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ABSTRACT

Approaches to the Multivariate Random Variables Associated with Stochastic

Processes. (August 2003)

Jihnhee Yu, B.S., Seoul National University

Co-Chairs of Advisory Committee: Dr. Thomas E. Wehrly

Dr. James H. Matis

Stochastic compartment models are widely used in modeling processes for bio-

logical populations. The residence time has been especially useful in describing the

system dynamics in the models. The direct calculation of the distribution for the

residence time of stochastic multi-compartment models is very complicated even with

a relatively simple model and often impossible to calculate directly. This dissertation

presents an analytical method to obtain the moment generating function for stochas-

tic multi-compartment models and describe the distribution of the residence times,

especially systems with nonexponential lifetime distributions.

A common method for obtaining moments of the residence time is using the

coefficient matrix, however it has a limitation in obtaining high order moments and

moments for combined compartments in a system. In this dissertation, we first de-

rive the bivariate moment generating function of the residence time distribution for

stochastic two-compartment models with general lifetimes. It provides any order of

moments and also enables us to approximate the density of the residence time using

the saddlepoint approximation. The approximation method is applied to various sit-

uations including the approximation of the bivariate distribution of residence times

in two-compartment models or approximations based on the truncated moment gen-
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erating function.

Special attention is given to the distribution of the residence time for multi-

compartment semi-Markov models. The cofactor rule and the analytic approach

to the two-compartment model facilitate the derivation of the moment generating

function. The properties from the embedded Markov chain are also used to extend

the application of the approach.

This approach provides a complete specification of the residence time distribution

based on the moment generating function and thus provides an easier calculation of

high-order moments than the approach using the coefficient matrix. Applications to

drug kinetics demonstrate the simplicity and usefulness of this approach.
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CHAPTER I

INTRODUCTION

1.1 Overview

Stochastic compartment models are widely used in fields such as ecology or phar-

macokinetics to describe the change of a population and explain the basic kinetic

structure of a process. Matis and Kiffe (2000) stated in their book, Stochastic Pop-

ulation Models, that stochastic compartment models are a useful tool “to analyze

population data, to make statistical inference relating to population size, and ul-

timately to predict, or even help manage, population size”. Variables such as the

residence time or the number of particles that describe the particle transfer between

compartments have been of special interest. Generally, stochastic compartment mod-

els are based on the concept of homogeneous, well-stirred compartments (Matis and

Wehrly, 1990) that result in Markov processes. The retention time for a single visit of

a particle, therefore, has an exponential distribution. The mean residence time and

other moments for stochastic compartment models have been developed and applied

to pharmacokinetic problems. Matis, Wehrly and Metzler (1983) provide the theoret-

ical framework to obtain the mean and variance of a residence time using the transfer

coefficient matrix in the compartment model as a Markov process. However, a number

of researchers in certain applications have questioned the use of homogeneous com-

partment models, thus stochastic semi-Markov models have also been developed. The

semi-Markov model is based on an arbitrary retention time density function and does

The format and style follow that of Journal of the American Statistical Association.
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not necessarily have an exponential distribution (Matis and Wehrly, 1998). Certain

non-exponential distributions of the retention time can be described by a collection

of sub-compartments called pseudo-compartments (Matis and Wehrly, 1998). Ma-

tis and Wehrly (1985) dealt with a compartment model where the residence time has

the gamma distribution using exponential pseudo-compartments in a semi-Markovian

model.

The objective of the research outlined in this dissertation is to develop the distri-

butional approach to the variables of interest that depend on the stochastic compart-

ment models. We are interested in the structure of the bivariate distribution of the

residence times for the two-compartment model that is often used to describe the rel-

atively simple kinetics of a drug. We also expand the same distributional approach to

more complicated models than the two-compartment model. Rather than the direct

calculation of the exact density or distribution that is extremely complicated in such

models, we adapt the flowgraph theory (Butler and Huzurbazar, 1997) that allows

for the computation of the moment generating function of the waiting time in the

model, which can be used to approximate the distribution or density.

We investigate the saddlepoint approximation as an important tool to obtain

the distribution of the variables. The introduction of the saddlepoint approximation

by Daniels (1954) has lead to the saddlepoint approximation, various techniques of

approximation. Given the moment generating function (MGF) or cumulant generat-

ing function (CGF) of a variable of interest, the saddlepoint approximation is used

to approximate the density or tail probability of the variable. It is known that its

error rate is smaller than that of the Edgeworth expansion. In the light of the better

approximation we investigate an alternative saddlepoint approximation that can be

applied to various situations. We also present the method that uses an approximated

CGF with only a limited number of cumulants instead of the exact CGF.
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1.2 Nature of the Problem

Residence times in stochastic compartment models have distributions that are

mostly skewed to the right. When we use the ordinary saddlepoint approximation

formula that is derived by using the normal distribution, the approximation to a

right-skewed distribution is not as good as that to a symmetric distribution with a

small sample. When the distributions are skewed to the right like the exponential or

gamma distribution, the peak in the approximating density is more likely to shift to

the middle than the true density, thus causing a considerable discrepancy near the

origin of the distribution. However, other distributions or density functions than the

normal can be used to form the formula in the Edgeworth expansion. It is known

that the approximation of a right-skewed distribution is improved by using the gamma

distribution (Jensen, 1995).

Approximating the density or distribution using the MGF or CGF has some ad-

vantages. In some cases, even if the explicit form of the density or distribution does

not exist, we can obtain the specific form of the MGF. As an example, a distribution

such as the noncentral χ2 has a single termed MGF but the distribution is represented

as an infinite sum (Coutis and Casella, 1999). In such a case the saddlepoint approx-

imation can provide a relatively simple density expression with excellent precision.

However, it is not always true that we can obtain the exact moment or cumulant

generating function, and in such a case, we need to approximate the MGF itself using

only part of the moments.

This research looks at the distribution of variables of two-compartment models

that subsequently have a bivariate distribution. Using the method of the exponential

tilting that provides the multivariate form of the saddlepoint approximation, we are

interested in seeing the fairly precise approximation of the density or distribution in



4

such cases. Obtaining the saddlepoints for each bivariate point can be troublesome

since there can be multiple solutions in some cases. If we cannot obtain the explicit

form of the saddlepoint, it should be handled numerically.

How to calculate the distribution of the variables or at least the MGF for the

approximation in multi-compartment model is another problem. The retention time

of a particle at a single visit has the exponential distribution in Markov processes.

However, the marginal distribution for an accumulated retention time, or simply

the residence time of a particle before escaping a system, was not known when the

model consists of multiple compartments. In order to obtain the distribution of

the residence time in such a case, we have to take into account the relationship

between compartments. It is not usually feasible to find out the exact distribution

of the residence time for a multi-compartment model by considering every possible

movement of a particle when there are more than two compartments. Interpreting a

continuous Markov or semi-Markov process as a Markov chain is very helpful for this

purpose because the theory for the particle movement in the Markov chain is well

documented (e.g., Çinlar 1975).

1.3 Outline of the Dissertation

The dissertation is divided into five chapters. Chapter I provides an overview of

the dissertation, and briefly suggests the nature of the problems. Chapter II explains

general facts about stochastic compartment models, and presents a modification of

a previous drug-kinetics model which demonstrates the general application of the

stochastic compartment model to the population data. Chapter III discusses the

topics related to the saddlepoint approximations. It provides an introductory discus-

sion about its derivation, and deals with various situations in the application of that.

Specifically, the modification of the saddlepoint approximation using the gamma dis-
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tribution is discussed. We first see that the modified approximation is better for a

gamma-like distribution. We also investigate how the saddlepoint approximation is

affected when we use the approximated CGF based on the first few cumulants. In

Chapter IV, we investigate the approximation of the distribution of residence times

for the two-compartment model with non-exponential lifetime distributions. For that,

we derive the moment generating function of the bivariate residence time distribution

for the two-compartment model with general lifetimes. An analytically calculated

MGF is used to approximate the density by the saddlepoint approximation. Using

the MGF of the residence time for each compartment, the marginal distribution of

the residence time for each compartment is also approximated. The exact form of the

distribution is compared with the approximation. In Chapter V, we extend the distri-

butional approach to the residence time for multi-compartment semi-Markov models

combining the cofactor rule for a single destination and the analytic approach to the

two-compartment model. Applications to drug kinetics are presented. We conclude

the dissertation with suggestions for future research in Chapter VI. The problems

and limitations of the approach in previous chapters are discussed. We project the

possible application of the approach to the survival analysis by introducing several

papers in this subject.
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CHAPTER II

A NON-MARKOVIAN COMPARTMENT MODEL APPROACH FOR

DESCRIBING CALCIUM KINETICS

2.1 Introduction

Stochastic compartment models have been used in drug kinetics to study the time

course of drugs including the absorption, distribution, metabolism, and excretion of

drugs. A common assumption underlying compartment models is homogeneous and

well-stirred compartments, resulting in a Markov process model with an exponentially

distributed retention time for a single compartment. However, this assumption can

be inappropriate in cases such as describing the body using a few compartments or

representing a poorly stirred compartment. The semi-Markov process is a useful tool

to describe these nonhomogeneous compartments. It is a generic term to describe a

continuous time process where the retention time, the time between transitions for a

single visit, does not necessarily have an exponential distribution.

Matis and Wehrly (1998) provide a theoretical frame work representing a semi-

Markov (or non-Markov) model as an expanded Markov model using the concept of

a phase-type (PH) distribution. A PH distribution is defined as the distribution of

the time until absorption in a finite-state Markov process with n transient states and

one absorbing state, and any nondegenerate distribution of retention time may be ex-

pressed as a PH distribution (Matis and Wehrly, 1998). Therefore, a non-exponential

distribution of the retention time for a compartment can be described by a collection

of sub-compartments called pseudo-compartments. For certain incompletely speci-

fied models, a linearly connected compartment system can generate observed time

lags (Jacquez and Simon, 2002). However, in using PH distributions, a compartment
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system described by the pseudo-compartments does not necessarily have a physio-

logical interpretation but is rather a mathematical device to generate the desired

retention time distribution.

The residence time variable, a quantity that describes the dynamics of a particle

transfer between compartments, is defined as the accumulated waiting time (retention

time) for the particle during its several visits to a compartment before exiting to the

system exterior. The residence time provides a useful insight into the kinetics of a drug

because it is easier to interpret than the transfer rate. Thus, often the residence time

distribution based on the estimated transfer rates is useful to describe the kinetics of

a drug or provide a comparison between different drugs or subjects.

Matis and Wehrly (1985) provide stochastic formulations to obtain moments of

the residence times in compartment models in a couple of ways. First, the moments

of the retention time for a particle during a single visit could be calculated using

its approximated PH distribution that is usually expressed as a sum of exponentials.

Moments for the residence time of a compartment are obtained by using the PH

distribution and the distribution of the number of visits of a particle to the com-

partment. A PH distribution might not have a unique expression, and Johnson and

Taaffe (1990) found approximating PH distributions that match the first three mo-

ments of a distribution. However, Jacquez (1985) shows that the general form of pdfs

generated by linear compartmental systems is expressed as the sum-of-exponentials

with coefficients that consist of polynomials of the time variable, and this implies

that the summation of a few exponential terms may not be appropriate to express

the distribution of the retention time for some non-homogeneous compartments.

The other way to obtain moments of the residence time is by using the coefficient

matrix that is composed of transfer rates, or specifically, the probability intensity

coefficients (Matis and Wehrly, 1985). This method is relatively easy to implement
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compared with the approach of using the approximated distributions directly. The

method will be explained in Chapter V in detail.

In this chapter, we explain general facts about compartment models, and illus-

trate PH distribution to describe the calcium kinetics models. First, we show the

existing models to explain calcium kinetics. Then, we investigate an updated model

by adding an additional compartment to an existing model. It shows how the PH

distribution can be formulated and demonstrates the effect of pseudo-compartments

on the change of the distribution of the residence time.

2.2 Definitions and Methodologies

Xi(t) Xj(t)

?
· · ·

? ?
· · ·

?

?

· · ·
? ?

· · ·
?

¾

-

-

¾

-

¾

kij

kji

µi

Ii

µj

Ij

k1i kni k1j knj

ki1 kin kj1 kjn

Figure 1: The general structure of a multi-compartment model.

Figure 1 shows the general structure of an n-dimensional death-migration

process. Xi(t) denotes the population size of particles, kij is the transfer rate from

compartment i to j, Ii the immigration rate to compartment i, and µi the death rate

of compartment i. The model satisfies following.

1. kij ≥ 0 for every i and j.

2. No state is absorbing.



9

3. All states are reachable.

4. The system is open, which means that µi > 0 for some i.

In the linear death-migration model (Matis and Kiffe, 2000, page 119), the con-

ditional probabilities of possible unit changes from t to t+4t are

Prob{Xi will increase by 1 due to immigration} = Ii4t,

Prob{Xi will decrease by 1 due to death} = µiXi4t,

Prob{Xj will increased by 1 and Xi will decrease by 1 due to migration}

= kijXi4t, for i 6= j. (2.1)

In the linear death-migration model, it is known that the retention time has an

exponential distribution, and consequently the process is Markov. The deterministic

differential equation to describe the model is

Ẋ1(t) = k11X1(t) + k21X2(t) + ...+ kn1Xn(t) + I1

...

Ẋn(t) = k1nX1(t) + ...+ kn−1,nXn−1(t) + knnXn(t) + In, , (2.2)

where kii = −(µi +
∑n

j=1,j 6=i kij). A standard approach to find the stochastic solu-

tion for the probability is using the Kolmogorov differential equations. As a simple

example, let us look at a two-compartment model that consists of two population

variable X(t) and Y (t). Let Pxy(t) be P{X(t) = x, Y (t) = y}. The joint probability

distribution in the increment of time, 4t can be expresses as

Prob{4X(t) = i,4Y (t) = j|X(t), Y (t)} = fij(X,Y )4t,

where i and j are not both 0. The Kolmogorov differential equation (Matis and Kiffe,
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2000, page 115) is then

dPxy

dt
= −Pxy

∑
i,j

fij(x, y) +
∑
i,j

Px−i,y−jfi,j(x− i, y − j). (2.3)

The summation does not include the case of i = j = 0. Under an assumption that

the population is changed only by a unit at a time, the possible changes are

f1,0 = I1, f−1,1 = k21X1, f0,−1 = µ2X2.

Then, using (2.3)

Ṗxy(t) = −(I1 + k21x+ µ2y)Px,y(t) + I1Px−1,y(t)

+ k21(x+ 1)Px+1,y−1(t) + µ2(y + 1)Px,y+1(t).

Matis and Kiffe (2000) or Bailey (1964) give a more detailed illustration about the

derivation of the differential equation. The corresponding partial differential equation

(pde) for the moment generating function of (2.3) is

∂M(θ1, θ2, t)

∂t
=

∑
i,j

(eiθ1+jθ2 − 1)fij(
∂

∂θ1

,
∂

∂θ2

)M(θ1, θ2, t), (2.4)

where j and k are not both 0 (Bailey, 1964). In the linear death-migration model

with immigrations, one can show that (X(t), Y (t)) has a bivariate Poisson distribu-

tion (Matis and Kiffe, 2000, page 117). The solution for a pde for the MGF may

be intractable in many cases. In such cases, we can replace the Taylor expansion of

the moment generating function into (2.4), and solve the differential equation for the

moments.

The parameter estimation is based on the solutions from (2.2) or (2.4). Param-

eters, transfer rates, are implicitly defined by the other parameters in the model.

The parameters are estimated using the method of non-linear least squares or the

Gauss-Newton algorithm (Allen, 1998). The Gauss-Newton algorithm provides the
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asymptotic standard errors of the estimates, too. The least squares method is to

minimize the residual sum of squares. It does not provide the standard error for the

parameters, however it is known that the asymptotic standard error can be calcu-

lated using an analogous way to the linear models based on the assumption that the

parameters are consistent and asymptotically normally distributed. Many special-

ized software programs have been developed for least squares parameter estimation

(Matis et al., 1996a). KINETICA (Allen and Matis, 1990) is used for the param-

eter estimation in this research. The program also provides confidence interval for

the coefficients, and the mean residence time, the estimated function of time for the

population, and the approximated residence time distribution.

2.3 Model Illustration of the Calcium Kinetics

The scientific effort to explain better the calcium clearance data in plasma has

continued, and it was found that stochastic non-Markovian models describe such

data well (e.g., Matis and Wehrly 1998, Weiss et al. 1994). Weiss et al. (1994)

assumed that the retention time in the bone compartment could be modeled as a

mixture of exponential distributions, and this assumption gives a well-fitting overall

model as shown in Section 2.3.1. However their model showed a lack of fit in the

tail of data; the lack of fit can be shown more strikingly with the log-scaled data.

A model based on non-Markovian ideas given by Matis and Wehrly (1998) produced

improved fitting of tail values, while keeping a good fitting for the initial part of

the data. They also suggested that further research implementing the underlying

non-Markovian methodology might find still better fitting models. We expand this

non-Markovian approach to provide a better description of the tail part of the data.

We also discuss some results and implications of the changed model.
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2.3.1 The previous models

The model by Weiss et al. (1994) illustrated in Figure 2 utilizes two linear bone

“binding sites” so that the phase type (PH) distribution of bone is assumed to be a

mixture of exponential distributions.

Plasma

Bone 2

Bone 1
-

¾

@
@

@
@

@
@R

@
@

@
@

@
@I

k12

k21

k13

k31

Figure 2: The model of Weiss et al. that uses two compartments for the bone struc-
ture.

The resulting equation of the fitted curve of calcium data in plasma from KI-

NETICA is

C(t) = 351.39e−5.835t

+ 197.20e−0.375t + 145.31e−0.0144t.

Another model by Matis and Wehrly (1998), say the M&W model, is illustrated

in Figure 3. To obtain a non-exponential phase-type (PH) distribution in a compart-

ment, the authors developed an equivalent model using pseudo-compartments based

on Markov processes. This model also uses two binding sites of bone, but assumes that

one site is nonlinear, and can be modeled using four compartments. Compartments

1 and 2 represent plasma and tissue or ”shallow” bone site, respectively. The other

compartments compose the third compartment, the deep peripheral compartment
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which mainly represents bone with slow exchange. Those multiple sub-compartments

in the deep compartment, also called pseudo-compartments, have no physiological

implication but are only used to describe a long residence time in the deep com-

partment. The sequence of compartments generates a nonexponential retention time

distribution in the deep compartment and thus describes a nonhomogeneous, poorly

stirred compartment.

Deep-
compartment5
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Figure 3: The model illustration of Matis and Wehrly.

The equation of the fitted curve for the M&W model is

C(t) = 356.16e−7.105t + 68.50e−0.0078t

+ e−0.5659t{44.98 sin(0.2852t) + 187.85 cos(0.2852t)}

+ e−0.0380t{32.85 sin(0.0162t) + 110.26 cos(0.0162t)}.

Figure 4 shows the data and the fitted curve. Its mean square error is 4.9364. The log-

transformed data can be used to focus more on the “tail” of the fitted line. Comparing

with the model of Weiss et al., Figure 5 shows, on a log scale, a better fit in the tail

part.

Using a mixture of Erlang distributions is one approach to get a longer tail. To

compare the retention time distribution for two models, let the retention time distri-

bution of bone 1 and bone 2 be f1(t), and f2(t) respectively. Then the distribution
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Figure 4: Plasma clearance data and the fitted lines of Weiss et al. (the dotted line)
and the M&W model (the solid line).

of the retention time for the total bone site, ψ(t) can be expressed as

ψ(t) = θf1(t) + (1− θ)f2(t), (2.5)

where θ is the probability of a particle to go to bone 1. In Figure 2, the retention

time for each bone has an exponential distribution. Using the estimated parameters,

we can find that the pdf of the retention time for the bone site is

ψ(t) = 2.61e−3.00t + 0.021e−0.16t.

The approximated retention time distribution from KINETICA for M&W model,
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Figure 5: Log scaled plasma clearance data and the fitted lines of Weiss et al. (the
dotted line) and the M&W model (the solid line).

however, is

ψ(t) = 3.27e−3.74t + 0.124f2(t),

where f2(t) is

f2(t) = 1151.3e−0.44t − 1151.3e−0.44t + 0.00412e−0.02t − 0.005e−0.04.

Figure 6 compares the densities of retention times of the two models in the log scale.

The peak of the PH distribution of the retention time in the bone in M&W model

is shifted to the right, whereas the model of two-compartment bone structure is
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monotonically decreasing with rapid initial decay. Hence there exists a large initial

qualitative difference between the two distributions. This clearly shows that the

M&W model has a longer retention time than Weiss’. The mean and variance of the

time
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−1

0

1

Figure 6: Logarithms of retention time densities (Y-axis) for the fitted plasma clear-
ance data. The dotted line is the M&W model, and the solid line Weiss et al. model.

retention time can be calculated based on the estimated retention time density. The

resulting mean retention times in the M&W model are 16.469 in plasma, and 83.276

in bone, which are longer than the ones given by the Weiss et al. model, which are

15.344 and only 50.230 respectively.
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2.4 An Updated Model

We still observe a lack of fit in the tail part with the log-scaled data in the

M&W model. This suggests that adding more compartments may improve the fit in

the tail part of the distribution. Figure 7 shows a possible new model, say an updated

model, in which a fifth pseudo-compartment is added to the “deep” bone site of the

previous model. This implements the idea that calcium particles may stay even longer

in deep bone site. The same flow rate kx is used for this new compartment to avoid
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Figure 7: The illustration of the updated model.

possible multicollinearity (Matis et al., 1996a) caused by adding new parameters. The

rate parameter estimates for this new model are k01 = 0.0581, k21 = 3.7774, k12 =

3.1638, kx = 0.03353, and k31 = 0.4212, with k13 = kx + k31 = 0.4547. The fitted

curve of the calcium data using KINETICA is

C(t) = 357.214e−7.183t

+ {45.5643 sin(0.291t) + 187.650 cos(0.291t)}e−0.5781t

+ 144.9453e−0.033 + 43.509e−0.006t − 8.322e−0.0861t.

This line gives an excellent fit as shown in Figure 8, with the mean square error

4.9326, that indicates a bit better fit than that of M&W model. The mean retention
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times of a calcium particle in plasma and bone site for this model are 17.212 and

105.950, respectively. The distribution of time for a single visit of a calcium particle
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Figure 8: Plasma clearance data and fitted curve with the updated model.

to the long tailed binding site is found to be,

f2(t) = −948.08e−0.4547t + 2086.00e−0.4545t

− 0.00191e−0.0891t + 0.00107e−0.01169t.

The estimated retention time distribution of the total exchangeable bone is hence

ψ(t) = 0.87434 · 3.1638e−3.1638t + 0.12566f2(t).
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Figure 9 shows the log-scaled distributions for the retention time for the deep com-

partment in the bone site for the updated model along with that of the model by

Matis and Wehrly. Clearly the qualitative features are very similar, that is, both

start from zero initially and reach peaks afterwards at about the same elapsed time.

The mean and variance of this distribution are 1.71471 and 163.79548, respectively,
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Figure 9: Comparison of retention time densities for the fitted plasma clearance data
of the M&W model (the dotted line) and the updated model (the solid line).

whereas those of the M&W model are 1.413 and 76.04, so the mean of the updated

model is a little larger than the one of the alternative model. Even though the similar

retention time distributions, the smaller k10 and the bigger k13 in the updated model
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leads to the longer mean retention time than that of the M&W model.

2.5 Discussion

The previous non-Markovian model by Matis and Wehrly, and the updated model

both give good fittings to the data, but the latter gives a smaller mean square error

(MSE) and a longer mean residence time. However, the difference of MSE between two

models is very small. In fact MSE=4.9326 of the updated model shows only 0.08%

decrease comparing with MSE=4.9364 of M&W model. It seems not a noticeable

improvement of the curve in the tail part of the data, but this is because the initial

values are much larger than the tail values. The residuals for the initial values are

larger than the latter ones, hence the latter residuals contribute only small part of the

MSE. Though the MSE’s are close, the mean retention times of the updated model

are much larger than those from the M&W model.

To explain these longer retention times, consider the fitted values on a log scale,

as shown in Figure 10. The differences in the residuals on a log scale are very distinct,

and demonstrate the large improvement of the fitted curve. The M&W model shows

the lack of fit in the tail after t=300, whereas the updated model describes log scaled

data well, yielding the longer mean retention time. The MSE of this log scaled line

of M&W model is 0.02479, whereas the updated model shows very small MSE =

0.00651 , which is only 26.3% of the other, indicating that the improvement after

adding one more compartment is remarkable with log scaled data.

One way to compare models visually is using residual plots of the log-scaled fitted

line, which is shown in Figure 11. It shows that the updated model is more likely

to give smaller residuals than any other models, so we can verify that the fitted line

absorbs more information from data. Especially the residuals of the updated model

are still centered around 0 even after t=400, while the residuals of M&W model are
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Figure 10: Log scaled plasma clearance data and fitted curve with the M&W model
(the dotted line) and the updated model (the solid line).

slowly increasing.

It is expected that the variability would be a function of the amount of calcium

amount. The residual plot in Figure 12 shows that variability increases with increas-

ing amount of calcium. It seems reasonable to assume that the variance would be

a function of the calcium amount. One method of incorporating this heteroscedas-

ticity of the variance in the data is fitting with the weighted data. The variance

might be proportional to the magnitude of the response. Specifically, if the obser-

vations are radioactive counts, then the dependent variable is approximately Poisson
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Figure 11: Natural log scaled residual plots with the models. The solid line is the
updated model, the dotted line, the M&W model, and the dashed line, Weiss et al.
model.

distributed (Thakur, 1988). As a result, the weight should be proportional to the

inverse of the magnitude of the original response. KINETICA also provides the way

to obtain the weighted nonlinear least square equations. Log-scaled fitted lines are

shown in Figure 13. Both fitted lines for M&W model and the updated model show

some improvements comparing with log-scaled fitted lines with the original data.

The resulting mean retention times are 18.126 in plasma, 91.829 in bone under

M&W model, and 16.020 in plasma, 99.889 in bone under the updated model. The
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Figure 12: Residual plot of the updated model.

mean retention time of plasma for the updated model is a little smaller than that

for the model by Matis and Wehrly, whereas that of bone for the updated model

is still longer than for the M&W model. Figure 14 shows the residual plot of the

updated model and M&W model with the weighted data. The residuals from both

models show very similar patterns and magnitudes. The MSE of the M&W model is

0.1606, that of the updated model 0.1595. A 0.69% decrease of MSE was made by

the updated model, and which is the larger improvement than the 0.08% reduction

in the MSE between the models with the original data.
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Figure 13: Log-scaled plasma clearance data and weighted fitted curve with M&W
model (the dotted line) and the updated model (the solid line).

We investigated the calcium clearance using the models with nonexponential

retention times. The results of the updated model are very encouraging. We could

see that a non-Markovian model is a powerful theoretical tool to provide a better

model for pharmacokinetics. The concept of the non-Markovian model overcomes

the drawbacks of the ordinary multi-compartment Markov model, and this suggests

that it can be a very useful concept in general.
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Figure 14: Residual plot of weighted data with updated model (the solid line) and
M&W model (the dotted line).
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CHAPTER III

THE SADDLEPOINT APPROXIMATIONS, STOCHASTIC PROCESSES

PERSPECTIVE

3.1 Introduction

Saddlepoint approximations or saddlepoint expansions are powerful tools for ap-

proximating the density or tail probability using the cumulant generating function

(CGF). The accuracy of these approximations is well-addressed in various papers and

books (e.g., Barndorff-Nielsen and Cox 1989, Coutis and Casella 1999, Jensen 1995,

Renshaw 1998). The approximation is well-known for providing good approximations

to very small tail probabilities or densities because the error rate for the approxima-

tion is directly proportional to the magnitude of the density or distribution function.

The saddlepoint approximation is based on the concept that the moment gen-

eration function can be converted to the density or distribution function using the

Fourier inversion formula. The inversion formula is integrated through a saddlepoint

using the method of steepest descents (Daniels, 1954), and that method names the

approximation. Unlike the Edgeworth approximation, the saddlepoint approximation

always provides positive densities and has an error that depends on the magnitude of

the approximation, so-called relative error that assures a more accurate approxima-

tion, especially in the tail part of densities or probabilities.

Because of the fact that the density or the distribution can be approximated

once we have the moment generating function, the saddlepoint approximation has

been applied in various areas including stochastic processes. As an example, Daniels

obtains the approximation of the distribution for the population size in non-linear

birth processes using the saddlepoint approximation. In the non-linear birth process,
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when the population size is large, an explicit formula for the required probabilities is

not available (Daniels, 1982). The probability is obtained using the Laplace transfor-

mation for the population size at a certain time and the saddlepoint approximation.

It shows that the saddlepoint approximation is remarkably accurate for calculating

probabilities for the birth process when it is compared with some tractable true prob-

abilities.

Butler and Huzurbazar (1997) show that the moment generating function of

the waiting time of stochastic network models can be easily calculated by Mason’s

rule, which is equivalent to the cofactor rule that Butler discussed in the later pa-

per (2000). They calculate the Bayesian predictive distribution of the waiting time for

the stochastic network model, where many times the exact densities are very compli-

cated with even a simple model. Using the moment generating function, the density

of the waiting time corresponding to the generated posterior parameter based on the

data can be easily calculated by the saddlepoint approximation. This methodology

was applied to the survival analysis for the pathology of various disease such as AIDS,

dementia and cancer.

Even though the full moment generating functions are not available, the sad-

dlepoint approximation can be applied with only the part of cumulants that are

tractable. Matis et al. (2003) suggest approximating the distribution of the popula-

tion using the saddlepoint approximation based on the so-called truncated CGF in

the logistic growth model with birth and death in ecology. It is not known how to

solve the partial differential equation to obtain the exact solution for the moment

generating function or the cumulant generating function for the stochastic approach

to such models. The exact probability of the equilibrium distribution of the popula-

tion could be obtained using a recurrence relationship, but because the calculation of

the equilibrium distribution is done iteratively, it is computationally intensive. They
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suggest approximating the CGF using the first three cumulants, since the formula

of the saddlepoint approximation can be expressed in a simple analytical form. The

first three cumulants can be obtained by solving the partial differential equation of

the cumulants using the moment closure approach (see Matis and Kiffe 2000, or Ren-

shaw 2000). Because most population data and other ecological measurements have

markedly skewed distributions (Matis et al., 2003), the saddlepoint approximation is

clearly more accurate than the normal approximation that uses only the mean and

variance. Renshaw (2000) also showed a similar approach to a bivariate stochastic

compartment model that includes migrations. With all third and lower order cumu-

lants known in a two-compartment birth-death-immigration-migration process, the

cumulant generating function is approximated by optimizing fourth-order cumulants

iteratively in order that the volume under the approximated density is one. The

probabilities based on the method show markedly better accuracy compared to the

normal based approximation (Renshaw, 2000).

First in this chapter, we explain the general approach to the saddlepoint approx-

imation for the density. Then we investigate the saddlepoint approximation using

the truncated CGFs, and assess the relative errors in that approach. Alternative

approximation using other than a normal distribution in the univariate case is also

discussed. And finally, we develop an experimental saddlepoint approximation in the

bivariate distribution case, which is based on the exponential distribution. We also

investigate the conditions for obtaining saddlepoints in each case.

3.2 Derivation of the Saddlepoint Approximation

Daniels obtained the saddlepoint approximation formula of the sample mean,

say T , in the univariate case using the method of steepest descents. It starts from
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Fourier inversion formula,

f(t) =
n

2πi

∫ τ+∞

τ−∞
exp [n(K(θ)− θt)] dθ. (3.1)

By letting θ̂ be the real root of K ′(θ) − t = 0, which is also called the saddlepoint,

we can express (3.1) as

f(t) =
n

2π
exp

[
n{K(θ̂)− θ̂t}

] ∫

P
exp{−nγ(t)}dθ,

where γ(t) = K(θ̂)− θ̂t− [K(θ)− θt], and P denotes the deformed path that passes

through the saddlepoint, which satisfies Im(K(θ) − θt) as constant (Field, 1990).

This new path assures that γ(t) is a real number since the imaginary part is constant.

The integrand becomes negligible outside the immediate neighborhood of the saddle-

points. The saddlepoint approximation is obtained by the asymptotic expansion of

integrand (Field, 1990).

A tilting approach (Jensen, 1995) provides an alternative method to obtain the

saddlepoint approximation. An detailed explanation is provided by Jensen (1995).

The argument below is an excerpt of it. For a random vector X ∈ Rd, the Laplace

transform ϕ(θ) for θ ∈ Rd is defined as

ϕ(θ) = E [exp(θ ·X)] =

∫
exp(θ ·X(ω))P (dw),

where · denotes the inner product of vector in Rd. The domain of the transformation

is Θ = {θ ∈ Rd : ϕ(θ) <∞}. Derivatives of all orders of ϕ(θ) are

∂kϕ(θ)

∂θk1
1 ...∂θ

kd
d

= E{Xk1
1 ...X

kd
d exp(θ ·X)} (3.2)

where ki ≥ 0 and k1 + ...+ kd = k.

If we are interested in the density of a statistic T with respect to a measure m,

we can write the distribution by the tilting known as the Esscher tilting as

dPT

dm
(t) =

dPT

dQT

(t)
dQT

dm
(t) =

{
dQT

dPT

(t)

}−1
dQT

dm
(t), (3.3)
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where Q should be taken such that t is a central point of the distribution. Q is

called a tilted measure. The exponential family generated by X and P consists of the

probability measure Pθ, θ ∈ Θ, given by

dPθ

dP
(ω) = ϕ(θ)−1 exp(θ ·X(ω)). (3.4)

Let the first d1 coordinates X
(1)
i of Xi be continuous variables and the remaining

d2 = d − d1 coordinates X
(2)
i be discrete variables. Let fn be the density of X̄ =

(X1 + ...+Xn)/n. The direct application of (3.3) and (3.4) gives

fn(x) = ϕ(θ)n exp(−nθ · x)n(d1−d2)/2fn,θ(0) (3.5)

for any θ ∈ Θ , where fn,θ is nd2/2 times the density of {√n(X̄(1) − x(1), X̄(2) − x(2)}
under the measure Pθ (Jensen, 1995).

In (3.5), the term fn,θ(0) is approximated by the Edgeworth expansion. The

Edgeworth expansion is

fn(x) = g(x)

{
1 +

1√
n

λ3

6
Hd

3 (x; {κ})
}

+O(n−1), (3.6)

where g(x) is the density of N(0,Σ(θ)), H’s are the Hermite polynomials,

Hd
m(x; {κ}) =

d∑
i1,...,im=1

κm,(i1,...,im)Hm,(i1,...,im)(x;κ2),

and

Hd
m,(i1,...,im)(x;κ2) = (−1)mφ(x;κ2)

−1 ∂m

∂yi1 ...∂yim

φ(x;κ2),

where φ(x) is the density of the normal distribution in Rd with mean 0 and covariance

matrix k2 that can be obtained by letting θ equal to 0 in (3.2). Using (3.6) and (3.5),

we obtain

fn(x) = ϕ(θ)n exp(−nθ · x)n(d1−d2)/2g(0; Σ(θ))

{
1 +

1

6
√
n
Hd

3 (x;κ) +O(n−1)

}
.

(3.7)
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For x = 0, all coefficients corresponding to odd powers disappear because Hr(0) = 0

when r is odd so that the equation has the order of O(n−1). The leading term is the

saddlepoint approximation. θ is chosen to satisfy

K ′(θ̂) = x, (3.8)

and this is sensible because θ̂ becomes the maximum likelihood estimate of (3.5). This

has the same formula as Daniels’ for the univariate distribution and also easily pro-

vides the approximation formula for the multivariate distribution without additional

difficulties.

In the univariate case, Daniels proves that under general conditions (3.8) has a

single real root θ̂ in the legitimate support (−c1, c2) for every value of x such that

0 < F (x) < 1, and that K ′′ > 0, where c1 and c2 are positive real numbers and

F (x) is the CDF of X. Suppose that a variable X has a support (a, b), that is not

infinite, then it can be shown that for every ξ ∈ (a, b) there is a unique simple root θ̂

of K ′(θ) = ξ, and K ′(θ) increases continuously from ξ = a to ξ = b (Daniels, 1954).

This implies that the saddlepoint given by (3.8) must fall in the set of θ where K ′(θ)

strictly increases, and this is an important fact to find the appropriate boundary for

θ. A difficulty exists when the support of X is infinite but c2 <∞. It may be possible

that K ′(θ) 6→ ∞ when θ → ∞. In such a case, (3.8) may have no real root though

the distribution may extend to ∞. We will discuss the boundary of θ for different

situations in later sections.

Let us consider the noncentral chi-squared density as an example of the saddle-

point approximation (Coutis and Casella, 1999). The density has no closed form and

is expressed as

f(x) =
∞∑

k=0

xp/2+k−1e−x/2

Γ(p/2 + k)2p/2+k

λke−λ

k!
,



32

where p is the degrees of freedom and λ is the noncentrality parameter. The density

is an infinite mixture of central chi-squared densities with the Poisson probability

weights. Figure 15 compares the approximation of the density with the true density,

and shows the excellent approximation of the density. The relative errors are slightly

over 2% close to origin, and consistently less than 2 % in the tail part.
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Figure 15: The comparison of the true density and saddlepoint approximation of the
noncentral Chi-Square density (df=7, noncentral parameter=5).
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3.3 Saddlepoint Approximation Using the Gamma Distribution

Suppose that F (x) and G(x) are two univariate distribution functions with char-

acteristic functions χ(θ) and ξ(θ) and their rth cumulants are βr and γr, respectively.

Using the Taylor expansion of log χ(θ)
ξ(θ)

(Field, 1990), we can express χ(θ) as

χ(θ) = exp

{ ∞∑
r=1

(βr − γr)
(iθ)r

r!

}
ξ(θ). (3.9)

Using the Taylor expansion of the exponential function and Fourier inversion of (3.9)

together, we can show that

F (x) = exp

{ ∞∑
r=1

(βr − γr)
(−D)r

r!

}
G(x), (3.10)

where D denotes the differential operator. Letting G(x) be a normal distribution

function and differentiating both sides of (3.10), we can obtain the well-known Edge-

worth expansion. In the previous section, the saddlepoint approximation based on the

normal distribution is derived by replacing fn,θ in (3.5) by the Edgeworth expansion.

However, the relationship between two distribution functions in (3.10) illustrates the

fact that the normal distribution in the Edgeworth expansion can be replaced by the

other distributions. In fact, it is known that an asymptotically equivalent saddle-

point approximation can be obtained using the centered gamma distribution (Jensen,

1995).

Let X ∼ Gamma(α, β), Then X has the density

g(x) =
1

Γ(α)βα
xα−1e−x/β,

and MGF

[
1

1− βt

]α

.
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Then, the density of standardized variable Y =
√
n(x̄− αβ) is

gY (y) =
1

Γ(nα)(β/n)nα
(
y√
n

+ αβ)nα−1 exp

{−y/√n− αβ

β/n

}
1√
n
.

Therefore,

gY (0) =
1

Γ(nα)(β/n)nα
(αβ)nα−1 exp {−nα} 1√

n

By plugging this into fn,θ(0) in (3.5), we obtain the approximation of the distribution

of the sample mean,

fn(x) = (ϕ(θ̂))n exp(−nθ̂x)√nν
νn−1/2
n exp(−νn)

σn(θ̂)Γ(νn)
, (3.11)

where θ̂ satisfies (3.8), νn corresponds to the shape parameter of a sum of variables,

and σn(θ) is the standard deviation in the approximation,

σn(θ̂) = K ′′(θ), and νn =
4nK ′′(θ)3/2

K(3)(θ)2
.

When the value of X increases, θ̂ also moves toward its upper bound. We can

show that the gamma-like distribution, (3.11) converges to the gamma density when

θ̂ increases to its upper bound (Jensen, 1995). The argument below is a sketch of

Jensen’s proof in (1995) of this fact. Let us assume a density q(·) and there exist

constants , α > 0, τ > 0 and A such that

q(x) = Axα−1l(x) exp(−τx),

where X has a positive support and l(x) is slowly varying at zero. This is termed a

gamma-like distribution. Similarly to (3.4), the exponential family generated by q(x)

is

qθ(x) = ϕ(θ)−1 exp(θx)q(x). (3.12)
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Then, τ becomes the upper bound of θ in (3.12). The standardized tilted density,

Y = X−µ(θ)
σ(θ)

is then

qθ(y) = σ(θ)ϕ(θ)−1 exp{θ(σ(θ)y + µ(θ)}q(σ(θ)y + µ(θ)),

where µ(θ) = E(X) and σ(θ) = V ar(X).

Now, let Z = X−µθ

σθ
where µθ = σθ = (τ−θ)−1. We then obtain the tilted density,

gθ(z) =
Aσα

θ l(µθ)

ϕ(θ)
(z + 1)α−1 l{(z + 1)/(τ − θ)}

l{1/τ − θ} exp{−(z + 1)}.

For θ → τ , l{(z+1)/(τ−θ)}
l{1/τ−θ} converges to 1, and

Aσα
θ l(µθ)

ϕ(θ)
→ Γ(α)−1 using the fact that

gθ(z) is a density and the dominated convergence theorem. Therefore

gθ → Γ(α)−1(z + 1)α−1 exp{−(z + 1)}, when θ → τ for z > −1. (3.13)

Letting X = σθZ + µθ and using (3.13), we can show that the distribution of X has

converged to the gamma(α, σθ) distribution, which means that qθ(y) is the density

of the standardized gamma distribution. Since the exponentially tilted gamma-like

densities converge to the gamma density when θ → τ , a gamma approximation to

(3.5) seems natural.

The noncentral χ2 distribution is presented in Figure 16. The relative differ-

ences for the gamma-based saddlepoint approximation are less than 1 % through

the support as shown in Figure 17. This provides an example where the gamma-

based approximation shows better accuracy to a right-skewed distribution than the

normal-based approximation.

Figure 18 shows quite accurate approximations for both of the normal-based

and gamma-based saddlepoint approximations to the Poisson distribution. Figure 19

shows the relative differences from both approximations. Both approximations start

with considerably big relative errors near the origin, but relative error decreases
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Figure 16: The comparison of the true density and the gamma saddlepoint approxi-
mation of noncentral chi-square density (df=7, noncentral parameter=5).

rapidly so that it becomes less than 0.5 % in the tail part of the density. The

gamma saddlepoint approximation shows a little better approximation throughout

the support.

3.4 The Approximation with the Truncated CGF

Easton and Ronchetti approached the saddlepoint approximation of general statis-

tics using the truncated CGF that is the first four terms of the Taylor series of the

cumulant generating function (Easton and Ronchetti, 1986). Renshaw (1998) also
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Figure 17: The comparison of the relative differences of the ordinary saddlepoint
approximation and the gamma saddlepoint approximation of the noncentral Chi-
Square density (df=7, noncentral parameter=5).

used a similar approach to assess the error induced into the underlying probability

structure by truncating higher-order cumulants in the cumulant generating function.

The problem is suggested in order to see the effect of the truncation method that

Matis et al. (1996b) suggested to solve a specific partial differential equation with the

cumulant generating function in the nonlinear birth-death models. In the approxima-

tion using the truncated CGF, we do not need to assume any underlying parametric

model and specific assumptions on statistics (Easton and Ronchetti, 1986). Renshaw
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Figure 18: The comparison of the ordinary saddlepoint approximation and the gamma
saddlepoint approximation of Poisson(10) with its true density. The point at 0 is the
true density.

asserts that “we obtain an algebraic form for the associated p.d.f. irrespective of

whether or not we have complete knowledge of the cumulants” (Renshaw, 2000)

using this method. Since κi/i!, an element of the CGF becomes zero rapidly for

bounded κi when i, the order of the cumulant becomes higher, the value of the higher

order cumulant has the less effect on the CGF (Renshaw, 1998).

Suppose that we are interested in the distribution of a statistic Vn(X1, ..., Xn)

that is based on n i.i.d. observations. Let Kn(θ) be the CGF of the statistic and κin
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Figure 19: The relative differences of the ordinary saddlepoint approximation and
the gamma saddlepoint approximation of Poisson(10).

be the ith order cumulant of the Vn. Then the CGF that is truncated after the 4th

term is

K̃n(θ) = κ1nθ +
κ2n

2!
θ2 +

κ3n

3!
θ3 +

κ4n

4!
θ4.

Let R̃n(θ) = K̃n(nθ)/n, then the saddlepoint approximation of the density for Vn (Wang,

1992) is

f̃n(x) =

[
n

2πR̃′′(θ̂)

]1/2

exp
[
n

{
R̃n(θ̂)− θ̂x

}]
, (3.14)
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where θ̂ satisfies

R̃′n(θ̂) = x. (3.15)

If Vn is the sample mean, then Rn(θ) = K(θ) where K(θ) is the CGF of a variable

Xi (Easton and Ronchetti, 1986).

Using (3.9) and (3.10), we can show that the Edgeworth expansion up to the

term of order n−1 corresponds to the CGF that has the first four cumulants. This

together with (3.5) implies that the saddlepoint approximation using the truncated

CGF has the same relative error of O(n−1) for all x such that |x−µ| ≤ d/n1/2 for any

fixed constant d (Easton and Ronchetti, 1986), which is the same error rate as the

approximation using the full CGF. In fact, the difference between the univariate forms

of (3.7) by the full CGF and the truncated CGF is caused only by ϕ(θ), the MGF

of the variable. If differences are uniform, we can expect that the renormalization

of the approximation using the truncated CGF will be improved significantly. With

a single sample, we can show that the truncated CGF reproduces the exact normal

distribution density, and the density of gamma distribution that differs only from the

exact result in that Γ(α) is replaced by Stirling’s approximation (Renshaw, 1998).

An important issue in the approximation is to obtain saddlepoints. The formula

like (3.15) can have multiple roots since K̃ ′(θ) is not always strictly increasing. The

density approximation exists only on θ̂ that satisfies the condition K̃ ′′(θ̂) > 0. In the

gamma distribution, we can show that K̃ ′(θ) is always strictly increasing with the

support of θ that corresponds to x ∈ (0,∞), which assures a unique root of (3.15),

and always gives an approximated density by (3.14). The mode in the approximation

is likely to be shifted to the right of that of the true density because of the truncation

of higher order term of the CGF.

The closed form of the CGF of the beta distribution does not exist, however
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we can approximate the CGF with the first few cumulants. Unlike the gamma dis-

tribution, the beta distribution does not always have the corresponding saddlepoint

through the support (0, 1) in (3.15), that is, for θ ∈ (c1, c2) that satisfies K̃ ′′(θ) > 0 ,

limθ→c1 K̃
′(θ) 6→ 0 and limθ→c2 K̃

′(θ) 6→ 1. Wang (1992) addresses this problem. He

suggests a modification by multiplying the third and forth term of the CGF by an

exponential term, exp{−κ2nb
2t2/2n}. It controls the effect of third and fourth cu-

mulants to make K̃ ′
n(t) strictly increasing. He shows that this method approximates

the beta distribution of the sample mean of the sample size, 5 excellently. Figure 20

shows its approximation with the sample size, 1. It shows that the saddlepoint ap-

proximation using the truncated CGF does not have the approximation in the full

range of its support, but the modified approximation overcomes the problem.

If the cumulants are increasing quickly for the higher orders, the effect of trun-

cation is more likely to be severe as shown in Table 1 with the gamma distribution.

It shows that the relative errors for the mean and the values one standard deviation

away toward each tail become bigger when the scale parameters are increasing. The

approximation is likely to underestimate near the origin and overestimate near the

tail. All relative errors of the gamma distribution tend to become bigger when the

values are closer to the tail. For the Poisson distribution in Table 2, the relative

errors for those values also tend to be bigger when the location parameter increases.

However, the effect of changing the parameter is not as severe as that for the gamma

distribution. Also, unlike the gamma distribution, the relative error is decreasing

when the values are closer to tail. The approximation overestimates near the origin,

and under estimate near the tail in the poisson distribution.
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Table 1: The relative errors for the saddlepoint approximation of the gamma distri-
bution using the truncated CGF. “To the tail” and “To the origin” indicate the value
of 1 standard deviation away to each direction.

Relative error in %
Distribution To the origin Mean To the tail
Gamma(2,0.5) 64.3 12.4 18.9
Gamma(2,1) 49.5 22.4 67.9
Gamma(2,2.1) 26.8 79.6 143.3
Gamma(2,4) 1.0 200.6 235.7
Gamma(2,6) 23.7 365.9 311.2

Table 2: The relative errors for the saddlepoint approximation of the Poisson distri-
bution using the truncated CGF. “To the tail” and “To the origin” indicate the value
of 1 standard deviation away to each direction.

Relative error in %
Distribution To the origin Mean To the tail
Poisson(2) 6.0 23.9 35.5
Poisson(4) 21.5 44.4 52.1
Poisson(6) 43.9 58.7 64.6
Poisson(8) 51.2 69.9 79.4
Poisson(10) 57.7 79.3 87.5
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Figure 20: The true density of Beta(2,3), the solid line is compared with its sad-
dlepoint approximation using the truncated CGF and Wang’s modified saddlepoint
approximation that are the dotted line and the dashed line, respectively.

3.5 Application to Bivariate Distributions

The leading term of (3.7) conveniently provides the density of multivariate distri-

butions. In this section, we are specifically interested in the saddlepoint approxima-

tion for densities of bivariate variables that do not have closed forms for the densities,

but have tractable moment generating functions. Let (Y1,Y2)=(X1 + X2, X2 + X3)

where X1∼ Gamma(α1, β1), X2∼ Gamma(α2, β2), and X3∼ Gamma(α3, β3). Then
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the true density is

f(y1, y2) = c

∫ min(y1,y2)

0

(y1 − x2)
α1−1e

− y1−x2
β1 (y2 − x2)

α3−1e
− y2−x2

β3 xα2−1
2 e

−x2
β2 dx2,

where the c is (Γ(α1)β
α1
1 Γ(α2)β

α2
2 Γ(α3)β

α3
3 )−1. The closed form of the bivariate den-

sity does not exist. However, the MGF is

MY1,Y2(θ1, θ2) =

(
1

1− β1θ1

)α1
(

1

1− β2(θ1 + θ2)

)α2
(

1

1− β3θ2

)α3

. (3.16)

The CGF is the logarithm of (3.16). To obtain appropriate saddlepoints, we expand

the condition for the univariate variable to that for the bivariate variable. As an

analogy of Daniels’ proof with the univariate variables (Daniels, 1954), we can show

that the saddlepoint (θ̂1, θ̂2) satisfies ∂2K(θ)
(∂θ1)2

∣∣∣
θ=θ̂

> 0, and ∂2K(θ)
(∂θ2)2

∣∣∣
θ=θ̂

> 0 in bivariate

variables. In the bivariate gamma distribution, (Y1, Y2), under the fixed value of θ2,

say θ∗2, we can show that ∂K(θ)
∂θ1

∣∣∣
θ1,θ∗2

is strictly increasing in the support of θ1, (c1, c2).

Also, limθ1→c1
∂K′(θ)

∂θ1

∣∣∣
θ1,θ∗2

= 0, and limθ1→c2
∂K′(θ)

∂θ1

∣∣∣
θ1,θ∗2

= ∞. We can show the same

thing by fixing the value of θ1. The saddlepoints and the density approximations are

easily obtained using mathematical software like Maple.

Figure 21 and Figure 22 show the true density and the saddlepoint approximation

of the bivariate gamma distribution. The approximation expresses the trend of the

original distribution well, however the approximation tends to underestimate the

density. The relative errors are around 10% near the origin and peak, and around

15% near the tail.

To approximate the bivariate density, the gamma distribution can replace the

normal distribution in the saddlepoint approximation formula as shown in (3.11),

but the closed form of the bivariate gamma distribution is not obvious. There is

no known bivariate gamma distribution that has a closed form and has a positive

support on the variables without any restriction. Instead, we use the centered density
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Figure 21: The true density of (Y1, Y2) = (X1+X2, X2+X3) whereX1 ∼ Gamma(1, 1),
X2 ∼ Gamma(3, 0.5), and X3 ∼ Gamma(2, 0.7). X-axis indicates Y1 and Y-axis Y2.

of (X1, X2) where X1 and X2 are independent univariate gamma distributions as a

simple approach. The saddlepoint approximation of (Y1, Y2) based on this is

f̂(y1, y2) =
ϕ(θ̂) exp(−θ̂1y1 − θ̂2y2)

Γ(ν1)Γ(ν2)σ1σ2

ν
ν1−1/2
1 ν

ν2−1/2
2 e−ν1e−ν2 , (3.17)

where ν1 = 4

(κ30(θ̂)/κ20(θ̂)3/2)2
, ν2 = 4

(κ03(θ̂)/κ02(θ̂)3/2)2
, σ1 =

√
κ20(θ̂), and σ2 =

√
κ02(θ̂).

θ̂ is obtained by (3.8) and κij is ∂i+iK(θ)

∂θi
1∂θj

2

∣∣∣
θ=0

. (Y1, Y2) here is a single bivariate vari-

able, not a statistic such as the sample mean. Figure 23 shows the approximation

using (3.17). The approximated density closely follows the trend of the true density
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Figure 22: The saddlepoint approximation of (Y1, Y2) = (X1 + X2, X2 + X3) where
X1 ∼ Gamma(1, 1), X2 ∼ Gamma(3, 0.5), and X3 ∼ Gamma(2, 0.7). X-axis indi-
cates Y1, Y-axis Y2.

in Figure 21. The error rate near the origin and peak are similar to the saddlepoint

approximation based on the normal distribution, however those near the tail part are

around 35%, which are bigger than those of the normal-based saddlepoint approx-

imation. A possible reason of the poor approximation is the fact that we use the

centered bivariate gamma where the correlation is ignored.

Let us consider another example that can take into account the correlation be-

tween variables in the centered bivariate distribution. We can derive a bivariate
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Figure 23: The saddlepoint approximation using the formula in (3.17) of (Y1, Y2) =
(X1 + X2, X2 + X3) where X1 ∼ Gamma(1, 1), X2 ∼ Gamma(3, 0.5), and X3 ∼
Gamma(2, 0.7).

saddlepoint approximation based on the bivariate exponential distribution, that is,

(X1, X2) where X1 = Z1 + Z2, and X2 = Z2 + Z3, also Z1 ∼ Exp(β1), Z2 ∼ Exp(β2)

and Z3 ∼ Exp(β3) are independent. This provides a closed form of a centered bi-

variate distribution, and the saddlepoint approximation of a single bivariate variable

based on this is

f̂(y1, y2) =
ϕ(θ̂) exp(−θ̂1y1 − θ̂2y2)

β2β3 + β1β2 − β1β3

e
−β1+β2

β1
−β2+β3

β3

[
e
( 1

β1
+ 1

β3
− 1

β2
)(β2+α) − 1

]
, (3.18)

where α = β1, if y1 < y2, and α = β2, if y1 > y2, also β1 = κ10(θ̂) −
√
κ11(θ̂),
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β2 =

√
κ11(θ̂), and β3 = κ01(θ̂) −

√
κ11(θ̂). We can see how well this bivariate ap-
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Figure 24: The saddlepoint approximation using the formula in (3.18) of (Y1, Y2) =
(X1 +X2, X2 +X3) where X1 ∼ Exp(1), X2 ∼ Exp(0.5), and X3 ∼ Exp(0.7).

proximation works when the correlation between two variables is taken into account

with a bivariate exponential distribution. Figure 24 is the saddlepoint approximation

of a bivariate exponential distribution using (3.18) and Figure 25 the true density.

Except the area just near the axis (around 90 % relative error), the approximation

shows practically no difference with the true density. This indicates that the approx-

imation to the bivariate gamma distribution by (3.17) can be improved if we can

replace the centered gamma density based on two independent gamma distribution
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that considers the correlation between Y1 and Y2.
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Figure 25: The true density of (Y1, Y2) = (X1 + X2, X2 + X3) where X1 ∼ Exp(1),
X2 ∼ Exp(0.5), and X3 ∼ Exp(0.7).

The approximation of the bivariate gamma by (3.18) shows approximately 100%

error near the axis that is similar to the approximation to the bivariate exponential

distribution, 20-30% relative errors on the area near Y1 = Y2, and approximately

5-10% error for the other area, thus the error rates are not consistently good or bad

compared to the approximation based on the normal distribution.

The approximation using a truncated CGF also can be used in the bivariate

distribution theoretically, but in practice, the differences are quite huge because of



50

the effect of truncated cumulants, thus it seems hardly to have a practical meaning.

3.6 Discussion

The saddlepoint approximation easily provides the density as shown in previous

sections when the closed form of the MGF or CGF exists. It shows overall excellent

approximations in univariate cases with the full CGF. When the distribution is skewed

to the right, the saddlepoint approximation based on the centered gamma distribu-

tion shows better approximation than that based on the normal distribution. Much

larger differences in the approximation are shown if the truncated CGF is used. The

effect of the truncated cumulants is more serious if the cumulants increase with the

order such as for the gamma distribution. With bivariate gamma distributions, the

approximation with the full CGF describes the distribution well, however it tends to

underestimate the distribution. The selection of saddlepoints is not trivial. Appropri-

ate saddlepoints do not exist in some cases. Daniels provides well-defined conditions

for the uniqueness and existence of saddlepoints in the univariate case. We adapted

this condition in the bivariate distribution case in a similar fashion. The bivariate

saddlepoint approximation using a truncated CGF shows a poor approximation, thus

seems inadequate for the practical use. An approach by Renshaw to approximate

densities iteratively implemented by renormalization may improve this problem as

shown on his paper (2000).

The saddlepoint approximation for the density provides a good description of the

variable of interest. It can be used for the maximum likelihood estimation, and also

approximates the density of the log-likelihood ratio and the score statistics (Reid,

1988). For statistical inference in general, the saddlepoint approximation for the tail

probability is more appropriate. Many formulas such as Skovgaard’s formula and

Lugannani and Rice saddlepoint approximation can be used for this purpose (e.g.,



51

Jensen 1995, Butler and Huzurbazar 1993).
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CHAPTER IV

THE DISTRIBUTION OF THE RESIDENCE TIME FOR SEMI-MARKOV

TWO-COMPARTMENT MODELS

4.1 Introduction

In pharmacokinetics, the kinetic behavior of many drugs is described using multi-

compartment models. One-compartment models are based on the assumption that

the concentration of a drug in various system reaches an equilibrium almost instan-

taneously (Wartak, 1983). However, because the distribution of most drugs involves

various fluids and tissues, the kinetics are often depicted using multi-compartment

models.

Our objective in this chapter is to investigate the distribution of residence times

for the two-compartment model as a simple case of multivariate compartment mod-

els. We specify the distribution of the number of visits first and obtain a bivariate

moment generating function (MGF) of the residence times based on that. We use the

saddlepoint approximation to approximate densities for the residence times from the

MGF.

4.2 Two-Compartment Models

Two-compartment models are composed of a central compartment and a periph-

eral compartment and are often preferred to more complicated models in terms of

fewer parameters (Laurent et al., 2001). The central compartment represents the

circulatory system, called simply “plasma”, where the drug is exchanged rapidly with

other parts of the body (Metzler, 1971). The peripheral compartment, also called

“tissue”, exchanges a significant amount of drug with the central compartment at a
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slower rate (Metzler, 1971). Figure 26 describes a generalized schematic of a two-

compartment model that has two linear eliminations to the system exterior, each of

them working in a different compartment. In deterministic models, kij with i = 1, 2,

j = 0, 1, 2, i 6= j denotes a constant transfer rate from compartment i to j, where

0 denotes the system exterior. However, under the Markov process assumption, we

define a probability intensity coefficient for transfer rate kij in units of time−1,

Prob{a given particle in i transfer to j in(t, t+4t)|X(t)} = kij4t+ o(4t) (4.1)

for i = 1, 2, j = 0, 1, 2, i 6= j, and it yields the transfer probability when multiplied

by a small time increment (Matis and Wehrly, 1985). The retention time during a

single visit to the compartment has an exponential distribution with the mean equal

to the reciprocal of the sum of all outflow coefficients from the compartment (Matis

and Wehrly, 1985). In a non-Markovian process setting, the probability intensity

coefficient is replaced by the probability intensity rate function to express the transfer

probability (Matis and Wehrly, 1985). An example of the rate function is the hazard

rate that depends on the “age” of particle and produces the gamma distribution for

the retention time (Matis and Wehrly, 1985). These statistical concepts of transfer

rates provide distributional approaches to the quantities of interest such as residence

times of compartments.

4.2.1 The Distribution of the Number of Visits

In Figure 26, a particle starts from compartment 1 and moves between compart-

ments until escaping to the system exterior. We assume that the retention time of

a particle during a single visit prior to its next transfer to another compartment has

an arbitrary distribution, and thus, this is a semi-Markov process with state space

consisting of one absorbing and two transient states. A semi-Markov process allows
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Figure 26: A generalized schematic of two-compartment model.

non-instant mixing and heterogeneous compartments (Matis and Wehrly, 1985).In

semi-Markov processes, the successive states visited by a particle form a Markov

chain (Çinlar, 1975), where the probability for a particle to move from one state to

another depends only on the present state.

In Figure 26, let the probability of escaping to the system exterior from compart-

ment 1 be π1 and from compartment 2, π2. Since the transition probability depends

on the parameters of the present state, π1 = k10

k10+k12
and π2 = k20

k20+k21
. Let Ni denote

the random number of visits for a particle starting at compartment 1 to compartment

i before escaping to the system exterior. Since a particle starts from compartment 1

in Figure 26, using mathematical induction, we can show that the probability mass

function (pmf) of (N1, N2) is

PN1,N2(n1, n2) = (1− π1)
n2πn1−n2

1 (1− π2)
n1−1πn2−n1+1

2 , (4.2)

where n1 = 1, 2, 3, ... and n2 = n1, n1 − 1. Subsequently, the marginal pmfs for N1

and N2 are

PN1(n1) = p(1− p)n1−1, n1 = 1, 2, 3, .., (4.3)

and

PN2(n2) = π1I[0](n2) + (1− π1)p(1− p)n2I[1,2,,...](n2), (4.4)



55

where p = π1+π2−π1π2 and I(·) is the indicator function. Thus, N1 has the geometric

distribution with the success rate p. However, the distribution of N2 depends on the

probability of not visiting compartment 2. This causes the total residence time during

all visits to have a distribution that is not strictly continuous.

4.2.2 The MGF of the Residence Time

Let Rij be the jth retention time of the particle in compartment i during a single

visit prior to its next transfer out of i and Si be the total residence time (or simply

residence time) in i during all of its Ni visits. If the process is a Markov process, then

Rij has an exponential distribution, and we can directly calculate the distribution for

Si using (4.3) and (4.4). However, if Rij does not have an exponential distribution,

the approach using the MGF is relatively easy and provides an interpretation for the

distribution. Using the fact that conditioned on Ni, Ri1, ..., RiNi
are independent and

identically distributed, the MGF of the residence time in compartment 1 is

MS1(t) = E
[
et

PN1
j=1 R1j

]

=
∞∑

n=1

E
[
et

PN1
j=1 R1j |N1 = n

]
PN1(n) =

∞∑
n=1

[MR1(t)]
n PN1(n)

=
pMR1(t)

1− (1− p)MR1(t)
. (4.5)

where MRi
(t) is the MGF of each Rij. Similarly,

MS2(t) = π1 + (1− π1)

[
pMR2(t)

1− (1− p)MR2(t)

]
. (4.6)

A difference between the distributions of S1 and S2 is that S2 has a chance of equaling

0. Also, the distributions of retention time can be different for the two compartments.

If the distributions of retention times are similar, we expect that the magnitude of

the density of S2 is proportionally smaller than that of S1 on its positive support.
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Suppose that the two-compartment model is the Markov process with transfer rates

given in Figure 26. Using (4.5) and (4.6),

MS1(t) =
1

1− t
(k12+k10)p

,

and

MS2(t) = π1 + (1− π1)
1

1− t
(k21+k20)p

.

This shows that the distribution of the residence time for compartment 1 is an expo-

nential distribution, and for compartment 2 is a mixture of an exponential distribution

and a mass on 0.

Using (4.2), the MGF of the bivariate distribution of (S1, S2) can be calculated

as

MS1,S2(t1, t2) =
π1MR1(t1) + (1− π1)π2MR1(t1)MR2(t2)

1− (1− π1)(1− π2)MR1(t1)MR2(t2)
. (4.7)

The MGF expression directly provides a complete set of moments. Also it is equivalent

to knowing the exact distribution if the MGF exists. In fact, when the MGF is known,

we can approximate the density or distribution by the saddlepoint approximation even

though the distribution or density function may not have a closed form.

4.3 The Approximation of the Density Using the Saddlepoint Approxi-
mation

The basic formula for the saddlepoint approximation of a multivariate distribu-

tion is as follows. Suppose that a continuous multivariate variable X = (x1, x2, ..., xd)

has the MGF,MX(t), and the cumulant generating function (CGF)KX(t) = logMX(t).

The saddlepoint approximation for the density using (3.7) is

f(x; t̂) =
1

(2π)d/2
exp{KX(t̂)− t̂ · x}|Σ(t̂)|−1/2, (4.8)
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where t̂ is the solution of the equation

∂KX(̂t)

∂ti
= xi, i = 1, 2, ..., d, (4.9)

and |Σ(t)| is the determinant of the covariance matrix composed of the second deriva-

tives of KX(t). As an example, for a bivariate variable, |Σ(t)| = ∂2Kx(t)

∂t21

∂2Kx(t)

∂t22
−

(
∂2Kx(t)
∂t1∂t2

)2

(Renshaw, 2000). The point t̂ satisfying the equation (4.9) is the max-

imum likelihood estimate of t in f(x; t) after exponential tilting (Barndorff-Nielsen

and Cox, 1989, page 181). The solution of (4.9) in the univariate case is also known

as the saddlepoint for the integrand of the Fourier inversion of the density func-

tion (Daniels, 1954). The solution of the equation (4.9) is not unique when KX(t) is

not strictly increasing.

It is common practice that retention times are assumed to have exponential or

gamma distributions. In such a case, an MGF like (4.7) has multiple poles which

cause multiple solutions for (4.9). With a single variable, Daniels (1954) shows that

(4.9) has a unique real root t̂ on the support of x with conditions such that the

distribution function is between 0 and 1, and the CGF is a convex function of t.

Using these conditions, the range of saddlepoints may be limited at either or both

ends. In (4.9) with the exponential or gamma distribution, the range for each element

of t is upper-bounded by the biggest scale parameter that is the reciprocal of the mean

in exponential distribution case, and has −∞ as the lower bound. Within that range,

the CGF is convex and the first derivative of the CGF is continuously increasing.

In practice, equation (4.8) may not integrate to one over the support of the

variable. In such cases, we can renormalize (4.8) by multiplying by an appropriate

constant. It can be shown that renormalization gives even smaller error rate and

often improves the approximation (Barndorff-Nielsen and Cox, 1989, page 182). We

use this renormalization to approximate densities in this paper.
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Approximating the density of residence times for a compartment model like Fig-

ure 26 using the saddlepoint approximation has some advantages. First, we always

obtain the density of the distribution once we have the MGF of the variable of interest

even though the exact density is not in a closed form. Second, it results in an accu-

rate approximation even when we handle multi-dimensional variables. In the case like

Figure 26, the distribution of two residence times is not a typical bivariate continuous

distribution. The probability of (∆S1, S2 = 0) is not 0 because of the chance that

N2 = 0, and thus the bivariate distribution conditioned on S2 = 0 has a mass on the

set {(S1, 0) : S1 > 0}. Also, a closed form of the density or distribution does not exist

when S2 > 0. The conditional bivariate density given S2 > 0 is a mixture of infinitely

many densities that depend on the retention time distribution for each compartment

and the number of visits. If the compartment model is based on Markov processes,

the bivariate density is a mixture of Erlang variables with smaller weights when the

shape parameter increases. Refer to Section 4.5 to see the calculation and the exact

form of the bivariate density for the continuous part. We decompose the MGF (4.7)

into the cases where S2 = 0 and S2 > 0 separately to approximate the density rather

than the simply applying the saddlepoint approximation using the whole MGF. Then

the MGF (4.7) could be expressed as

MS1,S2(t1, t2) = π1MR1(t1)

+ (1− π1)
π2MR1(t1)MR2(t2) + π1(1− π2)M

2
R1

(t1)MR1(t1)

1− (1− π1)(1− π2)MR1(t1)MR1(t1)
. (4.10)

This is the MGF of a mixture of two bivariate distributions, one bivariate continuous

and the other with a point mass at zero for S2 and the retention time distribution in

a single compartment for S1.

To demonstrate the saddlepoint approximation, let the two-compartment model

be a Markov process with transfer rates 1.0, 0.5, 0.4, and 0.6 for k10, k12, k21, and
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Figure 27: The renormalized saddlepoint approximation of bivariate density of (S1 >
0, S2 > 0). X-axis is S1, and Y-axis S2.

k20, respectively. Then, each retention time has an exponential distribution with

a mean that is the reciprocal of the sum of all outflowing transfer rates from the

compartment. When S2 = 0, the density is simply the exponential density with mean

0.667 times π1, the probability of exiting the system from compartment 1 at the first

visit by the univariate part of (4.10). When S2 > 0, Figure 27 shows the renormalized

bivariate approximation using the saddlepoint approximation. Figure 28 shows the

true density where the infinite sum is approximated with n1 = 100 terms. Among

solutions satisfying (4.9), the smallest pair was chosen as the saddlepoint for each
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Figure 28: The true bivariate density of (S1, S2). X-axis is S1, and Y-axis S2.

x because that satisfies conditions for a unique root for the saddlepoint. We can

see that the approximation follows the trend of the true density very closely. After

renormalization, the approximation shows less than 1% relative error close to origin,

and less than 5% relative error near the tail part.

The MGF of the residence time for the entire system, which is the residence time

for a particle coming into the system until exiting the system, is easily obtained by

replacing t1 and t2 by the same dummy variable t in (4.7). Figure 29 compares the

saddlepoint approximation and the renormalized saddlepoint approximation of the
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residence time with the numerical approximation of true univariate density of the

residence time of the two-compartment model. As the picture is shown, the saddle-

point approximation closely follows the true density, although it slightly overestimates

the density. The relative errors for saddlepoint approximation are mostly 10 to 11 %

in the tail part, around 13 % in the middle and around 8 % close to origin. Renor-

malization of the approximation results in a relative error for the tail part less than

1 %, and the error for middle and origin part is less than 4 %. True differences in

the tail part are so small due to the small magnitude of the approximation that the

actual difference between true density and the saddlepoint approximation without

renormalization is at most 10−4.

The benefit of using the saddlepoint approximation is more distinctive in this

case, because we do not have to derive the distribution for the convolution of variables

from the multivariate density through a variable transformation.

4.4 Discussion

The direct calculation of the MGF using the distribution of the number of vis-

its allowed us to express the exact distribution of the residence time for the two-

compartment model. It was also shown that the residence time of the central com-

partment has an exponential distribution regardless of multiple visits in Markov pro-

cesses. The MGF of the bivariate residence time for the two-compartment model is

expressed as a closed form unlike the density of that. The MGF shows that the res-

idence time does not have a simple bivariate continuous form due to the probability

of a particle exiting the system without visiting compartment 2. The saddlepoint ap-

proximation was performed only on the continuous part of the bivariate distribution.

The approximated density shows that the density of bivariate residence time has the

peak at origin, and monotonically decreases to the tail. The saddlepoint approxi-
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Figure 29: The comparison of the saddlepoint approximation and the renormalized
saddlepoint approximation with numerically approximated true density for the two
compartment model in Figure 27.

mation approximates the density accurately once we have the MGF of a variable of

interest whether or not a closed form of the density exists. However, one needs to be

cautious in the choice of the saddlepoint if there are multiple solutions for (4.9) as

discussed previously. It was demonstrated that there always exists a single root on

the range that satisfies certain conditions. The benefits of having an exact bivariate

MGF are clear in this case. We can not only obtain a higher order moments by

differentiating it, but also it can be converted to the density using the saddlepoint
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approximation.

4.5 The Calculation of the Bivariate Distribution of the Residence Time

Let S1 and S2 be the residence time for compartments 1 and 2 respectively in

Figure 26, andN1 andN2 the number of visits for the particle starting in compartment

1 to compartment 1 and 2, respectively. Using (4.2), the bivariate density for (S1, S2 >

0) is

f(s1, s2) =
∞∑

n1=1

∞∑
n2=1

f(s1, s2|n1, n2)P (n1, n2)

= f(s1, s2|n1 = 1, n2 = 1)(1− π1)π2 +
∞∑

n1=2

n1∑
n2=n1−1

f(s1, s2|n1, n2)P (n1, n2)

= (1− π1)cg(s1|n1 = 1)g(s2|n2 = 1)

+
∞∑

n1=2

[
g(s1|n1)g(s2|n1 − 1)(1− π1)

n1−1π1(1− π2)
n1−1

]

+
∞∑

n1=2

[
g(s1|n1)g(s2|n1)(1− π1)

n1(1− π2)
n1−1π2

]

= π2

∞∑
n1=1

g(s1|n1)g(s2|n1)(1− π1)
n1(1− π2)

n1−1

+ π1

∞∑
n1=2

g(s1|n1)g(s2|n1 − 1)(1− π1)
n1−1(1− π2)

n1−1, (4.11)

where g(si|ni = 1) is the density of the retention time for a compartment i, and

g(si|ni) is the density of the sum of ni independent retention times.
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CHAPTER V

AN APPROACH TO THE RESIDENCE TIME DISTRIBUTION FOR

STOCHASTIC MULTI-COMPARTMENT MODELS

5.1 Introduction

Compartments in models usually have physiological implications, and thus simple

compartment models are often too naive to describe the kinetics of a drug through the

whole body, although many researchers prefer simple models like the two-compartment

model. We expand our interest to multi-compartment models in an effort to generalize

the results about the two-compartment model in previous chapter.

When a more complicated model than a two-compartment model is required to

describe the kinetics of drugs, one interest is the residence time for the entire system

or a part of the system that consists of several compartments. Another interest is

simplifying the system by combining compartments that result in a non-exponential

retention time distribution. In pharmacokinetics, a structural transformation of a

complex pharmacokinetics model to obtain a simpler model with identical kinetic be-

havior is called lumping, and that is a common approach to reduce whole-body phys-

iologically based pharmacokinetic model dimensionality and complexity (Nestorov et

al., 1998).

We implement the two-compartment approach using the cofactor rule for a single

destination (Butler, 2000) that provides the MGF for the retention time for combined

compartments or the entire system. The cofactor rule and the results from the two-

compartment model together lead us to specify the MGF for the residence time in

the combined compartments. Using a semi-Markov process model that describes the

kinetics of calcium in the human body in Chapter II, we compare the accuracy of this
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new method with the method using the probability intensity coefficient matrix. In an

application, we compare the residence times for two different kinetics of a drug called

pravastin that result from different administration methods, oral administration and

intravenous injection.

5.2 Cofactor Rule for a Single Destination

In this section, we introduce the cofactor rule and use the results from the two-

compartment model in the previous section to obtain the MGF of residence times for

combined compartments in more complicated compartment models.

Cofactor rules were first derived and proved by Butler in 1997, and later he

showed that they can be derived using methods of matrix algebra (Butler, 2000).

It is equivalent to a flowgraph technique called Mason’s rule that is based on flow-

graph analyses to solve stochastic problems (Whitehouse, 1983). Butler and Huzur-

barzar (1997) applied Mason’s rule to obtain the empirical likelihood for the distri-

bution of survival time based on the stochastic flow graph model. However, cofactor

rules are more simple in formula and easier to compute using mathematical computer

packages such as Maple or Mathematica.

In semi-Markov processes, the successive states visited form a Markov chain,

and a waiting time has a distribution that depends on the state being visited (Çinlar,

1975). Therefore, we can characterize the behavior of a semi-Markov system in terms

of the matrix of one-step branch transmittances that combine transition probabilities

and MGFs for each state change (Butler and Huzurbazar, 1997). Let W (t) be the

matrix of one-step branch transmittances for the n-state semi-Markov process, and

wij, an element of W (t). Each wij is a product of the MGF of the retention time

of a current compartment with the outflow transfer rate as a parameter and the

conditional probability that a particle moves to compartment j given that it starts
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in i.

Suppose that S is the first passage time from state 1 to state n or equivalently

the residence time for the entire system. State 1 is the entering state, and state n is

the destination state. Define f1n = Pr(S < ∞) and MS(t) is the conditional MGF

of S given S < ∞. Then the cofactor rule for the first passage transmittance from

state 1 to state n 6= 1 is

f1nMs(t) =
(n, 1) cofactor of In −W (t)

(n, n) cofactor of In −W (t)
:=

(−1)n+1|Φn1(t)|
|Φnn(t)| , (5.1)

where Φij(t) is the (i, j)th minor of In −W (t) (Butler, 2000). If the MGF for the

retention time at each state is well defined on an open neighborhood of 0, and passage

1 → n is possible, then f1nMs(t) is well defined over (−∞, c) for c > 0 (Butler, 2000).

If the passage from state 1 to state n is certain to occur, f1n becomes 1 so that the

cofactor rule provides the MGF for the first passage through the system directly.

1

2

Terminal

@
@

@R ¡
¡

¡µ

-
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Figure 30: An example of a Markov process.

To demonstrate the cofactor rule, consider a simple two-compartment model

based on the Markov process in Figure 30. The compartment “terminal” is added

to express the exterior of the system. Physiologically this model could describe the

absorption in compartment 1 and elimination process in compartment 1 and 2 in a

drug administration. Each kij indicates the transfer rate from compartment i to j.
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As an example, suppose k12 = 2, k20 = 2 and k10 = 1, where subscript 0 indicates

the terminal compartment. Then, retention times for compartment 1 and 2 have

the exponential distribution with means 1/3 and 1/2, respectively. Let MR1(t) and

MR2(t) be the MGFs of the retention times for compartments 1 and 2. Then the

matrix of one-step branch transmittances is

W (t) =




0 k12

k12+k10
MR1(t)

k10

k12+k10
MR1(t)

0 0 MR2(t)

0 0 0



.

Therefore the MGF of the residence time S for the whole system using (5.1) is

MS(t) =
1

3
MR1(t) +

2

3
MR1(t)MR2(t).

The cofactor rule is easily applicable to the much more complicated model which

has some feedback loops like the system in Figure 31. Since a particle starting from

compartment 1 will go to the absorbing compartment 6 in finite time, the MGF of

the residence time for the system is

MS(t) =
w12w26(1− w34w43)

1− w23w32 − w34w43 − w25w52 + w25w52w34w43

where the one-step transmittance wij depends on the probability of going to state j

from i and the MGF of the retention time that does not necessarily have an expo-

nential distribution.

We can apply the cofactor rule to the two-compartment model in Section 4.2.

The matrix of one-step transmittance of the two compartment model in Figure 26 is

W (t) =




0 k12

k12+k10
MR1(t)

k10

k12+k10
MR1(t)

k20

k12+k10
MR1(t) 0 k20

k12+k10
MR1(t)

0 0 0



.
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Figure 31: An example of semi-Markov process model with feedbacks.

By letting k10

k12+k10
= π1 and k20

k21+k20
= π2, and using (5.1), we obtain

MS(t) =
π1MR1(t) + (1− π1)π2MR1(t)MR2(t)

1− (1− π1)(1− π2)MR1(t)MR2(t)
.

which is the same MGF as (4.7) by replacing t1 and t2 by t.

5.3 Two-Compartment Model to Multi-Compartment Model

Many times, the residence time of a part of system is of interest, and in such a

case the cofactor rule can be used to obtain the MGF of the retention time during

a single visit for that part of the system. This MGF can be incorporated into two-

compartment models to calculate the MGF of the total residence time in the system.

We illustrate this with the previously shown calcium kinetics model, M&W model in

Figure 3.

The method in (Matis and Wehrly, 1990) to obtain the mean and variance of a



69

residence time for a compartment or compartments of interest is using a coefficient

matrix, say K. The component of K, kij is defined in (2.1). Under some regularity

conditions, the expectation of residence times θ and the variances are

θ = −K−1 (5.2)

and

V (S) = 2θθD − θ(2) (5.3)

where θD is the diagonal matrix, diag(θ11, ..., θnn) and θ(2) is the matrix of squared

elements of θ (Matis et al., 1983).

Using the estimated parameters provided in (Matis and Wehrly, 1990) as k̂12 =

3.253, k̂21 = 6.469, k̂13 = 0.188, k̂31 = 1.047, k̂10 = 0.0504, and k̂x = 1.235 in hours−1,

the coefficient matrix is

K =




−3.636 3.131 0.444 0 0 0

3.735 −3.735 0 0 0 0

0 0 −0.444 0.444 0 0

0.414 0 0 −0.444 0.030 0

0 0 0 0 −0.030 0.030

0 0 0 0.030 0 −0.030




.

Using this matrix, the equation in (5.2), and combining results using appropriate

transformation, the mean residence times of compartment 1, 2, and 3 are calculated

as 19.86, 9.99, and 90.13 respectively. Each ij element in the matrix resulting from

the equation (5.3) is the variance of the residence time at compartment j for a particle

starting i. Some limitations are shown for this method. First, the manipulation of

the matrix is not easy if we try to obtain higher order moments than the mean and

variance. Second, methods for combining several compartments to obtain the second
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or higher order moments for the residence time are still not clearly developed. Third,

this approach does not provide exactly, or even approximately, the distributions of

the retention times or the residence times.

Using M&W model, we will calculate the MGF of the retention time directly

using the cofactor rule and compare the resulting moments with the results based on

the coefficient matrix above. First, we apply the cofactor rule to get the retention

time for the deep compartment. Compartment 3 is the entering compartment, and

compartment 1 can be considered as the exterior of the deep compartment. Then the

one-step transmittance matrix for the deep compartment is

W (t) =




0 M(t|k13) 0 0 0

0 0 kx

kx+k31
M(t|kx + k31) 0 k31

kx+k31
M(t|kx + k31)

0 0 0 M(t|kx) 0

0 M(t|kx) 0 0 0

0 0 0 0 0




,

(5.4)

where M(t|β) is the MGF of the exponential(β) distribution. Therefore, by (5.1), the

MGF for the time to stay in the deep compartment for a single visit, say MRdeep
(t),

using the cofactor rule and the MGF of the exponential distribution is

MRdeep
(t) =

k31

kx+k31

{
1

1−t/k13

}{
1

1−t/(kx+k31)

}

1− kx

kx+k31

{
1

1−t/(kx+k31)

}{
1

1−t/kx

}2 . (5.5)

The mean and variance of retention time Rdeep using the parameters given above are

3.68 and 39.34. The next step is calculating the MGF of the residence time for a

particle during all of its visits at the deep compartment before exiting to the exterior

of the system using (5.5). Figure 32 shows the schematic of the two-compartment

model derived from Figure 3. Let Sdeep be the total residence time for the deep
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Figure 32: Two-compartment schematic of the 3-compartment model to calculate the
residence time for the deep compartment.

compartment and π the probability of a particle to escape the system from the com-

bined compartment (1 and 2). Using the distribution of the number of visits we can

calculate that

MSdeep
(t) =

π

1− (1− π)MRdeep
(t)
, (5.6)

where π = k10

k13+k10
. The mean residence time of S3 using (5.6) is 90.05. The mean

residence time using the coefficient matrix (5.4) is 90.13. Rounding causes the small

difference. The MGF of residence time for entire system Stotal is also easily found by

the cofactor rule as

MStotal
(t) =

w10

1− w12w21 − w13MRdeep
(t)
, (5.7)

where w10 = k10

k13+k12+k10

1
1−t/{k13+k12+k10} , w12 = k12

k13+k12+k10

1
1−t/{k13+k12+k10} , w21 =

1
1−t/k21

, and w13 = k13

k13+k12+k10

1
1−t/{k13+k12+k10} . We can obtain the same results as

above directly from the one-step transmittance matrix for the entire system. The

mean of Stotal is 119.87, and again this agrees with the mean 119.98 using the coeffi-

cient matrix. We can obtain higher moments than the mean by repeatedly differenti-

ating the MGFs. For the example, variances of Sdeep and Stotal using (5.6) and (5.7)

are 9403.26 and 15665.75, respectively.
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Figure 33: The pharmacokinetic model for pravastatin. The compartment 1, 2, 3,
and 4 represent the central, deep, shallow and absorption compartment.

5.4 Comparison of Oral Administration and IV Bolus Injection

Drugs are administered through many different routes for reasons such as conve-

nience, availability, or economic reasons. Different routes obviously result in different

pharmacokinetics inside the body. As an example, oral administration usually re-

quires an absorption compartment to describe the kinetics of drugs, but intravenous

injection (iv injection) does not. Also, the residence time after absorption may be

different depending on the different scheme of the drug distribution.

The compartment model in Figure 33 by Hatanaka et al. (1998) describes the

pharmacokinetics of pravastatin after single intravenous and oral administrations in

rats. Pravastatin is a tissue-selective inhibitor of cholesterol synthesis for the treat-

ment of hypercholesterolemia. It is more permeable across the plasma membrane of

hepatic cells than that of nonhepatic cells. Compartments 1, 2, and 3 represent the

central, deep, and shallow compartments, respectively, for iv bolus injection. Com-

partment 4 represents an absorption compartment, mainly the gastrointestinal tract

after oral administration. The deep compartment reflects mainly muscle, and the

shallow compartment reflects the liver, the target compartment. The model implies

that the drug accesses the shallow compartment after absorption when the drug is

administered orally. For iv injection it goes through the central compartment to ac-
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cess the shallow compartment. Once the drug is absorbed or administered through

iv injection, it is eliminated only through the shallow compartment. Hatanaka et

al. show that plasma concentration is dose-dependent, and that may be caused by

nonlinear kinetics in the hepatic uptake rate k13. However, in this paper we assume

that the transfer rates are fixed for the purpose of illustration, and thus the retention

times have the exponential distribution. We are interested in comparing the residence

times inside the body for the central, deep and shallow compartments after absorp-

tion for oral administration and iv injection. We calculate the MGFs of the residence

time for the oral administration and the iv injection and compare the moments and

distributions for both cases. Figure 34 illustrates the kinetics of the drug after iv

injection. Using (5.1), the MGF of the residence time of the model is

MSiv
(t) =

w13w30

1− w12w21 − w13w31

(5.8)

where wij represents the one-step transmittance from compartment i to j using the

MGF as defined in Section 5.2. We use the transfer rates: k12 = 0.324, k21 = 0.121,

k31 = 0.910, and k30 = 0.480 in the unit of min−1 provided in Hatanaka et al. (1998).

The transfer rate from compartment 1 to 3 is not constant but depends on the amount

of the drug in the central compartment, however we fix k13 = 1.10, that is the transfer

rate for the drug amount 10mg/kg in the central compartment which is also given

in Hatanaka et al. (1998). Using (5.8) and the given transfer rates, the mean and

variance of the residence time are 11.765 and 241.003.

The kinetics of the drug after absorption for oral administration are shown in

Figure 35. The MGF of the residence time of the model using cofactor rule is then

MSoral
(t) =

w30(1− w12w21)

1− w12w21 − w13w31

(5.9)

The mean and variance using (5.9) are 8.421 and 189.590. We can see that the mean

residence time of the drug inside the body for an oral dose is smaller than that for an
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Figure 34: The illustration of the kinetics for pravastin by iv bolus injection.
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Figure 35: The illustration for the kinetics of pravastin after absorption by oral
administration.

iv injection. Figure 36 compares the approximated densities of the residence times for

the two administrations using the renormalized saddlepoint approximation. Figure 36

illustrates the large initial qualitative differences between the two distributions. The

density for the oral dose is monotonically decreasing with rapid initial decay, whereas

the density for the iv injection starts at 0 and reaches a peak afterwards resulting in

a longer residence time.

Now, let us focus on the residence times for specific compartments rather than

the entire system. For illustration, suppose that in the kinetics of pravastin we are
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Figure 36: The renormalized saddlepoint approximation of densities of the residence
time for the central, deep and shallow compartment by oral and iv injection admin-
istration. The solid line is for iv injection and the dashed line oral dose.

initially interested in the residence time only for the central and deep compartments

which are plasma and muscle combined. We first obtain the MGF of the retention time

for the combined deep and central compartments. In the both the iv injection and

oral administration models, the only route to the outside (the shallow compartment)

from the combined compartment is through the central compartment. Therefore the
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one-step transmittance matrix for the combined compartments is

W (t) =




0 w12 w13

w21 0 0

0 0 0



.

Then the MGF of the retention time for the new compartment using (5.1) is

MRnew =
w13

1− w12w21

. (5.10)

Since Figures 34 and 35 have a schematic of a two compartment model by considering

the central and the deep compartment together as the new compartment, we can apply

the results for two-compartment model in Section 4.2. Let N1 and N2 be the number

of visits of a particle at the shallow compartment and the combined compartment.

Using (4.3), N2 for iv injection has the pmf

PN2(n2) = π(1− π)n2−1, n2 = 1, 2, 3, ..,

where π = k30

k31+k30
. Then the MGF of the residence time for the new compartment

MSnewiv
(t) using (4.5) is

MSnewiv
(t) =

πMRnew(t)

1− (1− π)MRnew(t)
(5.11)

The mean and variance using (5.10) are 9.682 and 210.253. The pmf of N2 for oral

injection using (4.3) is

PN2(n2) = π(1− π)n2 , n2 = 0, 1, 2, ..,

which shows that the probability of N2 = 0 is not 0. Therefore the MGF using (4.6)

is

MSneworal
(t) = π + (1− π)

(
πMRnew

1− (1− π)MRnew

)
, (5.12)
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and this gives the mean residence time 6.34 and variance 158.839. Figure 37 com-

pares the approximated densities using the renormalized saddlepoint approximation

between iv injection and oral administration. Since the distribution for oral admin-

istration has a probability mass π on 0, it has a lighter tail causing a smaller mean

residence time and variance than those of iv administration.

We may be also interested in the residence time for the shallow compartment,

which is in fact the target compartment of the drug. The number of visits N1 for iv

and oral administration both have the same distribution with pmf, using (4.3),

PN1(n1) = π(1− π)n1−1, n1 = 1, 2, 3, ...

The renormalized saddlepoint approximation of the density for the shallow compart-

ment residence time is shown in Figure 38. The mean and variance are 2.083 and

4.340, respectively. Note that adding this mean residence time of the shallow com-

partment to the mean residence time of the central and shallow system for both ad-

ministration cases respectively gives back the mean residence times for entire system,

11.765 and 8.421. Even though nonlinearity of hepatic absorption was not consid-

ered, these results demonstrate the difference in the distributions of residence times

between oral administration and iv injection.

5.5 An Application Using the Markov Chain

We can approach the distribution of the univariate residence time using the

general facts from the Markov chain. The concept based on this approach in this

section is that any successive state visited in a semi-Markov process forms a Markov

chain. Let Y be a semi-Markov process. Suppose that we are interested only in the

time at which state Y is changed, say T1, T2, T3, ..., and let T0 be 0. This defines a
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Figure 37: The renormalized saddlepoint approximation of densities of the residence
time for the combined central and deep compartments. The solid line is for iv injection
and the dotted line oral dose. The point indicates the probability for the drug particle
to escape the body without visiting the central and deep compartments when the drug
is orally administered.
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Figure 38: The renormalized saddlepoint approximation of the density of the residence
time of the shallow compartment.



80

new process which is

Xn = Y (Tn),

where n is a natural number. If Xn = i, the interval [Tn, Tn+1) is said to be a

sojourn interval in i. It was known that Xn is a Markov chain, and in Markov

processes, Tn+1 − Tn has an exponential distribution with the parameter depending

on Xn (Çinlar, 1975, page 247). The transition probability P (i, j), is defined as

P (i, j) = P {Xn+1 = j|Xn = i} , i, j ∈ E, (5.13)

where E is the state space. It is obvious that P (i, i) is equal to 0. Let F (i, j) be the

probability of ever reaching j starting from i. Then it is known that

F (i, i) = 1− 1

M(i, i)
, F (i, j) =

M(i, j)

M(j, j)
(5.14)

for transient states (Çinlar, 1975, page 148), where M(i, j) is an element of the matrix

M = I + P + P 2 + · · · ,

where P consists of P (i, j) in (5.13). Let Q be the matrix of transient states obtained

from P (Çinlar, 1975, page 145), then

M∗ = I +Q+Q2 + · · · = (I −Q)−1. (5.15)

Let Nij be the total number of visits starting in i will make to j before its

departure from the system, then we can observe the relationship that

P{Njj = m} = F (j, j)m−1(1− F (j, j)), m = 1, 2, · · ·, (5.16)

and for i 6= j,

P{Nij = m} =





1− F (i, j), m = 0,

F (i, j)F (j, j)m−1(1− F (j, j)), m = 1, 2, · · ·.
(5.17)
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Let Sij denote the total residence time that the particle starting in i will accumulate in

j during all itsNij visits and νi denotes the sum of all transfer rates from compartment

i. Also let r = F (i, j), the probability of a particle from i to ever reach to j where

i 6= j, and p = 1− F (j, j). Using (5.14) and (5.16), for i = j,

E
[
etSij

]
=

∞∑
n=1

E
[
et

PN
i=1 Ri|N = n

]
PN(n),

=
∞∑

n=1

MRi
(t)np(1− p)n−1,

=
pMRi

(t)

1− (1− p)MRi
(t)
. (5.18)

Similarily, using (5.14), and (5.17), for i 6= j,

E
[
et

Pn
i=0 Ri

]
= 1− r + r

pMRi
(t)

1− (1− p)MRi
(t)
.

If the process is the Markov process case, the results above show Sii ∼ Exp( 1
νip

), and

Sij ∼ 1{Sij = 0}(1− r) + 1{Sij > 0}r ·Exp( 1
νjp

) where β is the mean residence time

of the compartment j, and 1{·} is 1 if the condition in the brace meets, otherwise 0.

This approach lets us know the univariate distribution of the residence time at

any compartment or directly connected compartments in the system. To illustrate the

approach above, let see the two compartment model in Figure 26. Let π1 = k10

k12+k10

and π2 = k20

k21+k20
represent the probabilities of escaping the system from compartment

1 and compartment 2, respectively. Then the transition matrix with only transient

part, Q is

Q =




0 1− π1

1− π2 0


 . (5.19)

Therefore,

(I −Q)−1 =




1
π1+π2−π1π2

1−π1

π1+π2−π1π2

1−π2

π1+π2−π1π2

1
π1+π2−π1π2


 . (5.20)
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Then, F (1, 1) = 1−π1−π2 +π1π2, F (1, 2) = 1−π1, and F (2, 2) = 1−π1 +π2 +π1π2

using (5.14). The probability of the number of visits are then

PN1(n1) = {π1 + π2 − π1π2}{1− (π1 + π2 − π1π2)}n1−1, n1 = 1, 2, · · ·, (5.21)

and

PN2(n2) =





π1, n2 = 0,

{1− π1}{π1 + π2 − π1π2}{1− (π1 + π2 − π1π2)}n2−1, n2 = 1, 2, · · ·.

These are the same results as (4.3) and (4.4).

For an example in which we can not find the distribution of the residence time us-

ing the two-compartment model approach, let us consider again the calcium clearance

model in Figure 3. Compartment 1, plasma, is connected with more than one com-

partment, thus it can not be interpreted as a similar structure to the two-compartment

model as demonstrated in Section 5.3. The transition matrix for the transient parts

for the entire system is

Q =




0 k12

k12+k13+k10

k13

k12+k13+k10

1 0 0

1 0 0



,

where each (i, j) element represents the transition probability from compartment i to

j. Note that the third row and third column indicate the entire deep compartment.

Then,

(I −Q)−1 =




k12+k13+k10

k10

k12

k10

k13

k10

k12+k13+k10

k10

k12+k10

k10

k13

k10

k12+k13+k10

k10

k12

k10

k13+k10

k10



.

The probability that a particle starting at compartment 1 ever visits compartment 1 is

F (1, 1) = k12+k13

k12+k13+k10
by (5.14). Equation (5.16) and (5.18) give the distribution of the
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residence time and the MGF. The mean residence time with the transition coefficient

used in previous section is 19.841. The mean residence time by the coefficient matrix

manipulation is 19.865. The small difference is caused by rounding. The calculated

variance is 787.352.

5.6 Discussion

The approach for the two-compartment model was used in combination with the

single destination cofactor rule in order to obtain the distribution of the residence

time for complicated compartment models. This makes it possible to provide not

only the residence time for the entire system but also for the part of system in which

we are specifically interested.

This methodology has some distinct advantages compared to the coefficient ma-

trix manipulation (Matis and Wehrly, 1985) or approximation using the PH distri-

bution (Johnson and Taaffe, 1990). First, this approach provides a complete set of

moments for the residence time using direct calculation from the MGF. Obtaining the

moments by matrix manipulation is not simple if we try to get higher order moments

than means and variances. Also, in matrix manipulation, obtaining the variance for

combined compartments introduces additional complexity due to the covariances be-

tween residence times for different compartments. Second, the new approach allows

any possible distribution for each compartment or pseudo-compartment in contrast

to the matrix approach based on Markov processes that limits the residence time to

only an exponential distribution. Finally, obtaining the MGF is equivalent to knowing

the distribution if the MGF exists in a neighborhood of zero. The density function

corresponding to the MGF can be derived by the Fourier inversion formula for a con-

tinuous random variable. In addition, the saddlepoint approximation can be derived

from the inversion formula (Daniels, 1954), and we observed that the saddlepoint
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approximation using the MGF tracked the trend of the true density very closely .

The approach presented in this paper may have limitations in some cases. The

approach to obtaining the bivariate distribution of the residence time distribution is

based on the two-compartment model structure. The application using the Markov

chain only provides a univariate residence time distribution. It is not known how the

multivariate distribution can be defined if the structure of the system involves more

than two compartments. This approach is also limited to connected compartments in

a model, so that the direct application of the approach may be difficult if unconnected

compartments in a model are interest. More investigation in these matters is needed.

By demonstrating a method that transforms one model to the simpler model and an

application of two-compartment model or Markov chain structure, the approach in

this chapter suggests a useful frame work for the distributional approach.
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CHAPTER VI

CONCLUSIONS

6.1 Summary

We investigated methods to approach the residence time distribution analytically

throughout the research presented in this dissertation. In the semi-Markov processes,

the distribution of the residence time with general life times in the two-compartment

model was specified by the inductive approach using the discrete distribution for the

number of visits and the distribution of the retention time. Especially under the

Markov process assumption, regardless of multiple visits of a particle in the system,

that is the summation of exponential variables, the resulting moment generation func-

tion proves the residence time of each compartment has an exponential distribution

or is a mixture of the exponential distribution and a point mass on 0. The bivari-

ate moment generating function of residence times can be converted to the density

using the saddlepoint approximation. After renormalization, the approximation very

closely follows the trend of the density.

In more complicated structures like multi-compartment models, the approach

used in two-compartment models helps to find out the distribution of a compartment

or a series of connected compartments in the system. Using the cofactor rule for

a single destination, the approach to the multi-compartment system specifies the

residence time distribution of a complicated structure for the system. Furthermore,

adapting the properties from the Markov chain makes the application more resilient

to the univariate residence time for a more complicated structure so that we can

find the residence time distribution of the structure where we can not apply the

two-compartment approach.
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Throughout the dissertation, the saddlepoint approximation had an important

role in approximating the density. We observed that various distributions could be

used to obtain the formula for the saddlepoint approximation in theory. We also ob-

served that the saddlepoint approximation based on the normal distribution provides

relatively a reasonable approximation especially for multivariate distributions.

As asserted in the discussion part of Chapter V, the approach presented in this

dissertation shows some advantages compared to the method using the coefficient ma-

trix. First, it had no difficulty in finding the higher order moments of a compartment

or combined compartments. Second, the approach is based on the complete specifi-

cation of the MGF, and we can find/approximate the distribution of the residence

time using it.

6.2 Future Research

Through the dissertation, we mainly assume that the retention time has the ex-

ponential distribution that implies the hazard rate is constant. Under the condition of

independent particles, this results in a linear transfer rate, that is proportional to the

population size (Matis and Kiffe, 2000). In many important applications, the hazard

rate is not constant. In the dissertation, we mentioned a case that the hazard rate

is age-varying, which is explained by semi-Markov models. Matis and Kiffe (2000)

state that these “extensions are very useful in practice and yet are not readily con-

ceptualized for the corresponding deterministic models” for the population. In fact,

in drug kinetics, it is very common that the transfer rates are not linear depending

on the population size, or concentration. In a drug elimination process that involves

enzyme systems, drug metabolism and active transport are limited by reaching a ca-

pacity that the enzymes can handle (Wartak, 1983). When the enzyme systems are

saturated, metabolism rate is fixed regardless of the drug concentration. In such a
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case, the drug elimination rate is expressed by Michaelis-Menten equation (Wartak,

1983), that is the zero-order function of the concentration when the concentration is

high. It seems that the elimination process follows an immigration process until the

concentration approaches the capacity, then becomes a migration process by which

the concentration lowers. We can expect that there is no such hazard function to

describe the process as a simple time-dependent function, therefore deriving the dis-

tribution of the retention time does not seem feasible. We do not know if there is an

analytically available deterministic solution for such a model.

As an application of the analytical approach by the MGF and the saddlepoint

approximation, one may consider the development of a method to estimate the trans-

fer rates. The parameter estimation is usually done using the non-linear least squares

to fit the mean model or deterministic differential equation of the population (Ma-

tis et al., 1996a). Using the method in this dissertation, we are able to obtain or

approximate the density of the residence time, which is also interpreted as the like-

lihood function of transfer rates. It may be possible that we can obtain parameters

by maximizing the likelihood. In a similar fashion, Kay (1986) obtains the transfer

rate using the likelihood in survival studies. An instant problem with this idea is the

fact that most data in stochastic compartment research is the population data, which

means that we need an appropriate method to transform the population size to the

residence time.

In fact, the studies presented on this dissertation focus on the residence time in

the system, which can also use for the survival analysis. We can find some examples

in survival studies that utilize the stochastic model based on the Markov processes.

Kay shows an application of Markov processes to survival studies among cancer

patients. Commonly, the data are available in the form of time points together with

some general health measure such as a cancer marker. The purpose of the study
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is to find cancer markers that can be used as a measure of relative survival rates.

Defining different states of cancer by a potential cancer marker concentration in the

body, a Markov model is constructed, which has a few different states of the disease

and an absorbing state (death). Each transition probability can be expressed by the

transition rates by solving the Kolmogorov equation numerically (if high dimension)

or analytically (if low dimension). The likelihood with respect to transition rates for

each individual is specified as a product of the transition probabilities. The maximum

likelihood estimates of the parameters are obtained using an iterative procedure. The

difference of the death rates from each state is tested using the asymptotic property

of the Wald’s test using the difference between estimated death rates and covariance

of the difference.

A direct application of non-homogeneous Markov processes to the survival analy-

sis is found in Anderson et al. (1991). The different states of the disease by an index of

a substance form a multi-compartment Markov process similarly to Kay’s, where the

transition intensities are not necessarily independent of time. The cumulative hazard

functions of transitions (to other state) are calculated by the Nelson-Aalen estimator.

They form the transition matrix at the time point of each transition. Then, the prob-

ability for the occurrence of the event, transition to other state, can be expressed as

a multiplication of the transition matrices in a similar manner to the calculation of

the absolute probabilties (Bailey, 1964) in the Markov chain. The difference of this

approach from the product limit (Kaplan-Meier) method is the fact that it takes into

account in-between stages in the course of the final stage. The probability for each

subject is expressed by not only the life time but also covariate measurements at the

time of the patients’ multiple visits. Both methods of the probability estimation show

similar trends, however the approach using the Markov processes shows smaller stan-

dard deviations by considering that more information is contributed to the model.
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Anderson et al. applied this approach to the Cox type regression model to estimate

the hazard rate that takes the time independent-covariates.

This methodology is restricted by the Markov assumption. In fact, authors

emphasize that the Markov assumption should be checked in applications of these

method. However, these applications are enough to suggest the versatility of the

stochastic compartment models in applications in different aspects.

In future research, we are interested in exploring the two-compartment model

even more, since it is still very popular and useful model in cases that the model

only needs relatively simple structure. First, we can develop the method to estimate

the parameters using the analytic approach presented in this paper if the lifetime

data are available. Second, we also can apply the analytic method shown here to

a procedure that can provide the survival probability or waiting time distribution.

Third, we may study how the distribution of retention time or the residence time for

the two-compartment structure can be approximately or analytically described when

non-linear transfer rates are present in the model.
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