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ABSTRACT 
 
 
 

Genomic Organization of Chromosomal Centromeres in Cultivated Rice, Oryza sativa  
 

L., and Its Wild Progenitor, O. rufipogon Griff.  (August 2004) 
 

Taesik Uhm, B.S.; M.S., Seoul National University 
 

Chair of Advisory Committee: Dr. HongBin Zhang 
 
 
 

Centromeres are responsible for sister-chromatid cohesion, kinetochore formation, and 

accurate transmission of chromosomes.  Rice provides an excellent model for 

organizational and functional studies of centromeres since several of its chromosomes 

contain limited amounts of satellite and other repetitive sequences in their centromeres.  

To facilitate molecular characterization of the centromeres, we screened several BIBAC 

and BAC libraries of japonica and indica rice, using several centromere-specific repeat 

elements as probes.  The positive clones were identified, fingerprinted and integrated 

into our whole genome physical map databases of the two rice subspecies. BAC/BIBAC-

based physical maps were constructed for the centromeric regions of the subspecies. To 

determine whether the genomic organization of the centromeres has changed since the 

cultivated rice split from its progenitor and to identify the sequences potentially playing 

an important role in centromere functions, we constructed a large-insert BIBAC library 

for the wild progenitor of Asian cultivated rice, O. rufipogon.  The library contains 

24,192 clones, has an average insert size of 163 kb, and covers 5 x haploid genome of 

wild rice.  We screened the wild rice library with two centromere 8-specific overgo 
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probes designed from the sequences flanking centromere 8 of japonica rice.  A BIBAC-

based map was constructed for wild rice centromere 8.  Two of the clones, B43P04 and 

B15E04, were found to span the entire region of the wild rice centromere and thus 

selected for sequencing the centromere. By sequencing the B43P09 clone, a 95% 

genomic sequence of the long arm side of wild rice centromere 8 was obtained.  

Comparative analysis revealed that the centromeric regions of wild rice have a similar 

gene content to japonica rice, but the centromeric regions of japonica rice have 

undergone chromosomal rearrangements at both large scale and nucleotide levels. In 

addition, although the 155-bp satellite repeats showed dramatic changes at the middle 

region, they are conserved at the 5’ and 3’ ends of satellite monomers, suggesting that 

those regions might have important functional roles for centromeres.  These results 

provide not only new insights into genomic organization and evolution, but also a 

platform for functional analysis of plant centromeres. 
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CHAPTER I 

INTRODUCTION 

 

Centromeres are essential for chromosomal sister-chromatid cohesion, kinetochore 

formation, and faithful transmission in higher organisms. Unlike the well-characterized 

chromosomal centromeres of the single cell yeast, Saccharomyces cerevisiae 

(Hegemann and Fleig 1993), the chromosomal centromeres of most animals and plants 

consist of long stretches of short (155 – 340 bp) tandem satellite repeats and various 

other kinds of repetitive DNA sequences (Henikoff et al. 2001). Bacause they are  

flanked by pericentromeric regions, their exact boundaries  remain undefined.  The 

pericentromeric regions contain middle repetitive elements, including transposons, 

retrotransposons, and a few pseudogenes (J Wu et al. 2004; Zhang et al. 2004). For 

instance, rice core centromeres comprise tandem satellites, occasionally interrupted by 

other repeated sequences (J Wu et al. 2004; Zhang et al. 2004).  Some regions of tandem 

repeated satellites are thought to be responsible for the function of the centromeres 

(Henikoff et al. 2001).   

         The successful assembly of human artificial chromosomes (HAC) using either 

synthetic or cloned α-satellite DNA suggested that the satellite sequences have conferred 

centromere  functions  in  human  cell lines  (Harrington et al. 1997;  Henning et al. 1999;  

______________ 

This dissertation follows the style of Theoretical and Applied Genetics. 
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Ikeno et al. 1998).  In maize B chromosomes, the partial deletions of ~500 kb of tandem 

repeats reduced the chromosome transmission (Kaszas and Birchler 1998). However, the 

characterization of neocentromeres that completely lack α-satellite DNA has indicated 

that under circumstances α-satellite sequences are not necessary for centromere 

functions (Barry et al. 2000; DuSart et al. 1997).  

         Several centromere-specific repetitive DNA elements have been isolated in rice 

(Dong et al. 1998; Nonomura and Kurata 1999).  One of the elements is the CentO 

repeat. It consists of 155-bp satellite tandem monomers and has been located exclusively 

in rice chromosomal centromeres (Cheng et al. 2002; Dong et al. 1998). The other 

centromere-specific elements include RCE1 (Nonomura and Kurata 1999) and 

pSau3A9-like sequences (Jiang et al. 1996). These elements are derived from the 

Ty3/gypsy-class retrotransposon family and are localized in the centromeric regions of 

chromosomes of not only rice, but also other grass species (Langdon et al. 2000; Miller 

et al. 1998; Presting et al. 1998). Together, they are named as centromeric 

retrotransposon (CR) elements. The chromatin immunoprecipitation assay with 

centromeric histone H3 proteins (CENH3) in maize demonstrated that some of CR 

elements and satellites interacted with the CENH3 proteins, indicating that some of CR 

elements and satellites are likely to participate in the function of centromeres (Zhong et 

al. 2002).  Most of the CR elements were found as fragmented and truncated 

retroelements in the rice centromere.  In the recently sequenced rice centromere 4, for 

instance, only one intact retrotransposon was obtained (Zhang et al. 2004). 
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         Cytological analysis by fluorescent in situ hybridization (FISH) showed that the   

rice CentO satellite repeats are located within the spindle fiber-binding regions and the 

functional domain of the centromeres, by use of the misdivision break points of 

telocentric rice chromosomes, were mapped to the middle of the CentO arrays. In 

comparison, the centromere-specific retrotransposon family, CR elements, is widely 

dispersed in the centromeric regions (Cheng et al. 2002; J Wu et al. 2004; Zhang et al. 

2004).  

         The full length of centromeres in higher eukaryotic organisms is generally at the 

megabase level.  The long stretch of repeated DNA sequences such as centromeric 

satellites in the centromeres makes it difficult to clone and sequence.  Therefore, while 

the human and Arabidopsis genomes have been sequenced by the clone-by-clone 

approach (Arabidopsis Genome Initiative 2000; International Human Genome 

Sequencing Consortium 2001), big gaps still remain to be sequenced in the centromeric 

regions of the physical maps for each chromosome of the species.  

         Unlike Arabidopsis and human, rice provides an excellent model for structural, 

organizational, functional and evolutionary studies of centromeres because several of the 

rice chromosomes contain a limited amount of satellite repeats in a size range from 65 to 

350 kb as detected by intensities of FISH signals (Cheng et al. 2002).  Recently, the 

whole regions of rice chromosome 4 and 8 centromeres have been sequenced (Nagaki et 

al. 2004; J Wu et al. 2004; Zhang et al. 2004).  Compared to centromere 4, centromere 8 

contains similar copy numbers of 155-bp CentO satellite monomers in the core region, 
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but has more genes and fewer CR-related repeated elements in the pericentromeric 

regions. 

 Centromeres have been recognized as rapidly evolving regions of chromosomes 

involving large- and small-scale changes.  Although the functions of centromeres are 

highly conserved, there is low sequence identity among the centromeres of the distantly-

related species (Hall et al. 2004).  It is little known about the chromosomal 

rearrangements of the centromeric regions in plants.  In Arabidopsis, the insertions of 

some mitochondrial sequences and 5S rDNA into centromeres (Franz et al. 1998; Stupar 

et al. 2001), and inversions involving centromere 4 (Arabidopsis Genome Initiative 2000) 

have been reported.  By contrast, the rapid changes of satellite repeats at the nucleotide 

level have been characterized (Cheng et al. 2002; Talbert et al. 2002; Heslop-Harrison et 

al. 2003; Hall et al. 2003).  Several hypotheses have been suggested to explain how 

satellite sequence homogeneity can be maintained while rapid evolution is allowed 

(Ugarkovic and Plohl 2002; Hall et al. 2004).  In the library hypothesis, genomes contain 

sets of satellite variants in differing abundance. New satellites continuously originate by 

mutation.  These satellites can be homogenized through unequal crossover (Nijman and 

Lenstra 2001; Hall et al. 2004).  Another model suggested that satellite evolution is 

driven by the selection and co-evolution of satellites and centromeric histone H3 

proteins (Henikoff et al. 2001).  The centromeric histone H3 proteins (CENP-A) 

specifically bind to satellite DNA.  In such a case, a slight advantage in satellite-CENP-

A interactions could lead to rapid genomic fixation of satellite arrays.  The rapid 
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adaptive evolution of CENP-A has been observed in both Drosophila and Arabidopsis 

(Malik et al. 2002; Talbert et al. 2002).   

The common wild rice, Oryza rupifogon Griff., is the ancestor of Asian 

cultivated rice (Oryza sativa L.), including ssp. japonica and ssp. indica, and thus, is the 

most important germplasm for cultivated rice genetic improvement (Oka 1988). The 

discovery of cytoplasmic male-sterility (CMS) gene in O. rupifogon has led to the 

development of high yielding hybrid rice varieties by its introduction to cultivated rice 

(Yuan et al. 1989).  Other agronomically valuable genes, such as tolerance to aluminum 

and acid sulfate soil, resistance to bacterial blight and tungro virus, and elongation 

ability found in the wild rice, are of great importance for cultivated rice breeding (Xiao 

et al. 1996; Brar and Khush 1997; Bellon et al. 1998).  

The wild rice has the same genome (AA) as the Asian cultivated rice.  There 

have been numerous reports of genetic differences between cultivated plants and their 

wild progenitors.  Evolution from wild to cultivated rice has led to “domestication 

syndrome” (Harlan 1975) common to many cereals.  Studies of QTLs showed that most 

of the genetic factors (qualitative or QTLs) controlling the domestication-related traits 

are concentrated in a few chromosomal blocks of cultivated rice.  The domestication of 

rice is thought to be associated with the clustered genetic factors (Xiong et al. 1999; Cai 

and Morishima 2003).  However, this does not exist in the wild rice because the genetic 

factors are not clustered on a chromosome (Xiong et al. 1999). 

We report here bacterial artificial chromosome (BAC)/plant-transformation-

competent binary bacterial artificial chromosome (BIBAC)-based physical maps of 
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indica and japonica rice centromeres, constructed by using a high-resolution sequencing 

gel-based fingerprinting method (Chang et al. 2001; Li et al. 2004).  To facilitate the 

functional analysis of the centromere, we used BIBACs cloned in a binary vector 

(pCLD04541) that is competent for direct transformation of the cloned centromeric 

sequences into plants by the Agrobacterium-mediated genetic transformation. The 

fingerprinting method provided higher resolution and used more restriction enzymes 

than that used in the previously physical mapping of the japonica rice genome (Sasaki et 

al. 2002).  Thus, this allowed generation of physical maps for the centromeres of the rice 

chromosomes efficiently.  In addition, using sequence-tagged sites (STSs) and 

centromere 8-specific probes, RER1 and TGF, we successfully anchored several 

centromeric contig maps to rice chromosomes. 

The chromosome 8 has the smallest centromere and fewer heterochromatin 

regions than other chromosomes of rice (Cheng et al. 2002).  Recently, the structural 

organization and DNA sequences of chromosome 8 centromere of the cultivated rice, O. 

sativa ssp. japonica, have been reported (Nagaki et al. 2004; J Wu et al. 2004).  In this 

study we have constructed a large-insert plant-transformation-competent BIBAC library 

of the wild rice, O. rufipogon, and identified the large-insert BIBAC clones from the 

centromeric region of chromosome 8 of the wild rice. The library and clones provide 

essential resources for studies of centromere function and evolution in the cultivated rice 

and wild rice, and for genetic improvement by genetic engineering of cultivated rice 

using wild rice.   
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Up to now, limited comparisons of centromere DNA from different species have 

been performed. However, those studies were insufficient to identify the conserved 

functional elements and elucidate evolutionary significance of structural changes in plant 

centromeres.  For better understanding of the function and evolution of the centromeric 

elements in closely-related species, we constructed a physical contig map of the wild 

rice centromere 8 spanning the whole region of the centromere, and have sequenced the 

long arm side of the centromere in wild rice.  Comparative sequence analysis between 

the cultivated japonica rice and wild rice indicated that there were large-scale 

rearrangements in the pericentromeric regions and rapid small-scale evolution of 155-bp 

satellites in the core region. 
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CHAPTER II 

BAC/BIBAC-BASED PHYSICAL MAPS OF CENTROMERES OF 

CULTIVATED RICES, Oryza sativa ssp. japonica AND ssp. indica  

 

Overview 

 

Physical mapping of centromeres with BAC clones will facilitate not only studies of 

their origin, organization and evolution, but also their functional analysis and the 

development of plant artificial chromosomes for crop genetic improvement.  Toward 

these ends we developed the BAC and plant-transformation-competent BIBAC-based 

physical maps of centromeres of Oryza sativa ssp. japonica and ssp. indica.  To 

construct the physical maps, we screened several BAC and BIBAC libraries of the 

indica and japonica rice, using several centromere-specific repeat elements, including 

two CR (centromeric retrotransposon) elements and the CentO (a 155-bp satellite 

tandem monomer of Oryza sativa) repeat as probes.  The positive clones were analyzed 

by the high-resolution sequencing gel-based fingerprinting method and then integrated 

into our whole-genome physical map database of the two subspecies. Analysis of the 

centromere region-specific clones resulted in 17 and 26 contigs for the centromeres of 

japonica rice and indica rice, respectively.  Among these contigs, four were shown to 

span the entire region of four centromeres and three were anchored to the corresponding 

chromosomes by BAC-end sequence alignment and chromosome-specific overgo 

(overlapping oligonuleotide) hybridization.  The results will provide a platform for 
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molecular characterization and functional analysis of rice centromeres as well as a tool 

for filling the physical gaps of the rice genome sequence maps in the centromeric 

regions. 

 

Introduction 

 

Centromeres are essential for the faithful segregation and inheritance of genetic 

information in higher organisms.  In cereal plants, major components of centromeres are  

satellite tandem repeats and CR elements derived from ty3/gypsy retrotransposon family 

( Miller et al. 1998; Presting et al. 1998; Langdon et al. 2000).  The recently sequenced 

rice centromeres 4 and 8 showed different organization of CentO repeats and gene 

content (J Wu et al. 2004; Zhang et al. 2004).  The rice centromere 8 has three large 

clusters of CentO satellites, containing a total of 442 CentO monomers, in the core 

region and several putative genes, such as transforming growth facter (TGF)-beta 

receptor-interacting protein, putative endoplasmic reticulum retrieval protein (RER1), 

defective chloroplast and leaf (DCL) protein, and retrotransposons, in the 

pericentromeric regions.  In contrast, the rice centromere 4 has 18 smaller  clusters of 

CentO satellites, containing a total of 379 CentO monomers, in the core region and only 

retrotansposons in the pericentromeric regions. 

 The international rice genome sequencing project (IRGSP, 

http://rgp.dna.affrc.go.jp/IRGSP) is sequencing the rice genome.  However, due to the 

limitations of the agarose gel-based, single-enzyme fingerprinting method used for the 
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construction of the sequencing-ready BAC contig maps, the physical contig maps were 

successfully constructed only for the centromeres of chromosomes 4 and 8 (Nagaki et al. 

2004; J Wu et al. 2004; Zhang et al. 2004).  No physical contig maps have been reported 

so far for the centromeres of other chromosomes. The absence of the contig maps for the 

centromeric regions has limited not only sequencing of the entire rice genome, but also 

studies of genomic origin, organization, evolution and function of centromeres.    

We report here BAC/BIBAC-based physical maps of indica and japonica rice 

centromeres, constructed by using a high-resolution and more information-content 

sequencing gel-based fingerprinting method (Chang et al. 2001; Li et al. 2004).  To 

facilitate the functional analysis of the centromeres, we used BIBACs cloned in a binary 

vector (pCLD04541) that is competent for direct transformation of the cloned 

centromeric sequences into plants by the Agrobacterium-mediated genetic 

transformation.  Additionally, using sequence-tagged sites (STSs) and centromere 8-

specific probes, we successfully anchored several centromeric contig maps to rice 

chromosomes. 

 

Materials and Methods 

 

Source BIBAC/BAC libraries and the database of whole physical maps 

 

One BIBAC and three BAC libraries of O. sativa L. ssp. japonica cv. Nipponbare (Tao 

et al. 2002) and three BAC libraries of O. sativa L. ssp. indica cv. Teqing (Zhang et al. 
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1996; Tao et al. 2001) were used to identify BACs and BIBACs derived from the 

centromeric regions of japonica rice and indica rice, respectively. The libraries of indica 

rice were constructed in pBeloBAC11 (Kim et al. 1996) or its derivative pECBAC1 

(Frijters et al. 1997) from nuclear DNA partially digested with three restriction enzymes, 

Bam HI, Hind III and Eco RI, respectively (Zhang et al. 1996; Tao et al. 2001). The 

libraries of japonica rice were constructed in pECBAC1 and pCLD04541 (Tao and 

Zhang 1998; Tao et al. 2002) from nuclear DNA partially digested with Bam HI, Hind 

III and Eco RI, respectively. The vector pCLD04541 is a plant transformation-competent 

binary BIBAC or TAC vector (Tao et al. 1998) and thus its large-insert clones can be 

directly transformed into plants via Agrobacterium.   

 In our previous studies, whole-genome physical maps of indica rice (Tao et al. 

2001) and japonica rice (Li et al. 2004) were constructed from the BAC and BIBAC 

libraries. The databases of the whole physical maps (Tao et al. 2001; Li et al. 2004) were 

integrated with the fingerprinting data of the positive centromeric clones to generate 

centromeric physical maps.  

 

Library screening 

 

For the identification of centromeric BAC clones, the four japonica and three indica rice 

libraries were robotically double-spotted onto nylon membrane Hybond N+ in a 3 x 3 

format and screened with centromere-specific probes, RCE1 (rice centromere element 1) 

(Nonomura and Kurata 1999), pSau3A9 (Jiang et al. 1996), and CentO (RCS2) (Dong et 
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al. 1998), respectively.  The DNA used for the probes was generated from rice genomic 

DNA using three pairs of primers specific to each of the centromeric region-specific 

repeats, respectively, designed using web-based primer3 software (http://cbr-rbc.nrc-

cnrc.gc.ca/cgi-bin/ primer3_www.cgi): RCE1 (L) 5'-TGGAATCAAAATGTTCAAAA-

3' and (R) 5'-TGGAATCAAAATGTTCAAAA-3'; RCS2 (L) 5'-TTTGATTGGAAG-

AAACAGGT-3' and (R) 5'-TCTCGACACTCAAGGCTATT-3'; pSau3A9 (L) 5’- 

GATCTTTGGATTGGAAA-3' and (R) 5’- GATCCATCTAAAAATATA-3’.  The 

library screening hybridization was conducted according to Zhang et al. (1996).  The 

filters were washed in 2x SSC and 0.1% SDS two times at 65°C with gentle shaking, 20 

min each wash.   

 To identify the contig of the chromosome 8 centromere, two pairs of overgo 

primers were designed from two putative TGF-beta receptor-interacting protein (TGF) 

and endoplasmic reticulum retrieval protein (RER1) genes in the rice chromosome 8 

BAC clone AY360388 (Nagaki et al. 2004): RER1 (F) 5’-GTGAGTTCTAGGAGAG-

TAGCTTG-3’ and (R) 5’-GAAATAATATCCTGCCAAGCTAC-3’; TGF (F) 5’-

GAACCGGCGATAAATACCTTGC-3’ and (R) 5’-AAATCGAGAAGCCTGCAA-

GGTA-3’.   

Overgo labeling was prepared according to a protocol developed by the 

California Genome Research Laboratory (CGRL) (http://informa.bio.caltech.edu/ 

protocols/overgo.html), using radioactive [32P]-dCTP.  Hybridization was carried out 

according to Sambrook et al. (1989). 
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BAC fingerprinting 

 

BAC DNA was isolated and fingerprinted according to Chang et al. (2001) and Tao et al. 

(2001).  The DNA was digested with HindIII and HaeIII, and the HindIII fragments 

were end-labeled with [33P]-dATP using reverse transcriptase at 37°C for 2 h, and then 

subjected to 3.5% (w/v) polyacrylamide DNA sequencing gel electrophoresis at 90 W 

for 100 min.  The Sau3AI-digested lambda DNA was used as the standard marker.  The 

gel was dried and autoradiographed. 

 

Contig assembling 

 

Fingerprint editing and contig assembly were conducted using computers equipped with 

Linux 7.0 platform (Ren et al. 2003a).  According to Chang et al. (2001), only the bands 

ranging from 58 to 773 bp were used for contig assembly.  Vector bands were removed 

manually from the data.  The computer program FPC V6.0 was used for contig assembly 

(Soderlund et al. 2000).  For contig assembly and mergence, a fixed tolerance of 2 and a 

range of cutoffs from 1e-10 to 1e-22 were used. The other parameters used were Diff = 

0.3, MinBands = 5, diffbury = 0.10, and Minends = 8. 

 

BAC end sequencing 

 

BAC clones were inoculated into 96-deep well blocks containing 1.5 ml of Terrific broth  
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(Invitrogen, USA) per well, and grown overnight at 37°C with shaking at 325 rpm.  

DNA was extracted by AutoGenprep 960 (Autogen, USA), an automated DNA isolation 

robotic workstation.  The DNA was dissolved in 50 µl distilled water.  Sequencing 

reaction mixture included 2 µl BigDye terminator (ABI, USA), 300 - 500 ng of template 

DNA, 1 µl 50 µM primer (M13/pUC forward primer: 5’-GTAAAACGACGGCCAGT-

3’ and M13/pUC reverse primer: 5’-AACAGCTATGACCATG-3’), and 5 µl distilled 

water added to 10 µl.  The PCR cycling reactions were conducted under the following 

conditions: 95°C for 4 min, then 95°C, 15 s; 51°C, 10 s and 60°C, 4 min for 70 cycles.  

The reaction mixture was cleaned up by ethanol precipitation, followed by 70% ethanol 

wash.  Sequencing was carried out on the ABI 3100 Genetic Analyzer (Applied 

Biosystems, USA).  Sequence trimming was conducted using the Sequencher v4.1 (Gene 

Codes Corporation, USA). 

 

Results 

 

Identification of centromeric clones in japonica and indica rice 

 

Several centromere region-specific repetitive sequences were previously cloned from 

rice and other grass species, including the sorghum pSau3A9, japonica rice RCE1, and 

indica rice CentO (RCS2) DNA sequences (Jiang et al. 1996; Dong et al. 1998; 

Nonomura and Kurata, 1999). Using these sequences as probes, we screened the four 

japonica and three indica rice BAC and BIBAC libraries. As a result, we identified 
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1,423 pSau3A9-positive clones, 1,753 RCE1-positive clones, and 309 CentO (RCS2)-

positive clones from 20x genome-coverage japonica BAC libraries.  Using the 

sequencing gel-based fingerprinting method and two restriction enzymes, HindIII and 

HaeIII, we fingerprinted 984 of the pSau3A9-positive clones, 463 of the RCE1-positive 

clones, and 208 of the CentO-positive clones, and integrated into our database of whole-

genome physical map of japonica rice (Li et al. 2004).  

From 10x genome-coverage indica rice BAC libraries, we identified 370 

pSau3A9-positive clones, 1097 RCE1-positive clones, and 344 CentO-positive clones. 

The information of the positive clones has been integrated into our database of whole-

genome physical map of indica rice (Tao et al. 2001). 

 

BAC/BIBAC-based physical maps of centromeres of japonica and indica rice 

 

To generate the BAC-based contig maps for the centromeric regions of rice, we 

dissembled the existing whole physical maps of indica rice and japonica rice (Tao et al. 

2001; Li et al. 2004), integrated the fingerprinting data of centromere-specific clones to 

the database of indica and japonica rice, respectively, and re-assembled the physical 

map contigs of indica rice and japonica rice using the FPC program v 6.0 (Soderlund et 

al. 1997, 2000). The contigs that contain the centromeric region-specific repeated 

sequences were selected, manually edited and merged using the FPC program.  For the 

map contig assembly, a fixed tolerance = 2 and Sulston score cutoffs = 1e-11 to 1e-14 
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were used, and the mergence of contig-contig was conducted at tolerance = 2 and cutoffs 

from 1e-10 to 1e-12.  

We assembled 17 contigs for the centromeres of the japonica rice genome,  

collectively spanning about 20.9 Mb in physical length, and 26 contigs for the 

centromeres of the indica rice genome, spanning a total of approximately 15.8 Mb in 

physical length (Fig. 2.1, Table 2.1, and Table 2.2).  All of these contigs were observed 

to contain the CentO satellite repeats. Four of the contigs in both rice subspecies were 

confirmed to contain the whole regions of the core centromeres (Figs. 2.2, 2.3, 2.4, and 

2.5). 

 

Chromosome anchoring 

 

To anchor the centromeric contig to its corresponding chromosome, both ends of two 

flanking BAC clones from each centromeric contig of japonica rice were sequenced.  

Three of the 17 contigs were successfully anchored to their chromosomes, but other 

BAC end sequences could not be identified in the GenBank due to repetitive sequences 

of the ends, still ongoing status of rice genome sequencing, or physical gaps in the 

centromeres.  The centromere 3 contig anchored by BAC-end sequencing showed that it 

contains the core region of the centromere 3, which consists of long arrays of CentO 

satellite repeats (Fig. 2.3). 

 The sequence of the entire chromosome 8 centromere of japonica rice was 

recently determined by J Wu et al. (2004).   To identify the centromere 8 contig(s) in our 
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Table 2.1 The number of centromeric contigs in the 
japonica and indica rice database. 

178 103 Total 

152 86 Pericentromeric 
contigs 

26 17 Centromeric 
Contigs 

indica japonica  
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Table 2.2 Centromeric BIBAC/BAC contigs of japonica and indica rice. 

Contig Clone kb Contig Clone kb 

1* 132 1902 1 43 1064
2* 61 1279 2 38 1008
3 46 422 3 32 951 
4 63 1289 4 37 1052
5* 83 2070 5 26 585 
6 67 1512 6 43 1121
7 35 856 7* 53 1008
8* 229 5132 8 29 970
9 96 2010 9 5 233

10 19 677 10 28 693
11 11 211 11 22 730
12 17 531 12 7 163
13 24 623 13 25 693
14 6 368 14 10 189
15 10 189 15 5 138
16 39 650 16 4 56 
17 35 1252 17 29 970

18 7 302
19 5 56 
20 37 1234
21 40 1285
22 7 81 
23 7 390
24 4 151
25 13 434
26 7 308

Japonica rice Indica rice

Asterisk (*) indicates the anchored BAC/BIBAC contigs. 

Total 

Total 

973 20973 

563 15865 
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physical maps, two centromere 8-specific overgo probes (RER1 and TGF) were obtained 

from the flanking regions of the centromere 8.  Using the specific overgo probes, we 

identified the BAC contigs of centromere 8 in japonica and indica rice (Fig. 2.4 and 2.5).  

The physical length of the centromere 8 contig in japonica rice showed the same 

physical lengths to the centromere 8 determined by genome sequencing (J Wu et al. 

2004). 

 

Discussion 

 

Centromere is one of the most important functional elements of eukaryotic chromosomes, 

and responsible for proper chromosome division and transmission of genetic materials.  

Due to large amounts of repetitive sequences and long arrays of satellite tandem repeats 

in the centromeric regions of higher eukaryotic organisms, there are many physical gaps 

in the contig maps of the Arabidopsis and human genomes (Arabidopsis Genome 

Initiative 2000; International Human Genome Sequencing Consortium 2001). We 

explored in this study the feasibility of constructing the physical maps for the 

centromeric regions of rice using a DNA sequencing gel-based two-enzyme 

fingerprinting method that has been used in the construction of the genome physical 

maps of indica rice (Tao et al. 2001), Arabidopsis (Chang et al. 2001), japonica rice (Li 

et al. 2004), chicken (Ren et al. 2003a) and soybean (Wu et al. 2004a).  

 We assembled 17 contigs for the centromeres of the japonica rice genome, 

collectively spanning ca.20.9 Mb in physical length, and 26 contigs for the centromeres 
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of the indica rice genome, spanning a total of ca. 15.8 Mb in physical length (Fig. 2.1, 

Table 2.1 and Table 2.2).  In our physical maps of centromeres, the positive BAC clones 

to the centromere-specific CR probes, RCE1 and pSau3A9, derived from centromere-

specific type3/gypsy retrotransposon family in cereal plants, are distributed mainly on 

the pericentromeric regions of the chromosomes, but some are observed to locate on the 

contigs of the other chromosomal regions. The majority of the CR elements flank the 

CentO arrays in the physical maps of rice centromeres.  In the contrast, our physical 

maps showed that all of the CentO-positive clones were exclusively located to the core 

regions of the centromeres.  The distribution of the CR elements and CentO repeats 

revealed by contig assembly is consistent with previous fiber-FISH analysis of 

centromeres (Cheng et al. 2002). 

Of the centromere-specific BAC contigs, four were shown to  contain the whole 

core regions of the centromeres in japonica rice (Figs. 2.2, 2.3, 2.4, and 2.5).  By BAC-

end sequencing and overgo hybridization, three contigs were anchored to centromeres 3 

and 8, respectively, but one contig still remains undetermined.  Other centromeric BAC 

contigs were shown to contain only one side of the entire centromere and have major 

gaps in the core regions of the centromeres.  In our centromeric physical contig mapping 

effort, approximately 1/3 of the CentO-positive clones remain as singletons due to 

limited number of bands for contig assembly.  However, these clones were shown to 

have large inserts on pulse-field gels.  Therefore, some CentO-positive clones might not 

have sufficient numbers of HindIII and HaeIII sites to produce polymorphism for contig 
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assembly, and a fingerprinting method using different restriction enzymes and/or larger-

insert clones are needed to construct the contigs spanning the core centromeric regions 

 Recently, the whole regions of rice centromeres 4 and 8 were sequenced (Nagaki 

et al. 2004; J Wu et al. 2004; Zhang et al. 2004).  By the overgo hybridization with 

chromosome 8-specific probes (RER1 and TGF), BAC contigs of centromere 8 were 

identified in japonica and indica rice (Figs. 2.4 and 2.5).  The contigs show the similar 

physical size of centromere 8 in the sequencing map of IRGSP. 

 Our physical contig map of rice will be valuable resource for gap filling in the 

physical maps of the IRGSP and the functional study of centromeres.  Especially, 

BIBAC clones could facilitate not only the functional study of centromeres, but also the 

construction of rice artificial chromosome, since BIBAC can be directly transformed 

into plants, or the pCLD04541 vector already contains a selection maker nptII gene 

resistant to hygromycin for screening transformed plants. 
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CHAPTER III 

ONE LARGE INSERT PLANT-TRANSFORMATION-COMPETENT BIBAC 

LIBRARY OF THE WILD RICE, Oryza rufipogon, AND IDENTIFICATION OF 

THE CLONES DERIVED FROM THE REGION OF ITS CHROMOSOME 8 

CENTROMERE 

 

Overview 

 

Large-insert DNA libraries are crucial to many aspects of advanced genomics research. 

Here we report one large-insert plant-transformation-competent BIBAC library for the 

wild rice, Oryza Rufipogon Griff.  The library was constructed in the BamHI site of a 

plant-transformation-competent binary vector pCLD04541. It contains 24,192 clones, 

has an average insert size of 163 kb, and covers 5 x haploid genomes of O. rufipogon.  

For the comparative study of the centromeres between cultivated rice and its wild 

progenitor, we screened the library with the two probes (RER1 and TGF) flanking the 

chromosome 8 centromere of cultivated rice, O. stativa ssp. japonica and verified the 

positive clones by Southern analysis with a probe derived from the centromere-specific 

satellite repeat CentO previously cloned from cultivated rice.  A total of 12 positive 

clones were obtained, of which nine were shown to contain the CentO repeats.  These 

positive clones are useful for developing the physical map of the chromosome 8 

centromere of O. rufipogon and comparatively studying the centromeres between 

cultivated rice and its wild progenitor.  Since O. rufipogon has many  traits of 
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importance to agriculture, our library provides a useful resource for research in 

comparative genomics of the species, and for study and use of its agronomically 

important traits for cultivated rice improvement through direct genetic transformation of 

large-insert BIBACs containing genes of agronomic importance. 

 

Introduction 

 

Rice is the staple food crop for half of the world’s population and a model species for 

genome research of cereal crops due to its small genome (430 Mb/1C, Arumuganathan 

and Earle 1991), established transformation systems (Hiei et al. 1994; Dong et al. 1996), 

and the availability of a wealth of genomic and genetic resources (Causse et al. 1994; 

Yamamoto and Sasaki 1997; Harushinma et al. 1998; http://rgp.dna.affrc.go.jp; 

http://tigr.org/tdb/tgi.html).   

The common wild rice, Oryza rupifogon, is an ancestor of Asian cultivated rice 

(Oryza sativa), including ssp. japonica and ssp. indica, and thus, is the most important 

germplasm for cultivated rice genetic improvement (Oka 1988).  Since wild rice and 

Asian cultivated rice share the same AA-genome, transfer of agronomically important 

genes from the wild rice into cultivated rice can be easily carried out through sexual 

hybridization (Brar and Khush 2002). Nevertheless, the process of this approach often is 

several years long and leads to the transfer of agronomically deleterious genes while the 

targeted genes are transferred into the cultivated species. In comparison, the genetic 

transformation of the DNA fragment carrying the targeted gene(s) has been proven to 
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effectively accelerate the process of gene transfer from the wild species to cultivated 

ones (Cui et al. 2000; He et al. 2003). 

Agrobacterium-mediated transformation has emerged as the method of choice for 

genetic transformation in rice (Hiei et al. 1994; Dong et al. 1996). Techniques for large-

insert BIBAC or TAC (transformation-competent artificial chromosome) transformation 

have been established in rice (He et al. 2003) and several other plant species, including 

tobacco (Hamilton et al. 1996), Arabidopsis (Liu et al. 1999) and tomato (Hamilton et al. 

1999) and the techniques for large DNA fragment transfer in Brassica (Wu et al. 2000) 

and the model legume, Lotus japonicus (Men et al. 2002) are under development. 

Therefore, plant-transformation-competent BIBAC or TAC libraries have been 

constructed for many species of agricultural importance, for instance, wheat (Moullet et 

al. 2000), rice (Chauhan et al. 2001; Tao et al. 2002), soybean (Meksem et al. 2000), 

tomato (Hamilton et al. 1999), sugarbeet (Fang et al. 2004) and Brassica (Wu et al. 

2000). BIBAC libraries not only streamline the positional cloning of genes and QTLs of 

agricultural importance (Hamilton et al. 1996; Liu et al. 1999), but also are essential to 

simultaneously transfer several closely linked genes, such as disease resistance gene 

clusters, into plants for genetic improvement. 

    There have been a number of studies that report genetic or phylogenetic 

relationships between the wild rice and cultivated rice (Xiong et al. 1999; Gao et al. 

2002; F Ren et al. 2003; Cai et al. 2004), but quite a few comparative studies of 

centromeres have shown that centromeric CR (centromeric retrotransposon) elements  

and CentO (a 155-bp satellite tandem monomer of Oryza sativa) satellites were 



 

 

30

conserved in the centromeres of five wild rice species, such as O. rufipogon (AA 

genome), O. officinalis (CC genome), O. minuta (BBCC genome), O. alta (CCDD 

genome), and O. australiensis (EE genome) (Uozu et al. 1997; Hass et al. 2003).   

    Rice is a diploid, 2n = 24, of which chromosome 8 has the smallest centromere 

and contains fewer heterochromatin regions than other chromosomes (Cheng et al. 2002).  

Recently, the structural organization and DNA sequences of chromosome 8 centromere 

of the cultivated rice, O. sativa ssp. japonica, have been reported (Nagaki et al. 2004; J 

Wu et al. 2004).  However, it is unknown how centromeres originate, function and 

evolve.   In this study we have constructed a large-insert plant-transformation-competent 

BIBAC library of the wild rice, O. rufipogon, and identified the large-insert BIBAC 

clones from the centromeric region of chromosome 8 of the wild rice. The library and 

clones have provided essential resources for molecular characterization of the 

centromere and studies of centromere origin, function and evolution in the cultivated rice 

and wild rice and for genetic improvement of cultivated rice using wild rice by genetic 

engineering.   

 

Materials and Methods 

 

Plant materials 

 

The seeds of Oryza rufipogon (Accession Number PI590417) were kindly provided by 

the U.S. National Plant Germplasm System.  Plants were grown in a greenhouse for 4-5 
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weeks, and young leaves were harvested and immediately stored at -80°C.  The stored 

leaves were used for isolation of high-molecular-weight (HMW) DNA for BAC library 

construction.  

 

BAC library construction 

 

The plant-transformation-competent binary vector, pCLD04541 (Tao and Zhang 1998), 

was prepared according to Zhang (2000) and Wu et al. (2004c).  HMW DNA 

preparation, enzymatic partial digestion, size selection of partially digested HMW DNA, 

BAC cloning and library construction were essentially carried out as described by our 

laboratory (Zhang 2000;  Ren et al. 2003b; Wu et al. 2004b and  Wu et al. 2004c).  

Nuclei were extracted from about 50 g leaves of the plants, resuspended in 3 ml of 1% 

low-melting-point (LMP) agarose, and pipetted into plug-form molds to make plugs at 

100 µl/plug.  The solidified plugs were transferred into 10 x sample volume of lysis 

buffer (0.5 M EDTA, pH 9.0, 1% lauryl sarcosine, and 1 mg/ml proteinase K), incubated 

at 50°C with gentle shaking for 24 h, and then stored at 4°C. 

    Before partial digestion with BamHI, the plugs were washed three times (1 h 

each time) in 20 x sample volumes of ice-cold TE (10 mM Tris-HCl, pH 8.0, 1 mM 

EDTA, pH8.0) plus 0.1 mM phenylmethyl sulfonyl fluoride, and three times (1 h each 

time) in 20 volumes of ice-cold TE.  The plugs for partial digestion were cut into small 

pieces approximately equal in size, equilibrated on ice for 1 h in 1x React 3 buffer 

(Invitrogen, USA) plus 2 mM spermindine, 1 mM DTT, and 0.2 mg/ml BSA.  The 
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equilibrated plug slices were transferred into the fresh ice-cold reaction mixture 

containing 1.6 U/tube of BamHI, incubated on ice for 1 h, and then incubated in a 37°C 

water bath for 8 min.  The reactions were stopped by adding 1/10 volume of 0.5 M 

EDTA (pH 8.0).  Partially digested DNA was fractionated by pulse-field electrophoresis 

on a 1 % agarose gel using the CHEF DRIII (BioRad, USA) in 0.5x TBE buffer (45 mM 

Trizma base, 45 mM boric acid, 1.0 mM EDTA, pH 8.3) for 20 h.  CHEF apparatus was 

set at 6 V/cm, 12.5°C, 120° angle, 90 s switch time for 18 h, and at 4 V/cm, 12.5°C, 

120° angle, 4 s switch time for 2 h.  After electrophoresis, DNA fragments ranging from 

100 to 300 kb were excised from the gel. The DNA was recovered from the agarose-gel 

slices by electroelution in dialysis tubing (molecular-weight exclusion limit = 12,000-

14,000 Daltons) (Invitrogen, USA) using the CHEF apparatus at 6 V/cm, 12.5°C, 120° 

angle, and 30 s switch time in 0.5x TBE for 4 hour, followed by reversing the polarity of 

the currency for 60 s.  The recovered DNA was subjected to a second size selection on a 

1 % agarose gel using the conditions that compress the DNA fragments larger than 100 

kb into a thin band (4 V/cm, 5 s switch time, 10 h at 12.5°C in 0.5x TBE).  The 

compressed DNA band was cut out of the gel and recovered from the gel slices by 

electroelution as above.  The recovered DNA solution was dialyzed against 1,000 

volumes of ice-cold 0.5x TE twice at 4°C, 1 h each dialysis. 

    The dialyzed DNA was collected, quantified and then ligated into the BamHI-

digested and dephosphorylated pCLD04541 vector at a molar ratio of vector: insert 

DNA of 8:1 in the presence of 2.0 U T4 DNA ligase (Invitrogen, USA) per 100 µl 

ligation mixture.  The ligation reaction was incubated for 10 h at 16 °C.  The ligation 
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mixture was directly used to transform E. coli DH10B competent cells (Invitrogen, USA) 

by electroporation.  One microliter of ligation mixture was mixed with 20 µl of the 

competent cells.  The device (Cell Porator and Voltage Booster System, Gibco BRL) for 

electroporation was set at 350 V, 330 uF capacitance, low ohm impedance and fast 

charge rate with Voltage Booster at 4 kΩ resistance.  Transformed cells were transferred 

into 1 ml of SOC medium (Sambrook et al. 1989), incubated at 37°C with gentle shaking 

for 1 h, and then plated on selective LB medium (Sambrook et al. 1989) containing 15 

µg/ml tetracycline, 0.55 mM IPTG, and 80 µg/ml X-gal.  The plates were incubated at 

37oC for 24 h.  White colonies were arrayed into 384-well microtiter plates containing 

60 µl of LB plus freeze medium (Zhang et al. 1996; Zhang 2000; Ren et al. 2004b; Wu 

et al. 2004b) in each well, incubated overnight at 37°C, and stored at -80°C. 

 

BAC analysis 

 

BAC clones were grown overnight at 37°C in 5 ml LB broth (Sambrook et al. 1989) 

containing 15 µg/ml tetracycline with shaking at 250 rpm. BAC DNA was prepared 

according to Zhang (2000). To estimate the BAC insert sizes, 5 µl of each BAC DNA 

miniprep was digested with 1.0 U NotI (BioLabs, USA) in a 20 µl reaction.  The 

digested DNAs were separated by pulse-field gel electrophoresis (PFGE) on a 1% 

agarose gel.  The PFGE condition was 6 V/cm, 120° angle, 12.5°C, a 5 s initial switch 

time and a 15 s final switch time in 0.5xTBE for 16 h.  The gel was stained with 

ethidium bromide and photographed. 
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BIBAC library screening and Southern analysis 

 

High-density colony filters were made from the BIBAC library using the GeneTAC 

Robotic Workstation (Genomic Solutions, USA).  Each BAC clone was double-spotted 

onto 8 x 12 cm Hybond-N+ membranes (Amersham-Pharmacia Biotech, USA) in a 3 x 3 

format.  The clones were grown on the filters placed LB agar plates containing 15 µg/ml 

tetracycline at 37°C for 16 h, and the filters were processed according to Zhang (2000), 

followed by baking at 80°C for 2 h. 

    For library screening, two pairs of overgo (overlapping oligonucleotide) primers 

were designed from the rice BAC clone AY360388 (Nagaki et al. 2004) spanning the 

entire centromere of cultivated rice chromosome 8, using a web-based primer3 program 

(http://cbr-rbc.nrc-cnrc.gc.ca/cgi-bin/ primer3_www.cgi): RER1 (F) 5’-GTGAGTTCT- 

AGGAGAGTAGCTTG-3’ and (R) 5’-GAAATAATATCCTGCCAAGCTAC-3’; TGF 

(F) 5’-GAACCGGCGATAAATACCTTGC-3’ and (R) 5’-AAATCGAGAAGCCTGC- 

AAGGTA-3’.  Overgo labeling was prepared according to a protocol developed in the 

California Genome Research Laboratory (CGRL) (http://informa.bio.caltech.edu/ 

protocols /overgo.html), using radioactive [32-P]-dCTP.  Each set of 16 filters was pre-

hybridized in 150 ml hybridization buffer (5x SSC, 5x Denhardt’s solution, 100 µg/ml 

salmon sperm DNA, 0.5% SDS) at 65°C for 1 h.  Hybridization was performed 

overnight at 65°C in 30 ml fresh hybridization buffer plus the denatured radioactive 
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probes (RER1 or TGF).  The filters were washed twice at 65°C in 2x SSC, 0.1% SDS for 

20 min. 

    For Southern blot hybridization, probe DNA was amplified by PCR using the 

primers designed from tandem repeat RCS2 (AF058902) (Dong et al. 1998).  The PCR 

product was electrophoresed on a 1% agarose gel, excised, and purified using the 

QuiaQuick gel extraction kit (Qiagen Inc., USA).  Southern blot hybridization was 

performed as described (Sambrook et al. 1989).  BAC DNAs were prepared by an 

alkaline lysis method (Sambrook et al. 1989), digested with NotI (BioLabs, USA), run 

out on an agarose gel, and blotted onto Hybond-N+ membrane (Amersham-Pharmacia 

Biotech, USA).  Prehybridization and hybridization were done at 65°C in hybridization 

buffer.  After hybridization, the membrane was washed in 0.1x SSC, 0.1% SDS at 65oC, 

20 min each wash, and then was exposed to x-ray films. 

 

Results 

 

BIBAC library construction and characterization 

 

A BIBAC library of O. rufipogon was constructed in the BamHI site of a plant-

transformation-competent binary vector (pCLD04541). The library consists of 24,192 

clones arrayed in 63 384-well microplates.  To estimate the insert size of the library, 59 

clones were randomly selected and grown in LB medium containing 15 µg/ml 

tetracycline.  DNAs were isolated, digested with NotI, and separated on pulse-field gels.  
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The gels were stained with ethidium bromide and photographed (e.g., Fig. 3.1).  The 

insert size of each clone was estimated using the lambda DNA ladder and the cloning 

vector fragment(s) as the molecular-weight standards. The library has an average insert 

size of 163 kb with a range of 118 - 245 kb (Fig. 3.2).  Less than 0.1 % clones had no 

inserts.  Based on the haploid genome size of 760 Mb (Bennett et al. 1982) of O. 

rufipogon, the coverage of the library is about 5 equivalents of the haploid genome, 

providing a greater than 99% probability of obtaining a single-copy clone from the 

library.  Since the binary vector pCLD04541 has two other NotI sites besides the double 

sites flanking the multiple cloning site, the vector was digested into three DNA 

fragments.  Most BAC clones had several insert fragments (e.g., Fig. 3.1), which is a 

typical pattern observed in the large-insert BACs of monocotyledon plants that contain 

one or more NotI sites in a100-kb BAC insert (Tao et al. 2002),  in contrast to those of 

dicotyledonous plants, such as Arabidopsis (Chang et al. 2003) and soybean (Wu et al. 

2004b), in whose insert of 100 kb there is often no Not I site. 

 

Library screening with rice centromere 8-specific DNA sequences and Southern analysis 

with centromeric CentO satellite repeat sequence of rice 

 

Rice chromosome 8 has the smallest centromere among its 12 chromosomes.  To take 

advantage of its relatively smaller amount of repeated elements and availability of  

genomic sequences in the GenBank, chromosome 8 centromere was selected for the 

comparative study of centromeres in rice and its progenitor, O. rufipogon.  To isolate the 
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Fig. 3.1 PFGE analysis of randomly picked BAC clones of the wild 
rice BamHI large insert library. The two outside lanes are molecular 
size markers (lambda concatemers from Sigma Chemical, St. Lois, 
Mo)
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Fig. 3.2 Insert size distribution of the clones in the wild rice 
BamHI library. BIBAC inserts were released after NotI digestion 
and PFGE separation, and estimated for sizes by comparison 
with lambda concatemer size markers.                            
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 BIBACs derived from the chromosome 8 centromere of O. rufipogon, two pairs of 

Overgos (RER1 and TGF) were designed from the unique sequences flanking the core 

centromere consisting of the CentO satellite tandem repeats (Nagaki et al. 2004; J Wu et 

al. 2004).  Using the centromere 8-specific probes (RER1 and TGF) prepared by overgo 

labeling reactions, respectively, a total of 12 clones were obtained (Table 3.1).  To 

further verify the positive clones and determine which clones contain CentO repeats, 

DNAs were isolated from the positive clones, digested with NotI, Southern blotted, and 

hybridized with probe RCS2 containing the CentO repeats of indica rice. Nine  of the 12 

positive clones were shown to contain the CentO satellite repeats (Fig. 3.3 and Table 

3.1).   

 

Discussion 

 

We constructed a plant-transformation-competent BIBAC library for the wild rice, O. 

rufipogon.  The library was estimated to have an average insert size of 163 kb and to be 

equivalent to 5-fold haploid genomes of the wild rice, providing a probability greater 

than 99% of recovering any single-copy DNA sequence from the library.  The large 

insert size of this library will be helpful for constructing a physical map covering the 

entire chromosome 8 centromere and facilitate genomic research in the wild rice.  

Furthermore, since the library was cloned into an Agrobacterium-mediated, plant-

transformation-competent binary vector pCLD04541 (Jones et al. 1992; Tao and Zhang 

1998), it can be directly transformed into plants via Agrobacterium.   This  will  help  the 
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Sample 

105, 20 TGF 140 B58N22 

105,20 TGF 140 B55I08 

115 TGF 115  B56M10 

115, 45, 30, 20 TGF 210 B58J19 

55, 20 TGF 82 B41C03 

Negative TGF 138 B46J11 

115, 25, 20 TGF 147  B53N06 

Negative TGF 120 B28E02 

145 TGF 145 B14K02 

105, 40, 20 TGF 172 B15E04 

40, 35 RER1 76 B43P09 

Negative RER1 169 B05F22 

CentO bands 
(kb) 

Probe Insert 
size 

BAC clone 

Table 3.1 BAC clones positive to centromere 8-specific probe RER1 and TGF, 
and CentO satellite repeats. 
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Fig. 3.3 Southern analysis of 12 positive clones obtained by library 
hybridization using the centromere 8-specific overgo probes (RER1 and 
TGF). The centromere 8-specific Agarose gel of the positive BACs to 
centromere 8-specific probes (RER1: lanes 1-2, and TGF: lane 3-12) digested 
with NotI (a). Southern blot hybridization of the BACs with CentO probe (b). 
M indicates lambda molecular size marker and lanes 1-12 show the selected 
positive BAC clones.  
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utilization of the library in functional analysis of centromeres, as well as the genetic 

improvement of rice by introducing agronomically valuable genes of the wild rice. 

    The wild rice O. rufipogon is the progenitor of the cultivated Asian rice (Oka 

1988).  The genome of the wild rice (760 Mb/1C, Bennett et al. 1982) is 1.8-fold larger 

than that of the cultivated rice (430 Mb/1C, Arumuganathan and Earle 1991).  The wild 

rice has the same genome (AA) as Asian cultivated rice.  There are abundant genetic 

differences between cultivated and wild progenitors. The differences include 

morphological characters (Harlan 1975), allozymes (Kahler and Allard 1981; Second 

1982), and DNA restriction fragments and sequences (Khairallah et al. 1992; Saghai 

Maroof et al. 1995; Liu et al. 1996).  Evolution from wild to cultivated rice led to 

“domestication syndrome” (Harlan 1975) common to many cereals.  Studies of QTLs 

showed that most of the genetic factors (qualitative or QTLs) controlling the 

domestication-related traits are concentrated in a few chromosomal blocks of cultivated 

rice.  The domestication of rice is associated with linked genetic factors that are not 

linked in the wild rice (Xiong et al. 1999; Cai and Morishima 2003). 

    Unlike other regions of genomes, there is little known about organization, 

function and evolution in plant centromeres.  To study structure and evolution of wild 

and cultivated rice centromeres, we isolated 12 BAC clones potentially spanning the 

chromosome 8 centromere of the wild rice. Nine of the clones have been proven to 

contain rice centromere-specific satellite repeats CentO.  These clones will help the 

construction of a physical map of the wild rice chromosome 8 centromere and determine 

the genomic sequences of the centromere. 
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CHAPTER IV 

SEQUENCE ANALYSIS OF THE CHROMOSOME 8 CENTROMERE OF THE 

WILD RICE, Oryza rufipogon GRIFF. 

 

Overview 

 

A complete sequence of a chromosome centromere in the closely related species is 

necessary for better understanding of centromere organization, origin, function and 

evolution.  Using a capillary electrophoresis-based fingerprinting method, we 

constructed a BIBAC-based contig map for centromere 8 of  the wild rice, Oryza 

rufipogon.  Approximately 95% genomic sequence of the long arm side of the wild rice 

centromere 8 was obtained through shotgun sequencing of a BIBAC clone (B43P09) 

spanning the major portion of the centromere.  Comparative sequence analysis of the 

clone showed that the centromere has a gene content largely similar to that of the 

cultivated rice, O. stativa ssp. japonica, centromere 8, including the putative RER1 

(endoplasmic reticulum retrieval protein) gene. However,  the pericentromeric regions of 

the centromere have undergone large-scale rearrangements, such as deletions and 

additions.  The core centromeric regions consisting of the 155-bp satellite repeats have 

evolved rapidly at the nucleotide level since the cultivated rice evolved from the wild 

rice.  We confirmed that although the conserved regions of the 155-bp satellites 

underwent dramatic changes, the CentOr of the wild rice and the CentO of the cultivated 
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rice maintain conserved nucleotides at the 5’ and 3’ ends.  These results provide novel 

insights into the evolution and function of rice centromeres. 

 

Introduction 

 

Centromeres are essential for faithful segregation and transmission of chromosomes in 

both mitotic and meiotic cell division.  In higher eukaryotes, a centromere consists of 

two major regions, pericentromeric  and core centromeric, but the exact boundaries of 

each region remain largely undefined.  The core centromere comprises tandem repeated 

satellite sequences, the amount of which varies from several hundred kilobases to 

megabases. Some regions of the core centromere are thought to be responsible for the 

function of the centromere (Schueler et al. 2001).  The pericentromeric regions flanking 

the core centromere contain moderate repetitive elements, including transposons, 

retrotransposons, and pseudogenes  (Copernhaver et al. 1999; Cheng et al. 2002; J Wu et 

al. 2004; Zhang et al. 2004).  

 In cereal plants, centromere-specific repetitive sequences, CR (centromeric 

retrotransposon) elements derived from a type3/gypsy-class retrotransposon family, are 

widely dispersed in the pericentromeric regions (Dong et al. 1998; Nonomura and 

Kurata 1999; Cheng et al. 2002).  The chromatin immunoprecipitation assay with 

centromeric histone H3 proteins (CENH3) demonstrated some of CR elements and 

satellites interact with CENH3 proteins, suggesting that some CR elements could 

participate in the functions of centromeres (Zhong et al. 2002). 
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 In general, full length of centromeres in higher eukaryotic organisms is at the 

megabase level.  The long range of repeated sequences, such as centromeric satellites, in 

the centromeres makes it difficult to clone and sequence the regions.  The human and 

Arabidopsis genomes have been sequenced by the clone-by-clone approach (Arabidopsis 

Genome Initiative 2000; International Human Genome Sequencing Consortium 2001).  

However, due to the long stretches of satellite repeats and other repetitive sequences, big 

gaps remain to be sequenced in the centromeric regions of the physical maps for each 

chromosome of the species. 

 Unlike Arabidopsis and human, rice has provided an important model for 

organizational study of centromeres because the centromeres of several of its 

chromosomes, such as 3, 4 5, 8 and 12, contain a limited amount of satellite DNA and 

other repetitive sequences, as detected by the fluorescence intensities of the fluorescence 

in situ hybridization signals (Cheng et al. 2002).  Recently, the entire centromeres of the 

cultivated rice ssp. japonica chromosomes 4 and 8 have been sequenced and 

characterized (Nagaki et al. 2004; J Wu et al 2004; Zhang et. al 2004).  In comparison, 

centromere 8 contains a similar copy number of 155-bp CentO satellite monomers to 

centromere 4 in the core region, but has more genes and less amounts of CR-related 

repeated sequences in the pericentromeric regions. Centromere 8 consists of three large 

clusters of CentO satellites whereas centromere 4 consists of 18 small clusters in the 

core centromeres (J Wu et al. 2004; Zhang et al. 2004).   

Centromeres have been recognized as rapidly evolving regions of chromosomes 

through large- and small-scale nucleotide sequence changes.  Although the functions of 
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centromeres are highly conserved, there is only a limited sequence similarity among the 

centromeres of the distantly-related species (Hall et al. 2004).  In Arabidopsis, the 

insertions of some mitochondrial sequences and 5S rDNA into centromeres (Stupar et al. 

2001; Franz et al. 1998) and inversions involving centromere 4 (Arabidopsis Sequencing 

Consortium 2000) have been reported.  The rapid changes of satellite repeats at the 

nucleotide level have also been observed in several plant species (Cheng et al. 2002; 

Talbert et al. 2002; Heslop-Harrison et al. 2003; Hall et al. 2003). However, it is little 

known about the large-scale rearrangements of the centromeric regions between related 

plant species. 

 The common wild rice, Oryza rufipogon Griff., is a progenitor of Asian 

cultivated rice, Oryza sativa L. (Oka 1988), including ssp. indica and ssp. japonica. The 

genome of the wild rice (760 Mb/1C, Bennett et al. 1982) is 1.8-fold larger in size than 

those of the cultivated rice (430 Mb/1C, Arumuganathan and Earle 1991).  Although the 

wild rice has the same genome (AA) as the cultivated rice, genetic differences between 

them has been reported (Harlan 1975; Kahler and Allard 1981; Second 1982; Khairallah 

et al. 1992; Saghai Maroof et al. 1995; Liu et al. 1996).  Especially, genetic studies of 

QTLs showed that the processes of natural selection and domestication from the wild 

rice to the cultivated rice have led to clustering of genetic factors controlling the 

domestication-related traits in a few chromosomal blocks of the cultivated rice (Xiong et 

al. 1999; Cai and Morishima 2002).  

 To date,  limited comparisons of centromere DNA from different species have 

been revealed that some DNA elements are conserved. However, those studies were 
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insufficient to identify the conserved functional elements and elucidate evolutionary 

significance of structural changes in plant centromeres. For better understanding of the 

function and evolution of the centromeric elements in closely-related species, we 

constructed a physical contig map of wild rice centromere 8 spanning the whole region 

of the centromere, and have sequenced the long arm side of the centromere 8 in the wild 

rice.  Comparative sequence analysis between the cultivated japonica rice and the wild 

rice indicated that large-scale rearrangements in the pericentromeric regions and rapid 

small-scale evolution of 155-bp satellites in the core region have been occurred since 

they have split. 

 

Materials and Methods 

     

 BAC fingerprinting by capillary electrophoresis 

 

The DNA of BACs derived from the chromosome 8 centromere of the wild rice was 

isolated using Qiaprep Spin Miniprep Kit (Qiagen Inc., USA).  BAC DNA fingerprinting 

was carried out in wells of a 96-well PCR plate according to Xu et al. (2002, 2004).  

Approximately 200 – 500 ng of the BAC DNA was digested with 2 units of each HindIII, 

XbaI, and XhoI in the reaction buffer (50 mM NaCl, 10 mM Tris-HCl, 10 mM 

magnesium acetate, 1 mM DDT, 100 ng/µl BSA) at 37°C for 2 h. The reaction was then 

terminated at 65°C for 15 min. Fifteen microliters of a mixture containing 2.0 µl of 

SNaPshot Multiplex Ready Reaction Mix containing ddATP-R6G, ddGTP-R110, 
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ddCTP-TAMRA, ddT(U)TP-ROX and Taq ploymerase FS (Applied Biosystems, USA), 

2.0 units of BamHI, 2.5 units of HaeIII, 25 mM Tris-acetate (pH 7.8), 100 mM 

potassium acetate, 10 mM magnesium acetate, and 1 mM DTT was added. The reaction 

was continued to incubate at 37oC for 2 h, followed by incubating at 65oC for 1.0 h. 

    The DNA sample was precipitated using 100% ethanol, and then dissolved in a 

mixture containing 9.8 µl of Hi-Di formamide (Applied Biosystems, USA) and 0.2 µl of 

ABI internal size marker LIZ-500 ranging from 35 to 500 bp  (Applied Biosystems, 

USA).  The DNA was denatured at 95°C for 8 min and then put on ice for 8 min.  

Capillary electrophoresis was carried out on the ABI 3100 Genetic Analyzer with 36-cm 

capillary using the ABI default GeneScan module (Applied Biosystems, USA).  The 

fingerprint data was collected by ABI GeneScan version 3.70 and ABI data collection 

version 1.01 software (Applied Biosystems, USA). 

 

FPC contig assembly 

 

The band data was transferred into a SUN computer workstation from the fingerprinting 

raw data in the ABI 3100 Genetic Analyzer and edited by use of the MultiColor editor 

software (http://hbz.tamu.edu).  The edited data were converted into the FPC format data 

by the SizeToFPC software (http://hbz.tamu.edu).  To construct physical map contigs, 

Fingerprinted Contig (FPC) program v.6.0 (Soderlund et al. 1997; Soderlund et al. 2000) 

was used.  The automatic contigs were assembled at tolerance = 2, cutoff = 10-15 to 10-25, 

DiffBury 0.1, and MinBands 8. 
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Nucleotide sequencing and sequence assembly 

 

The shotgun sequencing approach was used to sequence the BACs spanning the 

centromeric region of the wild rice chromosome 8. The BACs were selected from the 

contig map of the centromere and DNA was isolated using Qiaprep spin miniprep kit 

(Qiagen Inc., USA).  BAC DNA was sheared into fragments with an average of 1.5 kb 

by the HydroShear Machine (GenomicSolutions, USA).  After being polished at the ends 

with Klenow and T4 DNA polymerases, the sheared DNA was ligated into the 

pBluescript vector and transformed into E. coli DH10B (Invitrogen, USA) by 

electroporation.  The shotgun subclones were sequenced from the forward end by the 

dideoxy chain termination method using the BigDye Terminator Cycle Sequencing v1.0 

and v2.0 ready reaction kits (Applied Biosystems, USA).  The sequencing reactions were 

analyzed on the ABI 3100 Genetic Analyzer (Applied Biosystems, USA).  The 

sequences were trimmed, refined and assembled by using the Sequencher V4.1 (Gene 

Codes Corporation, USA).  The primary assembled results were refined by carefully 

manual checking to correct the misalignments caused by repeat sequences.  

 

Sequence analysis 

 

The sequences were searched against the GenBank database using the BLASTN and 

BLASTX homology search software and compared using the BLAST 2 software.  
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Sequence alignments were performed and refined manually using the Sequencher V4.1 

and GeneDoc software (http://www.psc.edu/biomed/genedoc). 

 Sequence comparative analysis of the centromeric regions between the wild rice 

and cultivated rice ssp. japonica was performed using zPicture and eShadow web-based 

software (Ovcharenko et al. 2004a; Ovcharenko et al. 2004b).  Wild/japonica rice 

sequence alignments were generated and visualized by the zPicture program 

(http://zpicture.dcode.org), using standard parameters (≥ 100 bp, ≥ 70%).  The conserved 

coding exons in the pairwise alignments were detected using the HMMI method of 

eShadow software (http://eshadow.dcode.org/). 

  

Results 

 

Physical map of the wild rice chromosome 8 centromere 

 

Using the novel capillary sequencing-based fingerprinting method developed by Xu et al. 

(2002, 2004), we fingerprinted the 12 BAC clones positive to the cultivated rice ssp. 

japonica centromere 8-specifc probes, RER1 and TGF, with five restriction enzymes 

(HindIII, XbaI, XhoI, BamHI, and HaeIII) to generate enough bands for contig assembly. 

The fingerprint raw data were edited by the MultiColor editor software 

(http://hbz.tamu.edu).   

Two automated contigs were assembled using the FPC program v.6.0 (Soderlund 

et al. 1997a; 2000b) and then merged into one contig because the contig end clones 
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(B43P09 and B15E04) share some fingerprint bands and a 40-kb NotI fragment 

containing CentO repeats (Fig. 3.3 and Table 3.1).  The contig physical map consisted of 

10 of the 12 BAC clones and spans approximately 364 kb in physical length (Fig. 4.1). 

By Southern hybridization of the clones with the cultivated rice centromere 8-specific 

probes that flank the core region of the centromere and that of the key centromere 

component CentO satellites, we found that the region covered by two clones, B43P09 

and B15E04, contained the core region of the centromere, based on comparison to the 

japonica centromere 8 (Fig. 4.2). 

 

Sequencing of the wild rice centromere 8 

 

Two BAC clones, B43P04 and B15E04, of the centromere 8 contig map of the wild rice 

were selected for shotgun sequencing. The region covered by the two clones represents 

207 kb in physical length and was proven to contain the whole region of the centromere 

8 (Fig 4.2). Shotgun libraries were constructed from the two clones, respectively and 

analysis of random clones from the libraries indicated that the libraries had average 

insert sizes of 1.5 kb, suggesting that they are suited for shotgun sequencing the 

centromeric region. Due to the smaller size of its insert, B43P09 was first sequenced and 

a 7-fold coverage of sequences was obtained. The sequences were assembled by use of 

the Sequencher V4.1, and the assembly result was refined by carefully manual checking 

to correct the misalignments caused by repeats.   
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B15E04

B43P09
(shotgun sequenced clone)

40 kb

TGF RER1
Short arm Long arm

Physical map of the wild rice 
chromosome 8

Contig1

207 kb

Fig. 4.2  Minimal overlapping BAC tile path of the centromeric region of the wild 
rice chromosome 8.  Contig 1, which covers the entire region of the centromere 8 
(yellow), is indicated in blue lines. The BIBAC clones, B43P09 and B15E04, were 
shown to share a 40-kb fragment containing CentOr satellites and span the entire 
centromere.  TGF and RER1 are cultivated rice centromere 8-specific overgo probes 
flanking its centromere 8 (Nagaki et al. 2004). 
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 The sequence map of B43P09 consists of 12 contigs and 42 singletons, spanning 

approximately 78 kb in physical length.  We estimated the sequenced region to represent 

at least 95% for the 75-kb insert of the clone (Table 4.1).  By sequencing the subclones 

constructed with NotI and a 10-kb shotgun library of B43P09, we are filling the gaps of 

the sequence map. 

 

Comparative sequence analysis with the cultivated japonica rice centromere 8  

 

On the basis of the sequence analysis with BLASTN and BLASTX programs in the 

GenBank, 91% of the 78-kb centromeric sequences from B43P09 were repetitive, most 

of which had high similarities to the type3/gypsy-class retrotransposon family.  Only one 

putative gene RER1 was found in the sequence map.  In the comparison with the region 

of centromere 8 in japonica rice, 69% of the retroelements and other sequences were 

shown to be highly conserved, but  some sites were observed to have nucleotide 

substitutions, and the insertions and deletions of several nucleotides in japonica rice.  

 For the further analysis based on the region-to-region comparison in the 

centromere 8 between the wild and japonica rice, the zPicture program 

(http://zpicture.dcode.org) was used to perform alignments and visualization of the 

conserved sequences (Ovcharenko et al. 2004b), and the eShadow 

(http://eshadow.dcode.org) programs were used to detect conserved coding regions 

(Ovcharenko et al. 2004a).  The compared region of japonica rice contains one 6928-bp 

putative endoplasmic reticulum retrieval protein gene (RER1) (J Wu et al. 2004).   In  the 
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23.867Total

11.811.812

-1.911

2.914.710

-0.89

0.51.18

-2.37

2.54.76

1.65.45

0.83.5 4

-3.7 3

2.3132

1.4 4.1 1

Sequences not found in the japonica
rice centromere 8 (kb)

Size (kb)Sequence Contig

Table 4.1 Sequence contigs constituting the sequence map of B43P09 of the wild rice 
and comparison with the centromere 8 sequence of japonica rice.
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zPicture analysis, the sequences of two introns and two partial sequences of the intron 2 

in RER1 of japonica rice were shown to be highly conserved except the deletion of 15 

nucleotides and addition of 7 nucleotides. However, the two exons of the wild rice RER1 

are identical to those of japonica rice, except for several base substitutions (Fig. 4.3).  

The zPicture analysis of the remaining sequences revealed that a total 46.5-kb sequence 

of 6 contigs contains large deletions of several kilobases or addition of other centromeric 

sequences in the centromere 8 of japonica rice (Fig 4.4 and Table 4.1).  Furthermore, the 

11.8-kb sequence of the wild rice contig 12 was not found in the comparable region of 

centromere 8 in japonica rice, but was conserved in other regions of centromere 8 and 

other chromosomes.  In the comparison of the 11.8-kb contig 12 with the whole BAC 

sequence (192 kb) of japonica AP006480, quite a few small similar fragments were 

found in the wild rice contig (Fig. 4.5).   Most conserved elements were proven to be 

partial coding regions of the polyproteins or gag proteins (Fig. 4.6) by the HMMI 

prediction method of eShowdow program and the BLASTX search in the GeneBank.  

These results provided the evidence that the processes of the natural selection and the 

domestication might lead to the significant structural rearrangements of the proximal 

centromeric regions from the long arm of the rice chromosome 8. 

 

Comparison of the wild rice CentOr and the cultivated rice CentO satellites 

 

The sequence map of B43P09 in the wild rice contains more than 29 of monomers of the 

wild  rice 155-bp satellite repeats (CentOr),  with a total of  6.02 kb in length.   We  were 
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Fig. 4.3  zPicture analysis of rice RER1B gene. Three sequence contigs of the wild 
rice were aligned with the japonica rice RER1B gene. Wild/japonica alignments 
were generated and visualized by the zPicture program using the standard parameters 
(≥ 100 bp, ≥70%). The conserved elements corresponding to exons (blue) and introns 
(pink) are indicated.  The y-axis corresponds to percent identity of the sequences and 
x-axis corresponds to size in base pairs. The alignment has three gaps in the zPicture 
plot. The locations of the compared regions of wild rice (contig 3 and 11) are 
depicted as violet bars.  The addition and deletions of nucleotides are shown as black 
bars.  
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Fig. 4.5  zPicture analysis of the sequence contig 12 of the wild rice. The wild 
rice contig 12 sequence (11.8 kb) was aligned to the whole BAC sequence of 
japonica rice AP006480, and the conservation (≥ 100 bp, ≥70%) between the 
sequences was analyzed using the zPicture program.  The contig 12 sequence has 
only small fragments observed in the compared japonica BAC clone AP006480. 
The conserved sequence corresponding to intergenic elements are indicated in 
red. The y-axis indicates the percent identity of sequences between the wild rice 
and japonica rice, and the x-axis indicates the size of the compared region in 
base pairs. 
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unable to determine whether the CentOr satellites are interrupted by other sequences due 

to the several major gaps in the sequence contigs.  According to the length and structure 

of CentOr unit, the monomers could be classified into three subgroups: 155-bp CentOr 

(18 copies), 156-bp CentOr (3 copies), and incomplete CentOr (8 copies).  The 156-bp 

CentO had the addition of one nucleotide at the same position.  In the incomplete 

CentOrs, 5 copies had the deletion of 10 nucleotides at the 5’-end, and 3 copies showed 

the internal deletions of 1-3 nucleotide(s) at different positions.  Although all CentOr 

monomers were conserved in length, the polymorphisms were dispersed along the whole 

155-bp consensus satellite sequences.  The identities between monomers varied  from 

88% to 98%. 

 In the core centromere of the cultivated rice, there were three large clusters of 

CentO satellite repeats, which comprised 442 units of the 155-bp satellite repeat (J Wu et 

al. 2004).  The alignment of the wild rice CentOr satellites with the cultivated japonica 

rice CentO satellites confirmed that both 5’ and 3’ ends of the satellite unit were highly 

conserved (Fig. 4.7), and the central region was relatively divergent (Fig. 4.8). These 

results were consistent with the previous comparison of japonica rice CentO satellites 

with the maize CentC satellites (Cheng et al. 2002).  Interestingly, the CentO monomers 

in japonica centromere 8 do not have a deletion of 10 nucleotides at the 5’-end found in 

the wild rice CentOr monomers.  Instead, japonica satellites have 9 copies of 72-bp 

deletion at 5’ end (J Wu et al. 2004).  The 83-bp incomplete CentO satellite monomers 

might be derived from 145-bp incomplete CentOr satellite by further deletion of 5’-end 

CentOr satellite during evolution. 
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Discussion 

 

 Putative TGF (TGF-beta receptor-interacting protein) and RER1 (endoplasmic 

reticulum retrieval protein) genes were identified at the pericentromeric regions flanking 

the core centromeric region of chromosome 8 in japonica rice (Nagaki et al. 2004).  To 

identify the clones covering the whole region of centromere 8 in the wild rice, we 

designed two overgo (overlapping oligonuleotide) probes from the unique sequences in 

the putative RERl and TGF genes.  However, there are two partial sequences of the 

RER1 gene in chromosomes 1 and 4, and two whole sequences of the TGF gene in 

chromosomes 5 and 11, but no CentO satellites in those regions.  Interestingly, BLASTN 

search showed that there is a partial sequence of RERl in the centromere 4 and a whole 

sequence of TGF in the centromere 5.  Using the centromere 8-specific probes, the 

positive BIBAC clones were successfully identified from the wild rice BIBAC library. 

Southern blot hybridization with CentO satellite sequences as the probes confirmed that 

the positive clones were from the centromere 8 (Fig. 3.3).  The positive clones were 

further examined by the capillary electrophoresis-based five-enzyme fingerprinting 

method and assembled into a contig (Fig. 4.1).  We confirmed that two of the positive 

clones that were excluded from the centromere 8 contig were from other chromosomes 

by Southern and fingerprint analysis. 

 Two BAC clones, B43P04 and B15E04, in the contig map of the wild rice 

centromere 8 were selected for sequencing, because they both contain CentOr satellite 

repeats and the TGF and RER1 locus-specific overgo probes, and span the entire region 
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of the centromere (Fig 3.2).  For the first step of shotgun sequencing, BAC43P04 

representing the centromeric region of long arm was selected due to its small insert size 

(76 kb).   

 The sequence map comprised 12 sequence contigs and 42 singletons, spanning 

about 78 kb in length (Table 4.1).  The BLASTX search showed that the sequence region 

contains genes, including one RER1 gene, which is consistent with the sequence analysis 

of japonica rice centromere 8 (J Wu et al. 2004).  The whole region-to-region structural 

comparison of the wild rice B43P09 clone with japonica centromere 8 could not be done 

until completing the final step of filling gaps.  However, we found the evidence that 

there were chromosomal rearrangements at both large scale and nucleotide level in the 

pericentromeric regions, and rapid changes of satellites in the core centromere. These 

changes may result from the processes of evolution and/or domestication. Centromeres 

have been recognized as rapidly evolving regions of chromosomes.  Comparative studies 

of closely related primate species have revealed blocks of recently duplicated sequences 

located in the pericentromeric regions, and showed dramatic differences in the 

distribution and organization of these duplications (Eicher and Sankoff 2003).  In 

Arabidopsis, significant structural changes such as the integration of the mitochondrial 

sequences into CEN2 and insertion of a tract of 5S rDNA into CEN3 have been reported 

(Franz et al. 1998; Stupar et al. 2001).  For the large-scale changes in the 

pericentromeric regions, Hall et al. (2004) suggested that ectopic recombination might 

play a role in the evolution of these regions.  The evidence from human and Arabidopsis 

centromeric regions showed that ectopic recombination occurs at a relatively high 
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frequency (Eicher and Sankoff 2003).  In addition, the process of domestication from the 

wild rice to cultivated rice has led to significant chromosomal rearrangement in rice 

genomes (Xiong et al. 1999; Cai and Morishima 2003).  The effects of this strong 

pressure from its domestication on centromeric regions are still unclear. Our 

comparative analysis of wild rice and japonica rice showed that a deletion of 11.8-kb 

pericentromeric sequence in the wild rice occurred, while a total of 46.5-kb sequence 

underwent large deletion of several kilobases or insertion by other sequences.  A 

completion of the sequencing project will provide clearer examples of structural 

rearrangement of pericentromeric regions during evolution.   

 In addition to the large-scale rearrangements in the pericentromeric regions, 

satellites in the core centromere underwent rapid changes at the nucleotide level even 

within a species.  In Arabidopsis, ecotype-specific satellite variants have been identified 

(Hall et al. 2003).  The comparison between alignments of CentOr and CentO satellites 

revealed how rapidly the conserved nucleotides in the satellites changed in the middle 

region of the repeat units (Fig. 4.8).  However, two conserved regions believed to be of 

functional significance are maintained at 5’ and 3’ ends (Fig. 4.7), consistent with the 

analysis of sequence similarity between CentO and maize CentC satellites (Cheng et al. 

2002).   

Several hypotheses have been suggested to explain how satellite sequence 

homogeneity can be maintained while still allowing for rapid evolution (Ugarkovic et al. 

2002; Hall et al. 2004).  In the library hypothesis, genomes contain sets of satellite 

variants in differing abundance.  New satellites can occur by mutation.  These satellites 
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can be homogenized through unequal crossover (Nijman and Lenstra 2001; Hall et al 

2004).  The older satellite(s) can be outcompeted by newer homogeneous satellites.  

Another model suggested that satellite evolution is driven by the selection and co-

evolution of satellites and centromeric histone H3 proteins (Henikoff et al. 2001).  The 

centromeric histone H3 proteins (CENP-A) specifically bind to satellite DNA. In such a 

case, a slight advantage in satellite-CENP-A interactions could lead to rapid genomic 

fixation of satellite arrays.  The rapid adaptive evolution of CENP-A has been observed 

in both Drosophila and Arabidopsis (Malik et al. 2002; Talbert et al. 2002).  In the 

comparison of the wild rice CentOr and cultivated rice CentO monomers, the library 

hypothesis could explain that 5’-end 10-bp deleted CentOr satellites of the wild rice 

would undergo further deletion of 5’end by the process of degenerating inactive 

satellites, and then become more degenerated 72-bp deleted CentO satellites in japonica 

rice. 

 For the first time at the sequence level, we performed the region-to-region 

comparative analysis of centromere 8 between wild rice and the cultivated japonica rice.  

Our comparative analysis provided distinct evidence for the structural changes of 

centromeric regions at both large scale and nucleotide levels, although our sequencing 

project is still on-going.  Since comparative analyses of closely related species are 

required to discern the functional significance of structural changes in the centromeres, 

the completion of our sequencing project will provide better understanding of structural 

organization and evolution of centromeres.  Furthermore, both BAC contig and sequence 

maps of wild rice will be valuable resource for launching the functional analysis of the 
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centromere using artificial chromosomes.  Especially, the binary BAC clones will 

facilitate the construction of rice artificial chromosomes for mapping the functional 

centromeric regions because the cloning vector (pCLD04541) can be directly used for 

screening transformed plants. 
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CHAPTER V 

SUMMARY 

 

Centromeres are the major structurally and functionally specialized features of 

chromosomes in higher organisms. To decipher the genomic origin, organization, 

function and evolution of plant centromeres, we developed the BAC and plant-

transformation-competent BIBAC-based physical maps for the centromeres of cultivated 

rice, Oryza sativa ssp. japonica and indica.  We screened several BIBAC and BAC 

libraries of  indica and japonica rice using several cereal centromere-specific repeat 

elements previously isolated in rice and sorghum, RCE1, pSau3A9, and CentO satellites, 

as probes.  We identified 1,423 pSau3A9-, 1,753 RCE1-, and 309 CentO-positive clones 

from the japonica rice BAC and BIBAC libraries, and 370 pSau3A9-, 1097 RCE1-, and 

344 CentO-positive clones from the indica rice BAC libraries.  Using the high-resolution 

sequencing gel-based fingerprinting method and two restriction enzymes, HindIII and 

HaeIII, we fingerprinted the positive clones, integrated the fingerprinted data into the 

fingerprint databases of our whole-genome physical maps of the subspecies, and 

assembled the contig maps for the centromeric regions of the two rice subspecies, 

respectively. 

Seventeen  contigs were assembled  for the core centromeres of the japonica rice 

genome, spanning about 20.97 Mb in physical length, and 26 contigs for the core 

centromeres of the indica rice genome, spanning around 15.86 Mb in physical length.  

Of the contig maps, three of japonica rice and one of indica rice were shown to cover 
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the entire regions of centromeres. Selected BAC end sequence analysis and library 

hybridization using two centromere 8-specific overgo probes (RER1 and TGF) anchored 

three of the contigs each to chromosome 3 of  japonica rice, and chromosome 8 of  both 

indica and japonica rice.   

Analysis of the three cereal centromere-specific repeat elements, RCE1, 

pSau3A9, and CentO, in the positions of the contig maps suggests that the CentO repeats 

solely reside at the core centromeric regions whereas the RCE1 and pSau3A9 repeats are 

preferentially distributed in the pericentromeric regions flanking the core centromeres. 

The physical maps of the core centromeres of japonica and indica rice will provide 

valuable resources for gap filling in the physical maps of the International Rice Genome 

Sequencing Project (IRGSP) and the functional mapping of centromeres.  Furthermore, 

BIBAC clones in our contigs could facilitate not only the functional study of 

centromeres, but also the construction of rice artificial chromosomes for practical 

applications. 

In the second part of the study, we constructed one large-insert plant-

transformation-competent BIBAC library of the wild progenitor of the cultivated rice, 

Oryza rufipogon, to develop the physical map of the centromere 8 in the wild rice for 

comparative study of rice centromeres.  The library was constructed in the BamHI site of 

a binary vector pCLD04541, contained 24,192 clones arrayed in 63 384-well microplates, 

had an average insert size of 163 kb, and covered 5x haploid genome of the wild rice. To 

determine the genomic evolution of centromeres since the cultivated japonica rice 

evolved and domesticated from its wild progenitor and to identify the sequences 
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potentially important for centromere functions, we screened the wild rice library with 

two overgo probes (RER1 and TGF) flanking the chromosome 8 centromere of japonica 

rice, and then verified the positive clones by Southern hybridization with a probe derived 

from the centromere-specific CentO satellites cloned from the cultivated rice.  A total of 

12 clones were identified by the library hybridization,  nine of which  were confirmed to 

contain the CentO satellites. 

Our library is a useful resource for comparative genomics of the rice species, 

including our comparative analysis of centromeres, and practical use of the 

agronomically important traits in the wild rice for the cultivated rice improvement 

through direct genetic transformation of large-insert BIBACs containing genes of 

agronomic importance. 

To date, only very limited comparative studies of centromeres have been 

performed in higher organisms.  Importantly, comparative analysis of centromeres from 

closely-related species could elucidate conserved functional elements and lead to a better 

understanding of the genomic organization and evolution of plant centromeres because 

underlying evolutionary mechanisms differ between euchromatic regions and 

centromeres. 

The last part of the study represents the first report on the comparative analysis 

of centromeres  in closely-related plant species, the Asian cultivated rice (O. sativa ssp. 

japonica) and its wild progenitor (O. rufipogon).  By  fingerprinting the positive BIBAC 

clones isolated  from the wild rice library with the centromere 8-specific probes (RER1 

and TGF) designed from the sequences flanking the centromere 8 of japonica rice on a 
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capillary sequencer, we constructed the BIBAC-based physical contig map of the  

centromere 8 of the wild rice.  Since the clones, B43P04 and B15E04, constituted the 

minimal tiling path of the contig map, they were selected for shotgun sequencing.  By 

shotgun sequencing of B43P09, 95% genomic sequence of the long arm side of the wild 

rice centromere 8 was obtained.  Comparison with the centromere 8 of japonica rice 

showed that 69% of the sequences were highly conserved between the two species, but 

some sites were observed to have nucleotide substitution, insertions, and deletions in 

japonica rice.  Large-scale rearrangements were observed in the pericentromeric regions.  

A total of 46.5-kb sequence underwent large deletion of several kilobases or insertion by 

other sequences between the cultivated and wild species.  An 11.8-kb sequence contig of 

the wild rice was totally deleted from the compared region in the cultivated rice, but 

were highly conserved in other regions of centromere 8 and other chromosomes of the 

cultivated rice.  In addition to the large-scale rearrangements in the pericentromeres, the 

155-bp satellites in the core centromere were shown to undergo rapid changes at the 

nucleotide level.  Conserved nucleotides of the 155-bp satellites in the internal regions 

were significantly different between the wild and cultivated rice, indicating dramatic 

changes in the region during evolution.  The wild rice CentOr and cultivated rice CentO 

satellites maintain conserved nucleotides at 5’ and 3’ ends, which is consistent with the 

previous sequence analysis between rice CentO and maize CentC satellites.  This result 

suggests that the 5’- and 3’-end domains of the CentO satellites may play an important 

role in centromere function. 
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A region-to-region comparative analysis of the centromere 8 was done between 

the cultivated rice and its wild progenitor.  Our analysis provided a line of distinct 

evidence for the evolutionary structural changes in both large and small scales in the 

centromeres of related species during evolution and domestication.  Since comparative 

studies of closely-related species are valuable to recognize the functional significance of 

structural changes in the centromeres, the completion of our sequencing project will 

provide a better understanding of the structural organization and evolution of 

centromeres.  Furthermore, our physical BAC contig and sequence map is an important 

platform to launch the functional analysis of the centromeres using rice artificial 

chromosomes.  
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