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ABSTRACT 
 
 

The Study of Middle School Teachers’ Understanding and Use of Mathematical 

Representation in Relation to Teachers’ Zone of Proximal Development in Teaching 

Fractions and Algebraic Functions.  (August 2004) 

Zhonghe Wu, B.S., Wuhan University Marine Mechanical Engineering Institute; 

M.B.A., Texas A&M International University 

Chair of Advisory Committee:  Dr. Gerald Kulm 

 

 This study examined teachers’ learning and understanding of mathematical 

representation through the Middle School Mathematics Project (MSMP) professional 

development, investigated teachers’ use of mathematics representations in teaching 

fractions and algebraic functions, and addressed patterns of teachers’ changes in learning 

and using representation corresponding to Teachers’ Zone of Proximal Development 

(TZPD).  

Using a qualitative research design, data were collected over a 2-year period, 

from eleven participating 6th and 7th grade mathematics teachers from four school 

districts in Texas in a research-designed professional development workshop that 

focused on helping teachers understand and use of mathematical representations.  

Teachers were given two questionnaires and had lessons videotaped before and after the 

workshop, a survey before the workshop, and learning and discussion videotapes during 

the workshop.  In addition, ten teachers were interviewed to find out the patterns of their 

changes in learning and using mathematics representations.     
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 The results show that all teachers have levels of TZPD which can move to a 

higher level with the help of capable others.  Teachers’ knowledge growth is measurable 

and follows a sequential order of TZPD.  Teachers will make transitions once they grasp 

the specific content and strategies in mathematics representation.  The patterns of teacher 

change depend on their learning and use of mathematics representations and their beliefs 

about them.   

 This study advocates teachers using mathematics representations as a tool in 

making connections between concrete and abstract understanding.   Teachers should 

understand and be able to develop multiple representations to facilitate students’ 

conceptual understanding without relying on any one particular representation.  They 

must focus on the conceptual developmental transformation from one representation to 

another.  They should also understand their students’ appropriate development levels in 

mathematical representations.   

 The findings suggest that TZPD can be used as an approach in professional 

development to design programs for effecting teacher changes.  Professional developers 

should provide teachers with opportunities to interact with peers and reflect on their 

teaching.  More importantly, teachers’ differences in beliefs and backgrounds must be 

considered when designing professional development.  In addition, professional 

development should focus on roles and strategies of representations, with ongoing and 

sustained support for teachers as they integrate representation strategies into their daily 

teaching. 
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CHAPTER I 

INTRODUCTION 

1Background 

Mathematics is a study of science, and a relationship between numbers and the 

spatial, focusing on reasoning and logical thinking.  Whitehead (1929) defines 

mathematics as a “science of order.”  This definition identifies the features of 

mathematics as generalization, simplification, representation, communication, and 

application, and determines its wide applications in technology, economics, social 

studies and other fields.  For many centuries, mathematics has been used everywhere in 

the world as a universal language.   

The natural features of mathematics challenge teachers to view mathematics 

differently and require teaching and learning mathematics with imagination and 

creativity.  As Green (1995) describes, “To learn and to teach, one must have an 

awareness of leaving something behind while reaching toward something new and this 

kind of awareness must be linked to imagination” (p. 14).  Green (1995) believes that the 

imagination is the gateway through which understanding and meanings derived from 

past experiences connect present learning.  In modern society, as an important subject 

for K-12 schools worldwide, mathematics teaching and learning need to develop a 

gateway that opens the door for understanding new learning.  To achieve success in 

school mathematics education and reach the goal of mathematics teaching and learning, 

                                                 
This dissertation follows the style and format of the Journal for Research in Mathematics Education. 
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teachers need to play a key role in implementing mathematics curriculum in their 

classroom teaching. 

Throughout the history of mathematics education, teachers and teaching have 

been found to be the major factors relating to students' mathematical achievement 

(Mullis et al., 2000; Stigler, & Hiebert, 1999).  To address the important role of teaching, 

Stigler and Hiebert (1999) state, “Teaching is the next frontier in the continuing struggle 

to improve schools” (p. 2).  Since mathematics teachers’ knowledge is a base for 

effective teaching, teachers should acquire sufficient knowledge to enhance their 

abilities and improve their quality of teaching.  According to the National Council of 

Teachers of Mathematics (NCTM, 2000), “Effective teaching requires knowing and 

understanding mathematics, students as learners, and pedagogical strategies” (p. 17).  To 

develop the knowledge of effective teaching, teachers need to not only have 

opportunities to participate in professional development, but more importantly attend 

high quality professional development, with focuses on the growth and improvement of 

teachers’ knowledge. 

In current mathematics teacher professional development programs, a question 

has arisen about how effectively professional development meets mathematics teachers’ 

and students’ needs.  Many studies find that traditional professional development has 

little influence on improving classroom teaching and learning (Carpenter, & Fennema, 

1991; National Educational Research Policies and Priorities Board, 1999).  The 

problems framed and methods preferred in many professional development programs 

have produced knowledge represented in forms that make it difficult for teachers to use 
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(Hiebert, Gallimore, & Stigler, 2002) and have resulted in “the tension between formal 

research and practical inquiry” (Stocks, & Schofield, 1997, p. 285).  These problems call 

for substantive changes in the delivery of professional development.  Even with changes 

and extensive training provided for teachers, currently professional development is still 

not productive in terms of effective teaching (Stocks, & Schofield, 1997) and students’ 

mathematical proficiency development.  This critical issue on professional development 

challenges mathematics educators to seek a new and effective way to provide teachers 

with specific, structural, and practical knowledge that could enhance their knowledge in 

a wide scope and multiple dimensions, enable them to make a transformation in content, 

pedagogical, and pedagogical content knowledge, and help them arrive at higher levels 

of Teachers’ Zone of Proximal Development (TZPD) in teaching, based on and extended 

from the theory of Zone of Proximal Development (ZPD) in student learning (Vygotsky, 

1978).  Teachers’ knowledge growth under effective professional development, in turn, 

helps them implement a standards-based curriculum that is based on the National 

Council of Teachers of Mathematics Principles and Standards for School Mathematics 

(NCTM, 2000).   

Brief History of Standards-Based Mathematics Curriculum Development 

The history of mathematics education reflects the teaching and learning of 

mathematics in the social and economic movements.  In the last 50 years, mathematics 

education reform in the United States has experienced several trends.  The new 

mathematics reform movement in the 1950s, aimed at cultivating highly technological 

human resources, had two main views in the understanding of mathematics: “precision 
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of language, and discovery of generalization” (Osborne, & Crosswhite, 1970, p. 254).  In 

this new mathematics movement, logical structures and abstract symbols were almost 

exclusively used in the classrooms to convey new concepts at all levels.  The curricula 

developers did not consider the needs and characters of children’s learning.  

Consequently, the new mathematics movement failed, for it focused on highly structured 

and abstract principles and rules, which ignored learners’ needs.  Most importantly, the 

new mathematics movement failed because of its lack of adequate training for teachers.  

The results of the new mathematics movement resulted in a movement to “go back to the 

basics” (Troutman, & Lichtenberg, 2003).   

In 1957, the Soviet Union’s launching of the “Sputnik” satellite, which 

challenged the U.S. to improve the quality of science education, including mathematics 

education, provoked an increase in public attention on education problems.  “The 

recognition of grave deficiencies in the school mathematics program highlighted 

dramatically by the spectacular performance of Sputnik, sparked a new era of thought 

and action concerning the instructional programs in school mathematics” (Gibb, Karnes, 

& Wren, 1970, p. 327).  Although several curricula were established as a result of this 

pressure, the most important movement was the establishment of the School 

Mathematics Study Group (SMSG) in 1958.   Because the SMSG set a good example, 

showing that mathematicians and educators can work together holding the same view of 

mathematics curriculum development, it successfully developed the secondary 

mathematics curriculum.  With teachers' involvement, the SMSG provided detailed 

materials for students and teachers, and teachers' training became an essential 
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consideration in curriculum development.  Considering teachers’ needs and providing 

guidelines for classroom practices were the key factors for the SMSG's success.   

During the 1970s, as technology developed and classrooms acquired a more 

diverse student population, mathematics education faced new challenges for reform.  

This reform was different from previous ones: it applied cognitive learning theory to 

restructure instructional practice, which called for more attention on individual students’ 

needs and on individualized instruction (Troutman, & Lichtenberg, 2003).  After the 

1970s, a series of documents released from professional organizations initiated a prelude 

to standards-based curriculum reform.  The “Agenda for Action,” published by the 

National Council of Teachers of Mathematics (NCTM, 1980) called for new 

mathematics reform in eight areas, including problem solving and technology usage.  

“Everybody Counts” (MSEB, 1989) provided new ideas on mathematics education.  

These documents enlightened many researchers and educators’ views about teaching and 

learning mathematics: quality mathematics education was beneficial to the nation’s 

future.  Three documents on improving quality mathematics education, based on 

constructivism, in the 1980s and 1990s, entitled “Curriculum and Evaluation Standards 

for School Mathematics” (NCTM, 1989), “Professional Standards for Teaching 

Mathematics” (NCTM, 1991), and “Assessment Standards for School Mathematics” 

(NCTM, 1995), launched by NCTM, further addressed reform in mathematics education 

in detail and provided a fresh view for mathematics education reform in the United 

States.  One of a number of remarkable documents, Benchmarks for Science Literacy 

(AAAS Project 2061, 1993), launched by Project 2061 of the American Association for 
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the Advancement of Science, provided benchmarks for what all students should know or 

be able to do in science, mathematics, and technology by the end of grades 2, 5, 8, and 

12.  This document built a strong base for students to “become literate in science, 

mathematics, and technology by graduation from high school” (AAAS, 1993, p. vii).  In 

2000, the NCTM released the Principles and Standards for School Mathematics 

(PSSM), which acted as a milestone in the history of mathematics education.  The 

features of PSSM (NCTM, 2000) are: (1) it is based on the previous three NCTM 

Standards; (2) it is research based, and constructivism and social constructivism are the 

backbone of PSSM; (3) it has six principles as its base, aimed at high quality in 

mathematics education;  (4) it separates the different grade levels into K-2, 3-5, 6-8, and 

9-12, stating the important mathematics ideas for the different grade levels; (5) not only 

does it have five content standards, but it also has five process standards to guide 

teachers using different approaches in classroom teaching; and (6) it adds an electronic 

version, in which teachers are able to view mathematics with technology and to visualize 

mathematics concepts to produce the best ideas for effective teaching.  For the middle 

school level, it not only provides detailed mathematics content areas, but it also 

addresses a variety of ideas on how to make a transition between arithmetical and 

algebraic thinking for middle school students in order to achieve success in learning 

mathematics. 

The Content of PSSM and Mathematical Representation 

 The content of PSSM is divided into two parts: principles and standards.  PSSM 

uses six fundamental principles as its guidelines for school mathematics: equity, 
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curriculum, teaching, learning, assessment, and technology.  The equity principle states 

that the mathematics curriculum should be available to every student and should include 

high expectations for all students.  The curriculum principle advises that “mathematics 

should be coherent, focus on important mathematics, and should be well articulated 

across the grades” (NCTM, 2000, p. 15).  The learning principle dictates that the 

mathematics curriculum should have let students understand and be able to apply the 

mathematics they have learned.  The assessment principle addresses that assessment 

needs to support students’ learning and teachers’ teaching.  The technology principle 

advocates the use of technology for learning and teaching mathematics.  Among these 

principles, the teaching principle shows that mathematics teaching relies on the quality 

of teachers to understand students and mathematics, including  four essential 

components: (1) mathematics teachers should carefully analyze and consider students’ 

learning characteristics; (2) mathematics teachers should prepare mathematics classes 

coherently in lessons, units and subjects, and have content and pedagogical, as well as 

knowledge of students’ thinking; (3) mathematics teachers should create a classroom 

environment in which students have the confidence necessary for learning mathematics; 

and (4) mathematics teachers should use “discourse” to let students participate in 

mathematics learning (NCTM, 2000).  In addition, PSSM illustrates the essential 

concepts and procedures of learning mathematics and clearly states that learning 

mathematics is dependent on personality and society characteristics.  Students’ 

differences in learning mathematics require mathematics teachers to understand their 

different learning backgrounds and learning styles and to design various approaches to 
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meet students’ needs and direct them in learning mathematics.  Students’ understanding 

the knowledge of mathematics and realizing its value is the key to learning mathematics 

successfully.  It is essential that a teacher helps students build valuable mathematics 

attitudes and beliefs to help them not only in learning mathematics but also in their 

future lives.   

 PSSM also illustrates five content standards and five process standards.  The 

content standards are: number and operations, algebra, geometry, measurement, and data 

analysis and probability; the process standards are: problem solving, reasoning and 

proof, communication, connection, and representation.  These standards are not 

separated, but are connected, interwoven, and communicate with each other since 

mathematics is developed from and connected by problem solving, reasoning, 

representation, communication, and connection.  Most importantly, PSSM advocates 

mathematics representation, as an important mathematics process standard, connects this 

standard with others in a dynamic system of processes for K-12 mathematics education.   

Researchers have found that mathematical representation is a tool that can help 

students overcome difficulties in developing and understanding mathematical concepts 

(Goldin, 2003; Monk, 2003; Smith, 2003).  Ability in students’ use of representations in 

mathematics learning reveals the level of internalized understanding and helps teachers 

in finding their students’ learning Zone of Proximal Development (ZPD) because “how 

learners represent and connect pieces of knowledge is a key factor in whether they will 

understand it deeply and can use it in problem solving" (National Research Council, 

2001, p. 117).   
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The Theoretical Model for the Study 

 For decades, various studies have focused on many aspects of mathematics 

classroom teaching, but generally few cases have been concerned with how specific 

content and pedagogical knowledge have merged in mathematics representations 

(Demana, & Leitzel, 1988; Goldin, 2003, Greeno, & Hall, 1997; Smith, 2003).  What is 

needed is a research study that blends the concern for the realities of classroom 

instruction and teachers' knowledge such as mathematics representations of teaching 

with the concern for individual students' representations, using the rich analysis of the 

structure of mathematics representations.  These concerns called for a research-based 

investigation that examines teachers’ active and thoughtful engagement in learning 

mathematics representations through professional development, and how professional 

development helps teachers gain knowledge from both mathematics representations and 

instructional strategies, which could facilitate the transformation of teachers’ knowledge 

into powerful and meaningful forms of representations that make sense to their students 

and enhance students’ learning. 

Researchers have developed different teaching models based on effective 

teaching (Carpenter, & Fennema, 1991; Simon, 1997).  According to Carpenter and 

Fennema (1991), students’ learning depends on the teacher’s decision making, and the 

teacher’s decision relies on the teacher’s knowledge and beliefs, which, in turn, is based 

on students' cognitions.  Therefore, they believe that effective teaching is based on 

students' behaviors.  However, the scope of teachers’ knowledge and beliefs are too 

broad and very complex, and much detail is needed to address effective teaching.  In the 
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development of the Mathematics Teaching Cycle (MTC), Simon (1997) emphasizes the 

interaction between teachers and students in classroom teaching and learning.  

According to Simon (1997), teachers not only need to learn the mathematical aspects of 

teaching, but also how to set goals to direct students' mathematical thinking and 

discussion.  In order to achieve these goals, teachers need to organize their classes using 

good communication with students.  The teacher, as a constructivist, should be able to 

communicate with students using mathematical teaching strategies in which teachers’ 

knowledge of mathematics activities contributes to the learning trajectory, and the 

interaction between teacher and students develops students' mathematics learning and 

promotes the learning of new concepts (Simon, 1997).  Therefore, he believes that 

identifying and developing the content of activities is an important task for the 

effectiveness of professional development. 

In the sense of mathematics representation not only as it directly relates to 

teachers’ content and pedagogical knowledge, but also as it builds a close connection 

between effective teaching and student learning for particular content areas, this study 

develops an effective teaching model, based on the importance of mathematics 

representations in teaching and learning mathematics.  Since the core objective of 

teaching is to enhance student learning with understanding, this new model places 

mathematics representation at the center of a network of effective teaching (see Figure 

1).  Therefore, this study focuses on the components of professional development, 

knowledge of representation, and effective teaching via mathematics representations in 
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particular content in relation to the Teachers’ Zone of Proximal Development (TZPD) in 

the model.   

Figure 1 shows that teachers’ knowledge (content, pedagogical, and pedagogical 

content knowledge) and teachers’ beliefs are the main knowledge bases for effective 

teaching.  However, as teachers learn new knowledge and gain more teaching 

experience, the interaction between these two will change the teachers’ beliefs.  Yet all 

of their knowledge and beliefs may be unorganized, and their content and pedagogical 

knowledge could be unconnected (An, Kulm, & Wu, 2004).  Therefore, professional 

development plays a fundamental role in connecting teachers’ knowledge to their 

beliefs, and importantly, in building and structuring their knowledge using specific 

mathematics content and strategies -- Knowledge of representation is defined as 

strategies of using representations to illustrate and convey mathematics ideas.   

The components of mathematical representations in Figure 1 generally involve 

communication, mathematics reasoning, connection, and problem solving.  They are 

interwoven with representation and modified representation in a transferable, 

interpretable, visual, sense making, communicative, and deliverable form to students.  

Teachers’ mathematics representation knowledge also comes from teachers’ and 

students’ interaction which Simon (1997) referred to as “inquiry into students’ 

mathematics, facilitation of discourses, problem posing, and interactive constitution of 

classroom practices” (p. 79).  Students’ learning occurs as a result of interaction between 

teachers and students.  The model, therefore, matches the theory of Zone of Proximal 

Development (ZPD). 
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Figure 1. Effective teaching via the mathematics representation model. 
 
 

Representation in the Zone of Proximal Development (ZPD) for Learning  

In mathematics education, two questions are often asked: In what ways do 

students understand mathematics best?  In what ways do teachers teach effectively?  To 

Teachers Knowledge 
 

Content 
Knowledge 

Pedagogical 
Content  

Knowledge 

Pedagogical 
Knowledge 

Teachers’ Beliefs

Interaction 
with 

Students

Knowledge of 
Representations

Effective Teaching 
via Mathematics 

Representations in 
Particular Content

Students’ 
Learning 

Professional 
Development

Knowing Student 
Thinking of Internal and 
External Representations 



  13 

address these questions, curriculum and instruction in mathematics education have 

applied the Zone of Proximal Development (ZPD) theory (Vygotsky, 1978) in many 

areas (Albert, 2000; Steele, 1999).  Vygotsky (1978) described ZPD as “the distance 

between the actual developmental level as determined by independent problem solving 

and the level of potential development as determined by problem solving under adult 

guidance or in collaboration with more capable peers” (p. 86). According to his view, the 

ZPD designates a range of tasks that learners cannot yet perform independently, but can 

perform with the help of others.  By applying the theory of ZPD, professional 

development programs as capable others could foster teachers’ skills and capacities, 

which would gradually become internalized as learning proceeds from originally 

independent to collaborative learning situations. 

Using representations in mathematics teaching is one of the examples of ZPD 

applications.  First, knowledge of representation is very important for effective teaching 

and learning.  According to Shulman (1986), “What is also needed is knowledge of the 

most useful forms of representation of those ideas, the most powerful analogies, 

illustrations, examples, explanations, and demonstrations -- in a word, the ways of 

representing and formulating the subject that make it comprehensible to others” (p. 9).   

In mathematics, representation is not a single dimensional trait, rather it is related to 

everything in teaching and learning mathematics, i.e., a good representation makes 

meaningful sense for mathematics understanding (Goldin, 2003).  Therefore, 

mathematics representations, such as concrete models, diagrams, graphs, charts, and 

symbolic expressions, contribute to effective mathematics teaching and learning.  
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Second, there is a close relationship between representations and the development of 

ZPD.  According to Cuoco (2001), there are two kinds of representations in the learning 

process: external and internal.  External representation refers to the representations that 

people can easily communicate to others using physical marks; internal representation 

refers to the images that people create in their minds for mathematics objects and 

processes (Cuoco, 2001).  Learners’ internal representations could be developed through 

the use of external representations; therefore, internal representation is a higher level 

than external representation.  “When a child [learner] is ready to build an internal 

representation of a concept or relationship, the child [learner] is said to be in the ZPD” 

(Troutman, & Lichtenberg, 2003, p.16).   Like internal and external representation, 

people’s intrapsychological functioning of ZPD is a higher mental function developed 

through interpsychological functioning of ZPD because “interpsychological functioning 

was social at some point before becoming an intrapsychological, truly mental function” 

(Vygotsky, 1981, p. 162).  The levels of mastering representations determine the 

development of ZPD.  In mathematics learning, “when students gain access to 

mathematical representations and ideas they represent, they have a set of tools that 

significantly expand their capacity to think mathematically” (NCTM, 2000, p. 67) and to 

internalize their understanding.  The power of mathematics representations will not only 

place children in their ZPDs but also help them develop to their fullest potential and, in 

turn, increase their level of ZPDs.  Therefore, the term “representation” refers “to the act 

of capturing a mathematical concept or relationship in some forms” (NCTM, 2000, p. 

67), such as a diagram, graphical display, or symbolic expression (Goldin, 2003).   
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According to Vygotsky (1962), a mediator (e.g., teacher) is an important 

ingredient in the learning process.  In classroom teaching practice, mathematical 

representation strategies help teachers change their role according to students’ ZPDs 

reflected in mathematical representations.  By working with students, the teacher helps 

them use various representations to internalize mathematics concepts and relationships, 

which not only helps students overcome their difficulties in learning but also enables 

students to reach a potential beyond what they could achieve independently.  The 

important part of this process is that teachers should encourage students to use different 

representations according to their levels of ZPD to solve problems or to portray, clarify, 

or extend mathematical ideas.  In order to achieve this goal, teachers must have profound 

and structured content, pedagogical, and pedagogical content knowledge (PCK), i.e., 

they must have their own higher levels of TZPD in the knowledge of representation.  

Model of the Zone of Proximal Development (ZPD) for Teaching 

 Although the theory of the Zone of Proximal Development (ZPD) was originally 

developed with children’s learning, Vygotsky (1978) acknowledged that a learning 

discrepancy exists between solitary and social problem solving as he developed his 

notion of ZPD (Forman, & Cazden, 1985).  Vygotsky (1978) defined ZPD as the 

distance between the actual developmental level of independent learning and the 

potential development level of learning through collaboration with more capable peers.  

According to Vygotsky (1978), learning consists of the internalization of the social 

interaction process, and learning development proceeds when interpsychological 

regulation is transformed into intrapsychological regulation (Forman, & Cazden, 1985).     
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 Applying Vygotsky’s ZPD principle for students, this study designed Teachers’ 

Zone of Proximal Development (TZPD).  There are three stages of TZPD corresponding 

to three different levels: when teachers’ knowledge develops under individual learning 

without interpsychological function, their knowledge development is limited.  In this 

stage, teachers’ knowledge is limited in mathematical content, and sometimes even with 

inadequate content knowledge. When teachers’ knowledge is developed together with 

and guided by capable others, their knowledge is in the interpsychological process, in 

which their content knowledge and pedagogical knowledge are developed.  When 

teachers continue to develop their knowledge together with and guided by capable others 

and reflect their new learning in teaching practices, they gradually reach their potential 

in intrapsychological function, and their pedagogical content knowledge is developing 

(see Table 1). 
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Table 1 
The Relationship between TZPD and Development of Teachers’ Knowledge  
 

Level TZPD Teachers’ knowledge 
 
 
1 

Zone 1: Learning 
without 
interpsychological 
function.   

a) Teachers’ knowledge development is 
limited in content areas. 
b) Their content knowledge may be 
inadequate. 

 
 
 
2 

Zone 2: Learning with 
interpsychological 
function.   

a) Teachers’ knowledge is developed when 
acquired with and guided by capable others.  
b) Both teachers’ content and pedagogical 
knowledge are developed. 
 

 
 
 
3 

Zone 3: Learning in 
intrapsychological 
function. 

a) Teachers’ knowledge is continually   
developed when acquired with and guided 
by capable others. 
b) Teachers reflect and apply new learning 
in teaching and gradually reach their 
potential. 
c) Their pedagogical content knowledge is 
developing. 
 

 
 

 
To examine the effectiveness of this learning process of TZPD, this study applied 

the theory of ZPD to teachers’ learning processes in mathematics representations.  When 

teachers learn representations through individual learning, they engage in their personal 

learning in a limited scope of zone, in which their knowledge of representation is 

limited, unstructured, and unconnected, that is not sufficient to teach mathematics 

effectively.  Through structured professional development, teachers interact with peers 

and are guided by capable others, and their learning is transformed to interpsychological 

regulation, in which teachers can provide clear representations, though not 

comprehensible with limited variety and connection; by continuing to collaborate with 

more capable others, teachers have opportunities to reflect and internalize their 
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knowledge of representation in the intrapsychological function in which teachers are 

able to provide various representations accurately and comprehensibly to students. The 

process of transition from interpsychological to intrapsychological function leads 

teachers to make progress to a higher and broader zone of ZPD, which is called TZPD in 

this study, defined as teacher learning occurs in collaboration with more capable others 

(see Figure 2).  

 

 

 

 

 

 

 

 

 

Figure 2. Model of TZPD. 

 

 

In this study, teachers’ knowledge of representations is categorized into three 

levels corresponding to the three zones of TZPD.  Zone 1 is considered lower level; 

Zone 2 is at the middle level; and Zone 3 is at a high level.  At the lower level of TZPD, 

Zone 1

Zone 2

Zone 3

Teachers are able to provide various 
representations accurately and comprehensibly 
that make sense to students. 

Teachers’ knowledge of representation is 
limited, unstructured, and disjointed. 

Teachers’ knowledge of representation is 
accurately and comprehensibly structured 
but has little variety. 
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teachers’ knowledge of representation is unstructured and disjointed with limited 

accuracy; at the middle level of TZPD, teachers’ knowledge is accurately and 

comprehensibly structured but has little variety; at the high level of TZPD, teachers are 

able to provide various representations accurately and comprehensibly according to 

students’ learning needs that make sense to students.  The different zones from level one 

to three are not separate zones, and are movable in a spiral movement from lower to 

higher levels.  The higher zones are always built upon lower zones and are broader than 

the previous one.  To make progress from one level to another in TZPD, an effective 

professional development model focusing on specific mathematical content in 

connection with representation plays an important role.  During this effective 

professional development, teachers have opportunities to learn various strategies for 

developing representations from collaboration with more capable others and to 

restructure their knowledge and engage in interpsychological regulation.  To fully master 

the skills of use of representation in classroom teaching, teachers will apply the 

knowledge of representations in their teaching.  By interacting with students, teachers 

verify and solidify their knowledge of representation and reflect on their learning in their 

teaching practice, thus helping them build intrapsychological regulations, in which they 

reorganize and refine their knowledge into the connected network of representation, and 

they internalize their knowledge of representation and transform it into a higher level of 

TZPD.  The levels of teachers’ knowledge of mathematics representation not only reflect 

their mathematics understanding and ability in mathematics teaching but also indicate 
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their zones of TZPD.  Teachers’ high level of TZPD in mathematics representations will 

in turn help them make instructional decisions for effective teaching.   

Purpose of the Study 

In mathematics education, representation can be defined as a configuration of 

signs, characters, icons, or objects that represent mathematics ideas (Cuoco, 2001; 

Goldin, 2003).  In teaching mathematics, the aim of teachers’ roles is helping students 

build mathematical conceptual understanding from idiosyncratic presentation, to 

meaningful mathematical representation, which can be seen in the role of the inductive 

representation bridge (Capraro, 2004; Smith, 2003).   

Given the potential importance of mathematics representations, it is fundamental 

that professional development, aiming at specific, structured, and connected content and 

pedagogical knowledge, help teachers expand their knowledge and improve their 

teaching.  Although some studies have called for pedagogical content knowledge, which 

is the connection between content and pedagogical knowledge, this connection mainly 

focuses on the knowledge of students’ cognition (An, 2000; Fennema, & Franke, 1992; 

Shulman, 1986).  With knowledge of students’ mathematical thinking, how teachers 

convey their knowledge into powerful forms that could be acceptable and understood by 

students is still unclear.  The process of conveying teachers’ knowledge is the process of 

transformation that could be achieved by knowledge of representation.  Given the 

potential importance of mathematics representations, it is also fundamental to understand 

how teachers understand mathematics representations and how they implement them in 

effective teaching; especially, it is vital to examine how teachers develop their 
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knowledge of representations in Teachers’ Zone of Proximal Development (TZPD) in 

teaching from professional development.  The example of teacher professional 

development model designed by Middle School Mathematics Project (MSMP) focuses 

on teachers’ content and pedagogical knowledge change and on taking action for 

classroom teaching.  The features of the MSMP professional development are (1) 

analyzing current teaching content and difficulties (e.g., fractions and algebraic 

functions); (2) stating changes in teaching for this contents; (3) focusing on mathematics 

representation in teaching; (4) making plans for implementing standards-based teaching; 

and (5) assessing the impact of the new way of teaching.    

Since there is no study focused on examining TZPD for K-12 teachers from 

professional development, it is imperative to investigate how to develop TZPD in 

mathematics representations through professional development.  Without professional 

development aiming explicitly at helping teachers build higher levels of TZPD, 

understanding the transformation of specific content and processes such as mathematics 

representations in fractions and algebraic functions, knowing how to convey 

mathematics concepts in the form of representations, using them well and properly, and 

being able to assess them using various approaches, it is unlikely that teachers will be 

able to teach mathematics effectively and fully implement a standards-based curriculum, 

the curriculum advocated by NCTM (2000).  Furthermore, the absence of current 

research on TZPD, especially on the transition in the use of representations, results in the 

lack evidence for how teachers develop TZPD and how they use mathematics 

representations in classroom teaching, and in what respect the representations contribute 
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to the improvement of students’ learning.  Therefore, the ultimate goal of this study is to 

discover how and to what extent teachers’ knowledge of representation fit into their 

TZPD sufficiently in order to help them improve their teaching.  Specifically, the 

purpose of this study is a) to examine teachers’ change in understanding of mathematics 

representations through the MSMP professional development workshop, b) to 

investigate how teachers change their use different types of mathematics representations 

to teach fractions and algebraic functions through the MSMP professional development 

workshop, and c) to assess patterns of teachers’ changes after the MSMP professional 

development workshop in using mathematics representations in classroom teaching.   

Delimitation of the Study 

There are two delimitations in this study: (1) although videotape has been viewed 

as reliable sources for collecting data, it may be difficult to view the whole class context; 

therefore, the researcher’s judgment may have some degree of bias; (2) participants were 

asked to voluntarily participate in Middle School Mathematics Project (MSMP); 

therefore, the data in this study represents only the results obtained from those who 

participated this study and results.   

Definition of Terms 

Terms used in this study are defined as follows:  

Content knowledge is the knowledge of specific content areas in mathematics. 

Pedagogical knowledge is the knowledge of teaching techniques, instructional materials, 

and classroom management and organization management (NCTM, 2000). 
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Pedagogical content knowledge is the knowledge of effective teaching, including 

knowing student thinking, preparing instruction, and mastering instruction delivery (An, 

2004). 

Teachers’ beliefs are teachers’ view about mathematics teaching and learning. 

Mathematics representation is a configuration of signs, characters, icons, or objects that 

represent mathematics ideas (Cuoco, 2001; Goldin, 2003). 

Knowledge of representation is the knowledge about how mathematical ideas can be 

represented to teach students effectively (NCTM, 2000). 

Interpsychological function is a social interaction involved in learning development. 

Intrapsychological function is introspection and reflection in the personal learning 

process. 

ZPD (Zone of Proximal Development) is the distance between the actual development 

level as determined by independent problem solving and the level of potential 

development as determined by problem solving under adult guidance or in collaboration 

with more capable others (Vygotsky, 1978). 

TZPD (Teachers’ Zone of Proximal Development is teacher learning occurs by 

collaborating with peers and through guidance by others with more experience. 

Research Questions 

 This study poses the following questions: (1) What do teachers understand about 

mathematical representations through the MSMP professional development workshop?  

How does this understanding of representation fit into TZPDs?  (2) How do teachers use 

their new knowledge of mathematics representations gained from the MSMP 
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professional development workshop in classroom teaching? How does this practice 

relate to their levels of TZPDs? (3) In what ways do teachers make changes in their 

actual classroom teaching in terms of TZPD levels in using mathematics representation 

after the MSMP professional development workshop?   Are there any patterns of 

changes in classroom teaching?  
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CHAPTER II 

REVIEW OF LITERATURE 

Introduction 

Current mathematics reform calls for changes in mathematics teaching and 

learning (NCTM, 2000).  These changes are transitions involving fundamental shifts in 

reconceptualizing both mathematical teaching and learning (Cooney, & Shealy, 1997).  

The notion of teacher change has many dimensions.  Although there have been 

numerous studies on mathematics teacher change (e.g., Nelson, 1997), there has been 

little research on the changes in teachers’ knowledge of mathematical representation 

from professional development.     

In order to successfully implement standards-based curricula and teach 

mathematics effectively, teachers need to develop their knowledge of representation, 

which helps teachers “thoroughly overhaul their thinking about what it means to know 

and understand mathematics, the kinds of tasks in which their students should be 

engaged, and, finally, their own role in the classroom” (Smith, 2001, p. 4).  In addition 

the knowledge of representation “helps teachers make curricular judgments, respond to 

students’ questions, and look ahead to where concepts are leading and plan accordingly” 

(NCTM, 2000, p.17).  However, current teacher professional development rarely focuses 

on teachers’ knowledge growth and changes in representations in the specific 

mathematical content areas that they are teaching.  There are many ways of reforming 

professional development in the area of teachers’ knowledge, teachers’ collaboration 

etc.; however, it is impossible for successful professional development to focus 
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effectively on an excessive number of goals.  The Middle School Mathematics Project 

(MSMP) focuses on the goal that merges teachers’ mathematics content and pedagogical 

knowledge with mathematical pedagogical content knowledge to help teachers gain 

mathematical knowledge of representation in classroom teaching (MSMP, 2001).  This 

focus on teacher changes, in particular mathematical content for the professional 

development, is essential and especially important for middle school teachers because 

“teachers, particularly at the elementary and middle school levels, often have limited 

knowledge of the mathematical ideas that are central to the curriculum they are 

teaching” (Smith, 2001, p. 42).  Therefore, this study examined the changes in teachers’ 

knowledge of representations through the MSMP professional development workshop in 

their teaching practice. 

Teachers’ Professional Development 

Professional development in mathematics education has long been a debated 

topic.  The main argument is how and to what extent professional development helps 

teachers teach mathematics effectively.  Researchers have developed many professional 

development frameworks (Jones et al., 1994), principles (Clark, 1994), and models 

(Wallace, Cederberg, & Allen, 1994); however, many of these frameworks, principles, 

and models are difficult to match to the needs of teaching practices.  Weissglass’s (1994) 

citation of Maria Montessori’s words makes clear this difficulty, “nothing is more 

difficult for a teacher than to give up her [or his] old habits and prejudices” (p. 67).   

Weissglass (1994) further indicates that culture has profound implications for school 

education and teacher change, and obtaining emotional support is an immeasurable 
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factor that often varies and is therefore undependable.  Most professional development 

programs “collectively do not form a cohesive and cumulative program” and “much of 

the time and money invested in such programs, however, is not used effectively” 

(National Research Council, 2001, p. 431).  In order to effect teacher change, 

professional development should find a way to reduce the resistance to change and 

motivate teachers to learn and use multiple representations to reach all students.   

Teachers’ change and knowledge growth are based on the proper design and the 

understanding of function of professional development, because teachers’ knowledge 

gain from professional development comes from content knowledge change, 

instructional strategic change, and change in viewpoint on support materials of 

mathematical teaching.  Teachers’ change is based on, according to MSMP (2001), the 

growth of teachers’ mathematics knowledge and skills, student learning, and curriculum 

materials.  Principles and Standards for School Mathematics (NCTM, 2000) and 

Benchmarks for Science Literacy (AAAS, 1993) both indicate that “mathematics 

education should focus on a carefully specified and coherent set of important concepts 

and skills that all students should learn” (MSMP, 2001, p. 2).  Research has found that 

teachers need to have specific mathematical knowledge to teach mathematics with 

understanding (Carpenter et al., 1999; Kaput, 1999), and teachers’ knowledge has been 

considered as the most important factor for effective teaching.  However, a report from 

National Research Council (2001) revealed that very few teachers currently have the 

specialized knowledge to teach mathematics effectively.  Stein, Smith and Silver’s 

(1999) critical view about current professional development concludes that “neither form 
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(mandated district-sponsored staff development and elective participation provided by 

the university) was designed to transmit a specific set of ideas, techniques, or materials 

to the teacher” (p. 23).  Therefore, the quality of professional development must “focus 

on research-based knowledge of children’s thinking within specific mathematics 

domains” (Chambers, & Hankes, 1994, p. 294).  Furthermore, professional development 

should and must (1) focus on building the capacity to understand subject matter and 

guide students’ development of concepts; (2) use practical and related support (grade 

level, subject matter); and (3) use a knowledge base for immediate use and future use 

(Stein, Smith, & Silver, 1999).  Once teachers understand the concept of the particular 

mathematics content and domain they are teaching, the change will be possible.  

Professional development that focuses on specialized knowledge and teachers’ change is 

the key for teachers’ practice in effective teaching.   

 How do we help teachers acquire specialized knowledge and make changes and 

transitions inside and outside of the classroom?  According to the theory of ZPD 

(Vygotsky, 1978), learning new knowledge is based on prior knowledge and learning 

interaction.  Professional development plays an important role in connecting teachers’ 

prior knowledge (content knowledge) to their new learning (pedagogical knowledge) 

and in promoting learning interaction among teachers.  For many years, besides teacher 

education programs in college, professional development has been the main approach 

used in teachers’ knowledge growth.  However, its ineffectiveness has been shown by a 

number of studies (An, 2004; National Research Council, 2001; Stigler, & Hiebert, 

1997).  There are many reasons for the absence of a systematically effective approach to 
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teacher professional development, the main reason often being the failure is not to tie 

teacher professional development closely to specific content and teaching strategies.  In 

addition, only when teachers are allowed to see themselves collectively and directly 

improving their teaching practice by improving content and pedagogical knowledge and 

by improving students’ opportunities to learn, will teacher professional development be 

effective (Stigler, & Hiebert, 1997).  The basis for this change is to change the focus of 

professional development to specific content and teaching strategies, such as 

understanding and use of mathematics representation.  Enhancing teachers’ ability in 

understanding and using mathematics representation is essential for professional 

development because much of the history of mathematics is concerned with creating and 

refining representational systems (Lesh, Landau, & Hamilton, 1983).  Therefore, 

learning mathematics with understanding simply means getting a solid grounding in 

mathematics representations which provides a gateway to successful learning.  With 

profound knowledge of mathematics representation, teachers also acquire and reshape 

their knowledge in both content area and pedagogy strategies, which leads to the 

transition in teaching practices. 

Teachers’ Role in Implementing a Standards-Based Mathematical Curriculum 

Project 2061’s study (AAAS, 2000) shows the information that curriculum 

materials also play a big role in effective teaching.  Effective teaching requires teachers 

to align their beliefs with new standards and implement new standards in classroom 

teaching.  “Teachers are asked to focus on mathematical concepts, multiple 

representations of those concepts” (Sherin, 2002, p. 122) in order to improve teaching; 
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however, “teachers who use reform-based curricula do not always appear to be 

implementing reform in the way intended” (Sherin, 2002, p.122).  As a result, “the 

mathematics performance in the U.S. population has never been seen as satisfactory, and 

today dissatisfaction with that performance has become intense, and it is growing” 

(RAND, 2003, p. 2).  Today, with diverse backgrounds and educational objectives, a 

teaching paradigm is needed to be proposed as a framework to solve these problems.  

Reform mathematics teaching, therefore, requires that teachers change what they teach 

and how they teach by using valuable strategies such as mathematics representation to 

meet the needs of different levels of learning.  The obstacle to the change is that “either 

teachers do not have enough content knowledge, or what they do know is not the ‘right’ 

content knowledge” (Sherin, 2002, p.123).  Many aspects of teaching and learning 

mathematics “limit the power and utility of representations as tools for learning and 

doing mathematics” (NCTM, 2000, p. 14).  Therefore, transforming and adapting new 

knowledge of representation that makes connections with others is essential for teaching 

and learning mathematics.  Teachers’ change and transition are necessary for improving 

the quality of teaching and learning mathematics.  However, the approach for improving 

teaching is not based on assuming that teaching will change when surrounding elements 

change.  Rather, it is based on the direct study and experience of teaching, with the goal 

of steady improvement in the students’ mathematics learning (Stigler, & Hiebert, 1997).   

However, teachers’ change is not as easy as learning new methods of teaching 

and instituting a new curriculum to follow.  Teachers who are not optimistic about their 

students will have no reason or will be resistant to change “because they seldom engage 
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in reflective practice, they will have little evidence of any need of change, and because 

they have low expectations of their students, they will not be surprised when their 

students fail to learn” (Hillocks, 1999, p. 134).  One possibility that will help teachers to 

develop professional skills is to provide the opportunities for teachers to reflect on their 

own and others’ work and to be aware of the difference between these reviews.  

Reflective teachers’ thinking about their own teaching may improve their classroom 

teaching effectively.  Teachers’ reflecting on their own teaching is an effective way to 

help teachers’ learning in professional development (Stein, Smith, & Silver, 1999).  The 

Middle School Mathematics Project (MSMP) provides a good example of reflective 

teachers’ thinking about their own teaching.   

Standards-based curriculum challenges teachers not only to change their roles 

from traditional teaching to a new standard for teaching, but also to feel comfortable 

with the new standards.  However, in implementing a standards-based curriculum, 

teachers might encounter many difficulties including building a teaching environment 

and fostering positive beliefs and attitudes to meet the needs of the new standards.  This 

change is especially difficult in the very beginning.  Experience from Show-me project 

indicates that as teachers continue to engage in professional development that support 

standards-based curricula and intertwines mathematics, pedagogy, and assessment, the 

focus of teachers’ concerns shift to student learning and the interrelationship between 

teaching and learning (Show-Me, 2003).  Although there are three components – 

content, teaching and learning, and assessment – normally involved in teacher 
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professional development, the core components involve helping teachers deepen their 

knowledge and skills for effective teaching and learning mathematics.   

 In order to teach effectively, in addition, the textbook also plays an important 

role in teaching practice because teachers’ mathematics knowledge greatly influences 

how they evaluate and implement the textbook.  This knowledge manifests itself in how 

the teachers plan their instruction, interact with students, and use the textbook in the 

classroom (Manouchehri, & Goodman, 2000, p. 1).   

Cognitive View of Building Student Understanding via Mathematical 

Representation 

  Mathematics representation is based on cognitive learning, as Monk (2003) 

explained, “complexities of representation as a cognitive and social process and of how 

it is inextricably linked with the knowledge people have of the situation being presented” 

(p. 250).  Vygotsky’s theory of ZPD in turn states that cognitive development and the 

ability to use thought to control learning actions require cultural communication systems 

and learning to use these systems to regulate thought processes. The ZPD theory also 

reveals that learning takes place when students are working in their Zone of Proximate 

Development (Slavin, 2003), in which “skilled teachers pay attention to their student’s 

words, written work, use of manipulative materials, or use of calculator and computers 

as they try to understand individual conceptions and misconceptions” (Goldin, & 

Shteingold, 2001, p. 6).  Teaching mathematics effectively means that teachers 

understand the effects on their students’ learning of external representations and 
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structured mathematics activities they teach as well as student’s internal mathematics 

representations that reflect student’s internal development and thinking insight.   

According to Schallert and Martin (2002), learning is intrinsically tied to 

motivation. However, motivation is formed by different environmental factors and social 

influences.  From a cognitive perspective, motivation can increase learners’ energy level, 

direct their goals, promote initiative in activities, and affect the strategies employed by 

different learners.  Expectancy and task value are the most important two factors in 

achievement behavior.  Tasks are related to competence since learners choose a certain 

task and expectancies are related to the learning goals and achievement.  In 

constructivism, “learners do a great deal with the information they acquire, actively 

trying to organize and make sense of it” (Ormrod, 1999, p. 171).   “The essence of the 

constructivist perspective lies in its portrayal of learners as organic rather than 

mechanistic sense-making” (Schallert, & Martin, 2002, p. 12).  Prior knowledge, as a 

component of constructivism, plays a big role in the learning process.  Learners can 

connect new information to prior knowledge only when they actually have knowledge 

related to the things that they are learning.  Fosnot (1996) suggested that learning is the 

process of development, in which reflection is a key to internal representation.  Other 

researchers have also discussed teachers’ roles in preparing a learning environment that 

creates motivating conditions for students, produces problem a solving situation, 

promotes acquisition and retrieval of prior knowledge, and fosters a positive learning 

attitude in a social environment (Phye, 1997), allowing multiple perspectives in 
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classroom, connecting learning to students real life experience, and encouraging self-

awareness and ownership (Honebein, 1996). 

Learning mathematics should be a process of development (Honebein, 1996), 

which should be interesting to students, should challenge their imagination, and should 

produce creative solutions in their specific interest.  “Learning is seen less as the result 

of information provided to the students by the teachers, and more as the result of 

students’ active efforts to make things comprehensible for themselves” (Goldsmith, & 

Shifter, 1997, p. 28).  Concepts of epistemology provide teachers with a better 

understanding of how “to listen and observe students’ working on mathematical 

problems, and how to reflect on their own processes of understanding” (Goldsmith, & 

Shifter, 1997, p. 28).  Understanding is developed to the extent that students see the 

meaning of mathematics in what they are doing.  To understand students’ learning, 

teachers should better understand the psychological aspects of learning mathematics, and 

should use new teaching techniques and strategies for the reconstruction of the new 

notions of teaching and learning of mathematics.   

In the constructive learning process, mathematics representation functions as a 

pathway to understanding.  Teachers also need to understand that essential mathematics 

representations are (1) the form of representation people use to represent what they 

think, influencing both the processes and products of thinking;  (2) different forms of 

representation develop into different cognitive skills; (3) the selection of a form of 

representation influences not only what they are able to represent but also what they are 

able to see; (4) forms of representation can be combined to enrich the array of resources 



  35 

students can respond to; and (5) each form of representation can be used in a different 

way, and each ways calls on the use of different skills and forms of thinking (Eisner, 

1997). 

The Role of Mathematics Representation in Systematic Mathematics Learning 

 What is the role of mathematics representation?  In traditional mathematics 

classrooms, the emphasis has been on the use of abstract and procedure representations.  

For instance, the long-division algorithm represents the division procedure.  Under a 

standards-based curriculum, students are given more freedom in creating and using 

representations.  For instance, tables, graphs, and verbal explanations are commonly 

used in standards-based curricula.  Monk (2003) observes, “Graphs, along with 

diagrams, charts, number sentences, and formulas are increasingly seen as useful tools 

for building understanding and for communicating both information and understanding” 

(p. 250).    Although representations are used in both traditional and reformed 

classrooms to represent the ideas of the problem in order to find a solution (Smith, 

2003), the paths are different.  Only when teachers personally experience the standards-

based curriculum and are able to see the difference, can their change possibly occur. 

That is what the MSMP professional development is designed for: teachers’ reflection 

on their own learning and teaching bringing changes to their own teaching.     

 Representation is not only a network system in which the representational 

structures are related to each other, but also is a pathway to understanding of 

mathematics, which determines its features of permeation, connection, diversity, and 

evolution in mathematics learning.  The feature of permeation shows that representations 
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can be seen in every content area; connection allows representations to link one content 

area to another, such as using area-geometry representations to address the concept of 

multiplication; diversity encourages multiple perspectives and manifold representations 

created in learning mathematics; and evolution address the continuous growth of the 

presentation as learning progresses.  The NCTM (2000) standards show these features of 

representation, in which the process standards (problem solving, reasoning, 

communication, connection, and representation) are linked to each other with 

mathematical content standards (numbers, algebra, geometry, measurement, and data 

analysis).  Both teachers and students are facing the challenges to fully understand and 

grasp representations in mathematics learning, as NCTM (2000) states, “instructional 

programs from pre-kindergarten through grade 12 should enable all students to create 

and use representations to recognize, record, and communicate mathematical ideas; 

select, apply, and translate among mathematical representations to solve problems; use 

representations to model and interpret physical, social, and mathematical phenomena” 

(NCTM, 2000, p. 67).   

 In mathematics learning, an important goal for people in using representation is 

to be able to communicate with each other using multiple forms of representation.  For 

instance, a graph can be used as a tool for communicating information and 

understanding and making meaning in mathematics.  Both communicating and making 

meaning play important roles in all kinds of representations.  Monk (2003) gives the 

example of graphs to illustrate the importance of using representations with the 

explanation of “(1) using graphs, students can explore aspects of a context that are not 
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otherwise apparent; (2) the process of representing a context can lead to questions about 

the context itself; (3) using graphs to analyze a well-understood context can deepen a 

student’s understanding of a graph and graphing; (4) students can construct new entities 

and concepts in a context beginning with important features of a graph; and (5) students 

can elaborate on their understanding of both a graph and its context through an iterative 

and interactive process of exploring both; and a group can build shared understanding 

through joint reference to the graph of phenomena in a context” (pp. 252-256).   

 There are two forms of representations: internal and external representations 

according to Troutman and Lichtenberg (2003).  Internal representation is the result of 

cognitive development, which “are composed of networks of concepts and relationships” 

and “external representation is used to describe things that can be represented outside of 

the human mind” (p.10).  However, in reality, internal representations sometimes play an 

important role in learning and teaching mathematics.  Troutman and Lichtenberg (2003) 

indicate, “A goal of education is to help individuals create internal representations that 

accurately mirror external representations” (p.10).  According to Greeno and Hall 

(1997), “forms of representation can be considered as useful tools for constructing 

understanding and for communicating information and understanding” (p. 362).  Very 

often, in the reality of classrooms, students sometimes act on reflect their internal 

representation and interpret their own representations in multiple ways at various levels, 

serving construction and communication purposes. 
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Teachers’ Transition in Using Mathematical Representation 

 The transition in teachers’ mathematical representation closely relates to their 

belief and value system.  Changing their current system relies heavily on professional 

development.  Teachers need to understand students’ representations in order to teach 

effectively because effective systems of representation include personal change in 

beliefs and values in mathematics and about themselves in relation to mathematics 

(Goldin, & Shteingold, 2001).  

Students in middle school have difficulty doing mathematics because they have 

difficulty in selecting the proper mathematical representations.  Sometimes they select 

the representation that they are familiar with; obviously, they do not necessarily select 

the most appropriate representation for their mathematical learning.  For instance, 

students’ written work is their representation because it represents students’ thinking.  

Very often, students see the different representations as different mathematical problems 

(Janvier, 1987).  The typical problem that students have is that they cannot see the 

relationships between a particular representation and corresponding or equivalent 

representations.  Teachers need to learn strategies that articulated well with the 

representation in order to help students learn effectively and to effectively lead students 

to draw particular connections between mathematical questions in order to understand 

the mathematics concept.   

Teachers should be aware that there are five distinct types of representation 

systems interrelated with each other that occur in mathematics learning and teaching: (1) 

experience based “scripts” – interpreting and solving problems based on real world 
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events; (2) the manipulative model – elements have little meaning, but building 

relationships and operations makes sense in mathematics; (3) pictures or diagrams – can 

be internalized as images; (4) spoken languages – including sublanguages related to 

domains like logic, etc.; (5) written symbols – can involve specialized sentences and 

phrases (e.g., X + 3 = 7) (Lesh, Post, & Behr, 1987).  Translating one representation to 

another requires the establishment of a relationship between different representations, 

i.e., equivalence representations.  

 The relationship between representation and understanding is another area to 

look at in using representation to teach and learn mathematics, as Janvier (1987) 

indicated “representation can be considered as a combination of three components: 

symbols (written), real objects, and mental images” (p. 68).  The teachers’ role includes 

helping students see the similarity and difference between multiple problem contexts.  

Thus teachers need to understand all kinds of mathematics representations and their 

relationships.  The interaction of teachers and students shows that “to help students’ 

progress valuing the representation, the teacher needs to understand how children view 

and relate to different mathematics representations” (Smith, 2003, p. 264), i.e., from 

mathematics to the real world.   

Although some studies have discussed mathematical representations, teachers’ 

representations topics are less focused.  When claiming that teachers are the most 

important factor for effective teaching, we necessarily note that there is a need for 

developing teachers’ mathematical representation concepts with an effective teaching 

model.  In the book, The Middle Path in Math Instruction, An (2004) describes teaching 
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mathematics by using the concrete model, and indicates that “through building and 

solving mathematical models, students internalize their learning and abstract their 

thinking” (p. 219).  

Constructing Understanding through Mathematics Representation 

Pedagogically, teaching mathematics using representation requires an 

understanding of internal and external representations.  This teaching focus is the motive 

for using external representations in mathematics teaching (Dufour-Janvier, Bednarz, & 

Belanger, 1987).  It is important for teachers to understand that “(1) Representations are 

an inherent part of mathematics, such as functions and Cartesian graphics, which 

represent the concepts by using these tools; (2) Representations are the multiple 

concretizations of a concept.  For instance, multiple representations will represent only 

one concept” (Dufour-Janvier, Bednarz, & Belanger, 1987, p. 111).  The ultimate goal of 

mathematics education is to help students build internal representations that accurately 

reflect external representations and include concepts and relationships (Troutman, & 

Lichtenberg, 2003).  Proficiency in mathematics representation involves an 

understanding of mathematics concepts and operations (NRC, 2001).  

To illustrate mathematics representations in specific contents, the following 

examples address the difficulties students often have in learning mathematics and how 

representations help students understand mathematics concepts: 

Classroom researchers have brought to our attention learning and teaching 

fractions effectively.  Different interpretations and representations of fractions often 

confuse students.  Lamon (2001) summarized five different constructions for fractions: 
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part/whole comparison, measures, operators, quotients, and ratios and rates.  With the 

part/whole concept, Kerslake (1986) observes that students often conceive of a fraction 

as a number, and they might think of it either as two numbers or not a number.  An 

(2004) suggests using the unit fraction concept to help students represent fractions. 

The concept of function is still considered to be a complicated area for algebra 

beginners, especially for symbolic representation.  The representation of algebra often 

involves the translation from verbal information into symbolic expression and equation 

(NRC, 2001).  How to use representation to express the function by connecting symbolic 

and numerical representation is an important question in teaching middle school 

mathematics.  Yerushalmy and Shternberg (2001) state that modeling situations before 

using symbolic representations for the functions will help students better understand 

algebra functions.  Meyer (2001) further describes the four principles for a particular 

situation.  First, contexts simulate representations, which allow students to engage in 

meaningful activities; second, students reflect on the abstraction of algebra by the 

pictures, charts, tables, and equations.  In this stage, teachers should allow students to 

use informal strategies in order to understand algebra concepts; third, during interaction 

between teacher and students, students further understand many representations for the 

situation; and fourth, a connection between abstract and concrete algebra functions 

should take place.  Markovits, Eylon and Bruckheimer (1988) discuss two aspects of 

difficulty in learning functions.  First, the relationship between the domain and range 

determines that every element of the domain has exactly one element in the range; 

second, functions have multiple representations -- graphs, equations, tables, and the 
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arrow diagram.  Some students confuse function and linear function and always think 

that function is linear function.  Other researchers argue that many difficulties of 

learning algebra come from the students’ view of the difference between algebra and 

arithmetic.  However, algebra is not separate from arithmetic and indeed algebra 

generalizes arithmetic operations in many ways.  Booth (1988) summarizes the 

difficulties in students' learning algebra: 1) Arithmetic way in viewing algebra; 2) 

Notation and conventions; and 3) Letters and variables.  School algebra has to deal with 

students' difficulties in understanding variables and their operations, and teachers need to 

create various representations to help students understand algebra. 

The ability to read and interpret graphs is a basic skill and apparently is not being 

effectively taught.  In investigating the ways that students make sense of information 

represented through graphical representations and make connections between related 

pairs of graphs, Friel and Bright (1995) find that students need to talk more about 

graphs.  It is important to understand how students think through the structure of their 

representations.  Teachers need to create an environment to let students become involved 

in a variety of representations in data analysis and to understand the structure and 

meaning of these representations.    

In a reformed curriculum, teachers must cover materials which have not been 

traditionally taught in the middle grades, and they must teach it in new and creative 

ways.  Therefore, teachers need to be trained to use new and creative ways.  In 

professional development, teachers need to learn important mathematics representations 
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and the strategies in specific content areas which will reach various levels of students 

and help students achieve understanding and proficiency in mathematics.    

Summary 

It is impossible to effectively focus on too many educational reform goals in 

professional development.  Effective professional development should have a single 

focus.  Professional development that focuses on teachers’ change is the key for 

teachers’ practice in effective teaching.  However, without focusing on the specific 

content knowledge, it is unfeasible for professional development to reach the goal of 

teachers’ change.  Specific content knowledge such as mathematics representations is an 

effective approach that helps teachers deepen their knowledge and strengthen the 

abilities of teaching.  Through well-designed professional development that focuses on 

specific content and strategies, teachers engage in an inquiry process of learning and 

understanding of various representations.  This teacher learning process broadens 

teachers’ views, promotes reflection on their own teaching, and enables teachers to 

arrive at a higher TZPD.  Mathematics representation is also a pathway to understanding 

mathematics for all levels of students.  It helps students overcome obstacles in learning, 

makes abstract mathematics ideas concrete and meaningful, and assists students in 

reaching a high level of understanding and proficiency in mathematics.   
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CHAPTER III  

METHODOLOGY 

Background of the Study 

This study is a part of 5-year longitudinal study investigating middle school 

teachers’ instruction using mathematics representations as they learned teaching 

strategies and skills through the MSMP professional development.  This study explores 

the impact of the teachers’ changes in implementing a standards-based curriculum by 

examining the important roles of mathematics representations, and investigated how 

teachers used the mathematics representations learned from the MSMP professional 

development workshop to help students improve their learning of mathematics.   

The MSMP professional development program that served as the basis for this 

study is the Middle School Mathematics Project (MSMP), which focuses on helping 

teachers understand mathematics representation and constructing models of 

mathematical representation in well-defined content domains.  Teachers’ textbook usage 

was the basis for studying instructional practice in MSMP.  Three different textbooks 

were used in four different school districts.  The Connected Mathematics Project [CMP] 

(Lappan, Fey, Fitzgerald, Friel, & Phillip, 2002) is funded by the National Science 

Foundation to develop a middle school mathematics curriculum for 6th to 8th grades.  

CMP is “a curriculum built around mathematical problems that help students develop 

understanding of important concepts and skills” (Grant et al., 2003, p. 4) in NCTM’s 

five content areas.  Math Thematics [MT] (Billstein, & Williamson, 1999), also funded 

by the National Science Foundation, is designed to be “mathematically accurate, utilize 
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technology, and provide students with bridges to science and other mathematical fields” 

(Show-Me, 2001, Philosophy – MATH Thematics section).  Mathematics: Applications 

and connections [MAC] (Glencoe/McGraw-Hill, 1998) is designed to show students 

how mathematics relates to the real world and how mathematics connects to other 

subject areas.  These textbooks served as basic instructional materials for teachers’ use 

in their teaching, and teachers used strategies that the textbooks provided for their 

classroom teaching.   During the summer 2003 workshop (part of the MSMP 

professional development program), teachers not only learned particular areas of content 

of mathematics representations in fractions and algebraic functions, but also reflected on 

their teaching by watching and analyzing their own videos of teaching that were 

recorded before the workshop. While textbooks were important in helping teachers 

connect concepts in the MSMP professional development to their instructional practice, 

in this study textbook use was not important to the research questions.   

In this study, data were collected over a 2-year period, and 11 middle school 

teachers and their classes served as sources and objects for data collection and analysis.  

Videotapes, audiotapes, surveys, and questionnaires served as the main source for the 

study.  Interviews were conducted to further investigate how teachers made transitions in 

understanding and in using mathematics representations and to examine the relationship 

between teachers’ understanding and the use of representations in classroom teaching. 

Participants and Setting 

A total of eleven 6th and 7th grade middle school teachers in Texas participated in 

this study.   The criteria of inclusion for subjects were: 1) volunteered to participate and 
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were willing to contribute to this study; 2) taught at the same grade level for two years; 

and 3) attended a full week of the MSMP professional development workshop held in 

the summer of 2003 or a four-hour make up session of the workshop held in the 

beginning of fall semester 2003 (three of them attended it).  The workshop aimed at 

showing specific content knowledge of representations in fractions and algebraic 

functions.  For the analysis of teachers’ learning and understanding and the use of 

representations as well as their knowledge of changes, data from all 11 teachers were 

examined.  For the detailed analysis of the patterns of change, 10 out 11 teachers were 

interviewed to further understand their views about learning and using mathematical 

representations.  

The 11 teachers came from four school districts.  Each district has similar 

characteristics of textbooks, grades, teaching content, and source of students at the same 

grade level.  Table 2 shows the distribution of participants in two grade levels at four 

school districts.  Table 3 indicates the use of three types of textbooks: CMP, MT, and 

MAC.   
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Table 2 
Distribution of Participants and Content at Two Grade Levels 

 District A District B District C District D Total 

6th (N) 3 3 1 - 7 

7th (A) 1 1  1 1 4 

Total 4 4 2 1 11 

Note: 1) N: Numbers refers to fractions in this study; A: Algebra refers to patterns of changes in this study.  
2) Numerals in rows are the numbers of participants from each school district.  3) “-” indicates there is no 
participant. 
 
 
Table 3 
The Use of Three Types of Textbooks 

 District A District B District C District D Total 

CMP 3 - - - 3 

MT - 4 - - 4 

MAC 1 - 2 1 4 

Total 4 4 2 1 11 

Note: CMP: Connected Mathematics Project (Prentice Hall, 2002); MT: Math Thematics (McDougal, 
1999); MAC: Mathematics: applications and connections (Glencoe, 1998); “-” indicates there is no 
participant. 

 
 

Procedure 

The MSMP Professional Development Workshop 

This study was part of a Middle School Mathematics Project (MSMP) 5-year 

longitudinal study.  It investigated middle school teachers’ instruction as they learned 

teaching strategies and skills through the MSMP professional development workshop 

and explored the impact of the teachers’ changes on implementing a standards-based 
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curriculum, advocated by the National Council of Teachers of Mathematics (NCTM, 

2000).  The MSMP professional development program that served as the basis for this 

study focused on helping teachers understand mathematics representation, design 

probing and guiding questions, and construct model lessons that apply these strategies 

toward well-defined content learning goals.   

Two workshops were held for teachers.  The content of the 2002 workshop 

included reviewing the distinction between a topic and a specific learning goal, and 

studying Texas Essential Knowledge and Skills (TEKS, 1997) for middle school 

mathematics standards and corresponding American Association for the Advancement of 

Science benchmarks (AAAS, 1993) and National Council of Teachers of Mathematics 

standards (NCTM, 2000).  The workshop also provided opportunities for teachers to 

review related research to deepen their understanding of key mathematical ideas, 

prerequisites, and students’ common misconceptions in the selected learning content 

(e.g., fractions and algebraic functions).  After participation in the workshops, teachers 

implemented learned knowledge in their teaching, and their lessons were videotaped in 

the 2002-2003 school year. 

The MSMP professional development workshop held during the summer of 2003 

by professional development staff of the MSMP focused on representations and 

questioning.  During the MSMP professional development, teachers viewed and 

discussed video examples of appropriate representations for equivalent fractions and 

algebraic patterns of change.  They then viewed and analyzed their own videotaped 

lessons that had been taken during school year 2002-2003 and identified ways to 
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improve their use of strategies of representations.  Finally, they reflected on their 

teaching and designed new lessons that incorporated the ideas they had studied.    

 The purpose of the MSMP professional development workshop in summer 2003 

was to help teachers: 1) learn mathematical representation teaching strategies to help 

their students relate representations to the ideas in the learning goals; and 2) use the 

knowledge of mathematical representation to help students improve their mathematical 

thinking about the ideas in the learning goals in the fraction and algebra areas. 

During the MSMP professional development for summer 2003, participants 

learned learning goals on equivalent fractions: “use, interpret, and compare numbers in 

several equivalent forms such as integers, fractions, decimals, and percents” (AAAS, 

1993, p. 291).  By the end of the professional development, participants had drafted 

plans for improving the use of representations.  The purposes of teachers’ using 

mathematical representations are: to probe teachers’ understanding of ideas underlying 

models of equivalent fractions and to demonstrate that an idea can be represented in a 

variety of ways to stimulate teachers’ thinking about different ways to represent 

equivalent fractions.  For example, participants were asked to represent 0.75 = 6/8 and 

4/7 = 8/14 in different ways.  The reason for posing these questions was also related to 

students’ learning: students often have difficulties dividing a circle into sevenths, so they 

switch to using a rectangle, but often end up with the rectangle showing sevenths that are 

smaller than the rectangle showing fourteenths.  Discussing these types of questions 

between teachers during the workshop helped teachers clarify differences among a 
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measurement model (use of number line), an area model, a set model, an angle model, 

and perhaps even a ratio model of equivalence.   

 In algebraic patterns of change, the teachers also learned that “symbolic 

equations can be used to summarize how the quantity of something changes over time or 

in response to other changes” (AAAS, 1993, p. 274).  Similar to the equivalent fractions, 

the teachers were asked to use all kinds of mathematical representations to illustrate their 

mathematical ideas.  The purposes for doing that were: to probe teachers’ ideas for 

representing patterns of change and to understand how symbolic equations can be used 

to represent patterns of changes and to demonstrate the patterns. 

As teachers discussed their representations in two content areas, they were 

encouraged to consider such questions as: 1) how each representation fits in with the 

learning goal; 2) what ideas are and are not represented; 3) strengths of the models in 

representing the ideas; and 4) limitations of the models (e.g., something that might be 

confusing to students or might promote misconceptions).  For example, considering 

comprehensibility, some representations used to illustrate equivalence may not be 

transparent to all students.  Teachers’ learning and discussion during the workshop were 

videotaped for data collection purposes. 

Video of Classroom Teaching after Workshop 

During the 2002-2003 school year, each teacher in the 6th and 7th grades had 

three to five classes videotaped on teaching equivalent fractions (6th) or algebraic 

patterns of change (7th).  The 2003 MSMP professional development workshop also 

utilized videotapes for analyzing teachers’ learning and understanding processes.  After 
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the summer of 2003 workshop, participating teachers’ lessons were videotaped to 

examine their improvement by using strategies of representations for the school year 

2003-2004.  All teachers from the 6th and 7th grades were videotaped during three 

lessons on the same teaching content.  In their lessons, teachers were expected to 

integrate learned mathematical standards from the workshop in 2003 as learning goals, 

particularly those standards relating to the Texas Essential Knowledge and Skills 

(TEKS).     

Interviews with Teachers 

Ten teachers (one teacher was not able to be interviewed at that particular time 

for a particular reason) were interviewed in order to find out in what ways teachers make 

transitions in understanding and using mathematics representations, patterns of teachers’ 

change, and relationships between teachers’ understanding and use of representations 

and their students’ thinking and learning.  Teachers were asked a set of questions on 

their view of the MSMP professional development and the mathematical representation 

during an hour interview.  Each interview was audio-taped to make sure of the accuracy 

of data collection. 

Instrumentation 

 To examine teachers’ growth and changes in understanding and use of 

mathematics representations, this study designed questionnaires after the workshop, a set 

of questions for interviews with teachers, and criteria for measuring teachers’ knowledge 

both in learning and use of mathematical representation in the Teachers’ Zone of 

Proximal Development (TZPD).  This study also used MSMP existing data of 
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questionnaires before the workshop and a survey of teacher preparation, attitudes, and 

support structures before the workshop, videotapes during the workshop and videotaped 

lessons before and after the workshop.   

Questionnaires 

 Two questionnaires were designed to assess teachers’ understanding and use of 

mathematics representations: a questionnaire before MSMP professional development 

and a questionnaire after MSMP professional development.  Both questionnaires 

consisted of two problems on equivalent fractions and algebra functions, one for each 

area.  The purpose of the first questionnaire was to examine teachers’ understanding and 

use of mathematics representation; the second questionnaire focused on assessing 

teachers’ knowledge of students’ thinking on mathematics representations and their 

misconceptions and strategies in making corrections (see Appendix A: Questionnaires 

before and after Professional Development).                                                                                                   

Survey                                                                                                                               

 Before the MSMP professional development workshop, a survey of teacher 

preparation, attitudes, and support structures was provided to teachers.  There were two 

parts to the survey: content, pedagogy, and experience, which consisted of four 

questions, and support structures, which consisted of two questions. The goals of the 

survey were to examine how various factors influence the way teachers approach the 

teaching of mathematics.  These factors include that textbook developers create 

materials that teachers can use more effectively, educational researchers design better 

pre-service and in-service teacher education programs, and school administrators 
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provide the support teachers need to help them improve their teaching (see Appendix B: 

Survey of Teacher Preparation, Attitudes, and Support Structures).  

Interview 

 Besides videotaped lessons, teachers were interviewed to further explore their 

growth and changes in knowledge of mathematics representations.  Interview questions 

consisted of six questions.  The objectives of the interview questions were to examine in 

what ways teachers make transitions in understanding and in using mathematics 

representations, patterns of teachers’ change, and relationships between teachers’ 

understanding and use of representations and their students’ mathematical thinking and 

learning (see Appendix C: List of Interview Questions). 

Videotapes  

Teachers’ participation in workshops was videotaped to furnish more information 

on how teachers grow and change their knowledge of mathematics representations.  

Indicators of learning and understanding of mathematics representation consisted of 

three categories: 1) knowing accurate representations help students identify specific 

learning goals and addresses important mathematics ideas; 2) knowing comprehensible 

representations promote students with diverse backgrounds, abilities, and interests in 

learning mathematics; and 3) knowing variety of accurate and comprehensible 

representations help students build  abstract understanding based on concrete model. 

Teachers’ classroom teaching was videotaped before and after the workshop.  

The observation criteria for videotapes were constructed according to the levels of 

instructional use of mathematical representations.   Indicators of use of mathematics 



  54 

representation in effective classroom teaching consisted of three categories: 1) identifies 

specific mathematical learning goals and addresses important mathematics ideas; 2) 

using comprehensible representations promotes students with diverse backgrounds, 

abilities, and interests with their prior knowledge in learning mathematics , encourage 

them to prove and justify their mathematical reasoning in real life situations, and 

provides them with opportunities to share their mathematical ideas; and 3) using variety 

of accurate and comprehensible representations addresses students’ mathematical 

misconceptions and builds students’ conceptual understanding based on abstract model. 

Data Collection 

 Data were collected over a 2-year period from videotapes, teacher surveys, 

questionnaires, and interviews with teachers.  A total of 11 middle school teachers and 

their classes served as sources and objects for data collection and analysis.  During the 

2002-2003 school year, each teacher in the 6th and 7th grades had three to five class 

videotapes on teaching fractions (6th) or algebraic patterns of change (7th); therefore, a 

total of 42 videotapes were used and transcribed in this study.  Eleven videotapes from 

the 2003 MSMP professional development workshop were collected.  These video and 

audio tapes also transcribed for analyzing teachers’ learning and understanding 

processes.  During 2003-2004 school year, most teachers from the 6th and 7th grades 

were videotaped for three lessons on the same teaching content; therefore, a total of 27 

videotapes were used and transcribed in this study.  Teachers’ interviews were audio-

taped, and a total of 10 audio-tapes from interviews were transcribed for the purpose of 
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data analysis.  Therefore, a total of 90 videotapes and audiotapes were transcribed and 

coded in this study.   

Data Analysis 

This study employed a qualitative method of data analysis.  The data analysis 

consisted of three intended uses: teachers’ learning and understanding of mathematical 

representations; teachers’ use of mathematical representations; and teachers’ change in 

mathematical representation knowledge.  Each use corresponded to Teachers’ Zone of 

Proximal Development (TZPD) and focused on two content areas, equivalent fractions 

and algebraic patterns of changes.  Multiple data resources were used and analyzed for 

each area.  Data from videotapes, surveys, and questionnaires served as the main source 

for the study.  Teachers’ responses from interviews were used to further illustrate the 

ways in which teachers made transitions in understanding and in using mathematics 

representations, and to understand the patterns of change.   

To provide an organization for analyzing and interpreting the data, this study 

proposed a common basis for summarizing and analyzing each teacher’s knowledge of 

understanding and using mathematical representations as well as their changes according 

to the framework of three levels of TZPDs.  In order to limit the data coding bias, two 

researchers coded data separately and discussed and categorized teachers’ knowledge of 

representation under three aspects.  Therefore, reliability and validity are ensured by 

using triangulation of data, member checks, peer examination, and purposive samplings 

(Anfara, 2002).  



  56 

 The criteria used in analyzing and coding data for examining teachers’ 

knowledge in understanding and using mathematics representations in two content areas 

were based on and adapted from the Project 2061 criteria (AAAS, 2000, Appendix C 

Methodology), mainly aimed at helping students relate representations to mathematical 

ideas.  Teachers’ levels of mathematics representations were based on accuracy and 

comprehensibility.  Accuracy refers to the things being represented truthfully, and 

comprehensibility means the ideas being represented in an easier and meaningful way to 

students.  The standards of two content areas were adapted from Benchmarks for science 

literacy (AAAS Project 2061, 1993): numbers and operations and algebra symbolic 

equations. 

Measures of Teacher Learning and Understanding Representations 

To answer research question one of, “What do teachers understand about 

mathematical representations through the MSMP professional development workshop?  

How does this understanding of representation fit into TZPDs?”, the study used 

questionnaires before and after professional development as well as the videotapes of the 

duration of the workshop, teachers’ lesson videotapes before and after the workshop, and 

a survey of teacher preparation, attitudes, and support structures to examine teachers’ 

learning and understanding of mathematical representations for equivalent fractions and 

algebraic patterns of change.  This study used questionnaires as the main evidence tool, 

and surveys and videotapes as supplementary materials to determine teachers’ levels of 

understanding of mathematical representations corresponding to their levels of TZPDs 

relating to teachers’ knowledge (content, pedagogical, and pedagogical content 
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knowledge), which vary along the following two dimensions: accuracy and 

comprehensibility.   

 In order to have accurate data, this study designed the criteria for measuring 
teachers’ knowledge in learning and understanding representation in TZPD (see Table 
4). 
 
 
Table 4  
The Criteria for Measuring Teachers’ Knowledge in Learning and Understanding 
Representations in TZPD  
 
Levels TZPD and Knowledge  Description of knowledge in 

mathematical representations 
 
1 

Zone 1:  
- Learning without interpsychological 
function.   
- Knowledge is limited in content 
area. 

Limited knowledge of 
mathematical representations in 
the above categories. The 
representation is unclear and 
disjointed. 

 
 
2 

Zone 2:  
- Learning with interpsychological 
function.   
- Knowledge is developed in both 
content and pedagogical areas. 

Knowing mathematical 
representations accurately in the 
above categories. The 
representation is clear but is not 
comprehensible with little variety 
and connection. 

 
 
3 

Zone:  
- Learning in intrapsychological 
function.  
- Knowledge is developed for 
pedagogical content knowledge. 

Knowing various mathematical 
representations accurately and 
comprehensibly in the above 
categories. The representation is 
accurate and comprehensible with 
variety and connection. 

 
 

 
Using these criteria, teachers’ responses from questionnaires and survey were 

analyzed and coded into three categories that were grouped in three levels of TZPD.  

Similarly, videotapes of the summer 2003 workshop were transcribed and analyzed, and 

teachers’ reflection journals during the workshop were also examined to verify their 

responses in questionnaires and survey. This procedure took about two and half months.  
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Measures of Teacher Use of Representations in Classroom Teaching  

To address research question two of, “How do teachers use their new knowledge 

of mathematics representations gained from the MSMP professional development 

workshop in classroom teaching? How does this practice relate to their levels of 

TZPDs?”, this study used videotapes of classroom teaching before and after the summer 

2003 workshop as the main evidence to determine teachers’ levels of use of 

mathematical representations in classroom teaching corresponding to their levels of 

TZPDs, which vary in the following two dimensions: accuracy and comprehensibility.  

From videotapes, this study not only examined the levels of teachers’ use of 

representation as a useful tool to direct their students’ conceptual understanding, but also 

explored and discovered the relationships between their use of mathematics 

representations and their levels of knowledge of TZPD as related to teachers’ knowledge 

(content, pedagogical, and pedagogical content knowledge).  The categories vary alone 

the two dimensions of accuracy and comprehensibility in different teaching tasks.  Table 

5 was constructed to analyze the levels of teachers’ using mathematical representations 

in classroom teaching corresponding to their levels of TZPDs. 
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Table 5 
The Criteria of Measuring Teachers’ Using Representation in Teaching 

Levels TZPD and Knowledge Description of  
using mathematical representations 

 
1 

Zone 1:  
- Learning without 
interpsychological function.   
- Knowledge is limited in content 
knowledge. 

Limited use of mathematical 
representations in classroom teaching 
in the above categories.  The use of 
representation is unclear and 
disjointed. 

 
 
 
2 

Zone 2:  
- Learning in transition from 
interpsychological to 
intrapsychological function.   
- Knowledge is developed in 
content and pedagogical 
knowledge. 

Using some mathematical 
representations accurately, but not 
comprehensibly in the above 
categories. The representation is clear 
but is not comprehensible with little 
variety and connection. 

 
 
3 

Zone:  
- Learning with intrapsychological 
function.  
- Knowledge is developed in 
pedagogical content knowledge. 

Uses various mathematical 
representations accurately and 
comprehensibly in classroom teaching 
in the above categories.  The 
representation is accurate and 
comprehensible with variety and 
connection. 

 
 
 
Case Examples  

To answer research question three of, “In what ways do teachers make changes 

in their actual classroom teaching in terms of TZPD levels in using mathematics 

representation after the MSMP professional development workshop?  Are there any 

patterns of changes in classroom teaching?”, this study used interviews with teachers as 

case examples along with videotapes in classroom teaching before and after professional 

development and a survey before professional development.  Case examples compared 

teachers’ different levels of performance in mathematical representations and provided 
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an illustration of the characteristics of patterns of teachers’ changes and a picture of 

teachers’ ongoing learning.   

From videotapes, this study intended to find the patterns of teachers’ change in 

understanding and use of mathematical representation in teaching, involvement in the 

innovation, and development within the particular context with representation.  The 

discussion and interaction with students in classroom teaching allowed teachers to know 

students’ mathematical thinking and view learning and teaching mathematics from 

different angles.  The instrument for interviews is a set of questions on the view of the 

MSMP professional development and learning and use of mathematics representations.  

All interviews were audio-taped, and transcriptions were made of the interviews.  The 

responses to interview questions were also analyzed through the use of concept mapping 

to clarify teachers’ understanding and use of representations.   
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CHAPTER IV 

RESULTS 

 In order to discover how and to what extent teachers’ knowledge of 

representation fits into their TZPD sufficiently to help them improve their teaching, this 

study examined teachers’ understanding of mathematics representations through the 

MSMP professional development, investigated how teachers use different types of 

mathematics representations to teach fractions and algebraic functions, and assessed how 

teachers can make changes in using mathematics representations after the MSMP 

professional development. 

In this study, data were collected over a 2-year period, and 11 middle school 

teachers and their classes served as sources and objects for data collection and analysis.  

To examine teachers’ growth and changes in the understanding and use of mathematics 

representations, teachers were assessed by two questionnaires before and after the 

workshop, a survey of teacher preparation, attitudes, and support structures before the 

workshop, videotape lessons before and after the workshop, and learning and discussion 

video and audio tapes during the workshop.  During the summer of 2003 MSMP 

professional development workshop, teachers not only learned particular mathematics 

content representations, in equivalent fractions and patterns of change in algebraic 

functions, but also reflected on their teaching by watching and analyzing their own video 

lessons teaching that were recorded before the workshop.  In addition, ten teachers were 

interviewed in order to find out in what ways teachers can make transitions in 

understanding and using mathematics representation, and the patterns of their changes.      
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This chapter seeks to provide information on teachers’ changes in the 

understanding and use of mathematics representations, to address the teachers’ change in 

classroom instruction, and to present the relationship between teachers’ change in 

learning and using mathematical representation before and after a professional 

development workshop.  All data were analyzed and coded according to three levels of 

TZPD using a particular framework (see Table 4).  In this chapter, the results of data 

analysis from questionnaires, videotapes, surveys, and interviews are reported in three 

sections a) teachers’ change in learning and understanding representations, b) teachers’ 

change in classroom instruction, and c) the patterns of teachers’ change in learning and 

using representations according to research questions in this study: (1) What do teachers 

understand about mathematical representations through the MSMP professional 

development workshop?  How does this understanding of representation fit into TZPDs?  

(2) How do teachers use their new knowledge of mathematics representations gained 

from the MSMP professional development workshop in classroom teaching? How does 

this practice relate to their levels of TZPDs? (3) In what ways do teachers make changes 

in their actual classroom teaching in terms of TZPD levels in using mathematics 

representation after the MSMP professional development workshop?  Are there any 

patterns of changes in classroom teaching?  Section one and two presented results for 

three levels: the changes in teachers’ learning or use of representations in Zone 1, the 

changes in teachers’ learning or use of representations in Zone 2, and the changes in 

teachers’ learning or use of representations in Zone 3.  Section three addressed the 

patterns of teachers’ change in learning and using representations.   
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Teachers’ Changes in Learning and Understanding Representations 

To find out how teachers make changes in learning and understanding 

representations, questionnaires were used as the main evidence.  Surveys and videotapes 

were used as supplementary materials to determine teachers’ levels of understanding of 

mathematical representations corresponding to three levels of TZPD relating to teachers’ 

knowledge.   

Table 6 compares the different levels of TZPD relating to teachers’ knowledge in 
learning representations before and after the workshop, and indicates changes in the 
zones. 

 
 

Table 6  
Changes of Teachers’ Learning Representations 

Teachers A B C D E F G H I J K 

Zone level before 
workshop 

2 1 3 2 2 2 1 1 2 1 3 

Zone level after workshop 3 2 3 3 3 3 2 2 3 2 3 

Change in learning (Zone) Y Y N Y Y Y Y Y Y Y N 

Note: Letters A to K represent eleven teachers.  Numerals in rows indicate three levels of Teachers’ Zone 
of Proximal Development (TZPD): Zone 1, Zone 2, and Zone 3.  Y:  Learning zone changed; N: Learning 
zone did not change (in this study, the highest zone is Zone 3). 
 
  

Table 7 shows the number of movements of changes in teachers’ knowledge in 

learning representations.   Nine out of eleven teachers made a move from a lower zone 

level to a higher zone level; four teachers moved from Zone 1 to Zone 2; five teachers 

progressed from Zone 2 to Zone 3, and two teachers maintained their level in Zone 3, 

which is the highest level in this study (see Table 7).   
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Table 7  
Movement of Change in Teachers’ Learning Representations  
 
Teachers B G H J A D E F I C K 

Movement of change in 
learning Zone 

1-2 1-2 1-2 1-2  2-3 2-3 2-3 2-3 2-3 3-3 3-3 

Number of Teachers in 
Change 

                4                              5        2 

Note: Letters A to K represent eleven teachers.  Numerals in row 2 indicate the movement of changes in 
three levels of Teachers’ Zone of Proximal Development (TZPD).  Numerals in row 3 addressed the 
numbers of teachers changing their learning zones. 
 
 
 
The Changes of Teacher Learning Representation in Zone 1 

Table 6 shows three out 11 teachers’ knowledge levels made a move from Zone 

1 to Zone 2.  The teachers who were placed in Zone 1 indicated their level of 

mathematical representations as basically accurate but abstract.  They mainly used 

symbolic representations to represent mathematical ideas.  Teachers’ knowledge in Zone 

1 also indicated that they had mathematical content knowledge, but they lacked 

pedagogical knowledge, which made it difficult for them to convey their knowledge to 

the students.    

Teacher B is a 6th grade mathematics teacher with 12 years of teaching 

experience, and her field of concentration is in elementary education.  Her learning and 

understanding indicated that she has gained the knowledge of mathematical 

representations to go from Zone 1 to Zone 2 through the MSMP professional 

development workshop.  For instance, before the workshop, she used different ways 

(table, number line, words, and symbolic equations) to address mathematical ideas using 

different representations; however, only the symbolic equation was accurate; tabular, 
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number line, or word representations were either not stating the problem situation 

clearly, or not involving important mathematical ideas.  The following representations 

were from teacher B’s answers in one of the questions in the questionnaire before the 

MSMP professional development (see Figure 3): 

 
 1. Symbolic form: Bob = 45 + 1X = 100  X = 55 Sec. 

    Andy = 2.5X = 100   X = 40 Sec.   

 2. Tabular form:   

  

 3. Number line form 

   

Figure 3. Teacher B’s representation before professional development. 

Bob

Andy 
1

2.5 

1 m per sec. 2.5 m per sec. 

Bob Andy 
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Three forms of representations from teacher B represented the same 

mathematical idea; however, only the symbolic form was accurate. The tabular and 

number line forms were not accurate.  Although teacher B answered the question 

correctly, that Andy won, her answer to the second question “what distance would make 

the race fair for both boys?” was not even relevant to the question: 30 seconds.   

After the workshop, teacher B was able to clarify student misconceptions about 

equivalent fractions by saying “the equivalency of fractions using equal sizes of a 

whole.”  She also recognized that students need to have a visual aid such as a pizza or 

pictures to help them build concrete understanding.  She believed that during the 

learning process, the teacher should “continue to work more abstractly, moving towards 

the concrete.  [The lesson should] allow students to become more involved in the 

discussion of the learning process and express their own outcomes.”  She also realized 

that “the representation will become a great meaningful tool for this particular lesson.”  

Through learning mathematical representations, she understood much better that 

mathematical representations “make learning easier and more understandable [for 

students].” 

Teachers G and H are in the same school, and both teach 6th grade mathematics.  

Their teaching styles followed almost the same pattern as their learning and use of 

mathematical representations.  They understood the equivalent fractions; however, their 

representations are limited to symbolic forms using mathematical procedures to address 

the given questions.  For instance, to solve equivalent fraction 0.75 = 6/8, teacher G 

accurately used long-division algorithm to change 6/8 to 0.75.  For the equivalent 
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fraction 4/7 = 8/14, she used the same approach to get each fraction to 0.571….  

Evidently, teachers G’s representation was not a comprehensible and visual form for 

students’ understanding.  The videotapes of her teaching after the workshop showed that 

she used more comprehensible mathematical representations in her classroom teaching.  

For instance, she used symbolic forms to represent equivalent fractions, used 

manipulatives to help students build concrete understanding of equivalent fractions, and 

was able to make the connection between symbolic form and manipulative concrete 

models.  Her reflection on workshops also indicated that she has learned that 

comprehensible representations help students better understand the math concept.  “To 

make sure the students can prove the equivalency in more than one way.  Let one way be 

a pictorial model and have them justify their answers,” she stated in her reflection during 

the workshop. 

Teacher J is a 7th grade mathematics teacher with three years of teaching 

experience, and a field concentration of elementary education in reading.  In the question 

of equivalent fractions in the pre-questionnaire, she used the following forms to address 

the procedure of 0.75 = 6/8 and 4/7 = 8/14: 

0.75 = 
100
75  =

4
3 , and then 

100
75  ÷ 

25
25  

0.75 = 
100
75  ÷ 

25
25 =  

4
3  x 

2
2  = 

8
6  

She stated, “Top and bottom were multiplied by the same # [number].” 

7
4  x 

2
2  = 

14
8  
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She also stated that: “again both top and bottom multiplied by the same # 

[number].”    

Her knowledge of mathematical representation indicated that she understood 

mathematical procedures and rules, but lacked comprehensible representations.  In 

learning reflection during the workshop, she said, “I liked the activity the workshop 

provided.  We dealt with every aspect (tables, graphs, equations, ordered pairs).  [In 

using these representations], the students have many different ways to find the answers.”   

The changes in teacher J’s knowledge also showed in her answers on the post 

questionnaire that involved students’ mistakes about algebraic functions.  Her responses 

were different in terms of mathematical representation compared to the pre-

questionnaire.  She realized, 

Andy was thinking that because the one tank is emptying faster and they would 
never be the same, he did not realize that the tanks started at different levels.  
John realized the tanks started at different levels.  In his representation, he 
showed that tanks will meet at a certain point, do not change at a constant rate. 
Edward was thinking that 50 will only be taken out once, and 25 will be only 
added once.  
 
She also understood that using multiple mathematical representations is an 

effective way to help students correct their mistakes: 

I think that drawing a graph together would help the students understand that the 
tanks are changing at a constant rate.  It will also help them see that just because 
the tanks are different, doesn’t mean they will never be the same.  Andy needs to 
watch the two tanks make the change, even if it is a picture.  John needs to see 
that the two change at the same pace.  Edward would need to see that this is 
happening over several hours, and the tanks are changing each hour. 
 
Her responses indicated that she has gained profound knowledge about 

mathematical representation not only in accurate but also in comprehensible ways.   
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In summary, these four teachers’ knowledge of mathematical representation 

progressed from Zone 1 to Zone 2 because their knowledge shifted from symbolic 

representation toward knowing mathematical representation accurately and 

comprehensibly, though with little variety and connection. 

Changes of Teachers’ Learning Representation in Zone 2 

Teachers in Zone 2 knew mathematical representations accurately and 

comprehensibly; however, their representations had little variety and connection, which 

made it difficult for them to convey their knowledge to reach students with diverse 

backgrounds.  Table 6 shows that five teachers made a move from Zone 2 to Zone 3. 

Teacher A is a 6th grade mathematics teacher with 15 years of teaching 

experience and a field of concentration of elementary education in science.  In his 

classroom teaching before the workshop, he clearly indicated that his favorite 

mathematical representations were equations and tables, which evidently served to 

promote in part students learning of mathematics with understanding.  During the 

workshop he realized that multiple representations are effective ways to promote 

students learning with diverse backgrounds in mathematics.  The interview data 

confirmed his thought: 

Representation is the way you teach the concept, and you can’t do it 
mathematically, but help them [students] understand the concept, instead of just 
learning mathematical process because they don’t understand it.  Given that the 
situation is not traditional, using a certain process may not be able to solve the 
problem.  If they understood the concept and know how it works, in a 
nontraditional problem, they are able to solve the problem. They are more likely 
to succeed in the learning.”   
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Teacher E is a 7th grade mathematics teacher with eight years of teaching 

experience and a field concentration in secondary mathematics.  Her responses from the 

questionnaire and classroom teaching showed that her mathematical representation 

knowledge is accurate and comprehensible.  She liked to use charts and equations to 

represent mathematical ideas.  For instance, in the given question of Andy and Bob race 

in the pre-questionnaire, she used two kinds of mathematical representation: charts and 

number lines (see Figure 4). 

 
 1. Chart form   

Time Andy Bob 

0 0 45 

10 25 55 

20 50 65 

30 75 75 

40 100 85 

 

2. Number line form 

 

Figure 4. Teacher E’s representation before professional development. 

Andy 

Bob

45

0

45

63

63 70.2

70.2 73.08
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Clearly, for teacher E, her chart representation were accurate and comprehensible 

for the given situation; however, when she tried to answer the same question using the 

number line, it was not clear and comprehensible.  In her number line representation, she 

included mathematical procedures such as long-division algorithm to indicate how she 

got the numbers.  This is not visual enough for students to understand the mathematical 

idea.  During the workshop, she reflected clearly that multiple representations help 

students build mathematical understanding.  “[We need to] be sure to generate linear 

equations both from the graph and from the table,” she said.  In the given question after 

the workshop, she was able to not only point out each student’s misconceptions but also 

find a way to help them by using three types of mathematical representations: table, 

graph, and numerical forms.     

 Teacher F is a 6th grade mathematics teacher with 25 years of teaching 

experience and a field concentration in elementary education of reading.  Before the 

workshop, her representations on given questions were accurate and comprehensible by 

using abstract form and area models.  The following were her answers to the given 

questions (see Figure 5). 

She accurately represented the two equivalent fractions; however, she could use 

multiple forms to represent them in different ways.  During the workshop, she realized 

that charts also helped students understand mathematics better.  “We do a lot of graphs 

and charts in 6th grade,” she said on reflecting on the workshop.  She was also able to 

recognize students’ mistakes in comparing equivalent fractions by saying “the picture of 

fractions should be the same” when comparing two fractions.  She completely 
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understood that multiple representations are effective ways to help students who have 

different abilities understand mathematics better.   

 
 1) 0.75 = 6/8:  

 Abstract way: 6.00 ÷ 8 = 0.75 therefore, 0.75 = 6/8  

 Area model:   

 

0.75 or 
100
75  = 

4
3  

Quarters
Qearters  in a dollar                  6/8 

 2) 4/7 = 8/14 

 Abstract way: 
7
4  x 2 = 

14
8  (2 should be

2
2 ) or  

7
4   = 

14
8  (using cross 

multiplication: 56 = 56) 

 Area model:  

   

Figure 5. Teacher F’s representation before professional development. 
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 Teacher I is a 6th grade mathematics teacher with 27 years teaching experience 

and a field concentration of elementary education.  Her knowledge of mathematical 

representations before the workshop was accurate and comprehensible, but with a lack of 

variety.  Although she tried to use a variety of mathematical representations, some forms 

of representations were not accurate. The following are her representations on pre-

questionnaire for the given problem: 0.75 = 6/8 and 4/7 = 8/14 (see Figure 6).   

  

1 25 25/100 ¼ 

2 50 50/100 2/4 = ½  

3 75 75/100 3/4 

 

 

 

    

         1/2          14/14 
        7/14 

Figure 6. Teacher I’s representation before professional development. 

100 

75 

50 

25 

25 
2/8 

50 
4/8 

75 
6/8 
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In answering equivalent fraction of 0.75 = 6/8, she used a grid to represent the 

100, and then shaded 75 to represent 75/100; however, she did not state that 75/100 = 

0.75. She used the proportion to represent the equivalent fractions: 
100
75  = 

4
3  and 

28
26

÷
÷  

= 
4
3 .  She also used the table to represent the given question clearly.  However, when 

she tried to use graphs, the answer was not clear. 

In answering equivalent fraction of 4/7 = 8/14, she did accurately follow the 

procedure by using cross multiplication and proportion methods: 
7
4  = 

14
8   cross 

multiplication 4 x 14 = 7 x 8  56 = 56.  In the other form, she represented it in another 

proportion: 
14
14  x 

7
4  = 

98
56  and 

7
7  x 

14
8  =

98
56 .  However, when she tried to a use 

rectangle area representation, it was not clear.  Although she marked a few fractions on 

the rectangle, there was no connection between these fractions to address given 

equivalent fractions.   

 In Zone 2, teachers’ answers indicated that they use area models of rectangles 

and circles, tables, cross multiplication, ratios, and grid papers accurately and 

comprehensively.  However, their representations were not multiple, and can only reach 

part of their students’ understanding of mathematical ideas.  From the workshop, they all 

learned to use the strategies of multiple mathematical representations to improve their 

way of teaching as one teacher, who reflected during the interview said, “I learned 

problem solving by using a different way[s] to solve it, like graphs, flash cards, pictures, 
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and tables.  This gives me a different way[s] to teach the class.”   These teachers made 

progress toward a higher level zone. 

Changes of Teachers’ Learning Representation in Zone 3 

Teachers in Zone 3 demonstrated that their knowledge of mathematical 

representation is accurate and comprehensible, with variety and connection. Their 

knowledge of mathematical representations showed that using representations not only 

directs students’ conceptual and procedural understanding but also reaches students with 

different learning abilities.   

Teacher K is a 7th grade mathematics teacher with five years of teaching 

experience and a field concentration in secondary mathematics education.  In responding 

to the given question in the pre-questionnaire, she used every possible representation she 

could to demonstrate the important mathematical ideas.  She used symbolic equations, 

tables, number lines, and graphs to describe the problem situations and her mathematical 

representations are accurate and comprehensible with variety, which could promote 

learning mathematics for students with diverse backgrounds and interests. In her 

reflection on the workshop, she pointed out particularly how NCTM standards that the 

workshop covered helped her, “I really enjoyed seeing the NCTM web site.  I did not 

realize it had so many good things and lesson type things on it.”  During the interview, 

she especially addressed the fact that mathematical representation helped her to reach 

economically disadvantaged kids in her teaching area:  

Kids in here are different; it [mathematical representation] gives me an idea how 
 to approach [mathematical ideas for] different kids.  We have very  high level 
 poverty here; we need to be aware how these kids understand math.  I have 



  76 

 probably 96% socially economically disadvantaged students.  MSMP provides 
 information in each different environment to teach effectively. 

 
Teacher C is a 6th grade mathematics teacher with four years of teaching 

experience and a field concentration in elementary education.  Before the workshop, she 

not only understood the importance of multiple mathematical representations but also 

used different representations according to students’ needs. She stated the following 

during the interview:  

 I remember we discussed students’ misconceptions during professional 
development, I think this was the best part for me in the professional 
development.  If we can be aware of this problem in the classroom, it would be 
very beneficial to the teaching.   Professional development staffs have talked 
about students’ misconceptions, but did not go further (because of limited time in 
the make-up session).  I think it would be helpful if they can go further, 
especially for the new teachers as well as in undergraduate and graduate courses.  
Misconceptions help you to understand where you will go in terms of instruction.  
 
Teacher C’s comments indicated that teachers in Zone 3 needed more challenges 

in professional development in order to fully discover their potential and go beyond their 

current knowledge. 

In summary, although every teacher in this study had different levels of TZPD 

before the workshop, they made a move to reach their fully potential after engaging in a 

workshop program, in which teachers experienced interpsychological function by 

interacting with and learning from other teachers and capable others.  From watching 

their own video lessons and reflecting on their teaching, teachers experienced 

intrapsychological function that helped them to arrive at new zones.  
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Teachers’ Change in Classroom Instruction 

The results for teachers’ use of mathematical representations in classroom 

teaching showed that eight out of 11 teachers moved from lower levels to higher levels 

or remained in the higher levels.  Only three out of 11 teachers did not move in the 

similar direction as their learning path.   

Table 8 compares the different levels of TZPD related to teachers’ knowledge in 
using representations in classroom teaching before and after the workshop, and indicates 
its changes in zones. 

 
 

Table 8  
Changes of Teachers’ Using Representations in Classroom Teaching 

Teachers A B C D E F G H I J K 

Zone level before workshop 2 1 3 2 2 2 1 1 2 1 2 

Zone level after workshop 3 1 3+ 3 3 2 2 2 3 2 2 

Change in using (Zone) Y N Y Y Y N Y Y Y Y N 

Note: Letters A to K represent eleven teachers.  Numerals in rows indicate three levels of Teachers’ Zone 
of Proximal Development (TZPD): Zone 1, Zone 2, and Zone 3.  Y:  Learning zone changed; N: Learning 
zone did not change. 
 
 
 
 Table 9 shows the number of movement changes in teachers’ knowledge in using 

representations in classroom teaching.   Eight out of 11 teachers made a move from a 

lower to a higher or stayed at high level: three teachers moved from Zone 1 to Zone 2, 

five teachers progressed from Zone 2 to Zone 3, and one of them maintained high level 

3, which is the highest level in this study.   
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Table 9  
Movement of Change for Teachers’ Using Representations  

Teachers G H J A D E I C B F K 

Movement of change in 
using Zone 

1-2 1-2 1-2 2-3  2-3 2-3 2-3 3-3+  1-1 2-2 2-2

Number of Teachers in 
Change 

             3                             5                  3 

Note: Letters A to K represent eleven teachers.  Numerals in row 2 indicate the movement of changes in 
three levels of Teachers’ Zone of Proximal Development (TZPD).  Numerals in row 3 address the numbers 
of teachers changing their learning zones 
 
 
The Changes of Teachers’ Using Representation in Zone 1 

Teachers’ instruction in Zone 1 basically involved accurate but not 

comprehensible use of mathematical representation.  These kinds of representations 

result in difficulties for students in learning mathematics with understanding most of the 

time, especially for students with lower learning abilities.  

 Teacher B used the same CMP textbook to teach fractions, percents, and 

decimals before and after the workshop.  Her teaching style indicated that she followed a 

procedure and used memorization to teach the lesson.  Although the textbook required 

students to prove their reasons, she usually gave the students answers without their 

exploration.  The following was an example of her classroom teaching on comparing 

fractions using fraction strips: 

Problem: At the end of the fourth day of their fund-raising campaign, the 
teachers at Thurgood Marshall School had raised $270 of the $360 they needed 
to reach their goal.  Three of the teachers got into a debate about how they would 
report their progress. 

• Ms. Mendoza wanted to announce that the teachers had made it three 
fourths of the way to their goal. 

• Mr. Park said that six eighths was a better description. 
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• Ms. Christos suggested that two thirds was really the simplest way to 
describe the teachers’ progress. 

A. Which of the three teachers do you agree with?  Why?   
B. How could the teacher you agreed with in part A prove his or her case? 
(CMP, 2002, Pits and Pieces I, Investigation 2.1) 
 

During students discovering the questions, teacher B gave them the answers 

without students’ exploration. 

Teacher:    Ms. Mendoza is correct. Not only is Ms. Mendoza correct, Mr. Park is 
correct [also]. ¾ and 6/8 are equivalent [at this time, the term of equivalent 
fraction had not be introduced yet]. Have you looked at your ruler? You can 
see equivalence.  If you fold your 4th fraction strip, you will see the 8th.  

 
At this time, one student did not get it.  Teacher B worked with him and 

explained to him what should be correct.  

Teacher:    Ms. Mendoza and Mr. Park are correct. Ms. Christos is not correct because     
270 and 360 do not match 2/3.  

 
In this class students were not motivated to learn mathematics because they did 

not follow her direction for understanding.  

Teacher:    You don’t have energy. Do we need to stretch?  

The following conversation between teacher B and one student indicated that her 

instruction in word mathematical representation without any visual part did not make 

sense for this student.     

Teacher:    Now, let’s look at Ms. Christos, we look at $360 is our total, and we want to 
divide $360 into what [without students’ answer]? Three equal parts.  
[Student was silent]. 

Teacher:    Okay Now, what about $270?  Ms. Christos said what? She said 2/3 is really 
the simplest way to describe the progress they were already made. 2/3? 
[Student was silent and the teacher B asked the student]. 

Teacher:    What do you think Ms. Christos is coming out? 
[Student was silent]. 

Teacher:    $90. Now see how many parts.  
Student 1:  One [mistakenly]. 
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Teacher:    There are four parts. OK. Now how many parts are for Christos? 
Student 1:  … 
Teacher:    See right on the board, and I have it: two thirds. OK.  You’ve got one third,     

what would be another?  
Student 1:  … 
Teacher:    $90.  Another one third, so it would be two thirds. This would be what?  How 

much 90 and 90? 
Student 1:  90 and 90? 
Teacher:    No.  90 plus 90. 
Student 1:  190. 
Teacher:    No. one hundred what? 180, OK.  Three thirds would be what? 
Student 1:  Three thirds would be what? Are you going to put another 90? 
Teacher:    How much it would be?  
Student 1:  ... 270.  
Teacher:    Do we make 270 a weight by two thirds? 
Student 1:  Yes. 
Teacher:    No, No, No.  We got three thirds when we get 270.  So can we say that we 

can use two thirds to describe how much we sold so far?  
Student 1:  No. 
Teacher:    No.  We can’t because basically according to Ms. Christos, we only sold how 

much?  
Student 1:  270. 
Teacher:    No.  How much?  Two thirds would be what?  
Student 1:  180  
Teacher:    $180, which is not we sold already.  And we sold how much? 
Student 1:  270. 
Teacher:    270.  So instead of use 2/3, Ms. Christos should use what?  
Student 1:  … 
Teacher:    What bring us to 270?  
Student 1:  3? 4?  
Teacher:    No.  We are looking at thirds right now. Three fourths is correct.  

 
Although teacher B had learned new strategies from the workshop, her teaching 

did not change.  For instance, in teaching equivalent fractions, there was no clear 

learning goals in teacher B’s class.  The representation that she mainly used in the 

classroom was mathematical procedure, and she also asked students to memorize the 

procedures (e.g., moving left two places to make changes from a percent to a decimal) to 

solve the problem.  Although she did give students opportunities to explore the questions 
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that the textbook provided, many times she simply gave the answers to the students.  

Students’ reactions from her class showed that many of them had a hard time 

understanding the mathematical concepts.  When students had difficulties, teacher B 

simply helped them to recall something they have been asked previously.  In teaching 

equivalent fractions, the important mathematical concept is to understand the same size 

and same shape when comparing the fractions.  In order to understand this concept, 

students are required to construct a new fraction strip by using original fraction strips 

that have different sizes.  Her teaching showed that she gave the students answers 

without students’ exploration leading to their own findings. 

Although the above conversation was only with one student, the whole class was 

lost at this point.  Without appropriate mathematical representation, it is hard for 

students to understand the mathematical concept beyond the computation.  For teacher 

B’s abstract representation, some students may understand, though evidently many 

students in this classroom were lost.  When teaching converting percents and decimals, 

she asked students to memorize moving decimal places instead of helping them to gain 

conceptual understanding.  

Teacher:    Percent is how many places behind a decimal. In order to get rid of a 
decimal, what I am going to do is to move two places, and then add a percent 
sign.  Alright, let’s look at that chart here.  For $2000 on up, 18% of the 
people are willing to pay, which means 18 out of 100 and .18 in decimal 
form.  To change from percent into a decimal you drop the percent sign and 
move the decimal point two positions to the left.  

     […]  
Teacher:   When we are given a fraction and asked to turn that into a decimal or a 

percent, what must we do?  You divide!   
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Although she clearly stated the procedure for converting percents and decimals, 

students were confused in many places. For instance, teacher B asked one student:  

Teacher:    Are you sure this is 30 out of hundred? This is three hundredth, not 30 
hundredth. So you move the decimal two places to the right. Then you get 
3%, not 30%.  

 
Although in the rest of the lesson, the students followed the procedure to fill in 

the blank that converts between fractions, decimals, and percents, the students’ 

understanding of these concepts was questionable.  

 In the second year, teacher B taught the same lesson after she had gained the 

knowledge of mathematical representations; however, her teaching style has not 

changed. In teaching comparing fractions, although she gave students more opportunities 

to explore the mathematics ideas in the group discussion, she easily gave students 

answers without their proof.  The following was the same lesson content as she taught in 

the previous year: 

Teacher:    Let’s look at the question again.  Mr. Mendoza and Mr. Park are correct 
because ¾ of $360 and 6/8 of $360 are both equal to $270.  Okay. Ms. 
Christos is incorrect because 2/3 of $360 is only $240 on meeting their goal. 
… Now how can you prove your answers?  Alright, if you divide $360 into 
four equal parts, that is 360 ÷ 4, each part equals to what? 

Students:   90. 
Teacher:    $90 for each part. If we take three parts, we get $270. For Mr. Park, if we 

divide 360 into eight parts, we get 45 for each part. We take six parts, we also 
get $270.  

 
Although she did address the calculation correctly, she missed the important 

mathematics concept of using the same size and same shape area to compare the 

fractions.  In the abstract representation forms, the observations on both video lessons 
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before and after the workshop showed teacher B hasn’t made progress in using 

representations in her teaching.  Therefore her TZPD stayed at the same level. 

 Teachers G and H are teaching at the same grade level in the same school and 

have the same path to teach.  Their teaching approaches are similar and their teaching 

changes also followed a similar pattern.  Before the workshop, their teaching approaches 

followed the patterns of warm-up, teaching new lesson, and student practice.  The warm 

up normally included a few computational problems for students to practice; the 

teaching of a new lesson normally followed the textbook (MT) to do almost exactly the 

same thing; and the students’ practice usually took about 20 minutes.  Since their 

teaching followed in content and steps almost exactly as the textbook, the 

representations were from the book, which focused on much more manipulatives by 

using pattern blocks to investigate the equivalent fractions and other mathematical 

concepts.  Although students had the chance to use manipulatives, their role was to 

follow the teachers’ direction, in which their understanding or misunderstanding was 

covert. As a result, many students’ responses to questions reflected that they do have 

many problems during their class-work practices.  The following lesson from teacher G 

was a very typical example for both teachers.  

1. Warm-up: change improper fractions to mixed numbers: 6/5, 17/4, 10/5, 25/6, 18/6, 

13/9, and 23/7. The approach she taught students was to use the long division of 

numerators and denominators, and then to follow the procedure to remember to put the 

remainder as a new numerator.  For instance, to change 23/7 to a mixed number, teacher 

G divided 23 by 7 and got remainder 2, and then she wrote the result as 3
7
2 . 
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2. Teaching a new lesson: making equivalent fractions.  To follow the instruction from 

the book, teacher G passed pattern blocks to the students and directed students to make 

changes between hexagons, rhombuses, and triangles in order for students to understand 

the equivalent fractions.  For instance, a certain hexagon was partly covered by 

trapezoids, and the fraction was 6/8, what fraction would it be if the same picture was 

covered by triangles or rhombuses?  Although students had the chance to use 

manipulatives, they did not get a chance to discover the concept behind the 

manipulatives. The teacher led students in discussions, but most of the time she did the 

work.  The students copied the teacher’s work in order to follow her instructions.  The 

main representation that she used was what she called the butterfly approach (cross 

multiplication) to check the equivalent fractions.   

3. Student practice in the classroom: after teaching a new lesson, teacher G gave students 

the class-work (extended as homework).  She did a few of them with students.  The lack 

of comprehensibility and variety of mathematical representations caused difficulties for 

some students in understanding the concept of equivalent fractions in this classroom.  In 

the class discussion, only a few students were involved.  

 Teacher H had almost the same approach as teacher G except she tried to use 

more questions to challenge students’ proofs.  However, without multiple mathematical 

representation skills, students’ proofs were limited to cross multiplication (butterfly 

approach).  Although they used manipulatives, the connection between concrete and 

abstract was missing in the teaching. 
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 After the workshop, their teachers’ approaches changed in terms of using 

mathematical representations when they taught the same lesson and used the same 

textbook.  Although they did not improve the warm-up part, they did use some concrete 

visual forms to represent fractions in the new lesson.  For instance, teacher H asked 

many more students to come to the front to show their understanding of equivalent 

fractions by using manipulatives.  The important part was that she asked students to 

represent equivalent fractions and prove their answers beyond using manipulatives.  The 

following conversation between teacher H and her students indicated the proof having 

different representations: 

Teacher:    The first time we did when I used the blue color [pattern blocks], and it 
comes to 6/12; the second time I did use green color, and it comes out 12/24; 
what can you tell me about these two fractions?  Are they equivalent?  How 
do I know that? 

Student 1:  Because 6/12 equals one half and 12/24 also equals to one half. 
Teacher:    She’s telling me that 6/12 if I reduced it equal one half.  If I reduce 12/24, it 

also equals one half.  How do I prove it using my pattern blocks that it is the 
same? What do I do to prove it? 

Student 2:  When we use the six blue and 12 green, they are covering the same area. 
Teacher:    Yes. We are just using the different colors.  She is right they are all half, and 

6/12 are equivalent to 12/24.  Give me another fraction that would be 
equivalent to these fractions. 

Student 3:  25/50 
Teacher:    Another one. 
Student 4:  50/100 
Teacher:    Give me another one. 
Student 5:  2/4 
Teacher:    Another one. 
Student 6:  3/6. 
Teacher:    We can go on and on, and all these fractions, we call equivalent fractions 

because they are the same. If we reduce them, they all come to one half.  
 
In teacher G’s class, she also used picture representations to bridge the 

conceptual understanding for equivalent fractions.  Teacher G used trapezoids, 
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parallelograms, and triangles to represent the same picture in the given example, and 

discussed the difference representations with students one by one. 

Teacher J, a 7th grade mathematics teacher with three years of teaching 

experience and a field concentration in elementary education in reading, did not know 

much about teaching strategies using mathematical representations before the workshop.  

Her typical teaching style was to almost completely follow the textbook (MAC).  For 

instance, in order to address the topic of solving equations such as X + 3 = 5, she used 

the “zero pairs” approach that was introduced in the textbook and some manipulatives to 

ask students to follow the procedure.  Her lesson indicated that her approach did not 

reach students with diverse backgrounds.  The abstract representations in the text did not 

help her to explain clearly why one side needs to be taken off and moved to another in 

order to figure out what X is.  After her lecture and during students’ working on 

problems, several students, especially minority students, had difficulties doing work on 

their own.  Evidently, her approach did not reach the group of students who might have 

lower learning ability.  Similar to other teachers who went from Zone 1 to Zone 2, 

Teacher J was able to follow ideas in the textbook to use some representations, but they 

were abstract with little variety, and not comprehensible to the students.  After the 

workshop, teacher J used many more students’ representations to direct her teaching by 

calling students to come forth with their mathematical ideas, though her teaching is still 

driven by the textbook.   
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Changes of Teachers’ Using Representation in Zone 2   

Teachers in Zone 2 showed that they used mathematical representations in their 

instruction accurately and comprehensively, but with a lack of variety.  Teachers’ 

instruction in this zone can only reach part of students’ learning with understanding.  

However, with the workshop that focused on specific strategies of representations, four 

teachers made moves in their TZPD toward to the next level, and two teachers did not 

make any moves in Zone 2.   

Teacher A, a 6th grade mathematics teacher with 15 years of teaching experience 

and a field concentration in elementary education in science, provided students with 

opportunities to prove their mathematical ideas using fraction strips.  From student 

representations, he knew much more about students’ mathematical thinking.  The 

following conversation was an example from the lesson of using fraction strips to 

compare fractions (CMP) before the workshop.  

Teacher:    We not only need the answers, but also need you to prove it. 
[Students discussed as groups] 

Teacher:    Which teacher do you agree with? Let’s take a vote. 
[Students voted]  

Teacher:    Adam. 
Adam:       Because ¾ and 6/8 are the same thing, all you have to do is to multiply it by 

two.  
Teacher:    Let’s not use multiplication, instead use your strips. How [can] you show a 

four-year-old kid that you are correct? 
Adam:        In first one, 3 of 4 are shaded.  
Teacher:    You are saying using 4th strip folded, will it show you?  
        [The teacher demonstrated this on the transparency]  
Teacher:    You prove this.  How about the next one? 
Adam:       If you take 8th strip, you divide into eight parts; it shows you 6/8.  
Teacher:    You see both of these did not work for 2/3.  Name another strip that works.  
Billy:         9/12. 
Teacher:    You took the 12th strip, and you will find it also works.  
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Teacher A found one student’s mistakes and tried to correct it for the whole 

class. 

Teacher:    What is wrong with this fraction?  Alright, Billy looked at the 12th strip, but 
he had 13th strips.  What he did is using 13th strip and fold one hided and 
made it the 12th.  What is the problem?  

Student 1:  Because one of them is too short.  
Teacher:    The total thing has to be the same [the teacher compared and concluded they 

are not the same]. 1/3 and 4/12. Are they equal? 
Students:   Yes.  
Teacher:    If you took the 3rd strip and the 12th strip, what do you find out? 
Students:   They are the same 

 
Although teacher A did not use comprehensible representation very often in his 

teaching, he did use student representations to address the ideas of comparing fractions.  

However, after the workshop, he taught the same lesson in a different class and made it 

much more of a challenge for students to represent their mathematical ideas.  The 

following conversation was from his lesson of comparing fractions after the workshop. 

Teacher:    Last lesson we talked about fund raising and the goal is $360 and they got 
$270.  Ms. Mendoza said ¾, Mr. Park said 6/8, and Ms. Christos said 2/3.  
Look at the questions.  What I would like you to do is to discuss this, and 
then each group reports your findings. I need you to answer why?  

Teacher:    I heard several comments: fraction strips don’t fit.  
Student 1:  They are too long. 
Teacher:    What is goal? What is the whole? 
Students:   360. 
Teacher:    What could you do?  
Students:   ... 
Teacher:   Could you make your own strip?  
Students:   … 

 
Teacher A challenged students to prove their answers. 
 

Teacher:    How many of you said that Ms. Mendoza was correct.  Charley, explain your 
group’s reason. 

Charley:    Ms. Mendoza and Mr. Park are all correct and Ms. Christos is wrong.  
Teacher:    If you announce the result, what do you agree with?  
Charley:    Ms. Mendoza. 
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Teacher:    Why do you agree with her? 
Charley:    ¾ makes more sense. 

[The teacher measures it on the board]  
Teacher:    If you use the piece of paper, the fraction strips go this far [more than 360].  

Will this give you a different answer?  It could be.  
Charley:    We divide 360 by 4, we get 90, then we use 90 times 3, we get 270, therefore 

we say ¾ is correct.  
Teacher:    They try to do it mathematically.  What about you?  
 

 Teacher A called on another student (Daniel) and addressed his mis-

understanding. 

Daniel:      Ms. Christos is correct [wrong].  
Teacher:    Why do you select Ms. Christos? 
Daniel:      We put every answer ¾, 6/8, and 2/3.  We know ¾ = 6/8, so we select 2/3.  
Teacher:    So you take 2/3 by default. Your group?  

      [Teacher A called on another group] 
Group:       We use strips. 

 
Teacher A used fraction strips to address the mathematical concept beyond 

fraction strips. 

Teacher:    Right now, I am not saying which group is right and wrong.  Let’s look at 
question b and then we can come back to this.  How can you prove your 
answer?  A lot of times in your lives you are expected to prove your 
reasoning.  

Adam:       2/3 is not working because the empty one is less than 1/3. 
[Adam pointed the fraction strips].  

Ashley:      We agree with Ms. Mendoza because we can make the strips and to measure 
it.  

Edward:    We switch to Ms. Mendoza.  
Teacher:    How important is that fraction strip fit on there?  
Students:   Important. 
Teacher:    Why? 
Students:   … 
Teacher:    You talked about whole. What is whole in this case? 
Students:    360 
Student 1:  You can also use your fingers to measure it.  
Teacher:    What fraction we can use to represent their progress? What is difference 

between 4th, 8th, and 12th? 
Teacher:    The whole is the same but the piece is different.  
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In this lesson, students were very excited about fractions and raised some 

questions about fractions.  Teacher A pointed out students’ misconceptions by looking at 

patterns and made a simple way to compare the fractions.  

 Teacher D, a 7th grade mathematics teacher with three years of teaching 

experience and a field concentration in elementary education in mathematics, taught 

writing expressions and equations in algebra.  She used the ten blocks as a concrete 

model to represent the algebraic equation, and then she used the letters to represent the 

same equation in a formal way.   

Teacher:    What is the equation? 
Student 1:  It is math sentence, number of sentence. 
Teacher:    How do you know? 
Teacher:    What is our goal for solving equation?  
Student 2:  Solving variables.  
Teacher:    We will do drawing and mathematics part today. 

 
Teacher D used the model to show the equation, and she used equations with a T 

table representation to show the two sides in the equation.  She asked students to do the 

practice and asked them to remember the “zero pairs”, which is a typical procedure that 

MAC textbook introduced in solving algebraic equations.  She then called two pairs of 

students to come to the front and show the work of solving 2 + p = 5.  Students copy the 

procedure from her and explained the zero pairs.  Since teacher D followed the textbook 

for her instruction and the representation from textbook is too abstract, some students 

did have problems to understanding “zero pairs.”   After the workshop, her lesson in 

representations had more variety by using graphs and other forms which made students 

understand better.  The following example is from her lesson after the workshop to show 

the concept of proportional linear equations: 
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Teacher:    10g = h, what does the graph looks like? 

She called one student to come up to the front to show the graph by drawing a 

linear line in the square box. 

Teacher:     How about 2n + 10 = h?  

She called students to the front to draw the graph, but the students made mistakes 

in drawing the curve.  She called several students to come to the front to make their 

representations, and she explained students’ different representations, including mis-

represented mathematical ideas.  She used students’ representations to make clear linear 

equations until most of the students understood the mathematical ideas.   

Teacher E, a 7th grade mathematics teacher with eight years of teaching 

experience and a field concentration in secondary mathematics, taught algebra.  She 

provided students with opportunities to represent algebraic ideas; however, the 

representations she used were still too abstract for most of her students because most of 

her students are Hispanic.  

Teacher:    How do we write equation from the table? Let’s see the table 
 

X -2 -1 0 1 2 
Y 1 0 -1 -2 -3 

 
After teacher E corrected one student’s representation x = -1 and y = 0 to x = 0 

and y = -1 (she had introduced this approach in the last lesson). 

Teacher:    What does y equal?  
[At this point, this student made -1 = 0 with teacher’s help].  

Teacher:    Is this a true statement? We want to make a true statement and we need to 
put in some thing.  What we need to put in? -1 on right side, so -1 = 0 -1 

Teacher:    We want to say y = x -1  
[At this time, the student did not understand this representation].   
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Teacher:    We have equation y = x -1. How do we get it? That is our best guess.  Then 
we pick up another point.  

Student 1:  x = -1 and y = 0 
Teacher:    We put the value in. 0 = -1 -1. Is this a true statement? 

[At this time, teacher E let students play with these numbers trying to make a 
true statement]. 

  
 Teacher E’s mathematical representations on equations were so abstract that they 

were not comprehensible to students.  Furthermore, the guess and check approach made 

it even harder for students to understand the mathematical concept.    

Teacher:    Did any one get the correct answer? 
Student 2:  This is hard.  

 At this time, students did not know about slop, so it was hard for them to build 

the equation.  Although they sometimes made a true mathematical statement, it did not 

make sense to them mathematically.  Although the teacher made an effort to explain, 

students were totally confused at this time.  

 Unclear mathematical representations in teacher E’s lesson made students 

confused in understanding how to generalize the question from the given data.  Students 

did not have any ideas about the relationship among variables.  Teacher E did not make 

the connection between the representations.     

After the workshop, teacher E used multiple representations to help students 

understand the mathematical concept, and students made progress in understanding 

mathematical concepts.  The following was an example of the lesson similar to previous 

one on equations. 

[Two students demonstrated their work on the board using tables to find 
patterns of linear relationships and then filled in the missing numbers]. 

Teacher:    What is the equation for the following table? 
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X = 1  2 3 5 7 9 … 

Y = ½ 1 1 ½ 2 ½ 3 ½ 4 ½ … 

 
Student 1: Y = ½ x or .5 x or x/2 
 

Students knew that the easy way to write the equation is to choose Y = KX when 

X = 1.   

Teacher:    What if x = 22? 
Student 1:  Y = 11 
Teacher:    How about this table?  What is the pattern? What is the equation? 
 
 

X = 1 2 5 7… 

Y = 5 10 25 35… 

  
Student 2:  Y = 5X 
 

This class had almost no lecture because students are so diverse with lower 

ability; the teacher had to use different representations to work with students to address 

the patterns of changes and the variables with changes.  Because students had difficulties 

in understanding variables, the teacher used proportional relationships to help students 

see the patterns of changes, which is in the form of Y = KX.  It was clear that students 

made progress. 

Teacher F’s teaching followed almost the same pattern before and after the 

workshop: students had a warm-up with computational practice, and the teacher 

addressed the fraction ideas using money and pizza as examples.  Although the teacher 

used manipulatives (e.g., pattern blocks), there was little connection between the 
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manipulatives and conceptual understanding.  Therefore, students were limited in 

concrete understanding.   

Teacher:    Let’s think about six on your own to see what you know about six, and then 
share your ideas. 

Student 1:  Hexagon.  
Student 2:  Six months is half a year. 
Teacher:    I’d like you to make the left figure using pattern blocks [in MT book]. 

 
On red shape, the teacher drew the trapezoid, which equals three triangles. 

Teacher:    So 1/6  3/18 because total of triangles are 18 (6, 6, 6), and you can use 1/6 
times (3/3) to get 3/18 also, and you can use cross multiplication to check 
your answers. 

 
The teacher demonstrated the cross multiplying procedure.  She also 

demonstrated the procedure on the board for three other similar questions.  On ¾ =9/12, 

the teacher made the circle to show students 9 out of 12 on the circle.  The teacher drew 

improper fractions on the board: 8/6 = 6/6 +2/6 and 16/12 = 12/12 + 4/12. 

Teacher:    Two ways you can use to check your answers: using the calculator and using 
cross multiplication. 

 
The teacher showed the cross multiplying approach to prove the equivalent 

fractions.   

Teacher:    Last thing we are going to do is practice without using calculators, so close 
your book, do the work as homework.  We need to find equivalent fractions: 
12/18 = 4/6.  How can we make the 12/18 to the 4/6?  

 
After students made concrete models using pattern blocks, students worked on 

the questions to transfer them to the abstract form.  However, the questions included 

improper fractions.  She called students to come to the front to make the equivalent 

fractions.  During the practice, the teacher showed the concrete model again to make 

sure students had this connection.  Teacher F made sure that students used equal sizes to 
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make equivalent fractions.  For improper fractions, she drew the rectangle with six parts 

and then made another one to shade with two parts that she did the same way for 16/12.   

However, students did not get a chance to do that, so the teacher did not know whether 

the students understood or not.  Another feature of her teaching is that she used the 

teacher-centered teaching approach, in which students did their work, but they did not 

have the opportunities to prove their work, even with other students, although students 

got enough time to practice.   

Although teacher I’s teaching appeared to be monotonous before the workshop, 

her teaching after the workshop was effectively changed by using representation 

strategies.  The following is an example of her lesson before the workshop. 

Teacher:    Today we are going to talk about mixed numbers and improper fractions.  
Some day you might be a manager of a piece of property.  When you manage 
property in cold place where it is snowing, and you use the salt to melt the 
snow.  You have four ounces of salt.  On the package, it says it will melt nine 
square feet ice.  But you only have one ounce salt in the bag. How many 
square feet we are going to melt? 

Students:   Divide 
Teacher:    That sounds good to me.  We divide 9/4?  What do you know about this 

fraction?  They are big on top and small on bottom.  This is improper 
fraction: when the top number is greater than bottom number.  We are going 
to use manipulatives to change improper fraction to mixed number and from 
mixed numbers to improper fractions.  

 
The teacher put the hexagon and triangle transparency on the overhead projector. 

Each hexagon equals six triangles.  

Teacher:    How many triangles are equivalent to a hexagon? 

The teacher called one student to the overhead to make the equivalent shapes 

using triangles and a hexagon.   

Teacher:    How many does it take him to make this? 
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Student 1:  Six.  
Teacher:    We have problem in here because we have one more.  How many sixth we 

have in here? 
Student 1:  Seven.  
Teacher:    7/6.  What fraction do we come up? 
Student 1:  Improper fraction. 
Teacher:    How can I change improper fraction to one whole and one left over? 
Student 1:  Divide. 

Teacher:    Seven divided by 6 equals to
6
11 .  Does this make sense to you?  Let’s do 

another shape using pattern blocks.  
 
The teacher used hexagon and trapezoids (each hexagon equals to two 

trapezoids), and called one girl to come up to do it.  

Teacher:    How many does it take to make a hexagon? 
Student 2:  Two. 
Teacher:    We have three extra.  Who can tell me how much we have? 

      [One student comes to make two and half].   

Student 3:  We need to change this to numbers. It is 5/2.  We divide 5 by 2 and get
2
12 . 

Teacher:    Now you need to practice on this and you can work with your partners.  
 
The teacher used a work-sheet that was filling blanks and including the picture 

and fractions. She explained the procedure again before students started to work.  She 

was walking in the classroom to help students. 

Teacher:    Let’s check your answers. What is your first step? 

Teacher:    Let’s do the mixed number to improper fraction. Let’s do
3
23 .  How can we 

go backward?  
 
She put pattern blocks again on the overhead projector as students could 

visualize this.  

Students:   3 x 3 + 2 = 11, so 11/3.  
 
The teacher did not comment on student’s methods, instead she said, 
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Teacher:    Let’s try to use manipulatives  
 
The teacher used pattern blocks and a calculator to show the mixed numbers and 

improper fractions. 

Teacher:    I will let some of you come up like teachers to see if you did it right.  The 
first question is 1 2/5 change to improper fractions.  

 

One student comes to the front and does 5 x 1 + 2 = 7  7/5 using 

manipulatives. 

Teacher:    How about 12/7? 

Another student comes to the front and does 12 / 7 = 
7
51  using manipulatives. 

Teacher:    Let’s see if we can do this mentally.  Change 
2
13  to an improper fraction by 

multiplying and adding.  
Student:    3 x 1 + 2 = 7, so 7/2.  

 
The teacher made the connection between concrete and abstract understanding. 

After the workshop, her lessons appeared to have much more mathematical 

representations.  The following showed the example of her post lessons: 

Teacher:    Today we are going to learn about improper fractions and mixed numbers. 

First, I want to you to draw me the picture of
4
13 .  Draw me a model and 

what you think it should be. 
 
This great problem challenged the students, and she checked students’ 

understanding and called one student to come up to show the result on the board. 

One student drew three whole squares and ¼ square.  It was really a good picture; 

actually he drew 13 pieces out of 4.   

Teacher:    What is the first thing he did here? 
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Students:   Divide the number 4. 
Teacher:    How many 4th do you see in his picture? 
Students:   4, 4, 4, and 1. 13.  
Teacher:    We also can do another thing.  Can you tell me what do you see here?  

      [Teacher has written 4/4 + 4/4 + 4/4 + ¼ =
4
13 ].  

Student 1:  1 + 1 + 1 + ¼ = 
4
13  

Teacher:    Is there anything I can do to come to
4
13 ? 

Student 1:  4 x 3 + 1 
Teacher:    Good job. 
Teacher:    Now we pick up whole number and get a fraction, so we will have the mixed 

number.  Now I want you to do the improper fraction and draw the model and 
show me the change to the mixed number using your model.  

 
The teacher mentioned that each part in the whole has to be congruent.  This 

really helped students understand the mathematical concept.  By this time the teacher has 

the opportunity to walk around in the classroom to check every one’s work.  From the 

conversation, the teacher also helped students review the geometry by drawing figures, 

for instance, a pentagon.  The teacher also corrected one student’s figure because it was 

not congruent.  She called one student to come to the front to demonstrate his work to 

change improper fraction 17/5 to mixed numbers.  This student chose the rectangle and 

divided it into five equal parts, with one rectangle he shaded and wrote 5/5 = 1.  He did 

same thing in the second, and third.  He then counted pieces that were shaded until 17.  

For the final one, he did 2/5, and then he put a little “+” sign and wrote the conclusion of 

mixed number
5
23 .  This representation showed his conceptual understanding.  At this 

time, the teacher made sure that students understood models with equal size, and knew 

that 17/5 and 
5
23  are equivalent fractions.   
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She called one student to do another problem to change improper fraction 28/5 to 

mixed numbers.  This student used the circle as a model, and tried to draw a congruent 

part.  She got six circles and divided each circle into five parts.  She shaded the first five 

circles, and shaded last one in three parts.  She proved her answer by writing each circle 

as 5/5 = 1 and the last one as 3/5 and then wrote
5
35 .  At this time some students said she 

made mistakes.  However, the teacher let her prove her answers.  The student proved the 

solution by using one whole and models.  

Teacher:    Very good.  I will use yours as an example.  How can we make 
5
35  to 28/5?  

Students:   5 x 5 + 3.  
 
After the students understood, the teacher got more questions just for 

computational practice.  This was a very effective way to focus on both conceptual and 

procedure understanding.   When the teacher led students in computing 
5
28 to get

5
35 , 

she did challenge them by asking where five is coming from (denominator), which 

promoted students’ rethinking again.    

Teacher:    What determines the denominator in the fraction? 

When students got the answer, she confirmed that 5 is a whole.  In this lesson, 

she did connect the math concepts to picture representations, symbolic representation 

and verbal representation.  In the last few minutes, she called students to come to the 

board to present the result.  One African American student drew a very interesting 
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picture - Pentagon with squares and triangles. He did the same way as previous students 

to make it equivalent from 13/5 to 
5
32   and then made them in symbolic form.  

Teacher:    How can we change the mixed number to a whole number? 
Students:   Divide  
Teacher:    12/4 
Students:   3.  

Teacher:    We also learned to change improper fractions to a mixed number
4
13 . 

Students:   13 divided by 4 is
4
13 .  

 
The above examples showed teacher I changes and growth in using mathematics 

representation in teaching improper fractions and mixed numbers.  

Although teacher K’s understanding of mathematical representations has 

remained at a high level, her using mathematical representations in instructions, 

however, did not change and remained at the middle level.  Teacher K’s instruction was 

driven by the textbook (MAC) almost completely, which is naturally abstract.  The 

following example was from one of the post lessons. 

Teacher:    Okay. Today we are going to solve addition and subtraction equations.  We 
have done part of them before.  Let’s see this X + 4 = 6.  What we are going 
to do to solve this equation? 

 
The teacher solves the equation using the procedure of “zero pairs” and gets the 

answer: X + 4 = 6  X + 0 = 6 – 4 = 2  X = 2.   

Teacher:    How do I check this?  What we do is 2 + 4 = 6  6 = 6. Therefore, the other 
way we can do is using the model. 

 
The teacher was modeling X + 4 = 6 by using one cup and four small circles 

inside, with a positive sign.  She circled them together, and then made an equal sign to 
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six small circles with positive sign inside on the right-hand side.  She used the model of 

zero pairs to make one cup with four pairs of positive and negative circled with signs on 

the left-hand side, the same thing on right hand side, and then cancels the pairs. 

However, one student was confused with the procedure. 

Student 1:   I don’t know this, and it confuses me.   

The teacher went over the steps again and tried to convince students that this zero 

pair works. 

Teacher:    I try to get rid of this 4 in left hand side of X + 4 = 6, in order to zero this out, 
I use negative numbers and let X be alone.  

Student 1:  Where do you get the negative from? 
Teacher:    In order to get rid of the four positive. 
Student 1:  Oh, OK. 
Teacher:    Did you get that?  Whatever I do on the left side I have to do it on the right 

side.   
Teacher:    Now we have X – 2 = 3.  What we are going to do? 
Student 1:  You add. 
Teacher:    We add +2 in both sides, and X – 0 = 3 + 2 = 5, then we check it 5 – 2 = 3  

3 = 3.   
 
The teacher got a few more examples to have students practice using the same 

method. 

Teacher:    12 ¾ + y = 321/8.  Two ways you can do it: common denominators and 
decimals. What is common denominator? 

Students:   8   4 x 2  
Teacher:    How do you know that it is 8?  
Students:   Because … factor,  
Teacher:    Thank you. Because factors 4  2, 2 and 8  2, 4, therefore, the common 

denominator is 8. 

The teacher and students were solving this problem and got the answer y =
8
319 . 

Teacher:    Can we simplify it?  3  3 and 8  2, 2, 2. There is no common.  So it is in 
its simplest form.   
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 The conversation between the teacher and some students showed that teacher K 

used abstract procedures to teach solving equations, which cannot reach most of 

student’s understanding.  Teacher K needs to provide a variety of representations and 

achieve a connection between representations and procedures in order to make growth 

and move to the next level of TZPD. 

Changes of Teachers’ Using Representation in Zone 3  

Teachers in Zone 3 usually use mathematical representation in classroom 

teaching accurately and comprehensibly with a variety of forms to represent the 

mathematical ideas according to students’ needs.  Teachers are able to apply the new 

knowledge learned from the workshop in their classroom teaching practice.   

There was only one teacher, teacher C, in Zone 3.  Although she has a higher 

level of ZPTD, she still made progress in teaching after the workshop.  Teacher C was 

able to connect the prior knowledge and new lesson in her teaching, and she used the 

textbook only as a reference.  In her classroom teaching, the learning goals were clearly 

stated, and the interaction between her and her students indicated active learning and 

teaching in her classroom.  From students’ informal representations, she understood 

what their weaknesses and strengths were for their understanding mathematical 

concepts.  In the equivalent fraction lesson, she provided students with opportunities to 

discover the mathematical ideas, and then let them present in the classroom.  Although 

students’ representations of mathematical ideas appear to have mistakes, her correction 

of these mistakes benefited the whole class.   For low ability students, she not only 

encouraged them to use different representations to understand the mathematics concept 
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but to also connect these informal representations to their conceptual understanding.  In 

her class, students used different examples that related to their life experiences and made 

mathematical representations meaningful.  Letting students prove the mathematical ideas 

by using mathematical representations was another one of her teaching strategies.  The 

following conversation between her and her students indicated that her lesson promoted 

student learning with understanding.  

Teacher:    I need for you to get out the work package.  You do not need fraction strips 
today.   

Teacher:    Open the book to page 19 [CMP].  The title is comparing fractions.  Can 
someone read the paragraph for me? 

      [One boy reads, and another student reads]  
Teacher:    What does this tell us?  What are problems they are having? You guys’ job is 

to tell me which teacher you think is correct.  You need to be able to prove 
why their way is the best way.  I will give you 5 minutes on your own to 
answer questions A and B on page 19, then you will have another 5 minutes 
to talk to your partners about it: What is similar and what is different?  Then 
we will talk about this in class and you can present your ideas. 

  
Students worked either on their own or together.  The teacher walked around to 

help students, and tried to find students’ difficulties and asked students questions.   

Teacher:    Right now we are going to get your ideas. Raise your hand.  
Student 1:  I vote on Ms. Mendoza because she is right.  Mr. Park is also right. 
Teacher:    Hold down.  How many have you agreed with Ms. Mendoza?  
 

She noticed only one student disagreeing, and she called on her. 
 

Teacher:    Kathy, who did you agree with? 
Kathy:       Ms. Christos. 
Teacher:    I want to know your reason for that. [To all class] How about Mr. Park.? 

Nobody agrees with him? 
[Some students raise hands] 

Teacher:    How many of you agree with both of them [Ms. Mendoza and Mr. Park]?  
      [She counts 25 out of 29]  

Teacher:    I’d like to hear from you why you agree with them. Who would like to share 
your idea to just pick Ms. Mendoza? 

Student 1:  I choose Ms. Mendoza because …  
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      [The student has difficulties to prove it]. 
Teacher:    How do you figure out what fractions they have gotten? 
Student 1:  I used fraction strips.  
Teacher:    Why don’t you show us what you have down? 

 
The teacher wanted to see the student’s proof because she liked to see students 

comparing two fractions of different sizes.  The student showed the fraction strips on the 

overhead projector.  He used 12ths, but the new fraction strip is smaller and covered 8 

pieces of 12ths.  Clearly the gray color covered six pieces of new fraction strip.  So he 

said that it is 6/8. 

Teacher:    Now I need some one to come here explain both Mr. Park and Ms. Mendoza, 
Jenny? 

      [Jenny wrote on the board: 270 and 360 divided by 10 and got 27 and 36.  
She put 27/36, then factored 27: 1, 3, 9, and 27 and factored 36: 1, 2, 3, 4, 6, 
9, 12, 18, and 36.  the common factor is 9  27/9 = 3 and 36/9 = 4  ¾]. 

Teacher:    I’d like one more person to show Mr. Park and Ms. Mendoza being equally 
correct. Sam? 

      [Sam divided 360 by 4 = 90, and then he used 90 x 3 = 270]. 
Teacher:    What happens to Mr. Park’s? 

      [At this time, the student were not clear]. 
Teacher:    What happens to Ms. Christos? 

      [Sam divided 360 by 3 and got 120, and then he multiplied120 x 2 = 240]. 
Sam:          That’s wrong because we try to get 270.  
Teacher:    Nice job! 

 
The teacher went back to the one student who disagreed at the very beginning. 

Teacher:    Tanya, I know you have changed your mind, but if you want to show us your 
thought. Is it OK?  

Tanya:       I can say it. 
 
The teacher listened very carefully.  The difficulty that this student had was exact 

fraction size concept because she looked at the whole fraction strip in the book, which 

has different sizes compared to her fraction strips, and then decided 270 is 2/3 as Ms. 
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Christos did.  Teacher C led students prove their reasoning and understand the 

mathematical concept behind the proof. 

Patterns of Teacher Change in Learning and Using Representations 

The results of this study show that teacher change in use of mathematical 

representations in instruction does not completely follow the same pattern as their 

learning of mathematical representations.  The interviews with teachers furnished more 

information on the patterns of changes, and teachers’ responses are summarized in Table 

10. 

Summary of Teachers’ Change in Learning and Using Mathematical Representations  

 Table 10 summarizes the changes in teachers’ learning and using mathematical 

representations before and after the MSMP professional development.  In addition, Table 

10 shows teachers’ educational and teaching experience background and indicates key 

factors that impact the relationship of change.  Although all eleven teachers made a 

change in their learning of mathematical representations through the MSMP professional 

development workshop, eight of them made a change in their use of mathematical 

representations and only three teachers did not make a change in using representation; 

therefore, their change patterns between learning and using mathematics representations 

are different.  Teachers’ instructional changes do not follow a similar path as their 

learning changes.    

Table 10 also shows the key factors that contributed to teachers’ changes in this 

study.  For teachers who made changes in learning and using representations, the 

following aspects were the key factors: to use new strategies learned from the workshop 
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to reach students, to further understand students’ thinking, and to interact with students.  

In addition, using a textbook with new beliefs and new strategies learned from the 

workshop about teaching and using representation is also an important factor.  For 

teachers who did not make a move in their TZPD in using representations in their 

teaching, there were mainly two reasons: teachers had internal resistance to change 

because of previous teaching experience; teachers changes were affected by external 

factors because of the isolated school location led teaching driven by a low quality 

textbook.  The examination of the relationship between teacher learning changes and 

instructional changes indicates the following patterns.  
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Table 10 
The Relationship between Teachers’ Change in Learning and Using Mathematical 
Representations before and after the MSMP Professional Development Workshop 
 

 
Teacher 

 
 

 
Change in 
learning 

 
Change 
in use 

 
Change 

in 
Both 

 
Education 

Background 

 
Teaching  

experience 

Relationship 
between learning 

and using 
representation 

Key factor 
impacting 

the 
relationship 

A 
 

2-3 2-3 + + Elementary in 
science 

15yrs Learning and use 
both improved to a 
high level 

Using new 
strategies to 
reach students 

B 
 

1-2 1-1- + - Elementary Ed 
in English and 
mathematics 

15 yrs  Learning improved 
to a middle level, 
but use remained 
low 

Previous 
experience in 
teaching 

C 3-3 3-3+ + + Elementary Ed 
in general 

4 yrs Learning remained 
at high levels and 
using moved even 
higher  

Using new 
strategies to 
further 
understand 
students’ 
thinking  

D 2-3 2-3 + + Elementary Ed 
in general 

3 yrs Learning and use 
both improved to a 
high level 

Using text 
book with 
new strategies 

E 2-3 2-3 + + Secondary math 8 yrs Learning and use 
both improved to a 
high level 

Using new 
strategies to 
interact with 
students 

F 2-3 2-2 + - Elementary Ed 
in reading and 
Special Ed 

25 yrs Learning improved 
to a high level, but 
use did not change 

Previous 
experience in 
teaching 

G 1-2 1-2 + +   Learning and use 
improved to a 
middle level  

Using text 
book with 
new strategies 

H 1-2 1-2 + + Elementary Ed 
in math 

7 yrs 
 

Learning and use 
improved to a 
middle level 

Using 
textbook with 
new strategies 

I 2-3 2-3 + + Elementary Ed 
in general 

27 yrs 
 

Learning and use 
both improved to a 
high level 

Beliefs about 
teaching and 
using new 
strategies to 
reach students 

J 1-2 1-2 + + Elementary Ed 
in reading 

3 yrs Learning and use 
improved to a 
middle level 

Teaching 
driven by low 
quality 
textbook 

K 3-3 2-2 + - Secondary math 5 yrs  
 

Learning remained 
at a high level, but 
use did not change 

Teaching 
driven by low 
quality 
textbook 

Notes: In the Change in Learning column, the two numbers indicate the movement of teachers’ knowledge 
in learning mathematical representation before and after the workshop.  In the Change in Use column, the 
two numbers indicate the movement of teachers’ use of mathematical representations in classroom 
teaching before and after the workshop.  
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Influence of Teachers’ Diverse Backgrounds   

 The examination of the patterns of change in this study revealed the relationship 

between teachers’ background and classroom practice.  Teachers in this study have 

diverse backgrounds that contribute to their understanding and using mathematical 

representations.  Two out of three teachers who did not move to a higher level in using 

representations in their instruction have relatively long teaching experience.  For 

example, teacher B has had 15 years of teaching experience and teacher F has had 25 

years of teaching experience.  Even though they have acquired new knowledge about 

mathematical representation, and their knowledge of mathematical representation in 

learning has moved to higher levels, and have good beliefs about mathematical 

representations, their long-time teaching experience still drives them to keep the old 

teaching approach, and their instructional approaches do not change at all.  However, 

this pattern does not apply to other teachers who did move to a higher level in using 

representation.  This study finds that the location of the school and the opportunity to 

engage in social interaction are also important factors in teachers’ change.  For example, 

teacher K, who has had five years of teaching experience and a major in secondary 

mathematics education has relatively strong mathematical content knowledge, which 

helps her gain higher level of knowledge in mathematical representations.  However, the 

school district she worked for was relatively small and isolated compared to the other 

school districts, which might have limited her opportunities for interacting with others 

and learning new teaching strategies.  She did not know about NCTM and other 

standards until attending the workshop.  Her comments from her reflection during the 
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workshop explained why she barely tried the new approach to teach her classes, “I really 

enjoyed seeing the NCTM web site.  I did not realize that it had so many good things and 

lesson type things on it.”   

 The pattern of the longer time teaching and being more influenced by previous 

teaching experience does not apply to teacher I.  Teacher I, who has had with 27 years of 

teaching experience and a major in elementary education, was always eager to try 

something new in her teaching, which contributed to her very positive disposition in 

using mathematics representation.  In addition, she had teaching experience in 7th grade 

mathematics, which helped her become aware of the needs of 6th grade students in 

mathematics learning.   She explained it during the interview, “I taught 7th grade so I 

know what they should know as 6th graders.  They need to be able to explain something 

they have learned.   For instance, what is 1/5 mean?  It means 1 out of 5 students in our 

classroom in science class.”    

 It is interesting to note that teachers with less experience tend to be driven by 

textbooks.  For example, four (K, J, H, D) out of six teachers who had teaching 

experience of less than ten years heavily rely on textbooks in teaching.  Among teachers 

leaning on textbooks, only 50% of them (H, D) used new strategies from the workshop, 

which provides suggestion to textbook and curriculum developers of paying more 

attention to integrating teaching strategies in textbooks, since these textbooks seriously 

influence teachers who are new and do not have much teaching experience.    

 Although teachers with less experience incline to be driven by textbooks, the 

results of this study show that 50% of teachers (five out of 10: C, D, E, H, and J) with 
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less than 10 years of teaching experiences were able to use new strategies from the 

workshop in teaching practice, whereas 20% of teachers (two out of 10: A and I) with 

teaching experience of more than 10 years also applied new strategies in their teaching.  

However, among teachers (A, C, D, E, I) who have the highest level (Zone 3) of TZPD 

in using representations, three of them (C, D, E) have less than 10 years of teaching 

experiences, which indicates that teachers with less teaching experience more easily 

make a change in using representation and achieve higher levels of TZPD than teachers 

with longer teaching experience.  In addition, those who have relatively high 

mathematics or science backgrounds appeared to easily move to higher levels in learning 

and instructions (A and E). 

Impact of Teachers’ Definitions about Mathematical Representation  

The interviews with teachers furnished more information on the patterns of 

changes.  During the interview, teachers were asked to define their own understanding 

about mathematical representations.  Their responses indicated different levels of clarity 

of mathematical representations and their knowledge about mathematical representation.   
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Table 11  
Teachers’ Definitions of Mathematical Representation 

Teachers Definition of mathematical representation 

A Using any sensory means to represent mathematical concepts.   

B Mathematical representation is anything that you can use and apply to make 
sure that students have a good understanding of the concepts. 

C Using pictures, diagrams or expressions to help someone to understand the 
mathematical ideas. 

D Sometimes it is in words, sometimes it is in numbers, pictures, equations, so 
it depends on each student’s use.   

E It should not be a matter of different forms: picture, symbolic form.  
Students should be able to use them in different situations and transfer them 
into other forms.   

F A picture that shows what we are talking about in the classroom.  

H Showing the why for the answer.  Not just formula, show me 
mathematically with the picture, and something how you explain your 
answers.  I guess show the WHY. 

I Representation can be a thought, it can be an expression in sentences, it can 
be put on paper, and it can be designed. 

J Any visual picture that you use will be a representation whether is a graph, 
or manipulatives, even a textbook. 

K It’s varied. It can be a simple equation, it can be graph, chart.  I try to use 
different forms so my kids can understand better.  

Note: Teacher G’s interview data is not available. 

  
Table 11 shows that seven out of 10 teachers whose representation knowledge in 

learning and using representations moved to higher levels had clearer definitions about 

mathematical representations.  Teacher A believed that representation is using any 

sensory means to represent the mathematical concept; teacher C regards mathematics 

representation as using pictures, diagrams or expressions to help students to understand 

the mathematics; teacher D knows the form of representations depended on each student, 

it can be in picture form, oral communication, or equation form; teacher E argues that “It 
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should not be a matter of different forms: picture, symbolic form.  Students should be 

able to use them in different situations and transfer them into other forms;” teacher H 

states that mathematics representation is to “Showing the why for the answer.  Not just 

formula, show me mathematically with the picture, and something how you explain your 

answers.  I guess show the WHY;” and teacher I believed a representation has multiple 

forms: “it can be a thought, an expression in sentences, and something that can be put on 

paper, it can be designed.” 

 All seven teachers understood the specific goals of representation.  For instance, 

teachers A, C, D, E, and I understood the role of mathematical representation.  “It 

[mathematical representation] helps visualize and understand,” the teacher A explained.  

Teacher C described the benefits and limitations of using mathematical representation: 

Representations explain many whys behind the mathematical ideas.  So 
representations helps answer the most WHY questions.  Limitations would be 
that some people rely on it too much, and they don’t transfer into the calculations 
because they are not comfortable with the numbers.  Representation is a tool, not 
a purpose, however many students use as purpose, which does not help them. 
 

Teacher D supplemented her words about benefits of using mathematical 

representations, “[mathematical representations are able] to make connections for what 

students interested in learning.  If they are not interested, you lost them.  You just waste 

your energy.”   

 Teachers’ definitions of mathematical representation not only indicated their 

beliefs and understanding of mathematical representation but also indicated their ability 

in using mathematical representations in their instructions.  Their disposition levels of 

mathematical representations showed the levels of their knowledge in mathematical 
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representation.  For example, although teacher J has changed representation level from 1 

to 2, her view on mathematical representations was still limited to within textbook.  She 

believed that the textbook is one of good representations; therefore, her instructions were 

driven by the textbook. “I think it is good for the memory tool because kids might 

remember the model or picture, I hope that even if they do not remember any thing, the 

picture will still help them.”  She also realized that “Finding representation for each kid 

might be a limitation; one kid likes this way, and another kid likes that way.  

Representation is not everything.”  In her instruction, she tried to use different 

representations, and finally follow the textbook representations to address the 

mathematics concept.  Teacher J’s definition of mathematical representations indicated 

her beliefs about mathematical representations.   

 Teacher B’s definition of mathematical representations was not clear, which was 

reflected on her instruction also.  Table 10 showed that her level of learning and using 

representation did not make any move after the workshop; it stayed at level 1.  Look at 

the response from teacher B: 

Every thing I do for my students should represent my teaching.  When I say 
math, it means what ever we are working on.  Now we are doing geometry, I 
have to represent geometrical figures and formulas we are working with too, 
make sure my children have a good concept that are being taught.  Mathematics 
representation, we use manipulatives, overhead, all these things represent what I 
am trying to teach.  My representation is the lesson from the book.  I think 
mathematical representation is anything that you can use and apply to make sure 
that students have a good understanding of the concept I am trying to teach. 
 

Teacher F believed that “A picture that shows what we are talking about in classroom.”  

This view showed her representation from a narrow viewpoint; therefore, her level of 
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using representations in the classroom did not increase after the workshop, which is still 

at level 2.  

Teachers’ Views on Benefits and Limitations of Using Representations  

 In answering interview question 3 about what the benefits and limitations of 

using representation in teaching mathematics are, all teachers recognized the benefits of 

using representation; even the teachers whose TZPD level did not make a move still 

made a positive comment.  However, the following showed that teacher levels of TZPD 

correspond to the degrees of the benefits of using representation.  Teachers A, C. D, E, 

and I had TZPDs in Zone 3 for using representations, they showed clear benefits of 

using representation learned from the workshop.  For example, teacher D believed that 

using representations increases students’ interest:  

 To be able to make connection what students’ interested in learning.  If they are 
 not interested in, you lost them [students].  You just waste your energy. It is hard 
 to always to capture their interests.  It is important to me because I don’t think 
 they are paying more attention if they are not interested.   
 
Teacher D found that “Once they [students] are comfortable with one representation, it is 

hard to change them by using other representations.  Sometimes it could be very hard to 

change to the abstract.”   To help students understand mathematics abstractly, “I always 

try to put the abstract next to the concrete in showing them how to connect concrete and 

abstract look likes,” she said. 

 Teacher A believed that “representation helps visualize and understand,” and 

teacher E agreed that it helps students with various learning abilities, “The benefits are 

different kids understand different representations.”  Teacher I looked further: “I always 
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look at new ways to improve life. We need to help kids to make bigger picture about 

representations, this picture should help them with their lives.”  

    Teacher C whose both TZPD levels were at Zone 3 had a different view: 

“Representations explain many whys behind mathematical ideas.  So representations 

help answer the most WHY questions.”   

  For teachers whose TZPD levels were in Zone 2, they were able to see some 

benefits, but their comments were not specific and did not see representations help 

students at the conceptual understanding level.  For example, teacher H said, “They can 

apply to new situations.”  Teacher J believed that “It is good for memory tool because 

kids might remember model or picture.  I hope even though they do not remember 

anything, the picture will still help them.”  Teacher F who’s TZPD at level 2 in using 

representation did not make a move commented, “Learn more and understand more, and 

it is fun for having different representations.” 

 With a TZPD level in using representation in Zone 1, Teacher B recognized that 

representations make learning easier, but commented, “I don’t believe representation is 

completely universal.  For instance, area for triangle, in whole world taught this as ½ 

base time height, but should we teach this in same way?  My advanced students said that 

they will say 0.5 base times height.  This is the different mathematical representation 

based on prior knowledge.”   Obviously, influenced by previous experience in teaching, 

her view of representation was still limited in abstract form.  

 All teachers in this study recognized that there are limitations when using 

representation in teaching, except teacher I and teacher B.  First, the textbook or other 
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teaching materials have some limitations on representations.  “You limited by what 

materials you have,” teacher A said.   Second, numerical representation is sometimes 

ignored.  Teacher E pointed out the importance of numerical representation: 

The limitations are less focusing on the computational skills.  Sometimes we get 
the representation, we lose the numerical concentration.  But numerical is a 
representation.  A lot of times we think representations are the pictures, graphs, 
we ignore the numerical representations.  Many people do not think 
computational skills are representation.  But numerical representations are out of 
anything.  Including NCTM standards, there are increasing use alternative 
representation, by extension, people just assumed that we need less numerical 
representations.  The concepts are picture, graph, and numerical.   
 

Third, representation is not purpose for leaning mathematics. Teacher C addressed the 

goal of representation as a tool, not the purpose: “Limitations would be that some people 

rely on representation too much, and they don’t transfer their meaning into the 

calculations because they are not comfortable with the numbers.  Representation is a 

tool, not a purpose, however many students use it as a purpose, which does not help 

them.”   

 The above three limitations all came from teachers who had TZPDs in Zone 3.  

In addition, teachers in Zone 2 also had their view about the limitation of using 

representations: representations are not everything for every learner.  Teacher H said, “It 

may not follow learning styles, and not every student is able to do it.  Some students are 

not thinking that way.”  Teacher J agreed with teacher H, “Finding for representation for 

each kid might be a limitation, one kid likes this way, and another kid likes that way.  

Representation is not everything.”   



  117 

 It is interesting to note that teacher I and teacher B believed that there is no any 

limitation in using representations.  Teacher I’s using mathematical representations is at 

Zone 3, and Teacher B’s using mathematical representations is at Zone 1. 

 In summary, teachers’ views about representations were consistent with their 

level of TZPD.  Teachers in a higher zone in TZPD in using representation gained 

specific and clear benefits in teaching; they also could observe limitations in using 

representation; teachers in a lower zone in TZPD or who did not change zone in using 

representation only see general benefits of using representation in teaching, and were not 

able to tell the limitations of using representations.  This also showed the positive 

relationship between learning and using representation.   

Teachers’ View on Making Accurate and Comprehensible Representations for 

Students 

 During the interviews, teachers were asked to answer question 4: What do you do 

to make sure representations are accurate in showing the ideas in learning goals (TEKS)?  

What do you do to assure representations are comprehensible to students?   

 Teachers provided a variety of views on making accurate and comprehensible 

representations for students.  However, teachers’ responses related to their levels of 

TZPDs in learning and using representations.   Teachers A, C, D, E, and I had both 

levels moved to Zone 3, provided their unique views about accurate and comprehensible 

representations.  For example, teacher A believed that a teacher should understand the 

representation first before teaching it: 

 Just understand yourself before you teach it.  When I prepare my lesson, I make 
 sure I understand.  As a teacher, if you don’t understand the problem you are 
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 going to teach, then you cannot make representation accurately.  Teachers not 
 only need to understand the content – be accurate, but also need to make it easier
 for the students – comprehensible.  This just depends on teachers’ experience; if 
 students do not understand it, I will try different methods.  I will know my 
 students’ understanding by class work or home work. 
 
 Teacher E realized the key in using representation is that “they [students] were 

able to explain it.”  She explained further: “students need to see the sequence of 

mathematics using informal methods to prove their answers.” 

 Agreeing with teacher E, teacher D firmly believed the role of concrete models in 

using accurate and comprehensible representations, “If they are able to explain to me in 

the picture what is going on, I will let them to do the abstract part.”  Furthermore she 

considered that understanding in concrete form determines students’ understanding in 

abstract form: 

 In my experience, if they can understand concretely a certain representation for 
 that form, eventually they can understand abstractly.  If they don’t understand it
 in the concrete form, then they are not going to understand abstractly.  If they are 
 stuck with concrete, they are going to be stuck with abstract. So it is important 
 that they get the concrete part.  A lot of time, students resist the concrete part, as
 a teacher, you need to do it.   
 
 From analyzing students’ work, teacher D further commented on students’ levels 

of understanding and preferences for various representations:  

 Some students feel more comfortable with graphs, some students feel more 
comfortable with tables and charts, and others felt comfortable with more 
abstract forms. So if they are allowed to choose whichever they feel comfortable 
with and they will be able to explain it more clearly or express the views better. 

 
She also pointed out, “Sometimes, they are misunderstanding; as a teacher, you need to 

correct them right away, but you always try to build on what they are comfortable with.  

We need other representations too, but always start with the forms they like.”    
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However, teacher C argued that sometime students understand numerical 

representation instead of picture representation, and she used the example in the post-

questionnaire to address her idea: 

The picture does not prove that ¼ = 4/16.  So I think that students do understand 
the number in terms of mathematics, but do not understand the representation [in 
picture].  So this student does not use representation accurately.  For 
comprehensible, I think that something are understood by students.   

 
 Teacher I believed multiple ways of representations help students learn 

mathematics with understanding.  For example, to find GCF (Greatest Common Factor), 

she was not limited the approach in the textbook, which only provided one way to use 

representation.  “You can use the table that lists factors, and do a T chart.  The thing is 

you try to reach a different perception.  What is the key? The key is to help child’s 

understand there is no particular one.  You have to use multiple representations,” she 

explained. 

 Other teachers such as teacher F, H, and J, who had a middle level of TZPD in 

using representations, viewed accurate and comprehensible of representations differently 

compared to teachers at a high level of TZPD.   Most of them followed the curriculum 

closely and did not really understand it and barely had their own ways.  For example, 

teacher F said, “Look at your learning goal first, and then try to make the lesson plan as 

close as possible.  You can tell if they understand or not just by the questions that they 

asked.  I give them 1 or 2 questions ask them do on their own.  Students seem to be 

learning better this year.”  Teacher H also followed TEKS, “I make sure what I am 

teaching from TEKS, and I need to understand the TEKS.  We just make sure the 

material and questions we ask are appropriate from TEKS.”  The results of following 
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TEKS without understanding are “I try to show everything to them in many ways.  

Maybe one way they don’t understand, then do manipulatives, pictures, make a concrete 

model, then go to abstract.”    Teacher J had the same view as teacher F, which is to ask 

students question to understand if students are using comprehensible representations, “I 

think we need to monitor students and get them to understand it.  I think you just need to 

get the response from kids.  If I put something on the board, none of them even have a 

clue, and then we have to change different ways.  Ask questions to see the best way for 

kids’ understanding.” 

 Teacher B, who had a lower level of TZPD in using representation, recognized 

that she learned a lot from students and believed that assessment will make her to know 

students’ understanding.   

 We do instruction and make sure everything is in TEKS, and that is requirement 
here.  I try to make sure we have a good understanding of it.  To make 
comprehensible, I am through assessment.  I am very good at looking at students’ 
face to assess their understanding.  I use different kind of assessment.  I may send 
them to the board to show me how they work this problem; I also do a lot of one 
to one during advisory class.  Through one to one with students, I can see 
whether they understand or not.  What the concept lesson is.  We do a lot of 
drawing and research, in which students do a lot of presentations; it tells me 
whether they have a good understanding.  I get a lot of information from 
students’ sides.  For instance, fraction with name of dog and nanny with inside 
house and outside house. Just for easier memory, for the numerator and 
denominator.  This way kids remember them. 

 
Impact of the MSMP Workshop 

 During the interviews, teachers were asked to report how much MSMP 

professional development helps in their learning using mathematics representation.  All 

teachers addressed their views differently: 
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 Teacher A found that “something we did in classroom and have confirmed by the 

workshop.”  Teacher B used some strategies such as fraction strips that were learned 

from professional development last summer in the lesson on comparison of fractions.  

Teachers E and F learned problem solving by using different ways to solve it, like 

graphs, flesh cards, pictures, and tables.  “That gives me the different ways to teach 

class.  I still remember the example of fraction strips that were covered in the 

workshop,” teacher F commented.  Teacher E believed that “using strategies to get 

conceptual understanding from MSMP is really helpful,” she benefited not only the 

problem solving relating to representation MSMP provided but also the lesson plan 

writing, which allowed her to look at the overall picture of the lesson.  Furthermore, 

teacher E said, “That has been very much brought out form MSMP.  Our school district 

did a lot of this in terms of problem solving.  MSMP also presented some curricula we 

are using and some activities we are doing.”     

 The MSMP workshop also helped teachers I, H, F, and D in teaching.  For 

example, teacher I created the activity relating to professions and was able to ask kids to 

come up with different representations in teaching mathematics.  Teacher D also tried to 

use more representations in her lesson and she explained, “I try to not standing there tell 

them this how you do it.  Try to let them think and try to let them come to ideas by 

themselves.  Some kids like that, and some kids don’t.  You have to set atmosphere 

where you want them to go.  Ask more questions without give them the answers.” 
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 Teacher C still remembered that they discussed students’ misconceptions during 

the MSMP professional development, and she thought this the best part for her in the 

workshop: 

I think if we can be aware of this problem in classroom, it would be very 
beneficial to the teaching.  I think it would be very good if they can go further, 
especially for the new teachers as well as undergraduate and graduate courses.  
Misconceptions help you to understand where you will go how you go in terms 
of instruction.   

 
 From interacting with colleagues and watching their own video lessons and 

reflecting on their teaching in the workshop, all teachers in this study recognized that 

they learned various strategies and ideas that helped them in teaching.  Teacher A 

believed the opportunity to watch their own videotapes is “a good way to see the 

reaction in the classroom,” and teacher I commented, “I like to have other teachers have 

comments on my teaching.  It is a good feedback, it might not be always positive, but it 

keeps you humble.”  Teacher B agreed, “Feedback is a growth.”  Teacher E recognized 

the difficulty at the beginning, “I really think it is a very good strategy.  At very 

beginning, it was incredibly difficult, but once you saw it, after you get over at this 

point, then you realize that there are a lot of things that is worth to see.” 

 Through watching their own and other teachers’ video lessons, teachers would 

get positive feedback and see the benefits of changes, and question their own practices.  

Teacher E summarized the benefits of it: 

 MSMP provides opportunities to see other teachers have done, how other 
teachers presented.  It just helps you broaden your view: oh maybe I should try 
that.  I think this is the key to teach diverse group. Not one thing that you can 
reach to the kids.  You have to have the different approaches.  I have never been 
videotaped and I had never seen myself videotapes.  Watching someone else 
video tapes teaching is completely new thing to me. 
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Teacher I‘s comments reflected all teachers’ views about the MSMP workshop: “MSMP 

is one of the most exciting projects in my teaching career.  I use graph more and let  

students gather information to make graphs.”   

 The professional workshop in this study engaged teachers in interpsychological 

and intrapsychological processes.  Through watching videos and self-reflection, analysis 

of theirs own and others’ teaching and peer discussion, teachers transferred from an 

interpsychological function to an intrapsychological function, in which teachers 

developed their TZPD.  

 In summary, the MSMP professional development workshop on specific content 

and strategies in using representations not only enhanced teaching knowledge of 

mathematics representation, but also enhanced their abilities in effective teaching, which 

was reflected in the movement of teachers’ ZPTD levels.  Teachers who had a high level 

in their TZPD had a clear or specific understanding of mathematics representations and 

were able to use various representations in their teaching practice; teachers who had a 

lower level of TZPD or did not change their levels, had unclear or general understanding 

of mathematics representation and were not able to use mathematics representations 

effectively in their teaching, mainly because they only either followed the textbooks or 

based their teaching on previous teaching experience, which caused their resistance to 

change.  The results showed a positive consistent relationship between the level of 

understanding and the level of using mathematics representations, which means the 

higher level of understanding in representation, and the higher level of use in instruction. 
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CHAPTER V 

DISCUSSION AND CONCLUSION 

Introduction 

This study investigated three aspects of teachers’ knowledge of mathematics 

representation, relating to their levels of Teachers’ Zone of Proximal Development 

(TZPD).  First, this study examined how mathematics teachers, as learners, learn and 

understand mathematics representations through the MSMP professional development 

workshop that was designed and focused on the specific contents of fractions and 

algebraic functions, and that concentrated on the knowledge of mathematics 

presentation, a process standard advocated by NCTM (2000).  Second, this study 

observed how teachers use mathematical representations learned from the MSMP 

workshop in their classroom teaching.  Lastly, the study addressed the relationship and 

patterns of teachers’ change in understanding and using representation corresponding to 

their TZPDs.  The subjects were 11 mathematics teachers in 6th and 7th grades from four 

school districts in Texas.  Multiple data sources were collected and used from 

questionnaires before and after the MSMP professional development workshop, as well 

as the videotapes of the duration of the workshop, teachers’ lesson videotapes before and 

after workshop, a survey of teacher preparation before the workshop, and interviews 

with teachers.   

The goal of this study was to investigate how teachers learn and use the 

mathematics representations to help students improve their learning of mathematics, to 

investigate how they made transitions in using mathematics representations by 
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examining their classroom teaching and their beliefs on the role of mathematics 

representation and the professional workshop.  This chapter discusses the major findings 

from the results according to three research questions in this study. 

Changes of Learning and Understanding Representations in TZPD 

  The results from this study indicated that, in general, teachers’ learning is like 

that of students’, depending on the transformation of interpsychological regulation to 

intrapsychological regulation, which constructs Teachers’ Zone of Proximal 

Development (TZPD) that is confirmed and supported by Vygotsky’s theory of Zone of 

Proximal Development (Vygotsky,1978).     

Teachers’ Zone of Proximal Development (TZPD) in Learning 

 The results of this study showed that all learners (teachers) have their own Zone 

of Proximal Development.  Teachers are life-long learners, and every teacher in this 

study also has a Zone of Proximal Development (ZPD) at a certain level that shows their 

unique features in the knowledge of teaching.  The Teachers’ Zone of Proximal 

Development (TZPD) showed the learners’ development distance between actual 

development and potential development (see Figure 2).  In order to teach effectively, the 

important task for teachers is to make progress to move from a lower level zone to a 

higher level zone, which means to move from their actual development zone to a 

potential development zone.  With the help of capable others, the learners’ potential 

development is always greater than their independent development.  In this study, 

teachers’ knowledge growth proved that they can reach their potentials at different levels 

with help from capable others.  Table 7 in Chapter IV indicated 82 % of the teachers in 
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this study as having moved from their actual development zone to their potential 

development zone in learning, and 18% remaining at a high level zone.  This result 

indicated that every teacher in this study can learn and can be a successful learner; it also 

showed that learning environment plays a vital role in learners’ development, and this 

environment should be created by professional development.   

 To design a productive professional development program, clearly, in the teacher 

education program (both in-service and pre-service), teacher educators not only need to 

know teachers’ or prospective teachers’ actual development levels but also need to 

realize their potential development levels.  In addition, a helpful professional 

development seeks in relation to create a social and cultural environment that respects 

every teacher as a capable other to participant learners, which means learners can learn 

from each other, peer interaction and discussion, and reflection.  The study showed that 

peer discussion and self-reflection of teachers’ watching their own videotapes during the 

MSMP workshop helped teachers to see their own and others’ teaching strategies, which 

plays an important role in teachers’ knowledge development.  This model of teachers’ 

knowledge development is a process and transformation from interpsychological to 

intrapsychological function (Vygotsky, 1978). 

Teachers’ Changes in Learning Need to Have Interpsychological and 

Intrapsychological Processes  

  According to Vygotsky (1978), learning consists of the internalization of the 

social interaction process.  The workshop on teachers’ knowledge of understanding and 

using mathematics representation in this study provided an important opportunity for 
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teachers to engage in the social interaction process.  Teachers not only acquired 

knowledge of mathematics representations, but also enhanced their knowledge of 

teaching from discussion and interaction with others that included all teachers at 

different levels of TZPD in this study.   Many studies have addressed the importance and 

benefits of this social nature of learning that occurs during social interaction with those 

who may have more expertise than the learner (Stocks, & Schofield, 1997; Wood, Cobb, 

&Yackel, 1991).  This has confirmed the belief that mathematics teacher learning is “a 

process of enculturating the learner into the practices of an intellectual community” 

(Stocks, & Schofield, 1997, p. 284).  In this study, although all eleven teachers had 

different levels of TZPD at the beginning in both understanding and use of mathematics 

representation, the MSMP professional development workshop helped them form an 

intellectual community and make progress toward a higher zone level on mathematics 

representation.   

 However, engaging in social interaction process in the intellectual  

community by itself is not enough for learners to make a change and reach their 

potential.  One of the important factors that facilitates this change is intrapsychological 

regulation (Vygotsky, 1978) that requires learners to be introspection and reflect on their 

learning.  In this study, teachers were encouraged to watch and reflect on their own 

teaching video lessons and to be introspection on their teaching according to students’ 

learning goals and standards, and teachers were also provided with opportunities to 

reflect on their lesson with others and watch other teachers’ video lessons.  Teachers’ 

comments in chapter IV represented their positive views about the process of 
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intrapsychological regulation.  Through watching their own and other teachers’ video 

lessons, teachers would get positive feedback and see the benefits of changes and 

question their own teaching practices, which motivates teachers’ desire to change (Cobb 

et al., 1990; Stocks, & Schofield, 1997).    

   The MSMP workshop in this study provided an interpsychological process for 

teachers.  Through watching videos and self-reflection, analysis of theirs and others’ 

teaching, and peer discussion, teachers see their weaknesses and find strategies to 

improve their teaching, and thus their learning is transformed into an intrapsychological 

function from an interpsychological function, in which learning development proceeds 

(Forman, & Cazden, 1985), and teachers’ TZPD reach their potential level. 

Changes in Learning Need to Meet Teachers’ Needs: Analysis of Students’ Work 

 The results showed that there are multiple approaches to teachers engaging in 

learning in professional development.  In this study, however, teachers also benefited 

more from analyzing students’ misconceptions during the workshop.  Some teachers felt 

that it was the best part of the learning experience and was very beneficial to the 

teaching because teachers could be aware of these problems in the classroom teaching.   

During the interview with teachers, they expressed their interests and hoped the 

workshop could go further on error analysis, especially for the new teachers as well as 

teacher education program.   

 Through analyzing students’ errors, teachers understand their students’ 

mathematical thinking process and have better ideas on their weaknesses and strengths 
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in learning mathematics.  Furthermore, error analysis helped teachers understand where 

and how they will go to prepare instruction and to teach with a focus.   

NCTM  (2000) calls that “To improve their mathematics instruction, teachers 

must be able to analyze what they and their students are doing and consider how those 

actions are affecting students’ learning” (p.19).  With a solid of knowledge of students’ 

thinking, especially on addressing misconceptions, teachers’ pedagogical content 

knowledge will be enhanced, deeply impacting effective teaching (An, 2004). 

 Although the error analysis strategy provided in the workshop in this study was 

only part of the professional development, teachers’ responses from pre and post 

questionnaires and their classroom teaching indicated that they have gained substantial 

knowledge on their students’ mathematical thinking.  With the knowledge of students’ 

thinking, teachers in this study knew their students’ levels of understanding and 

preferences on various representations, and were able to use of variety of representations 

to fit different levels of students’ thinking and help them understand mathematics in 

different ways.   

 According to Ashlock (2002), “Errors are a positive thing in the process of 

learning” (p. 9).  It is powerful to collaborate with colleagues to observe, analyze, and 

discuss teaching and students’ mathematical thinking; however, it is often neglected in 

professional development in the U.S. (Stigler, & Hiebert, 1999).  The workshop in this 

study set a model for implementing the error analysis in professional development in the 

U.S.  The results of this study showed the evidence of teacher learning from analyzing 

students’ work and errors on mathematics representation and suggested that professional 
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development in the U.S. should design programs encouraging teachers to focus on 

analysis of students’ misconceptions in specific content area and use the results of error 

analysis and knowledge of students’ mathematical thinking to prepare effective teaching. 

Use of Mathematical Representations in Instruction in TZPD 

The results of teachers’ use of mathematical representations in classroom 

teaching showed that the professional development that focused on mathematics 

representation not only enhanced teachers’ learning, but also changed their teaching.  

Table 9 in Chapter IV showed that 72% of teachers in this study moved their TZPD in 

using mathematics representation from lower levels to higher levels or remained at the 

higher levels.  Only three out of 11 teachers did not move in a similar direction as their 

learning path.   What factors are closely related to the levels of TZPD in using 

mathematics representation in the classroom?  The following discussion addresses three 

factors that influence teachers’ practice in using mathematics representations.  

Changes in Instruction Needs to Change Teachers’ Beliefs  

 Although teachers’ changes should include many other factors such as school, 

personality, and students, the study addressed two factors of the complexity of teacher 

change: external and internal factors.  External factors involve interpsychological 

functions that are related to professional development.  Internal factors are determined 

by intrapsychological functions that are reflected in teachers’ beliefs.  The results of this 

study showed that a teacher belief is the key for instructional change (teachers’ 

definitions about mathematical representation, teachers’ views on benefits and 

limitations of using mathematical representations, and teachers’ views on making 
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accurate and comprehensible representation for students).  To draw a whole picture of 

teachers’ beliefs takes much effort in understanding of their relationships between 

content, pedagogy, and pedagogical content knowledge.  To change teachers’ beliefs, the 

entire teaching culture must be changed.  Researchers recognize that today’s teachers 

were educated in an era in which traditional and abstract approaches to teaching were the 

norm (Stocks, & Schofield, 1997).  This taken-for-granted assumption impedes teacher 

change.  Can teachers’ beliefs on mathematical education be changed?  How can 

teachers’ beliefs about mathematical education be changed?  These questions are very 

complex and challenging, but certainly can be explored by focusing on specific content 

and strategies.  This study showed the evidence of teacher change from a carefully well-

designed workshop that focused on mathematics representation in learning and using in 

fractions and algebraic functions.  This study confirmed that applying Teachers’ Zone of 

Proximal Development (TZPD) should be an effective approach for professional 

developers to design effective professional development programs that bring about 

changes in teachers’ beliefs simply because their learning in the Zone of Proximal 

Development (ZPD) is more effective than learning under self development or traditional 

approaches that rely on a transmission-reception model of learning in professional 

development (Stocks, & Schofield, 1997).  Tharp and Gallimore (1988) confirmed the 

effectiveness of this kind of learning as a process of moving from assisted performance 

to unassisted performance through a ZPD.  Under research-designed guide and 

workshops, teachers are able to learn specific teaching strategies, in particular, 

mathematics content and to apply the new learning in their individual teaching.  In the 
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process of changing TZPD, teachers’ intrapsychological function is based on their 

interpsychological function.  During the workshop, peer discussion and self-reflection 

enabled teachers to engage in both interpsychological and intrapsychological processes 

helping them to see their weaknesses and understand that teaching is for students’ 

learning with understanding.  With a sound and productive intrapsychological function, 

teachers value new ideas, have confidence, and are motivated to change.  Their beliefs 

about teaching will be changed as they make progress in their learning.  However, like 

students, teachers are different in their backgrounds and abilities.  To reach teachers’ 

diverse backgrounds and their potentials in knowledge and development, a carefully 

designed professional development program is needed for fostering teachers’ belief 

changes preceding changes in practice (Richardson, Anders, Tidwell, & Lloyd, 1991) 

and for supporting teachers’ learning and applying new strategies in their instruction.   

Teachers’ Level of TZPD in Using Representations Related to PCK 

 Teachers’ use of mathematical representations for teaching depends on their 

mathematics pedagogical content knowledge and their beliefs in representation.  This 

study showed that teachers’ content knowledge is a base, but is not sufficient for 

effective teaching.  Only when teachers believe that certain strategies (e.g., 

representation) work in their teaching practice, may their changes in teaching then 

become possible.  For example, teacher B, F, and K’s knowledge of representation in 

learning all moved from lower levels to a higher level, which indicated they have gained 

content knowledge of representation of fractions and algebraic patterns of changes; 

however, their use of representation in their teaching did not make the same move as 
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their knowledge of learning did; therefore, their knowledge of using representations, 

which is pedagogical content knowledge did not move to a higher level.  In this study, 

mathematics teachers’ pedagogical content knowledge is not only referred to as the 

connection between content and pedagogy (An, Kulm, & Wu, 2004), but also attached 

the feature of productive disposition in applying knowledge, which is a habit of thought 

in teaching in this study.  Some studies have related disposition to attitudes and beliefs 

about mathematics education (NRC, 2001; Resnick, 1987).  This study found that there 

is a positive relationship between productive dispositions.  

The teachers whose TZPDs were in lower level zones or did not make 

instructional changes have background characters related to disposition in using 

mathematics representation.  For teachers B and F, their teaching are driven by previous 

teaching experience because both of them have more than 15 years of teaching 

experience (teacher B has 15 years, and teacher F has 25 years); for teachers J and K, 

although their teaching experience is less than six years, their teaching is more likely 

driven by textbooks, according to their interviews.  Therefore, these teachers do not have 

a productive disposition in using mathematics representation because of two factors: 

teachers with a long period of teaching experience tend to block their desire to change, 

and teachers with a short amount of teaching experience also find it easy to limit their 

knowledge to what is in the textbook.  As a result, their habits of thinking in teaching are 

bounded in scope and the use less new ideas and new strategies in teaching, and thus 

their disposition in using representations is not productive. 
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To have profound pedagogical content knowledge in using representations, the 

study addressed disposition as an additional aspect of PCK, playing an important role in 

using representation in teaching.  It is not enough for teachers to make transitions in 

using mathematics representation once they have grasped specific mathematics content.  

Teachers also need to have a good habit of thinking about their teaching and root this 

habit into their daily work.  Once using representations becomes a productive 

disposition, teachers’ change in using representations will take place automatically, and 

they will be able to reach higher zones.  The interviews with teachers who had higher 

zones in using representations in this study confirmed the importance of disposition and 

implied that good professional development should not only provide opportunities for 

teachers to learn and understand strategies in using mathematics representation, but also 

foster a productive disposition for teachers.   

Using Representation Appropriately in Teaching 

 The results of this study brought out some of the teachers’ views about 

mathematics representations (see Table 11).  Teachers’ definitions of mathematical 

representation revealed their beliefs and understanding of mathematical representation, 

which exhibited their disposition in mathematical representations and the ways of using 

mathematical representations in their teaching.     

 Mathematics representation is a configuration of signs, characters, icons, or 

objects that represent mathematics ideas (Cuoco, 2001; Goldin, 2003).  The manifold 

aspects of mathematics representations determine the features of a good representation 

as being comprehensible, accurate, and transferable, and showing mathematics ideas 
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with pattern, design, arrangement, or relationship in multiple forms.  Here multiple 

forms can be categorized into two basic models: 1) visual models such as tables, charts, 

graphs, pictures, and concrete materials; 2) abstract model or numerical form, such as 

mathematics equations and formulas.  The knowledge of representation for teachers in 

this study consists of strategies of using representations to illustrate mathematical ideas.  

Effective strategies include various familiar representations, understanding mathematics 

ideas that underlie representations, selecting the proper representation that fits into 

students’ development level, and being able to transfer representations from one to 

another under a common goal.  

 One important goal of using representation is to promote conceptual 

understanding.  Helping students move from a concrete understanding to an abstract 

understanding is a key task in middle school mathematics.  Although teachers in this 

study were able to learn and use multiple representations to help students construct 

concrete understanding, teachers’ use of concrete representations (e.g., pictures, graphs, 

charts, and tabular forms) often stopped at the concrete level, only reaching students’ 

concrete understanding.   

 The limitation in using representations is closely related to teachers’ knowledge 

of mathematical representations.  Mathematics is a structural and abstract language that 

requires a solid understanding of mathematical concepts.  Teachers should expand their 

views to understand that any concrete and visual representation is a tool; the final 

destination is conceptual understanding.  Therefore, the definition of mathematical 

representation is the any form that addresses mathematical ideas, but this form must 
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connect to the mathematical concept.  Using only concrete or visual representations also 

sometimes result in students’ relying on or limiting themselves to any particular 

representation (e.g., pizza or money for fractions).  Although multiple mathematical 

representations help students who have diverse backgrounds, abilities, and interests in 

learning mathematics, teachers should select the most appropriate representation that 

addresses the need of each individual student. 

 With respect to mathematics representations as a language, Vygotsky’s ZPD 

encourages us to look at the learning environment in which language (e.g., linguistic 

words) acts as a very special function in children’s intellectual development.  The 

findings in this study indicated that this theory could also be applied to the adult learning 

process.  In teachers’ knowledge growth, mathematical language – mathematical 

representations (e.g., symbolic systems, pictures, graphs, charts, and tables) play an 

important role in teachers’ development for effective teaching.  According to Vygotsky 

(1978), language, as a tool, plays a key role in humans’ intellectual development.  From 

this perspective, mathematical representation is not only defined as a tool, but is also a 

language that connects students’ conceptual understanding.  The use of language 

requires teachers to fully master the main feature of mathematics representation that is to 

be comprehensible, accurate, and transferable.  In addition, teachers should understand 

that many forms of mathematical representations have the characteristic of visualization, 

which directly develops learners’ mathematical perception; however, the connection 

with the abstract representation will produce students’ conceptual understanding. 
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Patterns of Change in Classroom Teaching and TZPD Levels 

 This study explored the ways teachers make changes in their actual classroom 

teaching in terms of TZPD levels in using mathematics representations and found some 

patterns of changes in classroom teaching.   

Sequential Order of Teacher Change in Learning and Using Representation in TZPD  

 The results of this study showed that teachers’ changes in understanding and 

using mathematical representations in TZPD follow the sequential order in zones, which 

indicates that there is no jumping between zones.  Although few teachers’ changes in 

instructions did not move toward a higher zone as their changes in learning 

representations increased, there is no single case showing that a teacher’s instruction 

change moved backward.  From learning representations from the workshop, teachers 

attained rich knowledge in representations, which provided a strong base for their 

changes in teaching using representations.  This indicated that only by teachers’ 

knowledge growth, may their instructional changes become possible.  Teachers’ 

knowledge change is a gradual process that follows the order of zones and evolves one 

by one over time.  To measure teachers’ change, this study designed three levels of 

TZPD in both the learning and use of mathematics representations (see Table 4 & 5).  

Using these levels of TZPD allowed this study to understand changes both within and 

among teachers and to learn the patterns of changes between learning and using 

representations.  

 This study showed that each of the TZPD levels builds on the previous one.  

Each level portrays the degree of teachers’ understanding and using representations.  
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Analysis of teachers’ TZPD provides the relationships between changes in learning and 

using representations.  This study indicated that all teachers in this study were able to 

acquire the new knowledge of mathematical representations, and their knowledge 

growth in learning and understanding mathematical representations moved to higher 

levels (zones) compared to their previous levels.  On the basis of their learning, eight 

teachers were able to move in their TZPD in using representation in teaching, and only 

three teachers did not make a move to a higher level; their teaching was driven by their 

previous teaching experiences of more than 15 years and textbooks. 

 Many studies have confirmed the benefits of using the levels to measure teacher 

change.  Franke, Fennema and Carpenter (1997) used four levels of Cognitively Guided 

Instruction (CGI) to describe the details of teacher change in two areas: beliefs and 

classroom practice.   Based on the work of Vygotsky, Tharp and Gallimore (1988) 

proposed a sequence of teacher change stages in four levels to measure changes in 

practice or thinking at each stage.  However, Franke, Fennema and Carpenter (1997) 

pointed out the drawback in Tharp and Gallimore’s four stages: “Thoughts and action 

are not explicitly distinguished at each stage” (p. 257). Unlike other studies, rather than 

focusing on teacher change in general, this study focused on teacher changes in specific 

content areas (fractions and algebraic functions) and on specific strategies in 

mathematics representations.  It focuses on three dimensions: accuracy, 

comprehensibility, and variety in representations at three levels of TZPD.  This study 

constructed a concrete measurement of teachers’ knowledge in learning and using 

representations and provided a powerful framework in understanding how and to what 
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degree teachers make changes, and their relationship between the changes.  The findings 

in this study in TZPD provided a systematic and measurable way to understand teacher 

change in a complex and challenging context.   

Impact of Teachers’ Disposition on Teacher Changes 

 Although teachers’ changes in the learning and use of mathematical 

representations follow different patterns, in general, their disposition about mathematical 

representations contributed to their knowledge growth and their use of the knowledge.  

In this study, teachers’ disposition refers to teachers’ habit for thinking, their attitude, 

confidence, and their beliefs. 

The results of this study showed that teachers’ use of mathematical 

representations depends on their beliefs about mathematical representations.  Those who 

have changed both in their learning and instruction tended to have more positive views 

on mathematics representations.  Eight teachers who made a positive change believed 

that mathematical representation helped them reach different students, especially lower 

ability students.  They also believed that using multiple mathematical representations 

enabled students to share their mathematical thinking.  Three of them were very 

surprised to find out that their lower ability students have more interests in experiencing 

mathematics after learning mathematics representation.  

The findings show that mathematical content knowledge is a factor in teachers 

having positive views and confidence to use their knowledge learned from the workshop 

in mathematical teaching.  The findings also show that teachers with different 

mathematical backgrounds and teaching experiences had different views in using a new 
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teaching strategy and used representations in different ways.  Teachers with more 

teaching experience tended to have strong mathematical teaching habits focusing on 

abstract form and had a hard time integrating new strategies in teaching.  Two out of 

three teachers whose changes followed a negative correlation had over 15 years of 

teaching experience, and one of them is not majoring in mathematics education.   

Although their responses from the interview showed their willingness to use new 

strategies to teach, their actual classroom teaching still followed the old teaching 

approach.   

Textbook driven teaching is another obstacle affecting teachers’ change in using 

mathematical representation.  The degree of reliance on textbooks for their instruction 

reflects teachers’ disposition.  The extent of using textbooks indicates the teachers’ 

confidence about using new knowledge – mathematical representations.  In general, 

teachers with more content knowledge as well as their knowledge of mathematical 

representation use the textbook as a reference, and they integrate new knowledge learned 

from the workshop for active teaching.  However, all teachers from this study learned 

new strategies from the workshop, but some of them still relied on the textbooks, 

reflecting a lack of mathematical confidence.  Evidently, teachers who lack 

mathematical content knowledge easily incline to follow text books more than those who 

have relatively strong mathematical content knowledge.  Workshop aligned with 

teachers’ textbooks seems to be a good way to foster a productive disposition and 

influence teachers’ applying strategies in their teaching. 
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Using Representation as a Tool 

 Although mathematical representations are effective strategies in teaching 

mathematics, moving from concrete understanding to abstract understanding is a key 

process for middle school mathematics learning.  This study showed that representations 

(as well as problem solving, connecting, communication, and reasoning) are tools and 

bridges in students’ learning of mathematics, and the final destination of learning should 

be conceptual understanding.  Teachers with clear learning goals easily addressed 

important mathematical ideas with the help of proper representations.  It is also clear that 

multiple mathematical representations help students with diverse backgrounds, abilities, 

and interests, especially ESL (English as Second Language) students, to learn 

mathematics because mathematical representations allowed students to use different 

formal or informal forms to represent their mathematical ideas.  Teachers need to make 

sure to use mathematical representations as tools to reach students’ conceptual 

understanding and need to make sure students do not rely on any one particular 

representation (e.g., fractions are the pizza or money).   

 Teachers who made a change in using representations in this study clearly 

realized the function of mathematics representation as a tool in teaching.  Teacher A 

explained, “Representation is a tool, not a purpose; however, many students use it as 

purpose, which does not help them.”   With this perspective on mathematics 

representation, the professional workshop should design clear goals and provide teachers 

with opportunities to explore various representations and use them to solve problems.  

Once teachers have experience using various representations to convey the same 
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mathematics idea and solve the same problem, they will see the role of representations as 

a tool and will use it to reach conceptual understanding. 

 In addition, the use of representations as a tool also illustrates the features of 

representations: numerical and visual functions.  Teachers in this study showed concern 

in using too much picture representation and ignoring numerical representation.  This 

concern indicated that they understood the goal of teaching mathematics -- to foster 

logical and reasoned thinking.  The professional workshop should focus on students’ 

thinking logically and numerically in mathematics learning, centered on using numerical 

representation as a base for students’ conceptual understanding.   

 Interaction between the teacher and students plays an important role in effective 

teaching.  The study showed that higher levels of knowledge of mathematical 

representation may not be enough for effective teaching.  Only when teachers understand 

their students’ appropriate development level in the knowledge of mathematical 

representations and use them as tools, will effective teaching becomes possible.   

Implications for Further Research 

 The current educational reform movement calls for radical changes in 

professional development (NRC, 2001).   How can we structure professional 

development so that it is effective in bringing about a major change in teaching?  What 

factors facilitate teacher change?  This study explored how mathematics teachers, as 

learners, can learn and understand and use mathematics strategies in teaching and 

learning such as mathematics representation learned from the workshop that focused on 

specific content and teaching strategies to promote and support students’ mathematical 
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thinking, learning, and understanding.  The results from this study furnishes curriculum 

developers with insightful ideas that professional development programs may develop 

effective teaching models through specific mathematical processes such as mathematics 

representation to help teachers build effective teaching strategies.  The study presents 

powerful evidence and contributes to both theoretical and practical issues.  In particular, 

it contributes to current research in two areas: provides insight into the application of the 

Theory of the Zone of Proximal Development (ZPD) and focuses on using mathematics 

representation in teachers’ instructional practice.   

Application of the Theory of Zone of Proximal Development (ZPD) 

 This study examines teachers’ knowledge growth in mathematics representations 

in terms of their ZPDs and how teachers’ ZPDs in mathematics representation help 

students’ learning.  The study of teacher change in understanding and using 

representations has laid the groundwork for attempting to understand what professional 

development can provide for teachers to make changes in teaching, and how teacher 

changes can be measured.  The most important contribution of this study to teachers’ 

knowledge is that it has created a framework with three levels of TZPD that are more 

than lists of criteria to describe teachers’ learning and using representations; the 

framework is sequenced in order corresponding to evolving structures (Franke, 

Fennema, & Carpenter, 1997).  Three levels of TZPD for representation can be used for 

examining teachers’ knowledge in other mathematics processes, such as problem 

solving, proof and reasoning, communication, and connection.  The framework of this 

study provides a basis for interpretation, transformation, and reframing of teachers’ 
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knowledge (Franke, Fennema, & Carpenter, 1997).  In addition, it provides a basis and 

model of how to measure teachers’ knowledge. 

Focusing on Using Mathematics Representation in Teachers’ Instructional Practice 

 Mathematics representation is one of five process standards in NCTM (2000) 

standards, which addresses the important role of mathematics representation in 

instruction.  The results of this study indicate that effective teaching should use 

mathematics representation to provide students with meaningful and visual mathematics 

ideas that might help students learn mathematics with understanding.  However, 

although many teachers learned various mathematics representations from the workshop 

and have seen the important role of mathematics representations in teaching, translating 

various representations and merging understanding of learning into effective numerical 

representations is still problematic.  The challenging task for future research is to explore 

ways to help teachers make a transformation between visual representation and 

numerical representation and build a connection between concrete understanding and 

conceptual understanding.   

 The findings in this study also suggest that developing teachers’ (pre- and in-

service) understanding of mathematical representations can be an effective strategy for 

helping teachers make a fundamental change.  However, teachers’ changes depend on 

their background of mathematics content knowledge.  Professional developers need to 

consider teachers’ differences as well as their background when designing professional 

development programs.  Regarding teachers’ changes, TZPD theory emphasizes the 
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factors outside teachers’ thinking i.e., help from capable others; teachers’ thinking from 

inside certainly is an important factor that needs to be seriously considered.   

 This study demonstrates a model for building on teachers’ knowledge growth and 

explains how teachers’ mathematics representation knowledge develops through the 

MSMP professional development, and elaborates the characteristics of the use of 

knowledge of mathematics representation and how mathematics representations may 

encourage students in learning mathematics.  

Limitations 

 Understanding and using mathematics representations in this study provides an 

avenue for understanding teacher change.  However, modifications that should be 

considered for future studies in this area include the following: 

Changes in Students’ Achievement 

This study examined teachers’ changes in understanding and using mathematical 

representations before and after the MSMP professional development; however, it would 

be interesting to examine any change in student achievement corresponding to their 

teachers’ changes (data for students’ achievement is currently not available this study). 

Quality of Ongoing Professional Development Focusing on Analysis of Students’ 

Errors 

 The study introduces a new model of professional development that focuses on 

specific content knowledge and strategies of mathematics representations.  The 

workshop provided insights for teachers for effective teaching.  However, the results of 

this study show that teachers were accustomed to analyzing students’ misconceptions; 
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this indicates that teachers need more practical knowledge that relates to their teaching.  

Analyzing students’ errors not only helps teachers know the weaknesses of their 

students, but also provides information for the effectiveness of instruction, as well as 

enhancing their knowledge of students’ thinking, which builds their pedagogical content 

knowledge.  In addition, professional development should provide a great deal of 

ongoing support to teachers as they attempt to implement new approaches in teaching 

mathematics on a regular basis.  This ongoing workshop builds on teachers’ knowledge 

and allows them to communicate their ideas on the use of mathematics representation 

and make sense of mathematics teaching.   

Conclusion 

As many innovative professional development programs attempt to develop new 

strategies for enhancing teachers’ knowledge, it is important to incorporate specific 

strategies that focus on specific content areas.   This study explored such a model that 

focused on strategies in mathematics representation in the specific content areas of 

fractions and algebraic functions.  Specifically, this study examined the issues of teacher 

learning and understanding mathematical representations through the MSMP 

professional development workshop and how this understanding of representation fit 

into Teachers’ Zone of Proximal Development (TZPD).  In addition, this study 

investigated how teachers use their new knowledge of mathematics representations in 

classroom teaching and how this practice relates to their levels of TZPDs.  Finally, this 

study discovered the patterns of relationship in teacher changes in classroom teaching.    
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  This study found that all teachers in this study have their levels of TZPD, and 

their knowledge growth can be moved to a higher level with help by capable others who 

may be teachers in a social learning community.  Teachers’ knowledge growth, which is 

measurable, follows a sequential order of the three levels of TZPD.   

 The examination of teachers’ use of mathematical representations in teaching 

indicates it depends on their mathematical content backgrounds and their beliefs on 

representations.  Teachers are able to make transitions in using mathematics 

representation once they have grasped specific mathematics content and strategies, and 

teacher patterns’ changes depend on their learning and understanding of mathematics 

representation during the professional development and their beliefs about mathematics 

representations.   

 Grounded in the beliefs that teachers must understand and use mathematics 

representations in their teaching, this study calls for substantial revamping of 

professional development, focusing on the roles and strategies of representations with 

ongoing and sustained support for teachers as they integrate representation strategies in 

their daily teaching.   

 This study notices that moving from a concrete understanding to an abstract 

understanding is a key challenge for teachers, and that mathematical representations are 

effective strategies in helping students with diverse backgrounds.  The study advocates 

that teachers regard mathematics representation as a useful tool or bridge that connects 

students’ concrete understanding to an abstract understanding and focuses on conceptual 

understanding as the final destination.  Teachers need to understand and be able to 
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develop multiple representations to facilitate students’ conceptual understanding and 

need to make sure students do not rely on any one particular representation.  Teachers 

also need to focus on the development of the transformation from one representation to 

another, which leads conceptual understanding.  In addition, teachers with higher levels 

of knowledge of mathematical representation may find this is not be enough for effective 

teaching; only when teachers understand their students’ appropriate development level in 

mathematical representation, may effective teaching then become possible.   

 Undergoing teacher changes is a complex process, in which teachers engage in 

interpsychological functions and transfer teaching skills to intrapsychological functions.   

Teachers’ Zone of Proximal Development (TZPD) should be used as an effective 

approach for professional developers to design effective professional development 

programs to effect teacher changes.  To draw the whole picture of teacher change takes 

much effort, and must include understanding the relationship between content, 

pedagogy, pedagogical content knowledge, and teachers’ beliefs.  Professional 

developers need to provide teachers with opportunities to interact with peers and to 

reflect on their own teaching, and more importantly, to consider teachers’ differences in 

beliefs as well as in background when designing professional development programs.   

 Above all, it is important for professional development to consider how to 

structure effective programs so that they are consistent with the needs of teachers with 

diverse backgrounds and are effective in bringing about major changes in their 

classroom teaching.  
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APPENDIX A  

Questionnaires before and after Professional Development  

1.  Questionnaires before Professional Development workshop 

Name: __________________ School: ____________________  

Show different ways in which one might represent each of the following 

equivalences:  

A) 0.75 = 6/8    B) 4/7 = 8/14 

 

 

 

 

 

Show one or two different ways in which one might represent the following situation: 

Bob challenges his older brother, Andy, to a 100-meter race.  Bob’s average running 
speed is 1 meter per second.  Andy’s average running speed is 2.5 meters per second.  
Andy decides to give Bob a 45-meter head start. 

 

Who will win the race? What distance would make the race fair (competitive) for both 

boys? 
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2.  Questionnaires after Professional Development  

Name: __________________ School: ____________________ 

(For 6th grade teachers) John is a 12-year-old student in 6th grade and has average ability.  

John was asked to use a diagram to show that ¼ is equivalent to 4/16. Look at John’s 

written work for this problem: 

 

 

 

 

 

 

 

 

 

When the teacher asked him to explain, John said, “Both pictures show one-fourth of the 

whole rectangle, so four-sixteenths is equivalent to one-fourth.” 

1. What prerequisite knowledge might John not understand? 

2. What questions or tasks would you ask John in order to determine what he 

understands about the meaning of fraction equivalence? 

3. What real-world example of equivalent fractions is John likely to be familiar with that 

you could use to help him? 

 

4
1

16
4

Therefore, 
16
4  =

4
1  
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 (For 7th grade teachers) Andy, John, and Edward are middle school students and have 

average ability.  Look at their answers for this problem: 

Two large storage tanks, T and W contain 900 and 300 gallons water, 
respectively.  T starts losing water at the rate of 50 Gallons per hour, at the same 
time additional water starts flowing into W at the rate of 25 gallons per hour.  
Assume that the rates of water loss and water gain continue.  At what number of 
hours will the amount of water in T be equal to the amount of water in W?   
 

Andy’s answer: they will be never equal because T is always faster than W 

T tank  W tank 

50 25 

100 50 

... … 

… … 
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John’s answer: they will meet at 6 hours because 

 

(Source: NAEP, 1999) 

Edward’s answer: they will not be equal because T Tank is 900 – 50 = 850 and W Tank 

is 300 + 25 = 325.   

 

1. What might each of the students be thinking? 

2. What representations would you provide to each student for them to understand 

patters of changes in algebra learning? How would you correct each student’s 

misconception about patterns of changes? 
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 APPENDIX B 

Survey of Teacher Preparation, Attitudes, and Support Structures  

The research project that you are involved with is a study of mathematics 
teaching and learning.  As part of this study we are interested in knowing how various 
factors influence the way teachers approach the teaching of mathematics.  What we learn 
from this study will help textbook developers create materials that teachers can use more 
effectively, education researchers design better pre-service and in-service teacher 
education programs, and school administrators provide the support teachers need to help 
them improve their teaching.  Please answer the following questions regarding your 
preparation for teaching, the support that you receive, and your beliefs and attitudes 
about mathematics teaching. 

 
I. Content, Pedagogy, and Experience 

1. Please check the courses that you took in high school.  Check all that 
apply. 
__ Algebra  
__ Geometry 
__ Trigonometry 
__ Pre Calculus 
__ Advanced Placement Calculus 

  __ Other (list) ______________________________ 
 

2. Please check the courses that you took in college or graduate school.  
Check all that apply. 
(Courses taken that focused on the teaching of mathematics will be 
addressed in later questions.) 
__ College Algebra 
__ Trigonometry/Elementary Functions 
__ Calculus 
__ Advanced Calculus 
__ Real Analysis 
__ Differential Equations 
__ Geometry 
__ Probability and Statistics 
__ Abstract Algebra 
__ Number Theory 
__ Linear Algebra 
__ Applications of Mathematics/Problem Solving 
__ History of Mathematics 
__ Discrete Mathematics 
__ Other (list) ____________________________________ 
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3. Please indicate the level of preparation that you have received for 
teaching mathematics: 

 
a) Approximately how many hours of 
in-service professional development 
have you received that is directly 
related to the textbook that you are 
using in your class? 

 

 

b) Approximately how many hours of 
in-service professional development 
have you received that is related to 
mathematics teaching but not directly 
related to the textbook you are using in 
your class? 

 

 

c) Approximately how many hours of 
in-service professional development 
have you received that is related to 
teaching in general but not directly 
related to the teaching of mathematics? 

 

 

d) How many years have you been 
teaching mathematics? 

 

 

e) How many years have you been 
teaching mathematics at the grade 
level for this study?   

 

 

 

 
f) Please list the courses you have 
taken at the undergraduate or graduate 
levels that were devoted primarily to 
the teaching of mathematics.  
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g) Please list the courses you have 

taken at the undergraduate or graduate 

levels that were devoted either to 

teaching other than mathematics or to 

more general educational issues. 

 

4. Please indicate how prepared you feel to do each of the listed classroom 
practices in your mathematics teaching.  Also indicate the level of support 
provided by your textbook/teacher’s guide, professional development and 
formal courses for following these practices.  

 
Preparation 

 
Support I Have Received  

 
 
 

Classroom 
Practice 

 
 
 
Unprepared highly 
prepared 

 
From 

Textbook  and 
Teacher’s 

Guide 
 

 
From  Professional 

Development 
 

 
From Formal 
Coursework 

    
 
 
 
   1           2           3           4 

po
or

  
   

   
   

   
   

   
   

  
ad

eq
ua

te
  

    
st

ro
ng

 

po
or

 
   a

de
qu

at
e 

    
 

st
ro

ng
 

po
or

 
  ad

eq
ua

te
  

  st
ro

ng
 

Explain to 
students the 
ways in which 
what they are 
learning in 
mathematics is 
important to 
them. 

             

Take students’ 
prior knowledge 
into account 
when planning 
instruction.  

             

Develop 
students’ 
conceptual 
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understanding of 
mathematics.  
Develop 
students’ 
computational 
skills. 

             

Encourage 
students to 
express their 
ideas and share 
their 
understanding of 
mathematics 
with others. 

             

Provide students 
with 
opportunities to 
apply what they 
have learned to 
new situations. 

             

Teach students 
of diverse 
backgrounds, 
abilities, and 
interests. 

             

Gather accurate 
information 
about how well 
students are 
accomplishing 
targeted learning 
goals. 

             

 
 

II.  Support Structures 
1. Which of the following textbooks are you currently using in your 

classroom?  Please check if it is a primary text or supplemental material. 
 

 Primary 
Text 

 Supplemental 
Material 

 
Connected Mathematics 

       

 
Glencoe – Mathematics Applications 
and Connections 

       

 
Middle Grades MathThematics 

       

 
Mathematics in Context 

       

 
Other 
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Other 

        

 
Other 

        

 
2. Please explain how you use both your primary and supplementary texts 

(i.e., for additional basic skill exercises, to provide additional real-life problems, etc.) 
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APPENDIX C 
 

List of Interview Questions 
 
 

Name:      School:  
Date:     Years Teaching Years in Middle Level Education: 
Grade/s and Subjects teaching:  Degree:  
Concentration:     Certification: 
 

1. Could you please tell me how much MSMP professional development helps in 
terms of mathematics representation in the following aspects 

a. Being able to explain to students the ways in which what they are 
learning in mathematics is important for them? 

b. Being able to take students’ prior knowledge into account when planning 
instruction? 

c. Being able to develop students’ conceptual understanding of 
mathematics? 

d. Being able to develop students’ computational skills? 
e. Being able to encourage students to express their ideas and share their 

understanding of mathematics with others? 
f. Being able to provide students with opportunities to apply what they have 

learned to new situations? 
g. Being able to teach students of diverse backgrounds, abilities, and 

interests? 
h. Being able to gather accurate information about how well students are 

accomplishing targeted learning goals? 
2. What is your definition of mathematical representation? (follow up: concrete, 

picture, and symbol) 
3. In teaching mathematics, what are the benefits of using representation? Are there 

any limitations using representations?  
4. What do you do to make sure representations are accurate in showing the ideas in 

learning goals (TEKS)?  Follow-up: Can you give an example?  What do you do 
to assure representations are comprehensible to students?  Follow-up: Can you 
give an example?   

5. Have you used any of the representation strategies or ideas learned from 
professional development last summer? Give the examples. What do you think 
watching yourself others teaching videotapes? How about others watch your 
teaching videotapes?  

6. There are five process standards in the NCTM standard: problem solving, 
reasoning and proof, communication, connection, and representation.  In the 
TEKS, representation is categorized as one of the underlying processes and 
mathematical tools.  In what ways is representation similar to the 
communication, problem solving, reasoning and proof, and connection as a 
process standard?  
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