ESSAYS IN MONETARY POLICY CONDUCTION AND ITS EFFECTIVENESS:
MONETARY POLICY RULES, PROBABILITY FORECASTING, CENTRAL BANK
ACCOUNTABILITY, AND THE SACRIFICE RATIO

A Dissertation

by

GABRIEL CASILLAS OLVERA

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2004

Major Subject: Agricultural Economics
ESSAYS IN MONETARY POLICY CONDUCTION AND ITS EFFECTIVENESS:
MONETARY POLICY RULES, PROBABILITY FORECASTING, CENTRAL BANK
ACCOUNTABILITY, AND THE SACRIFICE RATIO

A Dissertation by

GABRIEL CASILLAS OLVERA

Submitted to Texas A&M University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

David A. Bessler
(Chair of Committee)

Leonardo Auernheimer
(Member)

John B. Penson, Jr.
(Member)

David J. Leatham
(Member)

Paul D. Mitchell
(Member)

A. Gene Nelson
(Head of Department)

August 2004

Major Subject: Agricultural Economics
ABSTRACT

Essays in Monetary Policy Conduction and Its Effectiveness:

Gabriel Casillas Olvera,
B.A., Instituto Tecnológico y de Estudios Superiores de Monterrey,
Campus Estado de Mexico
Chair of Advisory Committee: Dr. David A. Bessler

Monetary policy has been given either too many positive attributes or, in contrast, only economy-disturbing features. Central banks must take into account a wide variety of factors to achieve a proper characterization of modern economies for the optimal implementation of monetary policy. Such is the case of central bank accountability and monetary policy effectiveness. The objective of this dissertation is to examine these two concerns relevant to the current macroeconomic debate. The analyses are carried out using an innovative set of tools to extract presumably important information from historical data of selected macroeconomic indicators.

This dissertation consists of three essays. The first essay explores the causality between the elements of the “celebrated” Taylor rule, using a Structural Vector Autoregression approach on US data. Directed acyclical graph techniques and Bayesian search models are used to identify the contemporaneous causal structure in the construction of impulse-response functions. Further analysis is performed by
evaluating the implications of performing standard innovation-accounting procedures, derived from a Structural Vector Autoregression on interest rates, inflation, and unemployment. This is examined whenever a causal structure is imposed vs. when it is observed. We find that the interest rate causes inflation and unemployment. This suggests that the Fed has not followed a Taylor rule in any of the two periods under study. This result differs significantly to the case when the causal structure is imposed.

The second essay presents an incentive-compatible approach based on proper scoring rules to evaluate density forecasts in order to reduce the central banks’ accountability problem. Our results indicate that the surveyed forecasters have done a “better” job than the Monetary Policy Committee (MPC).

The third essay analyzes the causal structure of the factors that are presumed to influence the effectiveness of monetary policy, represented by the sacrifice ratio. Directed acyclical graph methods are used to identify the causal flow between such determinants and the sacrifice ratio. We find evidence that, while wage rigidities and central bank independence are the two major determinants of the sacrifice ratio, the degree of openness has no direct effect on the sacrifice ratio.
To my beloved wife Teresa, the source of my inspiration
ACKNOWLEDGEMENTS

The beginning of my journey to pursue a Ph.D. was a very intricate one. My father passed away after a two-year battle against prostate cancer at the early age of 52, five days later, I was taking my first graduate course at A&M. He encouraged me until his last breath to continue with my plans, regardless of the outcome. So I did.

This unfortunate event left me lacking my primary source of professional guidance. I am extremely thankful that I was embraced by Professors David Bessler, David Leatham, Leonardo Auernheimer, John Penson, and Paul Mitchell, members of my graduate advisory committee. I cannot thank them enough for their friendship, continuous motivation, as well as for their most valuable critical appraisal, and insightful conversations during these four years.

From making me derive a four-period-ahead, three-variable impulse-response function by hand, or asking me to provide with a sensible explanation for an odd step in a demonstration of an adverse-selection problem with continuum of types, up to requesting me to derive an equation characterizing the relative price of a tree in terms of bananas, my committee has helped to achieve a better understanding of the use, and application of the major tools used in modern economics. Fortunately, they have always spiced these hard technical questions with humorous stories. For example, I will never forget Dr. Bessler’s story about the pit barbecue he and Jon Brandt prepared for their fellow students and professors during his days at Davis, as well as the state-contingent McDonald’s option that they never exercised. On the other hand, they have always
gone further and tried to transmit deeper philosophical ideas emphasizing the role of
economics as a social science. I want to express my deepest appreciation and eternal
gratitude to Professor David Bessler who was the most directly involved in the
development of this dissertation. I am also especially grateful to Dr. Mitchell for his
support and guidance during the presentations of research papers in several seminars
and meetings. I am also indebted to Dr. Penson and Dr. Capps for sharing words of
wisdom and sustained encouragement. Special thanks to Dr. Leatham for making me
believe again in myself, thanks for your trust and encouragement.

I benefited greatly from enlightening conversations with Professors John Nichols,
Allan Love, George Davis, Rich Woodward, Rudy Nayga, Ron Griffin, James
Richardson, Vicky Salin, Dror Goldberg, William Neilson, and Thomas Jeitschko. I also
want to thank Professor Gene Nelson for his wise counseling, practical ideas, and for
trusting me with the development of the graduate website. I am pleased to have served
as teaching assistant for Professors John Siebert and John Park. It was a very rewarding
experience. I learned a lot from their excellent teaching styles. Many thanks to René
Ochoa for his advice and interesting conversations. Special thanks to Vicky Heard for
her support, and unconditional and effective help whenever it was needed. I also want
to acknowledge the helpful assistance that I got from Norma Pantoja, Lindsey Nelson,
Adrienne Blaskey, Ruth Hicks, Stella Garcia, Cindy Fazzino, and Michelle Zinn.

Graduate school would not have been so bearable if it were not for my fellow Aggie
Ph.D. students and colleagues (Whoop!) Ernesto Perusquía, Pablo Sherwell, Gustavo
Sánchez, Luis Ribera, Iván Borja, César Corredor, Grant Pittman, Michael Lau, Matt
Stockton, Debbie Rubbas, Hwa-Nyeon Kim, Karla Rossette, Levan Elbakidze, Tanveer Butt, Jim Sartwell, Hae-Sun Park, Jin-Woon Kim, Moon-Soo Park, David Magaña, Andrés Silva, Matt Schupbach, Juan Carlos Serrano, Ivan Tasic, Ahmad Al-Waked, Dandan Lui, and Ahmet Caliskan. Grant and Hwa: Thanks for putting up with such a “chatter-box” office mate along these years.

Thanks to Javier, Maritza, and Javi Reyes for their support along these years. Gustavo y Mayren contributed a great deal to continuously keeping my spirit up against frustration. I am extremely grateful to Pablo González and Marcela Perticara for their emotional support at the beginning of graduate school, a difficult period of my life. They embraced me almost like a son, providing me with great Argentinean-style food, academic help, words of encouragement, and great friendship. Special thanks to Ernesto Perusquía, my faithful friend and companion through the battles to conquer the Ph.D. Thanks also for the enlightening conversations either about economics or college football. I owe a deep debt of gratitude to Pablo Sherwell for providing the much-needed housing during my last year full of journeys between Dallas and College Station. Thanks for his unconditional friendship, golf lessons, and unending discussions about the political economy in Mexico.

My father, an engineer who did not hold any degree in economics, planted the first seed of my interest in this interesting discipline by letting me read his old copy of Samuelson’s Economics book. After speaking to me so much about how wonderful and important economics was, I could not understand why he was surprised the day I told him I wanted to be an economist. Thanks Dad.
I am greatly indebted to my professors at ITESM. I am especially grateful with Marcela Villegas, Benjamin García, Miguel Mayorga, Luis Quintana and Gerardo Dubcovsky. Thanks also to Emilio Alvarado and Pepe Duarte for their guidance.

Many of the early ideas in this dissertation were born during my tenure at Banco de México, thanks to my fruitful conversations with Ignacio Peralta, Chemanel Carrera, Javier Duclaud, David Margolin, Ricardo Medina, Luis Mario Hernández, Alfonso Guerra, Alejandro Aguilar, Rafa Figueroa, Emilio Lozoya, Juan Cristóbal Gil, and Alfredo Sordo. Special thanks to Javier Duclaud for his advice and support.

I gratefully acknowledge the financial support from CONACYT and Banco de México, as well for the scholarships, fellowships, and assistantships from the Department of Agricultural Economics and Texas A&M University.

Thanks to my friends Omar González, Carlos Guisa, Javier Sosa, Paty Rivas, Mauricio Diaz, Tomás Alcántara, José Luis and Katia Torres Landa, Luis Flores, Richard Ramirez-Webster, Charlie Cortes, Alejandro Martínez, Checho Morales, Toño Cortés, and Guillermo Aviña for their strong support.

My deepest appreciation and sincere love will always be felt for my family in Mexico. I am eternally thankful with my mother and my sister for their unconditional physical and emotional support and endless caring.

Tere: Thanks for understanding the endless nights that I had to spend working on preparing my qualifying and prelim exams, my dissertation proposal, this dissertation, and my final defense. Thanks for your patience and your wise counseling. I will never find the words to thank you enough. Muchas gracias mi amor.
TABLE OF CONTENTS

## CHAPTER	Page
I INTRODUCTION | 1
II STRUCTURAL VECTOR AUTOREGRESSIONS AND THE TAYLOR RULE: IMPOSING VS. OBSERVING A CAUSAL STRUCTURE | 13
 A. Introduction | 13
 B. The Taylor Rule | 17
 1. Derivation of the Taylor Rule from a Model of Optimizing Agents | 19
 3. Stock and Watson’s Model and Replication | 29
 C. Probabilistic Approach to Empirical Causality | 31
 1. Directed Acyclical Graphs and the PC Algorithm | 32
 2. Calculus of Interventions | 37
 D. Results | 38
 E. Conclusions | 42
III PROBABILITY FORECASTING AND CENTRAL BANK ACCOUNTABILITY | 44
 A. Introduction | 44
 B. Transparency, Accountability, and Forecast Evaluation | 52
 1. Central Banks Tradition of Secrecy, Problems, and Proposed Solutions | 52
 2. Recent Increased Central Bank Transparency | 55
 3. Forecasting as a Reputation-Building Mechanism | 58
 4. Density Forecasts in Monetary Policy | 59
 C. Probability Forecasting | 60
 1. Prequential Analysis | 60
 2. Probability Forecast Evaluation | 61
 3. Empirical Assessment of Calibration | 61
 4. Scoring Rules | 63
 5. The Quadratic Probability Rule and the Brier Score | 64
 6. Yates’ Decomposition of the Brier Score | 67
 7. The Multiple-Event Brier Score | 72
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Which Score Shall We Calculate? The Probability Score or the Mean Probability Score?</td>
<td>75</td>
</tr>
<tr>
<td>9. Hypothesis Testing for the Brier Score</td>
<td>75</td>
</tr>
<tr>
<td>D. Bank of England Fan Charts Evaluation</td>
<td>78</td>
</tr>
<tr>
<td>2. Probability Scores, Brier Scores and Yates’ Partitions of the Density Forecasts of the UK</td>
<td>80</td>
</tr>
<tr>
<td>3. Are the MPC and the “Other” Forecasters’ Brier Scores Significantly Different?</td>
<td>86</td>
</tr>
<tr>
<td>E. Conclusions</td>
<td>87</td>
</tr>
<tr>
<td>IV WHAT CAUSES THE SACRIFICE RATIO?</td>
<td>93</td>
</tr>
<tr>
<td>A. Introduction</td>
<td>93</td>
</tr>
<tr>
<td>B. Calculating the Sacrifice Ratios</td>
<td>98</td>
</tr>
<tr>
<td>1. The Sacrifice Ratio</td>
<td>98</td>
</tr>
<tr>
<td>2. Identifying Disinflation Periods and the Measurement of the Output Gap</td>
<td>102</td>
</tr>
<tr>
<td>3. Estimates of the Sacrifice Ratio</td>
<td>104</td>
</tr>
<tr>
<td>C. Determinants of the Sacrifice Ratio</td>
<td>108</td>
</tr>
<tr>
<td>1. Traditional Factors</td>
<td>109</td>
</tr>
<tr>
<td>2. Structural Factors</td>
<td>111</td>
</tr>
<tr>
<td>3. Institutional Factors</td>
<td>112</td>
</tr>
<tr>
<td>D. Empirically-Based Causal Structure</td>
<td>115</td>
</tr>
<tr>
<td>1. Directed Acyclical Graphs</td>
<td>117</td>
</tr>
<tr>
<td>2. PC Algorithm</td>
<td>118</td>
</tr>
<tr>
<td>E. What Causes the Sacrifice Ratio?</td>
<td>121</td>
</tr>
<tr>
<td>1. Imposed Causal Structure on Ball’s Seminal Analyses</td>
<td>122</td>
</tr>
<tr>
<td>2. Results</td>
<td>124</td>
</tr>
<tr>
<td>F. Conclusions</td>
<td>130</td>
</tr>
<tr>
<td>V CONCLUSIONS</td>
<td>133</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>138</td>
</tr>
<tr>
<td>APPENDIX A TABLES</td>
<td>155</td>
</tr>
<tr>
<td>APPENDIX B FIGURES</td>
<td>171</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

Central banks have never been more powerful than now. Monetary policy has become the central tool of macroeconomic stabilization.
— Richard Layard (1996), pg. ix

Traditionally economists have divided macroeconomic policy into two lines of attack: fiscal and monetary policy. It is usually monetary and not fiscal policy that can be adjusted in a timely fashion to respond to macroeconomic events. Fiscal policy is typically subject to slow and uncertain legislative processes. However, the usefulness of monetary policy has been challenged as a stabilization mechanism. Uncertainties emerging from the degree of influence of monetary policy on output and inflation, as well as the possible adverse shocks the economy may face sets up an array of difficult intricacies that the central bank must overcome. In addition, the monetary authority must deal with the complexity of the lag structure of the monetary policy transmission mechanism, the choice of the relevant instruments and targets, and modeling issues, such as the characterization of the monetary authority’s objective function\(^1\). There is a large part of the modern macroeconomic literature, namely Real Business-Cycle theory (RBC), that presumes that monetary policy has no effect on real variables and, as a

1 Usually the models use Kydland-Prescott (1977), and Barro-Gordon (1983)-style loss functions to represent the central banker’s utility function. As Blinder (1998) points out, central bankers have to generate their own welfare function built upon their legal mandate, due to the political authorities’ lack of precision when giving instructions to the central bank.
result, money should not have been included in their models. However, several empirical studies, such as Sims (1992), conclude that monetary policy innovations account for substantial effects on real output and that recessions have been frequently preceded by unexpected rises in interest rates. Moreover, they claim that it is impossible for RBC-style models to explain a major extent of the variations on the observed business cycles. Therefore, carrying out analysis on the conduction of monetary policy is a tremendously important research task to achieve an objective assessment on its effectiveness.

Aiming to minimize the already diminishing gap between the academic and the policymakers' view of monetary policy, the objective of this dissertation is to develop and apply tools to examine and improve the implementation of monetary policy and its effectiveness. A description of the proposed topics under study follows.

Policy lags (Friedman, 1969a, and Phelps, 1967) and rational expectations (Lucas, 1981b) led to the conclusion that there was no such thing as a long-run trade-off between output and inflation. This implies that monetary policy cannot affect output or unemployment in the long-run. But it can have an effect on inflation. In other words, activist monetary policy just disrupts the economy yielding a high inflation outcome. This "old" version of the "rules vs. discretion" debate left the use of any kind of discretionary rules out of the conduction of monetary policy. However, this is not the end of the story, this dispute evolved into a new version.

2 McCallum (1999) asserts that the split between academic and policymaker views on monetary policy conduction has been reduced in recent years.
The existence of a “time-consistency” problem – first noticed in the monetary literature by Auernheimer (1974) – also called “inflation bias”, is defined as the excessively high equilibrium inflation generated by the credibility problem that comes along when the central banks exercise their ability to temporarily boost the economy (Kydland and Prescott, 1977, Barro and Gordon, 1983), plays an important role in the more recent version of the rules vs. discretion debate (Persson and Tabellini, 1999). This “modern” version led some researchers to reconsider a less restrictive class of rules, motivating a plethora of research on monetary policy rules. This is the first topic addressed in this dissertation.

McCallum (1988) and Taylor (1993) pioneered the development of these dynamic monetary policy rules. The latter, proposed another set of rules where the instrumental interest rate changes in response to any deviation of the inflation rate from a desired target value and to the output gap, defined as the difference between the real and potential GDP. The former suggested a family of rules that stands for an automatic reaction of the monetary base growth rate to any deviation of the nominal GDP growth rate from a desired target value. On the other side of the debate, while some authors, such as Gordon (1985), Meltzer (1987), and Hall and Mankiw (1994), support the money-base rule with nominal GDP targeting, Goodhart (1994), Fuhrer and Moore (1995) and Bryant, et al. (1993) argue that McCallum-type of rules has undesirable stabilization features, and that interest rate rules with are operationally better. Conversely, recent research has demonstrated that both rules are practically equivalent when the monetary base velocity is a stable function of the interest rate (Razzak, 2001).
Another debate that has become known is the robustness of the monetary policy rules under “model uncertainty”. In other words, how these rules perform when they are built upon different models. This, of course, is due to the well-known ambiguities that surface when it comes down to knowing the “true” structure of the economy (Levin, Wieland, and Williams, 1999). They conclude that the required information to set the interest rate efficiently is summarized by inflation, output gap, and interest rates. This indicates that a reduced-form vector autoregression (VAR) analysis on these variables could be a well suited tool for assessing this topic. For a monetary policy rule to be effective it has to be based upon a model that reflects accurately the economy. Consequently, it becomes crucial to analyze the causal structure of the variables that have been recognized as key factors that interact themselves to form the monetary transmission mechanism. Structural vector autoregressions (SVAR) were chosen to achieve this endeavor.

Unfortunately, “activist” monetary policy rules impose certain undesirable restrictions to the policymaker, impairing them to optimally respond to adverse shocks. Hall and Mankiw (1994) argue that trying to maintain one variable under strict control, could bring volatility to other variables. As a result, there is near consensus that these rules should not be used as systematic mechanisms to act to stabilize the economy3. Taylor (1993) recommends using these rules as guidelines for policymaking decisions. This inherent restrictiveness comes from the fact that a commitment to a simple instrument rule is not considered as an appropriate description of current monetary

3Actually, Taylor (1999) and Feldstein (1999b) maintain that policymakers should work with a reasonable portfolio of policy rules.
policy (Svensson, 2003). That is why, in order to find an “intermediate” monetary scheme between discretion and either fully mechanical or “activist” rules, institutional arguments emerged, such as central bank independence (CBI) and targeting frameworks, such as Inflation Targeting (IT). This constrained flexibility is desirable since despite monetary policy cannot systematically affect unemployment and output in the long-run, it might aid to stabilize inflation and unemployment around their mean market-determined levels (Fischer, 1977).

CBI is described as the assignment of monetary policy to a central banker whose decisions cannot be rejected \textit{ex post} by the policymaker (Lippi, 1999). Herrendorf and Neumann (1999) claim that a politically-detached independent central bank exhibits less incentives to care about the government’s reelection chances reducing the possibilities of using monetary policy to create surprise inflation4. But independence could be associated with a greater degree of “conservativeness” in the Rogoff (1985) sense. In other words, greater independence may imply less-active stabilization policies and, therefore, higher output variance. This suggests that the gains of having an independent central bank depend on the extent of the \textit{trade-off} between the inflationary bias and the variance of the policy targets, as a result, in addition to CBI, stability of policy targets is desired to overcome the time-inconsistency problem (Lippi, 1999). In other words, CBI and targeting regimes are not viewed as substitutes, but complements.

4 The monetary policy credibility issues have been criticized because, in reality, usually policymakers do not try to create unexpected inflation to surprise the private sector. But these criticisms miss the point that, in equilibrium, despite the monetary authority’s wish to reduce the inflation rate, it abstains from doing it because the disinflationary policy could turn into a recession, due to its lack of credibility.
A mechanism that could be in the middle between full-discretion and restriction is Inflation Targeting (IT). But still, even an inflation targeting regime, being a constrained discretion regime country could show an inflation bias if there is no incentives to achieve the target. In other words, the ex-post measure that the IT regime provides as inflation and the target could still not fully get rid of the inflation bias since there could be moral hazard. The central banker in charge can always provide a somewhat “good” explanation of why she could not achieve the target. Hence, additional to the inflation targeting regime, these points raise the question of what can be done to eliminate the moral hazard that feeds the credibility problem.

One way to deal with this problem is to hire a conservative central banker as Rogoff (1985) suggest. Lamentably, it is not easy to find out whether a central banker is sufficiently conservative or not (Barro, 1986). In that case, another asymmetric information problem surfaces: adverse selection at the time of deciding who to appoint as central banker. Yet, the moral hazard problem remains. Alternatively, another approach by Walsh (1995a), and Persson and Tabellini (1993) is to write a contract between the government (principal) and the central banker (agent) as an incentive-compatible mechanism to achieve the desired results. In other words, build a gifts-punishments scheme between the congress and the central bank. On this issue, Garfinkel and Oh (1993) assert that legislation punishing the monetary authority by reducing her salary of the central bank’s budget, if she deviates from the target could be used to enforce the regime. Unfortunately, the intrinsic complexity in modeling the government’s preferences causes serious difficulties to build a totally applicable
contract. Blinder (1998) criticizes this approach by stating that the principal, by having a reelection period ahead, could have more incentives to have an inflation bias than the agent, who is not supposed to be concern about the political election process. Another point of disapproval is that the perhaps the salary is not a good motivator for the central banker to do her job since she is already giving up salary for not being working in the private sector. Another mechanism that has been talked about in the literature is reputation. Reputation seems like a good initiative once we now how to make the central bank accountable. Canzoneri (1985) proves that reputation as an inflation-bias elimination framework does not work in the presence of private information (such as their inflation forecast). Full disclosure of the inflation-forecast by the central bank is not intended to pass on information to the private sector, but to be accountable of her actions. As Blinder (1998) humorously points out, reputation is not unlike pregnancy - either you have it or not-, therefore, inflation targeting should be accompanied by an inflation-forecast evaluation method, the second topic treated in this dissertation.

Since the Timbergen (1952) and Theil (1961) framework of macroeconometric single-equation estimation, up to Chris Sims (1980) and others, forecasting has been a very important issue not only for academic economists, but to influence a policy debate (Barrel, 2001). For the forecast to work as a reputation building mechanism in the Canzoneri (1985) sense, it should neither be private information nor a disturbance element. It needs to satisfy two conditions: (i). Have full disclosure of the forecast and how the forecasting methods, and (ii.) The forecast has to be a “good” forecast (Winkler, 1986). By this, we mean that, on one hand it must reflect the banks’ true beliefs. In other
words, when outcomes are uncertain, planning must be based on forecasts quite often on forecasts submitted by others. Naturally, the planner wishes to ensure that these forecasts are prepared honestly and with an appropriate degree of care (Osband, 1989). On the other hand, it must be an accurate forecast as well. So not only should the central banker provide their true beliefs about their future expectations on inflation (and, if there is the case, on GDP as well), but also exert their best effort to provide a “good” forecast. If we want to really take into account the uncertainties that surrounds the forecast, it is recommended to be in probabilistic form (Samuelson, 1965, Bessler and Moore, 1979).

Why distribution forecasting? Svensson (2003) points out, inflation-forecast targeting in a point-forecast sense only works under three assumptions: (i) Quadratic loss function, (ii) linear transmission mechanism, and (iii) additive uncertainty. The first assumption is reasonable and widely used, Kydland-Prescott (1977), Barro and Gordon (1983), as well as supported by more recent research led by Blinder (1998), Svensson, (2001, 2002), and others. The second assumption, linear transmission mechanism is a quite strong assumption, since it means that the future target variables depend on the current state of the economy and the instrument in a linear fashion and that is not usually the fact (Svensson, 2003). The third assumption, if there is uncertainty of policy multipliers. If assumptions (ii) and (iii) fail, then the certainty
equivalence paradigm does not hold\(^5\), then, distribution forecast is needed to account for unbalanced risks.

Once we are convinced that probability forecasting is a much better way to approach macroeconomic problems (Bessler and Moore, 1979, Tay and Wallis, 2000, Granger, 2001), evaluation issues become a topic of concern (de Finetti, 1974, Winkler, 1986), such as calibration (Bunn, 1984, Kling and Bessler, 1989). But there are other considerations such as how close the forecast is from the realized values (Yates, 1982, Bessler and Ruffley, 2003). We use the Brier Score (Brier, 1950) and the Yates’ Decomposition (Yates, 1982). The Brier score is a proper scoring rule. It has been both theoretically and experimentally demonstrated to be an incentive-compatible mechanism (Nelson and Bessler, 1989). The third aspect is to compare, i.e. to make competitions between the central bank and other forecasters. A more general rationale to use probabilistic forecasting evaluation criteria is the fact that currently, the economists’ duty is to habitually explore economic systems in which agents interact in complex probabilistic environments (Chari, 1998). A final remark is that probabilistic forecast is possible. The Bank of England publishes their forecasts, as well as other surveyed forecasters’ numbers, on a regular basis in their quarterly Inflation Report, since 1996. We use Bank of England’s and other forecasters inflation and output growth rate probabilistic forecasts, to illustrate the formidable and practical applications of the Brier

\(^5\) Although there are sophisticated models that deal with parameter uncertainty using optimal control models with learning mechanisms, Blinder (1998) points out that the intrinsic complexity of these methods have not caught both academics’ and policymakers’ attention.
score and its Yates’ partition as a building reputation mechanism to reduce the inflation bias in an inflation target regime.

We turn now to the third essay in this dissertation. Monetary policy would not seem to be so important if we could not assess monetary policy’s effectiveness. A way to measure monetary policy effectiveness is by looking at the sacrifice ratio. Lawrence Ball (1994) studies methods to calculate the ratios. Questions related to what determines the sacrifice ratio, or what causes the sacrifice ratio, remain unanswered. Is it wage rigidity? Is it the monetary policy regime, such as inflation targeting? This is the third point of focus of the dissertation.

There is almost consensus that disinflation policies generate output losses (Gordon, 1982, Gordon and King, 1982, and Romer and Romer, 1989). But what is the cost of those monetary policy tightening policies in the real world? In an effort to measure those costs and their possible determinants, several authors have estimated the sacrifice ratio, generally defined as the quotient between the output gap and the percent change in inflation, and have drawn simple scatter diagrams or calculated simple correlations between the ratio and the variables that are assumed to most likely have an impact on it.

According to Ball’s seminal paper (Ball, 1994), the factors that may determine the magnitude of the sacrifice ratios could be the length of the disinflation period, the initial inflation, the degree of wage rigidity –among others-. Later on, also Ball asks if inflation targets matters. Bernanke, et al. (1999) perform a study on the sacrifice ratios. The theoretical argument on why a country adopting an inflation targeting regime
should have a smaller sacrifice ratio is that IT provides a framework that constraints the monetary authority and minimizes its incentives to exhibit an opportunistic behavior - also called inflation bias- and this increases credibility and the public moderates their inflations expectations in a quicker fashion.

The purpose if to use the same methodology used on the Taylor rule analysis, namely, Directed Acyclical Graph theory and the PC algorithm to identify an empirically-based causal structure of the main determinants of the sacrifice ratio.

The objective of this dissertation is to examine these three concerns relevant to the current macroeconomic debate. The analyses are carried out using an innovative set of tools to extract presumably important information from historical data of simple macroeconomic indicators, to examine and improve the implementation of monetary policy and its effectiveness.

The interlinkages of inflation with agriculture have been well documented. The impacts of inflation on the agricultural lending institutions have been studied by Klinefelter, Penson, and Fraser, (1980) as well as by LaDue and Leatham, (1984) and Barnett, Bessler and Thompson (1983). Also, monetary policy decisions affect the exchange rates, as well as prices and price volatility. Moreover, in the case of the forecasts of main macroeconomic indicators, it has been shown that they have an important effect in the agricultural sector (Penson and Gardner, 1988). On the other hand, a study on how the disinflationary policies have affected the agricultural income in different countries can be a subject of study as well.
This dissertation consists of three essays. The first essay (chapter II) examines the causality between the elements of the celebrated Taylor rule, using Structural Vector Autoregressions on US data for the period between the first quarter of 1960 and the fourth quarter of 2000. Directed acyclical graph techniques and Bayesian search models are used to identify the contemporaneous causal structure in the construction of impulse-response functions.

The second essay (chapter III) presents a probabilistic approach for inflation forecast evaluation that aims to integrate the academic version of “inflation bias” reduction mechanisms with some practical implementation issues. This is illustrated by applying the Brier probabilistic forecast evaluation criterion on data of the UK.

The third essay (chapter IV) analyzes the causal structure of the factors that are presumed to influence the sacrifice ratio on panel data of eleven OECD countries using Directed Acyclical Graphs to identify the causal flow of the sacrifice ratio and its determinants. Chapter V summarizes the results of this research and renders the concluding remarks.
CHAPTER II

STRUCTURAL VECTOR AUTOREgressions AND THE TAYLOR RULE:
IMPOSING VS. OBSERVING A CAUSAL STRUCTURE

There are for man only two principles available for a mental grasp of reality, namely, those of teleology and causality. What cannot be brought under either of these categories is absolutely hidden to the human mind. An event not open to an interpretation by one of these two principles is for man inconceivable and mysterious.

A. Introduction

While the “old” version of the rules vs. discretion debate6 led by Friedman (1969a), Phelps (1967), and Lucas (1981a) left out the use of any kind of discretionary rules on the conduction of monetary policy, its “modern” version7 (Kydland and Prescott, 1977 and Barro and Gordon, 1983) led some researchers to reconsider a less restrictive class of rules. This motivated a plethora of research on monetary policy rules pioneered by McCallum (1988) and Taylor (1993). The former suggested a family of rules that stands

6 Because of policy lags (Friedman, 1969a, and Phelps, 1967) and rational expectations (Lucas, 1981b), the consensus dictate that there is not such a thing as long-run trade-off between output and inflation, implying that in the long-run, monetary policy cannot affect output or unemployment, but inflation only. In other words, activist monetary policy just disrupts the economy yielding a high inflation outcome.

7 The existence of a “time-consistency” problem, first noticed in the monetary literature by Auernheimer (1974), or “inflation bias”, is defined as the excessively high equilibrium inflation generated by the credibility problem that comes along when the central banks exercise their ability to temporarily boost the economy (Kydland and Prescott, 1977, Barro and Gordon, 1983), plays an important role in the more recent version of the rules vs. discretion debate (Persson and Tabellini, 1999).
for an automatic reaction of the monetary base growth rate to any deviation of the nominal GDP growth rate from a desired target value. The latter, proposed another set of rules where the instrumental interest rate (such as the Fed Funds rate in the US or the repo rate8 in the UK) changes in response to any deviation of the inflation rate from a desired target value and to the output gap, defined as the difference between the real and potential GDP. Despite both the McCallum and the Taylor families of rules virtually satisfy Hall’s and Mankiw’s, (1994) four characteristics9 that a good monetary policy rule should exhibit, side effects could still surface. Trying to maintain one variable under strict control, could bring volatility to other variables (Hall and Mankiw, 1994). On the other side of the debate, while some authors, such as Gordon (1985), Meltzer (1987), and Hall and Mankiw (1994) support the money-base rule with nominal GDP targeting, Goodhart (1994), Fuhrer and Moore (1995) and Bryant, et al (1993) argue that McCallum-type of rules has undesirable stabilization features, and that interest rate rules with are operationally better. Conversely, recent research has demonstrated that both rules are practically equivalent when the monetary base velocity is a stable function of the interest rate (Razzak, 2001). Another debate that has become known is the robustness of the monetary policy rules under “model uncertainty”. In other words, how these rules perform when they are built upon different models. This, of course, is

8 The repo rate is the interest rate at which repurchase agreements are set. Repurchase Agreements are frequently the main way in which the banks borrow from and deposit money in the central bank. In a repurchase agreement an individual acquires the temporary use of a security by buying it and, at the same time, committing herself to sell it back to the original owner on a particular future date, at a certain price that includes a premium based on the type of security lent.

9 According to Hall and Mankiw (1994), monetary policy rules should be characterized by efficiency, simplicity, precision and accountability.
due to the well-known ambiguities that surface when it comes down to knowing the “true” structure of the economy (Levin, Wieland, and Williams, 1999). They conclude that the required information to set the interest rate efficiently is summarized by inflation, output gap, and interest rates.

This indicates that a reduced-form vector autoregression (VAR) analysis on these variables could be a well suited tool for assessing this topic. And it is precisely this specific *raison d’être* that triggered our interest on this first topic of our discussion. For a monetary policy rule to be effective it has to be based upon a model that reflects accurately the economy. Consequently, it becomes crucial to analyze the causal structure of the variables that have been recognized as key factors that interact themselves to form the monetary transmission mechanism. Structural vector autoregressions (SVAR) have been chosen to achieve this endeavor.

Sims’ seminal paper (1980), dictated the general norm on “modern” macroeconometric modeling estimating vector autoregressions (VAR) from data on the major macroeconomic variables. Within Sims’ modeling framework, a descriptive mechanism called impulse-response function was also introduced to analyze the reaction of each variable in the model to a shock in each equation of the system. Aiming to be able to show the dynamic patterns for each variable, these shocks must satisfy orthogonally conditions. In order to achieve this desired provision, a Choleski decomposition was used. Cooley and LeRoy (1984) noticed that by applying this factorization method, one might have imposed some undesirable restrictions on the model in terms of causal behavior.
In response to this claim, Blanchard and Quah (1989), Blanchard (1989), and Stock and Watson (2001) –among others- have approached the problem by building means to impose structure to the so-called “atheoretical VARs”. Bernanke (1986)\(^{10}\) handled the problem using an alternative decomposition that allows for nonlinear restrictions on the off-diagonal elements of what they call pattern matrix.

However, only theoretical restrictions have been imposed in VAR analyses of monetary policy rules, and it would be interesting not only to know if the data supports the major theories on how monetary policy affects the economy, but also to evaluate the usefulness of monetary policy rules in the implementation of monetary policy.

If we want to test if this is the empirical underlying causal structure, the Directed Graph paradigm is able to analyze how the variables are causally related in contemporaneous time. In order to perform this task, since the data is dynamically related, it would be useful (almost imperative) to “pre-filter” the data using a vector autoregression. Then we would be able to use the PC algorithm on the residuals before actually run the impulse-response functions. We decided to use Stock and Watson’s (2001) VAR as a starting point since it was inspired by the Taylor rule.

As in Bessler and Lee (2002) and Bessler and Yang (2003), this is achieved by identifying a causal structure of the estimated contemporaneous innovations derived from an unrestricted VAR, and then restricting it using a Bernanke ordering (Bernanke, 1986, and Doan, 2000).

\(^{10}\) The focus here is on how Sims (1986), Bernanke (1986), and Blanchard (1989) theories influenced the causal ordering of the variables for the computation of the impulse-response functions and the forecast-error variance decomposition. For a more general treatment on structural VARs please see Amisano and Giannini (1997)
We want to answer the question if the US has (or has not) followed a Taylor-style monetary policy rules in the period between first quarter of 1960 and the fourth quarter of 2000. The other contribution of this paper is to analyze the consequences of analyzing policy actions when a causal structure –namely the Taylor rule- is imposed, rather than observing what the monetary authority has done.

The remainder of this chapter is divided in three sections. Section B portrays both theoretical and empirical-based discussions about the Taylor rule. We describe the directed acyclical graph models of causality in section C. Section D shows our results. Finally, we reserved the last part for conclusions.

B. The Taylor Rule

The Taylor rule (Taylor, 1993) expresses the central bank’s instrument, namely, the interest rate as an explicit function of inflation and output gap\(^{11}\). Taylor seminal paper proposed the following rule for the US:

\[
 r = \pi + (1/2)\hat{y} + (1/2)(\pi - \pi^*) + 2
\]

where \(r\) is the Federal funds rate, \(\pi\) is the inflation rate over the previous four quarters, \(\pi^*\) is the inflation target (Taylor proposes a target of 2 percent), and \(\hat{y}\) is the output gap. The output gap is defined as \(\hat{y} = 100(y - y^*)/y^*\), where \(y\) is the real gross domestic product (GDP) and \(y^*\) is the trend real GDP.

\(^{11}\) Please see McCallum (1999), Taylor (1999), and Svensson (2003) for a complete revision on this topic.
Several empirical studies have emphasized the usefulness of instrument rules, such as the Taylor rule, to describe the central banks’ behavior (Judd and Rudebusch, 1998; Clarida, Gali and Gertler, 1998; Stock and Watson, 2001). Although Taylor’s original exposition of the rule did not emerge from a rigorous theoretical model, Svensson (1997) and Walsh (1998) show that the Taylor rule can be derived from the first-order conditions from a model of optimizing agents, as a central bank’s reaction function. Different models with their respective assumptions, structure, and monetary policy channels of transmission can yield optimal policy rules similar to the Taylor rule. In this regard, Levin, Wieland, and Williams (1999) examine the robustness of the Taylor rule under model uncertainty. They conclude that the output gap, the four-quarter average inflation rate, as well as lagged values of the Federal funds interest rate summarize almost all the information relevant to describe the Fed’s behavior.

This section will provide a theoretical derivation of the Taylor rule, closely following several sections of Walsh (1998), in order to emphasize the underlying assumptions and model structure that this policy rule encompasses. Then, an empirical treatment of the Taylor rule based on a structural vector autoregression (SVAR) is described. Finally we present and replicate a vector autoregression (VAR) by Stock and Watson (2001), inspired by the Taylor rule.
1. Derivation of the Taylor Rule from a Model of Optimizing Agents

Assume a Money-in-Utility-Function (MIU) model\(^\text{12}\) (Sidrauski, 1967, and Brock, 1974). A representative agent has to choose the streams of consumption, leisure, and money balances to maximize her time-discounted preferences, subject to an intertemporal budget constraint. Her preferences are represented by a constant relative risk aversion (CRRA) utility function\(^\text{13}\), with money and consumption as arguments. The budget constraint involves the stock of capital transition equation assuming a Cobb-Douglas (Cobb and Douglas, 1928) neoclassical production function of labor and capital.

The first-order conditions characterizing the steady-state of the MIU model can be represented as a set of six expectational linear difference equations (production function, a resource constraint, the relationship between marginal product of capital and the expected rate of return, expected consumption equation, a Fisher equation, relating the nominal and real interest rate, and a money supply equation), as shown by Campbell (1994) and Uhlig (1995).

The model described above is still not useful for monetary policy analysis since it exhibits the classical dichotomy (Modigliani, 1963; Patinkin, 1965). In other words, money and monetary shocks do not affect real variables (output, consumption, and real interest rate). This is because prices are assumed to be perfectly flexible. Walsh (1998, pp.

\(^{12}\) MIU models have been criticized on the grounds that they are a reduced-form model of a fully-specified model of transaction costs. Brock (1974) explains that money can yield utility by reducing transaction costs. However, Feenstra (1986) finds certain conditions under which a transaction cost model, such as a cash-in-advance model (Clower, 1967), and the MIU’s maximization problem are equivalent.

\(^{13}\) King, Plosser, and Rebelo (1988) claim that CRRA preferences are consistent with steady-state growth.
190-195) shows that the linear approximation of the MIU model (described above) can incorporate a one-period nominal wage rigidity *a la* Taylor (1979, 1980). This is achieved by assuming that the nominal wage rate, set to produce a real wage to clear the labor market, is determined before the start of the period. Therefore, the real wage “target” is a function of the expected price-level.

McCallum and Nelson (1997) treat capital as exogenous in the context of the dynamic optimizing general equilibrium model described along this section. Capital grows steadily at its trend rate. This precludes the model to examine issues concerning capital accumulation. In addition, they assume that employment oscillates about a fixed level due to an inelastic labor supply. Nevertheless, these simplifying assumptions help to characterize an economy with four simple equations: aggregate supply, aggregate demand, a money demand equation, and a Fisher equation.

The money demand equation is dropped from the system if we assume that the central bank conducts monetary policy using the interest rate as the instrument. Thus, the money demand is determined endogenously according to that equation. Monetary policy shocks affect real variables directly via the interest rates.

The remaining system of three equations involves an aggregate demand, function of expected output and interest rate, an aggregate supply, function of expected inflation and expected output, and a Fisher equation connecting the nominal and the real interest rate. The following part of the model is a variant of Walsh (1998, pp. 468-470).

With no capital and, consequently, no investment, output equals consumption (this is the new aggregate resource constraint). Moreover, the introduction of Taylor’s
staggered price model defines prices as a constant return over wages. A price-adjustment equation characterizes the adjustment of wages. Taylor also assumes that the expected real average contract wage is an increasing function of the level of economic activity. Hence, the equations relevant for the determination of output and the price level are the aggregate demand, and the Taylor’s price-adjustment equation.

From here, we carefully follow Walsh (1998, pg. 468-470) model, with the exception that we include just one lag in the aggregate demand equation. Walsh claims that if we disregard the role of expected future inflation14, the US economy can be characterized by the following three linear equations:

\begin{equation}
\begin{align*}
y_t &= \alpha_1 y_{t-1} - \alpha_2 R_{t-1} + u_t \\
\pi_t &= \pi_{t-1} + \gamma y_t + \eta_t \\
r_{t-1} &= R_{t-1} + E_{t-1} \pi_t
\end{align*}
\end{equation}

where y_t and y_{t-1} are the output at time t and one-period before, respectively, R_{t-1} is the lagged value of the real interest rate, π_t and π_{t-1} stand for the current and lagged inflation rates, and r_{t-1} is the nominal interest rate at time $t - 1$. u_t and η_t are i.i.d. random variables not known at time $t - 1$, with zero mean and variances σ_u and σ_η, and the α’s and γ are positive parameters. In addition, α_1 is assumed to be less than unity.

14 Svensson (1997) proposes a variant of this model recognizing the role of expected inflation. His results are not dramatically different in terms of what we want to show, i.e. that the Taylor rule can be derived from a theoretical model of optimizing agents. This is backed by Fuhrer’s (1997) findings emphasizing the unimportance of the forward-looking expectations, based on an empirical study of the U.S.
Equations (2), (3), and (4) correspond to the aggregate demand, a price-adjustment (or inflation) equation, and the Fisher equation, respectively.

Contrary to the utility maximization framework, the model above puts together lagged variables that will help to capture the observed dynamics of the data, but it is important to state this difference since it is a major source of criticisms such as McCallum (1999) -among others- regarding the (still) ongoing debate among economists about which is the “right” model upon which we should build the central bank optimization representation.

Suppose that changes in the nominal interest rate \((r_t)\) affect inflation and output with one-period lag\(^{15}\). The monetary authority sets the nominal interest rate \(r\) at time \(t\) when \(y_t\) and \(\pi_t\) are already known, and setting \(r_t\) affects \(\pi_{t+1}\) and \(y_{t+1}\).

If we insert the inflation equations (3) and (4) (once we solved it for \(R_{t-1}\)) into the aggregate demand equation (2), for period \(t+1\), we are left with:

\[
y_{t+1} = \alpha_1 y_t - \alpha_2 (r_t - \pi_t - \gamma E_t y_{t+1}) + u_{t+1}
\]

Taking expectations to both sides of equation (5), conditional on information at time \(t\), and solving it recursively, yields the following expression:

\[
y_{t+1} = \left[1/(1 - \alpha_2 \gamma)\right] \alpha_1 y_t - \alpha_2 (r_t - \pi_t) + u_{t+1}
\]

For convenience, let’s define \(\theta_t \equiv y_{t+1} - u_{t+1}\). Therefore, we can re-express equations (2) and (3) for the period \(t+1\) in the following way:

\(^{15}\) The Taylor rule in equation (1) is build upon quarterly data. A model dealing with more than one or two lagged periods can easily become intractable. Thus, along the same lines, this assumption can be thought as a model for annual data.
In the spirit of Kydland and Prescott (1977), assume that the central banker’s preferences are represented by a quadratic loss function L, with the output gap $(y_t - y^*)$, and the difference between the inflation rate and a target (π^*) as arguments:

$\lambda > 0$ is the weight on output stabilization.

The policymaker’s optimization problem is choose θ_t at each t so that she minimizes the sum of discounted squared future deviations from the output and inflation targets. Without loss of generality, assume that $y^* = \pi^* = 0$. Hence, the central banker is faced with the following dynamic optimization problem:

subject to the description of the economy, i.e. equations (7) and (8). β is the standard discount factor. Since the objective function is a real-valued continuous quadratic function, the restrictions are linear and continuous, and the only state variable at time t is π_t, the choice of θ in period zero will determine the level of inflation in period 1. Moreover, the discount factor is bounded between zero and one, therefore we are able to use Bellman’s principle of optimality (Bellman, 1957). Thus, using dynamic programming, we can express (10) as a Bellman equation:
\[V(\pi_t) \equiv \min_{\theta} E_t \left\{ \frac{1}{2} \left[\lambda^2 \pi_{t+1}^2 + \pi_{t+1}^2 \right] + \beta V(\pi_{t+1}) \right\} \]

where \(V(\cdot) \) is the value function.

The first-order conditions are:

\[(\lambda + \gamma^2)\theta_t + \gamma \pi_t + E_t \gamma \beta V(\pi_{t+1}) = 0 \]

From the envelope theorem (Benveniste and Sheinkman, 1982), i.e. taking the derivative of expression (11) with respect to \(\pi_t \) yields,

\[V_{\pi_t}(\pi_t) = \pi_t + \gamma \theta_t + E_t \beta V(\pi_{t+1}) \]

If we multiply both sides of expression (13) by \(\gamma \), solve it for \(E_t \gamma \beta V(\pi_{t+1}) \), substitute it in equation (12), and solve it for \(\gamma V_{\pi_t}(\pi_t) \), we are left with:

\[\gamma V_{\pi_t}(\pi_t) = -\lambda \theta_t \]

Plugging expression (14) for one-period ahead, into equation (12), and solving for \(\theta_t \) yields,

\[\theta_t = \beta \left[\frac{\lambda}{\lambda + \gamma^2} \right] E_t \theta_{t+1} - \left[\frac{\gamma}{\lambda + \gamma^2} \right] \pi_t \]

Given that \(\lambda \) and \(\gamma \) are parameters, it is reasonable to assume that \(\theta_t \) is a linear function of \(\theta_{t+1} \) and \(\pi_t \). Therefore, we can apply the method of undetermined coefficients\(^\text{16}\) to provide a conjectured general form of the solution and determine the specific coefficients.

Suppose the optimal decision rule is of the form \(\theta_t = \psi \pi_t \). This implies that

\[
E_t \theta_{t+1} = \psi E_t \pi_{t+1}
\]

and, introducing equation (8), it also implies that

\[
E_t \theta_{t+1} = \psi (\pi_t + \gamma \pi_t).
\]

Substituting these two expressions into equation (15) yields,

\[
\beta \lambda \gamma \psi^2 + (\beta \lambda - \lambda - \gamma^2) \psi - \gamma = 0
\]

In order to obtain the negative root for equation (16) and, as a result, the precise parameters, we could use the quadratic formula\(^{17}\). However, we are far more interested in obtaining the general form of the central bank’s reaction function, i.e. the interest rate equation that minimizes the loss function at each period of time \(t \).

Recall that we defined \(\theta_t \equiv y_{t+1} - u_{t+1} \), and that we assumed the optimal decision rule has the form \(\theta_t = \psi \pi_t \), thus, substituting it into equation (6) and solving it for \(r_t \), yields the following expression:

\[
r_t = \pi_t + (\alpha_1/\alpha_2) y_t + \psi (\gamma - (1/\alpha_2)) \pi_t
\]

This is the central bank’s optimal reaction function for the economy described in equations (2)-(4) with the monetary authority’s preferences characterized by the loss function (9).

For simplicity we assumed that \(y^* = \pi^* = 0 \) in equation (9). Let’s relax this assumption assuming that both targets are fixed across time. In addition, suppose that that \((\alpha_1/\alpha_2) = \psi (\gamma - (1/\alpha_2)) = 1/2 \), equation (17) can be re-expressed:

\[
r_t = \pi_t + (1/2) (y_t - y^*) + (1/2) (\pi_t - \pi^*)
\]

\(^{17}\) The negative root is the relevant solution since the stability of the inflation process requires that \(|1 + \gamma \psi| < 1 \). This is due to \(\pi_{t+1} = (1 + \gamma \psi) \pi_t + v_{t+1} \).
Except for the lack of a number 2 adding to the right-hand side of the equation, this equation is exactly the same as the equation (1), i.e. the original version of the Taylor rule (1993).

In order to obtain the same parameter numbers of Taylor (1993), the “deep” parameters\(^{18}\) are \(\alpha_1 = 0.58\), \(\alpha_2 = 1.16\), and \(\gamma = 0.26\) for a discount factor of \(\beta = 0.96\) (appropriate for annual data), and an output-stabilization weight of \(\lambda = 1\), i.e. equal weight on output and inflation. Therefore the original version of the Taylor rule entails a strong response of spending to changes in interest rate (\(\alpha_2\)) as well as inflation to variability on output (\(\gamma\)).

We have painstakingly shown a way to derive the canonical form of the Taylor rule from a model of optimizing agents. Now we turn to more practical concerns. In an empirical research paper on robustness of monetary policy rules under model uncertainty, Levin, Wieland, and Williams (1999) argue that the required information to set the interest rate efficiently is summarized by inflation, output gap, and interest rates. Therefore, from an empirical point of view, this suggests that a reduced-form vector autoregression (VAR) analysis on these variables could be a well suited tool for assessing this topic.

For a given vector of historical observations \(X_t\), a VAR can be expressed as:

\(^{18}\) These values are in line with Ball (1997).
\[X_t = \Phi_0 + \sum_{i=1}^{k} \Phi_i X_{t-i} + \varepsilon_t \]

where \(X_t \) and \(\varepsilon_t \) are \(m \times 1 \) random vectors, \(\Phi_0 \) is a vector of constants, and \(\Phi_i \), \(i = 1, \ldots, k \) are matrices of coefficients with the appropriate dimensions. The vector of disturbance terms, or innovations, \(\varepsilon_t \) is assumed to be i.i.d. with zero mean and a \(m \times m \) variance-covariance matrix \(\varepsilon \Sigma \). Innovations are assumed to be serially uncorrelated, but contemporaneous correlations among elements of \(\varepsilon_t \) is allowed.

Sims’ seminal paper (1980), dictated the general norm on “modern” macroeconometric modeling estimating vector autoregressions (VAR) from data on the major macroeconomic variables. Within Sims’ modeling framework, a descriptive mechanism called impulse-response function was also introduced to analyze the reaction of each variable in the model to a shock in each equation of the system. Aiming to be able to show the dynamic patterns for each variable, these shocks must satisfy orthogonally conditions. In order to achieve this desired provision, a Choleski decomposition was used. Cooley and LeRoy (1984) noticed that by applying this factorization method, one might have imposed some undesirable restrictions on the model in terms of causal behavior.

For a monetary policy rule to be effective it has to be based upon a model that reflects accurately the economy. Consequently, it becomes crucial to analyze the causal structure of the variables that have been recognized as key factors that interact themselves to form the monetary transmission mechanism at a contemporaneous level.
In response to the already mentioned allegations by Cooley and Leroy (1984), Blanchard and Quah (1989), Blanchard (1989), and Stock and Watson (2001) –among others– have approached the problem by building means to impose structure to the so-called “atheoretical VARs”, giving birth to the structural vector autoregressions (SVARs). Bernanke (1986)19 handled the problem using an alternative decomposition that allows for nonlinear restrictions on the off-diagonal elements of what they call pattern matrix.

The observed innovations e_t are combinations of “structural” driving sources of variation in the data. Following Amisano and Giannini’s (1997) K-model, based on Bernanke (1986), these driving sources of variability are orthogonal and can be written as:

\begin{equation}
(20) \\
 e_t = K\epsilon_t
\end{equation}

Assuming invertibility of the K matrix, identification is achieved if K, evaluated at the “true” vector K_0, has full column rank of $m(m-1)/2$. In other words, K will be identified if we leave $m(m-1)/2$ free parameters in K (Amisano and Giannini, 1997, pp. 35; Doan, 2000, pp. 8-10).

Innovation accounting procedures such as impulse-response functions and forecast-error variance decomposition can be performed on the SVAR:

\begin{equation}
(21) \\
 KX_t = K\Phi_0 + \sum_{j=1}^{k} K\Phi_j X_{t-j} + K\epsilon_t
\end{equation}

19 The focus here is on how Sims (1986), Bernanke (1986), and Blanchard (1989) theories influenced the causal ordering of the variables for the computation of the impulse-response functions and the forecast-error variance decomposition. For a more general treatment on structural VARs please see Amisano and Giannini (1997)
However, theoretical restrictions have been imposed in VAR analyses of monetary policy rules, and it would be interesting not only to know if the data supports the major theories on how monetary policy affects the economy, but also to evaluate the usefulness of monetary policy rules in the implementation of monetary policy. Even Stock and Watson (2001, pg. 103) define a structural vector autoregression in the following way: “A structural VAR uses economic theory to sort out the contemporaneous links among the variables…”

Later in this paper, we will retrieve the causal structure from the set of data using a fairly recent methodology called Directed Acyclical Graph (DAG) theory on causality, developed by Pearl (2000) and Spirtes, Glymour and Scheines (1993, 2000) to assess the usefulness of instrument-based (Taylor-style) monetary policy rules for the US economy.

3. Stock and Watson’s Model and Replication

Stock and Watson (2001) present a three-variable VAR for the US macroeconomy inspired by the Taylor rule for the 1960:I-2000:IV period. They pick output, inflation, and unemployment as their set of variables. The first two are practically “natural” variables, but the third one differs from the original version of the Taylor rule (output gap). Stock and Watson limit their explanation to note the difference between the original Taylor rule and their approach (footnote no. 5, pg. 103). At a theoretical level,

\[\pi_t = 400 \ln \left(\frac{p_t}{p_{t-1}} \right) \]

where \(p_t \) is the chain-weighted GDP price index. \(t \) is the time subindex.

20 Data on \(u_t \) and \(r_t \) are the quarterly averages of the monthly values of the civilian unemployment rate and the Federal Funds interest rate, respectively. Inflation is defined as: \(\pi_t = 400 \ln \left(\frac{p_t}{p_{t-1}} \right) \), where \(p \) is the chain-weighted GDP price index. \(t \) is the time subindex.
Friedman (1994) states that both measurements are practically equivalent if the rates of productivity growth, labor-force participation, and population growth are constant. Friedman also argues that US productivity growth improved at the beginning of the 1983-1990 expansion, compared to the seventies. This comment suggests that these two measures are not equivalent in practice. Nevertheless, this difference is usually overlooked because of the widely-accepted notion that when output grows more slowly than full employment output, unemployment rises because the utilization of productive factors falls.

Stock and Watson present the impulse-response functions and the forecast-error variance decompositions for an “unrestricted” VAR ordered π, u, r. We obtained Stock and Watson’s original data set, replicate their unrestricted VAR and its corresponding innovation accounting standard procedures.

Table 1 shows our results from the model replication. We obtained almost the same forecast-error variance decompositions with trivial differences. This was not the case for the Granger causality tests. We were unable to replicate Stock and Watson’s four-lagged Granger Causality tests p-values quantitatively. Qualitatively, all results were practically the same, except for the π does not Granger-cause r (lower left corner of first panel in table 1), and u does not Granger-cause π tests, where Stock and Watson’s p-values indicate failure to reject at 27 and 31 percent confidence levels, respectively. In our case we reject both hypotheses with 1 percent confidence level. Despite that we found different outcomes, we will see in our Directed Graph results in section D, that Stock and Watson’s Granger-causality tests support our results.
C. Probabilistic Approach to Empirical Causality

The theoretical foundations of *Directed Acyclical Graphs* (DAG) as a probabilistic approach to infer causality from a data set have their origins in Pearl (1986). Combining the traditional philosophical notions of causality with statistical theory, Pearl proposed the concept of *d-separation* (defined in Pearl, 2000, pp. 16-17.), to describe conditional independence with a graphical approach.

Spirtes, Glymour, and Scheines (1993, 2000) developed algorithms based on *Artificial Intelligence* (AI), integrating the concept of d-separation to retrieve the causal structure from empirical data. Their main contribution: a search-theoretic algorithm called the *PC algorithm*.

Even though this approach was born on the fields of Philosophy, Statistics, and Computer Science, it has now been increasingly used in economics and finance. Swanson and Granger (1997) pioneered in the application of DAGs in a Vector Autoregression setting. Bessler and Lee (2002), and Awokuse and Bessler (2003) apply these ideas to recent macroeconomic VARs. Demiralp and Hoover (2003) judged the usefulness of the PC algorithm using Monte-Carlo simulations to test how close the causal structure inferred by this methodology was from the data generating process’ true causal system. They found very encouraging results.

21 Verma and Pearl (1988) provide a proof of this proposition.
1. Directed Acyclical Graphs and the PC Algorithm

This part follows closely the work by Pearl (2000) and Spirtes, Glymour and Scheines (1993, 2000). A directed graph is formally defined as an ordered triple \(\langle V, M, E \rangle \), where \(V \) is a nonempty set of vertices (variables), \(M \) is a non-empty set of marks (symbols attached to the end of undirected edges; e.g., \(> \) or \(< \)), and \(E \) is a set of ordered pairs (the lines between them). In other words, directed graphs are pictures summarizing the causal flow among a set of variables.

A directed acyclic graph (DAG) is a directed graph that contains no feedback cycles. In other words, cyclic graphs such as \(A \rightarrow B \rightarrow C \rightarrow A \), assuming a set of vertices (variables) \(\{A, B, C\} \), are ruled out. The concept of DAG is used in this paper.

Directed acyclical graphs are sketches representing conditional independence. This can be illustrated by the recursive product decomposition, derived from the chain rule of probability calculus:

\[
P(x_1, x_2, x_3, \ldots, x_{n-1}, x_n) = \prod_{i=1}^{n} P(x_i | pa_i)
\]

where \(P \) is the probability distribution of variables \(x_1, x_2, x_3, \ldots, x_n \), and the realization of some subset of the variables that precede \(x_i \) in order \((x_1, x_2, x_3, \ldots, x_n) \), is represented by the term \(pa_i \).

DAGs are classified in three types: Causal chains, causal forks, and inverted causal forks (or colliders). For example, assuming a causally sufficient set of three variables \(X, Y, \) and \(Z \), the causal chain \(Z \rightarrow X \rightarrow Y \) implies that the unconditional association between \(Z \) and \(Y \) is nonzero, but the conditional association between \(Z \) and \(Y \) on \(X \)
is zero. The causal fork $X \leftarrow Z \rightarrow Y$ implies that the unconditional association between X and Y is nonzero, but conditioning this relationship on Z, is zero. In other words, common causes screen off associations between their joint effects, or Richenbach’s principle of common cause (Richenbach, 1956, pg. 156). Finally, the inverted causal fork (or collider) $X \rightarrow Y \leftarrow Z$ implies that the unconditional association between X and Z is zero, and conditioning on Y is nonzero, i.e. common effects do not screen off the association between their joint effects. Orcutt (1952), Simon (1953), and Papineau (1985) provide analogous expressions of asymmetries in causal relationships. Hausman (1998) gives an extensive survey on causal asymmetries.

The concept of d-Separation characterizes the conditional independence associations specified in equation (22).

Definition 1. Let X, Y and Z be three disjoint sets of variables in a DAG, and let p be a sequence of consecutive edges (or path) between a variable in X and a variable in Y. p is said to be d-separated (blocked) by a set of variables Z if and only if there is a variable W satisfying the following: (i) W does not have converging arrows along p, and W is in be Z, or, (ii) W has converging arrows along p and neither W nor any of its descendants are in Z. Set Z d-separates X from Y if and only if Z blocks every path from a variable in X to a variable in Y.

Geiger, Verma, and Pearl (1990) demonstrate that there exists a one-to-one correspondence between the set of conditional independencies, implied by equation (22), and the set of variables X, Y, and Z that satisfy the d-separation criterion. This was possible due to the fact that a DAG composed by the set of variables
X, Y, and Z, linearly implies that the correlation between X and Y, conditional on Z, is zero if and only if X and Y are d-separated, given Z. The conception of d-separation was "the missing piece in the puzzle" that related the philosophical idea of causality with probability theory.

The PC algorithm22 is a search-theoretic model developed by Spirtes, Glymour, and Scheines (1993) to construct directed acyclical graphs to represent a causal structure based upon an empirical set of data.

In order to yield the same causal model as a random assigned experiment, the PC algorithm relies on the following four assumptions: (i) Causal Sufficiency (there are no omitted variables that cause two of the included variables), (ii) Causal Markov Condition (the variables are generated by a Markov property. In other words, probabilities of variables are conditioned on each variable’s “parents” only), (iii) Faithfulness23 (there is a one-to-one correspondence between the edges implied by the causal structure of the graph and the selected relationships obtained from the data. In other words, structural parameters do not form combinations and cancel each other), and (iv) Multivariate Normality.

The algorithm consists of a series of three systematic steps. Step 1 involves the construction of a complete undirected graph connecting every variable with all other variables.

22 For a detailed description, please see Spirtes, Glymour, and Scheines (2000, pg. 84).

23 This is a version of the Lucas critique of econometric policy evaluation (Lucas, 1981b). For a useful discussion of the relation between the faithfulness condition and the celebrated Lucas critique, see Hoover (2001), pg. 182.
At step 2 edges are removed sequentially based on zero unconditional and conditional correlation tests. This is where the concept of d–separation is integrated to the PC algorithm using the notion of sepset (or separation set). The sepset of the variables whose edge has been removed is defined as the set containing the conditioning variable(s) on removed edges between two variables. e.g. for the following undirected graph \(X \rightarrow Y \rightarrow Z \), assume that we remove the edge between variables \(X \) and \(Y \) through an unconditional correlation test. Thus, the sepset is the empty set. But if we remove the edge by means of correlation test conditional on variable \(Z \), then the sepset is \(Z \).

Fisher’s \(z \)-statistic is employed to test the following null hypotheses: \(H_0 : \rho_{i,j|k} = 0 \), where \(\rho_{i,j|k} \) is the population correlation coefficient between series \(i \) and \(j \), conditional on series \(k \).

\[
(23) \quad z(\rho_{i,j|k}) = \frac{1}{2} \sqrt{n - |k| - 3} \ln \left(\frac{1 + \rho_{i,j|k}}{1 - \rho_{i,j|k}} \right)
\]

where \(n \) is the number of observations provided to estimate the correlations, and \(|k| \) is the number of variables in \(k \) that we condition on. \(z(\rho_{i,j|k}) \) is distributed as a standard normal. In other words, Fischer’s \(z \) is used to test if conditional correlations are significantly different from zero. Based on Monte Carlo experiments, Spirtes, Glymour, and Scheines (2000, pg. 116) recommend using a confidence level of 0.20 whenever the sample size is below 100 observations, and 0.10 when the data points are less than 300 and above 100.
Step 3 consists of directing the edges that remain after all possible tests of conditional correlation have been carried out considering sets of three variables (or triples). This is accomplished by using the screening-off characteristics (mentioned above) to orient the edges.

The assumptions upon which PC algorithm rests can be violated. Therefore, any causal structure retrieved from observational data must be examined with prudence. Two assumptions are more of a source of concern because it is more likely to happen in economics and finance: causal sufficiency and the faithfulness condition. The former can be encountered when there are omitted variables in our assumed causal model. The latter is faced whenever parameters between causes have the same magnitude to cancel one another\(^\text{24}\).

There are other algorithms such as the *Modified PC Algorithm* (Spirtes, Glymour, and Scheines, 2000, p. 125), and the *Fast Causal Inference Algorithm* (p. 144), that have been developed to be applied whenever the causal sufficiency assumption does not hold (*i.e.* when it is assumed that latent variables are present). We restrict out discussion to the PC Algorithm since, in our opinion, it is the most easily understood, and we assume causal sufficiency holds, supported by the underlying theories described on section 2 of this paper.

2. Calculus of Interventions

Pearl (2000) acknowledges the differences between “seeing” and “doing” in the context of causality under the name of calculus of interventions. This refers to the distinction between observations and actions in a causal model, represented by a DAG, and the development of a new operator and new rules to work when dealing with analyses of actions.

Following Pearl’s (pg. 351) example, we are able to express the question “What is the probability that it rained, given that we see the grass wet?” in the following probability statement: \(P(Rain | Wet) \), where \(P \) stands for the conditional probability distribution. But what if we want to ask the odds that it rained if we make the grass wet? The conditional statement implies observation or a fact, not an action.

Instead of recognizing the obvious, but superficial impossibility of asking that question, Pearl develops a new operator: the \(do \)-operator.

Assume that the probability of raining is known, let’s say \(P(Rain) = 0.5 \). In addition, suppose that there are no other sources (either automatic, e.g. sprinklers, human, animal or any other “feasible” kind) to wet the grass than rain, and ourselves, in a voluntarily fashion. Then we would know that the probability that it rained, observing that the grass is wet (and that we did not take any action) is one, i.e. \(P(Rain | Wet) = 1 \). We are also able to know that if it was dry, and we wet the grass, then \(P(Rain | do = Wet) = 0.5 = P(Rain) \). This denotes our helpless role when we try to exert any control over “Mother Nature”. But, drawing back from deeper philosophical
debates, the “new” operator \(\text{do} \), allows us to perform analyses on actions, rather than mistakenly confuse them with observations.

As any mathematical operator, \(\text{do} \) comes along with certain rules for its application. While simple conditioning a probability distribution with the “relevant” variable (\(e.g. \) including that “relevant” variable as a regressor in a regression analysis), we are able to assess the impact of observations on a dependent variable, the examination of an action has to follow these rules: (i) Ignoring observations, (ii) ignoring actions, and (iii) exchanging an action with an observation of the same fact.

Figure 1 (drawn based upon figures 1.2 and 1.3 in Pearl, 2000, pp. 15 and 23) aids to exemplify the difference between “seeing” and “doing”. It also depicts how the \(\text{do} \)-operator works cutting the edge between \text{SEASON} and \text{SPRINKLER} like a pair of scissors when we set the sprinkler to “on”. By this we are applying rules (ii) and (iii).

D. Results

Stock and Watson’s (2001) Taylor rule-inspired VAR was chosen to illustrate the difference between a policy analysis from a “do” to a “see” point of view. They impose a causal structure based on the Taylor rule in both an “unrestricted” and a restricted VAR. On first sight, putting the words “imposed” and “unrestricted” together sounds like a tautology. But if we recall Cooley and Leroy’s (1984) remark on the possibility of undesirable causality structure being implicitly imposed at the innovation accounting phase of the VAR analysis.
It is a well known fact that using a microfoundations-based model, taking into account all the already mentioned caveats, we can obtain a central bank’s reaction function in the Taylor rule form.

The canonical form of the Taylor rule, given by either equation (1) or equation (18), the Taylor rule’s underlying causality structure can be represented by the following directed acyclical graph:

\[
\pi_t \rightarrow r_t \leftarrow u_t
\]

The above directed graph makes assumes that at contemporaneous time, the inflation rate at time \(t \) (\(\pi_t \)), and the unemployment rate at time \(t \) (\(u_t \)) are exogenous. The nominal interest rate (\(r_t \)) is then contemporaneously caused by \(\pi_t \) and \(u_t \).

This graph is equivalent to the following Bernanke-style input pattern to obtain the \(K \) matrix:

\[
\begin{bmatrix}
\pi & u & r \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1 & 1 \\
\end{bmatrix}
\]

Stock and Watson used the Choleski factorization in their “unrestricted” VAR with ordering \(\pi, u, r \). This translates into the following pattern:

\[
\begin{bmatrix}
\pi & u & r \\
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
\end{bmatrix}
\]

\[25\] This assumes that the unemployment rate is equivalent to the output gap. This is discussed in section B of this paper.
The pattern depicted in (26) is very similar to the pattern in (25), except for a number one, instead of a zero, that incorporates an “undesired” edge from inflation to unemployment.

The difference between these two is not a significant one when we obtain the standard innovation accounting procedures.

If we want to test if this is the empirical underlying causal structure, the Directed Graph paradigm is able to analyze how the variables are causally related in contemporaneous time. In order to perform this task, since the data is dynamically related, it would be we useful (almost imperative) to “pre-filter” the data using a vector autoregression (VAR). Then we would be able to use the PC algorithm on the residuals before actually run the impulse-response functions.

We use Stock and Watson’s data set26, replicate what their “unrestricted” VAR (in section). We are analyzing the US monetary policy for different FED governors across the 1960:I-2000:IV period (Martin, up to 1970; Burns; Miller, appointed in 1978; Volcker, from 1979 to 1987; and currently Greenspan). The appointment of Paul Volcker on Aug. 6th, 1979, and his explicit disinflation bias, marks the first justification for the partition. In addition, Sims (1986) claims that there is a structural change on the third quarter of 1979, due to a structural change in money supply. As a result, we study an early period of 1960:I-1979:III and a late one of 1979:IV-2000:IV.

In addition, we compare our results with Sims (1986), and Awokuse and Bessler (2003), imposing theoretical and DAG empirically-based causal structures, respectively,

26 from Mark Watson’s website: http://www.wws.princeton.edu/~mwatson/publi.html
as it is depicted in table 2. We were pleasantly surprised to obtain similar results for the early period.

We used the following variance-covariance matrices from the VARs for the two periods under study:

1960:I-1979:III

\[
P_e = \begin{bmatrix} 1 & \rho_{u,\pi} \rho_{r,\pi} \rho_{r,u} \\ \rho_{u,\pi} & 1 \end{bmatrix} = \begin{bmatrix} 1.000 & 0.173 & 0.100 \\ -0.129 & -0.422 & 1.000 \end{bmatrix}
\]

1979:IV-2000:IV

\[
P_e = \begin{bmatrix} 1 & \rho_{u,\pi} \rho_{r,\pi} \rho_{r,u} \\ \rho_{u,\pi} & 1 \end{bmatrix} = \begin{bmatrix} 1.000 & 0.089 & 1.000 \\ -0.228 & -0.489 & 1.000 \end{bmatrix}
\]

On the other hand, the strongest result of the paper, is that we find \(r \) causing \(\pi \), and \(u \). This suggests the following three implications: (i) Monetary policy is powerful to reduce inflation, contrary to the contradictory result, both theoretically and empirically, using Stock and Watson’s causal structure for the second period. Inflation is significantly reduced even before a year. We think that this reflects the increased importance of the role of information in the late period. As a result, at the interest rate change cause a more immediate effect on both, inflation and unemployment, since several times, an interest rate movement is discounted by the market way before the actual policy change; (ii) There is not a short-run trade-off between the unemployment rate and inflation. In other words, a rate hike of 25 basis points translates into less inflation and less unemployment. These are some good news for a politically-attached
policymaker. However, we have to take into account that it is a short-run effect indeed and these actions increase variability, persistence negative effects on the employment level; and (iii) a rate hike tends to come back to the “steady-state” in a more gradually.

These results takes more significance when we compare the three last impulse-responses in figure 3 of both, the Stock and Watson’s and the ones based upon the empirically-based DAG.

We want to emphasize that these results are based on an observed causal structure only between inflation, unemployment rate, and the interest rate.

E. Conclusions

The strongest result of the paper, is that we find r_t causing π_t and u_t. This suggests the following four implications: (i) Monetary policy is powerful to reduce inflation, contrary to the contradictory result, both theoretically and empirically, using Stock and Watson’s causal structure for the second period. Inflation is significantly reduced even before a year. We think that this reflects the increased importance of the role of information in the late period. As a result, at the interest rate change cause a more immediate effect on both, inflation and unemployment, since several times, an interest rate movement is discounted by the market way before the actual policy change; (ii) There is not a short-run trade-off between the unemployment rate and inflation. In other words, a rate hike of 25 basis points translates into less inflation and less unemployment. These are some good news for a politically-attached policymaker.
However, we have to take into account that it is a short-run effect indeed and these actions increase variability, persistence negative effects on the employment level; (iii) The Fed has not followed a Taylor rule in any of the two periods under study; and (iv) a rate hike tends to come back to the “steady-state” in a more gradually.

These results take more significance when we compare the three last impulse-responses in figure 3 of both, the Stock and Watson’s and the ones based upon the empirically-based DAG.

We want to emphasize that these results are based on an observed causal structure only between inflation, unemployment rate, and the interest rate.
CHAPTER III

PROBABILITY FORECASTING AND CENTRAL BANK ACCOUNTABILITY

If you twist my arm, you can make me give a single number as a guess about next year’s GNP. But you will have to twist hard. My scientific conscience would feel more comfortable giving you my subjective probability distribution for all the values of GNP.
— Paul A. Samuelson (1965), p. 278.

A. Introduction

For years the conduction of monetary policy and its executive board’s judgment and motivation was a mystery to the general public. Central Bankers built reputations making decisions in an environment of confidentiality. Arguments supporting a higher degree of central bank transparency have recently persuaded monetary authorities to be more open with respect to policymaking decisions, up to the point for some to make their forecasts of the key variables public. Intensifying the public’s response to monetary policy changes as transparency improves the public’s ability to predict policy decisions reflected in the public’s actions, is among the potential gains of increased transparency (Svensson, 1997; Woodford, 2003).

Transparency is related to accountability (Walsh, 2003). Given that central banks have no absolute control over inflation and that monetary policy effects are observed with time lags, making the central bank beliefs about the state of the economy available ex ante through their forecasts, opens up new ways to assess whether the central bank’s
actions are consistent with their mandate. Proper forecast evaluation methods are among these.

In order to incorporate the inherent risks of macroeconomic policy, complete probabilistic statements –namely density or probabilistic forecasts (Dawid, 1986)-, rather than point-forecasts are preferred (Samuelson, 1965; Zarnowitz and Lambros, 1987; Chari, 1998; Svensson, 2003). What is even more compelling is that advances in statistical methodology, as well as increases in computer power, have generated the interest and use of probabilistic forecasts (Tay and Wallis, 2000).

The Bank of England (BoE) is one of the few central banks that actually publish its inflation forecasts. The Monetary Policy Committee (MPC) of the BoE has been issuing density forecasts of inflation –the so-called “Fan Charts”- on a quarterly basis in its Inflation Report since August 1997. It has been issuing output growth forecasts since November 1997. In addition, the BoE has published probabilistic forecasts of these two “key” variables from a quarterly survey of undisclosed external forecasters, averaging their responses for each range of the probability distribution.

The MPC has shown interest in the ex post evaluation of their ex ante density forecasts: “…the analysis of past forecast errors may help to shed light on deficiencies

27 This becomes less ambiguous in an explicit inflation targeting regime (Walsh, 2003)

28 The terms “density” and “probabilistic” are used interchangeably all across the paper.

30 The MPC asked Adrian Pagan (2003) to review their forecasts and assess their forecasting abilities in 2001.
in the models, as well as in the Committee’s thinking. For this reason the Bank conducts regular analysis of its forecast errors.” (Bank of England, 2003).

Unfortunately, the Committee has only reported point-forecast evaluation measures31, such as the average forecast errors of their mean projections. This suggests two potential problems: First, point-forecast evaluation measures do not take into account the forecaster’s assessment of the uncertainty associated with the forecast, present in a complete probabilistic statement, such is the case of the “Fan Charts”.

Second, even though the MPC integrates external surveyed forecasts in their \textit{Inflation Report}, they do not report any forecast ability measurements of the “others” probability assessments. Thus there are no means to compare the calculated metric and provide an objective appraisal of how “good” or “bad” is it. We suggest that reported the probabilistic forecasts and \textit{ex-post} evaluations on both the MPC and an alternative “shadow” committee offers valuable information on forecasting performance that is not available from reports on the MPC above. A humorous epigraph, summarizing a conversation between person “A” and person “B”, of Granger and Newbold (1986) illustrates well our suggestion: “A: How is your wife? B: Compared to what?”

Probability calibration has been used to evaluate probability forecasts (Bunn, 1984; Dawid, 1984; Kling and Bessler, 1989; Diebold, Hahn, and Tay, 1999; and the survey by Tay and Wallis, 2000). Calibration is the ability to match the \textit{ex post} relative frequency of all events with the associated forecasted probability distribution (Dawid, 1984).

31 Surveyed by Wallis (1995).
Recently Wallis (2003, 2004) and Clements (2004) have performed calibration-based analyses on the MPC one-year-ahead inflation density forecasts. They both agree that the MPC overestimated the future uncertainty making the inflation probabilistic forecasts “fan out” more rapidly. They also suggest the existence of biases by stressing the MPC has placed too much probability in the upper ranges of the forecasted distribution. While Wallis (2004) compares the MPC inflation forecasts with the ones issued by the National Institute of Economic and Social Research (NIESR), Wallis (2003) and Clements (2004) do not offer comparisons with other forecasters.

A drawback of using calibration-based measures as the sole metric of “goodness” of density forecasts is that calibration does not measure the resolution of the forecast. In other words, by neglecting the *ex post* resolution of a density forecast, we are overlooking the ability to sort the probabilities between the events that actually occur from the ones that did not occur. As a result, a forecaster could be perfectly calibrated and, at the same time, offer little to forecast users.

Although these issues in forecast evaluation have been present in the meteorology literature for many decades (Brier, 1950; Sanders, 1963; Murphy, 1973; Yates, 1982, 1988), their discussion has not emerged in economics until recently. Zellner, Hong, and Min (1991) use the Brier score, which captures both calibration and resolution to assess turning forecasts from econometric models. More recently, Bessler and Ruffley (2004) use the Brier score and its partition to assess probabilistic forecasts of stock market returns. They offer an example of potential problems associated with using only

32 The National Institute of Economic and Social Research issues 1-quarter and 1-year-ahead probabilistic forecasts for inflation and output growth in the National Institute Economic Review since October 1996.
calibration when evaluating density forecasts. They provide means to overcome the problem by exploiting two properties of the Brier score. First, it has been shown that the Brier scoring rule encourages the forecaster to report their true beliefs. In this regard, an affluent history unfolds on the use of quadratic scoring rules to motivate and evaluate subjective probabilities, finding foundations on both theoretical (de Finetti, 1937, 1965 and 1974; Savage, 1971) and experimental grounds (Nelson and Bessler, 1989).

Furthermore, calibration does not necessarily encourage honesty (Winkler, 1986). If agent (subject) knows he/she is being “judged” using calibrations, he/she can misreport probabilities for the next period to compensate for already known miscalibrations in earlier periods. By doing this he/she might not be reporting what is actually believed.

Second, the Brier score not only takes into account the calibration property, but also relates to the ability of a forecaster (person or model) to sort events into groups: those events which obtain versus those events which do not obtain, \textit{ex ante}.

The Brier score can be decomposed in order to offer assessments on both calibration and sorting (resolution) attributes of a probability forecast using its Yates’ partition (Yates, 1982, 1988).

The purpose of this paper is to illustrate use of the Brier score and its Yates’ partition and suggest how such information may improve the degree of transparency of the monetary authorities’ policy decisions, by increasing the ability to make the central bank accountable for their actions. Such information, when used in conjunction with similar information from a “shadow” committee can aid the central bank in improving
their probability forecasts and give private market participants clear signals on monetary policy and its likely aggregate consequences. Our purpose falls well within the ambit of study of the Bank’s own forecast assessments; only here we demonstrate how one might perform such a study with a well defined proper scoring rule.

We propose the use the quadratic scoring rule to evaluate the central banks’ inflation (and output growth) density forecasts. These analyses are carried out under the consideration that optimal density forecast evaluation is a necessary condition for the forecast to work as an optimal accountability mechanism.

Recognizing the incentive-compatible feature of the Brier score, we considered (and later ruled out) utilizing the Brier score in the context of a contract between the govt. and the central bank in the spirit of Persson and Tabellini (1993, 1999, 2000), and Walsh (1995a, 1998). Because of ambiguities –discussed in McCallum (1999) and Blinder (1998)- that come into sight from applying this approach to central banking to the letter\(^3{33}\), this possibility is abandoned. Difficulties in determining whether it is the principal (Parliament or Congress) or the agent (central bank), who has more incentive to try to boost the real output in the short-run by creating “surprise inflation” is among these ambiguities.

Hence, given the fact that there is no explicit reward-punishments agreement, contingent to the realization of the states that were forecasted and the probabilities that were issued to those events, in order to keep the incentive property of the Brier score,

\(^{33}\) In order to connect Walsh’s (1995a, 1998) and Persson and Tabellini’s (1993, 1999, 2000) contracting approach to our proposal, it had to be followed literally. Consequently it was not given any practical consideration. However, this should not be interpreted as discarding the importance of their contributions to improve the assessment of modern monetary policy issues.
there is merit to a comparison among the appraisers’ ability to forecast (Granger and Newbold, 1986; Coyle, 2001; Fildes and Ord, 2002). That is to say comparing the Central Bank’s probability forecasts with a competent but “shadow” expert will help to induce forecasting “soundness” by reputation building and learning. Usually, the central bank is not the only institution that regularly issues forecasts on the two well-identified “key” variables of the economy: inflation and real Gross Domestic Product (GDP) growth. As a result, analyzing both forecasters predictability performance appeals to the forecast competition arguments extensively treated in the references above. Additionally, despite the fact that central banks’ policymaking “correctness” is ultimately measured by the outcome on inflation34 and given the availability of the real GDP growth forecasts, it intuitively makes sense to compare their forecast ability between the two key variables as well. After all, GDP, though very important, there is usually no explicit commitment to it.

This paper also contributes to the existing literature on probabilistic forecast evaluation with quadratic probability scores making available a Neyman-Pearson (1933) approach to assess how different are the Brier scores of two different forecasters. Not considering the possibility of statistical hypothesis testing appears to be an unusual circumstance for applied economics in today’s world. But the strict subjectivism that characterized the pioneering work on scoring rules of de Finetti (1965, 1974) was more likely to resemble a “horse race” in the sense that the distance between the first-place

34 This is particularly better perceived in an Inflation Target regime.
winner and the second-place arriving horse turns out to be completely irrelevant at the moment of getting the prize.

This paper differs from Clements (2004), who also calculates the Brier Score of the MPC forecasts, as we provide an idea of an incentive-compatible mechanism to encourage honesty from the forecaster. Furthermore, we introduce the use of the Yates decomposition as a technique to extract meaningful information about the forecaster’s beliefs.

We find that the MPC is “upwardly” biased by placing larger probabilities to the high state preventing the less conservative members of the Committee to gain any approval for interest rate cuts. These results are consistent with Pagan (2003), Wallis (2003, 2004) and Clements (2004).

The remainder of the paper is divided in four sections. The relationship between transparency, accountability and proper forecast evaluation methods as reputation-building mechanisms is described in the first section. Section C, provides an overview of probabilistic forecasting concepts and shows the suggested density forecast evaluation methodology with the theoretical rigorousness that characterizes the process. The third part presents the empirical exercise of the techniques described on Section C on the density forecasts of inflation and output growth of the MPC and the external surveyed forecasters. Section E portrays the concluding discussions.
B. Transparency, Accountability, and Forecast Evaluation

1. Central Banks Tradition of Secrecy, Problems, and Proposed Solutions

It is well-known that “enigmatic” policymaking gives rise to highly uncertain scenarios. Uncertainty about money and inflation weakens the role of the price system as a mechanism of optimal resource allocation (Hayek, 1945). Furthermore, Friedman, et al. (1949) argued that policy-induced uncertainty could lead both consumers and firms to undertake actions they would not choose under certainty. He also claimed that the source of the monetary authority’s “secrecy” was the central bankers’ dual goal of maximizing their prestige and, at the same time, minimizing their accountability35.

The first proposed solution was to impose a fixed rule of monetary growth on the central bank (Friedman, 1948, 1960). It has been argued that such rules are overly restrictive, and that they do not provide the central bank with the sufficient discretionary power to account for adverse shocks in the economy.

A “new” version of the “rules vs. discretion” debate -brought up by Kydland and Prescott (1977), and Barro and Gordon (1983)- brought forth the utilization of dynamic policy rules (Taylor, 1993, 1999 and McCallum, 1988, 1999 -among others-) to overcome the concerns that could arise due to the celebrated “time inconsistency” problem, first noticed in the monetary literature by Auernheimer (1974). Arguments against the potential problems of “time inconsistency” (Mankiw, 1998 and Albanesi, Chari and

35 As quoted by Fischer (1990) and cited by Faust and Svensson (2000).
Christiano, 2001), in addition to the central bankers’ fear that even a dynamic policy rule could still be stringent\(^{36}\), have made central banks hesitant to adopt these rules.

To overcome the dynamic inconsistency problem, Rogoff (1985) suggests hiring a “conservative” central banker. Lamentably, finding out if a central banker is sufficiently conservative or not, is not an easy task to perform as noted by Barro (1986) and recently by Woodford (2003). In that case, another asymmetric information problem surfaces: adverse selection at the time of deciding who to appoint as central banker. Yet, a moral hazard problem remains.

An alternative scheme to face the “time inconsistency” problem has been the use of contracts (Persson and Tabellini, 1993, 1999, 2000, and Walsh, 1995a, 1998). Here the contract would design or specify a rewards-punishments scheme between the congress and the central bank. On this issue, Garfinkel and Oh (1993) assert that legislation punishing the monetary authority by reducing her salary or the central bank’s budget, if she deviates from the target could be used to enforce the regime. Unfortunately, the intrinsic complexity in modeling the government’s preferences causes serious difficulties to build a totally applicable contract. Blinder (1998) criticizes this approach by stating that the principal, by having a reelection period ahead, could have more incentive to have an inflation bias than the agent, who is not supposed to be concern about the political election process. Another point of disapproval is that salary is not a

\(^{36}\) Taylor (1993, 2000) acknowledges the remaining restrictions that these “activist” rules impose on central bank and suggests that, instead of making use these rules as systematic mechanisms to act to stabilize the economy, they could still be used as guidelines.
good motivator for the central banker to do her job, since she is already giving up salary for not working in the private sector.

Therefore, we are left with a reputation-building mechanism as a feasible initiative to diminish the inflationary bias, once we know how to make the central bank accountable. In this regard, Canzoneri (1985) demonstrates that reputation, as an inflation-bias elimination framework, does not work in the presence of private information. Reputation fails to solve Barro and Gordon’s (1983) credibility problem whenever the central bank’s forecasts of the key variables are not public information. This is because the public cannot tell if the difference between expected and realized inflation is due to exogenous shocks or intentional cheating. Canzoneri also emphasizes –along the same lines as Persson and Tabellini (1993)- that full disclosure of the inflation-forecast by the central bank is not intended to pass on information to the private sector, but to make the monetary authority accountable of her actions.

On the role of announcements to influence policymaking, Cukierman and Liviatan (1991) and Walsh (1999) provide theoretical frameworks in the light of modern contract theory. They conclude that announcements do make available information to the public, and observe that it is surprising how there has not been much research on linking commitment to targets and information reporting requirements. Conversely, Persson and Tabellini (1993) only grant an incentive-alignment property to announcements, ruling out any other informational transmission of the state of the economy to the public. There appears today a consensus that central banks’ periodic announcements -in the form of inflation-forecasts- are a practical approach to make the
central banks accountable for their policymaking decisions (Persson and Tabellini, 1993; Svensson, 1997).

2. **Recent Increased Central Bank Transparency**

Nevertheless, the “obscurantism” era of monetary policymaking seems to be coming to an end. Contrary to what the academic orthodoxy have prescribed for a long time –namely, the adoption of policy rules-, this issue has been developing on another set of facts. As modern information technologies have evolved, the acquisition of information has become almost costless, bolstering the speed of adjustment of people’s expectations in response to economic disturbances. Consequently the public has become more sensitive to inflation and, as a result, several central bankers have entertained the idea of transparency as a mechanism to improve monetary policy’s stabilization features. According to Svensson (1997), this is achieved because transparency improves the private sector’s predictability of monetary policy leading them to better reflect information relevant to monetary policymaking. Woodford (2003) claims that the effectiveness of monetary policy not only depends on correctness and timeliness of the central bank’s decisions, but also on the public’s expectations and their ability to predict future policy. This relates to Hayek’s (1945) and Friedman’s (1949) argument that resource allocation can be improved based upon reducing the uncertainty on the price level and inflation, as the price system works as to convey informative signals to consumers. As a result, monetary policy performs better as a stabilization mechanism. Therefore, judging by their fairly recent actions, central banks
have been more in line with the role of actually providing the public with information (Cukierman and Liviatan, 1991; Walsh, 1999).

In order to increase their transparency, several central banks have explicitly committed to achieve a low and stable inflation. This has been achieved by Central Bank Independence (CBI), and Inflation Targeting (IT). They also issue reports on inflation, making their (and sometimes others’) forecasts public, and describing their expected policy responses to face the forecasted future events.

CBI is described as the assignment of monetary policy to a central banker whose decisions cannot be rejected ex post by the policymaker (Lippi, 1999). Herrendorf and Neumann (1999) claim that a politically-detached independent central bank exhibits less incentives to care about the government’s reelection chances reducing the possibilities of using monetary policy to create surprise inflation37. But independence could be associated with a greater degree of “conservativeness” in the Rogoff (1985) sense. In other words, greater independence may imply less-active stabilization policies and, therefore, higher output variance. This suggests that the gains of having an independent central bank depend on the extent of the trade-off between the inflationary bias and the variance of the policy targets. As a result, in addition to CBI, stability of policy targets is desired to overcome the time-inconsistency problem (Lippi, 1999). CBI and targeting regimes are not viewed as substitutes, but complements.

37 The monetary policy credibility issues have been criticized because, in reality, usually policymakers do not try to create unexpected inflation to surprise the private sector. But these criticisms miss the point that, in equilibrium, despite the monetary authority’s wish to reduce the inflation rate, it abstains from doing it because the disinflationary policy could turn into a recession, due to its lack of credibility.
IT is a mechanism that could be interpreted to be “in the middle” between full-discretion and restriction. But still, even an inflation targeting regime, of a constrained discretion regime country, could show an inflation bias if there is no incentive to achieve the target. The ex-post measure that the IT regime provides as inflation and the target could still not fully remove the inflation bias since there could be moral hazard. The bank can always provide a somewhat “good” explanation of why she could not achieve the target. Hence, additional to the inflation targeting regime, these points raise the question of what can be done to eliminate the moral hazard that feeds the credibility problem.

Yet central banks often do issue reports on inflation, making their (and sometimes others’) forecasts public, and describing their expected policy responses to face the forecasted future events. Justification for this central banks behavior is along the same lines as Hayek (1945), Friedman, et al. (1949), and Svensson (1997), rather than on the Canzoneri (1985) sense.

With respect to the publication of inflation forecasts, although this is a plausible on possible means to increase transparency, this does not necessarily ensure transparency. Walsh (2003) defines the degree of transparency as the ability to monitor the central bank. Under imperfect information, it is optimal for the monetary authority to place less weight on achieving the inflation target. To solve this problem he suggests to create a high-powered incentive structure, based on optimal performance measures (Baker, 1992), to motivate the central banks not only publish their inflation forecasts but, by doing this, attain transparency as well. In other words, with perfect monitoring, the
central bank’s only goal is to care about achieving the desired level of inflation (or inflation target).

Summarizing the above, on one hand, greater transparency is prone to trim down uncertainty and help monetary policy performance. On the other hand, greater accountability is likely to improve incentives to be really transparent and get rid of the inflationary bias. However, for transparency to work, besides making the central bank’s forecasts public, we need an incentive structure that allows perfect monitoring.

3. Forecasting as a Reputation-Building Mechanism

For the publication of the forecast to increase transparency a la Walsh (2003), a way to monitor the central bank must be found. For the forecast to work as a reputation-building mechanism in the Canzoneri (1985) sense, it should neither be private information nor a disturbance element. In decision theory jargon, the forecast needs to satisfy two conditions: (i) have full disclosure of the forecast and the forecast generation methods, and (ii) the forecast has to be a “good” forecast (Winkler, 1986). By this, we mean that, it must reflect the banks’ true beliefs. When outcomes are uncertain, planning must be based on forecasts. Naturally, the planner wishes to ensure that these forecasts are prepare honestly and with an appropriate degree of care (Winkler, 1986; Osband, 1989).

The forecast must be an accurate forecast as well. So not only should the central banker provide their true beliefs about their future expectations on inflation (and, if there is the case, on GDP as well), but also exert their best effort to provide a “good”
forecast. Walsh (2003) proposes the use of optimal measures of (forecast) performance for accountability to be transformed into transparency. Therefore we need an optimal way to evaluate the central banks forecasting performance on the key variable -namely inflation- that honors both honesty and accuracy. The Brier Score and its partition (by Yates, 1982, 1988) actually promotes both.

4. **Density Forecasts in Monetary Policy**

 If we want to take into account the uncertainties that surround the forecast, it is recommended to be in probabilistic form (Samuelson, 1965). In the spirit of Robert E. Lucas’ contributions to modern macroeconomics, Chari (1998) wrote: “Economists today routinely analyze systems in which agents operate in complex probabilistic environments to understand (their) interactions...”. Thus, an inflation-forecast, provided as a complete probabilistic statement is desired. Furthermore, Svensson (2003) points out that in an inflation-forecast targeting setting, a point-forecast only works under the following three assumptions: (i) quadratic loss function, (ii) linear transmission mechanism, and (iii) additive uncertainty. The first assumption is reasonable and widely used (Kydland-Prescott, 1977, and Barro and Gordon, 1983), and it is supported by more recent research led by Blinder (1998), Svensson (2001), and others.

 The second assumption -linear transmission mechanism- is quite strong, since it means that the future target variables depend on the current state of the economy and the instrument, in a linear fashion. This is not likely to happen (Svensson, 2003).
But most importantly, if assumptions (ii) and (iii)—namely, the uncertainty of policy multipliers—fail, then the certainty equivalence paradigm does not hold. Hence, distribution forecast is needed to account for the unbalanced risks.

It makes sense having the monetary authority issuing and publishing their forecast in a probabilistic mode. A probabilistic forecast is defined as a rule that links probability distributions with the realized values of the variable under study, and whichever possible set of outcomes (Dawid, 1984).

But the question we want to bring up to the discussion table is how to evaluate their forecasting performance? In the next section we assess the Brier score as an appropriate mechanism to evaluate density forecasts that encourages honesty and effort-exertion, two important things for a central bank to show.

C. Probability Forecasting

1. Prequential Analysis

Prequential analysis refers to the study of sequential probability forecasting (Kling and Bessler, 1989)

Let X_t, $t = 1,\ldots,N$, be a $K \times 1$ vector time series of realized values $x_t'=(x_{1t},\ldots,x_{Kt})$, with K defined (discrete) possible outcomes. Assume that at time N, given the observed values x_t, $t = 1,\ldots,N$, the forecaster issues a set of probability distributions $P_{N,m} = \{P_{N+j} \mid j=1,\ldots,m\}$ for future (unknown) quantities x_{N+j}, $j =1,\ldots,m$. A relationship P which links a selected $P_{N,m}$ with each value of N and any possible set
of outcomes \(x_t, t = N + 1, \ldots, N + m \), is defined as a “prequential forecasting system” (PFS) (Dawid, 1984). Although we could think of models, this could also apply to subjective probability judgments as well (Kling and Bessler, 1989).

2. Probability Forecast Evaluation

According to Winkler (1996) to judge whether a probability forecast is good or bad there are three aspects: coherence, expertise and calibration. In the current literature we still find that this is what has been used to evaluate forecasts is the concept of calibration. In other words, the ability to match the ex post relative frequency of all events with the associated ex ante forecasted probability distribution.

3. Empirical Assessment of Calibration

If the quantities \(x_{t+m} \) for each \(k = 1, \ldots, K \) are random variables with distribution functions \(F_{t+m} \) for every \(k = 1, \ldots, K \), then the random fractiles \(Q_{k,t+m} = F_{k,t+m}(x_{k,t+m}) \) have a distribution function of the form \(G(q_{k,t+m}) = q_{k,t+m} \). In the case of continuous random variables, the random fractiles are independently and uniformly distributed \(U[0,1] \). In both the continuous and discrete cases the evaluation of a PFS can be achieved if we test that the observed sequence \(x_{k,t+m} \) was drawn from a probability distribution with cumulative distribution \(G(q_{k,t+m}) = q_{k,t+m} \). The forecaster is considered to be well-calibrated if this hypothesis cannot be rejected. In order to obtain the estimated distribution function \(\hat{G}(q_{k,t+m}) \) for \(Q_{k,t+m} \) Bunn (1984) suggests a three-step
procedure. First he recommend to take the observed sequence $q_{k,t+m} = F_{k,t+m}(x_{k,t+m})$, $t = 1, \ldots, N$ and order them in an ascending sort.

Step two consists in calculating the following empirical cumulative distribution function also referred as “calibration function” (Bunn, 1984):

$$
\hat{G}(q_{k,j}(j)) = (j/N), \quad j = 1, \ldots, N
$$

The graph of a well-calibrated PFS should look similar to a 45-degree line.

Third, test the observed fractiles q_i’s from the sequence of N probability forecasts $P_{t,m}$. Under the null hypothesis of well-calibration, any subinterval of length $L \in [0,1]$ will have $L \ast N$ observed fractiles. A chi-squared goodness-of-fit test could be utilized if there are J non-overlapping subintervals that exhaust the unit interval.

$$
\chi^2 = \sum_{j=1}^{J} \left[(\kappa_j - L_j N)^2 / L_j N \right] \sim \chi^2_{J-1}
$$

where κ_j is the number of observed fractiles in the interval j and L_j is the length of interval j. The test statistic is distributed as a chi-squared with $J - 1$ degrees of freedom, if independence of the underlying distributions is not required (Dawid, 1984).

According to Winkler (1996) to judge if it is good or bad there are three aspects: coherence, expertise and calibration. In the current literature we still find that this is what has been used to evaluate forecasts is the concept of calibration. In other words, the ability to match the ex post relative frequency of all events with the associated ex ante forecasted probability distribution.

Bessler and Ruffley (2004) presented the major potential problem of using only calibration-based forecast evaluation methods: Neglecting the ability to sort the
probabilities between the events that actually occur from the ones that did not occur. Consequently, a forecaster could be perfectly calibrated but, at the same time, way too wrong.

4. Scoring Rules

Let r_k be the forecaster’s believed (discrete) probability judgments\(^{38}\) for every possible event $k = 1, \ldots, K$, where K is the number of possible outcomes, and p_k the reported probability of event k occurring. A scoring rule S is a one-to-one real-valued function that assigns a score S_k to a reported probability p_k if event k did not occur, and a score $S_j \neq S_k$, $j \neq k$ to a stated probability p_j if event k did occur\(^{39}\), regardless of the appraiser’s true beliefs, i.e. p_k need not be equal to r_k, for all k. We acknowledge that we are providing a somewhat restricted definition of scoring rules, but we consider that its simplicity serves for our purpose without significantly sacrificing rigorousness. For a more general definition of scoring rules, please see Winkler (1986) and Selten (1998), pg. 45-46. S_j can either be larger or smaller than S_k, depending on the nature of the scoring rule. e.g. in the case of a linear scoring rule, $S_j > S_k$, in the case of the quadratic rule would be the opposite.

\(^{38}\) Although we are only considering discrete probability distributions, this can be easily extended to the continuous distribution case as well (Winkler, 1986).

\(^{39}\) S_j can either be larger or smaller than S_k, depending on the nature of the scoring rule. e.g. in the case of a linear scoring rule, $S_j > S_k$, in the case of the quadratic rule would be the opposite.
The forecaster’s optimization problem is to choose the reported probabilities p_k for each possible outcome of event $k = 1, \ldots, K$ that maximize her expected payoff, subject to de Finetti’s (1937) and Savage’s (1954) “coherence” restriction, i.e. believed probabilities add-up to one, given a scoring rule $S(p_k)$:

$$\max_{\sum_{k=1}^{K} r_k = 1} \left\{ \sum_{k=1}^{K} r_k h S(p_k) \right\}$$

where h is a constant “scaling” factor, usually associated with a monetary reward.

We choose the quadratic scoring rule not only because it takes into account the “sorting” ability but it is also a proper scoring rule.

A scoring rule S is considered a (strictly) “proper rule” if the expected payoff of revealing the true believed probabilities is (strictly) greater than the payoff of stating different probabilities:

$$E[S(r)] > E[S(p)], \text{ for } p \neq r$$

Therefore, the forecaster can only maximize her expected score by being honest, i.e. setting $p = r$.

5. **The Quadratic Probability Rule and the Brier Score**

The quadratic rule was first introduced by Glenn W. Brier (1950) in the context of weather forecasting. The mean probability score or Brier Score is a variant of the quadratic scoring rule.
The Brier score belongs to a set of rules called “proper” rules or, in modern contract theory terminology, of incentive-compatible forecasting scores. This means that these rules encourage honesty (Winkler, 1996; Osband, 1989). There is a rich history on the use of quadratic scoring rules to motivate and evaluate subjective probabilities, finding strong foundations on both theoretical (de Finetti, 1937, 1965 and 1974; Savage, 1971) and experimental (Nelson and Bessler, 1989) fields.

Let the probabilistic forecast of an event k occurrence be denoted by p, d be a vector defined as the outcome index for event k as follows:

$$d = \begin{cases}
1 & \text{If event } k \text{ occurs} \\
0 & \text{If event } k \text{ does not occur}
\end{cases}$$

The Quadratic Probability Score (PS) for a single forecast is:

$$PS(p,d) = (p - d)^2, \quad 0 \leq PS \leq 1$$

PS ranges between 0 and 1. A score of zero means that the forecaster did a “great job” and predicted the events perfectly. We can see that PS is a loss function, rather than a positive score. A forecaster who actually did extremely “bad” gets a 1.

PROPOSITION 1: The Quadratic Probability Score (PS) is a truth-probability-revelation mechanism, i.e. PS is a “proper” scoring rule.

PROOF: To show that PS is a “proper” scoring rule, then we have to show that $p = r$ is the argument that maximize the forecaster’s optimization problem (31). For simplicity we set the scaling factor h to 1/2. Since PS is a single-forecast (two-outcome) rule, $k = 2$. Thus, imposing the “coherence” constraint (all the probabilities
must sum to unity), \(r\) and \(p\) are defined as the believed and reported probabilities that the event will occur, respectively. To find an analytical solution to the optimization problem, the forecaster has to choose a \(p\) that maximizes\(^{40}\) the expected payoff \(EP:\)

\[
EP = -r \frac{1}{2} (p - 1)^2 - (1 - r) \frac{1}{2} p^2
\]

Taking the partial derivative of (33) with respect to \(p\), and setting it to zero, yield the following first-order condition:

\[
\frac{\partial EP}{\partial p} = 0 \Leftrightarrow r(p - 1) + (1 - r)p = 0
\]

Solving for \(p\) we find out that \(p^* = r\). In other words, the forecaster has to report her true believed probability to maximize her expected payoff. Therefore, we have shown that \(PS\) is a “proper” scoring rule.

The Mean Probability Score or Brier Score \((PS)\) is the average of the single-forecast version of the Probability Score (32) over \(N\) occasions, indexed by \(t = 1, \ldots, N:\)

\[
PS(p, d) = \frac{1}{N} \sum_{t=1}^{N} (p_t - d_t)^2
\]

the notation follows from before.

So far we can see how the scoring rules are related to the concept of coherence. However, understanding the relationship between the scoring rules and the resolution - or ability to sort events that occurs and events that did not occur- it is not a

\(^{40}\) Actually we maximize the negative expected payoff if we recall that in this case a smaller probability score reflects a better forecast.
straightforward task. It will become evident once we expose the Yates’ partition (Yates, 1982, 1988).

6. **Yates’ Decomposition of the Brier Score**

Yates (1982, 1988) emphasizes the covariance between the reported forecasts and the outcome as “the heart of forecasting”. We now show the Yates’ decomposition for the Brier Score (\overline{PS}).

Yates (1982, 1988) decomposed the Brier Score (\overline{PS}) into several modules providing further analyses on resolution. Yates’ so-called “covariance decomposition” is given as:

$$\overline{PS}(p,d) = B^2 + S + \sigma_{p,\text{min}}^2 + \sigma_d^2 - 2\sigma_{p,d}$$

Bias is the bias, and it is defined as:

$$B = \bar{p} - \bar{d}$$

where

$$\bar{p} = (1/N) \sum_{i=1}^{N} p_i$$

$$\bar{d} = (1/N) \sum_{i=1}^{N} d_i$$

Bias is also called “calibration in the large” or “mean probability judgment”. It quantifies whether the probability forecasts are too low or too high. It is a measure of miscalibration of the probability assessments. $B = 0$ indicates that the forecaster perfectly matched the mean forecasts to the outcome index relative frequency, *i.e.* the

41 We deliberately departed from the original notation (Yates, 1982) for consistency of the present paper.
forecaster is perfectly calibrated. B^2 points out calibration errors whether the direction of the bias is positive or negative. \bar{p} and \bar{d} are the mean of the probability forecasts and the mean of the outcome index, respectively.

S Stands for scatter:

\[
S = \left(\frac{1}{N}\right)[N_1 \sigma^2_{p|d=1} + N_0 \sigma^2_{p|d=0}]
\]

where

\[
N_1 = \sum_{t=1}^{N} d_t
\]

\[
N_0 = N - N_1
\]

\[
\sigma^2_{p|d=1} = \left(\frac{1}{N_1}\right)\sum_{t=1}^{N_1} \left(d_t \left(p_t - \bar{p}_1\right)^2
\right)
\]

\[
\sigma^2_{p|d=0} = \left(\frac{1}{N_0}\right)\sum_{t=1}^{N_0} \left(1 - d_t \left(p_t - \bar{p}_0\right)^2
\right)
\]

where

\[
\bar{p}_1 = \left(\frac{1}{N_1}\right)\sum_{t=1}^{N_1} d_t p_t
\]

\[
\bar{p}_0 = \left(\frac{1}{N_0}\right)\sum_{t=1}^{N_0} (1 - d_t) p_t
\]

N_1 (N_0) is the number of times the event occurred (did not occur). $\sigma^2_{p|d=1}$ and $\sigma^2_{p|d=0}$ correspond to the conditional variances of the probability forecasts when event k occurs ($d=1$), and when it does not occur ($d=0$), respectively. \bar{p}_1 represents the conditional mean probability forecast for event k across the N_1 occasions when the event actually happened. \bar{p}_0 stands for the conditional mean probability forecast for event k over the N_0 occurrences that the event did not occur. It follows that scatter (S)
is the weighted average of $\sigma_{p|d=0}^2$ and $\sigma_{p|d=1}^2$, and it can be interpreted as an index of general “excess” variability (or noise) contained in the forecaster’s probability statements.

$\sigma_{p,\text{min}}^2$ is the minimum variance of the forecast, and it is defined as:

$$
\sigma_{p,\text{min}}^2 = \sigma_p^2 - S
$$

where

$$
\sigma_p^2 = (1/N) \sum_{t=1}^{N} (p_t - \overline{p})^2
$$

S is the scatter, defined in equation (40), σ_p^2 is the total variance of the issued density forecast, and \overline{p} is defined in (38). Notice that $\sigma_{p,\text{min}}^2$ equals the overall forecast variance whenever there is no scatter ($S = 0$) about the conditional means of p_1 and p_0.

σ_d^2 is the variance of the outcome index d and defined as:

$$
\sigma_d^2 = \overline{d}(1 - \overline{d})
$$

where \overline{d} is defined in equation (39).

$\sigma_{p,d}$ is the covariance between the forecasted probabilities and the outcome index, given by:

$$
\sigma_{p,d} = \theta \sigma_d^2
$$

where θ is the slope, and it is given by the following expression:
\[
\theta = \overline{p}_1 - \overline{p}_0
\]

\(\theta \in [0,1] \) The maximum value of \(\theta \) is 1 and it occurs whenever the forecaster reports \(p = 1 \) when the event occurred and \(p = 0 \) when the event did not occur.

Given that \(\sigma^2_d \) is completely exogenous to the forecaster’s judgments, the appraiser has to minimize \(S \) and \(\sigma^2_{p,\text{min}} \) and maximize \(\sigma_{p,d} \) in order to minimize the \(\overline{PS} \).

\(\sigma_{p,d} \), follows. \(\sigma_{p,d} \) measures the responsiveness of the forecaster to information related to event \(k \)’s occurrence, and \(S \) indexes the forecaster’s responsiveness to information not related to event \(k \)’s occurrence.

Having presented the technical aspects of the Brier score and its Yates’ partition, we are able to show formally that using calibration-based forecast performance measures only is not the best way to evaluate density forecasts.

PROPOSITION 2: Suppose that a forecaster obtains a perfect Brier score. Then the forecaster is also perfectly calibrated, but not the converse.

PROOF: Assume that \(B^2 \neq 0 \), i.e. the forecaster is somewhat miscalibrated. By multiplying and dividing the term \(\sigma_{p,d} \) in equation (36) by \(\sqrt{\sigma^2_d} \sqrt{\sigma^2_p} \), the correlation between \(p \) and \(d \), denoted by \(\rho_{p,d} \), becomes explicit:

\[
\overline{PS} = B^2 + \sigma^2_p + \sigma^2_d - 2\rho_{p,d} \sqrt{\sigma^2_p \sigma^2_d}
\]

Suppose that forecaster has perfect foresight. This implies that the forecaster has to match the total variance of the outcome index and the total variance of the issued forecast, i.e. \(\sigma^2_p = \sigma^2_d \).
A perfect forecaster achieves a Brier score of zero. By definition, this implies that the correlation coefficient between the probability forecast and the outcome index equals the unity. It follows that $B^2 = 0$ and contradicts the initial statement of this proof.

We have demonstrated the first part of the proposition. We now turn to the second part. Since we just need to find an exception to complete this proof, we are going to set the conditions under which a perfectly calibrated forecaster does not achieve the minimum (best) Brier score. Assume the forecaster is perfectly calibrated, i.e. $B^2 = 0$. Suppose the forecaster assigned a probability of zero to every outcome that occurred. In addition, assume that without incurring in any miscalibration, resulting in a correlation between the forecasted probabilities and the outcome index strictly less than $1/2$. Furthermore, for simplicity, let’s assume that $\sigma_p^2 = \sigma_d^2 \neq 0$. Under these assumptions, equation (52) can be expressed as:

\[
P_S = 2\sigma_p^2 \left(1 - 2\rho_{p,d}\right)
\]

It follows that the Brier score cannot be zero.

Proposition 2 allowed us to see that calibration is a necessary but not sufficient condition to achieve the Brier score maximum attainable value.

Table 3 portrays a simple numerical example to illustrate proposition 2. It can be observed that the forecasted probabilities match the relative frequency of the outcome index on realized inflation, i.e. the forecaster predicted that inflation would fall once within every range, and that is what happened. The problem here is that the forecaster
did not have the ability to discriminate between the events that occur and the ones that
did not occur. This ability was referred as the “resolution” of the forecast. The Brier
score takes into account both calibration and resolution.

7. The Multiple-Event Brier Score

The Brier mean probability score can also be expressed for a more than two-event
case, i.e. $K > 2$. In order to show this feature, let’s introduce the probability score (PS)
for the multiple-event case (Murphy, 1973), then we will show that it is a “proper”
scoring rule as well, followed by the formulation for the Brier mean probability score
for K events and its Yates’ decomposition.

Let d_k be the outcome index for each event $k = 1,\ldots,K$ and p_k represent the
probability forecasts for each event $k = 1,\ldots,K$. The multiple-event probability score is:

(55) $PSM(p, d) = \sum_{k=1}^{K} (p_k - d_k)^2$

where $0 \leq PSM \leq 2$. In this case, d_k can be seen as the observed relative frequency
distribution over the outcomes $k = 1,\ldots,K$.

Although we consider that the proof of proposition 1 is intuitive, it cannot be
generalized for a multiple event case.

PROPOSITION 3. The Multiple-Event Probability Score (PSM) is a “proper scoring
rule”

PROOF. To demonstrate that PSM is a “proper” scoring rule, the forecaster should
choose to report her believed probability judgments for all the possible outcomes. In
other words, that \(p_k = r_k \) for all \(k = 1, \ldots, K \) are the arguments that maximize the forecaster’s optimization problem (31).

If outcome \(j \) occurs, \(d_j = 1 \), and \(d_k = 0 \), \(\forall k \neq j \), elaborating the summation on the \(PSM \), equation (53), and gathering terms, we are left with:

\[
PSM_j(p, d) = 1 - 2p_j + \sum_{k=1}^{K} p_k^2
\]

To find an analytical solution to the optimization problem, the forecaster has to choose the set of \(p_k \)'s that maximize the expected payoff (For simplicity and without loss of generality we set the scaling factor \(h \) to 1). The forecasters’ expected payoff is the following:

\[
E[PSM_j(p, d)] = \sum_{j=1}^{K} r_j \left(1 - 2p_j + \sum_{k=1}^{K} p_k^2\right)
\]

Remember that the Brier score is a loss function, therefore, in this case we minimize the forecaster’s expected payoff, \(E[PSM_j] \), thus we maximize the negative of \(E[PSM_j] \). Setting the partial derivatives of the expected payoff (with respect to \(p_k \), \(\forall k = 1, \ldots, K \)) to zero, yield the following first-order conditions:

\[
2r_k - 2p_k \sum_{k=1}^{K} r_k = 0, \quad \forall k = 1, \ldots, K
\]

By coherence, i.e. \(\sum_{k=1}^{K} r_k = 1 \), it follows that \(p_k^* = r_k \), \(\forall k = 1, \ldots, K \).

Therefore, we are only left with the task of showing that choosing \(p_k^* = r_k \) for every event \(k \) actually maximizes the forecaster’s (negative) payoff.
To ensure that a maximum is achieved, the second-order sufficient condition for a minimum is that the matrix of second derivatives (Hessian) must be negative definite\(^{42}\). A symmetric matrix is negative definite if and only if its \(K\) leading principal minors have the same sign as \((-1)^k\).

In this case, it is easy to show that the Hessian matrix is negative definite because the second crossed partial derivatives are zero and, restricting for “coherence” \((\sum_{k=1}^{K} r_k = 1)\), the diagonal elements are all equal to \(-2\), i.e.

\[
\frac{\partial^2 E[PSM_j]}{\partial p_k^2} = -2\sum_{k=1}^{K} r_k < 0, \ \forall k = 1, \ldots, K.
\]

(59) \[H = \begin{bmatrix}
-2 & 0 & \cdots & 0 \\
0 & -2 & \cdots & 0 \\
0 & 0 & \ddots & \vdots \\
0 & 0 & \cdots & -2
\end{bmatrix}, \quad |H_1| < 0, |H_2| > 0, |H_3| < 0 \ldots
\]

We have shown that:

(60) \[p_k^* = r_k \equiv \arg\max\{E[PSM(p, d)]\}
\]

In other words, the forecaster has to report her true believed probabilities to maximize her expected payoff for each outcome \(k = 1, \ldots, K\). Therefore, we have shown that the \(PSM\) is a “proper” scoring rule.

The multiple-outcome mean probability score or multiple-event Brier score is:

(61) \[
PSM = \sum_{k=1}^{K} \overline{PS}_k
\]

where \(\overline{PS}\) is defined in (35).

\[^{42}\text{Simon and Blume (1994), pg. 382.}\]
The covariance decomposition due to Yates (1982, 1988) is:

\[
PSM = \sum_{k=1}^{K} B_k^2 + \sum_{k=1}^{K} S_k + \sum_{k=1}^{K} (\sigma_{p,\min}^2)_k + \sum_{k=1}^{K} (\sigma_d^2)_k - 2 \sum_{k=1}^{K} (\sigma_{p,d}^2)_k
\]

where each component has a similar interpretation as the single-event case (36).

8. Which Score Shall We Calculate? The Probability Score or the Mean Probability Score?

To encourage honesty and effort, the multiple-event probability score (PSM), and not the mean probability score (PSM), should be calculated upon the last reported forecast, for every publication of BoE’s Inflation Report. For example, when deFinetti (1965), and Nelson and Bessler (1989) worked experimentally, they had to pay based upon the last reported forecast, not the overall performance metric. This is because as \(N\) goes to infinity, the marginal time-value of PSM tends to zero. Consequently, the evaluated entity’s (in this case BoE) effort is not encouraged. But it is very important to evaluate the overall performance as well. Not only because a “big picture” indicator of performance is desired but, on the other hand, by calculating the PSM, you extract information –by utilizing the Yates’ partition- to characterize their forecasting performance with more detail. Therefore, the two indicators, PSM and PSM are complements, not substitutes.

9. Hypothesis Testing for the Brier Score

We have assessed the importance of comparing the central bank’s forecasts with other forecasters, in the first place. On the other hand, we have said that it is important
to compare to different variables, one in which the forecaster has special value (inflation) and other that is not that important (GDP growth). Now, we ask the question, how different are the multi-event case of the Brier Score (PSM)?

As we call attention to this issue earlier in the paper, although the original purpose of using scoring rules by de Finetti (1965, 1974) was more likely to resemble a “horse race” in the sense that the distance between the first-place winner and the second-place arriving horse turns out to be completely irrelevant at the moment of getting the prize, not considering the possibility of statistical hypothesis testing appears to be an unusual circumstance for applied economics.

In other words, we try to provide answers to the question on how different are the probability judgment performances of both the central bank and the “other” forecasters.

We consider both positive and negative differences, in other words a two-tailed test. When comparing two means of dependent or “paired” data, Freund (1992) suggest the use of the following parametric test for the differences of the multiple-event probability scores at each point in time $t = 1, \ldots, N$

The null hypothesis that the multiple-event Brier mean probability scores issued by different forecasters is:

$$H_0: \overline{PSM}_{MPC} - \overline{PSM}_{OF} = 0$$

We propose the use of the CB-statistic:

$$CB = \frac{1}{(1/N)\Delta_{PSM} - \mu_\Delta)} \left(\frac{s_\Delta}{\sqrt{N}} \right)$$
where

\(\Delta PSM = \sum_{t=1}^{N} \left(PSM_{MPC,t} - PSM_{OF,t} \right) \)

\(\Delta PSM^2 = \sum_{t=1}^{N} \left(PSM_{MPC,t} - PSM_{OF,t} \right)^2 \)

\(s_{\Delta} = \sqrt{\frac{1}{N-1} \left[\Delta PSM^2 - \frac{1}{N} \left(\Delta PSM \right)^2 \right]} \)

In the case of small samples (like the one we have got), using the “rule of thumb” \(N < 30 \), Freund (1992) suggests that we should contrast the \(CB \)-statistic with a \(t_{\alpha/2, N-1} \).

Whenever we have a large sample, Freund (1992) suggests contrasting the same statistic with a \(z \) distribution instead of a student \(t \) distribution.

The \(CB \)-test proposed here assumes a common thing in economics, normality of the differences of the multiple-event probability scores (\(\Delta PSM \)). If we are concerned that this could be a strong assumption, normality tests could be performed on the \(\Delta PSM \) series in order to validate the statistical inference performed by the \(CB \)-test. According to a recent survey by Dufour, et al. (1998), the most widely used normality tests in the econometrics literature are the Jarque-Bera (1980, 1987), Kolmogorov-Smirnov (Kolmogorov, 1933; Smirnov, 1939), Shapiro-Wilk (1965), Anderson-Darling (1954), Cramér-von Mises (1928), and the D’Agostino (1971). Given the well-known trade offs between using one test or the other; we leave this choice to the forecaster.

An alternative approach to the \(CB \)-test, if you happen to find out that your multiple-event probability score differences are not distributed normally, is to use certain non-parametric tests, such as the Wilcoxon Signed-Rank test. This
nonparametric approach utilizes the magnitude of the rank and the sign of the differences between the pairs of measurements43.

D. Bank of England Fan Charts Evaluation

The Monetary Policy Committee (MPC) took responsibility of publishing an Inflation Report on a quarterly basis when the BoE was given the operational independence in 1997. The MPC has been publishing their inflation forecast presenting the so-called “Fan-Charts” or “Rivers of Blood” (term coined by Coyle, 2001) since August 1997. These forecasts are conditional to the assumption that the interest rates remain constant at the level the MPC decided. The committee reports their projections for one-quarter up to eight-quarters ahead. The MPC meets every first Wednesday and Thursday following the first Monday of each month, and they issue their forecasts at the February, May, August and November meetings.

Figure 4 depicts the historical retail price index excluding mortgage interest payments (RPIX) inflation since and, as the graph “fans out” it portrays the probability of various outcomes for the future inflation. These projections are based on constant nominal interest rates at 4 percent (Bank of England’s Inflation Report, May 2003). The BoE’s inflation target was based on the RPIX until December 2003, when the MPC changed the target to inflation based on the CPI.

43 For a useful illustration of this test, please refer to Ott and Longnecker (2001), pp. 308-312.
We assess the MPC and the “others” density forecast evaluations for the February, 1998–May, 2001 forecasts of inflation and GDP growth rate for the first quarter of 2000 to the second quarter of 2003. Although the MPC started reporting their inflation forecasts in a density form in August 1997, they did not report the GDP until Nov. 1997. Moreover, the real GDP growth density forecast for the Nov. ‘97 is only reported as a Fan Chart and not an explicit table.

The Brier score is said to work only for unconditional forecast evaluations (Clements and Smith, 2002). Clements (2004) and Wallis (2003, 2004) discuss that the one-year-ahead forecasts can be treated as unconditional forecasts since interest rates do not have such an impact on inflation in the short-run. However, due to the lack of consistent one-year-ahead forecasts issued by the external surveyed forecasters – published in the Inflation Report-, we focus our analysis on the two-year-ahead forecasts. Clements and Smith (2002) conclude that evaluating conditional forecasts with unconditionally-related forecast evaluation techniques is not a major drawback if the data set is sufficiently small (that is our case). Furthermore, exploring better methods becomes worthwhile as the focus of the analysis lies on larger data sets. On the other hand, evaluating the two-year density forecasts is important since longer term forecasting horizons are usually related to the establishment of central bank credibility.

The BoE has issued Fan Charts conditional on a constant interest rate. Since February 1997, the MPC has published fan charts conditional to the market expectations of the interest rate. They perform this analysis by extracting information from the
implied volatilities from the market for options on government bonds with different maturities (see Bahra, 1997).

2. **Probability Scores, Brier Scores and Yates’ Partitions of the Density Forecasts of the UK**

Here we calculate the multiple-event probability scores \(PSM \) for each quarter’s forecast of inflation and the output growth rate, for both the MPC and the BoE’s surveyed forecasters.

Figures 5 and 6 illustrate the MPC’s and the “other” forecasters’ PSMs obtained for their assessments on the forecasts of inflation and output growth. On first sight, the upward trend in both graphs caught our attention\(^{44}\). A hypothesis emerged from the “learning-by-doing” theories could make us think experience in forecasting is grained as time goes and better scores can be achieved. We do not find support for these ideas. Unfortunately, the analysis is performed on very few observations. On the other hand, they both run into the same trend, so it is not clear that this is an issue.

An oddity that becomes apparent is the “spike” in the forecast for the second quarter of 2002, published on May, 2000. While this appears in both the MPC and the surveyed forecasters’ PSMs, it is clearly a more dramatic one for the “other” forecasters. The “overresponsiveness” shown by the surveyed forecasters might have been explained because the MPC changes their surveyed sources from time to time without notice. In the search for an extraordinary event –directly related to the MPC’s decisions– during the dates the forecast was issued, we found an unprecedented “scandal”

\(^{44}\) Recall that the multiple-event probability score ranges from 0 to 2. An appraiser with perfect forecast attains a 0. The worse score is 2.
generated by the appointment of Chris Allsopp as a new member of the MPC. Allsopp faced a “tough time” when the *Treasury Select Committee of the House of the Commons* voted 5-4 to reject him as a member of the MPC. The Committee has no power to overrule the appointment. As a result, Allsopp became a member of the MPC on June, 2000, replacing Charles Goodhart. *BBC news* economics reporter Dharshini David (2003) argues that the Committee did not want him for the job because Allsopp is considered a long-time interest rate “dove”\(^{45}\), and could limit the BoE’s ability to achieve their price stability mandate.

Our hypothesis is that Allsopp’s appointment could have persuaded the MPC to modify their inflation (and not the output growth) forecast increasing their downward bias in order to reduce the possibilities for an interest rate cut.

Figure 7 shows what it could be thought as evidence supporting our argument that the Allsopp event caused the spike (in the shaded region) we previously identified in figure 6. The spike on the MPC’s PSM for the inflation forecast for the second quarter of 2000 is determined by the large difference between the forecasted and the realized inflation for that period. While the mode of the forecasted inflation was 2.56 percent - above the inflation target of 2.5 percent-, the realized inflation was 1.9 percent only. Even though Wallis (2003) does not acknowledge this date in particular, he agrees that the MPC has been skewing BoE’s inflation forecasts due to “fear of inflation” to keep discouraging any “dovish” attempt for an interest rate cut.

\(^{45}\) In the financial markets jargon, an interest rate cut-friendly central banker is considered to be a “dove” . Following the same babble, the opposite is called a “hawk”.
The *PSM* analysis also shows that the “other forecasters’ are performing better than the MPC. Two questions remain unanswered: First, while the difference between the scores obtained by the MPC and the surveyed forecasters’ output growth rate forecasts look rather small, this is not the same when it comes to the *PSMs* of the inflation forecasts (the key variable for the Bank of England). This brings about the question on how different their scores are. We will try to provide an answer to this question on using our proposed *CB* test on the mean *PSMs* later on the paper.

The second question is related to the fact that albeit we know what happened, we do not know formally why it happened. Was it “wishful thinking”? Were they “hedging” their forecasts? A quantitative analysis can be performed to identify which were the thriving forces that determined their scores. As it was mentioned earlier in this paper, this can be done by calculating of the multiple-event Brier mean probability score and its Yates’ partition. All calculations were performed in RATS (Doan, 2000) software.

In terms of the Brier score for the inflation forecasts, the surveyed forecasters do a “better” job than the MPC obtaining 0.5991, a smaller score than the MPC’s 0.7091. A completely different situation emerges when we turn our sight to the output growth forecasts, where both appraisers perform a similar job with scores almost matching 0.71. Combining both the inflation and the output growth forecasts, we can observe that the MPC’s Brier score worsens from period one to period two. This does not happen to the surveyed forecasters. These numerical results resemble what we have already seen in Figures 5 and 6. The difference here is that we are able to ask why they have got
different scores regarding the inflation predictions. In order to answer the question, let’s look at the bias and covariance components in the first set of results of table 4. Even though both forecasters show biases in their assessments, the MPC acquires a larger bias with 0.3342, compared to 0.2318 of the “other” forecasters. On the other hand, the MPC’s covariance between their forecasts and the outcome index is -0.0022. This is a much smaller number, compared to the “shadow” forecasters’ almost nonexistence covariance. In this case, if the covariance term is negative, the appraiser would rather choose not to have covariance at all, to minimize his/her Brier score.

Bias can be interpreted as “wishful thinking”. This can be permeated through direct “qualitative corrections” to the forecasts, or are contained in the models’ assumptions on how the economy works. Mankiw (1998) approaches this point of concern in the following way: "Wishful thinking is one reason that monetary policy has historically been excessively inflationary...To my mind, wishful thinking is as worrisome a problem for monetary policy as time inconsistency." However, in this case we find that “wishful thinking” is coming from the inflation forecast, rather than from the output growth predictions. Thus, we do not find evidence of biases towards exploiting the output-inflation trade-off. On the contrary, our results support the idea that wishful thinking is directed towards a lower inflation level. This explanation gains more weight if we go back to the story about the peak found in figure 5 about rejecting “dovish” committee members, due to a supposedly “fear of inflation” on the MPC’s side.

Shifting gears to another set of facts, the MPC consistently portrays a larger scatter, compared to the surveyed appraisers. Even at the overall level, i.e. combining the
forecasts, the most emphatic difference between the components of the Yates’ partition of the two forecasters is the scatter. An intuitive interpretation of the relationship between the total forecast variance, σ_p^2, its components (minimum forecast variance, $\sigma_{p,\text{min}}^2$, and scatter, S), and the covariance between the probability forecasts and the outcome index, $\sigma_{p,d}$, follows. $\sigma_{p,d}$ measures the responsiveness of the forecaster to information related to event k’s occurrence, and S indexes the forecaster’s responsiveness to information not related to event k’s occurrence. A large value of scatter suggests that, either the forecaster is aware of exogenous shocks and wants to take them into account at a qualitative level, i.e. not included in their models, or he/she simply wants to hedge his/her results. This view is enhanced by the fact that both forecasters attain a $\sigma_{p,\text{min}}^2$ very close to zero. This suggests that both the MPC and the surveyed forecasters have to do a better job in selecting the variables relevant for forecasting and the causal structure among them. This gains a special meaning in the case of inflation, since it is the key variable for the Bank of England, according to its mandate. We think this is a modern way to represent Keynes famous phrase: “I rather be vaguely right, than precisely wrong.” In any case, these “elegant” explanations help to disguise the forecaster’s lack of ability to incorporate the information relevant to the forecasts in the period of evaluation. An analogy to Markowitz’s (1952) portfolio theory can be made to exemplify these relationships. Addressing the total forecast variance in a “correct” way implies to match the outcome index variance. Therefore, there is no way that we can get rid of this source of forecast variability. This is just like
Markowitz’s “market” risk. Portfolio theory tells us that diversification, *i.e.* buying stocks with a low correlation among them, can help to reduce the idiosyncratic (or unique) risk and, as a result, decrease the overall risk. In this case, conducting efficient research on the relevant information affecting the variables to be forecasted, such as diversifying by using different models that capture different aspects of the economy, will decrease the forecaster’s responsiveness to information not related to the forecast. Consequently, this will improve the forecaster’s talent to discriminate between the events that occur and the ones that did not occur, *i.e.* this will reduce the idiosyncratic risk. Thus, minimize the Brier score. Summarizing, a large value of scatter suggests a revision of the models and ideas used for forecasting purposes.

Notice that we propose to diversify, not to hedge. The second and third definitions of the word “hedge” on the Merriam-Webster’s Dictionary (1994) are: “means of protection or defense (as against financial loss)”, and “a calculatedly noncommittal or evasive statement”. The second definition of the word “diversification” is: “to balance (as an investment portfolio) defensively by dividing funds among securities of different industries or of different classes”. We are sure that “calculatedly noncommittal” and “evasive statement” are not the phrases central banks want to be associated with.

A graphical approach to see each forecaster’s ability to discriminate between events that occur and events that does not occur with more clarity is depicted in figure 8.

Figure 8 shows the covariance graphs of the probability judgments of the MPC and the “other” forecasters for inflation and real GDP growth. We are able to observe
graphically that both the MPC and the “other” forecasters’ ability to sort is precarious, i.e. they assign very low probabilities to the events that actually occurred.

The 45-degree line represents the ideal forecaster (perfect foresight). The dotted-lines are the regression lines of the probability forecasts on the outcome indices. As the dotted line looks more like the 45-degree line, the forecaster gets closer to perfection in both calibration and resolution criteria. The bias of the MPC’s inflation forecasts can be seen clearer when comparing the upper-left corner graph, depicting the MPC’s covariance graph, with the upper-right corner graph (other forecasters). The MPC’s dotted line is flatter than the other forecasters showing a slope of 0.09, compared to 0.16 of the other forecasters’ dotted line. In the case of the output growth forecasts, in spite of the flatness of their dotted-lines, the both have almost the same slope.

3. Are the MPC and the “Other” Forecasters’ Brier Scores Significantly Different?

The CB-test developed earlier in this paper, given by equation (64), is used to provide answers to the question on how different are the probability judgment performances of both the central bank and the “other” forecasters. Results are reported in table 5.

Table 5 indicates the rejection of the null that the difference between the Brier scores for the inflation forecast from the MPC and the other forecasters is zero. We fail to reject that the difference is zero for density forecasts for output growth. These analytic results bear a resemblance to what it is depicted in figures 5 and 6, as well as results portrayed in table 4.
These results suggest that the MPC either attaches a certain degree of “wishful thinking” to their inflation forecasts or hedges its inflation forecasts by adding extra variability, or both. Results on table 4 provide evidence that both things happened during the period under study. This explains the statistically significant difference between the two Brier scores in the case of the inflation forecast.

E. Conclusions

Central bankers’ long-dated tradition of secrecy has been gradually going out of fashion as many monetary authorities are convinced that transparency enhances monetary policy’s stabilization performance. Several central banks have adopted more transparent regimes; such is the case of inflation targeting. Others have gone even further and now publish their inflation forecasts periodically. Bank of England (BoE) does the latter. Their Monetary Policy Committee (MPC) has been informing the public about their (as well as others’) future perspectives of inflation in a probabilistic sense, on a quarterly basis.

In order to have the central bank’s monetary policy decisions accountable, optimal forecast evaluation becomes an issue. While many studies use point-forecast techniques to evaluate the MPC issued forecasts (for example, Pagan, 2003), some others have recently utilized calibration-based evaluation methods (Wallis, 2003, 2004; Clements, 2004). Although calibration procedures are more appropriate forecast-evaluation mechanisms -due to the probabilistic nature of their published forecasts-, they fail to
take into account the forecaster’s ability to sort between the events that occurred and the events that did not occur.

We suggest central banks to publish their inflation forecast. Moreover, we encourage them to do it in a probabilistic form. This is recommended in order to provide the public with a complete probabilistic statement assessing the “upside” and “downside” risks of future inflation, perceived at the moment prediction. On the other hand, we suggest publishing forecasts from another sources or “shadow” forecasters.

The point that we emphasize is to evaluate these density forecasts calculating the Probability Score for the latest forecast issued, as well as an overall performance measure, such as the multiple-event version of the Brier mean probability score, along with the Yates’ partition.

This paper presents an incentive-compatible approach to evaluate density forecasts. Moreover, this line of attack offers means to extract important information about the forecaster beliefs. This is presumed to alleviate the central banks’ accountability problem and, potentially bolster monetary policy’s stabilization features. This is achieved calculating the Yates’ partition (Yates, 1982) of the Brier Score (Brier, 1950) on the MPC and “others’” forecasters on inflation and output.

Calibration only takes into account the reliability or *ex post* relative frequency of the forecast, overlooking the resolution or ability to sort between outcomes that occurred and did not occur. The Brier score encompasses the covariance between the realized values and the forecast being a broader indicator. It is important to evaluate a central bank because of their accuracy and sorting ability, rather than only by their calibration.
Utilizing these methodologies to evaluate the MPC and the surveyed forecasters’ inflation and output growth rate forecasts, we found the following three results. First, our results indicate that both the MPC and the “other” forecasters have shown a large responsiveness to information not related to the forecasted variable and a very precarious response to developments affecting inflation and output growth. This analysis insinuates that the MPC could be hedging its forecasts.

Second, “wishful thinking” in monetary policy has been usually identified as a bias towards the exploitation of the short-run output-inflation tradeoff. Conversely, our results indicate the MPC has been promoting its “wishful thinking” through its forecasts more on the “fear of inflation” side.

Third, while there is not a statistically significant difference between the Brier mean probability scores for the output growth forecasts, there is a significant one for the inflation forecast. This supports the ideas that the MPC could be hedging their inflation forecasts and, at the same time, influencing them with “wishful” thoughts against a high-inflation (perhaps even moderate) outcome.

We can see that BoE uses the forecast as an instrument. But publishing a true forecast, perhaps strips the power off the forecast as an instrument, but gives more power to monetary policy itself, since the public will improve predictability of monetary policy and their actions will reflect better behavior ad hoc with monetary policymaking decisions. In other words, this could be seen as a transfer of power from one instrument to another or just emphasizing the usefulness of the instrument, in this
case, by encouraging honesty on the publication of the forecast, will be emphasize the open-market operations to set the key interest rate, monetary policy literally.

Regarding the incentive-compatible feature of the Brier score, it has been thought that the scoring rule proposed by Brier could be used in the context of a contract between the govt. and the central bank *a la* Persson and Tabellini (1993, 1999, 2000) and Walsh (1995a, 1998). But, although we do recognize that their work has been useful to understand certain issues in modern monetary policymaking from a theoretical point of view, there are certain ambiguities that come into sight from try to apply this approach to central banking (Blinder, 1998). Hence, this possibility was discarded.

The use of Brier score belongs to a so-called decision-based approach to evaluate forecasts. Clements (2004) calculates decision base theory rules and concludes the same as Wallis (2003, 2004). There are criticisms with respect to the use of these criteria for forecast evaluation (Pesaran and Skouras, 2002; Wallis, 2004). Wallis states that, although decision theory states that all forecasts should be evaluated in terms of the gains and losses that resulted from using the forecasts to solve a sequence of decision problems, macroeconomics forecasts are published for the general use and we have little knowledge on the users’ specific decision contexts and evaluation. Nevertheless, aggregation of the preferences of individuals across the economy makes this task an impossible one. Our focus is more into evaluation the forecast to ensure an optimal degree of transparency by making the central bank accountable of their actions, via their forecast. We not only propose to encourage the central bank to be honest in their
forecasting reports, but also to persuade the monetary policy committees to exert their best effort when constructing their forecasts.

Granger (2001) states that forecast evaluation criteria depend on the purpose of the forecast. Along the same lines as Granger, we are integrating central bank’s transparency as a beneficial feature for both the central bank (forecast producer), and the public (users), and accountability via a reputation-building mechanism that encourages honesty and accuracy utilizing the Probability Score and the Brier Probability Score.

The Brier score is said to work only for unconditional forecast evaluations. In a context of evaluating forecast densities of output growth and unemployment, Clements and Smith (2002) mention that this could be a potential problem. Clements (2004) and Wallis (2003, 2004) discuss that the one-year-ahead forecasts can be treated as unconditional forecasts since interest rates do not have such an impact on inflation in the short-run. However, due to the lack of consistent one-year-ahead forecasts issued by the external surveyed forecasters –published in the Inflation Report-, we focus our analysis on the two-year-ahead forecasts. Clements and Smith (2002) conclude that evaluating conditional forecasts with unconditionally-related forecast evaluation techniques is not a major drawback if the data set is sufficiently small (that is our case) and exploring better methods becomes worthwhile as the focus of the analysis lies on larger data sets. On the more intuitive side, in our particular case, this could have affected our analysis in the sense that central bank had more opportunity (time) not only to act but to see the consequences of her actions and actually either be close to their
forecast if she places a large weight on “hitting” the forecast. On the other hand it could have been far because the conditions of the economy change dramatically. This second possibility can be ruled out by following the economic developments in the period of analysis. In any case, this issue did not prevent us to arrive to the same conclusions as Pagan (2003), Wallis (2003, 2004) and Clements (2004) that the MPC is “upwardly” biased by placing too much probabilities to the high state precluding the less conservative members of the Committee to gain any sympathy for rate cuts. On the other hand, the evaluating the two-year density forecasts is important since longer term forecasting horizons are usually related to the establishment of central bank credibility.

This fact suggests that future research should be undertaken in this topic. In the specific case of the Bank of England, obtaining a “good” number of one-year-ahead density forecasts by “other” forecasters in order to overcome the issue on conditionality.

The MPC has changed their target from RPIX to the Consumer Price Index (CPI), it could be interest in extending the analysis we propose in this paper to the CPI, once a consistent and “decently” large number of observations becomes available.

Another topic is left out of the scope of the present research effort future research would be to explore ways to relax assumption of neutrality of the forecaster with respect to the forecast and its implications, if we believe that this is a strong assumption. Henceforth we have noted quite a few topics for future research.
Our inferences . . . always retain more or less of a hypothetical character, and are so far open to doubt. Only in proportion as our induction approximates to the character of perfect induction, does it approximates to certainty. The amount of uncertainty corresponds to the probability that other objects than those examined may exist and falsify our inferences; the amount of information yielded by our examination; and the theory of probability will be needed to prevent us from overestimating and underestimating the knowledge we possess.

— Jevons, W. S. (1874), p. 263

A. Introduction

According to Benjamin Friedman, the relationship between output and inflation has been a (if not the) central reason for doing monetary policy (Solow and Taylor, 1999). But, while it is a well-known fact that low inflation is an advantageous state in the economy (see Barro, 1996, and Feldstein, 1999a, for well-documented surveys), there is also consensus that disinflationary policies cause short-run output losses46 (Romer and Romer, 1989; Ball, 1994).

The assessments of the costs of disinflationary policies have used the concept of sacrifice ratio defined as the costs in terms of unemployment or loss of output that must be faced to achieve a reduction in inflation.

46 Blanchard (1997) and Zhang (2001)–among others–go even further and claim that these policies can have long-run effects.
There have been several attempts to estimate the sacrifice ratio in the literature. These can be divided in two classes: constant over time (Okun, 1978; Gordon and King, 1978; and recently Cecchetti and Rich, 2001), and case-by-case (Ball, 1994; Bernanke, et al., 1999; Sánchez, Seade, and Werner, 1999, among others). Ball’s technique remains as the “standard” method since Cecchetti and Rich concluded that their estimates are imprecise.

We take the “case-by-case” approach in this study. The numerator is the (discrete) sum of the differences between the potential Gross Domestic Product (GDP), and the realized GDP -also called output gap-, across the time periods within the disinflation episodes. The denominator is the change in the inflation rate from the beginning to the end of the identified disinflation episode.

We divide the variables that presumably affect the magnitude of the sacrifice ratio into three categories: “traditional”, “structural”, and “institutional”. The set of traditional determinants encompasses a series of variables that, on one hand, have been “key” issues in the modern monetary macroeconomics debate for a long time. These are also related to the sacrifice ratio in a more operative basis. The structural factors incorporate the characteristics of the countries economic agents’ interactions, such as wage rigidities and the degree of openness of the economy. The third set of determinants is much of a newer one in the literature. The institutional aspect reflects the need to account for the structure of incentives that are likely to be within the central banks’ institutional structure. Such is the case of Central Bank Independence (CBI) and Inflation Targeting (IT). These factors are out of the scope of Ball’s analysis.
In order to identify the impact of the determinants on the sacrifice ratio, the literature has provided neither a formal theoretical framework, nor a consistent empirical estimation technique to assess the way these factors affect the magnitude of the sacrifice ratio. Scatter diagrams, simple correlations, and simple regressions have been performed on empirical estimates of the sacrifice ratios, usually evaluating each factor separately.

We believe that it is extremely important to identify the causal structure underlying the sacrifice ratio and its determinants to achieve a more effective way of implementing monetary policy. In order to succeed to provide the set of factors that can be manipulated to reduce the costs of disinflation, we have to be able to recognize which are and which are not the factors that affect the sacrifice ratios, in order to choose “correct” variable and obtain the desirable outcome, if it is possible.

That is why we used a new tool that retrieves the causal structure from a set of empirical observations. A methodological introduction to the techniques that are used in this study follows. We believe that a simple and general algorithm for the construction of empirical models can be summarized into four steps: 1. Select the variables that we think are relevant for our abstraction of reality, the model, e.g. x, y, z; 2. Set the relationships of the variables –namely- the causal structure, for instance $y = f(x,z)$ which in this case implies that x and z cause y; 3. Choose the functional forms, let’s say, linear $y = a + bx + cz$, where $a, b, and c$ are parameters; 4. Decide the estimation method, least squares, generalized method of moments, and so on and so forth. Economic theory is usually involved in steps 1, 2, and 3; econometric theory in 3
and 4. But what if theory has not provided a sensible and consistent theory on how the variables are causally related. In other words, if step 4 is not fully analyzed or proven. To emphasize the importance of performing a reasonable analysis in step 4, let’s say that we think that the following causal structure \(Z \rightarrow X \rightarrow Y \) represents the truth. We would be tempted to manipulate \(X \) to provoke an effect on \(Y \). But what about if the real causal structure is \(X \leftarrow Z \rightarrow Y \)? Manipulating \(X \) will never have an effect on \(Y \).

A handy example follows\(^{47}\). Assume that \(Z \) refers to smoking cigarettes, \(X \) stands for yellow fingers, and \(Y \) is terminal cancer. If we prescribe a treatment for yellow fingers, we will not be affecting terminal cancer. This point is supported by Hausman (1998) when he says that manipulation is at the heart of causation. Trying to manipulate the “wrong” variable could lead to an outcome different from the one that is desired.

There are two probabilistic approaches to estimate data-based causality: the “celebrated” Granger causality (Granger, 1969), based on “incremental predictability, and Directed Acyclical Graphs (DAG), a combination of graph theory\(^{48}\) with modern artificial intelligence methods proposed by Pearl (1986, 2000) and Spirtes, Glymour, and Scheines (1993, 2000). The former has been used extensively in the economic literature. The latter has started to permeate the economic literature and has been used by Bessler and Lee (2002), Bessler and Kergna (2002), Awokuse and Bessler (2003), Bessler and Yang (2003), and Yang and Bessler (2002) to identify a causal structure whenever theory fails to provide a sensible explanation of step 4 (above). Granger and Swanson (1997)

\(^{47}\) Pearl (2000)

\(^{48}\) See Maxwell and Reed (1971) for a comprehensive introduction to graph theory.
use a similar methodology to retrieve a causal structure from the residuals of a vector autoregression (VAR).

Two reasons lead us to pick DAGs for the assessment of the determinants of the sacrifice ratios. First, the episode-by-episode nature of the data. In other words, we do not have a “continuous” stream of data. Therefore Granger causality cannot be used. The other, and more powerful reason, is that DAGs is that Granger causality assumes no contemporaneous correlations.

Instead of imposing an *a priori* structure, an empirically-based structure is sought using Directed Acyclical Graphs (DAGs) (Pearl, 1986, 2000) and the PC Algorithm (Spirtes, Glymour and Scheines, 1993, 2000). We utilize DAG analysis on quarterly data from eleven member countries of the Organization for Economic Cooperation and Development (OECD) for the 1960-2000 period. We find that there is evidence that wage rigidities and central bank independence (CBI) are two major determinants of the sacrifice ratio. This supports Ball’s (1994) results as well as other empirical analyses on CBI such as Debelle and Fischer (1994), Walsh (1995b), Froyen and Waud (1995), and Fischer, (1996). Although we find that openness is affected by CBI, we do not find support for Romer’s (1993) view that it has an effect on the sacrifice ratio. This is in line with a recent study by Temple (2002). Along the same lines as Bernanke, et al. (1999), we do not provide a solid assessment on the relationship between inflation targeting (IT) and the sacrifice ratio due to the recent adoption of these regimes and that our analysis is restricted to disinflation episodes only, yielding very few observations.
This paper is innovative in three ways. (i) It extends Ball’s sacrifice ratio calculations by including observations for the 1992-2000 period; (ii) It includes CBI and IT as relevant variables to possibly explain the costs of disinflation; (iii) And most importantly, it uses a new causal engine to determine the causal structure of the model to estimate a regression based on the identified causal model.

The paper consists of five sections. The first section describes the methodology used to calculate the sacrifice ratios, and presents estimates of the sacrifice ratios for eleven OECD countries for disinflation episodes between 1960 and 2000. Section B discusses the theoretically-based factors that are supposed to have and effect on the magnitude of the sacrifice ratio. It also provides a description of the data used to examine each of these factors. The third section offers a brief introduction to the Directed Acyclical Graph approach at a theoretical level. Details about the results from past literature as well as our findings are discussed in section E. Section F provides concluding notes.

B. Calculating the Sacrifice Ratios

1. The Sacrifice Ratio

The theoretical foundations of the sacrifice ratio are based on the expectations-augmented Phillips curve (Phillips, 1958; Friedman, 1969a; Phelps, 1968), or Lucas supply curve with backward expectations49 (Lucas, 1972, 1973):

49 In other words, using lag inflation as a proxy of expected inflation.
Disinflation occurs whenever $\pi_t - \pi_{t-1} < 0$. The term $y_t - y^*_t$ is the output gap, or deviation of output from its potential level, attributable to a disinflation policy at time t. If disinflation does not occur ($\pi_t - \pi_{t-1} \geq 0$), output (y_t) remains at its potential level (y^*_t) if output was at its potential level in the last period. If disinflation takes place, there is a short-term output loss. As α increases, the cost of disinflation gets larger. Nevertheless, output reverts to its potential level in the long run. β is the persistence or “long-lived” effect of the disinflation policy on the long-run output gap. In other words, β determines how long it takes for the output to return to its potential level after a disinflation policy occurred.

Although β reveals how strong (or weak) are the effects of the disinflation policy on the output gap, it does not affect the potential (trend) output. An extreme case takes place whenever these disinflation policies cause a permanent decline in unemployment and output; this is defined as hysteresis (Blanchard and Summers, 1986). Blanchard (1997) illustrates the hysteresis effect with the following equation:

$$(69) \quad y_t - y^*_t = \bar{y} + (1 - \theta)y^*_t + \theta y_{t-1}, \quad 0 \leq \theta \leq 1$$

where \bar{y} is the constant growth rate for potential output, θ is the level of hysteresis effect, and the other terms follow from the notation above. If $0 < \theta \leq 1$, there is a
hysteresis effect. And the sacrifice ratio becomes larger with the intensity of θ. Whenever $\theta = 0$, there is no hysteresis at all.

Attempts on estimating the sacrifice ratio fall into two categories: “constant-over-time” estimation and “case-by-case” studies. The former methods were pioneered by Okun (1978) who analyzed a set of Phillips curve models to estimate the cost of disinflation in terms of the percentage loss of output during a given period. Gordon and King (1982) derived the sacrifice ratio using both “traditional” and Vector Autoregressive (VAR) models. More recently Cecchetti and Rich (2001) obtained estimates of the sacrifice ratio utilizing Structural Vector Autorregressions (SVAR), identifying aggregate demand and aggregate supply shocks a la Blanchard and Quah (1989)50.

The “case-by-case” method was developed by Ball (1994). Ball explored this new approach motivated by the two limitations of the methodologies described above. On one hand, they constrain the estimated ratios to be identical for disinflation periods as for periods of increasing trend-inflation or short-run aggregate demand fluctuations. On the other hand they constrain the sacrifice ratios to be constant over time. These two restrictions neglect the facts that disinflations are influenced by disinflation-specific factors (such as credibility shifts in expectations), and, time-specific institutional factors (such as labor contract structures or the degree of openness of the economy –among others).

50 Model “C” in Amisano and Giannini’s (1997) generalized SVAR approach.
Ball’s technique has received criticism from Friedman (1994) and Cecchetti (1994) on the basis of using foregone output instead of rise of unemployment as the loss criterion, and ignoring the “benefits” from loosening monetary policy as well as the likely existence of supply shocks, respectively. Despite these criticisms, Ball’s methodology has become a “standard” in the field and has been used by numerous recent studies (Jordan, 1997; Bernake, Laubach, Mishkin, and Posen, 1999; Sánchez, Seade, and Werner, 1999; Zhang, 2001; Çetinkaya and Yavuz, 2002; Temple, 2002; and Boschen and Weise, 1999, 2003). We believe that this is because Ball provided a fairly uncomplicated methodology whose estimates are consistent with the “traditional” inflation-output literature, as well as because of the mentioned limitations of the constant-over-time approach and Cecchetti’s (2001) severe self-criticisms on his SVAR derived estimates: “…the estimates are very imprecise, which we suggest reflects the poor quality of instruments used in estimation. We conclude that the estimates provide a very unreliable guide for assessing the output cost of disinflation policy.”

Using the best methodology available to estimate the sacrifice ratios is a necessary condition for a good assessment on the factors that presumably affect them. As a result, Ball’s methodology is used in this paper.

Ball’s definition of the sacrifice ratio \((SR)\) is the following:

\[
SR = \frac{\sum_{t \in D} (y_t - y_t^*)}{\Delta \pi}
\]

where the numerator is the output gap, \(i.e.\) the (discrete) sum of the differences between the realized GDP \((y_t)\) and the potential GDP \((y_t^*)\), across the time periods within the
disinflation episode \((t \in D)\). The denominator is the change in the inflation rate from the beginning to the end of the identified disinflation episode. \(SR\) is interpreted as the cost of reducing one percentage point of inflation in terms of aggregate demand contraction, which is similar to \(\alpha\), in equation (68).

The construction of this estimate for the sacrifice ratio has two underlying assumptions: ignores supply shocks –criticized by Cecchetti (1994)- and presumes that there is no hysteresis, \(i.e. \theta = 0\) in equation (69). The first assumption introduces noise to the sacrifice ratio estimation as a measure of the inflation-output trade-off. Along the same lines as Ball (1994, pg. 161), we claim that these measurement disturbances will be reflected in the regression errors and will not cause a major problem in our analysis. On the hysteresis effect, Zhang (2001) studies the potential downward bias in calculating the sacrifice ratio whenever hysteresis is neglected51. There is almost consensus that there are short-run effects of disinflation policies, but there is still considerable debate on its long-run effects. The focus of this study is the short-run effects of disinflationary policies, as a result, we maintain Ball’s assumptions (as other authors mentioned above).

2. Identifying Disinflation Periods and the Measurement of the Output Gap

The methodology proposed by Ball consists of two steps: identify the disinflation episodes \((D)\), and calculate \(\sum_{t \in D} (y_t - y^*_t)\), the departure of real output from its

\[51\] Zhang (2001) also studies the importance of accounting for the effects of persistence –namely \(\beta\) in equation (68)– “correctly”. We assess the persistence assumption later in the paper.
potential level during D. The former intends to separate the small fluctuations (arising from “exogenous” shocks) from the relevant policy-induced changes in inflation. The latter is the heart of the sacrifice ratio.

A series of basic characterizations used by Ball follows. In order to identify the disinflation periods, a smoothed version of inflation or “trend inflation” (π_t^T) is calculated as a centered, eight-quarter moving average of actual inflation.

\[
\pi_t^T = \frac{1}{2i+1} \sum_{t-i}^{t+i} \pi_t
\]

where i is an index. Although there are data on inflation for the whole sample, output data is only available on an annual basis, as a result, $i = 4$ for the quarterly data trend inflation, and $i = 1$ for the annual data. Therefore, the annual data trend inflation is defined as a two-year centered moving average of realized inflation.

In any given country, a disinflation period starts (ends) on the “peak” (“trough”), defined as the point in time where trend inflation is higher (lower) than the previous and the next 4 quarters (for quarterly data), and 1 year for annual data.

Ball identifies twenty-eight disinflationary periods in nine countries, using quarterly data and sixty-five episodes in nineteen countries, with annual data.

The most delicate subject concerns the measurement of the output gap, due to the fact that there is no general agreement among economists on how to assess this issue. Ball departs from the most used methodology to calculate the trend output, the Hodrick-Prescott (HP) filter (Hodrick and Prescott, 1980, 1997) due to the fact that the filtered trend output follows the realized output very closely, practically eliminating the
differences between them, as a result, this eradicates any possibility of accounting for recessions. Instead, Ball assumes the following: (i) Real output is at its potential level at the beginning of the disinflation episode; (ii) Output reverts to its “natural” level four quarters (one year) after the trough; (iii) Trend output grows log-linearly between the peak and the four quarters (one year) after the trough.

Figure 9 shows graphically the methodology of calculation of the sacrifice ratio on a “case-by-case” basis.

Assumptions (i) (i.e. \(y_t = y^*_t \mid t = \text{inf } D \)) and (iii) (i.e. log-linearity of trend output) have not been challenged to a large extent. But supposition ii has attracted modest debate (Blinder, 1987; Romer and Romer, 1989, 1994). Particularly, Zhang (2001) argues that there is a downside bias in the measurement of the sacrifice ratio if the methodology neither accounts for persistence effects in a “correct” fashion, nor includes hysteresis effects. Despite these critiques, as we mentioned above, given that we are interested in the short-run effects of this policies and there is not yet a general agreement on the existence of strong persistence effects or even hysteresis, we rule out these two factors.

3. Estimates of the Sacrifice Ratio

Ball estimated sacrifice ratios using quarterly and annual data. We analyze the determinants of the sacrifice ratio on quarterly data because we are only interested in

52 Thus, the ordered elements of set \(D \) (the dates) are the date of the peak (start), four quarters (or one year) after the trough (end), and the dates between these two. Translating this assumption into equations (1) and (2) is as if \(\beta \) in the fourth quarter, after the trough, approximates to zero. Moreover, assumes no hysteresis (i.e. \(\theta = 0 \)).
the short-run fluctuations and using annual data dampens short-run inflation movements. We believe this has been the rationale behind the use of quarterly, rather than annual data in the majority of the studies mentioned earlier in the paper.

We took the sacrifice ratio estimates from Ball’s quarterly data on 9 countries (Australia, Canada, France, Germany, Italy, Japan, Switzerland, United Kingdom, and United States), and added information for two more OECD countries relevant to address inflation targeting: Sweden and New Zealand. Additionally, we updated the sample for the 1990-2000 period using the Ball’s methodology on data obtained from the same source of information, the International Monetary Fund’s (IMF) International Financial Statistics (IFS). Ball acknowledged 28 disinflation episodes, we identified 15 additional disinflation periods, 11 of them occurred in the 1990-2000 decade53.

Estimates for the sacrifice ratios along with their respective episode characterizations are shown on Table 6. In addition the table presents corresponding measures of initial inflation, change in inflation, length of disinflation, and speed of disinflation, all calculated as in Ball (1994). Speed of disinflation is defined as the quotient between the change of inflation and the length of the disinflation event, i.e. how many inflation percentage points were diminished in a quarter of a year.

There are eight positive and thirty-five negative sacrifice ratios. A negative sacrifice ratio reflects that the economy grew at a higher rate than the trend, despite that a disinflation policy was implemented during that period. We do not think this

53 We compared our estimates with the ones provided by Sánchez, Seade, and Werner (2001) who used Ball’s methodology on IFS data, and there are exactly the same.
contradicts the widely accepted view that disinflation policies cause output losses, since
the presence of positive sacrifice ratios represents less than a quarter of the sample.

The average sacrifice ratio is 1.14 with a standard deviation of 1.18. In other words,
it costs 1.14 percentage points of GDP growth rate to reduce one percentage point in
inflation, on average. On the other hand, differences across countries are considerable.
The United States possesses the highest costs of disinflation, estimated by the sacrifice
ratio, with an average of 2.71 across its four identified disinflation episodes, followed by
Germany with an average of 2.38. These two results are in line with Ball’s findings in
spite of updating the sample. Sweden and New Zealand figured as the countries where
disinflation policies are less costly, with 0.46 and a negative 0.23 mean sacrifice ratios,
respectively. In the case of average initial inflation, France and New Zealand positioned
themselves in the first two places with corresponding average inflation levels of 16.6
percent and 12.5 percent. On the other hand, on average, Switzerland and Germany
started with the lowest inflation levels of about 7.12 percent and 5.4 percent, in that
order. Moreover, while New Zealand and Japan achieved the highest average speeds in
reducing inflation with 0.60 and 0.56 inflation points per quarter, respectively, the
“speedometer” showed that Germany and Canada took unhurried actions to diminish
inflation with speeds corresponding to 0.27 and 0.32 inflation points per quarter. By
relating these estimated sacrifice ratios with their average speeds, it might lead us to
think right away that there is an inverse relationship between these two variables. In
other words, that it is more costly to reduce inflation in a slow fashion. This has strong
implications in the modern macroeconomic debate because this asseveration would
support Sargent’s (1983) arguments and, at the same time, defeat Taylor’s (1983) gradual approach, a consequence of his staggered-price model54. However, this is a preliminary appraisal of the historical correlation between these two variables, and not a causal analysis. Our analysis (on section E) will try to provide an answer to this as well as other related questions. Furthermore, despite of the high-speed achieved by New Zealand, it took their monetary authority 26 quarters to reduce inflation 15.62 percentage points. For the central banks of Japan and the United Kingdom it only took an average of 11 quarters, but they reduced only 4.5 and 6 percentage points, respectively.

Table 7 portrays summary statistics by decade. The first result that stands out is that the average sacrifice ratios show a decreasing trend. At first sight, this seems to be good news, but identifying the main cause of this encouraging result is not an easy task. This is because we have relationships that that are not consistent across time (at this simple level of the analysis), as well as the fact that we have not accounted for other factors that could be of relevance to this phenomenon, such as the trend to increase the degree of central bank independence or the adoption of inflation targeting –among others–.

Another set of facts that are reflected in table 7 is that it seems that reducing inflation was more popular during the eighties. Compared to the three other decades, 14 disinflation episodes were identified with an average reduction of 7.8 percentage points in inflation each, during the 1980-1990 decade. This is a situation that clearly did

54 Section C provides a wider discussion on this debate.
not happen during the sixties when central bankers still tried to exploit the seemingly downward-sloping Phillips curve.

Shifting gears to the initial inflation-sacrifice ratio relationship, it is not a clear that the costs of disinflation are lower at higher levels of initial inflation. This is because the average initial levels of inflation in the sixties as well as in the nineties are around 5.6 percent, and the corresponding average sacrifice ratios are mixed outcomes of 1.7 and 0.6.

We also observe that the monetary authorities hurried up to decrease inflation levels with an average speed of half of a point per quarter during the sixties, seventies, and eighties, taking them on average 8, 11, and 18 quarters, respectively, to reduce inflation at the “desired” levels. It took longer periods of time in the seventies and eighties perhaps due to the fact that there were larger differences between inflation levels at the beginning of the disinflation episode and the central bank’s targeted levels.

C. Determinants of the Sacrifice Ratio

This section presents the relevant theoretical variables that are suggested in the literature to have a meaningful effect on the magnitude of the sacrifice ratio. It also describes the data that are used to examine each of these factors.
1. Traditional Factors

Factors such as the speed of disinflation, and the inflation rate at the beginning of the disinflation periods are more closely related to the more “traditional” operational view of monetary policymaking.

One of the most widespread controversies in modern macroeconomics is the choice between gradualism or quick disinflation and its impact on real output. An argument in favor of taking a gradual approach towards dampening inflation is supported by Taylor (1983). He prescribes a steady but slow decline in inflation in the light of a staggered-wage adjustment model for the reason that wages and prices need time to adjust to a monetary contraction, linking quick disinflations to large output losses.

Conversely, there are two different major views on this issue. Along the same lines of the NeoKeynesian price stickiness hypotheses, the celebrated “menu cost” approach supports a quick disinflation rather that a gradual one. This is because a once-and-for-all large shift in inflation will yield adjustment of prices and will not affect output significantly. In contrast, a series of small changes in inflation will provoke output losses.

The other argument that favors a quick disinflation is due to Sargent (1983). He claims that blunt regime shifts provide credibility to the monetary authority, while for gradual shifts (or slowly changing policy), expectations do not adjust because speculation about what will happen next emerges.

Unfortunately, there is not an unambiguous empirical characterization of the speed of disinflation. If we maintain the basic definition of average speed in physics (the
distance traveled divided by the time taken to travel that distance), we end up calculating the (absolute) difference of the inflation rates between the initial and the end of the disinflation period as the numerator, and the length of the disinflation period as denominator. The theoretical dilemma is that while Taylor’s approach suggests that the sacrifice ratio is only influenced by the length of the disinflation period (denominator), Sargent’s analysis focuses on the numerator as the key element of the quotient, since a large change in inflation is probably taken more seriously as a regime change. Ball recognizes this issue by running regressions on both, the speed of disinflation in the physics canonical form and with its separate components. He finds that regardless of which specification, quicker disinflations produce lower sacrifice ratios. Sánchez, Seade, and Werner (1999) use the speed metric as well on a larger sample and conclude the same as Ball. Temple (2002) uses the length of disinflation and the inflation rate change and, although it is not the focus of his study, he arrives at the same conclusions.

The second traditional factor is the initial inflation. NeoKeynesian models predict that higher inflation levels decrease the degree of price rigidities. Ball, Mankiw and Romer (1988) derive this initiative theoretically and find empirical support on cross-country analyses. In other words, when there is a large rise in prices in a short period of time, businesses need to “keep up” with the pace of inflation and stickiness is reduced. Therefore, following this raison d’être, initial inflation should show a negative relationship with the sacrifice ratio.
2. **Structural Factors**

Nominal wage rigidity stands as the oldest institutional determinant identified to have potential effect on the sacrifice ratio. Even though, the latest NeoKeynesian convention emphasizes the role of output-price stickiness, rather than wage-related rigidities (Mankiw, 1990), Ball’s rationale, which we adopt in this paper, is more a practical one. He utilizes two different measures of nominal wage rigidities as a proxy of price stickiness and investigates their relationship with the sacrifice ratio. These two measures are the Bruno and Sachs (1985) index of wage responsiveness, henceforth B&S, and the Grubb, Jackman, and Layard (1983) index of overall wage rigidity, or GJL index. The former metric (B&S) is constructed adding the degree of wage indexation and synchronization to the index of duration of wage agreements. The B&S index ranges from 0 to 6, and a smaller value means a more rigid wage structure. The GJL index is build upon a time-series regression of wages on unemployment and prices. The average GJL index for our sample is 0.7, ranging from 0.09 for the country with the most flexible wage structure (Switzerland) to 3.14, corresponding to the country with the least flexible wage structure (United States). As Ball explains, while GJL is less subjective compared to the B&S index, it is an endogenous metric since the traditional factors are directly involved with the components of the GJL index.

Basic open-macroeconomic theory recognizes that the degree of openness of an economy keeps an inverse relationship with the output losses related to disinflation policies (Romer, 1993). This is because a monetary contraction produces an exchange rate appreciation, having an effect on prices to the extent of the degree of openness of
the economy55. The most widely used metric is the proportion of the imports of GDP, calculated by Romer (1993). Switzerland figures as the most opened country in our sample whose imports represent approximately 35 percent of their GDP. Conversely, the United States’ imports only account for 9 percent of their GDP. The average percentage across the sample is 22 percent.

Ball and more recently Temple (2002) conclude that there is no strong evidence of an effect of the degree of openness of an economy on the slope of the output-inflation tradeoff. Nevertheless, Daniels, Nourzad, and VanHoose (2004) analyze Temple’s data and find an “unambiguous positive relationship between openness and the sacrifice ratio”, once they account for the degree of Central Bank Independence (CBI) and its interaction with openness itself. CBI is discussed in the next subsection.

3. \textit{Institutional Factors}

We next turn to institutional factors. These variables reflect the need to account for the structure of incentives that are likely to be within the central banks’ institutional structure. First we consider Central Bank Independence (CBI), defined as the assignment of monetary policy to a central banker whose decisions cannot be rejected by the policymaker (Lippi, 1999). Herrendorf and Neumann (1999) claim that a

55 As far we know Sánchez, Seade, and Werner (1999) are the only authors who have included the exchange rate regime as a possible determinant of the sacrifice ratio. They are motivated by the fact that if an economy is sufficiently open, the exchange rate variability has a larger effect on domestic prices. A non-floating exchange rate system constrains the variability of the relative prices between nations. Thus, this could have direct effects on the inflation-output tradeoff. On one hand, this issue can be (at least) partially accounted for in the inclusion of the measurement of the degree of openness of the economy. On the other hand, finding an objective metric for this issue is not an easy task, therefore we leave this interesting question out of the scope of this study for future research.
politically-detached (independent) central bank exhibits less incentive to care about the government’s reelection chances, reducing the possibility of using monetary policy to create surprise inflation.

Several efforts have been directed to measure the degree of CBI and its relationship with both nominal and real variables such as inflation and real output. Most of this literature pioneered by Bade and Parkin (1984), has been surveyed by Cukierman (1992) and Eijffinger and de Haan (1996). The most widely used metric is the legal-based index by Cukierman, Webb, and Nayapti (1992). This index is composed of four categories: (i) CEO variables (term of office, who appoints, etc.), (ii) policy formulation variables (who formulates, final authority, role in budget), (iii) central bank objectives. And (iv) Limitations on lending variables (type of limit, maturity of loans, terms of lending, etc.). The Cukierman, et al. CBI index ranges between 0.18 (Japan) and 0.69 (Germany) in our sample. As the number approaches unity, the central bank enjoys a larger degree of independence. Except for United Kingdom and Switzerland, the calculated indices for each country in our sample show no variation across time. Therefore, variability is observed in a cross-country basis.

Various studies have reported positive and significant correlation between CBI and the sacrifice ratio (Debelle and Fischer, 1994; Walsh, 1995b; Froyen and Waud, 1995; and Fischer, 1996). The most common theoretical explanation behind these empirical results is that CBI might help to diminish the levels of inflation, by reducing the inflation bias incentives. However, it could also increase the nominal wage rigidities indirectly, intensifying the magnitude of the sacrifice ratio (Walsh, 1995b).
The second institutional factor in our proposed taxonomy is Inflation Targeting (IT). Bernanke, et al. (1999, pg. 4) define IT as “…a framework for monetary policy characterized by the public announcement of official quantitative targets (or target ranges) for the inflation rate over one or more time horizons, and by explicit acknowledgement that low, stable inflation is monetary policy’s primary long-run goal.”

Since the adoption of IT has been fairly recent and our sample is constrained to disinflations periods only, our analysis on this issue is rather cautious. We identified six episodes in countries that have already adopted IT by the time of the occurrence of the disinflation period. Nevertheless, in certain cases the adoption of IT took place in the midst of a disinflation episode. Consequently we define IT as the number of quarters that IT was active within the disinflation episode, divided by the length of the disinflation period itself, yielding a number ranging between zero and one. The average from these six observations was 0.60, with a standard deviation of 0.36. In other words, countries observed IT in approximately 11 of the 18 quarters that the disinflation episodes lasted, on average.

While CBI is likely to provide a larger degree of discretion to central banks, adopting IT constrains them to observe a certain level of inflation. This constrained flexibility is desirable since despite the view that monetary policy cannot systematically affect unemployment and output in the long-run, it might aid to stabilize inflation and unemployment around mean market-determined levels (Fischer, 1977).
Another theoretical argument in the spirit of the dynamic inconsistency literature on why a country adopting an inflation targeting regime should have a smaller sacrifice ratio, is that IT minimizes the central banks’ incentives to exhibit an opportunistic behavior (inflation bias) and this might increase the central banks’ credibility and, as a result, the public moderates their inflations expectations in a quicker fashion.

However, it could be the other way around, if the central banks’ focus centers on inflation objectives only, nominal wage indexation could be reduced, increasing the nominal wage rigidity and the sacrifice ratio as well (Walsh, 1995b).

Bernanke, et al. (1999) find that the estimated sacrifice ratios for three of the four surveyed countries that adopted IT is higher than before the implementation of such regime. This suggests that the adoption of IT has not reduced he costs of disinflation. Furthermore, they suggest that this regime change has even increased them. Nevertheless, they acknowledge that these results are somewhat weak because of the limitations imposed by the small sample of countries and period of time since their adoption of IT. Only recently have countries adopted IT: New Zealand, 1990; Canada, 1991; U.K., 1992; Australia, 1993; Sweden, 199356.

D. Empirically-Based Causal Structure

The theoretical foundations of Directed Acyclical Graphs (DAG) as a probabilistic approach to infer causality from a data set have their origins in Pearl (1986). Combining

56 More recently Brazil, Mexico, Czech Republic, Hungry, Korea, Peru, Poland, and Thailand have adopted an Inflation Targeting regime.
the traditional philosophical notions of causality with statistical theory, Pearl proposed
the concept of *d-separation* (defined in Pearl, 2000, pp. 16-17.), to describe conditional
independence with a graphical approach57.

Spirtes, Glymour, and Scheines (1993, 2000) developed algorithms based on
Artificial Intelligence (AI), integrating the concept of d-separation to retrieve the causal
structure from empirical data. Their main contribution: a search-theoretic algorithm
called the *PC algorithm*.

Although this approach was born on the fields of Philosophy, Statistics, and
Computer Science, it has now been increasingly used in economics and finance.
Swanson and Granger (1997) pioneered in the application of DAGs in a Vector
Autoregression setting. Bessler and Lee (2002), and Awokuse and Bessler (2003) apply
these ideas to recent macroeconomic VARs. Demiralp and Hoover (2003) judged the
usefulness of the PC algorithm using Monte-Carlo simulations to test how close the
causal structure inferred by this methodology was from the data generating process’
true causal system. They found very encouraging results.

We utilize the directed acyclical graph conceptual framework as well as the PC
algorithm with cross-section data (as originally proposed by Spirtes, Glymour, and
Scheines, 2000). This is because we are dealing with not necessarily time-sequenced
disinflation episodes across several countries.

57 A proof of this proposition can be found in Verma and Pearl (1988).
1. Directed Acyclical Graphs

This part relies heavily on the work by Pearl (2000) and Spirtes, Glymour and Scheines (1993, 2000). A directed graph is formally defined as an ordered triple \(\langle V, M, E \rangle \), where \(V \) is a nonempty set of vertices (variables), \(M \) is a non-empty set of marks (symbols attached to the end of undirected edges; e.g., > or <), and \(E \) is a set of ordered pairs (the lines between them). In other words, directed graphs are pictures summarizing the causal flow among a set of variables.

A directed acyclic graph (DAG) is a directed graph that contains no feedback cycles. In other words, cyclic graphs such as \(A \rightarrow B \rightarrow C \rightarrow A \), assuming a set of vertices (variables) \(\{A, B, C\} \), are ruled out. The concept of DAG is used in this paper.

Directed acyclical graphs are sketches representing conditional independence. This can be illustrated by the recursive product decomposition, derived from the chain rule of probability calculus, as it was shows on equation (22) in chapter II.

DAGs are classified in three types: Causal chains, causal forks, and inverted causal forks (or colliders). For example, assuming a causally sufficient set of three variables \(X, Y, \) and \(Z \), the causal chain \(Z \rightarrow X \rightarrow Y \) implies that the unconditional association between \(Z \) and \(Y \) is nonzero, but the conditional association between \(Z \) and \(Y \) on \(X \) is zero. The causal fork \(X \leftarrow Z \rightarrow Y \) implies that the unconditional association between \(X \) and \(Y \) is nonzero, but conditioning this relationship on \(Z \), is zero. In other words, common causes screen off associations between their joint effects, or Richenbach’s principle of common cause (Richenbach, 1956, pg. 156). Finally, the inverted causal fork (or collider) \(X \rightarrow Y \leftarrow Z \) implies that the unconditional association between
X and Z is zero, and conditioning on Y is nonzero, i.e. common effects do not screen off the association between their joint effects. Orcutt (1952), Simon (1953), and Papineau (1985) provide analogous expressions of asymmetries in causal relationships. Hausman (1998) gives an extensive survey on causal asymmetries.

Figure 10 shows an example of the three different kinds of directed acyclical graphs. Note that the spatial arrangement of the points is conceptually irrelevant.

The concept of d-Separation\(^{58}\) characterizes the conditional independence associations specified in equation (22). This concept was “the missing piece of the puzzle” that related the philosophical idea of causality with probability theory.

2. \textit{PC Algorithm}

This subsection is intended to provide a brief description of the PC algorithm\(^{59}\). The PC algorithm is a search-theoretic model developed by Spirtes, Glymour, and Scheines (1993) to construct directed acyclical graphs to represent a causal structure based upon an empirical set of data.

In order to yield the same causal model as a random assigned experiment, the PC algorithm relies on the following four assumptions: (i) Causal Sufficiency (there are no omitted variables that cause two of the included variables), (ii) Causal Markov Condition (the variables are generated by a Markov property. In other words, probabilities of variables are conditioned on each variable’s “parents” only), (iii)

\(^{58}\) Please see definition 1 in chapter II of this dissertation.
\(^{59}\) For a detailed description, please see Spirtes, Glymour, and Scheines (2000, pg. 84).
Faithfulness60 (there is a one-to-one correspondence between the edges implied by the causal structure of the graph and the selected relationships obtained from the data. In other words, structural parameters do not form combinations and cancel each other), and (\textit{iv}) Multivariate Normality.

The algorithm consists of a series of three systematic steps. Step 1 involves the construction of a complete undirected graph connecting every variable with all other variables.

At step 2 edges are removed sequentially based on zero unconditional and conditional correlation tests. This is where the concept of d-separation is integrated to the PC algorithm using the notion of sepset (or separation set). The sepset of the variables whose edge has been removed is defined as the set containing the conditioning variable(s) on removed edges between two variables. \textit{e.g.} for the following undirected graph $X \rightarrow Y \rightarrow Z$, assume that we remove the edge between variables X and Y through an unconditional correlation test. Thus, the sepset is the empty set. But if we remove the edge by means of correlation test conditional on variable Z, then the sepset is Z.

Fisher’s z-statistic61 is employed to test the following null hypotheses:

$$H_0 : \rho_{i,j|k} = 0,$$

where $\rho_{i,j|k}$ is the population correlation coefficient between series i and j, conditional on series k. Based on Monte Carlo experiments, Spirtes, Glymour,

60 This is a version of the Lucas critique of econometric policy evaluation (Lucas, 1978). For a useful discussion of the relation between the faithfulness condition and the celebrated Lucas critique, see Hoover (2001), pg. 182.

61 Equation (23) in chapter II.
and Scheines (2000, pg. 116) recommend using a confidence level of 0.20 whenever the sample size is below 100 observations, that it is our case.

Step 3 consists of directing the edges that remain after all possible tests of conditional correlation have been carried out considering sets of three variables (or triples). This is accomplished by using the screening-off characteristics (mentioned above) to orient the edges. Figure 11 illustrates this step for a three-variable DAG. The unconditional and conditional correlations among the variables underlying the orientation procedure are shown below each type of graph.

The assumptions upon which PC algorithm rests can be violated. Therefore, any causal structure retrieved from observational data must be examined with prudence. Two assumptions are more of a source of concern because it is more likely to happen in economics and finance: causal sufficiency and the faithfulness condition. The former can be encountered when there are omitted variables in our assumed causal model. The latter is faced whenever parameters between causes have the same magnitude to cancel one another62.

There are other algorithms such as the Modified PC Algorithm (Spirtes, Glymour, and Scheines, 2000, p. 125), and the Fast Causal Inference Algorithm (p. 144), that have been developed to be applied whenever the causal sufficiency assumption does not hold (i.e. when it is assumed that latent variables are present). We restrict our discussion to the PC Algorithm since, in our opinion, it is the most easily understood, and we assume

causal sufficiency holds, supported by the underlying theories described on section 2 of this paper.

E. What Causes the Sacrifice Ratio?

Theory does not go very deep in terms of how the sacrifice ratio could be affected by several factors, such as the degree of central bank independence, the extent of the openness of the economy, or the choice between gradualism and “cold turkey” when it comes to reduce inflation, among other variables mentioned all along the paper. To date, empirical studies have tried to find associations between variables that make sense practically or theoretically and have launched themselves to the endeavor of “digging out” practical conclusions by drawing scatter diagrams, calculate simple correlations, and running regressions, without the aid of a causal engine.

We believe that it is extremely important to identify which are (and which are not) the factors that affect the sacrifice ratios in order to manipulate the “correct” the variable and obtain a desirable outcome, if it is possible. In other words, finding a causal structure on the factors related to the sacrifice ratio is important if we want to achieve a more efficient implementation of monetary policy.

On the first part of this section, a brief summary of Ball’s (1994) findings is presented in terms of the causal structures imposed on his regression analyses\(^{63}\). The

\(^{63}\) We do not provide this type of summary for more recent analyses since there is not a great deal of variation with respect to Ball’s work, in terms of the imposed causal structures in their regressions. For example, Temple (2002) presents regressions of openness, inflation, length of the disinflation period, duration of contracts, and speed of disinflation on the sacrifice ratios.
reminder is used to present our results using Directed Acyclical Graphs and the PC algorithm to “recover” the causal structure of the sacrifice ratio and its presumably affecting factors.

1. **Imposed Causal Structure on Ball’s Seminal Analyses**

 In order to investigate the relationships between the costs of disinflation and their determinants, we consider important to illustrate that the decision between setting the variables on the left or right-hand-side of a regression equation implies causation.

 Tables 8 and 9 summarize the regressions presented by Ball in his seminal paper in 1994. We have divided Ball’s analyses in traditional (operational) and structural determinants, appealing to the taxonomy developed earlier in the paper. Ball does not address the institutional factors (CBI and IT).

 SR is the sacrifice ratio, SPD refers to the speed of disinflation, $\Delta \pi$ is the change in inflation, LNG is the length of the disinflation episode, π_θ is the level of inflation at the beginning of the disinflation period, and DUR is Bruno and Sachs’ (1985) index of duration of contracts.

 The causal structures imposed with respect to either the speed of disinflation, or its components, $\Delta \pi$ and LNG, imply that a Sargent’s (1983) “cold turkey” disinflation would be more beneficial. On one hand, the negative relationship between SPD and the SR claims for a quick disinflation to achieve a “cheaper” scenario. On the other hand, the negative relationship between LNG and SR cries for shorter disinflation periods.
Ball does not find statistically significant results of initial inflation as a determinant of the sacrifice ratio, especially when he controls for other factors.

There is no statistical significance between SR and Bruno and Sachs’ wage responsiveness index (WR_{BS}) in the annual data, but there is in the quarterly data set. This mixed result gives support to the idea that measuring sacrifice ratios with annual data dampens fluctuations and does not allow researchers to analyze the short-run trade-offs properly. While WR_{BS} maintains a negative relationship with SR, whenever it is statistically significant, the Grubb, Jackman, and Layard’s wage rigidity index (WR_{GJL}) preserves a statistically significant positive sign in its relationship with SR. This is consistent with theory and the empirical literature, i.e. a more rigid wage structure is associated with a more responsive aggregate output to a change in inflation. Notice that they have a different sign because WR_{BS} is a nominal wage responsiveness index and WR_{GJL} measures nominal wage rigidities. Observe that in LNG keeps its statistically significant positive sign across all the experiments where it appears.

Results from Table 9 lead Ball provide two important conclusions. First, despite the NeoKeynesian discouragement that it is from output prices and not from input prices (wages) where nominal rigidities affect the economy the most (Mankiw, 1990), inflexibilities observed on wages are very important in the analysis of the determinants of the sacrifice ratio.

Second, although openness (OPN) generally shows a negative relationship with the sacrifice ratio in theoretical settings (Romer, 1993), it has no significant effect on the sacrifice ratio in the empirical arena. This is consistent with Temple (2002), but does not
agree with Daniels, Nourzad, and VanHoose (2003) who argue that openness it is important empirical factor if central bank independence is included in the model. We address this issue in the following section.

2. Results

A detailed description of the data used to construct the causal structures is described across sections C and D of this chapter. A summarized version follows. Quarterly data on prices and output was obtained from the International Monetary Fund’s (IMF) International Financial Statistics (IFS). Speed of disinflation (SPD) is defined as the change in inflation ($\Delta \pi$) divided by the length of the disinflation episode (LNG). Although Ball uses either SPD or its components ($\Delta \pi$ and LNG) in his analyses, we only use SPD because we are interested in the total effect of speed. We also prefer to introduce a proportions variable, rather than a component of the sacrifice ratio directly ($\Delta \pi$). Two measures of wage rigidity are utilized here: Bruno and Sachs (1985) index of wage responsiveness (WR_{BS}), and the Grubb, Jackman, and Layard (1983) index of overall wage rigidity (WR_{GJL}). Openness is measured as the proportion of imports on GDP, calculated by Romer (1993). We use the legal-based index by Cukierman, Webb, and Nayapti (1992) as a metric for central bank independence (CBI). The data correspond to the period between 1960 and 2000.

The analysis was performed using the software TETRAD II (Scheines, 1994). Our estimations were carried out using the seemingly unrelated regressions (SUR) methodology (Zellner, 1962). OLS results are quite similar but SUR was chosen because
we wanted to take advantage of the cross-equation error correlations for more efficient estimation.

Figures 12 and 13 depict the directed acyclic graph (DAG) retrieved by the PC algorithm and tables 10 and 11 show their implied models using Bruno and Sachs’ (1985) wage responsiveness index, and Grubb, Jackman, and Layard’s (1983) wage rigidity index, respectively.

There are no major differences between the models depicted in figure 12 and figure 13. The negative causal relationships between speed and CBI, as well as the positive causal flow from CBI to the sacrifice ratio, and the negative causal relationship between nominal wage rigidities and the sacrifice ratio are preserved in both models. The two models kept the positive relationship between CBI and OPN, as well as the negative causal flow from initial inflation to IT.

We find evidence that the only two components that have a direct effect on the sacrifice ratio are wage rigidity and the CBI. With respect to the former, we agree with Ball’s conclusion: “wage rigidity is an important determinant of the sacrifice ratio” (Ball, 1994, pp. 176). Comparing the estimated coefficients of both models for the sacrifice ratio equation with respect to nominal rigidities (0.383*** and -0.163*), the impact of both wage rigidity measurements retains the same sign, but the estimated coefficient associated with WR_{gs} (table 10) is less statistically significant than the estimated parameter for WR_{GJL} (table 11). This result, along with the causal relationship

64 Recall that in the model on table 5, Bruno and Sachs’ wage responsiveness (flexibility) index is used and the Grubb, Jackman, and Layard index is utilized in the regression in table 9. As a result they have opposite signs.
with the degree of openness found in the second model, allows us to see that these two metrics capture different aspects of the nominal stickiness of wages.

Walsh (1998, pp. 378-79) poses the question on how does the transmission mechanism work between \textit{CBI} and the sacrifice ratio. In other words, does causality runs from \textit{CBI} to wage rigidities and then the magnitude of the costs of disinflation? Or it is the other way around? Countries with high sacrifice ratio and high inflation tend to grant central banks a larger degree of independence, reducing inflation but paying the costs of it. Actually, both models keep a stable and statistically significant causal flow from wage rigidity to the sacrifice ratio. The estimated coefficients for the sacrifice ratio equation are 2.91*** and 3.41***, corresponding to the models in tables 10 and 11 respectively. They are both large numbers indeed if we recall that the average sacrifice ratio across the sample is 1.14. This suggests that, holding everything else constant, a change in ten basis points in the \textit{CBI} index65 would imply a change of approximately thirty basis points in the sacrifice ratio. This translates into a loss (or benefit) of 0.30 percent in the quarterly growth rate, for each percentage point of inflation reduced during a disinflation period66. These results are contrary to opinions expressed by Alesina and Summers (1993), Pollard (1993), and Cukierman, Kalaitzidakis, Summers, and Webb (1993) in their influential papers that central bank

65 This does not look like an odd outcome if we appeal to the summary statistics of the CBI index in our sample, with a mean of 0.36 and std. dev. of 0.16.

66 Just to make the case in a more concrete way, if we consider the last identified disinflationary period in the UK (1989:2-1993:3), according to our estimations, assuming a ten basis point increment in the CBI index, this could have yielded an additional cost of 2.55\% in terms of loss of output growth rate, in less than five years.
independence comes with no cost at all. This is because they measure the potential welfare losses only in terms of output variability and found no response. But according to empirical evidence in Debelle and Fischer (1994), Walsh (1995b), Froyen and Waud (1995), and Fischer, (1996), supported by our analysis, there is no free lunch when it comes to CBI. After all, as Blinder (1996) points out: “You pay the costs of disinflation up front, and you reap the benefits -lower inflation- only gradually through time.” Therefore, a politically-detached central bank would be continuously tempted to exploit these short-run gains at the expense of the future.

NewKeynesian tradition predicts that a higher inflation is associated with a lower degree of price rigidities (Ball, Mankiw and Romer, 1988). The causal structures retrieved from our two DAG exercises indicate that is there is not a direct effect of initial inflation on the sacrifice ratio. This is also consistent with Ball’s (1994) findings. The two directed edges emerging from initial inflation to IT and SPD lead to the following discussions. In terms of IT, we see it is a sink (figures 12 and 13). Accordingly no direct link is found from IT to inflation. However, we caution, along the same lines as Bernanke, et al.. (1999), that we cannot provide a robust assessment on the matter, due to the recent adoption of IT regimes. The obtained causal structure points out more of a historical relationship rather than an economic analysis. We can either say that IT was adopted by countries with lower levels of initial inflation at the beginning of their identified disinflation episodes, or that countries who adopted IT did it when they had lower initial inflation levels.
Friedman (1994) argues that it is not clear if a quicker disinflation causes the sacrifice ratio to be smaller or, if central bankers know that they can minimize the costs of disinflation by reducing inflation in a fast fashion: a question of causality. Neither the DAG on figure 12, nor the one in figure 13 reports evidence of a direct causal flow between these two variables. But there are three interesting points that we would like to highlight. The first one is that there is a statistically significant and positive directed edge from initial inflation to SPD. This has important considerations in terms of monetary policy conduction since a higher level of initial inflation determines the ability of the monetary authority to perform the disinflation task in a quicker fashion.

Secondly, the negative relationship between SPD and CBI provides a simple historical rationale that central banks were granted with a larger extent of independence when they were slow in their disinflation endeavors. Thus, the data does not support the hypothesis that CBI aided in speeding up the disinflation processes.

Third, and most importantly, we are able to verify the total effect of the speed of disinflation has on the sacrifice ratio, using DAG analysis. According to Pearl (2000, pp. 81-83) a front-door criterion can be used to estimate the effects. To illustrate this point in our analysis, according to figures 7 and 8, the sacrifice ratio regression should be conditioned on the wage rigidity and CBI (because of CBI → SR ← WR_{GJL}). But we also know that SPD → CBI → SR ← WR_{GJL}. Consequently, if we want to analyze the total effect of SPD on SR, we must regress SR on WR_{GJL} and SPD only, getting rid of the “blocking” front-door variable, namely, CBI.
Table 12 illustrates the total effect of \(SPD \) on \(SR \) using the GJL index of nominal wage rigidity. It also demonstrates the problematic consequences in terms of statistical significance of not disposing of the “blocking” variable. Regression (I) follows the causal structure retrieved by the PC algorithm in figure 13. In regression (II), \(SPD \) is added as a regressor, notice that the estimated coefficient associated with \(SPD \) has no statistical significance at all (even the adjusted coefficient of determination decreases its magnitude). But observe that once the “blocking” variable - \(CBI \) - is dropped from the equation, as in regression (III), the statistical significance of the estimated coefficient of \(SPD \) jumps up to a 25 percent confidence level. Note that the estimated coefficient for \(SPD \) preserves the negative sign in both cases.

Ball estimated the effects of the speed “correctly” when he controlled for wage rigidity (at least using its components, \(i.e. \Delta \pi \) and \(LNG \)). These results back Sargent’s (1983) claim that speed shows a negative and causal relationship with the sacrifice ratio. For this reason, a “cold turkey” disinflation is preferred to Taylor’s (1983) gradualism in order to minimize the output costs of disinflation. Of course, we have to be careful to provide this prescription to any country. These results are based on data of OECD countries and may not be generalized to other countries without performing a DAG analysis on a broader data set. This especially applies to developing countries, since their causal structure might be different and the social costs could be unbearable for the population.

We do not find any direct causal link between openness and the sacrifice ratio, supporting Ball (1994) and Temple (2002). But as it is mentioned earlier, it is important
to mention that our results come from a data base of industrialized countries. It would be interesting to perform this analysis on a broader set of countries including developing countries (small-open economies), where this is a more important factor in terms of their economic frailty.

The interesting relationship for policy purposes is the causal directed edge from \(CBI \) to \(OPN \). This suggests that a more independent central bank can influence international trade in a positive fashion. This can be explained on the theoretical grounds that a less politically-detached monetary institution may involve more “conservativeness” and less-active policy actions. This might imply less policy-induced movements in the foreign exchange market as well, providing less uncertainty to international transactions. However, since our analysis was focused on the determinants of the sacrifice ratios, this is only a speculative result that needs further research.

F. Conclusions

This essay analyses empirically the possible factors that may influence the magnitude of the sacrifice ratio using Directed Acyclical Graph techniques on quarterly data for eleven OECD countries for the period between 1960 and 2000.

We classify these factors in three categories: traditional, structural, and institutional. Traditional variables associated with the sacrifice ratio account for the operational side of the study (speed of disinflation and initial inflation at the beginning of the identified
disinflation period). The structural components stress the importance of the relationship between the interactions among individuals in an economic environment and the costs associated with disinflation policies in terms of real output losses (wage rigidities and the degree of openness of an economy). The institutional set of our proposed taxonomy accounts for the effects of the incentive configuration within the central banks’ institutional structure on the sacrifice ratio (central bank independence and inflation targeting).

We find evidence that the wage rigidities and central bank independence (CBI) are the two major determinants of the sacrifice ratio, supporting earlier work of Ball (1994), as well as other empirical analyses on CBI such as Debelle and Fischer (1994), Walsh (1995b), Froyen and Waud (1995), and Fischer, (1996). We do not find support for Romer’s (1993) view that openness has any effect on the sacrifice ratio. This is in line with a recent study by Temple (2002). Along the same lines as Bernanke, et al. (1999), we do not provide a robust analysis on the relationship between the sacrifice ratio and the adoption of inflation targeting (IT). This is due to the recent adoption of these regimes and that our analysis is restricted to disinflation episodes only, yielding very few observations.

The metric used for each of the variables analyzed in this paper, including the sacrifice ratio, are subject to criticisms because of the fact of the impossibility of making controlled experiments in a macroeconomy and, as a result, the emergence of the typical problems of making inferences assuming the *ceteris paribus* condition to perform
inferences on aggregate sets of observationally-obtained data67. In any case, we directed our efforts to select the best measurements available in the current literature.

Extensions can be made to include other OECD countries and less-developed countries. Further, the relationship between the exchange rate regime and the sacrifice ratio can be studied. Sánchez, Seade, and Werner (1999) examined this subject, motivated by the fact that if an economy is sufficiently open, exchange rate variability has a larger effect on domestic prices. A less than fully flexible exchange rate scheme restricts the variability of the relative prices between nations, increasing nominal rigidities and the sacrifice ratio as well. Nevertheless, we think that this factor is (at least partially) accounted for, in our work, as we incorporate the degree of openness of the economy in our DAGS. In addition, finding an objective statistic for this issue is not an easy endeavor. We have left this interesting question for future research.

67 See Holland (1986), for an illustrative discussion on causation inference, experimental methods and the \textit{ceteris paribus} assumption.
CHAPTER V

CONCLUSIONS

Monetary policy, as a set of government actions to improve the state of the economy, has been given either too many positive attributes or, in contrast, only economy-disturbing features. Uncertainties emerging from the degree of influence of monetary policy on output and inflation, as well as the possible adverse shocks economies may face, in addition to the complexity of the lag structure of the monetary policy transmission mechanism, and the choice of the relevant instruments and targets, sets up an array of difficult intricacies that the central bank must overcome.

While academia have prescribed for a long time the adoption of policy rules or the implementation of contracts between a “principal” and the central bank, to accomplish an optimal implementation of monetary policy, the practitioners’ point of view has evolved within a different set of facts. Acquisition of information has become almost costless, bolstering the speed of adjustment of people’s expectations in response to economic disturbances. Consequently the public has become more sensitive to inflation and, as a result, several central bankers have entertained the idea of transparency as a mechanism to improve monetary policy’s stabilization features. This is achieved because transparency improves the private sector’s predictability of monetary policy leading them to better reflect information relevant to monetary policymaking. In other words, the effectiveness of monetary policy not only depends on correctness and timeliness of the central bank’s decisions, but also on the public’s expectations and their
ability to predict future policy. Central banks have responded providing the public with information. Such is the case of the publication of the inflation forecast, inflation reports, minutes of their policymaking decision meetings, and the adoption of explicit inflation targeting regimes.

Aiming to reduce the gap between the academic and the policymakers’ view of monetary policy, the purpose of this dissertation is to develop and apply tools to examine and improve the implementation of monetary policy and its effectiveness.

We first study the causal structure among the elements of the celebrated Taylor monetary policy rule. Directed Acyclic Graphs and the PC algorithm are used to evaluate the usefulness of the Taylor monetary policy rule as a characterization of a central bank’s instrument reaction function in terms of inflation and unemployment.

Our findings can be summarized in the following four results: (i) Monetary policy is powerful to reduce inflation, contrary to the contradictory result, both theoretically and empirically, using Stock and Watson’s causal structure for the second period. Inflation is significantly reduced even before a year. We think that this reflects the increased importance of the role of information in the late period. As a result, at the interest rate change cause a more immediate effect on both, inflation and unemployment, since several times, an interest rate movement is discounted by the market way before the actual policy change; (ii) There is not a short-run trade-off between the unemployment rate and inflation. In other words, a rate hike of 25 basis points translates into less inflation and less unemployment. These are some good news for a politically-attached policymaker. However, we have to take into account that it is a short-run effect indeed
and these actions increase variability, persistence negative effects on the employment level; (iii) The Fed has not followed a Taylor rule in any of the two periods under study; and (iv) a rate hike tends to come back to the “steady-state” in a more gradually.

We then examine the relationship between central bank accountability and the publication of central bank’s key variables forecasts. Several central banks publish their inflation forecasts. Making a forecast public does not ensure accountability for their policymaking decisions. Optimal forecast evaluation becomes a necessary condition. The majority of studies have used point-forecast techniques to evaluate central bank’s density forecasts. Some others have utilized more appropriate probabilistic forecast-evaluation mechanisms, such as calibration. It has been shown that calibration fails to take into account the covariance between the forecast and the realized value. This paper presents an incentive-compatible approach based on proper scoring rules to evaluate density forecasts in order to reduce the central banks’ accountability problem.

We found evidence that both the MPC and the “other” forecasters have shown a large responsiveness to information not related to the forecasted variable and a very precarious response to developments affecting inflation and output growth.

Second, “wishful thinking” in monetary policy has been usually identified as a bias towards the exploitation of the short-run output-inflation tradeoff. Conversely, our results indicate the MPC has been promoting its “wishful thinking” through its forecasts more on the “fear of inflation” side.

Third, there is a statistically significant difference between the Brier mean probability scores of inflation forecasts for the two forecasters. This supports the idea
that the MPC could be hedging their inflation forecasts and, at the same time, influencing them with “wishful” thoughts against a high-inflation (perhaps even moderate) outcome. This suggests that the BoE uses the forecast as an instrument. Publishing a true forecast, perhaps strips the power off the forecast as an instrument, but gives more power to monetary policy itself, since the public will improve predictability of monetary policy and their actions will reflect better behavior ad hoc with monetary policymaking decisions. In other words, this could be seen as a transfer of power from one instrument to another or just emphasizing the usefulness of the instrument, in this case, by encouraging honesty on the publication of the forecast, will be emphasize the open-market operations to set the key interest rate, monetary policy literally.

We now turn to the third issue under study, the effectiveness of monetary policy. There is near consensus that disinflation policies generate output losses, at least in the short run. Studies have attempted to measure these costs by estimating the Sacrifice Ratio, generally defined as the quotient between the output gap and the percent change in inflation. This paper studies the causal structure of the factors that are presumed to influence the sacrifice ratio on panel data of eleven OECD countries. Directed acyclical graph methods are used to identify the causal structure among such determinants and the sacrifice ratio.

We find evidence that wage rigidities and central bank independence (CBI) are the two major determinants of the sacrifice ratio. However, we find no support that the degree of openness of an economy has any causal effect on the sacrifice ratio.
We do not provide a robust analysis on the relationship between the sacrifice ratio and the adoption of Inflation Targeting (IT). We consider that this is due to the recent adoption of these regimes and that our analysis is restricted to disinflation episodes only, yielding very few observations.
REFERENCES

Sánchez, Oscar; Seade, Juan, and Werner Alejandro M. “Los Costos Asociados al Proceso Desinflacionario.” Banco de México (Mexico City, Mexico), Documento de Investigación No. 9903, 1999.

APPENDIX A

TABLES
Table 1 — Replication: Granger Causality Tests and Forecast-Error Variance Decomposition

<table>
<thead>
<tr>
<th>Granger Causality Tests</th>
<th>Regressor</th>
<th>Dependent Variable in Regression (p-values of F-tests)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>π u r</td>
</tr>
<tr>
<td>π</td>
<td>0.00</td>
<td>0.00 0.05</td>
</tr>
<tr>
<td>u</td>
<td>0.00</td>
<td>0.00 0.00</td>
</tr>
<tr>
<td>r</td>
<td>0.00</td>
<td>0.00 0.00</td>
</tr>
</tbody>
</table>

Variance Decompositions from the Unrestricted VAR ordered as π, u, r

1. Variance Decomposition of π

<table>
<thead>
<tr>
<th>Forecast Horizon</th>
<th>Forecast Std. Error</th>
<th>π</th>
<th>u</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.957</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1.324</td>
<td>88</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1.722</td>
<td>82</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>1.938</td>
<td>82</td>
<td>16</td>
<td>2</td>
</tr>
</tbody>
</table>

2. Variance Decomposition of u

<table>
<thead>
<tr>
<th>Forecast Horizon</th>
<th>Forecast Std. Error</th>
<th>π</th>
<th>u</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.227</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.631</td>
<td>0</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>0.784</td>
<td>7</td>
<td>82</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>0.912</td>
<td>16</td>
<td>66</td>
<td>18</td>
</tr>
</tbody>
</table>

3. Variance Decomposition of r

<table>
<thead>
<tr>
<th>Forecast Horizon</th>
<th>Forecast Std. Error</th>
<th>π</th>
<th>u</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.843</td>
<td>2</td>
<td>19</td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td>1.831</td>
<td>9</td>
<td>50</td>
<td>41</td>
</tr>
<tr>
<td>8</td>
<td>2.437</td>
<td>12</td>
<td>60</td>
<td>28</td>
</tr>
<tr>
<td>12</td>
<td>2.625</td>
<td>16</td>
<td>59</td>
<td>25</td>
</tr>
</tbody>
</table>

Notes: π denotes the inflation rate, u stands for unemployment, and r denotes the interest rate (Federal Funds).
TABLE 2 — DIRECTED ACYCLICAL GRAPHS FOR INTEREST RATE (r), INFLATION (π), AND UNEMPLOYMENT (u) IN SEVERAL STUDIES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(r \to \pi \downarrow u)</td>
</tr>
<tr>
<td>(r = r(\pi, u))</td>
<td>(r = r)</td>
<td>(r = r)</td>
<td>(r = r)</td>
</tr>
<tr>
<td>(\pi = \pi)</td>
<td>(\pi = \pi(r))</td>
<td>(\pi = \pi)</td>
<td>(\pi = \pi)</td>
</tr>
<tr>
<td>(u = u(\pi))</td>
<td>(u = u(r, \pi))</td>
<td>(u = u(\pi))</td>
<td>(u = u(r, \pi))</td>
</tr>
</tbody>
</table>

Our Results*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(r \to \pi \downarrow u)</td>
</tr>
<tr>
<td>(r = r)</td>
</tr>
<tr>
<td>(\pi = \pi)</td>
<td>(\pi = \pi)</td>
<td>(\pi = \pi)</td>
<td>(\pi = \pi(r))</td>
</tr>
<tr>
<td>(u = u(r, \pi))</td>
<td>(u = u(r, \pi))</td>
<td>(u = u(r))</td>
<td>(u = u(r))</td>
</tr>
</tbody>
</table>

Notes: \(\pi \) denotes the inflation rate, \(u \) stands for unemployment, and \(r \) denotes the interest rate. Below the directed acyclical graphs (DAGs) are the implied generalized functional forms. Sims (1986) and Awokuse and Bessler (2003) also used real output, investment, and money in their VAR specifications. * Causal structure retrieved using the PC Algorithm.
TABLE 3 — EXAMPLE OF A PERFECTLY CALIBRATED
BUT PERFECTLY “WRONG” FORECASTER

<table>
<thead>
<tr>
<th>Inflation Forecast (p)</th>
<th>Year</th>
<th>P(π<0)</th>
<th>P(0<π<1)</th>
<th>P(1<π<2)</th>
<th>P(π>2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcome Index (d)</th>
<th>Year</th>
<th>P(π<0)</th>
<th>P(0<π<1)</th>
<th>P(1<π<2)</th>
<th>P(π>2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brier Score and some Elements of its Yates’ partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>\overline{PSM}</td>
</tr>
<tr>
<td>B^2</td>
</tr>
<tr>
<td>σ^2_p</td>
</tr>
<tr>
<td>σ^2_d</td>
</tr>
<tr>
<td>$\sigma^2_{p,d}$</td>
</tr>
</tbody>
</table>

Notes: P indicates the probability of an event happening in a certain year. \overline{PSM} is the multiple-event Brier Mean Probability Score. The four numbers below the Brier Score are the components of its Yates’ decomposition: $\overline{PSM} = B^2 + \sigma^2_p + \sigma^2_d - 2\sigma^2_{p,d}$. To avoid ambiguities, $\sigma^2_{p,d}$ is reported instead of $-2\sigma^2_{p,d}$. This is just an example from the authors’ creativity and not to be interpreted as information about a country’s inflation.
| Table 4 — Brier Mean Probability Scores and Their Yates Partitions |

<table>
<thead>
<tr>
<th></th>
<th>Inflation</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000 Q1 - 2001 Q1</td>
<td>2001 Q2 - 2003 Q2</td>
<td>Overall Period</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5 obs.)</td>
<td>(9 obs.)</td>
<td>(14 obs.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPC</td>
<td>OF</td>
<td>MPC</td>
<td>OF</td>
<td>MPC</td>
<td>OF</td>
</tr>
<tr>
<td>PSM</td>
<td>0.6256</td>
<td>0.7555</td>
<td>0.7091</td>
<td>0.5136</td>
<td>0.6466</td>
</tr>
<tr>
<td>σ^2_d</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>$\sigma^2_{p,min}$</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>S</td>
<td>0.0071</td>
<td>0.0043</td>
<td>0.0053</td>
<td>0.0031</td>
<td>0.0009</td>
</tr>
<tr>
<td>B^2</td>
<td>0.6185</td>
<td>0.1763</td>
<td>0.3342</td>
<td>0.5105</td>
<td>0.0770</td>
</tr>
<tr>
<td>$-2 \left[\sigma^2_{p,d} \right]$</td>
<td>0.0000</td>
<td>-0.0035</td>
<td>-0.0022</td>
<td>0.0000</td>
<td>-0.0004</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Output Growth Rate</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000 Q1 - 2001 Q1</td>
<td>2001 Q2 - 2003 Q2</td>
<td>Overall Period</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5 obs.)</td>
<td>(9 obs.)</td>
<td>(14 obs.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPC</td>
<td>OF</td>
<td>MPC</td>
<td>OF</td>
<td>MPC</td>
<td>OF</td>
</tr>
<tr>
<td>PSM</td>
<td>0.7210</td>
<td>0.7083</td>
<td>0.7128</td>
<td>0.8212</td>
<td>0.6548</td>
</tr>
<tr>
<td>σ^2_d</td>
<td>0.4800</td>
<td>0.4938</td>
<td>0.4889</td>
<td>0.4800</td>
<td>0.4938</td>
</tr>
<tr>
<td>$\sigma^2_{p,min}$</td>
<td>0.0002</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0003</td>
<td>0.0001</td>
</tr>
<tr>
<td>S</td>
<td>0.0037</td>
<td>0.0061</td>
<td>0.0052</td>
<td>0.0024</td>
<td>0.0036</td>
</tr>
<tr>
<td>B^2</td>
<td>0.2371</td>
<td>0.2110</td>
<td>0.2203</td>
<td>0.3145</td>
<td>0.1613</td>
</tr>
<tr>
<td>$-2 \left[\sigma^2_{p,d} \right]$</td>
<td>0.0000</td>
<td>-0.0120</td>
<td>0.0009</td>
<td>-0.0120</td>
<td>-0.0020</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Combined Forecasts</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000 Q1 - 2001 Q1</td>
<td>2001 Q2 - 2003 Q2</td>
<td>Overall Period</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(10 obs.)</td>
<td>(18 obs.)</td>
<td>(28 obs.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPC</td>
<td>OF</td>
<td>MPC</td>
<td>OF</td>
<td>MPC</td>
<td>OF</td>
</tr>
<tr>
<td>PSM</td>
<td>0.6733</td>
<td>0.7319</td>
<td>0.7110</td>
<td>0.6674</td>
<td>0.6507</td>
</tr>
<tr>
<td>σ^2_d</td>
<td>0.2400</td>
<td>0.5309</td>
<td>0.4270</td>
<td>0.2400</td>
<td>0.5309</td>
</tr>
<tr>
<td>$\sigma^2_{p,min}$</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0000</td>
</tr>
<tr>
<td>S</td>
<td>0.0054</td>
<td>0.0052</td>
<td>0.0053</td>
<td>0.0027</td>
<td>0.0022</td>
</tr>
<tr>
<td>B^2</td>
<td>0.4278</td>
<td>0.1937</td>
<td>0.2773</td>
<td>0.4125</td>
<td>0.1192</td>
</tr>
<tr>
<td>$-2 \left[\sigma^2_{p,d} \right]$</td>
<td>0.0000</td>
<td>-0.0011</td>
<td>-0.0007</td>
<td>-0.0060</td>
<td>0.0008</td>
</tr>
</tbody>
</table>

Notes: MPC is the Bank of England Monetary Policy Committee. OF stands for “other” forecasters. PSM is the multiple-event Brier Mean Probability Score. The five numbers below the Brier Score are the components of its Yates’ decomposition: $PSM = B^2 + S + \sigma^2_{p,min} + \sigma^2_d - 2\sigma^2_{p,d}$. To avoid ambiguities, $\sigma^2_{p,d}$ is reported instead of $-2\sigma^2_{p,d}$.

Table 5 — Brier Scores Hypotheses Tests

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>CB-statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflation Forecast</td>
<td>5.2502</td>
<td>0.0002</td>
</tr>
<tr>
<td>Output Growth Forecast</td>
<td>0.2737</td>
<td>0.7886</td>
</tr>
</tbody>
</table>

Null: $PSM_{MPC} = PSM_{OF}$

Notes: MPC is the Bank of England Monetary Policy Committee. OF stands for “other” forecasters. PSM is the multiple-event Brier Mean Probability Score. CB is the statistic developed in this paper, given by equation (35).
<table>
<thead>
<tr>
<th>Episode</th>
<th>Initial Inflation (π_0)</th>
<th>Change in Inflation ($\Delta\pi$)</th>
<th>Length of Disinflation (LNG) (Quarters)</th>
<th>Speed of Disinflation (SPD)</th>
<th>Sacrifice Ratio (SR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974:2-1978:1</td>
<td>14.60</td>
<td>6.57</td>
<td>15</td>
<td>0.4380</td>
<td>0.7234</td>
</tr>
<tr>
<td>1982:1-1984:1</td>
<td>10.50</td>
<td>4.98</td>
<td>8</td>
<td>0.6225</td>
<td>1.2782</td>
</tr>
<tr>
<td>1986:2-1993:1</td>
<td>*</td>
<td>8.99</td>
<td>27</td>
<td>0.2900</td>
<td>-0.4200</td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974:2-1976:4</td>
<td>10.60</td>
<td>3.14</td>
<td>10</td>
<td>0.3140</td>
<td>0.6273</td>
</tr>
<tr>
<td>1981:2-1985:2</td>
<td>11.60</td>
<td>7.83</td>
<td>16</td>
<td>0.4894</td>
<td>2.3729</td>
</tr>
<tr>
<td>1990:1-1993:4</td>
<td>*</td>
<td>5.85</td>
<td>15</td>
<td>0.3233</td>
<td>2.6300</td>
</tr>
<tr>
<td>1996:1-1997:3</td>
<td>*</td>
<td>2.05</td>
<td>6</td>
<td>0.1400</td>
<td>0.7600</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974:2-1976:4</td>
<td>11.90</td>
<td>2.98</td>
<td>10</td>
<td>0.2980</td>
<td>0.9070</td>
</tr>
<tr>
<td>1981:1-1986:4</td>
<td>13</td>
<td>10.42</td>
<td>23</td>
<td>0.4530</td>
<td>0.5997</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1965:4-1967:3</td>
<td>3.67</td>
<td>2.43</td>
<td>7</td>
<td>0.3471</td>
<td>2.5590</td>
</tr>
<tr>
<td>1973:1-1977:3</td>
<td>6.92</td>
<td>4.23</td>
<td>18</td>
<td>0.2350</td>
<td>2.6358</td>
</tr>
<tr>
<td>1980:1-1986:3</td>
<td>5.86</td>
<td>5.95</td>
<td>26</td>
<td>0.2288</td>
<td>3.5565</td>
</tr>
<tr>
<td>1992:2-1995:4</td>
<td>*</td>
<td>5.13</td>
<td>14</td>
<td>0.2671</td>
<td>0.7500</td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1963:3-1967:4</td>
<td>6.79</td>
<td>5.74</td>
<td>17</td>
<td>0.3376</td>
<td>2.6539</td>
</tr>
<tr>
<td>1977:1-1978:2</td>
<td>16.50</td>
<td>4.30</td>
<td>5</td>
<td>0.8600</td>
<td>0.9776</td>
</tr>
<tr>
<td>1980:1-1987:2</td>
<td>19.10</td>
<td>14.56</td>
<td>29</td>
<td>0.5021</td>
<td>1.5992</td>
</tr>
<tr>
<td>1989:4-1993:3</td>
<td>*</td>
<td>6.62</td>
<td>15</td>
<td>0.1693</td>
<td>-1.2800</td>
</tr>
<tr>
<td>1995:1-1996:3</td>
<td>*</td>
<td>4.72</td>
<td>6</td>
<td>0.3100</td>
<td>-0.5400</td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1962:3-1963:1</td>
<td>8.11</td>
<td>3.00</td>
<td>2</td>
<td>1.5000</td>
<td>0.5309</td>
</tr>
<tr>
<td>1965:1-1967:2</td>
<td>5.99</td>
<td>2.20</td>
<td>9</td>
<td>0.2444</td>
<td>1.6577</td>
</tr>
<tr>
<td>Episode</td>
<td>Initial Inflation (π_0)</td>
<td>Change in Inflation ($\Delta\pi$)</td>
<td>Length of Disinflation (LNG) (Quarters)</td>
<td>Speed of Disinflation (SPD)</td>
<td>Sacrifice Ratio (SR)</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1970:3-1971:2</td>
<td>7.53</td>
<td>2.09</td>
<td>3</td>
<td>0.6967</td>
<td>1.2689</td>
</tr>
<tr>
<td>1974:1-1978:3</td>
<td>17.10</td>
<td>13.21</td>
<td>18</td>
<td>0.7339</td>
<td>0.6068</td>
</tr>
<tr>
<td>1980:2-1983:4</td>
<td>6.68</td>
<td>5.07</td>
<td>14</td>
<td>0.3621</td>
<td>0.0174</td>
</tr>
<tr>
<td>1984:2-1987:1</td>
<td>2.29</td>
<td>2.11</td>
<td>11</td>
<td>0.1918</td>
<td>1.4801</td>
</tr>
<tr>
<td>1990:2-1996:1</td>
<td>3.74</td>
<td>3.85</td>
<td>23</td>
<td>0.1674</td>
<td>-0.8900</td>
</tr>
<tr>
<td>New Zealand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985:4-1992:2</td>
<td>16.68</td>
<td>15.62</td>
<td>26</td>
<td>0.6008</td>
<td>-0.2300</td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1977:1-1978:4</td>
<td>11.53</td>
<td>3.06</td>
<td>7</td>
<td>0.4371</td>
<td>1.4700</td>
</tr>
<tr>
<td>1980:3-1986:3</td>
<td>12.84</td>
<td>8.77</td>
<td>24</td>
<td>0.3654</td>
<td>1.6100</td>
</tr>
<tr>
<td>1990:1-1993:1</td>
<td>10.02</td>
<td>7.07</td>
<td>12</td>
<td>0.5892</td>
<td>-0.2100</td>
</tr>
<tr>
<td>1993:4-1997:3</td>
<td>3.49</td>
<td>3.56</td>
<td>11</td>
<td>0.3236</td>
<td>-1.0400</td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973:4-1977:4</td>
<td>9.42</td>
<td>8.28</td>
<td>16</td>
<td>0.5175</td>
<td>1.8509</td>
</tr>
<tr>
<td>1981:3-1983:4</td>
<td>6.15</td>
<td>3.86</td>
<td>9</td>
<td>0.4289</td>
<td>1.2871</td>
</tr>
<tr>
<td>1990:4-1997:3</td>
<td>5.79</td>
<td>5.53</td>
<td>27</td>
<td>0.2048</td>
<td>1.4200</td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1961:2-1963:3</td>
<td>4.24</td>
<td>2.10</td>
<td>9</td>
<td>0.2333</td>
<td>1.9105</td>
</tr>
<tr>
<td>1965:2-1966:3</td>
<td>4.91</td>
<td>2.69</td>
<td>5</td>
<td>0.5380</td>
<td>-0.0063</td>
</tr>
<tr>
<td>1975:1-1978:2</td>
<td>19.7</td>
<td>9.71</td>
<td>13</td>
<td>0.7469</td>
<td>0.8679</td>
</tr>
<tr>
<td>1980:2-1983:3</td>
<td>15.4</td>
<td>11.12</td>
<td>13</td>
<td>0.8554</td>
<td>0.2935</td>
</tr>
<tr>
<td>1984:2-1986:3</td>
<td>6.19</td>
<td>3.03</td>
<td>9</td>
<td>0.3367</td>
<td>0.8680</td>
</tr>
<tr>
<td>1989:2-1993:3</td>
<td>9.13</td>
<td>7.37</td>
<td>17</td>
<td>0.4335</td>
<td>1.1200</td>
</tr>
<tr>
<td>United States</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1969:4-1971:4</td>
<td>5.67</td>
<td>2.14</td>
<td>8</td>
<td>0.2675</td>
<td>2.9364</td>
</tr>
<tr>
<td>1974:1-1976:4</td>
<td>9.70</td>
<td>4.00</td>
<td>11</td>
<td>0.3636</td>
<td>2.3914</td>
</tr>
<tr>
<td>1980:1-1983:4</td>
<td>12.10</td>
<td>8.83</td>
<td>15</td>
<td>0.5887</td>
<td>1.8320</td>
</tr>
<tr>
<td>1989:4-1994:3</td>
<td>5.28</td>
<td>2.65</td>
<td>19</td>
<td>0.1395</td>
<td>3.6800</td>
</tr>
</tbody>
</table>

* Episodes identified by the authors.
<table>
<thead>
<tr>
<th>Decade</th>
<th>Number of Identified Disinflation Episodes</th>
<th>Initial Inflation (π_0)</th>
<th>Change in Inflation ($\Delta\pi$)</th>
<th>Length of Disinflation (LNG) (Quarters)</th>
<th>Speed of Disinflation (SPD)</th>
<th>Sacrifice Ratio (SR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960-1970</td>
<td>7</td>
<td>5.63</td>
<td>2.90</td>
<td>8</td>
<td>0.4954</td>
<td>1.7489</td>
</tr>
<tr>
<td>1970-1980</td>
<td>11</td>
<td>12.32</td>
<td>5.60</td>
<td>11</td>
<td>0.5128</td>
<td>1.3025</td>
</tr>
<tr>
<td>1980-1990</td>
<td>14</td>
<td>10.53</td>
<td>7.86</td>
<td>18</td>
<td>0.4511</td>
<td>1.1532</td>
</tr>
<tr>
<td>1990-2000</td>
<td>11</td>
<td>5.62</td>
<td>3.99</td>
<td>15</td>
<td>0.2789</td>
<td>0.5818</td>
</tr>
<tr>
<td>1960-2000</td>
<td>43</td>
<td>8.93</td>
<td>5.48</td>
<td>14</td>
<td>0.4301</td>
<td>1.1422</td>
</tr>
</tbody>
</table>
TABLE 8 — TRADITIONAL FACTORS - CAUSAL STRUCTURE IMPOSED BY BALL (1994)

Speed of Disinflation (from Table 5.4, Ball)

<table>
<thead>
<tr>
<th>Frequency of the Data</th>
<th>Imposed Causality Structure and Sign of Estimated Coefficient (in Parenthesis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Quarterly</td>
<td>$SPD \rightarrow SR$</td>
</tr>
<tr>
<td>(2) Annual</td>
<td>$SPD \rightarrow SR$</td>
</tr>
<tr>
<td>(3) Quarterly</td>
<td>$\Delta \pi \rightarrow SR \leftarrow LNG$</td>
</tr>
<tr>
<td>(4) Annual</td>
<td>$\Delta \pi \rightarrow SR \leftarrow LNG$</td>
</tr>
</tbody>
</table>

Initial Inflation (from Table 5.7)

<table>
<thead>
<tr>
<th>Frequency of the Data</th>
<th>Imposed Causality Structure and Sign of Empirical Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Quarterly</td>
<td>$\pi_0 \rightarrow SR$</td>
</tr>
<tr>
<td></td>
<td>$\Delta \pi$</td>
</tr>
<tr>
<td></td>
<td>\downarrow</td>
</tr>
<tr>
<td>(2) Quarterly</td>
<td>$\pi_0 \rightarrow SR$</td>
</tr>
<tr>
<td></td>
<td>$\Delta \pi$</td>
</tr>
<tr>
<td></td>
<td>\downarrow</td>
</tr>
<tr>
<td></td>
<td>$\uparrow^{(+)}$</td>
</tr>
<tr>
<td></td>
<td>$SR \leftarrow LNG$</td>
</tr>
<tr>
<td></td>
<td>DUR</td>
</tr>
<tr>
<td>(3) Annual</td>
<td>$\pi_0 \rightarrow SR$</td>
</tr>
<tr>
<td></td>
<td>$\Delta \pi$</td>
</tr>
<tr>
<td></td>
<td>\downarrow</td>
</tr>
<tr>
<td>(4) Annual</td>
<td>$\pi_0 \rightarrow SR$</td>
</tr>
<tr>
<td></td>
<td>$\Delta \pi$</td>
</tr>
<tr>
<td></td>
<td>\downarrow</td>
</tr>
<tr>
<td></td>
<td>$\uparrow^{(+)}$</td>
</tr>
<tr>
<td></td>
<td>$SR \leftarrow LNG$</td>
</tr>
<tr>
<td></td>
<td>DUR</td>
</tr>
</tbody>
</table>

Notes: SR denotes the sacrifice ratio, π_0 is the inflation level at the beginning of the identified disinflation period, $\Delta \pi$ stands for the change of inflation during the disinflation period, LNG is the length of the disinflation episode, SPD stands for speed of disinflation, i.e. the quotient between the $\Delta \pi$ and LNG, the duration of contracts (taken from Bruno and Sachs, 1985) is denoted by DUR. The sign obtained by Ball’s regressions is between parentheses next to the edge. When there is no sign associated to an edge indicates that the estimated coefficient was not statistically significant at the 10% confidence level.
<table>
<thead>
<tr>
<th>Frequency of the Data</th>
<th>Imposed Causality Structure and Sign of Estimated Coefficient (in Parenthesis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Annual</td>
<td>$WR_{BS} \rightarrow SR$</td>
</tr>
<tr>
<td></td>
<td>$\Delta \pi$</td>
</tr>
<tr>
<td></td>
<td>↓^{(-)}</td>
</tr>
<tr>
<td>(2) Annual</td>
<td>$WR_{BS} \rightarrow SR$</td>
</tr>
<tr>
<td></td>
<td>$\Delta \pi$</td>
</tr>
<tr>
<td></td>
<td>↓^{(-)}</td>
</tr>
<tr>
<td></td>
<td>$\rightarrow (\cdot)$</td>
</tr>
<tr>
<td></td>
<td>LNG</td>
</tr>
<tr>
<td>(3) Annual</td>
<td>$DUR \rightarrow SR$</td>
</tr>
<tr>
<td></td>
<td>$\Delta \pi$</td>
</tr>
<tr>
<td></td>
<td>↓^{(-)}</td>
</tr>
<tr>
<td>(4) Annual</td>
<td>$DUR \rightarrow SR$</td>
</tr>
<tr>
<td></td>
<td>$\Delta \pi$</td>
</tr>
<tr>
<td></td>
<td>↓^{(-)}</td>
</tr>
<tr>
<td>(5) Quarterly</td>
<td>$WR_{BS} \rightarrow SR$</td>
</tr>
<tr>
<td></td>
<td>$\Delta \pi$</td>
</tr>
<tr>
<td>(6) Quarterly</td>
<td>$WR_{BS} \rightarrow SR$</td>
</tr>
<tr>
<td></td>
<td>$\rightarrow (\cdot)$</td>
</tr>
<tr>
<td></td>
<td>LNG</td>
</tr>
<tr>
<td>(7) Quarterly</td>
<td>$DUR \rightarrow SR$</td>
</tr>
<tr>
<td></td>
<td>$\Delta \pi$</td>
</tr>
<tr>
<td>(8) Quarterly</td>
<td>$DUR \rightarrow SR$</td>
</tr>
<tr>
<td></td>
<td>$\rightarrow (\cdot)$</td>
</tr>
<tr>
<td></td>
<td>LNG</td>
</tr>
<tr>
<td>Frequency of the Data and Est. Method</td>
<td>Imposed Causality Structure and Sign of Estimated Coefficient (in Parenthesis)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>(1) Quarterly (OLS)</td>
<td>$\Delta \pi \uparrow \downarrow$ $WR_{GIL} \rightarrow SR \leftarrow LNG$</td>
</tr>
<tr>
<td>(2) Annual (OLS)</td>
<td>$\Delta \pi \uparrow \downarrow$ $WR_{GIL} \rightarrow SR \leftarrow LNG$</td>
</tr>
<tr>
<td>(3) Quarterly (IV)</td>
<td>$\Delta \pi \downarrow$ $WR_{BS} \rightarrow SR \leftarrow LNG$</td>
</tr>
<tr>
<td>(4) Annual (IV)</td>
<td>$\Delta \pi \downarrow$ $WR_{GIL} \rightarrow SR \leftarrow LNG$</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Frequency of the Data</th>
<th>Imposed Causality Structure and Sign of Estimated Coefficient (in Parenthesis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Quarterly</td>
<td>$OPN \rightarrow SR$</td>
</tr>
<tr>
<td>(2) Annual</td>
<td>$OPN \rightarrow SR$</td>
</tr>
<tr>
<td></td>
<td>$\Delta \pi$</td>
</tr>
<tr>
<td></td>
<td>$\downarrow (-)$</td>
</tr>
<tr>
<td>(3) Quarterly</td>
<td>$OPN \rightarrow SR \quad LNG \leftarrow \quad \Delta \pi$</td>
</tr>
<tr>
<td></td>
<td>\uparrow</td>
</tr>
<tr>
<td>(4) Annual</td>
<td>$OPN \rightarrow SR \quad LNG \leftarrow \quad \Delta \pi$</td>
</tr>
<tr>
<td></td>
<td>\uparrow</td>
</tr>
</tbody>
</table>

Notes: SR denotes the sacrifice ratio, π_0 is the inflation level at the beginning of the identified disinflation period, $\Delta \pi$ stands for the change of inflation during the disinflation period, LNG is the length of the disinflation episode, SPD stands for speed of disinflation, i.e. the quotient between the $\Delta \pi$ and LNG, the duration of contracts and the degree of wage responsiveness (taken from Bruno and Sachs, 1985) are denoted by DUR and WR_{GR}. Grubb, Jackman, and Layard’s (1983) wage rigidity index is denoted by WR_{GJL}. OPN is Romer’s openness index, i.e. the proportion of imports on the GDP. The sign obtained by Ball’s regressions is between parentheses next to the edge. When there is no sign associated to an edge indicates that the estimated coefficient was not statistically significant at the 10% confidence level.
Table 10 — The Sacrifice Ratio and Its Determinants
(Bruno & Sachs’ Wage Responsiveness Index)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Structural</th>
<th>Institutional</th>
<th>Traditional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WR_{BS}</td>
<td>OPN</td>
<td>CBI</td>
</tr>
<tr>
<td>Constant</td>
<td>5.307***</td>
<td>16.523***</td>
<td>0.479***</td>
</tr>
<tr>
<td></td>
<td>(0.549)</td>
<td>(2.914)</td>
<td>(0.046)</td>
</tr>
<tr>
<td>WR_{BS}</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>OPN</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CBI</td>
<td>-4.852***</td>
<td>15.841**</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>(1.377)</td>
<td>(7.302)</td>
<td>---</td>
</tr>
<tr>
<td>IT</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>π_0</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>SPD</td>
<td>---</td>
<td>-0.265***</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>---</td>
<td>(0.092)</td>
<td>---</td>
</tr>
<tr>
<td>SR</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>F</td>
<td>11.139***</td>
<td>4.819**</td>
<td>5.29**</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.194</td>
<td>0.083</td>
<td>0.087</td>
</tr>
<tr>
<td>DW</td>
<td>2.484</td>
<td>2.074</td>
<td>2.574</td>
</tr>
</tbody>
</table>

Notes: WR_{BS} stands for the wage responsiveness index by Bruno and Sachs (1985). OPN is Romer’s (1993) openness index. CBI is Cukierman, Webb, and Neyapti’s (1992) index of Central Bank Independence. IT is the dummy variable for Inflation Target. Initial inflation is denoted by π_0. SPD stands for speed of disinflation, and SR is the sacrifice ratio. The regressions are estimated as a system using the seemingly unrelated regressions (SUR) methodology.

*, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Std. Errors in parenthesis.
Table 11 — The Sacrifice Ratio and Its Determinants

(Grubb, Jackman & Layard’s Wage Rigidity Index)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Structural</th>
<th>Institutional</th>
<th>Traditional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OPN</td>
<td>CBI</td>
<td>IT</td>
</tr>
<tr>
<td>Constant</td>
<td>18.981***</td>
<td>0.479***</td>
<td>0.217***</td>
</tr>
<tr>
<td></td>
<td>(2.241)</td>
<td>(0.046)</td>
<td>(0.073)</td>
</tr>
<tr>
<td>WR_{GRJL}</td>
<td>-5.690***</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>(0.969)</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>OPN</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>CBI</td>
<td>19.954***</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>(5.555)</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>IT</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>π₀</td>
<td>----</td>
<td>----</td>
<td>-0.016**</td>
</tr>
<tr>
<td></td>
<td>----</td>
<td>----</td>
<td>(0.007)</td>
</tr>
<tr>
<td>SPD</td>
<td>----</td>
<td>-0.264***</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>----</td>
<td>(0.092)</td>
<td>----</td>
</tr>
<tr>
<td>SR</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>F</td>
<td>16.956***</td>
<td>5.29**</td>
<td>2.982*</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.43</td>
<td>0.087</td>
<td>0.043</td>
</tr>
<tr>
<td>DW</td>
<td>2.525</td>
<td>2.574</td>
<td>1.906</td>
</tr>
</tbody>
</table>

Notes: *WR_{GRJL}* stands for the wage responsiveness index by Grubb, Jackman, and Layard (1983). *OPN* is Romer’s (1993) openness index. *CBI* is Cukierman, Webb, and Neyapti’s (1992) index of Central Bank Independence. *IT* is the dummy variable for Inflation Target. Initial inflation is denoted by *π₀*. *SPD* stands for speed of disinflation, and *SR* is the sacrifice ratio. The regressions are estimated as a system using the seemingly unrelated regressions (SUR) methodology.

*, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Std. Errors in parenthesis.
<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>(SR)</th>
<th>(I)</th>
<th>(II)</th>
<th>(III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-0.381</td>
<td>-0.364</td>
<td>1.189***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.381)</td>
<td>(0.557)</td>
<td>(0.368)</td>
<td></td>
</tr>
<tr>
<td>(WR_{GJL})</td>
<td>0.337**</td>
<td>0.338**</td>
<td>0.422***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.166)</td>
<td>(0.168)</td>
<td>(0.188)</td>
<td></td>
</tr>
<tr>
<td>(CBI) (The “blocking” variable)</td>
<td>3.53***</td>
<td>3.515***</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.949)</td>
<td>(1.023)---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SPD)</td>
<td>---</td>
<td>-0.028‡</td>
<td>-0.791‡‡</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.652)</td>
<td>(0.691)</td>
<td></td>
</tr>
<tr>
<td>(F)</td>
<td>10.209***</td>
<td>6.637***</td>
<td>3.188**</td>
<td></td>
</tr>
<tr>
<td>Adjusted (R^2)</td>
<td>0.305</td>
<td>0.287</td>
<td>0.094</td>
<td></td>
</tr>
<tr>
<td>DW</td>
<td>1.747</td>
<td>1.740</td>
<td>1.762</td>
<td></td>
</tr>
</tbody>
</table>

Notes: \(WR_{GJL} \) stands for the wage responsiveness index by Grubb, Jackman, and Layard (1983). \(CBI \) is Cukierman, Webb, and Neyapti’s (1992) index of Central Bank Independence. \(SPD \) stands for speed of disinflation, and \(SR \) is the sacrifice ratio. The regressions are estimated using OLS. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Std. Errors in parenthesis. † and ‡‡ indicate statistical significance at the 95%, and 25%, respectively.
APPENDIX B

FIGURES
FIGURE 1. ANALYSIS OF OBSERVATIONS AND ACTIONS
(AS GIVEN IN PEARL, 2000, PP. 15-23)
Response of:

\[\pi \quad u \quad r \]

FIGURE 2. IMPULSE-RESPONSE FUNCTIONS 1960:I – 1979:III

Notes: \(\pi \) stands for inflation rate. Unemployment rate is denoted by \(u \). \(r \) is the Fed Funds interest rate. The vertical axis is in terms of percentages and the horizontal axis is the time lag in quarters.
Response of:

\[\pi \] \[u \] \[r \]

Notes: \(\pi \) stands for inflation rate. Unemployment rate is denoted by \(u \). \(r \) is the Fed Funds interest rate. The vertical axis is in terms of percentages and the horizontal axis is the time lag in quarters.
FIGURE 4. MONETARY POLICY COMMITTEE FAN CHART OF INFLATION
FIGURE 5. MULTIPLE-EVENT BRIER PROBABILITY SCORE OF THE MPC AND “OTHER” FORECASTERS’ INFLATION FORECAST

Notes: \(PSM \) is the Multiple-Event Brier Probability Score. \(MPC \) is the Monetary Policy Committee, and \(OF \) is the “Other” Forecasters
FIGURE 6. MULTIPLE-EVENT BRIER PROBABILITY SCORE FOR THE MPC AND “OTHER” FORECASTERS’ REAL GDP GROWTH FORECAST

Notes: PSM is the Multiple-Event Brier Probability Score. MPC is the Monetary Policy Committee, and OF is the “Other” Forecasters.
FIGURE 7. MPC'S FORECASTED INFLATION (MODE), REALIZED INFLATION, AND THE MPC'S MULTIPLE-EVENT PROBABILITY SCORE

Notes: PSM is the Multiple-Event Brier Probability Score. MPC is the Monetary Policy Committee.
FIGURE 8. COVARIANCE GRAPHS FOR THE MPC AND “OTHER” FORECASTERS’ (OF) PROBABILITY JUDGMENTS ON INFLATION AND REAL GDP GROWTH

Notes: MPC is the Monetary Policy Committee, and OF is the “Other” Forecasters. \overline{p}_1 and \overline{p}_0 correspond to the mean probabilities when the outcome occurred, and when it did not occur, respectively. θ is the slope.
FIGURE 9. INFLATION (UPPER), OUTPUT, AND POTENTIAL (TREND) OUTPUT (LOWER) DURING DISINFLATION PERIODS. π DENOTES INFLATION, y IS OUTPUT, AND t IS TIME
FIGURE 10. THREE DIRECTED ACYCLICAL GRAPHS

Causal Fork

Inverted Causal Fork
(Collider)

Causal Chain
FIGURE 11. PROCEDURE TO DIRECT EDGES IN A DIRECTED ACYCLICAL GRAPH USING THE NOTION OF D-SEPARATION

\[
\begin{align*}
\rho_{X,Y} &\neq 0 \\
\rho_{X,Z} &\neq 0 \\
\rho_{Z,Y} &\neq 0 \\
\rho_{X,Y|Z} &\neq 0 \\
\rho_{X,Z|Y} &\neq 0 \\
\rho_{Z,Y|X} &\neq 0
\end{align*}
\]
Figure 12. Directed acyclic graph retrieved by the PC algorithm from data on the sacrifice ratio and its determinants (with Bruno and Sachs’ wage responsiveness index)

Notes: WR_{BS} stands for the wage responsiveness index by Bruno and Sachs (1985). OPN is Romer’s (1993) openness index. CBI is Cukierman, Webb, and Neyapti’s (1992) index of Central Bank Independence. IT is the dummy variable for Inflation Target. Initial inflation is denoted by π_0. SPD stands for speed of disinflation, and SR is the sacrifice ratio. The regressions are estimated as a system using the seemingly unrelated regressions (SUR) methodology.
FIGURE 13. DIRECTED ACYCLICAL GRAPH RETRIEVED BY THE PC ALGORITHM FROM DATA ON THE SACRIFICE RATIO AND ITS DETERMINANTS (WITH GRUBB, JACKMAN, AND LAYARD’S WAGE RIGIDITY INDEX)

Notes: WR_{GJI} stands for the wage responsiveness index by Grubb, Jackman, and Layard (1983). OPN is Romer’s (1993) openness index. CBI is Cukierman, Webb, and Neyapti’s (1992) index of Central Bank Independence. IT is the dummy variable for Inflation Target. Initial inflation is denoted by π_0. SPD stands for speed of disinflation, and SR is the sacrifice ratio. The regressions are estimated as a system using the seemingly unrelated regressions (SUR) methodology.
APPENDIX C

PROGRAMS
SAMPLE PROGRAM
STRUCTURAL VECTOR AUTOREGRESSIONS AND THE TAYLOR RULE

*---
* RATS v5 Program for Structural Vector Autoregressions -
* and the Taylor Rule -
* By Gabriel Casillas -
* May 31st., 2004 (Version 1.0) -
* Last Update: June 10th, 2004 -
* WARNING: THIS IS JUST AN EXAMPLE FOR THE DAG -
* EMPIRICALLY-BASED CAUSAL STRUCTURES FOR THE -
* USING STOCK AND WATSON's QUARTERLY DATA -
* ON INFLATION, UNEMPLOYMENT, AND INTEREST -
* RATES FOR THE US -
*---

*-----------------------------------
* MAIN PROGRAM -
*-----------------------------------

* INVOQUE PROCEDURES *

SOURCE C:\PROGRA~1\ESTIMA\WINRAT-1\BERNANKE.SRC

* LOAD DATA *

* -&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-
* 1) Set starting year, starting period and
* number of periods per year
CALENDAR 1955 1 4
* 2) Set number and length of series
ALLOCATE 3 6
* 3) Rename the series from numbers to actual names
EQV 1 TO 3
P U R
* 4) Open Data Set
OPEN DATA C:\A\TR\PUR.ASC
DATA(FORMAT=FREE,ORG=OBS) 1955:1 2000:4 1 TO 3
* 5) Print the series to check that they are inside the
* program
* (This step is optional)
PRINT 1955:1 2000:4 1 TO 3
* -&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-

* FIRST PERIOD *
* SAMPLE 1: 1960:1 - 1979:3 STOCK AND WATSON *

* DECREASE SYSTEM (4-LAG REDUCED-FORM VAR) *
SAMPLE P 1960:01 1979:03 P2
SAMPLE U 1960:01 1979:03 U2
SAMPLE R 1960:01 1979:03 R2
SYSTEM 4 to 6
EQUATION 4 P2
 # CONSTANT P2{1 to 4} U2{1 to 4} R2{1 to 4}
EQUATION 5 U2
 # CONSTANT P2{1 to 4} U2{1 to 4} R2{1 to 4}
EQUATION 6 R2
 # CONSTANT P2{1 to 4} U2{1 to 4} R2{1 to 4}
END(SYSTEM)

* INNOVATION ACCOUNTING *

DECLARE SYMMETRIC V42
ESTIMATE(outsigma=v42) 1960:01 1979:03
COMPUTE nreg4=%nreg
COMPUTE nobs4=%nobs
* Choleski Decomposition
WRITE V42
DECLARE rect pattern(3,3)
INPUT pattern
1 0 0
1 1 1
0 0 1
* We need to let the BERNANKE Procedure in RATS
* know which are the parameters in the K-Matrix
* that have to be estimated. In this case they
* are the elements (2,1) and (2,3)
NONLIN A221 A223
* Starting values
COMPUTE A221=-0.1, A223=-0.1
* Continue Choleski
COMPUTE A2=%identity(3)
FIND min -2*log(%det(A2))+%sum(%log(%mqformdiag(V42,tr(A2))))
 {COMPUTE A2(2,1)=A221, A2(2,3)=A223}
END FIND
WRITE 'MATRIX A2: ' A2
@BERNANKE(Initial=A2,TEST,PRINT) V42 PATTERN FACTOR
* ERRORS runs the Forecast Error Variance Decomposition
* and the Impulse-Response Functions for the three equations
* for 24-steps ahead
ERRORS(DECOMP=FACTOR,IMPULSES) 3 24
4
5
6

* SAMPLE 2: 1979:4 - 2000:4 STOCK AND WATSON *
* DECLARE SYSTEM (4-LAG REDUCED-FORM VAR) *

SAMPLE P 1979:04 2000:04 P3
SAMPLE U 1979:04 2000:04 U3
SAMPLE R 1979:04 2000:04 R3
SYSTEM 7 to 9
EQUATION 7 to 9 P3
CONSTANT \(P_3\{1 \text{ to } 4\} \) \(U_3\{1 \text{ to } 4\} \) \(R_3\{1 \text{ to } 4\} \)
EQUATION 8 \(U_3 \)
CONSTANT \(P_3\{1 \text{ to } 4\} \) \(U_3\{1 \text{ to } 4\} \) \(R_3\{1 \text{ to } 4\} \)
EQUATION 9 \(R_3 \)
CONSTANT \(P_3\{1 \text{ to } 4\} \) \(U_3\{1 \text{ to } 4\} \) \(R_3\{1 \text{ to } 4\} \)
END(SYSTEM)

* INNOVATION ACCOUNTING *

DECLARE SYMMETRIC \(V_{43} \)
ESTIMATE(outsigma=\(V_{43} \)) 1979:04 2000:04
COMPUTE nreg4=%nreg
COMPUTE nobs4=%nobs
* Choleski Decomposition
WRITE \(V_{43} \)
DECLARE rect pattern(3,3)
INPUT pattern
1 0 1
0 1 1
0 0 1
* We need to let the BERNANKE Procedure in RATS
* know which are the parameters in the K-Matrix
* that have to be estimated. In this case they
* are the elements (1,3) and (2,3)
NONLIN A313 A323
* Starting values
COMPUTE A313=-0.1, A323=-0.1
* Continue Choleski
COMPUTE A3=%identity(3)
FIND min -2*log(%det(A3))+%sum(%log(%mqformdiag(V42,tr(A3)))) {
 COMPUTE A3(1,3)=A313, A3(2,3)=A323
}
END FIND
WRITE 'MATRIX A3: ' A3
@BERNANKE(Initial=A3,TEST,PRINT) \(V_{43} \) PATTERN FACTOR
* ERRORS runs the Forecast Error Variance Decomposition
* and the Impulse-Response Functions for the three equations
* for 24-steps ahead
ERRORS(DECOMP=FACTOR,IMPULSES) 3 24
7
8
9

* PROGRAM END *

WRITE '
WRITE ' -------------- '
WRITE ' END OF PROGRAM ' WRITE ' -------------- '
WRITE '
END
SAMPLE PROGRAM
PROBABILITY FORECASTING AND CENTRAL BANK ACCOUNTABILITY

*---
*- RATS v5 Program for Probability Forecasting Evaluation -
*- By Gabriel Casillas & David A. Bessler -
*- Sept. 30th., 2003 (Version 1.0) -
*- March 26th., 2004 (Version 2.0) -
*- Last Update: March 26th., 2004 & May 24th, 2004 -
*- Version 2.0 -
*- In just 10 steps you will have a Brier Probability -
*- Score calculation and its Yates Covariance -
*- Decomposition. -
*- WARNING: THIS IS JUST AN EXAMPLE FOR THE BANK OF -
*- BANK OF ENGLAND's MONETARY POLICY COMMITTEE -
*- TWO YEARS-AHEAD INFLATION PROBABILITY -
*- FORECASTS FOR THE PERIOD BETWEEN THE FIRST -
*- QUARTER OF 2000 AND THE FIRST QUARTER OF -
*- 2001. -
*- NOTE: THE PROCEDURE IS AT THE BEGINING OF THE SAMPLE -
*- PROGRAM OUTPUT, AT THE END OF THIS PROGRAM -
*---

*-----------------------------------
*- MAIN PROGRAM -
*-----------------------------------

* INVOKE PROCEDURES *

SOURCE C:\PRBBRIER\PROCS2.SRC

* IMPORT DATA *

* -&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-
* 1) Set starting year, starting period and
number of periods per year
CALENDAR 2000 1 4
* 2) Set number and length of series
ALLOCATE 36 14
* 3) Rename the series from numbers to actual names
EQV 1 TO 36
PBFC1 PBFC2 PBFC3 PBFC4 PBFC5 PBFC6
POFC1 POFC2 POFC3 POFC4 POFC5 POFC6
PRC1 PRC2 PRC3 PRC4 PRC5 PRC6
GBFC1 GBFC2 GBFC3 GBFC4 GBFC5 GBFC6
GOF1 GOF2 GOF3 GOF4 GOF5 GOF6
GRC1 GRC2 GRC3 GRC4 GRC5 GRC6
* 4) Open Data Set
OPEN DATA c:\PRBBRIER\DATASET.TXT
DATA(FORMAT=FREE,ORG=OBS) 2000:1 2003:2 1 TO 36
* 5) Print the series to check that they are inside the program
* (This step is optional)
PRINT 2000:1 2003:2 1 TO 36
* -&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-
* DECLARE GLOBAL VARIABLES *

* FRLST & RLST: Number of the Starting Forecasted and
* Past Events (Realized) Series
DECLARE INTEGER FST
DECLARE INTEGER RST

* RLEND: Number of the Last Forecasted and
* Past Events (Realized) Series
DECLARE INTEGER FEND
DECLARE INTEGER REND

* DATEST: Starting date of period to analyze
DECLARE INTEGER DATEST

* DATEND: End of period to analyze
DECLARE INTEGER DATEND

* NN: Number of forecast occasions (Dates)
DECLARE INTEGER NN

* KK: Number of categories (distribution partitions)
DECLARE INTEGER KK

* SET PERIOD TO ANALYZE *

* -&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-&

* Just set the number of:
* 6) Categories (KK) (or distrib. partitions):
 COMPUTE KK=4

* 7) The starting number of the series
* of forecasts
 COMPUTE FST=1

* 8) The starting number of the series
* of past (realized) events
 COMPUTE RST=13

* 9) The starting date:
 COMPUTE DATEST=2000:1

* 10) The ending date:
 COMPUTE DATEND=2001:1

* INITIAL CALCULATIONS *

* Calculates the no. of the ending forecasted
* and realized series
 COMPUTE FEND=FST+KK-1
 COMPUTE REND=RST+KK-1

* Calculates the number of forecasted occasions "N"
 COMPUTE NN=(DATEND-DATEST+1)

* SET WORKING MATRICES *

* (Transform Series into Matrices) *

* F: (NxK)Matrix of Forecasts
DECLARE RECTANGULAR F(NN,KK)

* D: (NxK)Matrix of Past (Realized) Events
DECLARE RECTANGULAR D(NN,KK)
* Call procedure to transform series into matrices
 EXECUTE SMATRIX FST FEND NN KK DATEST DATEND
 COMPUTE F=GG
 EXECUTE SMATRIX RST REND NN KK DATEST DATEND
 COMPUTE D=GG

* CALCULATE THE BRIER SCORE AND *
* THE YATES PARTITION *

* N1, DUPBR & VARD *

EXECUTE N1 RST REND NN KK DATEST DATEND
* N1: (Kx1)Vector of vertical sum of columns of D matrix
 DECLARE RECTANGULAR NN1(KK,1)
 COMPUTE NN1=HH
* DUPBR: (Kx1)Vector 1/N x NN1
 DECLARE RECTANGULAR DUPBR(KK,1)
 COMPUTE DUPBR=JJ
* VARD: (Kx1)Vector of Var(d)
 DECLARE RECTANGULAR VARD(KK,1)
 COMPUTE VARD=QQ

* FUPBAR & VARF *

EXECUTE FUPBAR FST FEND NN KK DATEST DATEND
* FUPBR: (Kx1)Vector of vertical sum of columns of F matrix
 multiplied by (1/N)
 DECLARE RECTANGULAR FUPBR(KK,1)
 COMPUTE FUPBR=LL
 DECLARE RECTANGULAR VARF(KK,1)
 COMPUTE VARF=ZZ
* The following thing is to have a numerical
 value of (1/N) with no variable-type problem
 DECLARE REAL OON
 COMPUTE OON=ONEN
 DECLARE REAL OKK
 COMPUTE OKK=OKEN

* BIAS *

* BIAS: (Kx1)Vector of FUPBR-DUPBR
 DECLARE RECTANGULAR BIAS(KK,1)
 COMPUTE BIAS=(FUPBR-DUPBR)
* We want Average Bias as well
 DECLARE REAL SUMBIAS
 COMPUTE SUMBIAS=%SUM(BIAS)
 DECLARE REAL AVGBIAS
 COMPUTE AVGBIAS=OKK*SUMBIAS
* We also need BIAS^2, therefore:
 DECLARE RECTANGULAR BIAS2(KK,1)
 DO CONT=1,KK
 COMPUTE BIAS2(CONT,1)=BIAS(CONT,1)**2
 END DO
* N0 *

* NN0: (Kx1)Vector of N-N1

DECLARE RECTANGULAR NN0(KK,1)
DO CONT=1,KK
 COMPUTE NN0(CONT,1)=NN-NN1(CONT,1)
END DO

* F1UPBR *

DECLARE REAL ADDF
DECLARE RECTANGULAR F1UPBR(KK,1)
COMPUTE ADDF=0
DO CONT2=1,KK
 DO CONT=1,NN
 IF D(CONT,CONT2)==1 {
 COMPUTE ADDF=ADDF+F(CONT,CONT2)}
 END IF
 END DO
 IF NN1(CONT2,1)==0 {
 COMPUTE F1UPBR(CONT2,1)=0}
 END IF
 IF NN1(CONT2,1)<>0 {
 COMPUTE F1UPBR(CONT2,1)=ADDF*(1/NN1(CONT2,1))}
 END IF
 CLEAR the value of the accumulator ADDF
 COMPUTE ADDF=0
END DO

* F0UPBR *

DECLARE RECTANGULAR F0UPBR(KK,1)
COMPUTE ADDF=0
DO CONT2=1,KK
 DO CONT=1,NN
 IF D(CONT,CONT2)==0 {
 COMPUTE ADDF=ADDF+F(CONT,CONT2)}
 END IF
 END DO
 IF NN0(CONT2,1)==0 {
 COMPUTE F0UPBR(CONT2,1)=0}
 END IF
 IF NN0(CONT2,1)<>0 {
 COMPUTE F0UPBR(CONT2,1)=ADDF*(1/NN0(CONT2,1))}
 END IF
 CLEAR the value of the accumulator ADDF
 COMPUTE ADDF=0
END DO

* VARF1 *

DECLARE RECTANGULAR VARF1(KK,1)
COMPUTE ADDF=0
DO CONT2=1,KK
 IF NN1(CONT2,1)<>0 {
 DO CONT=1,NN
 IF D(CONT,CONT2)==1 {
 COMPUTE ADDF=ADDF+(F(CONT,CONT2)-F1UPBR(CONT2,1))**2}
 END IF
 IF D(CONT,CONT2)==0 {
 COMPUTE ADDF=ADDF}
 END IF
 END DO
 COMPUTE VARF1(CONT2,1)=(1/NN1(CONT2,1))*ADDF}
 END IF
 IF NN1(CONT2,1)==0 {
 COMPUTE VARF1(CONT2,1)=0}
 END IF
 COMPUTE ADDF=0
END DO

* VARF0 *

DECLARE RECTANGULAR VARF0(KK,1)
COMPUTE ADDF=0
DO CONT2=1,KK
 IF NN0(CONT2,1)<>0 {
 DO CONT=1,NN
 IF D(CONT,CONT2)==0 {
 COMPUTE ADDF=ADDF+(F(CONT,CONT2)-F0UPBR(CONT2,1))**2}
 END IF
 IF D(CONT,CONT2)==1 {
 COMPUTE ADDF=ADDF}
 END IF
 END DO
 COMPUTE VARF0(CONT2,1)=(1/NN0(CONT2,1))*ADDF}
 END IF
 IF NN0(CONT2,1)==0 {
 COMPUTE VARF0(CONT2,1)=0}
 END IF
 COMPUTE ADDF=0
END DO

* SCAT *

DECLARE RECTANGULAR SCAT(KK,1)
DO CONT=1,KK
 COMPUTE
 SCAT(CONT,1)=(OON)*((NN1(CONT,1)*VARF1(CONT,1))+(NN0(CONT,1)*VARF0(CONT,1)))
END DO

* MINVAR *

DECLARE RECTANGULAR MINVAR(KK,1)
DO CONT=1,KK
 COMPUTE MINVAR(CONT,1)=VARF(CONT,1)-SCAT(CONT,1)
END DO

DECLARE RECTANGULAR SLOPE(KK,1)
DO CONT=1,KK
 COMPUTE SLOPE(CONT,1)=F1UPBR(CONT,1)-F0UPBR(CONT,1)
END DO

DECLARE REAL SUMF1UPBR
COMPUTE SUMF1UPBR=%SUM(F1UPBR)
DECLARE REAL SUMF0UPBR
COMPUTE SUMF0UPBR=%SUM(F0UPBR)
DECLARE REAL SUMSLOPE
COMPUTE SUMSLOPE=%SUM(SLOPE)

DECLARE RECTANGULAR COV(KK,1)
DO CONT=1,KK
 COMPUTE COV(CONT,1)=SLOPE(CONT,1)*VARD(CONT,1)
END DO

DECLARE REAL SUMCOV
COMPUTE SUMCOV=%SUM(COV)
* We need -2Cov, therefore:
DECLARE RECTANGULAR COVM2(KK,1)
COMPUTE COVM2=(-2)*COV

DECLARE RECTANGULAR PS(KK,1)
COMPUTE ADDF=0
DO CONT2=1,KK
 DO CONT=1,NN
 COMPUTE ADDF=ADDF+((F(CONT,CONT2)-D(CONT,CONT2))*(F(CONT,CONT2)-D(CONT,CONT2)))
 END DO
 COMPUTE PS(CONT2,1)=OON*ADDF
* Clear the value of the accumulator ADDF
 COMPUTE ADDF=0
END DO

DECLARE REAL PSM
COMPUTE PSM=%SUM(PS)
DECLARE REAL VARDM
COMPUTE VARDM=%SUM(VARD)
DECLARE REAL MINVARM
COMPUTE MINVARM=%SUM(MINVAR)
DECLARE REAL SCATM
COMPUTE SCATM=%SUM(SCAT)
DECLARE REAL BIAS2M
COMPUTE BIAS2M=%SUM(BIAS2)
DECLARE REAL COVM2M
COMPUTE COVM2M=%SUM(COVM2)

* PRINTOUT *

WRITE '----------------------------------'
WRITE '- RATS v5 Program for Probability Forecasting Evaluation -'
WRITE '- By Gabriel Casillas and David A. Bessler -'
WRITE '- Sept. 30th., 2003 -'
WRITE '- Last Update: March 26th, 2004 / May 24th, 2004 -'
WRITE '- Version 2.0 -'
WRITE '----------------------------------'
WRITE 'This program calculates the Brier Mean Probability Score'
WRITE 'of a probability forecast and performs the Yates Covariance'
WRITE 'Decomposition.'
WRITE 'PROBABILITY FORECASTS: '
WRITE 'REALIZED EVENTS: '

* FULL BRIER SCORE AND *
* YATES PARTITION *

WRITE 'BRIER SCORE AND YATES PARTITION:'
WRITE '----------------------------------'
DISPLAY 'Score: ' PSM
DISPLAY 'Var(d): ' VARDM
DISPLAY 'MinVar: ' MINVARM
DISPLAY 'Scat(f): ' SCATM
DISPLAY 'Bias^2: ' BIAS2M
DISPLAY '-2Cov(f): ' COVM2M
DISPLAY '----------------------------------'
* Variable CHECK is to "check" that
* adding up the Yates Partition Terms
* is equal to the Brier Probability Score
DECLARE REAL CHECK
COMPUTE CHECK=VARDM+MINVARM+SCATM+BIAS2M+COVM2M
DISPLAY 'CHECK: ' CHECK

WRITE 'Bias: ' SUMBIAS
DISPLAY 'Cov(f): ' SUMCOV
DISPLAY 'Slope: ' SUMSLOPE
DISPLAY 'f0: ' SUMF0UPBR
DISPLAY 'f1: ' SUMF1UPBR
DISPLAY ' Average f: ' FUPBR
DISPLAY ' Average d: ' DUPBR
WRITE '
WRITE '
WRITE '
WRITE '
WRITE ' -------------- '
WRITE ' END OF PROGRAM '
WRITE ' -------------- '
WRITE '
END
SAMPLE OUTPUT
PROBABILITY FORECASTING AND CENTRAL BANK ACCOUNTABILITY

*--
*- PROCEDURE SMATRIX
*--
PROCEDURE SMATRIX AA BB CC DD EE FF
(01.0028) DECLARE RECTANGULAR GG
(01.0028) DIM GG(CC,DD)
(01.0051) MAKE GG EE FF
(01.0084) # AA TO BB
(01.0116) END PROCEDURE

*--
*- PROCEDURE N1, DUPBAR & VARD
*--
PROCEDURE N1 AA BB CC DD EE FF
(01.0028) DECLARE RECTANGULAR GG
(01.0028) DECLARE RECTANGULAR WW
(01.0028) DECLARE RECTANGULAR HH
(01.0028) DECLARE RECTANGULAR JJ
(01.0028) DECLARE RECTANGULAR QQ
(01.0028) DECLARE REAL ONEN1
(01.0028) DECLARE REAL ONEN
(01.0028) DECLARE RECTANGULAR AKK
(01.0028) DECLARE REAL OKEN1
(01.0028) DECLARE REAL OKEN
(01.0028) DIM GG(CC,DD) WW(CC,1) HH(DD,1) JJ(DD,1) QQ(DD,1) AKK(DD,1)
(01.0136) MAKE GG EE FF
(01.0169) # AA TO BB
(01.0201) * N1 REALLY STARTS HERE
(01.0201) DO CONT=1,DD
(02.0233) COMPUTE WW=%XCOL(GG,CONT)
(02.0258) COMPUTE HH(CONT,1)=%SUM(WW)
(02.0285) END DO CONT
(01.0287) * DUPBAR STARTS HERE
(01.0287) * By the way, I had to use ONEN1 and ONEN as artificial
(01.0287) * variables to transform the type that emerged from %ROWS
(01.0287) COMPUTE ONEN1=%ROWS(WW)
(01.0309) COMPUTE ONEN1=(1/ONEN1)
(01.0333) COMPUTE JJ=ONEN*HH
(01.0358) * VARD STARTS HERE
(01.0358) * variables to transform the type that emerged from %ROWS
(01.0358) COMPUTE OKEN1=%ROWS(HH)
(01.0380) COMPUTE OKEN1=(1/OKEN1)
(01.0404) COMPUTE AKK=OKEN*HH
(01.0429) * VARD STARTS HERE
(01.0429) DO CONT=1,DD
(02.0461) COMPUTE QQ(CONT,1)=JJ(CONT,1)*(1-(JJ(CONT,1)))
(02.0515) END DO CONT
(01.0517) END PROCEDURE

*--
* PROCEDURE FUPBAR & VARF -
*-----------------------------------
PROCEDURE FUPBAR AA BB CC DD EE FF
(01.0028) DECLARE RECTANGULAR GG
(01.0028) DECLARE RECTANGULAR WW
(01.0028) DECLARE RECTANGULAR HH
(01.0028) DECLARE RECTANGULAR LL
(01.0028) DECLARE REAL ONEN1
(01.0028) DECLARE REAL ONEN
(01.0028) DECLARE REAL SUMA
(01.0028) DIM GG(CC,DD) WW(CC,1) HH(DD,1) JJ(DD,1) ZZ(DD,1)
(01.0119) MAKE GG EE FF
(01.0152) # AA TO BB
(01.0184) * FUPBAR REALLY STARTS HERE
(01.0184) DO CONT=1,DD
(02.0216) COMPUTE WW=%XCOL(GG,CONT)
(02.0241) COMPUTE HH(CONT,1)= %SUM(WW)
(02.0268) END DO CONT
(01.0270) COMPUTE ONEN1=%ROWS(WW)
(01.0292) COMPUTE ONEN=(1/ONEN1)
(01.0316) COMPUTE LL=ONEN*HH
(01.0341) * VARF STARTS HERE
(01.0341) * This is extremely important since the
(01.0341) * calculation of Var(d) differs from the calculation
(01.0341) * of Var(f)
(01.0341) * Var(f) is calculated by the "usual variance formula"
(01.0341) * multiplied by (N-1)/N. In other words, using the
(01.0341) * population variance formula
(01.0341) COMPUTE SUMA=0
(01.0356) DO CONT2=1,DD
(02.0388) DO CONT=1,CC
(03.0420) COMPUTE SUMA=SUMA+(GG(CONT,CONT2)-LL(CONT2,1))**2
(03.0478) END DO CONT
(02.0480) COMPUTE ZZ(CONT2,1)=SUMA*(1/ONEN1)
(02.0520) COMPUTE SUMA=0
(02.0535) END DO CONT2
(01.0537) END PROCEDURE
<table>
<thead>
<tr>
<th>ENTRY</th>
<th>PBFC1</th>
<th>PBFC2</th>
<th>PBFC3</th>
<th>PBFC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000:01</td>
<td>0.07</td>
<td>0.28</td>
<td>0.35</td>
<td>0.30</td>
</tr>
<tr>
<td>2000:02</td>
<td>0.13</td>
<td>0.34</td>
<td>0.32</td>
<td>0.21</td>
</tr>
<tr>
<td>2000:03</td>
<td>0.10</td>
<td>0.33</td>
<td>0.35</td>
<td>0.22</td>
</tr>
<tr>
<td>2000:04</td>
<td>0.19</td>
<td>0.36</td>
<td>0.33</td>
<td>0.12</td>
</tr>
<tr>
<td>2001:01</td>
<td>0.16</td>
<td>0.35</td>
<td>0.36</td>
<td>0.13</td>
</tr>
<tr>
<td>2001:02</td>
<td>0.10</td>
<td>0.15</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>2001:03</td>
<td>0.07</td>
<td>0.14</td>
<td>0.22</td>
<td>0.24</td>
</tr>
<tr>
<td>2001:04</td>
<td>0.17</td>
<td>0.18</td>
<td>0.22</td>
<td>0.23</td>
</tr>
<tr>
<td>2002:01</td>
<td>0.05</td>
<td>0.12</td>
<td>0.22</td>
<td>0.25</td>
</tr>
<tr>
<td>2002:02</td>
<td>0.10</td>
<td>0.16</td>
<td>0.23</td>
<td>0.24</td>
</tr>
<tr>
<td>2002:03</td>
<td>0.07</td>
<td>0.13</td>
<td>0.22</td>
<td>0.26</td>
</tr>
<tr>
<td>2002:04</td>
<td>0.10</td>
<td>0.15</td>
<td>0.22</td>
<td>0.23</td>
</tr>
<tr>
<td>2003:01</td>
<td>0.18</td>
<td>0.17</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>2003:02</td>
<td>0.14</td>
<td>0.17</td>
<td>0.23</td>
<td>0.23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENTRY</th>
<th>PBFC5</th>
<th>PBFC6</th>
<th>POFC1</th>
<th>POFC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000:01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.11</td>
<td>0.39</td>
</tr>
<tr>
<td>2000:02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.10</td>
<td>0.37</td>
</tr>
<tr>
<td>2000:03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.13</td>
<td>0.38</td>
</tr>
<tr>
<td>2000:04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.15</td>
<td>0.46</td>
</tr>
<tr>
<td>2001:01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.16</td>
<td>0.41</td>
</tr>
<tr>
<td>2001:02</td>
<td>0.16</td>
<td>0.17</td>
<td>0.08</td>
<td>0.15</td>
</tr>
<tr>
<td>2001:03</td>
<td>0.18</td>
<td>0.15</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>2001:04</td>
<td>0.14</td>
<td>0.06</td>
<td>0.06</td>
<td>0.16</td>
</tr>
<tr>
<td>2002:01</td>
<td>0.19</td>
<td>0.17</td>
<td>0.07</td>
<td>0.15</td>
</tr>
<tr>
<td>2002:02</td>
<td>0.17</td>
<td>0.10</td>
<td>0.08</td>
<td>0.15</td>
</tr>
<tr>
<td>2002:03</td>
<td>0.20</td>
<td>0.11</td>
<td>0.08</td>
<td>0.14</td>
</tr>
<tr>
<td>2002:04</td>
<td>0.17</td>
<td>0.13</td>
<td>0.07</td>
<td>0.14</td>
</tr>
<tr>
<td>2003:01</td>
<td>0.14</td>
<td>0.07</td>
<td>0.06</td>
<td>0.15</td>
</tr>
<tr>
<td>2003:02</td>
<td>0.15</td>
<td>0.08</td>
<td>0.08</td>
<td>0.17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENTRY</th>
<th>POFC3</th>
<th>POFC4</th>
<th>POFC5</th>
<th>POFC6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000:01</td>
<td>0.37</td>
<td>0.14</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2000:02</td>
<td>0.39</td>
<td>0.14</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2000:03</td>
<td>0.37</td>
<td>0.12</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2000:04</td>
<td>0.30</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2001:01</td>
<td>0.31</td>
<td>0.11</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2001:02</td>
<td>0.32</td>
<td>0.29</td>
<td>0.11</td>
<td>0.06</td>
</tr>
<tr>
<td>2001:03</td>
<td>0.30</td>
<td>0.30</td>
<td>0.13</td>
<td>0.08</td>
</tr>
<tr>
<td>2001:04</td>
<td>0.33</td>
<td>0.29</td>
<td>0.12</td>
<td>0.05</td>
</tr>
<tr>
<td>2002:01</td>
<td>0.36</td>
<td>0.27</td>
<td>0.11</td>
<td>0.05</td>
</tr>
<tr>
<td>2002:02</td>
<td>0.32</td>
<td>0.28</td>
<td>0.11</td>
<td>0.06</td>
</tr>
<tr>
<td>2002:03</td>
<td>0.32</td>
<td>0.28</td>
<td>0.12</td>
<td>0.06</td>
</tr>
<tr>
<td>2002:04</td>
<td>0.33</td>
<td>0.30</td>
<td>0.11</td>
<td>0.05</td>
</tr>
<tr>
<td>2003:01</td>
<td>0.35</td>
<td>0.30</td>
<td>0.10</td>
<td>0.04</td>
</tr>
<tr>
<td>2003:02</td>
<td>0.32</td>
<td>0.26</td>
<td>0.12</td>
<td>0.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENTRY</th>
<th>PRC1</th>
<th>PRC2</th>
<th>PRC3</th>
<th>PRC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000:01</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000:02</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ENTRY</td>
<td>PRC5</td>
<td>PRC6</td>
<td>GBFC1</td>
<td>GBFC2</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>2000:01</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2000:02</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td>0.09</td>
</tr>
<tr>
<td>2000:03</td>
<td>0</td>
<td>0</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td>2000:04</td>
<td>0</td>
<td>0</td>
<td>0.07</td>
<td>0.13</td>
</tr>
<tr>
<td>2001:01</td>
<td>0</td>
<td>0</td>
<td>0.03</td>
<td>0.08</td>
</tr>
<tr>
<td>2001:02</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>0.04</td>
</tr>
<tr>
<td>2001:03</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0.06</td>
</tr>
<tr>
<td>2001:04</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0.07</td>
</tr>
<tr>
<td>2002:01</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0.10</td>
</tr>
<tr>
<td>2002:02</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0.09</td>
</tr>
<tr>
<td>2002:03</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0.07</td>
</tr>
<tr>
<td>2002:04</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0.10</td>
</tr>
<tr>
<td>2003:01</td>
<td>0</td>
<td>0</td>
<td>0.03</td>
<td>0.09</td>
</tr>
<tr>
<td>2003:02</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0.08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENTRY</th>
<th>GBFC3</th>
<th>GBFC4</th>
<th>GBFC5</th>
<th>GBFC6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000:01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2000:02</td>
<td>0.19</td>
<td>0.25</td>
<td>0.21</td>
<td>0.22</td>
</tr>
<tr>
<td>2000:03</td>
<td>0.22</td>
<td>0.26</td>
<td>0.20</td>
<td>0.12</td>
</tr>
<tr>
<td>2000:04</td>
<td>0.25</td>
<td>0.27</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>2001:01</td>
<td>0.19</td>
<td>0.28</td>
<td>0.25</td>
<td>0.17</td>
</tr>
<tr>
<td>2001:02</td>
<td>0.14</td>
<td>0.29</td>
<td>0.30</td>
<td>0.23</td>
</tr>
<tr>
<td>2001:03</td>
<td>0.18</td>
<td>0.31</td>
<td>0.29</td>
<td>0.15</td>
</tr>
<tr>
<td>2001:04</td>
<td>0.19</td>
<td>0.32</td>
<td>0.27</td>
<td>0.14</td>
</tr>
<tr>
<td>2002:01</td>
<td>0.27</td>
<td>0.36</td>
<td>0.20</td>
<td>0.05</td>
</tr>
<tr>
<td>2002:02</td>
<td>0.24</td>
<td>0.35</td>
<td>0.24</td>
<td>0.06</td>
</tr>
<tr>
<td>2002:03</td>
<td>0.22</td>
<td>0.36</td>
<td>0.27</td>
<td>0.08</td>
</tr>
<tr>
<td>2002:04</td>
<td>0.25</td>
<td>0.33</td>
<td>0.22</td>
<td>0.08</td>
</tr>
<tr>
<td>2003:01</td>
<td>0.21</td>
<td>0.31</td>
<td>0.26</td>
<td>0.10</td>
</tr>
<tr>
<td>2003:02</td>
<td>0.24</td>
<td>0.34</td>
<td>0.23</td>
<td>0.09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENTRY</th>
<th>GOFC1</th>
<th>GOFC2</th>
<th>GOFC3</th>
<th>GOFC4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000:01</td>
<td>0.05</td>
<td>0.11</td>
<td>0.30</td>
<td>0.36</td>
</tr>
<tr>
<td>2000:02</td>
<td>0.05</td>
<td>0.15</td>
<td>0.28</td>
<td>0.34</td>
</tr>
<tr>
<td>2000:03</td>
<td>0.06</td>
<td>0.13</td>
<td>0.29</td>
<td>0.35</td>
</tr>
<tr>
<td>2000:04</td>
<td>0.07</td>
<td>0.17</td>
<td>0.28</td>
<td>0.31</td>
</tr>
<tr>
<td>2001:01</td>
<td>0.05</td>
<td>0.11</td>
<td>0.22</td>
<td>0.34</td>
</tr>
<tr>
<td>Entry</td>
<td>GOFC5</td>
<td>GOFC6</td>
<td>GRC1</td>
<td>GRC2</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>2000:01</td>
<td>0.13</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000:02</td>
<td>0.13</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000:03</td>
<td>0.13</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000:04</td>
<td>0.13</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2001:01</td>
<td>0.18</td>
<td>0.10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2001:02</td>
<td>0.22</td>
<td>0.10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2001:03</td>
<td>0.25</td>
<td>0.10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2001:04</td>
<td>0.22</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2002:01</td>
<td>0.15</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2002:02</td>
<td>0.15</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2002:03</td>
<td>0.15</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2002:04</td>
<td>0.18</td>
<td>0.04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2003:01</td>
<td>0.17</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2003:02</td>
<td>0.21</td>
<td>0.06</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Entry</th>
<th>GRC3</th>
<th>GRC4</th>
<th>GRC5</th>
<th>GRC6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000:01</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2000:02</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2000:03</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2000:04</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2001:01</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2001:02</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2001:03</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2001:04</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2002:01</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2002:02</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2002:03</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2002:04</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2003:01</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2003:02</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

This program calculates the Brier Mean Probability Score.
of a probability forecast and performs the Yates Covariance Decomposition.

PROBABILITY FORECASTS:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0700</td>
<td>0.2800</td>
<td>0.3500</td>
<td>0.3000</td>
</tr>
<tr>
<td>0.1300</td>
<td>0.3400</td>
<td>0.3200</td>
<td>0.2100</td>
</tr>
<tr>
<td>0.1000</td>
<td>0.3300</td>
<td>0.3500</td>
<td>0.2200</td>
</tr>
<tr>
<td>0.1900</td>
<td>0.3600</td>
<td>0.3300</td>
<td>0.1200</td>
</tr>
<tr>
<td>0.1600</td>
<td>0.3500</td>
<td>0.3600</td>
<td>0.1300</td>
</tr>
</tbody>
</table>

REALIZED EVENTS:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

BRIER SCORE AND YATES PARTITION:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Score:</td>
<td>0.62564</td>
</tr>
<tr>
<td>Var(d):</td>
<td>0.00000</td>
</tr>
<tr>
<td>MinVar:</td>
<td>0.00000</td>
</tr>
<tr>
<td>Scat(f):</td>
<td>0.00714</td>
</tr>
<tr>
<td>Bias^2:</td>
<td>0.61850</td>
</tr>
<tr>
<td>-2Cov(f):</td>
<td>0.00000</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>CHECK:</td>
<td>0.62564</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Bias:</td>
<td>1.11022e-16</td>
</tr>
<tr>
<td>Cov(f):</td>
<td>0.00000</td>
</tr>
<tr>
<td>Slope:</td>
<td>-0.33600</td>
</tr>
<tr>
<td>f0:</td>
<td>0.66800</td>
</tr>
<tr>
<td>f1:</td>
<td>0.33200</td>
</tr>
<tr>
<td>Average f:</td>
<td></td>
</tr>
<tr>
<td>0.13000</td>
<td></td>
</tr>
<tr>
<td>0.33200</td>
<td></td>
</tr>
<tr>
<td>0.34200</td>
<td></td>
</tr>
<tr>
<td>0.19600</td>
<td></td>
</tr>
<tr>
<td>Average d:</td>
<td></td>
</tr>
<tr>
<td>0.00000</td>
<td></td>
</tr>
<tr>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>0.00000</td>
<td></td>
</tr>
<tr>
<td>0.00000</td>
<td></td>
</tr>
</tbody>
</table>
END OF PROGRAM

Normal Completion
NAME: Gabriel Casillas Olvera

DATE OF BIRTH: August 15th, 1975

EDUCATION: Ph.D., Agricultural Economics
Texas A&M University, 2004
Fields of Specialization: Markets and Information Economics,
Macroeconomic Theory, and Time-Series Econometrics.

B.A., Economics
Instituto Tecnológico y de Estudios Superiores de Monterrey,
Campus Estado de México, México, 1998

PROFESSIONAL EXPERIENCE: Foreign Exchange and Precious Metals Trader
Banco de México, México (1998-2000)

Visiting Assistant Professor
Instituto Tecnológico y de Estudios Superiores de Monterrey,
Campus Estado de México, México (1999-2000)

Research Assistant
Banco de México, México (1997-1998)

PERMANENT ADDRESS: Soledad No. 83, Fuentes de Satélite, Atizapán de Zaragoza,
Estado de México, México, C.P. 52998.