three chlorine substituents are of limited use 

today, C5P has been used extensively in the wood preservation industry as a general 

cytotoxic agent to control discoloration and deterioration of newly cut lumber resulting 

from mold, mildew, and termite infestation (Ahlborg and Thunberg, 1980).  It has been 

estimated that 97% of C5P usage in the U.S. is as a wood preservative (Eckerman, 1986), 

although the compound is now regulated as a restricted-use pesticide and is no longer 

contained in wood preserving solutions or in insecticides or herbicides available for 

home and garden use (USDHHS, 2001).  The compound is restricted to use in the 

treatment of utility poles, railroad ties, and wharf pilings.  Freshly cut wood is either 

spray-treated with an aqueous solution of sodium pentachlorophenate, or C5P dissolved 
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in organic solvent is applied by high-pressure impregnation in a closed system or by 

dipping in open vats (Seiler, 1991).   

 

1.4.2 Exposure  

 Exposure may occur by ingestion of contaminated food and water, inhalation, or 

percutaneously, either through direct contact with C5P solutions in occupational settings 

or through treated goods and bactericidal soaps (Gebefugi et al., 1979; Williams, 1982; 

Embree et al., 1984).  Although the compound is both photo- and microbially-degraded 

under appropriate conditions (Steiert et al., 1987), C5P is highly persistent with a 

reported half-life of up to 5 years.  Concern has been focused mainly on chronic 

poisoning in occupational settings (Thind et al., 1991; Coloso et al., 1993; Dimich-Ward 

et al., 1996; Hryhorczuk et al., 1998; Walls et al., 1998; Gorman et al., 2001) and in 

individuals living in C5P-treated log homes (Cline et al., 1989).  However, the food 

chain, especially fruits, vegetables, and grains, is responsible for 99.8% of human 

exposure in people not occupationally or intentionally exposed (Newsome et al., 1984; 

Coad and Newhook, 1992; Hattemer-Frey and Travis, 1989; Fries et al., 2002).   

 

1.4.3 Absorption and metabolism 

CPs, in particular C5P, are readily absorbed through the skin, lungs, and 

gastrointestinal tract and exhibit strong biological effects.  However, studies conducted 

in the monkey (Braun and Sauerhoff, 1976), Sprague-Dawley rat (Braun et al., 1977; 

Reigner et al., 1991), male Wistar rat (Meerman et al., 1983), and male B6C3F1 mouse 
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(Reigner et al., 1992b), indicate that absorption in the gastrointestinal tract is affected by 

the gavage vehicle.  In particular, corn oil has been shown to significantly delay 

absorption (Chidgey and Caldwell, 1986; Yuan et al., 1991) and can cause erratic 

absorption (Braun et al., 1977; Reigner et al., 1991).   

The biological half-life of C5P is relatively short and the compound is excreted 

primarily in the urine.  Some studies suggest biphasic elimination kinetics in rats and 

mice, specifically, an initial quick elimination phase with a short half-life of 6 to 27 h 

followed by a second slower elimination phase with a half-life of 33 to 374 h (Larsen et 

al., 1972; Braun et al., 1977).  Overall, 90% was eliminated within 168 h.  However, 

other experiments in F-344 rats suggest a monophasic model for absorption and 

elimination kinetics in plasma (Yuan et al., 1994).  Following a single gavage dose, the 

estimated absorption half-life was 1.3 h while the elimination half-life was 

approximately 5.6 h in males and 9.5 h in females.  Of interest, although the absorption 

and elimination half-lives were not significantly affected, bioavailability of C5P was 

shown to be lower when administered in the diet rather than by gavage.   

Studies of rats dosed with 14C-C5P indicate that the target organ in both mice and 

rats is the liver, followed by the kidneys and blood (Larsen et al., 1972; Braun et al., 

1977; NTP, 1989, 1999).  Mice exhibit greater sensitivity than rats to the compound 

(NTP, 1999; Tsai et al., 2002).  Pathological signs following chronic exposure include 

increased liver and kidney weights (Johnson et al., 1973; Schwetz et al., 1978; Renner et 

al., 1987; Umemura et al., 1996), pigmentation in the liver and kidneys (Schwetz et al., 

1978), and hepatocyte degeneration (Chhabra et al., 1999).  In one study, chronic C5P 
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ingestion in male Wistar albino rats lead to irreversible dose- and time-dependent 

neurotoxicity that culminated in the degeneration of myelinated nerve fibers to block 

nerve conduction and produce morphological nerve damage, and damage to glomerular 

structure and function in the kidneys (Villena et al., 1992).  In blood, C5P has been 

shown to reduce hemoglobin content both in the hematocrit and in the number of 

erythrocytes (Renner et al., 1987).  

C5P is not extensively metabolized in laboratory animals and there is only a 

slight tendency toward bioaccumulation (Bernard et al., 2002).  Metabolism occurs 

primarily through the action of cytochromes P450 to form various quinones which are 

proposed to be the toxic intermediates in C5P-induced damage (Ahlborg et al., 1978; van 

Ommen et al., 1988; Renner and Hopfer, 1990; Lin et al., 1999).  Redox cycling between 

quinones and their semiquinone forms creates reactive intermediates that may covalently 

bind to macromolecules (Witte et al., 1985; Waidyanatha et al., 1996; van Ommen et al., 

1988; Ehrlich, 1990; Lin et al., 1999, 2001a; Bodell and Pathak, 1998) and/or generate 

reactive oxygen species (O’Brien, 1991; Monks et al., 1992; Monks and Lau, 1992; 

Bolten et al., 2000) that may lead to oxidative damage to genomic DNA (Jansson and 

Jansson, 1992; Naito et al., 1994; Dahlhaus et al., 1994, 1995, 1996; Sai-Kato et al., 

1995; Umemura et al., 1999; Witte et al., 2000; Lin et al., 2001b).  In particular, 

increased lipid peroxidation was detected in isolated rat hepatocytes following C5P 

treatment (Suzuki et al., 1997) and mice exposed to doses ranging from 300 to 1200 

mg/kg in the diet for up to 4 weeks showed persistent induction of cell proliferation and 

increased 8-OHdG formation in liver DNA, indicating oxidative DNA damage 
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(Umemura et al., 1996).  Further, in vitro analyses indicate that C5P interferes with 

microsomal electron transport between NADPH-P450 reductase and cytochromes P450 in 

vitro, which may lead to enhanced production of reactive metabolites due to altered 

detoxification patterns of some P450 substrates (Arrhenius et al., 1977a, b).   

CPs effectively partition into the phospholipid bilayers of mitochondrial 

membranes, which increases the permeability of protons to alter proton transport through 

the membrane.  This leads to dissipation of the energy gradient and the uncoupling of 

oxidative phosphorylation (Weinbach, 1954; Weinbach and Garrbus, 1969; Shannon et 

al., 1991).  Incorporation of inorganic phosphate into ATP is prevented without blocking 

the electron transport chain, leading to depletion of cellular ATP (Aschman et al., 1989).  

Thus, cells continue to respire but are quickly depleted of the ATP required for energy 

utilization.  Clinically, this is manifested as a decrease in body weight (Chhabra et al., 

1999) and fever resulting from the increased metabolic activity that generates heat 

(Byard, 1979).  Studies of structure-activity relationships among a series of chlorinated 

phenols showed that this effect increases with an increase in chlorination (Farquharson 

et al., 1958; Narasimhan et al., 1992).  An increase in toxicity with a concomitant 

increase in chlorine substituents has also been observed in studies utilizing Hydra 

attenuata (Mayura et al., 1991), human embryonic palatal mesenchymal cells (Zhao et 

al., 1995a), BF-2 cells (Babich and Borenfreund, 1987), bacteria including Burkholderia 

species Rasc c2 and Pseudomonas fluorescens (Boyd et al., 2001), and bovine 

spermatozoa (Seibert et al., 1989).   
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Not only do CPs interfere with phase I metabolizing enzymes, but the 

compounds also inhibit phase II metabolism (Carlsson, 1978; Aschman et al., 1989) 

including glutathione-S-transferase and microsomal epoxide hydroxylase (Moorthy and 

Randerath, 1996).  Specifically, C5P has been found to strongly inhibit sulfotransferase 

activity in rat and mouse liver cytosol (Mulder and Scholtens, 1977; Boberg et al., 1983; 

Meerman et al., 1983), Ca2+-ATPase (Janik and Wolf, 1992), and glycolytic 

phosphorylation (Weinbach, 1956).   

 

1.4.4 Biological monitoring  

In Sprague-Dawley rats, orally administered 14C-C5P is eliminated in the urine 

largely unchanged (48%), and, to a lesser extent, as tetrachlorohydroquinone (TCHQ) 

(10%) and C5P-glucuronide (6%) (Braun et al., 1977).  In humans, the compound is 

excreted in the urine primarily as C5P-glucuronide and, to a lesser extent free C5P (Uhl 

et al., 1986; Reigner et al., 1992a), whereas experiments in rhesus monkeys show that 

the entire dose is excreted unchanged (Braun and Sauerhoff, 1976).  Based on first order 

kinetics, the elimination half-life in urine for 4 volunteers receiving a single dose of 3.9, 

4.5, 9, or 18.8 mg was calculated at 20 days (Uhl et al., 1986).  In a separate case of 

accidental exposure in which a worker had dipped his hands into a vat of a 0.4% solution 

of C5P for 10 min, an elimination half-life in urine of 16 days was calculated (Bevenue 

et al., 1967).   

C5P is most readily measured in urine or blood, usually by gas chromatography 

following acid hydrolysis (Jorens and Schepens, 1993).  Good correlation exists between 



 

 

29

levels in urine and blood.  C5P in the urine of individuals in unexposed populations has 

been measured at 1 to 12 µg/g creatinine, while those living in log homes ranged from 

17 to 190 µg/g creatinine in one study and 1 to 1179 µg/g creatinine in a separate study 

(Grimm et al., 1986; Cline et al., 1989).  Employees exposed as sprayers showed 

concentrations ranging from 11 to 1260 µg/g creatinine (Jones et al., 1986).   

Serum levels, like those in urine, are generally higher in occupationally exposed 

individuals than in controls but are frequently in the same range as those living in treated 

log homes.  In one study, C5P levels in serum ranged from 15 to 75 µg/L in control 

populations and 69 to 1340 µg/L in individuals living in log homes (Cline et al., 1989).  

The highest serum levels in occupationally exposed workers were found to be in 

employees involved in chemical packaging, with concentrations ranging from 26 to 

84,900 µg/L, almost 700 times higher than person involved in the construction of log 

homes.  Serum levels less than 30 µg/L are generally not associated with outward 

symptoms of exposure, while those ranging from 30 to 100 µg/L are generally associated 

with mild symptoms, and those greater than 100 µg/L are indicative of more serious 

exposure.  

 

1.4.5 Signs and symptoms of exposure  

Several cases of acute accidental, suicidal, or occupational C5P poisoning in 

humans have been reported.  Acute poisoning may present as high fever, profuse 

sweating, increased heart rate, and difficulty breathing (Weinbach, 1954) as well as 

restlessness, agitation, muscle twitching, tremors, epigastric tenderness, leg pain, and 
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increased respiration rate (Haley, 1977).  Sudden death may occur as a result of cardiac 

arrest and victims usually show marked rigor mortis (Wood et al., 1983).  Symptoms of 

chronic poisoning are vague and vary considerably in different reports but can include 

chloracne, anorexia, weight loss, general weakness, dizziness, obstinate headache, 

personality changes, or anxiety (Jorens and Schepens, 1993).  Occupational exposures to 

technical grade C5P has resulted in various skin and mucous membrane disorders 

including conjuctivitis, chronic sinusitis, and chronic upper respiratory conditions 

(Klemmer et al., 1980; O’Malley et al., 1990).  The incidence of chloracne, although 

probably due to contaminants present in technical grade C5P, was shown to be highest 

among individuals having had direct skin contact with the compound (Mathias, 1988).  

The minimal lethal dose has been estimated to be 29 mg/kg body weight (Ahlborg and 

Thornberg, 1980). 

 

1.4.6 Mutagenicity 

 Mixed results have been obtained with mutagenicity testing of C5P in bacterial 

systems, but results largely indicate that the compound is not mutagenic.  Positive results 

for mutagenicity were obtained with Bacillus subtilis strains H17 rec+ versus M45 rec- 

(Matsui et al., 1989), following negative results in an earlier study (Shirasu et al., 1976).   

Although C5P was not shown to increase the frequency of revertant colonies in either the 

absence or presence of metabolic activation in Salmonella typhimurium strains TA98, 

TA100, TA1535, and TA1537 (Haworth et al., 1983).  Additional negative results were 
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obtained in separate studies by Simmon et al. (1977), Moriya et al. (1983), and 

McConnell (1991).   

 

1.4.7 Genotoxicity 

In vitro studies in mammalian cells suggest that C5P does not produce point 

mutations (Hattula and Knuutinen, 1985; Jansson and Jansson, 1986), although the 

cytotoxicity of this compound may bias conclusions.  Weakly positive results in Chinese 

hamster CHO cells suggest C5P induces chromosomal aberrations and sister-chromatid 

exchanges (Galloway et al., 1987), but findings were negative in a separate study in 

Chinese hamster lung fibroblasts (Ishidate, 1988).  Further, two studies report negative 

results for genotoxicity in Drosophila melanogaster (Vogel and Chandler, 1974; Ramel 

and Magnusson, 1979).  In vivo studies were positive for chromosomal aberrations in 

lymphocytes of 22 occupationally exposed workers (Bauchinger et al., 1982; Schmid et 

al., 1982), but negative in a separate study of 20 workers (Ziemsen et al., 1987) and both 

studies were negative for sister-chromatid exchanges.  Taken together, these data suggest 

that C5P exposure may lead to increased chromosomal aberrations but not point 

mutations or sister chromatid exchanges.   

In contrast to C5P, TCHQ has been shown to be genotoxic (Witte et al., 1985), as 

the metabolite both binds to DNA and induces DNA strand breakage in mammalian cells 

(Juhl et al., 1985; Witte et al., 1985; Carstens et al., 1990; Wang and Lin, 1995).  In rats, 

TCHQ depleted glutathione content and induced glutathione conjugate formation, p53 

protein accumulation (Wang et al., 1997), protein adduct formation (Lin et al., 1999), 
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oxidative DNA lesions (Dahlhaus et al., 1996), and lipid peroxidation (Wang et al., 

2001).  In addition, unlike C5P-treated cells, TCHQ-treated Hep G2 cells showed 

significantly decreased CAS gene expression, increased hsp-70 gene expression, and a 

decrease in the bcl-2/bax protein ratio, all factors indicative of apoptosis (Wang et al., 

2001).  Still, it is unclear as to whether this compound is a major metabolite in humans.  

 

1.4.8 Carcinogenicity 

Several carcinogenicity studies have been performed using laboratory animals.  

While C5P has been shown to be carcinogenic in both male and female mice (NTP, 

1989; McConnell et al., 1991), the chemical failed to induce tumors in rats (Schwetz et 

al., 1978; NTP, 1999).  Mice exposed to technical grade C5P in the diet (approximately 

18, 35, or 116 mg/kg/day) exhibited increased incidence of hepatocellular adenomas and 

carcinomas, adrenal pheochromocytomas, and hemangiosarcomas of the spleen and liver 

(NTP, 1989; McConnell et al., 1991).  In rats, increased 8-OHdG and direct adducts in 

hepatic DNA were detected following chronic exposure, but similar conditions did not 

lead to increases in liver cancer (Lin et al., 2002).  Although C5P has been reported to 

covalently bind to microsomal protein and DNA, it does not appear to produce real DNA 

damage (van Ommen et al., 1986).  Thus, C5P is believed to be a promoter, but not an 

initiator in liver carcinogenesis (NTP, 1989; McConnell, 1991; Sai et al., 1998).   

In addition, in vitro studies suggest that C5P interferes with microsomal electron 

transport between NADPH-P450 reductase and cytochromes P450, which may lead to 

enhanced production of reactive metabolites when detoxification patterns of some P450 
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substrates are altered (Arrhenius et al., 1977a, b).  Because this inhibition would then 

favor flavin-mediated oxygenation over cytochrome P450-dependent reactions, C5P 

theoretically has the potential to increase the toxicity and carcinogenicity of other 

chemicals. 

 In humans, epidemiological studies have linked occupational exposure to C5P 

with increased occurrence of malignant lymphoma and leukemia (Roberts, 1983; 

Roberts, 1990), soft tissue sarcomas (Choudhury et al., 1986; Hardell and Sandstrom, 

1979), and non-Hodgkin’s lymphoma (Pearce et al., 1986; Hardell et al., 1994).  In 

addition, occupational exposure to C5P has been linked to Hodgkin’s disease in 3 

siblings and a first cousin, out of 5 family members exposed through contact with wood 

immersed in C5P (Greene et al., 1978).   

 

1.4.9 Teratogenicity and embryo/fetotoxicity 

C5P is not teratogenic in rats (Courtney et al., 1976; Schwetz et al., 1974, 1978; 

Mayura et al., 1991), but is embryo/fetotoxic (Exon and Koller, 1982; Welsh et al., 

1987).  When 14C-C5P was administered orally on day 15 of pregnancy, the maximum 

amount of radiolabel in maternal blood was 1.1% of the dose, and never exceeded 0.3% 

in the placenta or 0.1% in the fetuses (Larsen et al., 1975).  Thus, very little of the 

compound crosses the placental barrier.  However, in later studies it was shown to 

significantly reduce litter size, survival to weaning, neonatal body weight, and weight at 

weaning (Schwetz et al., 1978).  Further, gavage doses ranging from 0 to 30 mg/kg/day 

on days 6 to 18 of gestation to pregnant rabbits resulted in reduced maternal body weight 



 

 

34

gain at middle and high doses, and transient weight loss and reduced feed consumption 

at high doses (Bernard et al., 2001).  In this study, no effect was observed on 

embryo/fetal development, thus the compound was not found to be a developmental 

toxicant.    

 

1.4.10 LOAEL and NOAEL  

 C5P has been found to be highly toxic to many species of fish.  The 96 h median 

lethal concentration (LC50) in Chinook (68 ng/mL), rainbow trout (52 ng/mL), fathead 

minnow (205 ng/mL), channel catfish (68 ng/mL) and bluegill sunfish (32 ng/mL) have 

been determined (Johnson and Finley, 1980), as well as in the freshwater fish 

Heteropneustes fossilis (0.58 mg/L), Clarias batrachus (0.64 mg/L), and Channa 

punctatus (0.77 mg/L) (Farah et al., 2004).  The 50% lethal body residue (LBR50), the 

concentration of a compound to cause 50% mortality in a population over a given time, 

for 48 h exposure in the midge (Chironomus riparius larvae) was 0.15 µmol/g wet 

weight and 0.45 to 0.66 µmol/g wet weight for the oligochaete worm (Lumbriculus 

variegatus) (Kukkonen, 2002).  In laboratory rodents, the acute oral LD50 ranged from 

117 mg/kg body weight in female mice to 177 mg/kg in males (Borzelleca et al., 1985), 

and from 27 to 175 mg/kg body weight in rats (Deichmann et al., 1942; Gaines, 1969; 

Ahlborg and Larsson, 1978).   

In rats dosed orally with C5P, the NOAEL for liver and kidney pathology is 3 

mg/kg/day and the LOAEL is 10 mg/kg/day (Schwetz et al., 1978).  In pregnant 

Sprague-Dawley rats dosed by gavage for 10 d with either purified- or commercial-grade 
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C5P formulations the LOAEL for developmental effects in pups, as indicated by 

increased occurrence of delayed skull ossification, was 5 mg/kg/day (Schwetz et al., 

1974).  However, these studies were conducted using C5P formulations no longer 

commercially available.  More recent studies in which Sprague-Dawley rats were dosed 

by gavage from gestational day 6 to day 15 showed the NOAEL for both maternal and 

developmental toxicity to be 30 mg/kg/day, while the LOAEL for developmental 

toxicity was 80 mg/kg/day, as indicated by increased resorptions, reduced litter size and 

fetal body weights, and increased malformations in pups (Bernard and Hoberman, 2001).  

In a two-generational reproductive study using a more pure form of C5P, Sprague-

Dawley rats showed a LOAEL of 30 mg/kg/day and a NOAEL for both reproductive and 

general toxicity of 10 mg/kg/day (Bernard et al., 2002).  In a related study, pregnant 

rabbits dosed by gavage from gestational days 6 to 18, the maternal NOAEL was 7.5 

mg/kg/day and the developmental NOAEL was 30 mg/kg/day (Bernard et al., 2001).  It 

should be noted that a dose of 10 mg/kg/day is 7,000 to 20,000 times higher than human 

exposure.   

 

1.4.11 Governmental regulations and health advisories 

 The U.S. EPA lists C5P as a probable human carcinogen (Class B2) based on the 

weight-of-evidence (IRIS, 2004), while IARC considers C5P possibly carcinogenic to 

humans (Group 2B) (IARC, 1991).  Further, the U.S. EPA has derived a RfD of 0.03 

mg/kg/day for C5P (based on Schwetz et al., 1978), and a MCL in drinking water of 

1,000 ng/L for the compound.  The European standard for C5P in drinking water is 9,000 
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ng/L (WHO, 2001).  The minimal risk level to humans for noncancerous end points 

(MRL) for acute duration oral exposure is 0.005 mg/kg/day (based on Schwetz et al., 

1974) while that for intermediate or chronic duration oral exposure is 0.001 mg/kg/day 

(based on Beard et al., 1997, and Beard and Rawlings, 1998, respectively).   

 

1.4.12 Analytical measurement 

Analytical chromatographic methods to measure exposure to CPs in human urine 

(Kalman, 1984; Kontsas et al., 1995; Lee et al., 1998; Wada et al., 1999), blood serum 

(Yost et al., 1984; de Ruiter et al., 1990), and plasma (Angerer, 1997), as well as landfill 

leachate (Ribeiro et al., 2002) and environmental (air, water, and soil) samples 

(Abrahamsson and Xie, 1983; Turnes et al., 1996; Jáuregui et al., 1997; Bagheri and 

Saraji, 2001; Nakamura et al., 2001; Tauler et al., 2001; Hanada et al., 2002; Sarrion et 

al., 2002; Yang and Lee, 2002) have been developed.  Immunoassays for specific CP 

congeners in water (van Emon and Gerlach, 1992; Noguera et al., 2002; Nistor and 

Emneus, 2003) urine (Galve et al., 2002; Nichkova et al., 2003), and soil (Li et al., 2001) 

have also been developed.   

In the case of C5P, most methods involve acidification of the sample to convert 

the compound to the non-ionized form, extraction into an organic solvent, purification, 

and detection by GC/ECD or GC/MS.  In addition, HPLC with fluorescence detection 

can be used to determine total and free C5P in urine after fluorescence labeling with 4-

(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride (Wada et al., 1999).  C5P in air, water, 

plant material (e.g., sugarcane foliage, cotton foliage, and beans) textile effluent, and 
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biological samples (e.g., blood and urine) may also be determined using a 

spectrophotometric method (Agrawal et al., 1998).  C5P is converted to chloranil using 

concentrated nitric acid which liberates iodine from potassium iodide.  The iodine then 

selectively oxidizes leucocrystal violet to form crystal violet which can be measured 

spectrophotmetrically.   

Of particular interest, solid phase extraction (SPE) using different sorbents (e.g., 

synthetic resins, C18, or graphitized carbon) allows for the processing of large sample 

volumes before the final extracts are concentrated to smaller volumes (Turnes et al., 

1996; Bagheri and Saraji, 2001).  However, this solvent evaporation step may result in 

the loss of more volatile compounds.  Samples may then be analyzed by HPLC or GC, 

although peaks of more polar compounds may appear broad and exhibit tailing unless 

the sample is derivatized prior to analysis, most commonly through acetylation 

(Abrahamsson and Xie, 1983; Hanada et al., 2002).  Thus, a selective detection method 

such as GC/MS or tandem GC/MS/MS is preferred (Turnes et al., 1996). 

 

1.5 Environmental contamination  

1.5.1 Sources of environmental contamination  

 As a result of use in the wood preservation industry, substantial environmental 

contamination by coal tar creosote and C5P has occurred (USDHHS, 1996).  Excess free 

product may be released from treated materials during pressure impregnation of wood 

products and treatment solution components may be subsequently released from the 

surface of treated wood products over time by oil exudation, leaching from contact with 
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water, or volatilization (Henningsson, 1983; DeLeon et al., 1988; Hale and Aneiro, 

1997).  Leaching of spilled wastes from the application sites is not uncommon, although 

spills may also occur during transport of coal tar materials on barges or as a result of 

accidents during navigation, docking, or loading and unloading.  Atmospheric releases 

may occur any time within the treatment process and during incineration of scrap treated 

wood, however, the major source of creosote released to the environment is waste water 

effluents which can lead to surface water and groundwater contamination (USDA, 

1980).   

In the past, waste water generated from wood treatment facilities was often 

discharged into unlined evaporation/settling lagoons (USDHHS, 1996).  Settling lagoons 

are no longer part of appropriate disposal methodology and existing structures are 

currently being remediated.  Over time, a layer of sludge would form and water-soluble 

components would percolate through the soil to contaminate groundwater reservoirs.  

However, given the viscous nature of creosote, significant migration into groundwater 

supplies is rare unless the soil is extremely porous, for example the sandy soil found at 

the American Creosote NPL site in Pensacola, FL.   

 In general, a spill released to the soil percolates through the vadose zone 

(unsaturated zone) by gravity and soil capillarity to the saturated zone where soluble 

phase components contaminate groundwater (Huling and Weaver, 1995).  Percolation 

through both zones is vertical until the volume is eventually exhausted by the saturation 

process or until it reaches a zone of low permeability where it will begin to migrate 

laterally, also by soil capillarity.  Water percolating through the vadose zone may leach 
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soluble phase components referred to as residual saturation, the fraction of hydrocarbon 

retained by capillary forces in the soil.  In addition, residual saturation near the water 

table is also subject to leaching with the rise and fall of the water table. 

 

1.5.2 Types of organic contaminants  

 Organic contaminants have limited water solubility, are typically in a liquid or 

semi-liquid state, and are capable of independent movement through both the vadose and 

saturated zones of the subsurface (McCaulou et al., 1995).  In the scope of water 

remediation, these compounds are termed non-aqueous-phase-liquids (NAPLs) and 

include volatile aromatics (e.g., benzene, toluene, styrene, and xylenes), halogenated 

volatiles (e.g., vinyl chloride and chloroethane), and volatile ketones and furans.  Based 

on the specific gravity with regard to water, NAPLs are made up of both light (LNAPL) 

and dense (DNAPL) components.  LNAPLs commonly include fuels and oils.  Creosote 

is classified as DNAPL in addition to halogenated solvents (e.g., tetrachloroethylene, 

trichloroethylene, dichloroethylene and carbon tetrachloride), polychlorinated biphenyls 

(PCBs), pesticides, PAHs, and chlorinated benzenes and phenols.  

 

1.6 Soil and groundwater remediation 

1.6.1 General remediation technologies 

Leaching of wastewater into soil and subsequently, groundwater, has resulted in 

a rise in research initiatives to address the need for remediation.  The main source of 

contaminants may be substantially reduced or eliminated by removing free product early 
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in the remediation process.  This is mainly accomplished using either trench or pump-

and-treat systems (Huling and Weaver, 1995).  Pumping removes components in the 

aqueous phase from the immiscible (continuous and residual saturation), solid (sorbed to 

soil), and gaseous phases.  If continuous DNAPL can be located in the subsurface in a 

shallow, impermeable reservoir, recovery wells may be used to pump pure phase product 

which substantially improves overall recovery.  However, these pools are difficult to 

locate and DNAPL yield is generally poor.  Another method, installation of trench 

systems, involves the horizontal placement of recovery lines on top of the impermeable 

zone, usually when the DNAPL reservoir is located near the surface.  DNAPL flows into 

the collection trenches and seeps into the recovery lines, which then drain into a 

collection sump and DNAPL is pumped to the surface.  Subsequent in-situ and ex-situ 

remediation may then be used to prevent plume migration and remove soluble 

components.   

Installation of physical and non-permeable barriers provides hydraulic control to 

prevent plume migration in the subsurface by physically containing DNAPL inside 

treatment cells that are then the focus of further remediation strategies (e.g., soil vacuum 

extraction (SVE), natural attenuation, bioremediation, and soil flushing) (Huling and 

Weaver, 1995).  Bioremediation (Guerin, 1999; Atagana et al., 2003) may consist of 

amending soil conditions to improve the growth of indigenous microbial species (e.g., 

aeration or the addition of nutrients) (Nieman et al., 2001) or the introduction of a 

specific contaminant-degrading colony (Boonchan et al., 2000).  Treatment may be 

carried out in situ or, following excavation, in a bioreactor or on-site land-treatment bed.  
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The technique is limited because DNAPL is a highly hostile environment for the survival 

of most microorganisms and the basic requirements for microbial proliferation (i.e., 

nutrients, osmotic potential, pH, moisture, electron acceptor, etc.) are difficult to 

maintain in this environment.  However, these strategies may used as an effective means 

to further reduce the mass of contaminants at the site following NAPL recovery by 

trench or pump-and-treat systems.   

Permeable reactive barriers are installed across the path of migration of a 

contaminant plume and consist of a trench back-filled with barrier material such as 

granular iron, peat, activated carbon, or zeolite (Rasmussen et al., 2002).  As 

groundwater passes the barrier, pollutants are removed from the water by chemical, 

physical or biological processes, to protect the surrounding environment.  

SVE involves applying a vacuum to vadose zone subsurface strata to induce air 

flow to volatilize residual saturation or soluble phase contaminants in the vadose zone 

(Huling and Weaver, 1995).  Vapors are then collected and treated, typically with 

granular activated carbon, catalytic oxidation, or direct combustion.  The same strategy 

can be used to remove DNAPL from the saturation zone, and is especially effective in 

cases where the precise location of DNAPL is unknown.  A closely related strategy, air 

stripping, involves volatilizing contaminants using an air stream.  While SVE is 

historically used to remove volatile compounds from soil, it has also been shown to 

enhance aerobic biodegradation of volatile and semivolatile organic compounds by 

aiding in the supply of oxygen to the vadose zone.   
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Soil flushing enhances dissolution of adsorbed and dissolved phase 

contaminants, and displaces free-phase nonaqueous contaminants (Huling and Weaver, 

1995).  Surfactants and alkali are added to reduce surface tension between DNAPL and 

water to increase mobility and polymers increase the viscosity of the flushing fluid to 

maintain hydraulic control and improve efficiency (Makkar and Rockne, 2003; Zhu and 

Feng, 2003).  Thermal methods can be used by injecting hot water or steam to increase 

volatilization and solubilization which decreases the viscosity and density of mobilized 

NAPL (Richardson et al., 2002).  The mobile phases are then recovered with a second 

approach such as SVE or pump-and-treat.  

Chemical oxidation uses chemical oxidizing agents (e.g., ozone, hydrogen 

peroxide, chlorine and chlorine dioxide) to destroy volatile and semivolatile organic 

chemicals and cyanide in groundwater.  The use of ultraviolet light (UV) in conjunction 

with an oxidizing agent provides for more complete destruction, can enhance the 

destruction of resistant chemicals (e.g., PCBs), and can increase the reaction rate by a 

factor of 100 to 1,000.  Photo-Fenton (Engwall et al., 1999) and ozonolysis (Ottinger et 

al., 1999; Hong and Zeng, 2002) reactions are advanced oxidation processes based on 

hydroxyl radical chemistry that can efficiently oxidize organic compounds in aqueous 

solution.  Fenton’s reagent, a mixture of ferrous ion (Fe2+) and hydrogen peroxide, 

produces hydroxyl radicals (OH·), as shown in equation 1 (Moraes et al., 2004).  In the 

presence of ultraviolet (UV) radiation, the ferric ions (Fe3+) are converted back to ferrous 

ions (Fe2+) with the formation of an additional equivalent of hydroxyl radical, 

represented in equation 2.  Hydroxyl radicals then promote the oxidation of organic 
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species (R) as shown in equation 3.  The process is highly influenced by pH, as iron 

precipitates out of solution as a hydroxide at values higher than pH 4. 

 

Fe2+ + H2O2 → Fe3+ + OH- + OH·  (1) 

Fe3+ + H2O → Fe2+ + H+ + OH· (2) 

HO· + RH → H2O + R·  (3) 

 

Under acidic or neutral conditions, ozonolysis proceeds through an electrophilic addition 

of molecular ozone to electron rich C=C bonds (Ottinger et al., 1999; Kornmuller and 

Wiesmann, 2003), while ozone decays to form radicals, primarily hydroxyl radicals, 

which leads to unspecific radical reactions with organic substances under alkaline 

conditions.  

Of particular interest is the use of sorbent materials to sequester contaminants 

(Mortland et al., 1986; Boyd et al., 1988; Phillips et al., 1995; Clark et al., 1998).  

Organically-modified clay minerals have been used to effectively sequester PAHs and 

C5P (Srinivasan and Fogler, 1990a; 1990b) and both naturally occurring and organically-

modified clay minerals have been shown to remove a variety of metals from water (Ake 

et al., 2001; Lin and Juang, 2002).  However, the most commonly used sorbent is 

granular activated carbon (GAC).  
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1.6.2 Granular activated carbon (GAC) 

Carbons have been used for purification purposes dating back to the times of the 

early Egyptians (Allen, 1996).  Carbonaceous materials are porous and have a high 

internal surface area (approximately 10 m2/g).  The process of activating these materials 

greatly increases the surface area and further develops porosity.  Activation is a 2-step 

process that consists of heating the carbon source to 600 ºC in the absence of air.  This 

resultant carbonized char is subsequently activated either by steam at 1000 ºC or by 

chemical treatment involving acid or acid salts.  The properties of each activated carbon 

may be controlled during the activation process in order to develop specialized sorbent 

materials with specific affinities.  The principal form for activated carbon used for 

groundwater remediation is granular activated carbon (GAC).    

GAC is the most commonly used porous media for the cleanup of contaminated 

water (Allen, 1996).  The sorbent’s effectiveness is based mainly on its large surface 

area (generally 500 to 2,000 m2/g).  Most notably, GAC has been shown to be effective 

for the filtration of organic compounds including trihalomethanes (e.g., bromoform), 

pesticides (e.g., molinate and terbutylazine), surfactants (e.g., polyethoxylated 

nonylphenone and bromo- polyethoxylated nonylphenones), plasticizers (e.g., diethyl 

phthalate and tri-n-butyl phosphate), and halogenated compounds (e.g., 

trichlorobenzenes and 2-chloropyridine) (Paune et al., 1998).  Further, GAC has been 

shown to effectively reduce patulin, a mycotoxin, in both aqueous samples and naturally 

contaminated apple juice (Huebner et al., 2000) and apple cider (Sands et al., 1976).   
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GAC acts by physically separating contaminants from aqueous media and, after 

exhaustion, spent product can be reactivated, regenerated, incinerated, or disposed 

(USEPA, 1996).  Thermal reactivation, using heat alone or steam, and incineration both 

destroy most or all adsorbed organic contaminants, although GAC used for metal 

removal is generally disposed of, frequently as a hazardous waste material.  Steam or hot 

gas regeneration may be used for spent GAC used in air emission control devices but is 

not appropriate for spent sorbent regeneration following groundwater remediation.   

Although GAC is a well-developed and widely utilized technology as part of a 

successful groundwater remediation strategy, it is most appropriate for use as a 

secondary polishing agent.  The adsorptive capacity of GAC is higher for gas phase than 

for liquid phase treatment, especially in the case of metal remediation (USEPA, 1996).  

This may be partly due to the fact that the presence of natural organic matter can 

drastically decrease GAC capacity and bedlife (Hopman et al., 1994; Knappe et al., 

1999).  Further, the sorbent is less effective for large organic molecules and competitive 

sorption of cosolutes results in depressed (antagonistic) sorption (Xu et al., 1997).  In 

contrast, many clay minerals have been shown to strongly sorb contaminants even in the 

presence of organic matter (Sheng et al., 2001).   

 

1.6.3 Clay minerals 

Historically, clays have been used extensively in a variety of applications.  

Naturally occurring clay minerals have been used for sorption of contaminants to protect 

water supplies (Kishk et al., 1979; Huebner et al., 1999; Abollino et al., 2003) and as 
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enterosorbents in animal diets to protect against mycotoxicoses (Smith, 1980, 1984; 

Phillips et al., 1988, 1995; Kubena et al., 1990a, 1990b; Harvey et al., 1991; Smith et al., 

1994; Phillips, 1999).  Clays have also played a major role in the human diet, 

particularly during pregnancy where they have been described as a common food 

craving (Geissler et al., 1999), and are active ingredients in pharmaceutical formulations 

including laxatives (e.g., sodium smectites), antidiarrhetics (e.g., kaolinite and 

polygorskite), dermatological protectors (e.g., kaolinite, smectites, and talc), excipients 

(e.g., kaolinite, palygorskite, smectites, and talc), and cosmetics (e.g., kaolinite, 

palygorskite, smectites, and talc) (Carretero, 2002).   

Adsorption is particularly favored when clay minerals have high surface areas 

(e.g., smectites) and contain exchangeable cations with low hydration energies (e.g., K+ 

and Cs+) (Haderlein and Schwarzenbach, 1993).  The type and position of substituents 

on the aromatic ring of the contaminant influences adsorption, as those that are strongly 

electron-withdrawing enhanced adsorption (Weissmahr et al., 1997).  

 

1.7 Clay technology 

1.7.1 Silicate clay minerals 

Silicate minerals comprise the bulk of most soils and 90% of the earth’s crust.  

The structural morphology of silicates, including phyllosilicate clays, is based on the 

SiO4 tetrahedron which is composed of Si4+ surrounded by four O2- (Figure 3) (Schultz, 

1989).  SiO4 tetrahedra are then linked together, with each tetrahedron sharing three O2- 

ions with three adjacent tetrahedra.  This arrangement extends in all directions to form a  
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Figure 3.  Silicon and aluminum oxides and their arrangement in tetrahedral and 
octahedral sheets found in phyllosilicate clay minerals.  A.  Top:  ball and stick 
representation of aluminum and silicon oxide basic structures.  Three dimensional 
structures drawn in HyperChem v 7.0 based on AM1 energy minimized molecules.  
Bottom:  arrangement of silicon oxide and aluminum oxide units to form tetrahedral 
layers.  Adapted from Schultz (1989).   
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 Figure 3.  Continued.  B.  Top:  arrangement of silicon oxide and aluminum oxide units 
to form dioctahedral layers.  Bottom:  arrangement of silicon oxide and aluminum oxide 
unites to form trioctahedral layers.  Adapted from Schultz (1989).   
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plane of basal oxygens.  The fourth O2- ion, the apical oxygen, is free and available to 

bind to other elements.  Thus, the octahedral sheet is comprised of two planes of OH- 

groups that form a hexagonal close packing arrangement.  The octahedral sheet may be 

classified as having either a dioctahedral or trioctahedral arrangement.  A trioctahedral 

arrangement is formed when octahedral layers contain divalent ions (Mg2+, Ca2+) in all 

possible octahedral sites, specifically, hectorite is a trioctahedral smectite.  A 

dioctahedral arrangement is produced when octahedral layers contain trivalent ions 

(Al3+) in two of every three possible octahedral sites, specifically, montmorillonite is a 

dioctahedral smectite. 

 Phyllosilicate minerals, a class of silicates, dominate the clay fraction of most 

soils (Schultz et al., 1989).  These minerals are formulated in distinctive layer-lattice 

structures composed of both tetrahedral and octahedral sheets, producing a high surface 

area characteristic of these minerals.  The 1:1 type phyllosilicates are comprised of a 

series of layers, each containing one octahedrally coordinated silica sheet, while 2:1 type 

phyllosilicates (Figure 4) are composed of one octahedral alumina sheet coordinated 

between two tetrahedral silica sheets.  Some common 1:1 type phyllosilicates include 

kaolinite and halloysite, while talc, pyrophyllite, mica, vermiculite, smectites, chlorites, 

palygorskite, and sepiolite are 2:1 type phyllosilicates (Figure 5). 

Phyllosilicates possess a net negative surface charge on their structural layers 

(Schultz et al., 1989).  In 1:1 phyllosilicate clays this is primarily due to the dissociation 

of H+ ions from hydroxyl groups attached to Si4+ or Al3+ atoms at the broken edges of 

clay layers.  However, in the case of 2:1 layer lattice clays, the negative charge is more 
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Figure 4.  1:1 and 2:1 layer lattice clay structures.  Note the arrangement of basal and apical oxygens, tetrahedral and 
octahedral cations, and hydroxyl groups illustrated within the clay structure as well as the arrangement of the tetrahedral 
and octahedral sheets.  Adapted from Schultz (1989).  
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Figure 5.  Structural diagrams of major phyllosilicate clays.  Adapted from Schultz 
(1989).  
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Figure 5.  (Continued)  
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likely due to the natural replacement of Si4+ or Al3+ with a cation of similar geometry but 

of lower charge, for example the substitution of Mg2+ for Al3+ or of Al3+ for Si4+.  This 

net negative charge is neutralized by cations attracted to surfaces of the layers.  The 

cations most commonly encountered in the interlayer of naturally occurring clay 

minerals are Na+, Ca2+, and Mg2+ and clays are often identified based on the 

predominant cation (e.g., sodium montmorillonite).  The net negative charge resulting 

from cation substitutions influences the cation exchange capacity (CEC), the quantity of 

cations that may be attracted to exchangeable surfaces in a particular clay mineral.   

Smectites, a 2:1 type of phyllosilicate clay, have moderately high CEC values, 

approximately 135 cmolcharge/kg, and are characterized by their ability to absorb multiple 

times their weight in water (Borchardt, 1989; Proust et al., 1998).  Hydration spheres 

surrounding interlayer cations interact with basal OH- groups via hydrogen bonding and 

columbic interactions with the negatively charged clay platelet, although hydrophobic 

areas of the platelet prevent complete coverage of hydrated cations.  Once the cations are 

hydrated they form pillars to expand interlayer spacing.  The size to charge ratio  

determines the degree of hydration of the cation within the interlayer space, which 

determines the degree of expansion characteristic to a various type of clay.  For example, 

Ca2+ smectites may be hydrated by six or more H2O molecules.  The hydrated Ca2+ 

forces the clay platelets open, but columbic attraction prevents unlimited expansion.  In 

contrast, Na2+ smectites are considered “swelling clays” because the columbic attractions 

between the negatively charged clay platelets are overwhelmed by the extent of Na2+ 

hydration so that unlimited expansion occurs.   
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1.7.2 Organically modified silicate clay minerals  

Although naturally occurring clay minerals have been shown to strongly bind 

contaminants from water with high capacity, they do not effectively sorb most 

hydrophobic organic compounds due to preferential adsorption of water around metallic 

cations (Xu et al., 1997).  However, replacement of inorganic interlayer cations with 

organic cations produces organically-modified clay minerals (i.e., organoclays) with 

organophilic properties that more effectively sorb hydrophobic contaminants, including 

PAHs and C5P (Srinivasan and Fogler, 1990a, 1990b).  The hydrophobicity of 

organoclays is influenced by the size and structure of the R group, the clay type, solution 

conditions, and the nature of the native exchangeable cation (Xu et al., 1997).  The 

organic ions used most extensively are quaternary ammonium cations of the general 

form [(CH3)3NR]+ or [(CH3)2NRR’]+ where R is an aromatic or alkyl hydrocarbon.  

Some of the more widely studied quaternary ammonium cations include cetylpyridinium 

(CP) (Ake et al., 2003), hexadecyltrimethylammonium (HDTMA) (Sheng et al., 1996), 

dioctodecyldimethylammonium (DODMA) (Boyd et al., 1988), tetramethylammonium 

(TMA) and trimethylphenylammonium (Brixie and Boyd, 1994) (Figure 6).     

Quaternary ammonium moieties have a unique property that part of the molecule is 

hydrophobic (the aliphatic tail) and part is positively charged and hydrophilic (the 

quaternary ammonium moiety) (Xu et al., 1997).  This allows the surfactant to be 

exchanged into the interlayer because the positively charged nitrogen interacts by cation 

exchange with the negatively charged basal surface of the clay platelet, while the 

aliphatic tails produce a hydrophobic environment in the interlayer space.  These  
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Figure 6.  Name, common abbreviation, and structure of organic cations used as 
exchange surfactants in organoclay production. 
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nonelectrostatic (nonpolar) interactions may also occur between alkyl moieties of R 

groups of free organic cations and those exchanged onto the clay surface to increase  

surfactant adsorption and, therefore, hydrophobicity.  Thus, surfactant sorption occurs in 

a synergistic manner.   

The hydrophobicity of the clay platelet’s interlayer may be regulated by 

exchanging surfactant into the clay as a fraction of the native clay’s CEC value 

(Greenland and Quirk, 1960; Zhang et al., 1993; Xu and Boyd, 1995).  Specifically, 

organoclays containing cations that have been exchanged at 25% of the CEC value will 

be less hydrophobic than those with cations exchanged at 75%.  In addition, the amount 

of surfactant that may be exchanged onto the interlayer surfaces of clay minerals 

increases with an increase in surfactant alkyl chain length to the extent that when the 

alkyl chain length is at least 12 to 16 carbons long, exchange may extend past the CEC 

of the clay.  Below the CEC value exchange occurs primarily by cation exchange but 

also by van der Waals mechanisms.  Once the cation exchange capacity is reached, 

however, further exchange occurs by van der Waals mechanisms only.   

In addition to the hydrophobicity, the amount of surfactant also affects the 

interlayer arrangement and the overall structure of the clay mineral (Xu et al., 1997).  

Specifically, depending upon the mineral surface charge (the amount of tetrahedral 

charge and octahedral charge) and the size of the surfactant (e.g., the length of the alkyl 

chain and the size of the charged head group) the exchanged surfactant may be arranged 

as a monolayer, bilayer, pseudotrimolecular layer or in a paraffin complex (Figure 7).   
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Figure 7.  Surfactant arrangements in the interlayer of clay platelets of a 
representative smectite clay.  Note the increase in interlayer spacing associated 
with increased quantities of surfactant that are exchanged into the interlayer and 
the corresponding changes in surfactant arrangement.  Adapted from Xu et al. 
(1997).   
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The arrangement of the surfactant ions in the interlayer determines the van der 

Waals contact among the alkyl chains and between the adsorbed organic cation and the 

basal surface of the clay platelet.  A flat-laying monolayer is favored because this 

arrangement maximizes contact area between surfactant ions and the clay surface, 

resulting in higher van der Waals interactions than in a bilayer arrangement in which 

only one side of an organic ion contacts the surface directly or a paraffin-type 

arrangement where there is no direct contact.  Therefore, surfactant ions in a monolayer 

arrangement have a higher affinity than those in a bilayer or paraffin-type arrangement.  

Organoclays containing long-chain organic cations have been shown to 

efficiently remove ionizable organic compounds such as C5P (Boyd et al., 1988), PAHs 

(Chen and Zhu, 2001), and various inorganic anions including Pb2+ (Lee et al., 2002) 

and Cr4+ (Krishna et al., 2000) from water.  Adsorption occurs primarily through 

partitioning of the neutral species and hydrophobic binding in the hydrophobic interlayer 

that is produced from tail-tail interactions between surfactant molecules (Boyd et al., 

1988; Sheng et al., 1996).  As is the case when surfactants are exchanged in the 

interlayer, sorption of one contaminant may have synergistic effects on the sorption of 

cosolutes (Xu et al., 1997).  Sorption of individual contaminants can cause interlayer 

expansion that then leads to binding of larger size compounds otherwise unsorbed as a 

result of steric constraints of the interlayers.  Hydrophobic tails of exchanged long-chain 

cations become more flexible as solute concentrations increase and a solvent-like 

hydrophobic phase forms in the interlayer to make partitioning the predominant sorption 

mechanism, although this is not common in complexes containing small organic 
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moieties (e.g., tetramethylammonium or trimethylphenylammonium) or an inorganic 

cation (e.g., NH4
+).  In saturated or oversaturated (relative to the CEC) organoclays, 

adsorption of contaminants may also occur through columbic attraction between the 

anionic head group of the contaminant and positively charged head groups of organic 

surfactant cations on the clay surface.  

 

1.7.3 CP-exchanged montmorillonite 

CP-exchanged montmorillonite clays have been used to remove a variety of 

contaminants from aqueous solution (Springman et al., 1999; Herrera et al., 2000; Ake et 

al., 2003).  X-ray crystallography data shows interlayer spacing of either 21 or 42 Å 

(Greenland and Quirk, 1960; Malik et al., 1972; Xu and Boyd, 1994; 1995).  It has been 

postulated that the 21 Å spacing results from a monolayer arrangement in which CP 

molecules lie parallel to the basal surface of the clay platelet.  The 42 Å spacing is only 

observed with high exchange capacities and is believed to be the result of either multiple 

parallel layers or a perpendicular arrangement placing the center of positive charge in the 

pyridine ring in close proximity to the negatively charged clay surface. 

 

1.7.4 Clay minerals in water remediation 

Clay minerals have been extensively studied as sorbents for water remediation.  

Sodium and calcium montmorillonite clays have been shown to decrease ergotamine 

(Huebner et al., 1999) and methyl parathion (O,O-dimethyl O-(nitrophenyl) 

phosphorothioate) (Kishk et al., 1979).  In the case of metal remediation, naturally-
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occurring sodium montmorillonite has been shown to decrease Cd, Cr, Cu, Mn, Ni, Pb, 

and Zn in aqueous solution (Ake et al., 2001; Abollino et al., 2003).  Sodium 

dodecylsulfate (SDS)-exchanged montmorillonite has been shown to remove Cu2+ and 

Zn2+ (Lin and Juang, 2001), HDTMA-exchanged montmorillonite has been shown to 

remove Cr4+ (Krishna et al., 2000), and CP-exchanged montmorillonite has been used to 

remove Salmonella enteritidis (Herrera et al., 2000) from aqueous solution.  Further, CP-

exchanged montmorillonite has also been shown to decrease PAHs from groundwater in 

small-scale field studies (Springman et al., 1999; Ake et al., 2003).  However, since 

these and other organoclays have limited permeability in water they have not been 

extensively utilized for filtration and remediation of large volumes.   

Hydraulic conductivity may be influenced by the organic modification of clay 

minerals.  During organoclay preparation, if surfactants are adsorbed onto the surface of 

swelling clays at sub-saturation levels (with respect to the CEC) the clay may flocculate 

(Xu et al., 1997).  The binding of small molecules together then forms extensive 

aggregation networks that increase hydraulic conductivity of the organoclay over that of 

unmodified clay minerals.  However, surfactants adsorbed onto the surface of clay 

minerals in excess of the CEC can produce a net positive charge on the clay surface that 

may then dismantle clay aggregates and cause clay dispersion.  The disperse clay can 

then clog pores and reduce hydraulic conductivity of the organoclay.    

In order to utilize saturated organoclays for use in water filtration, methods have 

recently been developed to adhere clay minerals onto the surface of various solid support 

matrices (Phillips and Sarr, 1999; Ake et al., 2001).  This allows for the construction of 
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column filtration systems made up of composite materials with void volume, increased 

surface area, and enhanced hydraulic conductivity.  In one study, CP-exchanged 

montmorillonite was bonded to sand and packed into columns to sorb PAHs and C5P 

from groundwater (Ake et al., 2003), while in a separate study 

cetyldimethylethylammonium (CDEA) exchanged montmorillonite was bonded to sand 

to reduce Escherichia coli and Salmonella enteritidis in aqueous suspension (Herrera et 

al., 2004). 

 

1.7.5 Clay minerals as enterosorbents 

In addition to their use in water filtration, clay minerals have also been studied 

extensively as enterosorbents for use in vivo.  A variety of naturally occurring silicate 

clay minerals have been added to animal feeds as enterosorbents to bind and reduce the 

bioavailability of mycotoxins.  Phyllosilicate clays (at levels as low as 0.5% w/w in the 

diet) have been shown to effectively bind aflatoxins and prevent aflatoxicosis in multiple 

animal species (Phillips et al., 1988; Kubena et al., 1990).  In addition, significant 

reductions in the production of aflatoxin M1 in the milk of dairy cows (44%) and goats 

(52%) have been achieved with the addition of 1% clay in the diet (Harvey et al., 1991; 

Smith et al., 1994).  Dietary inclusion of zeolite (Smith, 1980) and spent bleaching clay 

from canola refining (Smith, 1984) has been shown effective in the reduction of some of 

the toxic effects of zearalenone and T-2 toxin in rats and immature swine.   

Of particular concern, sorbents added to the diet may bind enzymes and other 

necessary nutritive elements, making prolonged use inadvisable.  Several case studies 
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suggest an association between clay ingestion and profound muscle weakness, anemia, 

and hypokalemia in humans (Mengel et al., 1964; Gonzalez et al., 1982; Severance et al., 

1988).  Clays that sorb nonselectively may interact with nutrients, minerals, and other 

feedborne chemicals to pose significant hidden risks as a result of dietary 

supplementation.  This is especially of concern during prenatal development due to the 

highly susceptible nature of both the mother and fetus to nutrient deficiency.  

Specifically, one study showed that rats fed high levels (20%) of kaolin in the diet 

throughout gestation exhibited significant reductions in hemoglobin, hematocrit, and red 

blood cell levels, indicating maternal anemia, and pups borne to these rats had lower 

birth weights (Patterson and Staszak, 1977).  In the same study, iron supplementation to 

the kaolin-diet showed a protective effect for both dams and pups.  Other studies have 

shown that rats fed a zinc-deficient diet supplemented with clay experienced lower 

mortality rates than rats maintained only on a zinc-deficient diet, suggesting that clay 

supplementation can be beneficial in some cases of mineral deficiencies (Smith and 

Halsted, 1970).  

 Additionally, metals potentially bound to clay minerals may desorb in the 

gastrointestinal tract and bioaccumulate, leading to a variety of adverse health 

conditions.  Mineralogical data indicates that phyllosilicate clays are important 

aluminum carriers and many, including smectite, chlorite, and illite, are known to be 

unstable in acidic environments, such as the stomach (Donner, and Lynn, 1989; Rai and 

Kittrick, 1989).  In particular, in vitro studies have shown aluminum silicate-containing 

bentonite and montmorillonite clays to be cytotoxic to human umbilical vein endothelial 
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cells but not ROC-1 oligodendroglia cells (Murphy et al., 1993a) and to primary 

neuronal cells but not differentiated N1E-115 neuroblastoma cells (Murphy et al., 

1993b).  Separate studies indicated aluminum silicate-containing kaolinite and 

montmorillonite and the magnesium silicate hectorite were acutely toxic to differentiated 

neuroblastoma cells (Banin and Meiri, 1990).  However, comprehensive in vivo studies 

concerning the release and subsequent accumulation of metals, in particular aluminum, 

in tissues are lacking.  Further, structural analysis of clay platelets suggests that the 

bioavailability of Al ions is limited due to octahedral coordination with SiO4 sheets in 

the center of the platelets (Phillips et al., 2002).   

 

1.8 Research objectives 

In response to worldwide concern over the occurrence and persistence of 

hazardous pesticides and other chemicals identified in groundwater, steps must be taken 

to ensure the safety of drinking water.  In the event of contamination, sensitive analytical 

methods must be developed in order to identify the chemicals and evaluate toxicity 

associated with exposure.  In addition, the safety of sorbents proposed as dietary 

supplements must be evaluated to ensure that they do no act nonselectively with 

nutrients and do not increase the bioavailability of trace metals.   

Therefore, the principal goals of this research were: 

1)  To delineate a sequence of measurable biological changes leading to cellular injury 

following CP exposure, specifically C5P, in a sensitive cell line by monitoring endpoints 

used to evaluate cellular homeostasis.  These endpoints include intracellular glutathione 
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(GSH) and Ca2+ concentrations, generation of reactive oxygen species (ROS), 

mitochondrial membrane potential (MMP), plasma membrane potential (PMP), pH, and 

gap junctional intracellular communication (GJIC).  

2)  To develop organoclay-based composite sorbents for both in vitro and in situ 

reduction of PAHs and C5P in groundwater.  This was carried out by characterizing the 

effect of differing amounts of organoclay bonded to a prioritized support matrix, 

considering the contribution of support matrices to sorption, and optimizing previously 

developed processing techniques to enhance and strengthen organoclay coverage on the 

surface of an optimal support matrix.  

3)  To determine the effects of naturally-occurring clay minerals commonly added to 

animal feeds in the balanced diet of Sprague-Dawley rats throughout pregnancy.  

Evaluations of maternal and fetal toxicity (i.e., maternal body weights, maternal feed 

intakes, litter weights, and embryonic resorptions) and neutron activation analysis of 

tissues (i.e., liver, kidneys, tibia, brain, uterus, pooled placentas, and pooled embryonic 

mass) were used to assess the influence of the clay on mineral uptake and utilization in 

the pregnant rat.   
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CHAPTER II  

DELINEATION OF A SEQUENCE OF CHANGES TO ENDPOINTS  
 

INVOLVED IN CELLULAR HOMEOSTASIS FOLLOWING  
 

CHLOROPHENOL EXPOSURE IN CLONE 9 CELLS 
 
 
 

 Chlorinated phenols (CPs) constitute a series of 18 mono-, di-, tri-, and tetra-

chlorinated isomers and one penta-chlorinated compound (Figure 1).  As a group of 

industrial chemicals they have been used worldwide as fungicides, bactericides, 

herbicides, insecticides, and precursors in the synthesis of other pesticides since the early 

1930s.  Although CPs containing less than three chlorine substituents are of limited use 

today, pentachlorophenol (C5P) has been used extensively as a wood preserving agent to 

control discoloration and deterioration of newly cut lumber (Ahlborg and Thunberg, 

1980; Seiler, 1991; IARC, 1991; USDHHS, 1999).   

CPs are readily absorbed through the skin, lungs, and gastrointestinal tract and 

exhibit strong biological effects.  Once absorbed, CPs are distributed throughout the 

body, accumulating in the liver, kidneys, brain, spleen, and fat (Braun et al., 1977).  CPs 

then partition into the phospholipid bilayers of mitochondrial membranes which 

increases the permeability of protons to alter proton transport through the membrane.  

This leads to dissipation of the energy gradient and the uncoupling of oxidative 

phosphorylation (Weinbach, 1954; Shannon et al., 1991), which leads to depletion of 

cellular ATP (Aschman et al., 1989).  CPs have also been found to inhibit cytochrome 

P450 dependent oxidation processes and phase II metabolism (Carlsson, 1978; Aschmann 
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et al., 1989) including glutathione-S-transferase and microsomal epoxide hydroxylase 

(Moorthy and Randerath, 1996).  Specifically, C5P has been shown to inhibit Ca2+-

ATPase activity (Janik and Wolf, 1992) and various sulfation processes (Mulder and 

Scholtens, 1977) and is able to bind to microsomal protein and DNA (van Ommen, 

1986; Waidyanatha et al., 1996; Lin et al., 1999).  However, a sequence of specific 

cellular responses correlating to exposure levels in a sensitive cell line for in vitro testing 

has not been established.  This is worthwhile since the extent of these responses upon 

exposure to environmental samples may provide verification of effective and complete 

remediation, particularly on Superfund sites.  

Previous studies in Hydra attenuata have shown a linear relationship between 

toxicity and the degree of chlorine substitution with C5P > 2,3,4,5-tetrachlorophenol 

(2,3,4,5-C4P) > 2,3,5-trichlorophenol (2,3,5-C3P) > 3,5-dichlorophenol (3,5-C2P) > 4-

chlorophenol (4-CP) > phenol (Mayura et al., 1991).  In addition, the Clone 9 cell line, 

derived from normal rat liver epithelium, has shown sensitivity to various chemical 

agents frequently identified in addition to CPs at wood preservation-based Superfund 

sites, including PAHs (Reeves et al., 2001), in particular BaP (Barhoumi et al., 2000; 

Barhoumi et al., 2002).  In the present study, several endpoints were used to evaluate 

cellular homeostasis, specifically intracellular glutathione (GSH) and Ca2+ 

concentrations, generation of reactive oxygen species (ROS), mitochondrial membrane 

potential (MMP), plasma membrane potential (PMP), pH, and gap junctional 

intracellular communication (GJIC).  These parameters were evaluated immediately 

after dosing and following 24 h in the continued presence of CPs with varying degrees of 
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chlorination in order to delineate the sequence of measurable biological changes leading 

to cellular injury caused by CP exposure in the Clone 9 cell line.   

 

2.1 Materials and methods 

2.1.1 Chemicals   

Culture media, Dulbecco’s phosphate buffered saline (PBS), serum, and general 

chemical reagents were purchased from Sigma (St. Louis, MO).  C5P (98% purity) and 

phenol were purchased from Aldrich (Milwaukee, WI).  2,3,4,5-C4P (99.0% purity), 

2,3,5-C3P (99.0% purity), 3,5-C2P (98.7% purity), and 4-CP (99.9% purity) were 

purchased from Supelco (Bellefonte, PA).  Tissue culture flasks and 96-well plates were 

purchased from Corning (Oneonta, NY) and Becton Dickinson (Franklin Lakes, NJ).  

Lab-Tek 2-well 1.0 chamber slides were purchased from Nunc, Inc. (Naperville, IL).  5-

(and-6)-chloromethyl-2’,7’-dichlorodihydrofluorescein diacetate (CM-H2DCFDA), bis-

(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC4(3)), monochlorobimane (mBCl), 

Fluo-4, AM, Rhodamine (R123), 2’,7’-bis-2(carboxymethyl)-5(6)-carboxyfluorescein, 

acetoxymethyl ester (BCECF-AM), and 5-carboxyfluorescein diacetate (CFDA) were 

purchased from Molecular Probes, Inc. (Eugene, OR).  Stock solutions of CPs were 

prepared in 100% ethanol and diluted in PBS.  For use in cell cultures, CPs were 

dissolved in Ham’s Nutrient Mixture F-12 culture medium for serial dilution (0.1 to 

1000 µM, <1.0% ethanol) immediately prior to each experiment.  Fluo-4, AM was 

prepared with DMSO and diluted with medium to 3.0 µM (0.3% final DMSO 

concentration) for loading in cultured cells.  DiBAC4(3) was prepared as 20 mM stock in 
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DMSO and used at 10 µM in medium (0.05% DMSO).  Stock of mBCl was prepared as 

50 mM stock in ethanol and diluted to 50 µM in PBS (0.1% ethanol).  CM-H2DCFDA 

was prepared as 5 mM stock in DMSO and used as 5 µM in medium (0.05% DMSO).  

R123 was prepared as 5 mg/mL stock in ethanol and used as 5 µg/mL in medium.  

CFDA was prepared as 10 mg/mL and used as 10 µg/mL in DMSO.  Stock of BCECF-

AM was prepared as 250 µM in DMSO and used as 0.25 µM.   Janus green dye was 

purchased from Sigma (St. Louis, MO) and dissolved in PBS at 1 mg/mL immediately 

prior to each experiment. 

 

2.1.2 Cell culture 

Experiments were conducted using the rat liver cell line Clone 9 (ATCC, CRL 

1439, passage 17) between passages 21 to 40.  Clone 9 cells were grown in Ham’s 

Nutrient Mixture F-12 containing 10% fetal bovine serum.  Analysis of cell viability, 

intracellular GSH and Ca2+, ROS, pH, MMP, and PMP were conducted on 96-well 

plates seeded at a density of 20,000 cells/well, while GJIC analysis was conducted using 

2-well 1.0 slides seeded at a density of 100,000 cells/well.  For long-term analysis cells 

were cultured for 24 h, dosed with graded concentrations of CPs, and cultured for an 

additional 24 h prior to analysis, while cells were seeded and cultured for 48 h prior to 

analysis of short-term treatments. 
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2.1.3 Assessment of cell viability (IC50) 

 Cell viability was determined using the Janus green spectrophotometric assay as 

described in Reick et al. (1993).  Janus green selectively stains damaged cells blue, 

presumably by altering membrane integrity, which allows intracellular penetration of the 

dye.  The weakly cationic dye interacts with anionic intracellular organelle membranes 

through electrostatic and hydrophobic interactions that are subsequently disrupted with 

the addition of alcohol, allowing extraction of the dye from cells.  The concentration of 

each toxin that causes 50% inhibition of cell proliferation at 24 h (IC50) was determined.  

Monolayers of cells were grown in 96-well tissue culture plates for 24 h prior to 

treatment with concentrations ranging from 1 to 1000 µM of each CP at 37 °C for 24 h.  

Cells were then rinsed in phosphate-buffered saline (PBS) and fixed with ethanol.  Janus 

green (1 mg/mL solution in PBS) was applied for 60 s and excess dye was removed by 

rinsing with PBS.  Janus green in the cells was then extracted with 100% ethanol and 

diluted in ddH2O.  The relative Janus green concentration was determined by measuring 

absorbance at 630 nm with a microplate fluorescence reader (Bio-Tek Fl600, Bio-Tek 

Instruments, Inc., Winooski, VT).  This value was correlated to absolute cell number 

using a standard curve.  Experiments were performed in triplicate.    

 

2.1.4 Laser cytometry 

The effects of graded concentrations of C5P (0 to 150 µM), 2,3,4,5-C4P (0 to 150 

µM), 2,3,5-C3P (0 to 400 µM), 3,5-C2P (0 to 150 µM), 4-CP (0 to 1000 µM) or phenol (0 

to 1000 µM) on Clone 9 cells were monitored.  Intracellular GSH and Ca2+ 
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concentrations, pH, ROS, MMP, and PMP were analyzed using a microplate 

fluorescence reader (Bio-Tek Fl600, Bio-Tek Instruments, Inc., Winooski, VT) while 

GJIC between cells was monitored using a Meridian Ultima workstation (Meridian 

Instruments, Okemos, MI).  Both methods used to conduct fluorescence measurements 

are detailed below.  It should be noted that to minimize differences in each probe from 

experiment to experiment, cells were seeded at the same density and each treatment was 

compared to a separate, concurrently monitored, control.   

 

2.1.5 Analysis of Ca2+, pH, ROS, MMP, and PMP 

For microplate fluorescence reader analysis of intracellular Ca2+ concentrations, 

pH, ROS, MMP, and PMP following short-term CP treatment, cells were rinsed with 

serum- and phenol red-free medium, loaded with fluorescent probe, and incubated at 37 

°C.  Following loading, cells were again washed with serum and phenol red-free medium 

and basal measurements were recorded by scanning the wells for 30 to 45 s.   Graded 

concentrations of CPs were then added and changes in fluorescence intensity were 

recorded every 15 s for 15 min.  For analysis of the same parameters following long-

term CP treatment cells were rinsed with serum- and phenol red-free medium, loaded 

with fluorescent probe and incubated at 37 °C.  Following loading, cells were washed 

with serum- and phenol red-free medium and basal measurements were recorded for 

each well and corrected to reflect cell viability.  For intracellular Ca2+ concentrations, 

ROS, MMP, and PMP, all fluorescence measurements were recorded at 485/20 nm 

excitation and 530/25 nm emission.  Fluorescence intensity levels for pH were measured 
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using a single excitation at 485/20 nm and dual emission at 530/25 and 645/40 nm 

wavelengths. 

Intracellular Ca2+ was measured in cells loaded with 3 µM Fluo-4 AM and 

incubated for 1 h prior to analysis.  Fluo-4, AM is a non-ratiometric visible wavelength 

probe that exhibits approximately a 40-fold enhancement of fluorescence intensity with 

Ca2+ binding (Gee et al., 2000).  

PMP measurements were conducted after incubating cells loaded with 10 µM 

DiBAC4(3) for 30 min.  This slow responding probe enters depolarized cells where it 

binds to intracellular proteins or membranes to exhibit enhanced fluorescence over that 

of extracellular DiBAC4(3) (Apell and Bersch, 1987; Haughland, 2000).  The anionic 

nature of DiBAC4(3) prevents error associated with nonspecific membrane interaction, 

as it is unable to cross the mitochondrial membrane.  In contrast, hyperpolarization of 

the plasma membrane is exhibited by decreased fluorescence resulting from dye 

extrusion.   Measurements are conducted in the continual presence of extracellular 

probe.   

ROS was measured in cells loaded with 5 µM CM-H2DCFDA and incubated for 

30 min.  CM-H2DCFDA is an oxidation sensitive fluorescent probe that passively 

diffuses into cells, where endogenous esterases cleave acetate moieties releasing the 

corresponding dichlorodihydrofluorescein derivative while the thiol-reactive 

chloromethyl group reacts with intracellular glutathione and other thiols.  Further 

oxidation yields a stable, fluorescent adduct that is trapped inside the cells, facilitating 

long-term studies (Haughland, 2000).   
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MMP was analyzed using R123, a cell-permeant, cationic, fluorescent dye that is 

widely used as a marker of mitochondria structure and as an indicator of mitochondrial 

activity (Haughland, 2000).  The probe is readily sequestered by active mitochondria, 

without induction of cytotoxic effects.  Cells were loaded with 5 µg/mL R123 and 

incubated for 15 min before fluorescence intensity levels were measured. 

Intracellular pH was measured after incubating cells loaded with 0.25 µM 

BCECF-AM for 15 min.  BCECF is an anionic, dual-emission ratiometric pH indicator 

(Haughland, 2000) resulting from hydrolysis of the AM ester.  The probe is membrane 

permeant and, upon entering the cell, is hydrolyzed by intracellular esterases to release 

the fluorescent BCECF-free acid that is retained by the cell (Musgrove et al., 1986).   

 

2.1.6 Analysis of GSH  

 Cellular GSH was evaluated with mBCl, a cell-permeant, non-fluorescent probe 

that passively diffuses across the plasma membrane and forms fluorescent adducts with 

GSH and thiol-containing proteins in a reaction catalyzed by glutathione-S-transferase 

(Shrieve et al., 1988; Haughland, 2000).  Kinetic analysis of mBCl-GSH conjugation 

was used to measure the effects of both short- and long-term treatments.  Cells were 

rinsed with serum-free medium and scanned sequentially for 30 to 45 s to determine 

basal fluorescence intensity levels of GSH.  Cells were then loaded with 50 µM mBCl in 

the presence or absence of CPs, which were added in concert for short-term analysis.  

Kinetic analysis of mBCl-GSH conjugation was performed by recording changes in 
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fluorescence intensity at 15 s intervals for 15 min at 360/40 nm excitation and 460/40 

nm emission wavelengths (Barhoumi et al., 1995).  

 

2.1.7 Analysis of gap junctional intracellular communication (GJIC)   

For GJIC analysis, cells were rinsed with serum- and phenol red-free medium, 

loaded for 15 min with 10 µg/mL CFDA.  CFDA is a membrane-permeable, 

nonfluorescent precursor of carboxyfluorescein, which is membrane impermeant and is 

transferred only between cells that are coupled by gap junctions (Haughland, 2000).  

After loading, cells were washed and maintained in serum- and phenol red-free medium 

in the presence of absence of CPs for analysis.  GJIC between cells was monitored by 

dye coupling using the fluorescence recovery after photobleaching (FRAP) technique 

adapted to determine the rate constant for dye transfer as previously described by 

Barhoumi et al. (1993).   

 

2.1.8 Statistical analysis   

Unless otherwise noted, all values are expressed as means normalized to control 

cells ± SE.  Data were compared statistically using the General Linear Models procedure 

using the Dunnett method and considered significant if p<0.05. 
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2.2 Results 

2.2.1 Cell viability 

Cell viability, represented as concentration of CP causing 50% inhibition of cell 

proliferation at 24 h (IC50), was determined for four of the six CPs investigated in Clone 

9 cells exposed to graded doses of CPs.  C5P, 2,3,4,5-C4P, and 3,5-C2P exhibited similar 

IC50 values of approximately 150 µM while the IC50 value for 2,3,5-C3P was 400 µM 

(data not shown).  However, cytotoxicity was first detected with 100 µM C5P, 50 µM 

2,3,4,5-C4P, 25 µM 2,3,5-C3P, and 50 µM 3,5-C2P.  Phenol and 4-CP did not appear to 

significantly affect cell viability at concentrations up to, and including, the maximum 

concentration tested (1 mM).  Hence no IC50 was determined.  

 

2.2.2 Analysis of GJIC   
 

GJIC was monitored in cells exposed to graded doses of CPs using a 

fluorescence recovery after photobleaching assay.  Immediately after CP exposure, 

significant suppression of GJIC was detected in cells treated with a minimum of 10 µM 

C5P (49.3 ± 4.8%), 10 µM 2,3,4,5-C4P (71.2 ± 3.3%), 10 µM 2,3,5-C3P (41.7 ± 2.2%), 

100 µM 3,5-C2P ( 75.9 ± 4.7%) or 100 µM 4-CP (18.5 ± 5.8%) (Figure 8).  Phenol 

affected cells only at much greater doses (1000 µM).  After 24 h, the effect of C5P, 

2,3,4,5-C4P, and 3,5-C2P was maintained.  However, the effect of 2,3,5-C3P disappeared 

at low concentrations and appeared again at 150 µM (38.7 ± 0.8%) (Figure 9).  Neither 

4-CP nor phenol significantly affected cells at the doses tested over long-term exposure.  

All of the groups of cells analyzed were viable, based on the absence of dye leakage  
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Figure 8.  Effect of short-term exposure to CPs on GJIC.  Values are the mean rate 
constant for fluorescence recovery of carboxyfluorescein after photobleaching ± SE for 
20 cells and are normalized to control cells.  An asterisk indicates a significant change in 
the endpoint (p<0.5) from untreated control cells.   
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Figure 9.  Effect of long-term exposure to CPs on GJIC.  Values are the mean rate 
constant for fluorescence recovery of carboxyfluorescein after photobleaching ± SE for 
20 cells and are normalized to control cells.  An asterisk indicates a significant change in 
the endpoint (p<0.5) from untreated control cells. 
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from the corresponding non-photobleached control cells that would indicate reduced 

plasma membrane potential.   

 

2.2.3 Analysis of intracellular pH  

 Although decreased GJIC was a short-term affect of CP exposure, changes to 

intracellular pH was more meaningful.  Initially, exposure to 1 µM C5P (2.5 ± 0.7%), 1 

µM 2,3,4,5-C4P (4.5 ± 0.3%), 10 µM 2,3,5-C3P (13.6 ± 0.8%), and 10 µM 3,5-C2P (2.9 ± 

0.3%), and 100 µM 4-CP (2.2 ± 0.3%) decreased intracellular pH, frequently in a dose-

dependent manner (Figure 10).  Phenol did not appear to significantly affect the pH over 

short-term treatments up to the maximum dose tested (1000 µM).  For long-term  

treatments, pH changes disappeared at lower CP concentrations and were only 

maintained at higher treatment levels of 100 µM C5P (16.8 ± 1.4%), 50 µM 2,3,4,5-C4P 

(11.3 ± 1.5%), 25 µM 2,3,5-C3P (5.6 ± 1.5%), and 25 µM 3,5-C2P (4.8 ± 2.3%).  

Minimal pH changes were seen following exposure to lower chlorinated phenols, as 

1000 µM 4-CP (12.5 ± 2.4%) and 100 µM phenol (7.4 ± 1.5%) significantly decreased 

intracellular pH with 24 h of continuous treatment (Figure 11).   

 

2.2.4 Analysis of intracellular GSH  

 Depletion of GSH occurred simultaneously or directly following decreases in pH. 

Immediately following exposure, a significant depletion of GSH was apparent with 10 

µM C5P (8.6 ± 1.1%), 10 µM 2,3,4,5-C4P (5.8 ± 0.3%), 100 µM 2,3,5-C3P (2.5 ± 0.6%), 



 

 

79

C5P

0.8

0.9

1.0

1.1

0 1 10 100 150

2,3,4,5-C4P

0.8

0.9

1.0

1.1

0 1 10 100 150

2,3,5-C3P

0.7

0.8

0.9

1.0

1.1

0 1 10 100 400

4-CP

0.8

0.9

1.0

1.1

0 1 10 100 1000

3,5-C2P

0.8

0.9

1.0

1.1

0 1 10 100 150

*
*

*

*

*

*

*

**

*
*

* *

**

 
 

 

Concentration (µM) 

Figure 10.  Effect of short-term exposure to CPs on pH.  Values are the mean of the ratio 
of fluorescence intensity at dual emission wavelengths (530/645 nm) and are normalized 
to control cells ± SE for 3 wells.  An asterisk indicates a significant change in the 
endpoint from control cells (p<0.5). 
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Figure 11.  Effect of long-term exposure to CPs on pH.  Values are the mean of the 
ratio of fluorescence intensity at dual emission wavelengths (530/645 nm) and are 
normalized to control cells ± SE for 3 wells.  An asterisk indicates a significant change 
in the endpoint from control cells (p<0.5). 
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and 100 µM 3,5-C2P (12.4 ± 0.6%) (Figure 12).  Treatments of less than 1000 µM 4-CP 

(7.0 ± 0.4%) did not significantly affect GSH.  Decreased GSH was not maintained over 

the long-term following CP exposure, except in the case of 4-CP (7.44 ± 0.45%).  

Fluorescence of the mBCl-GSH conjugate was decreased at a minimum dose of 100 µM  

C5P (11.1 ± 0.4%), 50 µM 2,3,4,5-C4P (4.8 ± 0.5%), 50 µM 2,3,5-C3P (4.4 ± 0.5%), or 

50 µM 3,5-C2P (1.8 ± 0.7%) (Figure 13).    

 

2.2.5 Analysis of ROS  

 Immediately following CP exposure, ROS generation was increased in cells 

treated with 10 µM C5P (7.3 ± 0.6%), 100 µM 2,3,4,5-C4P (5.7 ± 0.3%), 100 µM 2,3,5- 

C3P(4.7 ± 1.8%), 100 µM 3,5-C2P (5.6 ± 1.2%), 100 µM 4-CP (20.8 ± 1.9%), and 100 

µM phenol (6.2 ± 1.5%) (Figure 14).  A dose-dependent increase in ROS generation was 

apparent in all CPs following long-term exposure beginning at 50 µM 2,3,4,5-C4P (18.2 

± 5.1%) and 50 µM 2,3,5-C3P (19.4 ± 1.6%) and at greater doses of other CPs.  Further, 

the effects of 100 µM 3,5-C2P (12.1 ± 2.1%) and 100 µM 4-CP (14.9 ± 2.1%) were 

maintained over the 24 h period, although this was not apparent in cells treated with 100 

µM C5P (17.8 ± 2.0%) (Figure 15).  

 

2.2.6 Analysis of PMP 

 The final parameter to show significant changes immediately following CP 

exposure in Clone 9 cells was PMP.  Treatment with 100 µM C5P (8.6 ± 0.8%), 100 µM  
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Figure 12.  Effect of short-term exposure to CPs on GSH.  Values are the mean 
fluorescence intensity for 3 wells normalized to control cells ± SE.  An asterisk 
indicates a significant change in the endpoint from control cells (p<0.5). 

 

N
or

m
al

iz
ed

 F
lu

or
es

ce
nc

e 
In

te
ns

ity
 



 

 

83

C5P

0.8

0.9

1.0

1.1

0 25 50 100 150

2,3,4,5-C4P

0.8

0.9

1.0

1.1

0 25 50 100 150

2,3,5-C3P

0.8

0.9

1.0

1.1

0 25 50 100 150

3,5-C2P

0.8

0.9

1.0

1.1

0 25 50 100 150

4-CP

0.8

0.9

1.0

1.1

0 100 400 700 1000

*
* *

*
*

*
*

*

*

*

*

*

 
 

 

Concentration (µM) 

Figure 13.  Effect of long-term exposure to CPs on GSH.  Values are the mean 
fluorescence intensity for 3 wells normalized to control cells ± SE.  An asterisk 
indicates a significant change in the endpoint from control cells (p<0.5). 
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Figure 14.  Effect of short-term exposure to CPs on ROS generation.  Values are the 
mean fluorescence intensity for 3 wells normalized to control cells ± SE.  An asterisk 
indicates a significant change in the endpoint from control cells (p<0.5). 
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Figure 15.  Effect of long-term exposure to CPs on ROS generation.  Values are the 
mean fluorescence intensity for 3 wells normalized to control cells ± SE.  An asterisk 
indicates a significant change in the endpoint from control cells (p<0.5). 
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2,3,4,5-C4P (12.7 ± 0.8%), or 100 µM 3,5-C2P (4.6 ± 0.3%) suppressed DiBAC4(3) 

fluorescence, indicating plasma membrane hyperpolarization (Figure 16).  This effect 

was observed only at high-dose 400 µM 2,3,5-C3P (7.8 ± 0.2%), and was not apparent in 

4-CP- or phenol-treated cells up to the greatest doses tested (1000 µM).  In contrast, 

long-term exposure to 100 µM C5P (14.0 ± 4.3%), 100 µM 2,3,4,5-C4P (6.3 ± 0.4%), 

100 µM 2,3,5-C3P (16.2 ± 2.3%), or 100 µM 3,5-C2P (10.9 ± 0.8%), caused plasma 

membrane depolarization, indicated by increased DiBAC4(3) fluorescence (Figure 17).   

 

2.2.7 Analysis of MMP 

 Significant changes in MMP were not observed for short term CP exposure (data 

not shown).  However, with the continued presence of 25 µM C5P (8.1 ± 2.4%), 50 µM 

2,3,4,5-C4P (28.4 ± 1.9%), 50 µM 2,3,5-C3P (22.6 ± 1.9%), 50 µM 3,5-C2P (14.9 ± 

2.8%), and 100 µM phenol (12.7 ± 0.8%) decreased R123 fluorescence, suggesting 

mitochondrial membrane depolarization (Figure 18).  Significant changes in cells dosed 

with 4-CP were not apparent up to the greatest doses tested (1000 µM). 

 

2.2.8 Analysis of basal intracellular Ca2+  

 Increased basal intracellular Ca2+ levels were detected only with 24 h exposure to 

CPs and in a dose-dependent manner (Figure 19).  Specifically, continuous 24 h 

exposure to 50 µM C5P (22.6 ± 2.6%), 50 µM 2,3,4,5-C4P (17.5 ± 2.5%), 50 µM 2,3,5- 
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Figure 16.  Effect of short-term exposure to CPs on PMP.  Values are the mean 
fluorescence intensity for 3 wells normalized to control cells ± SE.  An asterisk indicates 
a significant change in the endpoint from control cells (p<0.5). 
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Figure 17.  Effect of long-term exposure to CPs on PMP.  Values are the mean 
fluorescence intensity for 3 wells normalized to control cells ± SE.  An asterisk indicates 
a significant change in the endpoint from control cells (p<0.5). 
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Figure 18.  Effect of long-term exposure to CPs on MMP.  Values are the mean 
fluorescence intensity for 3 wells normalized to control cells ± SE.  An asterisk indicates 
a significant change in the endpoint from control cells (p<0.5). 
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Figure 19.  Effect of long-term exposure to CPs on Ca2+.  Values are the mean 
fluorescence intensity for 3 wells normalized to control cells ± SE.  An asterisk indicates 
a significant change in the endpoint from control cells (p<0.5). 
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C3P (21.0 ± 1.0%), or 100 µM 3,5-C2P (25.4 ± 2.4%), but only at greater doses of 400 

µM 4-CP (13.8 ± 1.9%) and 1000 µM phenol (9.8 ± 1.7%).   

 

2.3 Discussion 
 

In this study, the effects of CP exposure on selected endpoints cellular 

homeostasis was evaluated in Clone 9 cells.  Of the seven parameters monitored in this 

study, both GJIC and pH were affected foremost by CP exposure.  Although intracellular 

pH was frequently affected by lower doses, C5P- and 2,3,4,5-C4P-treated cells exhibited 

an apparent recovery from the initial insult, as the dose required to maintain a lowered 

pH over 24 h (100 µM and 50 µM, respectively) was a great deal higher than that 

necessary to produce a significant decrease in the parameter initially (1 µM).  Further, 

long-term decreases in pH occurred at concentrations similar to those necessary to 

initially detect cytotoxicity, (i.e., 100 µM C5P).  This is not surprising as acidosis has 

been shown to protect against lethal oxidative injury, possibly through inhibition of 

degradative enzymes that become activated with ATP depletion (Gores et al., 1988; 

Bond et al., 1991; Bronk and Gores, 1991; Harper et al., 1993).   

In contrast to pH, the decrease in GJIC detected with low-dose short-term 

exposure was maintained over the 24 h period for all CPs except 2,3,5-C3P.  Treatment 

with 10 µM 2,3,5-C3P caused an initial decrease in GJIC, but long-term exposure did not 

significantly alter the parameter at doses below 150 µM.  The maintained loss of GJIC 

may be the result of the effects of CPs on other cellular parameters.  In particular, 

previous research suggests that downregulation of GJIC may be affected by decreased 
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cellular pH (White et al., 1990; Peracchia et al., 1996), changes to second messengers 

such as cAMP and Ca2+ (Rose and Lowenstein, 1975; Peracchia et al., 2000; Grazul-

Bilska et al., 2001), increased intracellular ROS (Kuo et al., 1998), and changes to the 

phosphorylation states of connexins  (Matesic et al., 1994; Guan and Ruch, 1996; 

Yamasaki et al., 1996; Upham et al., 1997).   

In both short- and long-term exposure to either C5P, 2,3,4,5-C4P, 2,3,5-C3P, or 

3,5-C2P, increased ROS generation was apparent at equal or slightly higher doses that 

those necessary to cause a significant depletion of GSH.  ROS generation can increase 

due to the formation of highly reactive oxygen radicals during redox cycling.  For 

example C5P is metabolized to tetrachlorohydroquinone (TCHQ), which can be oxidized 

to the corresponding semiquinone radical (Juhl et al., 1985; Renner and Hopfer, 1990).  

GSH counteracts the increase in ROS by acting as an electron donor in order to reduce 

the semiquinone radical back to the semiquinone, in this case TCHQ.  Reduction of the 

radical results in a decrease in the cytosolic GSH pool which puts the cell at risk for 

further oxidative damage (Wang et al., 1997; Townsend et al., 2003).   

In addition to increased ROS generation, it has also been suggested that GSH 

deficiency may lead to mitochondrial damage (Jain et al., 1991).  Previous research 

specific to C5P exposure maintains that this occurs when the contaminant uncouples 

oxidative phosphorylation (Weinbach, 1954; Weinbach and Garbus, 1965), which allows 

for inhibition of cellular ATP synthesis (Aschman et al., 1989).  Immediately following 

treatment with 10 to 100 µM C5P, 2,3,4,5-C4P, 2,3,5-C3P, or 3,5-C2P, cells showed 

diminished intracellular GSH, but no significant effects to mitochondrial membrane 
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potential were detected.  However, the continuous presence of 25 to 50 µM C5P, 2,3,4,5-

C4P, 2,3,5-C3P, or 3,5-C2P over 24 h caused significant mitochondrial membrane 

depolarization.  This indicates that Clone 9 cells were able to recover from the initial CP 

insult but not from the depletion of intracellular GSH pools, a consequence of prolonged 

and/or high dose exposure.    

Another consequence of prolonged exposure, increased intracellular Ca2+ was 

apparent only following continuous 24 h CP treatment.  An uncontrolled and sustained 

increase in cytosolic Ca2+ has been shown to occur following mitochondrial membrane 

depolarization (Nicotera et al., 1989).  Clone 9 cells were able to recover from short-

term exposure and thus, both mitochondrial membrane depolarization and increased 

intracellular Ca2+ concentrations were seen only after an extended treatment period.  

Further, it has been reported that increased cytosolic Ca2+ is responsible for the rapid 

activation of Ca2+-dependent degradative enzymes that damage vital cell components, 

resulting in critical cell injury or death (Herman et al., 1990).  Thus, it is not surprising 

that plasma membrane depolarization occurred at the highest CP concentrations tested in 

this study.  Although high dose CP treatment lead to acute plasma membrane 

hyperpolarization (signified by increased DiBAC4(3) fluorescence), depolarization 

(signified by decreased DiBAC4(3) fluorescence) was apparent after 24 h of exposure. 

The IC50 values for continuous exposure to each compound for 24 h were greater 

for the more highly chlorinated compounds, indicating an increase in toxicity with an 

increased number of chlorine substituents.  This has been observed in previous studies 

utilizing Hydra attenuata (Mayura et al., 1991), human embryonic palatal mesenchymal 
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cells (Zhao et al., 1995a), BF-2 cells (Babich and Borenfreund, 1987), bacteria including 

Burkholderia species Rasc c2 and Pseudomonas fluorescens (Boyd et al., 2001), and 

bovine spermatozoa (Seibert et al., 1989).  However, the IC50 values observed in this 

study suggest that the less highly chlorinated 3,5-C2P (150 µM) may be more toxic than 

the more highly chlorinated 2,3,5-C3P (400 µM).  Although these congeners are all co-

effective developmental hazards, previous research suggests that 3,5-C2P is also a 

potential teratogen based on developmental toxicity assays, including Hydra attenuata 

and postimplantation rat whole embryo culture (Mayura et al, 1991).    

The endpoints evaluated in this study showed effects resulting from CP exposure 

that were dependent upon dose, time, and the number of chlorine substituents.  Clone 9 

cells were affected similarly by exposure to C5P or 2,3,4,5-C4P, and similarly by 2,3,5-

C3P or 3,5-C2P, however, the changes to specific endpoints resulting from treatment with 

4-CP or phenol were slight and were observed only upon treatment with high doses 

and/or prolonged exposures.  For example, decreases to GSH occurred following short-

term exposure to 10 µM doses of C5P or 2,3,4,5-C4P, but at 100 µM doses of 2,3,5-C3P 

or 3,5-C2P, and only at 1000 µM doses of 4-CP.  In the case of GJIC, long-term CP 

exposure led to decreased GJIC at 10 µM doses of C5P or 2,3,4,5-C4P, 100 to 150 µM 

doses of 2,3,5-C3P and 3,5-C2P, and 1000 µM doses of 4-CP.   

The contribution of time to alterations in specific endpoints was most notable in 

the evaluation of MMP and intracellular Ca2+ concentrations, where significant changes 

to either parameter were observed only with long-term CP exposures.  These parameters 

also exhibited a clear relationship between the number of chlorine substituents and the 
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dose-dependent changes to cellular endpoints observed with CP exposure.  With long-

term exposure, mitochondrial membrane depolarization occurred at 25 µM doses of C5P, 

but at 50 µM doses of 2,3,4,5-C4P, 2,3,5-C3P, or 3,5-C2P.  In the case of alterations to 

intracellular Ca2+ concentrations, increases occurred after long-term exposure to 50 µM 

C5P, 2,3,4,5-C4P, or 2,3,5-C3P, 100 µM 3,5-C2P, 400 µM 4-CP, and 1000 µM phenol.  

Thus, the greatest toxicity was observed for high-dose, long-term exposure of cells to 

CPs with the greatest number of chlorine substituents. 

The results of the present study demonstrate that the Clone 9 cell line is a 

sensitive in vitro model for CP exposure.  Various cellular parameters may be screened 

to monitor cellular homeostasis and to delineate a sequence of events consistent with 

cellular injury.  In the case of C5P, this sequence consisted of decreased pH, GJIC, and 

GSH, increased ROS generation, and plasma membrane hyperpolarization as a result of 

short-term exposure.  Prolonged C5P exposure (24 h) led mitochondrial membrane 

depolarization, increased intracellular Ca2+ concentrations, and, finally, plasma 

membrane depolarization.  The suggested sequence of events outlined in this study may 

allow for the estimation of cytotoxicity in the case of low-dose chemical concentrations.   

In addition, elucidation of the dose-, time-, and level of chlorine substitution-

dependent effects has potential for use in the identification of specific congeners present 

in a mixture.  This knowledge may then allow the researcher to evaluate the extent of 

remediation efforts or design remediation technologies based on the prevalence of a 

specific congener in the field.  Further, because the Clone 9 cell line has also been used 

successfully to study PAHs (Reeves et al., 2001), in particular BaP (Barhoumi et al., 
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2000; Barhoumi et al., 2002), the methods described here show promise for 

identification of specific contaminants in  environmental samples containing a complex 

mixture, for example creosote-contaminated water resulting from wood treatment 

procedures.   
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CHAPTER III 
 

MATRIX-IMMOBILIZED ORGANOCLAY FOR THE SORPTION OF  
 

POLYCYCLIC AROMATIC HYDROCARBONS AND  
 

PENTACHLOROPHENOL FROM GROUNDWATER 
 
 
 

Polycyclic aromatic hydrocarbons (PAHs), derived from creosote, and 

pentachlorophenol (C5P) have been widely used in various formulations of wood 

preservatives.  PAHs make up approximately 85% of the chemical composition of coal 

tar creosote created by the distillation of coal tar.  C5P is a general cytotoxic agent that 

historically has been applied to freshly cut wood as an aqueous solution of sodium 

pentachlorophenate or in organic solvent via spray-treatment, high-pressure 

impregnation, or by dipping in open vats.  Inadvertent releases at wood preserving 

treatment facilities have contaminated pristine environments with high levels of both 

PAHs and C5P.  As a result, many of these facilities have been placed on the National 

Priorities List of Superfund sites and are now in the process of undergoing remediation 

(Hale and Aneiro, 1997). 

 In the past, wastewater generated from wood treatment facilities has been 

frequently released into unlined evaporation and settling lagoons where it may leach into 

soil, and subsequently groundwater.  The main source of contaminants may be 

substantially reduced or eliminated by removing free product early in the remediation 

process by utilizing trench systems, excavation, recovery wells, groundwater pump-and-

treat methods, enhanced oil-recovery technology, and physical and non-permeable 
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barriers (Udell et al., 1995).  Additional remediation technologies include:  air sparging 

(Hall et al., 2000), soil washing (Khodadoust et al., 1999), in-situ remediation (Tse et al., 

2001), natural attenuation (Sharak Genthner et al., 1997) and bioremediation (Mueller et 

al., 1993), surfactant-enhanced remediation (Chun et al., 2002), hyperfiltration 

(Middaugh et al., 1994), photo-Fenton reaction chemistry (Engwall et al., 1999), and 

chemical degradation such as ozonation (Hong and Zeng, 2002).   

Of particular interest to this laboratory, is the use of sorbent materials to 

sequester contaminants (Mortland et al., 1986; Boyd et al., 1988; Phillips et al., 1995; 

Clark et al., 1998).  One of the most common sorbents used in water remediation is 

granular activated carbon (GAC).  GAC has been shown to be effective for the filtration 

of organic compounds including trihalomethanes, pesticides, surfactants, plasticizers, 

and halogenated compounds (Paune et al., 1998).  However, the presence of natural 

organic matter in water may drastically decrease both its adsorption rate and capacity 

(Knappe et al., 1999).  In contrast, many clay minerals have been shown to strongly sorb 

contaminants even in the presence of organic matter (Sheng et al., 2001).   

 Naturally occurring clay minerals have been shown to strongly bind 

hydrophilic/polar organic contaminants from water with high capacity, but do not 

effectively sorb most hydrophobic organic compounds.  However, replacement of 

inorganic interlayer cations with quaternary ammonium cations of the general form 

[(CH3)3NR]+ or [(CH3)2NRR’]+ where R is an aromatic or alkyl hydrocarbon, yields 

organically-modified clay minerals with organophilic properties that more effectively 

sorb hydrophobic contaminants (Srinivasan and Fogler, 1990a; 1990b). 
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Methods have recently been developed in this laboratory to adhere clays and 

organically-modified clay minerals onto the surfaces of various solid supports for use in 

column filtration systems (Phillips and Sarr, 1999).  The porous nature of these clay-

based composites enhances their hydraulic conductivity and flow characteristics in 

filtration applications and facilitates the movement of organic contaminants through the 

matrix (Ake et al., 2001, 2003).  Earlier studies suggested that multi-functional 

composite materials of organoclay bonded to GAC, rather than sand as a solid support, 

may be more effective for the treatment of contaminated groundwater under field 

conditions that either GAC or CP-LPHM alone (Ake et al., 2003).  In this study, 

cetylpyridinium exchanged low pH montmorillonite clay (CP-LPHM) was bonded to 

either sand or GAC using the free acid form of a cellulose polymer, 

carboxymethylcellulose, as an adhesive.  Various formulations of these organoclay-

based sorbents were evaluated for PAH and C5P removal from contaminated water.  

Initial studies were carried out to delineate the effect of differing amounts of organoclay 

bonded to a selected solid support matrix (i.e., GAC), followed by evaluations as to the 

contribution of different solid support matrices (i.e., GAC versus sand) on overall 

composite performance.  

 

3.1 Materials and methods 

3.1.1 Chemicals   

For all experiments purified water (ddH2O) was prepared by processing 

deionized water through a Milli-QUF+ purification system (Millipore Corp., Bedford, 
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MA).  Low pH montmorillonite (LPHM) clay was obtained from Engelhard Corporation 

(Cleveland, OH).  GAC (–20 to +50 mesh; 297 to 841 µm) was obtained from Alfa 

Aesar (Ward Hill, MA) and washed to remove ultrafine particles prior to use.  Acid-

washed sand used for all composite materials was made by washing –50 to + 70 mesh 

(210 to 297 µm) quartz sand (Sigma Chemical Co., St Louis, MO) in prepared 

Nochromix® (Aldrich Chemical Co., Milwaukee, WI) and rinsing with ddH2O to 

achieve a neutral pH.  Cetylpyridinium (CP), carboxymethylcellulose (Na-CMC), and 

14C-PCP were purchased from Sigma Chemical Co. (St Louis, MO).  Dense non-aqueous 

phase liquid (DNAPL) was collected from a creosote-contaminated Superfund site in the 

northwestern United States.  Solid phase extraction media (6 mL Porapak® RDX Sep-

Pak® cartridges and Sep-Pak® tC18 Environmental cartridges) were obtained from 

Waters Corp. (Milford, MA).   

 

3.1.2 Preparation of organoclay   

The preparation of CP-LPHM has been reported previously (Lemke et al., 1998).  

Briefly, LPHM was washed in ddH2O (100 mL/g) for 120 h while shaking, spun down 

by centrifugation, and the supernatant was discarded.  The clay was resuspended in 

ddH2O, and CP was added based on the estimated cation exchange capacity (CEC) for 

LPHM (90 cmolcharge/kg of clay, obtained from the provider).  The clays were allowed to 

exchange for 24 h, followed by centrifugation and disposal of the supernatant.  The 

exchanged clay was then washed in ddH2O for an additional 24 h, spun down, dried, 

ground, and sieved to obtain particles <45 µm.   
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3.1.3 Preparation of CP-LPHM/sand and CP-LPHM/GAC   

The methods for producing sand- and GAC-immobilized CP-LPHM composites 

were based on those described by Huebner et al. (2000) and Ake et al. (2001).  Briefly, a 

3% sodium carboxymethylcellulose (Na-CMC) solution was converted to the free acid 

form (H-CMC) by cation-exchange using a modification of the procedure of Dieckman 

et al. (1953) which has been previously reported (Ake et al., 2001).  Formulations were 

based on the stoichiometry of active produce (i.e., CP-LPHM) to solid support (i.e., 

GAC or sand), and were produced by adding 1.5, 3, 6, and 15 g CP-LPHM to a 30 g 

GAC:30 mL H-CMC slurry to yield a produce of 1:20, 1:10, 1:5, and 1:2 g (w/w), 

respectively.  An additional 3 part to 2 part GAC formulation (3:2 CP-LPHM/GAC) was 

produced by adding 45 g CP-LPHM to a 30 g GAC:60 mL H-CMC slurry.  Sand-

immobilized CP-LPHM (CP-LPHM/sand) was produced by adding 45 g CP-LPHM to a 

120 g sand:60 mL H-CMC slurry.  After thorough mixing, the composites were dried for 

24 h at 105 ºC.  CP-LPHM/sand and the 3:2 CP-LPHM/GAC composites were then 

gently washed with ddH2O until loose CP-LPHM was removed, and subsequently air-

dried for 24 h.  CP-LPHM/sand was further ground and sieved to a particle size of <1 

mm prior to use.   

 

3.1.4 Preparation of reconstituted aqueous phase (RAP)   

A contaminated water supply designed to simulate conditions in situ was 

prepared for use in all laboratory experiments.  DNAPL was collected from a creosote-

contaminated Superfund site in the northwestern U.S.  To determine the appropriate 
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length of time necessary for the solution to equilibrate prior to use, 50 µL DNAPL was 

suspended in 15 mL ddH2O, agitated for 10 s, and stored in the absence of light for 1, 2, 

4, 16, 24, 48, or 72 h, or 6 days.  For analysis, 13 mL of the resulting ddH2O was passed 

through an in-line pair of preconditioned Porapak® RDX Sep-Pak® and Sep-Pak® tC18 

Environmental cartridges via mild suction.  Contaminants were eluted from each 

cartridge separately using 3 mL of 1:1 CH3OH:CH2Cl2, and eluates were combined for 

each sample.  Combined eluates were then passed through 10 g of pre-dried (400 ºC for 

24 h) Na2SO4 into graduated conical test tubes, evaporated under N2 to approximately 

0.5 mL, and quantitatively transferred to pre-cleaned amber vials (final volume 2 mL).  

Analyte concentrations were determined by GC/MS based on retention times and spectra 

of authentic standards.  

 For bench filtration experiments, DNAPL was added to ddH2O in excess and the 

solution was agitated and allowed to equilibrate for 48 h at room temperature protected 

from light.  The equilibrated solution was filtered through a column of sand by gravity to 

remove any free phase oil droplets and/or particulate matter prior to use.  The filtered 

solution was then labeled with 14C-C5P to attain a response of approximately 200 dpm in 

0.5 mL diluted with 3.5 mL scintillation fluid as determined with a Tri-Carb 1600 Series 

Liquid Scintillation Analyzer (Packard, Downers Grove, IL).   

 

3.1.5 Filtration studies for 14C-C5P sorption   

Glass pipets (14.5 mm x 8 mm ID) were packed with silanized glass wool, 

followed by approximately 400 mg sand, 200 mg GAC or an equivalent volume of test 
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composite, and topped with approximately 400 mg sand.  14C-labeled RAP was passed 

through the test columns by gravity at a rate of approximately 2 mL/min.  Free 

radioactivity (0.5 mL eluate diluted with 3.5 mL scintillation fluid) was measured from 

eluates collected over various time intervals with a Tri-Carb 1600 Series Liquid 

Scintillation Analyzer (Packard, Downers Grove, IL).  Data was used to calculate bedlife 

and determine the breakthrough characteristics for each composite.   

 

3.1.6 Preparation of columns for field studies and sample collection   

Identical glass columns (20 cm x 2.5 cm ID) (BioRad Laboratories, Hercules, 

CA) were packed with composite sorbents and covered with sand and glass wool to fill 

the column.  In the first experiment, either 10 or 20 g of 1:20, 1:10, or 1:5 CP-

LPHM/GAC was added to each column, whereas, the second experiment utilized CP-

LPHM/sand and 3:2 CP-LPHM/GAC on an equivolume basis (11 mL; mass equivalence 

of 4 g 3:2 CP-LPHM/GAC or 13 g CP-LPHM/sand).  Control columns used to monitor 

untreated water were filled with sand and glass wool alone.  The sorbent columns were 

placed in-line using existing sample ports at the effluent of a 10,000 gal oil-water 

separator (OWS) housed inside a metal building on-site at a Superfund site in the 

northwestern U.S (Figure 20).  Untreated OWS effluent was filtered through the 

columns by gravity, and eluates were collected in 1 L amber Kimax bottles at various 

time points over 48 h.  Samples were collected continuously each hour for 7 h in the first 

experiment and at 0.6, 4.3, 10.1, 20.5, 26.4, 34.7, and 47.8 h in the second experiment.  

Eluate from the control column was collected at each time point and used to determine  
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Figure 20.  Schematic representation of the groundwater treatment facility used for field research.  Groundwater from the 
aquifer is pumped into the oil-water separator (OWS) (10,000 gal).  After separation, DNAPL is removed.  The aqueous phase 
is routed to two, parallel, fixed-film bioreactors (10,000 gal each) and then applied to on-site land treatment units. 
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the mean contaminant load of each of 40 principal hazardous constituents, including all 

16 PAHs identified in EPA Method 550, in untreated OWS effluent.  In experiments 

utilizing CP-LPHM/sand and 3:2 CP-LPHM/GAC, each composite was tested in 

triplicate (3 columns of equal volume) and the mean concentration of each of 40 

principal hazardous constituents was determined at each time point.  Only contaminants 

identified above quantitation limits in untreated OWS effluent were reported.   

 

3.1.7 Sample preparation and analysis   

Sample preparation was based on a modification of EPA Method 3535 B Solid 

Phase Extraction (USEPA, 1997).  Specifically, 2 mL of 1 N HCl was added to a 500 

mL portion of sample that was then passed through an in-line pair of Porapak® RDX Sep-

Pak® and Sep-Pak® tC18 Environmental cartridges under mild vacuum.  The cartridges 

were pre-conditioned with 15 mL CH3OH, followed by 30 mL ddH2O.  Contaminants 

were eluted from each cartridge separately using 3 mL of 1:1 CH3OH:CH2Cl2, and 

eluates were combined for each sample.  Combined eluates were then passed through 10 

g of pre-dried (400 ºC for 24 h) Na2SO4 into graduated conical test tubes, evaporated 

under N2 to approximately 2 mL, and quantitatively transferred to pre-cleaned amber 

vials (final volume 5 mL).   

 

3.1.8 GC/MS analysis  

Analyte concentrations were determined quantitatively by GC/MS using a 

Hewlett Packard 5890 GC equipped with an HP 5972 MS engine.  Analytical 
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methodology was based upon EPA Method 8270B (USEPA, 1997).  Samples (2 µl) were 

introduced via heated injection port (300 ºC) with an HP 7673 autosampler.  An HP5-ms 

bonded stationary phase capillary column (30 m x 0.25 mm I.D.) with a film thickness of 

0.25 µm was used.  The oven temperature program was as follows:  initial oven 

temperature at 35 ºC for 6 min; to 300 ºC at 5 ºC/min; hold 300 ºC for 20 min.  Transfer 

line temperature was 280 ºC.  Helium was used as the carrier gas 0.75 mL/min.  A mass 

selective detector was used in selected ion mode with an ionization energy of 70 eV and 

an ion source temperature of 180 ºC.  Identification and quantitation of analytes was 

based on retention times and spectra as compared to those of authentic standards 

(minimum quantitation limit of 10 ng/L).  Data were analyzed with HP MS ChemStation 

Data Acquisition software. 

 

3.2 Results  

3.2.1 Development of 14C-labeled RAP 

 A contaminated water supply was prepared in-house and served to simulate 

conditions in situ for bench experiments.  DNAPL was suspended in ddH2O for time 

periods ranging from 1 h to 6 days and the resulting reconstituted aqueous phase (RAP) 

was extracted to determine PAH content.  After all time periods, aqueous solution 

contained high concentrations of PAHs.  Therefore 48 h was randomly selected as the 

equilibration time period used for the bench studies (data not shown).  A 500 mL portion 

of sand-filtered RAP used for all bench experiments (prior to addition of the radiolabel) 
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was analyzed by GC/MS to confirm that the solution was representative of on-site 

conditions where high concentrations of C5P and PAHs predominate (Figure 21).   

 

3.2.2 Bench studies 

 Initially, CP-LPHM/sand, and 1:10, 1:2, and 3:2 CP-LPHM/GAC removed 

>90% of 14C-C5P from RAP (Figure 22).  After continuous contaminant loading 

throughout the course of the experiment, the removal of 14C-C5P by both 1:10 and 1:2 

CP-LPHM/GAC decreased to 55 and 67%, respectively, whereas both CP-LPHM/sand 

and 3:2 CP-LPHM/GAC steadily removed 86 and 80% of the contaminant, respectively.  

Overall, the least effective sorbent was 1:20 CP-LPHM/GAC which removed only 75% 

initially, achieved 50% breakthrough for the removal of 14C-C5P after 150 mL of elution, 

and continued to remove only 35% of the contaminant following continuous elution of 

500 mL through a 200 mg volume.   

 

3.2.3 Field studies:  effect of amount of organoclay 

 To test the relationship between the amount of organoclay on a solid support 

versus contaminant removal, three composites that performed well in the laboratory (i.e., 

1:20, 1:10, and 1:5 CP-LPHM/GAC) were field-tested.  Flow rates for all composite 

columns were adjusted with stopcocks at the base of the column and hose clamps on the 

tubing lines at the top to allow for a total volume of approximately 7 L over 7 h for each 

column of test material.  The average flow rate was calculated to be 16.4 ± 0.9 mL/min.   

A total of 40 principal hazardous constituents, including all 16 PAHs identified in EPA
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Figure 21.  Representative GC/MS chromatogram of the reconstituted aqueous phase (RAP) used in all bench experiments.  
Inset lists retention times and concentrations of C5P and PAHs in the chromatogram. 
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7000000 
Compound Retention 

Time (min) 
Concentration 

(ng/L) 
C5P 23.81 2,417,312
Naphthalene 13.52 982,467
Acenaphthalene 18.78 11,142
Acenaphthene 19.40 31,773
Fluorene 21.17 18,611
Phenanthrene 24.45 32,466
Anthracene 24.58 13,452
Fluoranthene 28.56 3,742
Pyrene 29.33 2,048
Benz[a]anthracene 33.41 BDL
Chrysene 33.52 191
Benzo[b]fluoranthene 36.91 52
Benzo[k]fluoranthene 36.95 22
Benzo[a]pyrene 38.01 11
Indeno[1,2,3-c,d]pyrene 42.63 7
Dibenz[a,h]anthracene 42.70 BDL
Benzo[g,h,i]perylene 43.92 4
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Figure 22.  Comparison of various composite sorbents for removal of 14C-C5P from 
complex aqueous solution.  Graph shows 14C-C5P remaining in solution (normalized to 
untreated control solution) ± SE following elution of aqueous 14C-labeled reconstituted 
aqueous phase (RAP) through equivalent bed volumes of sorbent (equal to 200 mg GAC). 
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Method 550, were quantified in both untreated and composite-treated OWS samples.  

However, only contaminants present above quantitation limits (10 ng/L) in untreated 

OWS effluent controls have been reported here.   

In untreated OWS effluent, GC/MS analysis showed that the contaminant present 

in the greatest concentration was C5P (984,211 ± 343,040 ng/L), followed by 

phenanthrene (786,367 ± 243,369 ng/L), C2-substituted naphthalenes (561,967 ± 

161,058 ng/L), C1-substituted naphthalenes (480,733 ± 125,022 ng/L), and naphthalene 

477,500 ± 86,567 ng/L) (Tables 2 to 7).  Other contaminants present in substantial 

amounts were C3-substituted naphthalenes (394,900 ± 114,806 ng/L), acenaphthene 

(304,567 ± 68,741 ng/L), C1-substituted phenanthrene/anthracenes (258,900 ± 74,852 

ng/L), fluorene (249,967 ± 65,828 ng/L), fluoranthene (244,100 ± 74,606 ng/L), C4-

substituted naphthalenes (235,533 ± 68,838 ng/L), and anthracene (232,733 ± 65,232 

ng/L).  The total contaminant load of carcinogenic PAHs (benz[a]anthracene, chrysene, 

benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-c,d]pyrene, 

and dibenz[a,h]anthracene) was  130,178 ± 45,555 ng/L, while the total PAH 

contaminant load was 5,919,528 ± 1,651,969 ng/L.    

Effluent that was eluted through each composite sorbent was collected over every  

hour for 7 h throughout this portion of the study.  Breakthrough was not achieved for any 

contaminant investigated, therefore, for clarity of data, only the results for those samples 

collected during the final time interval have been presented (Tables 2 to 7).  Elution 

through either 10 or 20 g of 1:20, 1:10, or 1:5 CP-LPHM/GAC reduced almost all  
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Table 2 
Principal hazardous constituent (PHC) concentrations in untreated OWS effluent and 
OWS effluent after 7 h of continuous elution through 10 g of 1:20 CP-LPHM/GAC 

a Values represent average contaminant concentrations ± SE of 3-500 mL samples obtained at 
regular intervals during continuous elution over the course of 7 h. 
b Values represent contaminant concentrations of 500 mL after 7 h of continuous elution.  
c Values represent the percent reduction of contaminant concentration in treated effluent as 
compared to untreated effluent. 
 
 

 
 
 
PHCs 

 
Average PHC concentration 
in untreated OWS effluent 

(ng/L)a 

PHC 
concentration in 

treated OWS 
effluent (ng/L)b 

 
Percent 

reduction 
of PHCsc 

C5P 984,211 ± 343,040 35,100 96 
Naphthalene 477,500 ± 86,567 BDL >99 
C1-naphthalenes 480,733 ± 125,022 BDL >99 
C2-naphthalenes 561,967 ± 161,058 BDL >99 
C3-naphthalenes 394,900 ± 114,806 BDL >99 
C4-naphthalenes 235,533 ± 68,838 BDL >99 
1,1’-Biphenyl 95,767 ± 23,748 BDL >99 
Acenaphthalene 2,823 ± 575 BDL >99 
Acenaphthene 304,567 ± 68,741 BDL >99 
Fluorene 249,967 ± 65,828 BDL >99 
C1-fluorenes 100,433 ± 27,824 BDL >99 
C2-fluorenes 113,467 ± 29,927 BDL >99 
Anthracene 232,733 ± 65,232 101 >99 
Phenanthrene 786,367 ± 243,369 22 >99 
C1-phenanthrene/anthracene 258,900 ± 74,852 BDL >99 
C2-phenanthrene/anthracene 150,233 ± 43,164 BDL >99 
Dibenzothiophene 113,900 ± 31,141 BDL >99 
Fluoranthene 244,100 ± 74,606 16 >99 
Pyrene 181,967 ± 58,329 21 >99 
C1-fluoranthenes/pyrenes 59,333 ± 18,562 63 >99 
Benz[a]anthracene 35,400 ± 11,405 BDL >99 
Chrysene 29,033 ± 9,153 BDL >99 
C1-chrysenes 13,297 ± 3,919 BDL >99 
Benzo[b]fluoranthene 21,300 ± 7,617 BDL >99 
Benzo[k]fluoranthene 20,833 ± 7,670 BDL >99 
Benzo[e]pyrene 8,573 ± 3,257 BDL >99 
Benzo[a]pyrene 17,743 ± 6,959 BDL >99 
Perylene 3,230 ± 1,296 BDL >99 
Indeno[1,2,3-c,d]pyrene 4,403 ± 2,017 BDL >99 
Dibenz[a,h]anthracene 1,464 ± 2,017 BDL >99 
Benzo[g,h,i]perylene 2,530 ± 1,259 BDL >99 
Total PAHs  5,919,528 ± 1,651,969 222 >99 
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Table 3 
Principal hazardous constituent (PHC) concentrations in untreated OWS effluent and 
OWS effluent after 7 h of continuous elution through 20 g of 1:20 CP-LPHM/GAC 

a Values represent average contaminant concentrations ± SE of 3-500 mL samples obtained at 
regular intervals during continuous elution over the course of 7 h. 
b Values represent contaminant concentrations of 500 mL after 7 h of continuous elution.  
c Values represent the percent reduction of contaminant concentration in treated effluent as 
compared to untreated effluent. 
 
 

 
 
 
PHCs 

 
Average PHC concentration 
in untreated OWS effluent 

(ng/L)a 

PHC 
concentration in 

treated OWS 
effluent (ng/L)b 

 
Percent 

reduction 
of PHCsc 

C5P 984,211 ± 343,040 35,400 96 
Naphthalene 477,500 ± 86,567 BDL >99 
C1-naphthalenes 480,733 ± 125,022 BDL >99 
C2-naphthalenes 561,967 ± 161,058 BDL >99 
C3-naphthalenes 394,900 ± 114,806 BDL >99 
C4-naphthalenes 235,533 ± 68,838 BDL >99 
1,1’-Biphenyl 95,767 ± 23,748 BDL >99 
Acenaphthalene 2,823 ± 575 BDL >99 
Acenaphthene 304,567 ± 68,741 BDL >99 
Fluorene 249,967 ± 65,828 BDL >99 
C1-fluorenes 100,433 ± 27,824 BDL >99 
C2-fluorenes 113,467 ± 29,927 BDL >99 
Anthracene 232,733 ± 65,232 101 >99 
Phenanthrene 786,367 ± 243,369 30 >99 
C1-phenanthrene/anthracene 258,900 ± 74,852 BDL >99 
C2-phenanthrene/anthracene 150,233 ± 43,164 BDL >99 
Dibenzothiophene 113,900 ± 31,141 BDL >99 
Fluoranthene 244,100 ± 74,606 24 >99 
Pyrene 181,967 ± 58,329 54 >99 
C1-fluoranthenes/pyrenes 59,333 ± 18,562 55 >99 
Benz[a]anthracene 35,400 ± 11,405 13 >99 
Chrysene 29,033 ± 9,153 23 >99 
C1-chrysenes 13,297 ± 3,919 BDL >99 
Benzo[b]fluoranthene 21,300 ± 7,617 BDL >99 
Benzo[k]fluoranthene 20,833 ± 7,670 BDL >99 
Benzo[e]pyrene 8,573 ± 3,257 BDL >99 
Benzo[a]pyrene 17,743 ± 6,959 BDL >99 
Perylene 3,230 ± 1,296 BDL >99 
Indeno[1,2,3-c,d]pyrene 4,403 ± 2,017 BDL >99 
Dibenz[a,h]anthracene 1,464 ± 2,017 BDL >99 
Benzo[g,h,i]perylene 2,530 ± 1,259 BDL >99 
Total PAHs  5,919,528 ± 1,651,969 298 >99 
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Table 4 
Principal hazardous constituent (PHC) concentrations in untreated OWS effluent and 
OWS effluent after 7 h of continuous elution through 10 g of 1:10 CP-LPHM/GAC 

a Values represent average contaminant concentrations ± SE of 3-500 mL samples obtained at 
regular intervals during continuous elution over the course of 7 h. 
b Values represent contaminant concentrations of 500 mL after 7 h of continuous elution.  
c Values represent the percent reduction of contaminant concentration in treated effluent as 
compared to untreated effluent. 
 
 

 
 
 
PHCs 

 
Average PHC concentration 
in untreated OWS effluent 

(ng/L)a 

PHC 
concentration in 

treated OWS 
effluent (ng/L)b 

 
Percent 

reduction 
of PHCsc 

C5P 984,211 ± 343,040 231,000 77 
Naphthalene 477,500 ± 86,567 BDL >99 
C1-naphthalenes 480,733 ± 125,022 BDL >99 
C2-naphthalenes 561,967 ± 161,058 BDL >99 
C3-naphthalenes 394,900 ± 114,806 BDL >99 
C4-naphthalenes 235,533 ± 68,838 BDL >99 
1,1’-Biphenyl 95,767 ± 23,748 23 >99 
Acenaphthalene 2,823 ± 575 272 90 
Acenaphthene 304,567 ± 68,741 3,520 99 
Fluorene 249,967 ± 65,828 203 >99 
C1-fluorenes 100,433 ± 27,824 567 >99 
C2-fluorenes 113,467 ± 29,927 BDL >99 
Anthracene 232,733 ± 65,232 1,470 >99 
Phenanthrene 786,367 ± 243,369 53 >99 
C1-phenanthrene/anthracene 258,900 ± 74,852 1,120 >99 
C2-phenanthrene/anthracene 150,233 ± 43,164 1,210 >99 
Dibenzothiophene 113,900 ± 31,141 301 >99 
Fluoranthene 244,100 ± 74,606 2,560 99 
Pyrene 181,967 ± 58,329 1,770 99 
C1-fluoranthenes/pyrenes 59,333 ± 18,562 656 99 
Benz[a]anthracene 35,400 ± 11,405 391 99 
Chrysene 29,033 ± 9,153 296 99 
C1-chrysenes 13,297 ± 3,919 BDL >99 
Benzo[b]fluoranthene 21,300 ± 7,617 BDL >99 
Benzo[k]fluoranthene 20,833 ± 7,670 BDL >99 
Benzo[e]pyrene 8,573 ± 3,257 BDL >99 
Benzo[a]pyrene 17,743 ± 6,959 BDL >99 
Perylene 3,230 ± 1,296 BDL >99 
Indeno[1,2,3-c,d]pyrene 4,403 ± 2,017 BDL >99 
Dibenz[a,h]anthracene 1,464 ± 2,017 BDL >99 
Benzo[g,h,i]perylene 2,530 ± 1,259 BDL >99 
Total PAHs  5,919,528 ± 1,651,969 17,800 >99 
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Table 5 
Principal hazardous constituent (PHC) concentrations in untreated OWS effluent and 
OWS effluent after 7 h of continuous elution through 20 g of 1:10 CP-LPHM/GAC 

a Values represent average contaminant concentrations ± SE of 3-500 mL samples obtained at 
regular intervals during continuous elution over the course of 7 h. 
b Values represent contaminant concentrations of 500 mL after 7 h of continuous elution.  
c Values represent the percent reduction of contaminant concentration in treated effluent as 
compared to untreated effluent. 
 
 

 
 
 
PHCs 

 
Average PHC concentration 
in untreated OWS effluent 

(ng/L)a 

PHC 
concentration in 

treated OWS 
effluent (ng/L)b 

 
Percent 

reduction 
of PHCsc 

C5P 984,211 ± 343,040 12,600 99 
Naphthalene 477,500 ± 86,567 6,330 99 
C1-naphthalenes 480,733 ± 125,022 1,250 >99 
C2-naphthalenes 561,967 ± 161,058 966 >99 
C3-naphthalenes 394,900 ± 114,806 1,120 >99 
C4-naphthalenes 235,533 ± 68,838 968 >99 
1,1’-Biphenyl 95,767 ± 23,748 94 >99 
Acenaphthalene 2,823 ± 575 BDL >99 
Acenaphthene 304,567 ± 68,741 464 >99 
Fluorene 249,967 ± 65,828 374 >99 
C1-fluorenes 100,433 ± 27,824 BDL >99 
C2-fluorenes 113,467 ± 29,927 BDL >99 
Anthracene 232,733 ± 65,232 602 >99 
Phenanthrene 786,367 ± 243,369 1,510 >99 
C1-phenanthrene/anthracene 258,900 ± 74,852 392 >99 
C2-phenanthrene/anthracene 150,233 ± 43,164 439 >99 
Dibenzothiophene 113,900 ± 31,141 258 >99 
Fluoranthene 244,100 ± 74,606 342 >99 
Pyrene 181,967 ± 58,329 1,060 >99 
C1-fluoranthenes/pyrenes 59,333 ± 18,562 409 >99 
Benz[a]anthracene 35,400 ± 11,405 97 >99 
Chrysene 29,033 ± 9,153 142 >99 
C1-chrysenes 13,297 ± 3,919 BDL >99 
Benzo[b]fluoranthene 21,300 ± 7,617 BDL >99 
Benzo[k]fluoranthene 20,833 ± 7,670 BDL >99 
Benzo[e]pyrene 8,573 ± 3,257 BDL >99 
Benzo[a]pyrene 17,743 ± 6,959 BDL >99 
Perylene 3,230 ± 1,296 BDL >99 
Indeno[1,2,3-c,d]pyrene 4,403 ± 2,017 BDL >99 
Dibenz[a,h]anthracene 1,464 ± 2,017 BDL >99 
Benzo[g,h,i]perylene 2,530 ± 1,259 BDL >99 
Total PAHs  5,919,528 ± 1,651,969 17,640 >99 
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Table 6 
Principal hazardous constituent (PHC) concentrations in untreated OWS effluent and 
OWS effluent after 7 h of continuous elution through 10 g of 1:5 CP-LPHM/GAC 

a Values represent average contaminant concentrations ± SE of 3-500 mL samples obtained at 
regular intervals during continuous elution over the course of 7 h. 
b Values represent contaminant concentrations of 500 mL after 7 h of continuous elution.  
c Values represent the percent reduction of contaminant concentration in treated effluent as 
compared to untreated effluent. 
 
 

 
 
 
PHCs 

 
Average PHC concentration 
in untreated OWS effluent 

(ng/L)a 

PHC 
concentration in 

treated OWS 
effluent (ng/L)b 

 
Percent 

reduction 
of PHCsc 

C5P 984,211 ± 343,040 68,900 93 
Naphthalene 477,500 ± 86,567 295 >99 
C1-naphthalenes 480,733 ± 125,022 203 >99 
C2-naphthalenes 561,967 ± 161,058 1010 >99 
C3-naphthalenes 394,900 ± 114,806 2190 >99 
C4-naphthalenes 235,533 ± 68,838 1590 >99 
1,1’-Biphenyl 95,767 ± 23,748 38 >99 
Acenaphthalene 2,823 ± 575 145 95 
Acenaphthene 304,567 ± 68,741 1540 >99 
Fluorene 249,967 ± 65,828 120 >99 
C1-fluorenes 100,433 ± 27,824 218 >99 
C2-fluorenes 113,467 ± 29,927 375 >99 
Anthracene 232,733 ± 65,232 626 >99 
Phenanthrene 786,367 ± 243,369 329 >99 
C1-phenanthrene/anthracene 258,900 ± 74,852 655 >99 
C2-phenanthrene/anthracene 150,233 ± 43,164 601 >99 
Dibenzothiophene 113,900 ± 31,141 26 >99 
Fluoranthene 244,100 ± 74,606 1350 >99 
Pyrene 181,967 ± 58,329 888 >99 
C1-fluoranthenes/pyrenes 59,333 ± 18,562 320 >99 
Benz[a]anthracene 35,400 ± 11,405 200 >99 
Chrysene 29,033 ± 9,153 184 >99 
C1-chrysenes 13,297 ± 3,919 BDL >99 
Benzo[b]fluoranthene 21,300 ± 7,617 BDL >99 
Benzo[k]fluoranthene 20,833 ± 7,670 BDL >99 
Benzo[e]pyrene 8,573 ± 3,257 BDL >99 
Benzo[a]pyrene 17,743 ± 6,959 BDL >99 
Perylene 3,230 ± 1,296 BDL >99 
Indeno[1,2,3-c,d]pyrene 4,403 ± 2,017 BDL >99 
Dibenz[a,h]anthracene 1,464 ± 2,017 BDL >99 
Benzo[g,h,i]perylene 2,530 ± 1,259 BDL >99 
Total PAHs  5,919,528 ± 1,651,969 14,900 >99 
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Table 7 
Principal hazardous constituent (PHC) concentrations in untreated OWS effluent and 
OWS effluent after 7 h of continuous elution through 20 g of 1:5 CP-LPHM/GAC 

a Values represent average contaminant concentrations ± SE of 3-500 mL samples obtained at 
regular intervals during continuous elution over the course of 7 h. 
b Values represent contaminant concentrations of 500 mL after 7 h of continuous elution.  
c Values represent the percent reduction of contaminant concentration in treated effluent as 
compared to untreated effluent. 
 
 

 
 
 
PHCs 

 
Average PHC concentration 
in untreated OWS effluent 

(ng/L)a 

PHC 
concentration in 

treated OWS 
effluent (ng/L)b 

 
Percent 

reduction 
of PHCsc 

C5P 984,211 ± 343,040 BDL >99 
Naphthalene 477,500 ± 86,567 BDL >99 
C1-naphthalenes 480,733 ± 125,022 BDL >99 
C2-naphthalenes 561,967 ± 161,058 BDL >99 
C3-naphthalenes 394,900 ± 114,806 BDL >99 
C4-naphthalenes 235,533 ± 68,838 BDL >99 
1,1’-Biphenyl 95,767 ± 23,748 BDL >99 
Acenaphthalene 2,823 ± 575 BDL >99 
Acenaphthene 304,567 ± 68,741 BDL >99 
Fluorene 249,967 ± 65,828 BDL >99 
C1-fluorenes 100,433 ± 27,824 BDL >99 
C2-fluorenes 113,467 ± 29,927 BDL >99 
Anthracene 232,733 ± 65,232 BDL >99 
Phenanthrene 786,367 ± 243,369 BDL >99 
C1-phenanthrene/anthracene 258,900 ± 74,852 BDL >99 
C2-phenanthrene/anthracene 150,233 ± 43,164 BDL >99 
Dibenzothiophene 113,900 ± 31,141 BDL >99 
Fluoranthene 244,100 ± 74,606 172 >99 
Pyrene 181,967 ± 58,329 471 >99 
C1-fluoranthenes/pyrenes 59,333 ± 18,562 126 >99 
Benz[a]anthracene 35,400 ± 11,405 BDL >99 
Chrysene 29,033 ± 9,153 BDL >99 
C1-chrysenes 13,297 ± 3,919 BDL >99 
Benzo[b]fluoranthene 21,300 ± 7,617 BDL >99 
Benzo[k]fluoranthene 20,833 ± 7,670 BDL >99 
Benzo[e]pyrene 8,573 ± 3,257 BDL >99 
Benzo[a]pyrene 17,743 ± 6,959 BDL >99 
Perylene 3,230 ± 1,296 BDL >99 
Indeno[1,2,3-c,d]pyrene 4,403 ± 2,017 BDL >99 
Dibenz[a,h]anthracene 1,464 ± 2,017 BDL >99 
Benzo[g,h,i]perylene 2,530 ± 1,259 BDL >99 
Total PAHs  5,919,528 ± 1,651,969 769 >99 
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contaminants investigated in this study by ≥99%, including naphthalene, phenanthrene, 

anthracene, pyrene, fluorene, fluoranthene, and benzo[a]pyrene.  Many contaminants 

were below the limits of detection for the method and the total PAH contaminant load  

was reduced by ≥99% in all trials.  The only contaminant that was routinely detected in 

solution was C5P.  C5P was reduced by ≥90%, frequently by ≥99%, for all sorbents with 

the exception of 10 g of 1:10 CP-LPHM/GAC.  This composite formulation showed 

only a 77% reduction in C5P following 7 h of continuous elution (Table 4).  The extent 

of contaminant removal in the treated OWS effluent is further illustrated by 

representative GC/MS chromatograms of both untreated OWS effluent and eluate from a 

column of 10 g of 1:10 CP-LPHM/GAC (Figure 23).   

 

3.2.4 Field studies:  effect of solid support matrix 

 To test the contribution of the solid support matrix, two composites containing a 

maximum amount of organoclay in equivolume amounts were field-tested, 3:2 CP-

LPHM/GAC and CP-LPHM/sand.  In this study, contaminants present in the greatest 

concentrations in untreated OWS effluent C5P (2,332,529 ± 174,708 ng/L), followed by 

naphthalene (367,457 ± 53,400 ng/L), and C1-substituted naphthalenes (126,157 ± 

16,694 ng/L) (Tables 8 to 11).  Other contaminants present in substantial amounts were 

benzothiophene (91,843 ± 11,592 ng/L), carbazole (57,057 ± 6,688 ng/L), acenaphthene 

(45,886 ± 6,043 ng/L), C2-substituted naphthalenes (31,886 ± 4,772 ng/L), C1-

substituted benzothiophenes (25,471 ± 3,520 ng/L), and dibenzofuran (25,340 ± 3,612 
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Figure 23.  Representative GC/MS chromatograms of untreated OWS effluent and OWS effluent eluted through 10 g of 1:10 
CP-LPHM/GAC.  Top:  untreated OWS effluent.  Bottom:  OWS effluent eluted through 10 g of 1:10 CP-LPHM/GAC.  Inset 
lists PAHs and their approximate retention times in the chromatograms.   
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Compound Retention 
Time (min) 

Naphthalene 8.87 
Acenaphthalene 14.15 
Acenaphthene 14.78 
Fluorene 16.62 
Phenanthrene 19.99 
Anthracene 20.18 
Fluoranthene 24.24 
Pyrene 25.01 
Benz[a]anthracene 29.35 
Chrysene 29.47 
Benzo[b]fluoranthene 32.93 
Benzo[k]fluoranthene 33.02 
Benzo[a]pyrene 33.90 
Indeno[1,2,3-c,d]pyrene 37.13 
Dibenz[a,h]anthracene 37.24 
Benzo[g,h,i]perylene 37.92 
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Table 8 
Principal hazardous constituent (PHC) concentrations in untreated OWS effluent and 
OWS effluent eluted through 3:2 CP-LPHM/GAC 

a Values represent average contaminant concentrations ± SE of 7-500 mL samples 
obtained at regular intervals of continuous elution over the course of 48 h. 
b Values represent average contaminant concentrations ± SE of 3-500 mL collected at the 
initial time point (1 h) of the experiment. 
c Values represent the percent reduction of contaminant concentration in treated effluent 
as compared to untreated effluent. 
 
 

 

 
 
 
PHCs 

Average PHC 
concentration in 

untreated OWS effluent 
(ng/L)a 

 
Average PHC 

concentration in treated 
OWS effluent (ng/L)b  

 
Percent 

reduction 
of PHCsc 

C5P 2,332,529 ± 174,708 2,150 ± 618 >99 
Naphthalene 367,457 ± 53,400 143,333 ± 39,751 61 
C1-naphthalenes 126,157 ± 16,694 7,660 ± 717 94 
C2-naphthalenes 31,886 ± 4,772 1,127 ± 1,127 96 
Benzothiophene 91,843 ± 11,592 23,233 ± 2,326 75 
C1-Benzothiophene 25,471 ± 3,520 3,823 ± 301 85 
C2-Benzothiophene 14,943 ± 1,985 2,593 ± 245 83 
C3-Benzothiophene 4,711 ± 773 1,150 ± 86 76 
Biphenyl 16,885 ± 2,404 467 ± 46 97 
Acenaphthalene 2,047 ± 472 601 ± 268 71 
Acenaphthene 45,886 ± 6,043 2,037 ± 158 96 
Dibenzofuran 25,340 ± 3,612 326 ± 51 99 
Fluorene 21,353 ± 3,129 208 ± 23 99 
Carbazole 57,057 ± 6,688 403 ± 96 99 
Anthracene 6,250 ± 936 248 ± 22 96 
Phenanthrene 16,731 ± 3,268 76 ± 31 >99 
C1-phenanthrenes/ 
Anthracenes 

1,621 ± 443 24 ± 16 99 

Dibenzothiophene 3,034 ± 797 154 ± 14 95 
Fluoranthene 1,280 ± 489 25 ± 15 98 
Pyrene 886 ± 416 23 ± 13 97 
C1-fluoranthenes/ 
Pyrenes 

206 ± 128 <13   >99 

Benz[a]anthracene 114 ± 83 3 ± 2 97 
Chrysene 104 ± 87 4 ± 2 96 
Total PAHs  3,201,515 ± 254,840 189,668 ± 43,137 94 
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Table 9 
Principal hazardous constituent (PHC) concentrations in untreated OWS effluent and 
OWS effluent after 48 h of continuous elution through 3:2 CP-LPHM/GAC 

a Values represent average contaminant concentrations ± SE of 7-500 mL samples 
obtained at regular intervals over the course of 48 h. 
b Values represent average contaminant concentrations ± SE of 3-500 mL samples 
collected at the final time point (48 h) of the experiment.  
c Values represent the percent reduction of contaminant concentration in treated effluent 
as compared to untreated effluent. 
 
 
 
 

 
 
 
PHCs 

Average PHC 
concentration in 

untreated OWS effluent 
(ng/L)a 

 
Average PHC 

concentration in treated 
OWS effluent (ng/L)b  

 
Percent 

reduction 
of PHCsc 

C5P 2,332,529 ± 174,708 2,568,600 ± 162,243 <1 
Naphthalene 367,457 ± 53,400 480,300 ± 56,458 <1 
C1-naphthalenes 126,157 ± 16,694 111,533 ± 4,259 12 
C2-naphthalenes 31,886 ± 4,772 19,933 ± 1,122 37 
Benzothiophene 91,843 ± 11,592 85,400 ± 7,649 7 
C1-Benzothiophene 25,471 ± 3,520 12,488 ± 6,114 51 
C2-Benzothiophene 14,943 ± 1,985 9,760 ± 170 35 
C3-Benzothiophene 4,711 ± 773 2,453 ± 141 48 
Biphenyl 16,885 ± 2,404 11,567 ± 491 31 
Acenaphthalene 2,047 ± 472 1,979 ± 646 3 
Acenaphthene 45,886 ± 6,043 35,300 ± 1,069 23 
Dibenzofuran 25,340 ± 3,612 14,467 ± 470 43 
Fluorene 21,353 ± 3,129 10,030 ± 589 53 
Carbazole 57,057 ± 6,688 24,200 ± 2,751 58 
Anthracene 6,250 ± 936 2,017 ± 135 68 
Phenanthrene 16,731 ± 3,268 1,153 ± 239 93 
C1-phenanthrenes/ 
anthracenes 

1,621 ± 443 215 ± 417 87 

Dibenzothiophene 3,034 ± 797 1,044 ± 173 66 
Fluoranthene 1,280 ± 489 26 ± 6 98 
Pyrene 886 ± 416 42 ± 21 95 
C1-fluoranthenes/ 
pyrenes 

206 ± 128 11 ± 11 95 

Benz[a]anthracene 114 ± 83 7 ± 1 94 
Chrysene 104 ± 87 5 ± 1 95 
Total PAHs  3,201,515 ± 254,840 3,392,631 ± 216,713 <1 
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Table 10 
Principal hazardous constituent (PHC) concentrations in untreated OWS effluent and 
OWS effluent eluted through CP-LPHM/sand 

a Values represent average contaminant concentrations ± SE of 7-500 mL samples 
obtained at regular intervals over the course of 48 h. 
b Values represent average contaminant concentrations ± SE of 3-500 mL samples 
collected at the initial time point (1 h) of the experiment.  
c Values represent the percent reduction of contaminant concentration in treated effluent 
as compared to untreated effluent. 
 
 
 
 

 
 
 
PHCs 

Average PHC 
concentration in 

untreated OWS effluent 
(ng/L)a 

 
Average PHC 

concentration in treated 
OWS effluent (ng/L)b 

 
Percent 

reduction 
of PHCsc 

C5P 2,332,529 ± 174,708 244,033 ± 148,338 90 
Naphthalene 367,457 ± 53,400 108,967 ± 55,745 70 
C1-naphthalenes 126,157 ± 16,694 21,230 ± 7,412 83 
C2-naphthalenes 31,886 ± 4,772 4,090 ± 1,205 87 
Benzothiophene 91,843 ± 11,592 37,967 ± 10,177 89 
C1-Benzothiophene 25,471 ± 3,520 7,167 ± 1,511 72 
C2-Benzothiophene 14,943 ± 1,985 3,483 ± 969 77 
C3-Benzothiophene 4,711 ± 773 827 ± 263 82 
Biphenyl 16,885 ± 2,404 1,906 ± 674 89 
Acenaphthalene 2,047 ± 472 2,900 ± 617 <1 
Acenaphthene 45,886 ± 6,043 6,943 ± 2,072 85 
Dibenzofuran 25,340 ± 3,612 1,708 ± 713 93 
Fluorene 21,353 ± 3,129 1,286 ± 527 94 
Carbazole 57,057 ± 6,688 5,963 ± 2,641 90 
Anthracene 6,250 ± 936 1,208 ± 570 81 
Phenanthrene 16,731 ± 3,268 756 ± 369 95 
C1-phenanthrenes/ 
anthracenes 

1,621 ± 443 201 ± 77 88 

Dibenzothiophene 3,034 ± 797 222 ± 70 93 
Fluoranthene 1,280 ± 489 74 ± 29 94 
Pyrene 886 ± 416 61 ± 23 93 
C1-fluoranthenes/ 
pyrenes 

206 ± 128 31 ± 12 85 

Benz[a]anthracene 114 ± 83 9 ± 3 92 
Chrysene 104 ± 87 6 ± 2 94 
Total PAHs  3,201,515 ± 254,840 455,871 ± 230,996 86 



 

 

122

Table 11 
Principal hazardous constituent (PHC) concentrations in untreated OWS effluent and 
OWS effluent after 48 h of continuous elution through CP-LPHM/sand 

a Values represent average contaminant concentrations ± SE of 7-500 mL samples 
obtained at regular intervals over the course of 48 h. 
b Values represent average contaminant concentrations ± SE of 3-500 mL samples 
collected at the final time point (48 h) of the experiment.  
c Values represent the percent reduction of contaminant concentration in treated effluent 
as compared to untreated effluent. 
 

 

 
 
 
PHCs 

Average PHC 
concentration in 

untreated OWS effluent 
(ng/L)a 

 
Average PHC 

concentration in treated 
OWS effluent (ng/L)b  

 
Percent 

reduction 
of PHCsc 

C5P 2,332,529 ± 174,708 2,033,733 ± 33,361 13 
Naphthalene 367,457 ± 53,400 422,300 ± 112,856 <1 
C1-naphthalenes 126,157 ± 16,694 68,200 ± 5,543 46 
C2-naphthalenes 31,886 ± 4,772 13,550 ± 1,899 58 
Benzothiophene 91,843 ± 11,592 65,067 ± 9,947 29 
C1-Benzothiophene 25,471 ± 3,520 14,000 ± 1,266 45 
C2-Benzothiophene 14,943 ± 1,985 6,737 ± 282 55 
C3-Benzothiophene 4,711 ± 773 2,503  166 47 
Biphenyl 16,885 ± 2,404 7,093 ± 794 58 
Acenaphthalene 2,047 ± 472 2,195 ± 807 <1 
Acenaphthene 45,886 ± 6,043 24,000 ± 1,724 48 
Dibenzofuran 25,340 ± 3,612 9,070 ± 1,252 64 
Fluorene 21,353 ± 3,129 7,450 ± 1,506 65 
Carbazole 57,057 ± 6,688 16,900 ± 2,743 70 
Anthracene 6,250 ± 936 2,473 ± 444 60 
Phenanthrene 16,731 ± 3,268 4,232 ± 2,579 75 
C1-phenanthrenes/ 
anthracenes 

1,621 ± 443 513 ± 294 68 

Dibenzothiophene 3,034 ± 797 334 ± 207 89 
Fluoranthene 1,280 ± 489 323 ± 266 75 
Pyrene 886 ± 416 237 ± 199 73 
C1-fluoranthenes/ 
pyrenes 

206 ± 128 49 ± 49 76 

Benz[a]anthracene 114 ± 83 27 ± 19 76 
Chrysene 104 ± 87 23 ± 15 78 
Total PAHs  3,201,515 ± 254,840 2,702,032 ± 152,839 16 
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ng/L).  The total contaminant load of carcinogenic PAHs (benz[a]anthracene, chrysene, 

benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-c,d]pyrene, 

and dibenz[a,h]anthracene) was 49.8 ± 8.4 ng/L, although benzo[b]fluoranthene, 

benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-c,d]pyrene, and 

dibenz[a,h]anthracene were detected below quantitation limits.  The total PAH 

contaminant load was 3,201,515 ± 254,840 ng/L.    

 Although samples were collected at 7 time points throughout the study, to 

illustrate the effectiveness of these composite materials complete data for the initial (1 h) 

and final (48 h) time points has been presented.  Elution through 3:2 CP-LPHM/GAC 

initially reduced many contaminants by ≥90%, including biphenyl (467 ± 46 ng/L), 

acenaphthene (2,037 ± 158 ng/L), anthracene (248 ± 22 ng/L), dibenzothiophene (154 ± 

14 ng/L), fluoranthene (25 ± 15 ng/L), pyrene (23 ± 13 ng/L), benz[a]anthracene (3 ± 2 

ng/L), and chrysene (4 ± 2 ng/L), while several were reduced by ≥99%, including C5P 

(2,150 ± 618 ng/L), dibenzofuran (326 ± 51 ng/L), fluorene (208 ± 23 ng/L), carbazole 

(403 ± 96 ng/L), and phenanthrene (76 ± 31 ng/L) (Table 8).  After 48 h, some 

contaminants remained in column eluates, including naphthalene (143,333 ± 39,751 

ng/L), benzothiophene (23,233 ± 2,326 ng/L), and acenaphthalene (601 ± 268 ng/L).  

The total PAH contaminant load was reduced by 94% (189,668 ± 43,137 ng/L) (Table 

9). 

 Columns filled with CP-LPHM/sand were similarly effective, as elution through 

this composite reduced many of the same contaminants by ≥90%, including C5P 
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(244,033 ± 148,338 ng/L), dibenzofuran (1,708 ± 713 ng/L), fluorene (1,286 ± 527 

ng/L), carbazole (5,963 ± 2,641 ng/L), phenanthrene (756 ± 369 ng/L), 

dibenzothiophene (222 ± 70 ng/L), fluoranthene (74 ± 30 ng/L), pyrene (61 ± 23 ng/L), 

benz[a]anthracene (9 ± 3 ng/L), and chrysene (6 ± 2 ng/L) (Table 10).  Reduction of 

naphthalene (108,967 ± 55,745 ng/L), benzothiophene (37,967 ± 10,177 ng/L), biphenyl 

(1,906 ± 674 ng/L), acenaphthene (6,943 ± 2,072 ng/L), and anthracene (1,208 ± 570 

ng/L) was not as great.  The total PAH contaminant load was reduced by 86% (455,871 

± 230,996 ng/L).   

 Complete breakthrough of naphthalene occurred following approximately 15 h of 

elution through 3:2 CP-LPHM/GAC (Figure 24) and 22 h through CP-LPHM/sand 

(Figure 25).  C5P exhibited breakthrough following 18 h of elution through 3:2 CP-

LPHM/GAC (Figure 24) and 26 h through CP-LPHM/sand (Figure 25).  In contrast, 

higher molecular weight PAHs such as fluorene, phenanthrene, and pyrene, failed to 

attain even 50% breakthrough in either of the composite materials after 48 h (Tables 9 

and 11).  While both composites remained effective for reduction of higher molecular 

weight PAHs, they were less effective for removing those of lower molecular weight 

after 48 h of continuous elution.  At the end of the elution period, 3:2 CP-LPHM/GAC 

continued to show ≥90% reduction of fluoranthene (26 ± 6 ng/L), pyrene (42 ± 21 ng/L), 

benz[a]anthracene (7 ± 1 ng/L), and chrysene (5 ± 1 ng/L) (Table 9).  These same 

contaminants were reduced by 73 to 80% after 48 h of elution through CP-LPHM/sand 

(Table 11).  The extent of contamination that has been remediated in the treated OWS 

effluent can be further illustrated by GC/MS chromatograms of a representative  
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Figure 24.  Contaminants remaining in solution at selected time points over 48 h of 
continuous elution of OWS effluent through 3:2 CP-LPHM/GAC.  Values represent 
mean concentrations for 3 separate composite columns (normalized to untreated OWS 
effluent) ± SE. 
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Figure 25.  Contaminants remaining in solution at selected time points over 48 h of 
continuous elution of OWS effluent through CP-LPHM/sand.  Values represent mean 
concentrations for 3 separate composite columns (normalized to untreated OWS 
effluent) ± SE. 
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Figure 26.  Representative GC/MS chromatograms of untreated OWS effluent and OWS effluent eluted through 3:2 CP-
LPHM/GAC.  Top:  untreated OWS effluent.  Bottom:  OWS effluent eluted through 3:2 CP-LPHM/GAC.  Inset lists PAHs 
and their approximate retention times in the chromatograms.   

Time (min) 

Compound Retention 
Time (min) 

Naphthalene 8.87 
Acenaphthalene 14.15 
Acenaphthene 14.78 
Fluorene 16.62 
Phenanthrene 19.99 
Anthracene 20.18 
Fluoranthene 24.24 
Pyrene 25.01 
Benz[a]anthracene 29.35 
Chrysene 29.47 
Benzo[b]fluoranthene 32.93 
Benzo[k]fluoranthene 33.02 
Benzo[a]pyrene 33.90 
Indeno[1,2,3-c,d]pyrene 37.13 
Dibenz[a,h]anthracene 37.24 
Benzo[g,h,i]perylene 37.92 
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Figure 27.  Representative GC/MS chromatograms of untreated OWS effluent and OWS effluent eluted through CP-
LPHM/sand.  Top:  untreated OWS effluent.  Bottom:  OWS effluent eluted through CP-LPHM/sand.  Inset lists PAHs and 
their approximate retention times in the chromatogram.   

Time (min) 

Compound Retention 
Time (min) 

Naphthalene 8.87 
Acenaphthalene 14.15 
Acenaphthene 14.78 
Fluorene 16.62 
Phenanthrene 19.99 
Anthracene 20.18 
Fluoranthene 24.24 
Pyrene 25.01 
Benz[a]anthracene 29.35 
Chrysene 29.47 
Benzo[b]fluoranthene 32.93 
Benzo[k]fluoranthene 33.02 
Benzo[a]pyrene 33.90 
Indeno[1,2,3-c,d]pyrene 37.13 
Dibenz[a,h]anthracene 37.24 
Benzo[g,h,i]perylene 37.92 
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untreated OWS effluent sample versus eluate from a column of 3:2 CP-LPHM (Figure 

26) and from a column of CP-LPHM/sand (Figure 27).   

 The volume of composite-treated effluent was calculated to be 48.0 ± 2.9 L by 

CP-LPHM/sand and 51.8 ± 2.3 L by 3:2 CP-LPHM/GAC over the course of 48 h.  The 

average flow rate of OWS effluent was 20.4 ± 1.7 mL/min through CP-LPHM/sand, 22.0 

± 1.4 mL/min through 3:2 CP-LPHM/GAC, and 21.3 ± 2.2 mL/min through control 

columns filled with sand and glass wool alone.   

 

3.3 Discussion 

 This research focused on characterizing the effectiveness of various formulations 

of organoclay composite sorbents for PAH and C5P removal from creosote contaminated 

water.  Following preliminary laboratory characterization, field trials were carried out to 

further evaluate various factors in formulation on the overall composite performance.  

Initial controlled laboratory studies provided a rapid, small-scale indication of the large-

scale performance of each composite sorbent.  These studies utilized a 14C-labeled 

reconstituted aqueous phase (RAP) made from DNAPL that was collected from the same 

Superfund site where subsequent field studies were conducted.  Although the methods 

offered an indication of field performance, complete breakthrough of the contaminant 

was not achieved and analysis was limited to C5P alone.  Subsequent field studies, in 

which creosote-derived pollutants were filtered through fixed-bed columns by 

continuous gravity-flow elution, were selected to as the practical model of waste 

treatment conditions in the field (Jusoh et al., 2002).   
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 Small-scale bench studies indicated that composite sorbents ranging from 1:20 to 

3:2 g organoclay:GAC were effective to some extent in removing aqueous 14C-C5P from 

the complex RAP solution (Figure 22).  There was a positive relationship between the 

amount of organoclay bonded to GAC and the effectiveness of the composite to remove 

C5P from solution for all sorbents except 1:5 CP-LPHM/GAC, which was no more 

effective than 1:20 CP-LPHM/GAC.  Overall, CP-LPHM/sand and 3:2 CP-LPHM/GAC 

were shown to be the most effective sorbents.   

 In a comparative study, the effect of using GAC or sand as a solid support in 

organoclay composites was evaluated.  Both of these composites were formulated to 

contain a maximum yet equal amount of organoclay per unit volume.  GAC is the most 

commonly used porous media for the cleanup of contaminated water, notably for certain 

volatile organic compounds, pesticides, surfactants, and chlorinated compounds (Paune 

et al., 1998).  However, in the presence of natural organic matter GAC capacity and 

bedlife can be drastically decreased (Hopman et al., 1994).  Thus, multi-functional, 

porous composites of organoclay bonded to either GAC or inert sand as a solid support 

were designed to overcome these limitations.  Although 3:2 CP-LPHM/GAC was 

somewhat more effective than CP-LPHM/sand for the removal of higher molecular 

weight PAHs, the use of GAC as a solid support did not appear to provide a substantial 

added sorptive capacity over that of sand in either bench or field studies.     

 In field studies, a total of 40 principal hazardous constituents, including all 16 

priority PAHs identified by the U.S. EPA, were quantified in both untreated and 

composite-treated OWS samples.  Untreated control samples were collected by passing 
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OWS effluent through columns filled with sand and glass wool to filter out particulate 

matter and free phase oil droplets.  All sorbents outlined in this study were effective in 

the removal of C5P and PAHs from OWS effluent.  These findings were consistent with 

previous research which reported that organoclay-based composites have a high capacity 

for contaminants found in wood preserving waste (Ake et al., 2003).  Results showed 

that 1:20, 1:10 or 1:5 CP-LPHM/GAC frequently reduced contaminant concentrations in 

OWS effluent to levels below the limits of detection where they remained at the end of 

the experiment.  However, these sorbents were tested at 10 and 20 g amounts and for 

only 7 h of elution (Tables 2 to 7).  In contrast, 4 g of 3:2 CP-LPHM/GAC and 13 g of 

CP-LPHM/sand, designed to contain equal amounts of CP-LPHM per unit volume and 

packed into columns on an equivolume basis, remained quite effective for many 

contaminants following 48 h of continuous elution (Tables 9 and 11).  It should be noted 

that only contaminants present above the quantitation limit (10 ng/L) in concurrently 

collected untreated OWS effluent controls have been reported.   

 Complete breakthrough of both naphthalene and C5P occurred during the 48 h 

study of 3:2 CP-LPHM/GAC and CP-LPHM/sand (Figures 24 and 25).  In contrast, both 

sorbents were effective in preventing even 50% breakthrough of higher molecular weight 

PAHs such as fluorene, phenanthrene, and pyrene over the same time period (Tables 9 

and 11).  Thus, both composites decreased higher molecular weight PAHs with higher 

numbers of aromatic rings more readily than those with lower molecular weights.  This is 

of particular importance as those PAHs that have been indicated to be carcinogenic 

(benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, 
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benzo[a]pyrene, indeno[1,2,3-c,d]pyrene, and dibenz[a,h]anthracene) are also of high 

molecular weight.  However, many of these contaminants were present only in small 

amounts and were frequently below quantitation limits (10 ng/L) during field evaluation 

of CP-LPHM/sand and 3:2 CP-LPHM/GAC where breakthrough was most apparent.   

 The average flow rate of OWS effluent through 1:20, 1:10, and 1:5 CP-

LPHM/GAC was 16.4 ± 0.9 mL/min, and was 20.4 ± 1.7 mL/min through 3:2 CP-

LPHM/GAC and CP-LPHM/sand.  In previous studies utilizing 100 g of composite, flow 

rates were held much lower at approximately 3.3 mL/min (Ake et al., 2003).  This could 

affect the removal of contaminants because sorption effects are, at least partly, a function 

of time and a slower flow rate allows for greater contact time between sorbent materials 

and contaminants leading, presumably, to greater sorption of contaminants (Hwang and 

Cutright, 2002).   

 It is important to note the extremely high concentrations of C5P and PAHs 

present in the OWS effluent at this particular site, as well as the highly dynamic nature of 

the concentration of these pollutants in water as a function of time.  The field studies 

were conducted in two phases.  In the first phase, which tested the effectiveness of 

different amounts of organoclay, the concentration of C5P in untreated OWS effluent was 

984,211 ± 343,040 ng/L, phenanthrene was 786,367 ± 243,369 ng/L, and benzo[a]pyrene 

was 17,743 ± 6,959 ng/L (Tables 2 to 7).  However, in the second phase, which 

delineated the contribution of different solid supports, the concentration of C5P had 

doubled to 2,332,529 ± 174,708 ng/L and the concentrations for the higher molecular 

weight and carcinogenic PAHs were much lower.  For example, phenanthrene decreased 
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to 16,731 ± 3,268 ng/L and benzo[a]pyrene was not measured above detection limits in 

untreated OWS effluent (Tables 8 to 11).  Of particular interest, C5P has been designated 

a priority pollutant and the maximum contaminant level (MCL) set by the U.S. EPA is 

1,000 ng/L in drinking water, well below the maximum measured in this study (USEPA, 

2002; IRIS, 2004).  Thus, small amounts of these composite materials have been 

challenged with a tremendous contaminant load. 

 The use of either GAC or organoclays can be an effective technique in 

wastewater remediation.  However, GAC is less effective for large organic molecules 

and competitive sorption of cosolutes results in depressed (antagonistic) sorption 

whereas, in the case of organoclays, sorption of one contaminant can have synergistic 

effects on the sorption of cosolutes.  Sorption of individual contaminants may cause 

interlayer expansion, leading to the binding of larger size compounds previously 

unsorbed due to steric constraints of the interlayers (Xu et al., 1997).  In addition, 

hydrophobic tails of exchanged long-chain cations become more flexible as solute 

concentrations increase and a solvent-like hydrophobic phase forms in the interlayer to 

make partitioning the predominant sorption mechanism in organoclays (Boyd et al., 

1988; Sheng et al., 1996).  Likewise, in this study, the high exchangeable surface area of 

LPHM clay allows for a much greater capacity of CP per volume of sorbent thus greatly 

enhancing the removal of hydrophobic contaminants from OWS effluent.  With this in 

mind, the organoclay-based composites outlined in this paper, as a pre-polishing step to 

GAC, are expected to more effectively reduce the total contaminant load of PAHs, in 

particular carcinogenic PAHs, by a greater percentage than GAC treatment alone.  



 

 

134

 One important issue concerning the use of organoclays is the potential for the 

quaternary amine to leach from the clay with time.  The leached quaternary amine may 

cause toxicity to microbial flora in a remediation approach that includes a biodegradation 

step subsequent to filtration.  Thus, future studies should explore ways to capture 

desorbed quaternary amine as well as methods to monitor and prevent leaching.  In 

addition, the reported studies were carried out using small amounts of composite in order 

to attain breakthrough necessary to determine sorbent capacity and bedlife.  Field-scale 

applications that require larger bed volumes for filtration of greater elution volumes 

should also be performed to explore possible co-solvent effects and contaminant 

interactions over time. 
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CHAPTER IV 
 

TOXICOLOGICAL EVALUATION AND METAL BIOAVAILABILITY IN  
 

PREGNANT SPRAGUE-DAWLEY RATS FOLLOWING EXPOSURE TO CLAY  
 

MINERALS IN THE DIET* 
 
 
 

 A variety of silicate clays are frequently added to animal feeds as enterosorbents 

to bind and reduce the bioavailability of mycotoxins.  In the past, phyllosilicate clays 

have been successfully added to animal feeds to bind aflatoxins in the gastrointestinal 

tract and subsequently prevent aflatoxicosis in farm animals, including chickens, turkey 

poults, goats, pigs, and mink (Phillips et al., 1995; Phillips, 1999).  Historically, clays 

have also played a major role in the human diet, particularly during pregnancy where 

they have been described as a common food craving (Geissler et al., 1999).  In addition, 

polygorskite and kaolinite have been used as to sorb toxins, bacteria, and viruses and as 

anti-diarrhetics, while sodium smectites have been used therapeutically as laxatives 

(Carretero, 2002).  However, these sorbents may also bind enzymes and other necessary 

nutritive elements, making prolonged use inadvisable.  For instance, several case studies 

suggest an association between clay ingestion and profound muscle weakness, anemia, 

and hypokalemia in humans (Mengel et al., 1964; Gonzalez et al., 1982; Severance et al., 

1988).  

                                                 
* Copyright (2004) from “Toxicological evaluation and metal bioavailability in pregnant 
Sprague-Dawley rats following exposure to clay minerals in the diet” by Wiles, M.C., 
Huebner, H.J., Afriyie-Gyawu, E., Taylor, R.J., Brotton, G.R., Phillips, T.D., Journal of 
Toxicology and Environmental Health, Part A, Volume 67, Number 11, pp. 863-874.  
Reproduced by permission of Taylor & Francis, Inc., http://www.routledge.ny.com.   
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 Clays that sorb nonselectively may interact with nutrients, minerals, and other 

feedborne chemicals to pose significant hidden risks as a result of dietary 

supplementation.  This is especially of concern during prenatal development due to the 

highly susceptible nature of both the mother and fetus to nutrient deficiency.  In previous 

research, rats fed high levels (20%) of kaolin in the diet throughout gestation exhibited 

significant reductions in hemoglobin, hematocrit, and red blood cell levels, indicating 

maternal anemia, and pups borne to these rats had lower birth weights (Patterson and 

Staszak, 1977).  In the study, iron supplementation to the kaolin-diet showed a protective 

effect for both dams and pups.  Conversely, other studies have shown that rats fed a zinc-

deficient diet supplemented with clay experienced lower mortality rates than rats 

maintained only on a zinc-deficient diet, suggesting that clay supplementation can be 

beneficial in some cases of mineral deficiencies (Smith and Halsted, 1970).  

 Additionally, heavy metals from environmental and food sources may accumulate 

in the body, leading to a variety of adverse health conditions.  Chronic ingestion of 

arsenic, a known human carcinogen, has been correlated with an increased incidence of 

skin, urinary bladder, liver, and kidney cancers (Golub et al., 1998; Abernathy et al., 

1999; Bernstam and Nriagu, 2000; Hughes, 2002).  In vitro studies have shown 

aluminum silicate-containing bentonite and montmorillonite clays to be cytotoxic to 

human umbilical vein endothelial cells but not ROC-1 oligodendroglia cells (Murphy et 

al., 1993a) and to primary neuronal cells but not differentiated N1E-115 neuroblastoma 

cells (Murphy et al., 1993b).  However, separate studies indicated aluminum silicate-
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containing kaolinite and montmorillonite and the magnesium silicate hectorite were 

acutely toxic to differentiated neuroblastoma cells (Banin and Meiri, 1990).   

 Mineralogical data indicates that phyllosilicate clays are important aluminum 

carriers and many including smectite, chlorite, and illite, are known to be unstable in 

acidic environments, such as the stomach (Donner, and Lynn, 1989; Rai and Kittrick, 

1989).  However, comprehensive in vivo studies concerning the release and subsequent 

accumulation of aluminum in tissues are lacking.  In this study, the effects of two 

common clay minerals, a calcium montmorillonite clay (NOVASIL PLUS™, NSP) and a 

sodium montmorillonite clay (Swy-2) were examined for maternal and fetal toxicity as 

well as their influence on mineral uptake and utilization in the pregnant rat.   

 

4.1 Materials and methods 

4.1.1 Chemicals   

For all experiments purified water (ddH2O) was prepared by processing deionized 

water through a Milli-QUF+ purification system (Millipore Corp., Benford, MA).  NSP 

was obtained from Engelhard Corporation (Cleveland, Ohio).  Wyoming sodium 

montmorillonite (Swy-2) was obtained from the Clay Minerals Repository (University of 

Missouri, Columbia).  

 

4.1.2 Experimental animals   

Treatment of experimental animals was based on methods previously reported in 

Mayura et al. (1998).  Ten week old, sexually mature, virgin Sprague-Dawley female and 
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mature male rats (Harlan, Sprague-Dawley Inc., Houston, TX) were maintained on feed 

and water ad libitum at Texas A&M University Laboratory Animal Resources and 

Research Facility (LARR).  After an acclimation period of 3 to 4 days, females were 

paired with males overnight in filter-top polycarbonate cages housed in a temperature-

controlled and artificially illuminated room (12 h dark/12 h light cycle) free from any 

sources of chemical contamination.  Successful mating was determined by the presence 

of vaginal copulatory plugs in the cages and was designated as day 0 of pregnancy.  

 

4.1.3 Experimental design  

Three diets were prepared from a balanced powdered rodent feed (Tekland rodent 

diet 8604, Harlan feeds, Madison, WI) and included:  1) basal feed 2) basal feed with 2% 

NSP (w/w) and 3) basal feed with 2% Swy-2 (w/w).  The pregnant animals were 

distributed into one of 3 treatment groups receiving one of the 3 diets.  Each treatment 

group had 6 animals maintained on their respective diets through the experimental period 

(from gestation days 0 to 16).  Treatment groups were exposed to clays in the feed as 

well as by gavage.  Untreated animals were fed only the basal diet in the absence of clay.  

To ensure a continuous presence of clay in the stomach, animals maintained on diets 

containing clay were gavaged once per day midway through the fasting period (12 h light 

cycle) with the respective clay between gestation days 1 to 15.  The gavage dose (0.25% 

w/v aqueous suspension) was selected as the maximum amount of clay that could be 

suspended in 1 mL without increasing the viscosity beyond the ability to deliver the dose 

through the gavage needle.  Untreated animals were gavaged with 1 mL vehicle alone.  
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Stock clay suspensions were made by shaking 25 g clay in 400 mL ddH2O overnight.  

Dosing volumes were 1 mL in all treatment groups.  Feed intake of animals was recorded 

daily, and maternal body weights were recorded on days 1, 8, and 16 of gestation.   

 

4.1.4 Assessment of toxicity   

Dams were euthanized by carbon dioxide asphyxiation on day 16 of gestation and 

cesarean sections were performed.  An abdominal incision was made followed by 

exposing the uterine horns and the litter weights (uterus plus pups) were recorded.  The 

uterine wall was cut open and the number of implants, resorptions, dead and live fetuses 

were counted.  In addition, maternal liver, kidneys, tibia, brain, uterus, pooled placentae, 

and pooled embryonic mass were collected, weighed, and frozen prior to elemental 

analysis.   

 

4.1.5 Neutron activation analysis (NAA)   

Representative samples (100 mg) of NSP and Swy-2 were analyzed in addition to 

tissues.  Collected tissues were lyophilized and 250 mg of dried material was added to 

pre-cleaned polyethylene vials.  Irradiations for neutron activation analysis (NAA) were 

performed at Texas A&M University’s 1 MW research reactor.  Short-lived isotope 

samples were irradiated in a pneumatic facility for 1 min (flux approximately 1 x 1013 

n/cm/s) and counted for 500 s on a high-resolution germanium gamma-ray detector after 

a decay period of a few minutes.  Standards and quality control material were irradiated 

and counted in the same manner.  For those elements that produce longer-lived species 
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upon irradiation, samples, standards and quality control material were irradiated together 

in a rotisserie position for 14 h.  After decays of approximately 1 and 3 weeks, additional 

counts of 30 and 60 min, respectively, were made.  Peak areas for characteristic gamma-

rays for isotopes of elements of interest were compared between the standards and 

samples to compute the concentrations.  Spectra were evaluated and concentrations were 

computed using Canberra Industries’ Genie ESP Software on a DEC workstation running 

an alpha processor using Open VMS operating system.  Detection limits varied by tissue 

and element and were calculated based on concurrently analyzed multi-element standards 

however, many were not determined due to high levels of Na in many of the samples.   

 

4.1.6 Inductively coupled plasma-mass spectroscopy (ICP-MS)   

Aluminum concentrations were determined on a subset of brain tissue samples in 

order to achieve lower detection limits.  Wet tissue samples were digested with ultrapure 

nitric acid and hydrogen peroxide and diluted to volume with deionized water.  27Al was 

monitored on a Perkin-Elmer/Sciex DRC 2 in peak hopping mode, using external 

calibration with commercial standards and 71Ga as an internal standard (Inorganic 

Ventures, Lakewood, NJ).  Calibration was checked using NIST SRM 1640.  CRM 

DOLT-2 was processed with the samples and showed 93% recovery of its certified value.  

Recoveries of a laboratory control sample and a matrix spike were 101% and 107%, 

respectively.   
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4.1.7 Statistical analysis   

Unless otherwise noted, all values are expressed as means ± SE.  Mean values for 

body and organ weights, feed intake, and developmental toxicity parameters were 

calculated from 6 rats in each treatment group.  From those 6 rats, 3 were randomly 

selected for determination of elemental content via neutron activation analysis.  Data 

were compared statistically using the General Linear Models procedure with Tukey’s test 

and considered significant if p<0.05. 

 

4.2 Results 

4.2.1 NAA of elemental content of clay minerals  

 The two clay minerals, NSP and Swy-2, which were supplemented in the diet of 

pregnant Sprague-Dawley rats, were subjected to NAA for the determination of their 

elemental composition (Table 12).  Predominant metal constituents for both clay 

minerals included Al, Fe, Na, Mg, Ba, Ce, Mn, Sr, Zn, and Zr.  The most prevalent 

metals for NSP were Al (9.34%) and Fe (3.55%), followed by Mg (0.69%), Na (0.19%), 

and Sr (0.17%).  Swy-2 was also composed primarily of Al (9.97%) and Fe (2.52%), 

followed by Na (1.04%), Mg (0.58%), and Sr (0.03%).  In addition, a variety of metals 

were identified but were found to be present below 0.01% including: As, Co, Cr, Cs, Dy, 

Eu, Hf, La, Lu, Nd, Ni, Rb, Sb, Sc, Sm, Ta, Tb, Th, U, and Yb.  Metals present below the 

detection limits for this method (based on concurrently analyzed multi-element 

standards) included Cu, Mo, S, Te, Ti, Tl, and V.   
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Table 12 
Analysis and percent abundance of selected metals in Swy-2 and NSP 
 
Metal  

Analysis of 
metals in Swy-2 

(mg/kg)a  

Percent abundance 
in Swy-2 

Analysis of 
metals in NSP 

(mg/kg)a 

Percent 
abundance in 

NSP 
Al 93,381.6 ± 0.9 9.97 99,711.1 ± 1.3 9.34 
Ba 174.9 ± 8.1 0.03 340.7 ± 5.1 0.02 
Ce 251.1 ± 1.3 0.01 87.1 ± 4.0 0.03 
Fe 35,524.3 ± 0.8 2.52 25,239.7 ± 3.5 3.55 
Mg 6,854.3 ± 2.8 0.58 5,786.0 ± 5.9 0.69 
Mn 261.9 ± 1.3 0.02 195.7 ± 5.2 0.03 
Na 1,945.5 ± 3.9 1.04 10,369.6 ± 0.5 0.19 
Sr 1,660.2 ± 0.5 0.03 264.2 ± 5.5 0.17 
Zn 131.8 ± 9.6 0.01 75.4 ± 3.7 0.01 
Zr 450.3 ± 0.4 0.02 215.0 ± 2.7 0.05 
a Analysis of metals in Swy-2 and NSP is based on mean values for 3 rats per treatment 
group  ± SD.  Metals detected at or below 0.01% abundance in both clays include:  As, 
Co, Cr, Cs, Dy, Eu, Hf, La, Lu, Nd, Ni, Rb, Sb, Sc, Sm, Ta, Tb, Th, U, Yb. 
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4.2.2 Assessment of toxicity  

 Evaluations of maternal and fetal toxicity included maternal body weights, 

maternal feed intakes, litter weights, and embryonic resorptions.  Upon dissection, no 

significant differences were observed for total implantations, resorptions, or embryos in 

control rats versus those maintained on either clay-based diet (Table 13).  In addition, no 

statistically significant differences were observed between tissue weights (liver, kidneys, 

tibia, brain, uterus, pooled placentae, and pooled embryonic mass) in control rats as 

compared to those fed clay-based diets (Table 14).  Further, maternal body weight gain, 

litter weights, and feed intake were not significantly affected by addition of clay to the 

diets (Table 15).   

 

4.2.3 NAA of elemental content of tissues 

 Results of NAA analysis performed on maternal liver, kidneys, tibia, brain, 

uterus, pooled placentae, and pooled embryonic mass, specifically, differences between 

control and treated animals, are shown in Figure 28.  In maternal brain tissue, Rb levels 

were somewhat lowered in rats consuming either clay as compared to control rats 

(averages of raw Rb concentrations were 11.3 ± 0.1 mg/kg for control, 10.8 ± 0.2 mg/kg 

for NSP, and 10.7 ± 0.1 mg/kg for Swy-2).  This was the only statistically significant 

difference observed upon analysis of the selected tissues in this study, although several 

tendencies were apparent.  Rats maintained on either NSP or Swy-2-supplemented diets 

exhibited decreased As in the uterus, placentae, and kidneys, however a slight increase 

was observed in brain tissue.  In addition, a tendency toward increased Co was apparent  
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Table 13 
Effects of clay-based diets on implantations, resorptions, and embryos in the pregnant rat 
 Control dieta 2% Swy-2 dieta 2% NSP dieta 
Implantations 17 ± 1 15 ± 1 17 ± 1 

Embryos 15 ± 1 14 ± 1 15 ± 1 

Resorptions 1 ± 1 1 ± 0 2 ± 1 

a Clays (NSP and Swy-2) were added to a powdered basal diet at a level of 2% (w/w) and 
fed to the rats between days 1 to 15 of pregnancy.  Test animals were dosed orally with 
0.25% (w/v) clay in 1 mL aqueous suspension once per day (midway through the fasting 
period).  Animals fed the control diet were dosed orally with 1 mL aqueous vehicle 
alone.  All data is expressed as mean values for 6 rats per treatment group ± SD.  Mean 
values for rats maintained on Swy-2 and NSP diets were not statistically different (p ≤ 
0.05) from controls. 
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Table 14 
Effects of clay-based diets on tissue weights in the pregnant rat 
 
 
Tissuesa 

Weight of tissues 
from rats fed 

control dietb (g) 

Weight of tissues 
from rats fed 2% 
Swy-2 dietb (g) 

Weight of tissues 
from rats fed 2% 

NSP dietb (g) 
Liver 12.6 ± 0.7 12.5 ± 0.4 12.7 ± 1.0 
Right kidney 1.0 ± 0.0 1.0 ± 0.1 1.0 ± 0.1 
Left kidney 1.0 ± 0.1 1.0 ± 0.0 1.0 ± 0.1 
Brain 1.7 ± 0.0 1.6 ± 0.1 1.7 ± 0.0 
Right tibia 0.5 ± 0.0 0.5 ± 0.1 0.5 ± 0.1 
Left tibia 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.0 
Uterus 4.6 ± 0.4 4.4 ± 0.6 4.7 ± 0.3 
Pooled placentae 5.1 ± 0.8 4.8 ± 1.1 5.0 ± 0.8 
Pooled embryonic 
mass 

7.3 ± 0.7 6.7 ± 1.6 7.2 ± 0.9 

a Tissues were collected from pregnant rats at gestation day 16.   
b Clays (NSP and Swy-2) were added to a powdered basal diet at a level of 2% (w/w) and 
fed to the rats between days 1 to 15 of pregnancy.  Test animals were dosed orally with 
0.25% (w/v) clay in 1 mL aqueous suspension once per day (midway through the fasting 
period).  Animals fed the control diet were dosed orally with 1 mL aqueous vehicle 
alone.  All data is expressed as mean values for 6 rats per treatment group ± SD.  Mean 
weight of tissues for rats maintained on Swy-2 and NSP diets were not statistically 
different (p ≤ 0.05) from controls. 
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Table 15 

Effects of clay-based diets on gain in maternal body weights, litter weights, and feed 
intake in the pregnant rat 

 
 
Dieta 

Maternal 
body weight 
at day 1 (g)b 

Maternal body 
weight at day 

16 (g)b 

Gain in 
maternal body 

weight (g)b 

 
Litter 

weight (g)b 

 
Total feed 
intake (g)b 

Control  241 ± 11.8 309 ± 7.4 68.0 ± 5.7 28.9 ± 1.1 330 ± 13 

2% Swy-2  237 ± 9.1 308 ± 8.7 71.0 ± 3.5 27.0 ± 2.1 352 ± 7 
2% NSP  240 ± 7.4 309 ± 8.1 69.3 ± 3.5 29.2 ± 1.4 345 ± 7 

a Clays (NSP and Swy-2) were added to a powdered basal feed at a level of 2% (w/w) 
and fed to the rats between days 1 to 15 of pregnancy.  Test animals were dosed orally 
with 0.25% (w/v) clay in 1 mL aqueous suspension once per day (midway through the 
fasting period).  Animals fed the control diet were dosed orally with 1 mL aqueous 
vehicle alone.   
b Data is expressed as mean values for 6 rats per treatment group ± SE.  Mean values for 
rats maintained on Swy-2 and NSP diets were not statistically different (p ≤ 0.05) from 
controls. 
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Figure 28.  Metal abundance in uterus, embryonic mass, placenta, liver, kidney, brain, 
and tibia of rats fed control and clay-based diets.  Values represent data for 3 randomly 
selected rats per treatment group (normalized to untreated controls) ± SE.  Data is 
shown only for those metals present above detection limits for all rats in all treatment 
groups. 
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 Figure 28. (Continued). 
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with either clay-supplemented diet in the uterus, embryonic mass, placentae, liver, and 

brain, as well as in the tibia in the case of the Swy-2-supplemented diet.   

Additional tendencies were seen in rats fed an NSP-supplemented diet where 

decreased Cs was observed in the uterus, placentae, liver, brain, and kidneys, although 

the metal was increased in the embryonic mass.  Increased Na was apparent in both the 

uterus and kidneys of rats fed either clay-supplemented diet and Fe was increased in the 

liver and brain, but decreased in the tibia, of these same rats.  Br was increased in the 

kidneys and decreased in the embryonic mass, placentae, and brain tissue of rats fed 

either clay-supplemented diet.  However, rats supplemented with Swy-2, but not NSP, 

showed increased Br in the uterus.  Zn and Se were increased in the uterus, liver, brain, 

and kidneys and Yb was increased in the liver of rats fed either clay-supplemented diet.   

  

4.2.4 ICP-MS of tissues 

 Aluminum was determined to be below the detection limits for all tissues 

investigated based on NAA.  For further confirmation of Al levels in the brain, tissue 

samples from three rats in each treatment group were also analyzed by ICP-MS.  This 

procedure supported the NAA results, as Al was below detection limits for ICP-MS (< 

0.5 mg/kg) in all samples analyzed (data not shown).   Other metals analyzed for by 

NAA, but found to be present below the detection limits in the tissue samples, included:  

Cu, Dy, Eu, Hf, La, Lu, Mo, Nd, S, Sb, Sm, Tb, Te, Th, Ti, Tl, U, V, and Zr.   
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4.3 Discussion 

 In this study, maternal and fetal toxicity of two common clay minerals 

supplemented in the diet of pregnant Sprague-Dawley rats was assessed.  NAA showed 

that the major metal components of the two clays, a calcium montmorillonite (NSP) and 

a sodium montmorillonite (Swy-2), were similar (Table 1).  However, these clays can be 

differentiated based on their Na content, as Swy-2 contains mainly Na ions in the 

interlayer making these ions more prevalent in the overall composition (1.04% 

abundance in Swy-2; 0.19% abundance in NSP).    

 In addition to Na, both clays contained relatively large amounts of Al, Fe, Mg, 

and Sr.  However, of the elements analyzed in this study the major component of both 

clays was Al (9.97% abundance in Swy-2; 9.34% abundance in NSP).  Further, 

mineralogical data indicates that phyllosilicate clays are important aluminum carriers and 

many are known to be unstable in acidic environments, such as the stomach (Donner and 

Lynn, 1989; Rai and Kittrick, 1989).  Interestingly, although Al was greater than 9% 

abundance in both clay minerals in this study, the metal was not identified above NAA 

detection limits in any of the 7 tissues.  In this method, the limit of detection of Al in 

brain tissue was 300 mg/kg.  ICP-MS provided a more sensitive measure of Al and 

confirmed the absence of Al deposits (<0.5 mg/kg) in brain tissues from rats in all 

treatment groups.  The absence of any significant Al leachate may be partially due to the 

structural morphology of 2:1 layer-lattice dioctahedral montmorillonite clays.  In these 

clays, SiO4 tetrahedra are linked together, with each tetrahedron sharing three O2- ions 

with three adjacent tetrahedra.  This arrangement extends in all directions to form a plane 
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of basal oxygens.  Al ions are octahedrally coordinated with SiO4 sheets, in the center of 

platelets, which limits bioavailability (Schultz, 1989; Phillips et al., 2002).  In addition, 

recent studies in both rats and humans have implicated dietary Si as a complexing agent 

that may reduce gastrointestinal absorption and increase renal excretion of Al 

(Edwardson et al., 1993; Roberts et al., 1998; Yokel et al., 1996).   

 The only statistically significant difference observed upon analysis of the selected 

tissues in this study was decreased Rb in the brain of rats fed either NSP or Swy-2 as 

compared to controls.  The essentiality of Rb has been tested in goats, which exhibited 

decreased food intake, growth, and life expectancy, and increased spontaneous abortions 

following ingestion of Rb-deficient diets (Anke et al., 1997).  However, additional 

studies are lacking and animal and human data for this ultra trace element are both 

limited and controversial, making extrapolations with regard to the decreased Rb 

observed here inappropriate.    

 Aside from Rb, the clays utilized in this study did not significantly bind or leach 

any of the elements analyzed, although several tendencies (not statistically significant) 

were observed.  Rats maintained on clay-supplemented diets in this study exhibited 

decreased As in the uterus, placentae, and kidneys, but the metal was increased in the 

brain.  This is of interest given that As is toxic and carcinogenic, especially in the 

inorganic form (Golub et al., 1998; Abernathy et al., 1999; Bernstam and Nriagu, 2000; 

Hughes, 2002), although nutritional studies have provided circumstantial evidence that 

As is also an essential nutrient in animals, possibly playing a role in methionine 

metabolism (Nielsen, 1991).  A tendency toward increased Co versus basal levels was 
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also noted in some tissues, but with a high degree of variation.  Although Co is required 

for the formation of vitamin B12, excessive administration can result in goiter and 

reduced thyroid activity (Barceloux, 1999), and chronic dietary exposure has been 

associated with severe cardiac insufficiency (Alexander, 1972).  In one study, chronic 

oral ingestion of Co supplemented in the diets of rats over 24 weeks resulted in 

decreased manganese superoxide dismutase activity, a decrease in mitochondrial ATP 

production, and a general reduction in the capacity of the respiratory chain (Clyne et al., 

2001).  In regard to a tendency for decreased Br observed in some tissues following clay-

supplementation, a decrease in this element has been reported to depress growth, fertility, 

hematocrit, hemoglobin, and life expectancy, and to increase milk fat and abortions in 

goats, but evidence of both its essentiality and toxicity is limited (Nielsen, 2000).   

 It’s important to note that greater than normal intake of any nutrient can interfere 

with absorption and availability of others.  For example, moderately high intake of Zn 

has been shown to interfere with Cu utilization (Penland et al., 2000).  However, even at 

the elevated levels reported here (≥2%), neither NSP nor Swy-2 adversely affected 

maternal body weights, maternal feed intakes, litter sizes, litter weights, tissue weights, 

or significantly altered embryonic resorptions in the pregnant rat (Tables 2, 3, and 4).  In 

previous studies similar phyllosilicate clays (at levels as low as 0.5% w/w in the diet) 

have been shown to effectively bind aflatoxins and prevent aflatoxicosis in multiple 

animal species (Kubena et al., 1990a, 1990b; Phillips et al., 1988).  In addition, 

significant reductions in the production of aflatoxin M1 in the milk of dairy cows (44%) 

and goats (52%) have been achieved with the addition of 1% clay in the diet (Harvey et 
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al., 1991; Smith et al., 1994).  In this study, pregnant rats consuming more than twice the 

level of clay shown to be effective as an enterosorbent for aflatoxin, displayed no 

noticeable maternal or fetal toxicity. 

 Nonselective interaction between any food additive and nutrients or minerals 

already present in the diet may pose significant hidden risks, especially during prenatal 

development.  To guard against this, the safety of any product added to animal feed or to 

the human diet must be thoroughly investigated prior to use.  In this study, neither of two 

clay minerals commonly added to animal feeds were shown, even at high concentrations, 

to produce maternal or fetal toxicity in pregnant rats, nor significantly affect the 

bioavailability of selected trace elements in a variety of tissues.  Additional studies are 

warranted to characterize the safety and health effects of chronic ingestion of clay 

minerals in the diet. 
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CHAPTER V 
 

SUMMARY AND CONCLUSIONS 
 
 
 

Substantial environmental contamination has occurred as a result of the 

widespread use of coal tar creosote and pentachlorophenol (C5P) as components in wood 

preserving solutions.  Accidental spills, improper waste disposal, volatilization, and 

leaching of the components into soil during wood treatment procedures or from treated 

wood products has lead to extensive groundwater contamination.  The adverse microbial 

environment created by much of this large-scale industrial contamination discourages 

natural degradation and, as a consequence, the chemical components of wood preserving 

waste are highly persistent in both soil and groundwater.  In response to worldwide 

concern over the safety of drinking water supplies, research initiatives have focused on 

the development of both sensitive methodologies for analytical measurement and 

effective remediation technologies to contain, decrease, or eliminate contamination.  

With this in mind, the present studies were divided into three distinct phases, ultimately 

focused on characterizing the contaminants of wood preserving waste and developing 

appropriate strategies for successful remediation.   

In the event of contamination, sensitive analytical methodology must be 

developed in order to evaluate the potential for toxicity associated with exposure.  Thus, 

the objective of the first study was to outline a sequence of measurable biological 

changes in a sensitive in vitro model that occur as a consequence of exposure to various 

chlorinated phenols (CPs).  The Clone 9 cell line, derived from normal rat liver 
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epithelium, has shown sensitivity to various chemical agents frequently identified in 

addition to CPs at wood preservation-based Superfund sites (Reeves et al., 2001).  

Endpoints used to evaluate cellular homeostasis were analyzed immediately after dosing 

and following 24 h in the continued presence of CPs with varying degrees of 

chlorination.  In the case of C5P treatment, low-dose exposure caused decreased 

intracellular pH (10 µM), GJIC (10 µM), and GSH (10 µM), increased ROS generation 

(10 µM), and plasma membrane hyperpolarization (100 µM).  Prolonged exposure led to 

mitochondrial membrane depolarization (25 µM), followed by increased intracellular 

Ca2+ (50 µM), and, finally, plasma membrane depolarization (100 µM).  The effects to 

specific endpoints were dependent upon dose, time, and the number of chlorine 

substituents.  Similar effects were observed following exposure to either C5P or 2,3,4,5-

C4P, and to either 2,3,5-C3P or 3,5-C2P.  Effects resulting from 4-CP or phenol were 

slight and frequently observed only with high dose and/or prolonged exposure.  For 

example, long-term CP exposure led to decreased GJIC at 10 µM doses of C5P or 

2,3,4,5-C4P, 100 to 150 µM doses of 2,3,5-C3P and 3,5-C2P, and 1000 µM doses of 4-

CP.  Thus, the dose-, time-, and level of chlorine substitution-dependent differences 

allow for the delineation of specific congeners from a mixture.  This knowledge may 

then allow the researcher to evaluate the extent of remediation efforts or design 

remediation technologies based on the prevalence of a specific congener in the field. 

The results of this study demonstrate that the Clone 9 cell line is a sensitive in 

vitro model for CP exposure, especially in the case of the more highly chlorinated 

congeners.  Assessment of selected markers of cellular homeostasis, for example 



 

 

156

intracellular pH or GJIC, may be a more useful measure of the overall toxicity of a 

contaminant mixture than conventional analytical methods, which primarily involve 

quantification of individual components in the absence of complete knowledge of 

potential additive or synergistic interactions.  Because the strength of this model with 

respect to complex chemical mixtures remains unclear, future research should focus on 

delineating the sequence of events that follow exposure to multi-contaminant mixtures 

and to determine the similarity to, or divergence from, the sequences established here in 

CP-treated cells.  In particular, the model should be tested with wood preserving waste, 

which is composed largely of PAHs, as the cell line used in this study has also shown 

sensitivity to these compounds (Reeves et al., 2001).  In addition, future development of 

this model shows promise not only for analysis of the toxicity of the contaminants, but 

also to evaluate the extent of remediation at facilities contaminated with wood preserving 

waste.  For instance, a noticeable decrease in pH or GSH in Clone 9 cells exposed to a 

particular mixture may suggest a need for continued remediation, even though levels of a 

particular model chemical, such as C5P, may be deemed sufficiently low by accepted 

analytical standards.  

In response to worldwide concern over the presence of persistent chemicals in 

groundwater and the toxic biological effects observed in in vitro model systems, it 

becomes necessary to focus on applied research in order to ensure the safety of drinking 

water supplies heavily relied upon by the general public.  The results of the first 

objective suggest the use of in vitro methodology to identify specific CP congeners in a 

complex mixture in order to either evaluate the extent of remediation efforts or design 
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remediation technology in the field.  However, this method is neither sufficiently 

developed for the resources available at most on-site facilities nor is it economically 

feasible to continuously ship samples to a laboratory for analysis.  Thus, the objective of 

the second study was to develop multi-functional sorbents for the comprehensive 

remediation of wood preserving waste contaminants from groundwater.  One of the most 

common sorbents used in water remediation is granular activated carbon (GAC).  

Although GAC technology is a well-developed and widely utilized as part of a successful 

groundwater remediation strategy, it is most appropriate for use as a secondary polishing 

agent (USEPA, 1996).  This is primarily because the adsorptive capacity and bedlife of 

GAC may be drastically decreased in the presence of organic matter in water (Hopman et 

al., 1994; Knappe et al., 1999).  In contrast, many clay minerals have been shown to 

strongly sorb contaminants even in the presence of organic matter (Sheng et al., 2001).  

However, although naturally occurring clay minerals have been shown to strongly bind 

hydrophilic/polar organic contaminants from water with high capacity (Kishk et al., 

1979; Huebner et al., 1999; Abollino et al., 2003), they do not effectively sorb most 

hydrophobic organic compounds like those present in wood preserving waste (Srinivasan 

and Fogler, 1990a; 1990b).  Thus, interlayer cations in low pH montmorillonite clay 

were exchanged with cetylpyridinium to produce an organoclay (CP-LPHM) that would 

more effectively sorb hydrophobic contaminants, including PAHs and C5P.  In order to 

optimize hydraulic conductivity various amounts of CP-LPHM were bonded to either 

GAC or sand as a solid support using a carboxymethylcellulose adhesive and 
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characterized for their ability to effectively decrease contaminants in water both in vitro 

and in situ.   

Laboratory studies utilizing a 14C-labeled reconstituted aqueous phase (RAP) 

made from DNAPL collected from a creosote-contaminated Superfund site suggested 

that CP-LPHM/GAC composites formulated with the highest ratio of organoclay to GAC 

(3:2 CP-LPHM/GAC) showed the most promise for successful in situ remediation.  A 

comparable sand composite (CP-LPHM/sand) was constructed to contain an equal 

amount of organoclay per unit volume to assess the contribution of the solid support 

matrix.  Subsequent on-site elution of oil-water separator effluent through equal bed 

volumes of composite sorbents demonstrated that both 3:2 CP-LPHM/GAC and CP-

LPHM/sand have high capacities for contaminants found in wood preserving waste, most 

notably higher molecular weight and carcinogenic PAHs.  Further, studies testing the 

effects of different solid support matrices indicated that, although 3:2 CP-LPHM/GAC 

was somewhat more effective than CP-LPHM/sand for the removal of higher molecular 

weight PAHs, the use of GAC did not appear to provide a substantial added sorptive 

capacity over that of sand for composite formulation.  This is an important consideration 

when developing a remediation strategy, as sand is more economically feasible.   

Overall, both organoclay-based composites outlined in the study, as a pre-

polishing step to GAC, may more effectively reduce the total contaminant load of PAHs, 

in particular carcinogenic PAHs, than GAC treatment alone.  Future studies should 

examine the effectiveness of these sorbents in relation to those currently available for 

water remediation both for large-scale operations at restricted Superfund sites, but also 
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those commercially available for purchase by consumers.  In this study, small amounts of 

composite materials were challenged with a tremendous contaminant load in order to 

attain breakthrough data necessary to determine sorbent capacity and bedlife.  C5P was 

present at a maximum of 2,332,529 ng/L, well above the maximum contaminant level 

(MCL) of 1,000 ng/L set by the U.S. EPA for drinking water (USEPA, 2002; IRIS, 

2004).  Studies should compare the effectiveness, capacity, and bedlife of commercially 

available carbon-based sorbents distributed for home use with a more economically 

feasible CP-LPHM/sand sorbent.  In addition to smaller scale studies, large-scale 

applications that require larger bed volumes for filtration of greater elution volumes 

should also be conducted to explore possible co-solvent effects and contaminant 

interactions in a field-practical setting.  

 One important consideration concerning the use of organoclays is the potential 

for the quaternary amine to leach from the clay with time.  The leached quaternary amine 

may exert toxicity upon microbial flora in a remediation approach that includes a 

biodegradation step subsequent to filtration.  Thus, future studies should also explore 

ways to capture desorbed quaternary amine, as well as methods to monitor and prevent 

leaching.  In particular, an in-line system consisting of a column of sand to separate 

particulate matter, followed by CP-LPHM/sand to sorb contaminants, then parent LPHM 

clay bonded to sand in order to regenerate the CP-LPHM/sand composite as CP is 

leached, and GAC as a final polishing step should be tested.  This system would utilize 

the more economically feasible sand-based sorbent to remove the majority of 

contaminants, making it possible to limit the amount of GAC while building on the 
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sorbents strength as a secondary polishing agent.  Additionally, the quality of drinking 

water would be protected with a column of parent clay bonded to sand to catch and re-

exchange leached surfactant, while allowing the depleted organoclay-based sorbent to be 

replaced with new sorbent produced from that leached surfactant.    

In addition to their use in water remediation by filtration, future studies 

concerning clay minerals will explore their inclusion in the diet for the sorption of 

contaminants ingested with food and water.  Although PAHs are a major constituent of 

coal tar creosote and present in areas heavily polluted with wood-preserving waste, 

dietary exposure, estimated at 2 to 3 µg/day, is the most important non-occupational 

source of PAHs in non-smokers (Hatterman-Frey and Travis, 1994; Mumtaz et al 1996; 

Vyskocil et al., 2000).  In particular, high levels of BaP are found primarily in very-well-

done grilled or barbecued steaks, hamburgers, and chicken with skin (4 µg/kg), while in a 

variety of other food products BaP levels ranging from 0.09 to 30 µg/kg have been 

reported (Kazerouni et al., 2001).   

A variety of naturally occurring silicate clay minerals have been added to animal 

feeds as enterosorbents in order to bind and reduce the bioavailability of mycotoxins 

(Smith, 1980, 1984; Phillips et al., 1995; Phillips, 1999).  Phyllosilicate clays (at levels 

as low as 0.5% w/w in the diet) have been shown to effectively bind aflatoxins and 

prevent aflatoxicosis in multiple animal species (Phillips et al., 1988; Kubena et al., 

1990).  In addition, significant reductions in the production of aflatoxin M1 in the milk of 

dairy cows (44%) and goats (52%) have been achieved with the addition of 1% clay in 

the diet (Harvey et al., 1991; Smith et al., 1994).  Historically, clays have played a major 
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role in the human diet, particularly during pregnancy where they have been described as 

a common food craving (Geissler et al., 1999).  However, several case studies suggest an 

association between clay ingestion and profound muscle weakness, anemia, and 

hypokalemia (Mengel et al., 1964; Gonzalez et al., 1982; Severance et al., 1988).  It is 

important to evaluate the safety of clay minerals proposed for dietary addition as clays 

that sorb nonselectively may interact with nutrients, minerals, and other food borne 

chemicals to pose significant hidden risks, especially during prenatal development.  

Thus, the first step is to evaluate the safety of the parent clays themselves to ensure the 

absence of nonselective nutrient interactions or alterations to trace metal bioavailability 

prior to further studies utilizing organoclays.   

In this study, a calcium montmorillonite clay (NOVASIL PLUS™, NSP) and a 

sodium montmorillonite clay (Swy-2) were supplemented into the balanced diet of 

Sprague-Dawley rats during pregnancy at a level of 2% (w/w), nearly 4 times that 

necessary to sorb aflatoxins and prevent aflatoxicosis in previous studies (Phillips et al., 

1988; Kubena et al., 1990).  Animals supplemented with either clay mineral were similar 

to controls with respect to toxicity evaluations (i.e., maternal body weights, maternal 

feed intakes, litter weights, and embryonic resorptions) and metal analysis of selected 

tissues (i.e., liver, kidneys, tibia, brain, uterus, pooled placentas, and pooled embryonic 

mass), with the exception of decreased brain Rb among rats consuming clay.  Averages 

of raw Rb concentrations were 11.3 ± 0.1 mg/kg for control, 10.8 ± 0.2 mg/kg for NSP, 

and 10.7 ± 0.1 mg/kg for Swy-2.  The essentiality of Rb has been tested in goats, which 

exhibited decreased food intake, growth, and life expectancy, and increased spontaneous 
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abortions following ingestion of Rb-deficient diets (Anke et al., 1997).  However, 

additional studies are lacking and animal and human data concerning this ultra trace 

element are both limited and controversial, making extrapolations with regard to the 

decreased Rb observed here inappropriate.   

Overall, the results of this study suggest that neither NSP nor Swy-2, at relatively 

high dietary concentrations and based on current knowledge, influence mineral uptake or 

utilization in the pregnant rat.  However, future studies should be carried out in order to 

confirm the present findings and determine the effects of chronic ingestion, especially in 

the case of brain Rb.  In addition, the effect on specific vitamins and minerals as well as 

interactions with the function of critical enzymes and hormones should be evaluated.  For 

instance, the surfaces of kaolinite and illite and the interlayer spaces of montmorillonite 

have been shown to sorb 17β-estradiol from aqueous solution (van Emmerik et al., 

2003).  Those clays that do not show significant nonselective nutrient interactions or 

exert overt toxicity in in vivo models may be further evaluated for safety and the 

potential for contaminant sorption from both food and water as a component of the 

human diet.   

In an extension of the same study, both NSP and Swy-2 were tested for their 

effectiveness to sorb Pb2+ in vivo.  Previous research has shown naturally-occurring 

sodium montmorillonite to decrease Cd, Cr, Cu, Mn, Ni, Pb, and Zn in aqueous solution 

(Ake et al., 2001; Abollino et al., 2003).  Studies specific to Pb2+ indicated that, of a 

variety of clay minerals screened, Swy-2 showed the highest average sorption from 

aqueous solution (Ake et al., 2001).  In order to test this hypothesis in vivo, clay minerals 
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were added to the diets of Sprague-Dawley rats at 2% (w/w).  After confirmation of 

successful mating (day 0), rats were also gavaged with aqueous solution containing 

either 0.25% clay + sodium acetate, 0.25% clay + lead acetate, sodium acetate alone, or 

lead acetate alone once per day from gestation days 1 to 15.  On day 16 of pregnancy rats 

were euthanized, and tissues were collected.  Additionally, blood was collected on days 1 

and 16.  Pb2+ was quantified in blood samples by atomic absorption but, the results were 

largely inconclusive.  Therefore, in the interest of avoiding the inclusion of incomplete or 

unclear data, this study has not been presented.  Further studies are warranted to provide 

more conclusive results as to the effectiveness of Swy-2 for metal sorption in vivo.   

Once the parent clay minerals are evaluated for safety and effectiveness in vivo, 

organoclay minerals that may more effectively sorb organophilic compounds, including 

PAHs, should be tested.  Organophilic compounds such as PAHs are more effectively 

sorbed into a hydrophobic interlayer produced by exchanging naturally occurring 

hydrated metal ions with organic cations (Srinivasan and Fogler, 1990a, 1990b).  The 

hydrophobicity of the clay platelet’s interlayer may be regulated by exchanging 

surfactant into the clay as a fraction of the native clay’s CEC value (Greenland and 

Quirk, 1960; Zhang et al., 1993; Xu and Boyd, 1995).  However, previous studies have 

shown that selected organoclays made by exchanging the surfactants at levels equal to or 

greater than the maximum CEC were very effective in in vitro isothermal analysis 

experiments but toxic to Hydra attenuata in an Adult Hydra Bioassay (Afriyie-Gyawu et 

al., 2004).  Therefore, future studies should determine the fraction of the CEC necessary 

to promote sorption of the desired contaminant but not alter the relative safety of the 



 

 

164

ingested mineral.  In addition, the structure of the specific surfactant molecule may play 

a role in hydrophobicity and toxicity, thus, different surfactants should also be evaluated.   

The presence and persistence of pesticides and other chemicals in drinking water 

justifies the need for comprehensive analytical methodology that can be used to evaluate 

the toxicity of complex mixtures, especially when the interactions of individual 

components are unclear.  In addition, the effectiveness of sorbents used for water 

filtration and the safety of those proposed as dietary supplements must be ensured.  This 

research proposes an economically feasible water remediation media and a method with 

which to determine both the extent of contamination prior to remediation and to verify its 

completion.  Further, the first step in studies designed to evaluate the addition of clay-

based sorbents to the diet in order to protect from ingested contaminants without altering 

mineral uptake or utilization has been conducted in test animals. 
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