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ABSTRACT 
 
 

Factors Contributing to the Presence of Escherichia coli O157:H7 and O157:NM in 

Feedlots and Feedlot Cattle.  (August 2003) 

Paphapit Ungkuraphinunt,  B.S., Srinakarinwirot University; 

M.B.A., Texas A&M University, Commerce 

Chairman of Advisory Committee:  Dr. Gary R. Acuff 
 
 

 Environmental sources within 5 feedlots were sampled for E. coli O157:H7 and 

O157:NM to determine the prevalence of this pathogen with a view to minimize or 

control its spread in the feedlot environment.  Monthly samples were taken from the 

feedlots in the Panhandle and South Plains of Texas over a nine-month period.  Samples 

were examined by an immunomagnetic bead separation, followed by plating onto CT-

SMAC and CHROMagar™ O157 media.  Sorbitol-negative colonies were tested using 

ImmunoCard Stat! E. coli O157:H7 Plus and confirmed as E. coli O157:H7, using 

biochemical (Vitek system) and serological tests (latex agglutination).  Additionally, one 

hundred sponge samples were collected from the hides of stunned cattle at the slaughter 

plant.  All isolates were subjected to rep-PCR DNA fingerprinting and antimicrobial 

profiling. 

E. coli O157 was isolated from hide (56%) and environmental samples (4%).   E. 

coli O157 was isolated from all environmental sources, with peak prevalence during 

November (9%) and March (10%).  At least one sample from each feedlot was positive 

42% of the time.  The most contaminated sites were the chute area (6%) and sludge from 
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waste water ponds (6%).  Positive samples were most frequently found from feedlot 5 

(7%) and the greatest variation in positive samples between feedlots (0-34%) occurred 

during March.  A decrease in the presence of E. coli O157 in feedlots was observed 

during January (0%), when ambient, water, and pond sludge temperatures were 

consistently low.  No correlation with other environmental factors was observed.  Hide 

was a primary source of E. coli O157 on carcasses with an overall prevalence of 56%.  

Of two sampling days, the number of positive hide samples varied from 14% for the first 

day to 98% for the second day.  The total positive samples collected (environmental 

(47); hide (56)) were 64% H7, and 36% NM.  The environmental isolates showed 

similar antibiotic resistance patterns, regardless of the source.  Most E. coli O157 

isolates from the feedlots and hides showed a high level of resistance to cephalothin 

(45%) and sulfisoxazole (56%).  E. coli O157 isolates from feedlots were resistant to 

more than 10 antibiotics (9/317).  All of the isolates appeared highly similar, with an 

average similarity of 53% by rep-PCR DNA fingerprinting. 
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INTRODUCTION 
 

Serious human illnesses associated with Escherichia coli O157:H7 have 

increased since first reported in 1982.  The infection can range from self- limited watery 

diarrhea to life-threatening manifestations including hemorrhagic colitis, and the 

diarrhea-associated form of the hemolytic-uremic syndrome.  The increase in E. coli 

O157:H7 illnesses have lead to more clinical awareness and improved techniques for the 

isolation and identification of E. coli O157:H7.  However, there is an increase in the 

incidence of infections presumably due to proliferation of the organism and increased 

exposure of the human population to E. coli O157:H7.  Due to the direct and indirect 

link to bovine products in outbreaks, cattle have been implicated as the primary reservoir 

of this organism. 

Environmental sources may serve as a vehicle for the transmission of E. coli 

O157:H7 within and between farms.  The incidence of this organism has been found to 

be very low; therefore, a tremendous number of cattle samples would be necessary to 

evaluate transmission.  Monitoring of this pathogen by collecting environmental samples 

at the feedlot is a preferable and more practical approach.  Furthermore, this approach 

may be useful for determining if there is an association of certain factors of E. coli 

O157:H7 contamination on the cattle. 

Detection of E. coli O157:H7 can be difficult because of high levels of other 

sorbital non-fermenting bacteria in the samples, as well as the lack of sensitivity and 

__________ 

 This thesis follows the style and format of Applied and Environmental 
Microbiology. 
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specificity of the sampling methodology.  Recent stud ies have revealed a higher 

prevalence of E. coli O157:H7 than originally estimated as a result of a new technique 

based on immuno-magnetic bead capture.  Immunomagnetic separation has increased the 

recoverability due to an antibody-based concentration procedure which uses magnetic 

beads coated with an antibody against E. coli O157:H7.  

Intensive use of antimicrobial agents in animals is considered the main factor 

causing selection resistance in pathogens.  The development of antibiotic resistance in 

human pathogens has been closely associated with the use of antibiotics for therapy, 

diseases prevention, growth promotion, and control of diseases in the animals in modern 

production systems.  These conditions assist the spread and persistence of antimicrobial-

resistant pathogens, including as E. coli O157:H7 which poses a public health threat, due 

to the higher risk of treatment failures in human.  Furthermore, the spread of 

antimicrobial resistance through an acquired transmissible genetic element may be 

related to the ability of the organism to colonize an animal host, persist on the farm or in 

a food processing environment. 

Repetitive element sequence-based PCR (rep-PCR) is the common method used 

to generate DNA fingerprints that allow discrimination between bacterial strains.  The 

genomic relatedness among the E. coli O157:H7 isolates can be detected by rep-PCR 

which involves the use of oligonucleotide primers based on short repetitive sequence 

elements.    

The objectives of this study were (A) to determine the prevalence of E. coli 

O157:H7 and O157:NM in the environment of selected feedlots and on hides from beef 
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cattle presented for slaughter at selected plants in Texas, (B) to evaluate the effect of 

extrinsic factors on the presence of E. coli O157:H7 and O157:NM in the feedlot 

environment, and (C) to measure the in vitro susceptibility of E. coli O157:H7 and 

O157:NM isolates to antimicrobial agents and analyze DNA relatedness using rep-PCR 

to identify the possible sources of isolates. 
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LITERATURE REVIEW 

Human illness 

Escherichia coli O157:H7 first gained public recognition as an important human 

foodborne pathogen in the United States in 1982 following two unusual hemorrhagic 

colitis outbreaks in the states of Oregon and Michigan caused by consumption of 

improperly undercooked hamburgers from a fast food restaurant chain. (98).  Since 

1982, the number of E. coli O157:H7 outbreaks and sporadic cases have increased, and 

more than 100 outbreaks have been documented.  The largest foodborne outbreak of E. 

coli O157:H7 ever reported occurred in the spring of 1993 in several western states (19). 

 The severity of infection with E. coli O157:H7 and O157: NM (nonmotile) can 

range from self- limited watery diarrhea to life-threatening manifestations, such as 

hemolytic uremic syndrome (HUS) or thrombotic thrombocytopenic purpura (TTP) (62, 

63).  Children under 5 years of age, elderly, and immunocompromised individuals are in 

the highest risk group for infection by this organism (24, 25).  In 1999, the Centers for 

Disease Control and Prevention (CDC) estimated that 73,000 illnesses and 60 deaths per 

year in U.S. were caused by E. coli O157:H7, while there were 37,000 estimated cases 

of illness caused by non-O157 Shiga toxin-producing E. coli (STEC) (75).  There are 

more than 100 deaths annually due to STEC infections.   E. coli O157:H7 is responsible 

for 85-95% of HUS cases worldwide and the primary cause of hemorrhagic colitis (HC) 

and HUS in the United States, Canada, Great Britain and Europe (47).     
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The Advisory Committee on the Microbiological Safety of Food (2) and Bolton 

et al. (11) suggest that the infectious dose of E. coli O157:H7 can be as low as 100 cells 

or less.  However, the infectious dose may vary depending on the host. 

Tarr (110) identified symptoms and onset of E. coli O157:H7 infection.  There 

are three principal manifestations, including HC, HUS, and TTP.  The sudden onset of 

HC usually occurs within 1-2 days after consumption of contaminated foods;  however, 

longer periods (3-5 days) have been reported.  The initial gastrointestinal symptoms 

begin with mild, non-bloody and watery diarrhea which later becomes grossly bloody, 

described as “all blood and no stool” (88), and is sometimes followed by a period of 

abdominal pain.  Vomiting may occur as well as a short- lived fever.  The intensity of 

diarrhea increases in the next 24-48 h up to 4-10 days, including overtly bloody diarrhea 

with severe abdominal pain and moderate dehydration.   

Ten percent of patients infected with E. coli O157:H7 develop HUS.  HUS is the 

leading cause of acute renal failure in patients, especially in children (under 5 years of 

age) (88).  The symptoms of HUS typically occur one week after initial onset.  

Approximately 50% of HUS patients require dialysis and blood transfusions.   Siegler et 

al. (104) reported that approximately 15% of cases can result in early development of 

chronic kidney failure, and consequently follow with persisting insulin-dependent 

diabetes in HUS patients.   

According to Boyce et al. (13), TTP conditions primarily develop in adults, 

generally cause less renal damage than HUS and are involved in significant neurological 

conditions such as central nervous system deterioration, seizures, and strokes. Symptoms 
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usually consist of microangiopathic hemolytic anemia, acute thrombocytopenia, 

fluctuating neurologic signs, fever, and mild azotemia.  Frequently, patients develop 

blood clots in the brain, resulting in death.  Other unusual clinical manifestations of E. 

coli O157:H7 illnesses include hemorrhagic cystitis and balanitis, convulsions, sepsis 

with another organism, and anemia (88). 

The mode of transmission of E. coli O157:H7 

 E. coli O157:H7 infections are transmitted via three primary routes: 1) directly 

from animals (such as farm animals and domestic pets such as deer (64, 95), sheep (67), 

pigs (23, 24) horses, dogs (53, 115), and wild birds (51, 64, 95, 120);  2) person-to-

person such as in day-care centers and nursing homes (8, 109);  3) via contaminated 

foods, especially undercooked ground beef and unpasteurized milk (48).   

Animals used for food, such as cattle, pigs, and sheep, may carry E. coli 

O157:H7 in the ‘normal’ gut flora which causes a potential risk of infection to humans.  

Routes of infection include fecal-oral route from animals to humans during rearing 

processes, fecal contamination of food crops with untreated or poorly treated manure 

used as a fertilizer, and fecal contamination of carcasses during slaughter and 

evisceration processes due to poor hygienic practices (6).   

 Contaminated food is the principle mode of transmission of E. coli O157:H7 

infections (4, 108, 125).  Willshaw et al. (125) reported that the infectious dose of E. coli 

O157:H7 could be as low as 10 bacteria in a meat sample, depending on variables 

including stomach pH, food composition and the host susceptibility (17, 43).  

Contaminated and improperly cooked ground beef has been epidemiologically 
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implicated as the food most often associated with outbreaks during 1992-1993 that 

affected more than 500 individuals in the western United States (5).  In addition, 

undercooked ground beef was suspected as the vehicle of transmission in two major 

outbreaks in 1982, an outbreak at an Ontario nursing home in 1982 (107), a Nebraska 

nursing home in 1984 (99), an Alberta nursing home in 1986 (58), and in a community 

in 1986 (49) and 1990 (18).  The World Health Organization (WHO) (128) has reported 

that more than 50% of E. coli O157:H7 outbreaks have been attributed or linked to foods 

associated with cattle.   

E. coli O157:H7 is transferred to beef likely via fecal contamination of carcasses 

during slaughter and processing (25, 36).  In beef processing, grinding may inoculate the 

bacteria throughout ground beef patties where E. coli O157:H7 is more likely to survive 

inadequate cooking (13, 74).  Ground beef is normally made from trimmings, thus the 

possibility exists for contamination in a large quantity of ground beef produced from a 

few contaminated carcasses (13).  If non-bovine products are incriminated, cross-

contamination by bovine products is usually suspected (20, 21, 27, 48).  Studies by Le 

Saux et al. (69) and Pai et al. (89) showed that ground beef has also served as a risk 

factor in sporadic infection cases.  Dry-cured salami was the cause of an E. coli 

O157:H7 outbreak in the western United States, which suggested E. coli O157:H7 can 

survive the acidic conditions of fermented meats and cause illness in humans (113). 

 Other varieties of foods have been linked with disease-causing E. coli O157:H7 

worldwide, including cantaloupe (33), salad dressing containing mayonnaise (130), 

cooked ham (42) unpasteurized apple cider (9, 80), and ham, turkey, or cheese 
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sandwiches and turkey roll sandwiches (88).  Cross-contamination with bovine products 

or contamination with feces of wild or domestic animals has been suspected in the 

majority of these outbreaks. 

Cattle as a reservoir of E. coli O157:H7 

 Cattle have been implicated as a reservoir of E. coli O157:H7 since 1982 as a 

result of the E. coli O157:H7 outbreaks associated with undercooked ground beef and 

raw milk (98, 122).  Several investigations from previous outbreaks determined that E. 

coli O157:H7 was frequently excreted in cattle feces, raising suspicion that contaminated 

bovine products might have been the source of infection in humans.  Because of the 

common link to bovine products, cattle have been implicated as the primary reservoir of 

E. coli O157:H7 and other verotoxin-producing E. coli (53, 86, 116, 117).  Prevalence of 

E. coli O157:H7 fecal excretion varies significantly among E. coli O157 positive herds 

(53, 132).  Hancock et al. (53) found the prevalence of E. coli O157:H7 was 0.28% in 

dairy cattle and 0.71% in beef cattle, with a herd prevalence of 8.3% in dairy cattle and 

16% in beef cattle.  Previous studies revealed a low prevalence of E. coli O157:H7 in 

cattle feces (37, 53).  However, recent research has shown higher levels of E. coli 

O157:H7.   

 Chapman et al. (23) isolated 15.7% E. coli O157:H7 from cattle (752/4800) over 

a year-long period.  The monthly prevalence ranged from 4.8% to 36.8%.  In addition, 

Elder et al. (36) recently revealed 28% E. coli O157:H7 prevalence in fecal samples 

(91/327) isolated from slaughter cattle during July and August.  E. coli O157:H7 was 

most prevalent in spring and late summer (23).  Van Donkersgoed et al. (119) reported 
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E. coli O157:H7 in 7.5% of fecal samples collected from cattle at slaughter.  The 

prevalence of E. coli O157:H7 in fecal samples was higher in yearling cattle (12.4%) 

than in cull cows (2.0%).  In addition, Zhao et al. (132) found that young animals tended 

to carry E. coli O157:H7 more frequently than adult animals.  Two primary U.S. 

investigations, Zhao et al, (132) and USDA/APHIS (117) indicated that 3.2% of dairy 

calves and 1.6% of feedlot cattle were E. coli O157:H7 positive, and 0.4% of feedlot 

cattle were E. coli O157:NM positive.  Zhao et al. (132) found that E. coli O157:H7 

levels in calf feces ranged from less than 102 to 105 CFU/g.   

 E. coli O157:H7 shedding fluctuates and varies in duration from several weeks to 

months (14, 29).  E. coli O157:H7 strains with the same pulsed field gel electrophoresis 

(PFGE) genomic DNA profiles can be isolated from calves in different states or farms.  

However, different E. coli O157:H7 strains can be isolated from the feces of the same 

animal or different animals within the same herd (37, 79).   

 A number of investigations have shown that cattle are asymptomatic carriers of 

E. coli O157 and that the bacteria can be isolated from healthy beef and dairy cattle (53, 

123, 132).  Brown et al. (14) and Cray and Moon (29) indicated E. coli O157:H7 is not 

pathogenic to calves at an inoculum level of 1010 CFU/ ml.  E. coli O157:H7, excreted in 

feces, dramatically dropped during the first 14 days after inoculation, from 104-106 CFU/ 

g feces at 48 h to 5-102 CFU/g feces at 14 days.  In some cases, the level of E. coli O157 

excreted in the feces greatly increased, but not in all animals.  The pattern of E. coli 

O157 shedding by cattle tends to be short periods with a relatively high prevalence of 

excretion separated by longer periods of reduced or undetectable shedding (10, 123).   
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 Recent studies have reported that prevalence among cattle varies extensively, 

partially due to the differences in sensitivity of procedures used for detecting E. coli 

O157:H7.  Chapman et al. (26) reported a 10- to 100-fold increase in sensitivity of 

detection of E. coli O157:H7 using immunomagnetic separation techniques for bovine 

fecal samples.  Dargatz et al. (30) and Elder et al. (36) reported that E. coli O157:H7 

prevalence ranged from 63% to 100% in feedlot surveys in the United States.  In 

addition, prevalence rates of E. coli O157 in cattle have ranged between 1.0% and 27.8% 

and up to 68% in heifers (23, 28, 36, 76). 

Distribution of E. coli O157:H7 is widespread in cattle operations;  however, the 

presence of E. coli O157 is subject to factors such as seasonal variation (52, 76, 124).  In 

addition, higher prevalence of E. coli O157 may be influenced by geographic location, 

season, number, frequency and timing of sampling to transport and storage of samples 

(36, 119).  Chapman (22) reported higher prevalence of E. coli O157 in the northwestern 

part of the USA and in northern England more than in other areas.  Ostroff et al. (87) 

indicated a similar seasonal pattern between of E. coli O157 shedding and E. coli O157 

foodborne illness in humans.   

Contamination of cattle hides 

Cattle hides are a known source for E. coli O157 contamination.  Elder et al. (36) 

reported a positive correlation between fecal and hide prevalence of E. coli O157:H7 and 

subsequent contamination of carcasses with these bacteria during slaughter and 

processing.  
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A number of studies (7, 36, 59, 93) have reported contamination from the hide to 

the carcass surface during dehiding.  Reid, et al. (93) assessed the prevalence of E. coli 

O157 on the rump, flank and brisket of cattle hides immediately after slaughter to 

evaluate the potential risk of hide-to-carcass contamination during the slaughter 

processing.  The brisket area on the cattle hide was frequently the most contaminated site 

(22.2% prevalence on average); therefore, it was the most likely area to cross-

contaminate the carcass during the de-hiding process.  The brisket hide area was most 

contaminated when animals lie down on contaminated ground/floor on the farm, during 

transportation, in lairage, and/or within the stunning box.  The rump area was the least 

contaminated area on the cattle hides (3.3%) (93). 

Several factors influence the level of hide contamination on animals presented 

for slaughter, and directly affect the microbial load on the carcass (32).  The level of 

visible contamination on cattle hides has been shown to subsequently affect the level of 

contamination on carcasses.  In addition, visibly clean hides may not necessarily be 

pathogen free and offer a potential hazard for cross-contamination of E. coli O157 (73, 

84, 97).  The spreading pattern from this bacteria from one animal to other during 

transportation and lairaging was likely to be either directly via carcass-to-carcass 

contact, especially flank and rump areas, or indirectly via contact with contaminated 

floors surfaces, especially in the brisket area.   

Environmental sources as a reservoir of E. coli O157:H7 

 Many researchers have reported that the initial sources of or exposure to E. coli 

O157:H7 in cattle might possibly occur in the feedlot environment.  E. coli O157:H7 
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generally appeared in most cattle feedlot operations, but the proliferation or prevalence 

of this organism varied (52, 55).  The excretion of E. coli O157:H7 in herds fluctuated, 

showing up in only a few samples for months, followed by an increase in the number of 

positive samples isolated from the same herds.   Hancock et al. (51) suggested that the 

unpredictable presence of E. coli O157:H7 is due to an external reservoir.  

Environmental sources, such as feed and water may play a vital role in transmission of 

E. coli O157:H7 within and among feedlots (53, 126).   

Recent research has pointed to environmental sources as possible reservoirs of E. 

coli O157:H7 in the farm environment, including manure piles, ponds, dams, wells, 

barns, calf hutches, straw and other bedding, feed and feed troughs, water and water 

troughs, farm equipment, and ground pasture.  E. coli O157:H7 can grow in water, feed 

and soil, and can survive in feces for prolonged periods, depending on temperature and 

moisture conditions (60, 72, 119, 121).  Once E. coli O157:H7 occurs in the farm 

environment, transmission of the bacteria to other sites occurs via rainwater, wind, 

removal and spreading of manure, and also by animals and humans (61).  In recent 

studies, Wallace et al. (120) showed the potential for seabirds to be an E. coli O157 

carrier, reporting that 0.9-2.9 % of fecal samples were positive for E. coli O157.  If 

found on farms, birds can cycle these pathogens through the agricultural environment.  

Shere et al. (103) isolated 6.3% E. coli O157:H7 from feed samples obtained from a 

dairy farm in Wisconsin.  Lynn et al. (72) studied growth of E. coli O157:H7 in a variety 

of wet grain mixtures and some silage-based mixtures in vitro at similar temperatures 

reached during the summer months.  Research has shown replication of E. coli O157:H7 
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in several types of feed, therefore increasing the possibility of further dissemination of E. 

coli O157:H7 on the farm.  Several studies isolated E. coli O157:H7 from animal 

drinking water (15, 16, 37, 51).  Faith et al. (37) suggested water as a vehicle for 

transmitting E. coli O157:H7 among cattle.  LeJeune et al. (71) demonstrated water 

troughs as long-term environmental sources of E. coli O157:H7 and a possible cause to 

subsequent cattle infection.   

Antimicrobial resistance  

Antimicrobials are used therapeutically and prophylactically in human and 

veterinary medicine, and also to promote growth in animal production.  Antibiotics with 

similar structure are being applied in medical and veterinary practice.   

 Initially, E. coli O157:H7 was found to be susceptible to many antibiotics (12, 

92).  However, several recent studies have shown increasing antimicrobial resistance in 

E. coli O157 strains isolated from humans and animals (1, 38, 41, 65, 78, 101, 129).  

Resistance to tetracycline, sulfamethoxazole, cephalothin, and ampicillin has been 

reported in a number of studies (21, 78, 129).  In addition, many O157 and non-O157 E. 

coli strains have developed multiple resistances to antimicrobials commonly applied in 

human and veterinary medicine (38, 46, 101).   

The correlation between intensive use of antibiotics and development of bacterial 

resistance is well documented for pathogens (112).  Currently, there is speculation 

regarding the role therapeutic and subtherapeutic use of antimicrobials in animals played 

in accelerating the development and dissemination of antimicrobial-resistant bacterial 

pathogens (1, 114, 127).  Witte (127) reported medical consequences of antibiotic use in 
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agriculture where the selection for antimicrobial resistance among commensals in the 

intestinal tracts of food animals may create a public health threat.  For example, food 

animals, especially mature cattle, may be asymptomatic carriers of E. coli O157, 

including STEC, and may serve as a reservoir of antimicrobial-resistant bacteria when 

exposed to antimicrobial agents in the animal production environment (77, 111, 127).  

Schroeder et al. (102) suggested that the initial impact on the selection of antimicrobial 

resistance in STEC and non-STEC O157 was imposed by the use of tetracycline 

derivatives, sulfa drugs, cephalosporins, and penicillins for therapeutic use in human and 

veterinary medicine and/or as prophylaxis in the animal production environment.   

 Multiple antimicrobial resistances in STEC and non-STEC strains may have been 

partially caused by spreading of genetic elements such as plasmids, transposons, and 

integrons (129).  Acquisition of mobile genetic elements such as integrons, that encode 

multiple antibiotic resistance genes, are thought to play a major part in the evolution of 

multiple resistant bacteria (50).  Integrons not only associate with multiple antibiotic 

resistances, but also may play a significant role in the dissemination of resistance genes 

on STEC strains.  Zhao et al. (129) studied the characterization of antimicrobial 

susceptibility patterns among STEC strains, including E. coli O157 and non-O157 STEC 

isolated from cattle, ground beef, and humans and determined that the observed 

resistance phenotypes could be attributed to the acquisition of integrons encoding 

resistance gene cassettes.  The study showed 79% of STEC isolates developed resistance 

to multiple classes of antimicrobials.  The most frequently observed multiple resistances 

were to streptomycin, sulfamethoxazole, and tetracycline.  The integrons identified 
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among O157:H7 isolates possessed an aadA gene and can be transferred via conjugation 

to another strain of E. coli O157. 

 Sáenz et al. (100) investigated antibiotic resistance of isolates from animal feces, 

human feces, and food products of animal origin.  The study revealed that 88%, 38%, 

and, 40% of the bacteria isolated from broilers were resistant to nalidixic acid, 

ciprofloxacin and gentamicin, respectively, while 53%, 13%, and 17% were from foods.  

In addition, these data showed high levels of trimethoprim-sulphamethoxazole and 

tetracycline resistance in organisms isolated from broilers, pigs, and foods.   

 Antibiotic resistant strains of E. coli O157:H7 could possibly be transmitted to 

humans through the food chain if animal food products are improperly cooked or 

mishandled.  Other sources of contamination could include contact via occupational 

exposure, or waste runoff from animal production facilities (118, 127).  Different 

antibiotic resistances were frequently detected in E. coli O157 isolates from different 

sources, including humans, broilers, pigs, pets, and feed.  The difference may come from 

the specific use of antibiotics in each group.  Schroeder et al. (102) found it difficult to 

identify the origin of observed antimicrobial resistance because the microbial 

ecosystems of humans, swine, cattle, and food are closely connected. 
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MATERIALS AND METHODS 

Preliminary testing 

Ice chest studies.  Preliminary studies were carried out to determine if the 

shipping container would adequately insulate samples during overnight transportation.  

In this study, samples were shipped in an ice chest (47.6 X 30.1 X 31.1 cm 

ThermoSafe® Mutipurpose Insulated Bio-Polyfoam Shipper; Model 494, Polyfoam 

Packers Corp., Wheeling, Ill.).  The samples were collected in 150-ml Oxford specimen 

cups (International BioProducts, Inc., Redmond, Wash.).  The ice chests were packed 

with varying combinations of sample cups, plastic racks and 360-ml or 1500-ml 

refrigerant packs (VWR International, Suwanee, Ga.) to simulate possible arrangements.  

Each sample cup was filled with distilled water and placed inside a Nasco 710-ml Whirl-

Pak® sampling bag (VWR).  To monitor the internal temperature of the ice chest at 30-

min intervals over a 48-h period at room temperature, 5 thermocouples (Type K; Pico 

Technology Limited, St. Neots, Cambridgeshire, UK) were placed inside the ice chest 

and connected to the thermocouple data logger (Pico).  Four of the thermocouples were 

placed in the corners of the ice chest without touching the refrigerants, and the fifth was 

placed in one of the plastic cups to measure the temperature of the water in the container.  

The data logger was then connected to a computer and analyzed with the supplied 

software (Pico) which provided a macro to collect data directly onto an Excel 

spreadsheet (Microsoft Excel;  Microsoft,  Bellevue, Wash.).  After 48 h, the 

thermocouples were removed and the data was analyzed to establish which combination 

effectively lowered the temperature of the ice chest to approximately 0-5°C after 7 h.   
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Standard Operating Procedure (SOP)  

A SOP document containing written instructions and photographs was sent in 

advance to the sample collector, Mr. Kevin McBride, at the Texas Agricultural 

Extension Station, Amarillo, Tex., to enable familiarization with the protocol prior to the 

sampling period.  Supplies were packed into five 47.6 X 30.1 X 31.1-cm ice chests and 

sent to Amarillo on a monthly basis.  Each ice chest was loaded according to Table 1.  

Sampling design   

Samples were collected from 5 commercial feedlots that handled more than 

40,000 cattle in and areas around Amarillo, Tex.  The potential sources of E. coli 

O157:H7 to be sampled included:  A) surface water from the runoff holding pond, B) 

sludge from the bottom of the runoff holding pond, C) water and sludge runoff from the 

drainage trenches and the collection ponds in the pens, and D) surface area of the cattle 

handling chute.  The surface water samples and sludge samples were collected from 

locations north, south, east, and west of the runoff pond just under the surface of the 

water.  Five surface area samples from the back right, front right, back left, front left and 

front were collected around the chute areas.  In addition, 5 runoff areas were sampled to 

evaluate the possibility of contaminated drainage at the feedlot.  However, the number of 

runoff samples mainly depended on the design of each feedlot.  

Sampling occurred on a monthly basis for an 8-month period from July 2001 to March 

2002.  During that time, several environmental factors were monitored for their effect on 

the presence of E. coli O157:H7 in feedlots.  These included:  A) ambient temperature,  
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TABLE 1. Sample collecting supplies provided in each ice chest for each sample trip 

Items Number 

24 X 30-inch Biohazard Plastic bags (VWR) 2 
 

Nasco 710-ml Whirl-Pak ® sampling bags  38 
 

A set of labels for each feedlot 1 
 

Oxford 150-ml specimen cup (International BioProducts) 38 
 

Bottle of 25 ml of sterile Butterfield’s buffer (International 
BioProducts) 

7 
 
 

BioPro sponge/glove sampling systems (International 
BioProducts) 
 

7 

Large latex gloves (International BioProducts) 
 

9 

Medium latex gloves (International BioProducts) 8 
 

360-ml U-Tex refrigerant packs (VWR) 20 
 

1500-ml U-Tex refrigerant packs (VWR) 3 
 
Note: In addition, 4 boxes of 15.25 X 2.0-cm wooden tongue depressors (International BioProducts), a case of 100 
individual disposable plastic USDA Template 100™ (International BioProducts) for a 10 X 10-cm2 sampling area, 
OAKTON® TDSTestr™ 4 water conductivity (OAKTON; distributed by VWR), and Magellan GPS 315™ global 
positioning system (Magellan, San Dimas, Calif.) were supplied at the beginning of the experiment.   

 

 

 

 

 



 

 

19 

B) dew point, C) electrical conductivity, D) liquid levels in the pond, E) sludge 

temperature, F) relative humidity, G) station pressure, H) temperature dry bulb, I) 

temperature wet bulb, and  J)water temperature of the runoff pond.   

Additionally, 100 randomly selected hide samples were obtained from stunned 

adult cattle that originated from each of the 5 commercial feedlots, at a commercial 

slaughter plant, located in Amarillo, Tex. during August, 2002.   

Sample collection 

 Waste water samples.  Water samples were collected using an Oxford 150-ml 

specimen cup.  Prior to collection, the specimen cups were rinsed 2-3 times with the 

liquid being collected.  At least 100 ml of the runoff pond water was collected just under 

the water surface and then the exterior of the specimen cup was wiped and dried using a 

paper towel.  The water sample cup was then placed into a Nasco 750-ml Whirl-Pak® 

sampling bag to provide an additional leakage barrier for transport. 

Pond sludge samples.  The sludge samples were collected from the bottom of 

the runoff ponds using a spade.  The sample was thoroughly mixed using a 15.25 X 2.0-

cm wooden tongue depressor (International BioProducts) to ensure uniformity, and 

placed in an Oxford 150-ml specimen cup.  The specimen cup was placed in a Nasco 

710-ml Whirl-Pak ® sampling bag to provide an additional leakage barrier for transport. 

Pen drainage samples.  The number of drainage samples and retention pond 

samples varied between feedlots.  Semi-dry material samples were handled and sampled 

in a manner similar to that described for the sludge samples.  The liquid samples were 

treated the same as the water samples and were handled as previously described. 
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Chute samples.  Samples were collected from 5 surface areas of the chutes used 

for animal treatments using 25 ml of sterile Butterfield’s buffer (International 

BioProducts) and a BioPro sponge/glove sampling system consisting of the top 

compartment of a 540-ml resealable sample bag which contained a dry, sterile, biocide-

free 4 X 8-cm sponge, and the bottom compartment which held a pair of sterile 

polyethylene disposable gloves (International BioProducts).  Chute samples were 

collected from the front and back area of both sides of the chute, including the head 

restraint area.  The sponge was pre-moistened with 25 ml of sterile Butterfield’s buffer 

(International BioProducts) immediately prior to sampling and hand-massaged from the 

outside of the bag to ensure it was fully hydrated.  Excess liquid was squeezed out and 

the sponge was removed using the sterile gloves.  An approximate area of 100 cm2 was 

swabbed for each chute using a 10 X 10-cm disposable plastic USDA Template 100™.  

In some cases, it was impossible to use the template so an approximate 100-cm2 area was 

estimated.  The chute area was sampled with the hydrated sponge 10 times in a vertical 

direction then 10 times in a horizontal direction, inverting the sponge before changing 

direction.  The sponges were then placed into sterile sample bags, excess air was 

released, and the bag was resealed using wire tabs.  Sample bags were immediately 

refrigerated in an insulated container.  

Conductivity determination.  The conductivity of the water samples was 

measured immediately before the samples were collected with an OAKTON® 

TDSTestr™ 4 (VWR) by immersing the electrode (OAKTON® Model 316, VWR) into 

the water of the runoff pond.  The TDSTestr™4 was calibrated according to 
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manufacturer’s specifications using a standard between 3 mS and 19.90 mS before the 

conductivity meter was used.   

Hide samples.  One-hundred hide samples were obtained from hides of cattle at 

a slaughter plant receiving cattle from the 5 feedlots.  Samples were collected 

immediately after stunning by swabbing 450 cm2 of surface area near the ventral brisket 

using sterile 4 X 8-cm2 sponge pads (International BioProducts) dampened with 25 ml of 

sterile Butterfield’s buffer as described for chute samples (Fig. 1). 

 Storage and transportation.  Once all the samples were collected, the ice 

refrigerant packs and samples were arranged in the ice chest as described in the SOP.  

Samples were transported from the feedlots to Texas A&M University by overnight 

shipping in an insulated container with sixteen 360-ml and two 1500-ml U-Tex 

refrigerant packs to keep the samples refrigerated (0-5°C) during transportation.  Based 

on the results obtained from the preliminary study, the following was determined to be 

the best arrangement to consistently and reliably drop the temperature to 0-5°C after 10 

h and maintain the temperature for 48 h (Fig. 2A-2F):  six 360-ml ice refrigerants were 

placed on the first layer (Fig. 2A).  The second layer cons isted of 2 plastic racks (Fig. 

2B).  The samples were immediately arranged in the third layer which was surrounded 

by 10 360-ml ice refrigerants (Fig. 2C). Two 1500-ml-refrigerants were placed on top of 

the samples (Fig. 2D).  Two sheets of newspaper and 2 24 X 30-inch Biohazard bags 

(VWR) were used to cover the samples before closing the ice chest and sealing with 

packaging tape (Fig. 2E and 2F). 
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FIG. 1. The ventral brisket area of beef carcass for hide samples. 
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FIG. 2. Standard arrangement of samples in ice chest for transport to the laboratory. 

C:  samples were surrounded by 10  
360-ml ice refrigerants 

B:  2 plastic racks A:  6 360-ml ice refrigerants 

D:  2 1500-ml-refrigerant E:  2 sheets of newspaper and  
2 plastic bags 

F:  cover of ice chest 
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Laboratory methods  

 Bacterial cultures.  E. coli (ATCC 25922) and E. coli O157:H7 (ATCC 43895) 

cultures were purchased from the American Type Culture Collection (Rockville, Md.).  

E. coli O157:H7-positive fluorescent strain 465-97 (EC- 46597) was provided by Dr. 

Frankie J. Beacorn, at the Microbial Outbreaks and Special Projects Branch, FSIS, 

Athens, Georgia, USA.  ATCC 25922 served as a negative control for LT toxin 

production while ATCC 43895 was used in this study as positive controls for Shiga- like 

toxin I and toxin II production.  A second positive control culture, EC- 46597, FSIS 

stock cultures, was maintained as a freeze-dried culture in single vials.  The culture 

pellets were rehydrated using 0.5 to 1.0 ml of Trypticase Soy Broth (TSB, Difco 

Laboratories, Detroit, Mich.).  The culture suspensions were aseptically transferred and 

streaked to Trypticase Soy Agar slants or plates (TSA, Difco).  The TSA slants or plates 

(Difco) were incubated at 37°C for 24 h.   

Stock culture maintenance.  Stock cultures were transferred monthly and 

maintained on TSA slants at room temperature.  Prior to experiments, the cultures were 

transferred once on TSA and twice in TSB, incubated at 37°C for 24 h. 

Waste water samples.  For each sample, 25 ml of water was transferred into 25 

ml of double strength GN pre-enrichment broth (Difco) containing vancomycin (16 

mg/l; Sigma Chemical Co., St. Louis, Mo.), cefixime (1.0 mg/l; Dynal, Lake Success, 

N.Y.), and cefsuludin (20 mg/l; Sigma) (Fig. 3).  The sample broth mixture was 

gradually hand-mixed for 1 min before being incubated for 6-18 h at 37°C.  A 1-ml  
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25 ml of water or liquid pen drainage samples 
 
Ü 

Pre-enrich in 25 ml of 2 X GN broth (Difco) 
(With vancomycin (16 mg/l; Sigma), cefixime (1.0 mg/l; Dynal), and cefsuludin (20 

mg/l; Sigma)  
 
Ü 

Incubate pre-enriched water samples at 37°C for 6-18 h 
 
Ü 

Perform immunomagnetic separation using anti-O157 beads (Dynal) 
 
Ü 

Spread 50 µl of the bead suspension  
onto CT-SMAC & CHROMagar™ O157 (Dynal) plates 

 
Ü 

Incubate CT-SMAC & CHROMagar™ O157 plates at 37°C for 18-24h 
 
Ü 

Pick 3 sorbitol-negative colonies exhibiting colony morphology typical of E. coli O157 
as suspect E. coli O157 and streak onto CT-SMAC & 

CHROMagar™ O157 plates 
 
Ü 

Screen test using ImmunoCard Stat! E. coli O157:H7 Plus (Meridian Bioscience, Inc., 
Cincinnati, Ohio) 

 
Ü 

Confirm presumptive colonies by biochemical (VITEK® system; BioMérieux Vitek, 
Inc., Hazelwood, Mo.)  ) and latex agglutination (RIM ® E. coli O157:H7 Latex Test kit; 

Remel, Lenexa, Kans.) tests 
 

ß  à 
rep-PCR Antimicrobial susceptibility testing 

 
 
 

 
 

FIG. 3. Schematic representation of the isolation protocol for E. coli O157:H7 from 
water and liquid pen drainage samples. 
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aliquot of the pre-enriched sample was transferred to a 1.5-ml polypropylene 

microcentrifuge tube (International BioProducts), and 20 µl of Dynabeads anti-E. coli 

O157 (Dynal) were added.  Immunomagnetic separation of the enriched bacteria on the 

Dynabeads was accomplished by incubating the immunomagetic bead suspension at 

24°C for 10 min with gentle, continuous agitation (60 cycles/min) at 25°C using a Dynal 

Biotech sample mixer (Model 10111, Dynal) to prevent the beads from settling.  The 

beads were then washed 3 times with 1 ml of wash buffer (PBS-Tween containing 

0.05% Tween 20, Sigma) on a magnetic separation rack (Dynal MPC-S; Dynal).  Each 

wash was accomplished by:  A) inverting the Dynal MPC-S rack for 1 min to 

concentrate the beads into a pellet on the magnetized side of the microcentrifuge tube, B) 

allowing 3 min for proper magnetic recovery of the beads from solution, and then C) 

carefully aspirating and discarding the sample supernatant in the tube.  After the final 

wash, the Dynabead-bacteria complex was suspended in 100 µl of PBS-0.05% Tween 20 

using a vortex mixer (Votex-Genie™; Scientific Industries Inc., Bohemia, N.Y.).  Fifty 

µl of the resuspended beads were plated and streaked for isolation onto each of 2 petri 

plates containing MacConkey Sorbitol (SMAC, Difco) media supplemented with CT-

supplement (Dynal) containing cefixime 0.5 mg/l and potassium tellurite 2.5 mg/l, and 

CHROMagar™ O157 (Dynal), and incubated at 35-37°C for 18-24 h.  At least 3 

sorbitol-negative colonies (colorless) on CT-SMAC media and ß-D-glucuronidase-

negative colonies (pink-mauve color) on CHROMagar™ O157 exhibiting colony 

morphology typical of E. coli O157 were picked as suspect E. coli O157:H7 after 18-24 
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h incubation at 35-37°C.  If there were no individual isolated colonies, growth was 

restreaked onto CT-SMAC media and CHROMagar™ O157.  Suspect colonies were 

screened initially for detection of antigens from Shiga toxin-producing E. coli O157 

using ImmunoCard Stat! E. coli O157:H7 Plus.  Presumptive positive isolates were 

isolated by streaking on fresh CT-SMAC, and CHROMagar™ O157 plates, followed by 

incubation at 35-37°C for 18-24 h.  A single presumptive colony was picked from each 

agar for further confirmation as described below. 

Pond sludge samples.  A 10-g sample of pond sludge was removed from each 

transport cup, homogenized and transferred into a Nasco 710-ml Whirl-Pak sampling 

bag using a 15.25 X 2.0-cm wooden tongue depressor.  Ninety ml of GN broth 

containing vancomycin (8 mg/l), cefixime (0.5 mg/l), and cefsuludin (10 mg/l) was 

added to the sample.  The samples were incubated, plated and processed as previously 

described for the water samples.  

Chute and hide samples.  Twenty ml of sterile 1.5X Brilliant Green Bile 2% (60 

g/l, Difco) was added to bags containing the sponge samples followed by kneading for 1 

min similar to procedures described by Elder et al. (36).  The pre-enrichment samples 

were incubated, plated and processed as previously described for the water samples.  

Pen drainage samples.  Semi-dry samples were collected from cattle holding 

pens and were incubated, plated and processed as previously described for pond sludge 

samples.  Liquid samples from the pens were incubated, plated and processed as 

previously described for the water samples.  
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Immunoassay test.  ImmunoCard Stat! E. coli O157:H7 Plus is a rapid 

immunoassay used as a screening test to detect antigens of a Shiga toxin-producing E. 

coli O157.  Testing was conducted using the procedure described by manufacture’s 

instruction.  In brief, suspect colonies on agar plates were diluted using 700-µl sample 

diluent (solution containing 0.094% sodium azide as a preservative) to a 5-ml sterile 

disposable culture tube (VWR).  Suspect colonies were collected from both CT-SMAC, 

and CHROMagar™ O157 plates with a sterile cotton swab applicator (International 

BioProducts) sufficient to make a heavy suspension in the sample diluent.  Each 

suspension was adjusted to match a 2-4 McFarland turbidity standard using a 

colorimeter (Model DR 100; HACH Company, Loveland, Co.).  The suspension was 

mixed gently using a vortex mixer.  Then 150 µl of the diluted specimen was added to 

the sample port of ImmunoCard Stat! E. coli O157:H7 Plus card using the transfer 

pipette provided, and incubated for 10 min at room temperature (21-27°C).  During the 

incubation period, the sample was immobilized by gold particles coated with 

monoclonal antibody specific for the E. coli O157 lipopolysaccharide, and migrated 

along the membrane through the test and control zones. The test zone contained 

immobilized monoclonal antibodies specific for an epitope common to Shiga toxin-

producing E. coli O157.  After 10 min, the test and control zones were visualized for the 

presence or absence of red/purple lines across the membrane surface.  A red/purple line 

in the test zone indicated a positive result.  If a Shiga toxin-producing E. coli O157 was 

present in the sample, a complex was formed between the capture antibody, the Shiga 

toxin-producing E. coli O157 and the monoclonal antibody-gold conjugate.  No 
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red/purple line appeared in the test zone in the case of a negative result.  The control 

line, as a procedural control, ensured appropriate sample migration distance along the 

membrane.  

Stock culture preservation.  E. coli O157:H7 and O157:NM isolates were 

preserved as stock cultures using the following methods.  Isolates were routinely 

transferred at 4-week intervals onto 10-ml TSA slants, incubated at 37°C overnight (24 

h) and stored at room temperature (21-27°C).  Cryogenic beads (Protect™Bacterial 

Preservers; Key Scientific Products, Round Rock, Tex.) were used as an alternative 

preservation method to maintain the characteristics of the isolates for long periods of 

time by avoiding freeze-drying or routine culture transferring.  The storage system 

consists of 20-25 chemically treated porous ceramic beads suspended in a 

cryopreservative fluid containing TSB, glycerol and a hypertonic additive within a 1.5-

ml sterile freezer vial.  The isolate was inoculated onto Protect™ beads according to the 

manufacturer’s specifications.  Prior to stock culture preservation, each isolate was 

streaked for isolation onto TSA supplemented with 5% defibrinated sheep blood 

(Cleveland Scientific, Bath, Ohio) and incubated at 35°C for 18-24 h.  Well- isolated 

colonies were selected from the blood agar plate using a sterile loop and transferred to a 

1.5-ml sterile freezer vial until the mixture broth reached a minimum turbidity equivalent 

to a 3-4 McFarland standard using a colorimeter.  The culture mixture broth was mixed 

using a sterile pipette.  Then, the vial was inverted 6 times and was allowed to stand for 

30 sec to allow the organisms to bind with the beads.  The liquid culture was then 

discarded using a sterile pipette, leaving the beads as dry as possible.   
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All isolates were frozen at -70°C for long-term storage.  For recovery, a frozen 

bead was removed from the vial using a sterilized bent hook (Key Scientific Products) 

and a sterile loop was used to streak onto TSA supplemented with 5% defibrinated sheep 

blood, which was then incubated at 35°C for 18-24 h. 

Characterization of isolates 

 Suspect E. coli O157:H7 isolates were subjected to biochemical and serological 

characterization.  The isolates were transferred to TSA plates supplemented with 5% 

defibrinated sheep blood and incubated at 35-37°C for 18-24 h.  Prior to diagnostic 

testing, isolates were checked for gram reaction and morphology.  Isolates proving to be 

gram-negative rods were subjected to further confirmation. 

Biochemical confirmation.  Biochemical characterization was determined using 

a Vitek Gram-Negative Identification+ card for in vitro diagnostic use (GNI+ card; 

BioMérieux Vitek, Inc.) in conjunction with a VITEK® system for automated 

identification of E. coli O157:H7 and O157:NM according to the manufacturer’s 

specifications.  The GNI+ card was composed of 30 wells of 28 biochemical broths, 1 

negative control broth and 1 growth control broth.  The identification scheme employed 

was based on biochemical methods established by Edwards and Ewing (35), Gilardic 

(44, 45), and Oberhofer et al. (85).  The test procedure required 4-12 h in the Vitek 

Reader/Incubator.  Then using a Vitek programmed computer, each well was determined 

to be positive or negative by an optical scanner which measured light attenuation.  

Bacterial identification patterns were automatically analyzed and printed for each card in 

the Reader/Incubator at the completed incubation cycle.  Prior to biochemical 
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identification, isolates were streaked on TSA supplemented with 5% defibrinated sheep 

blood and incubated overnight at 37°C.  In addition, a gram stain and cytochrome 

oxidase test was performed on the isolate.  The gram-negative rod and oxidase-negative 

organisms were further examined through biochemical identification.  Using a cotton 

swab applicator, 4 to 5 well- isolated colonies of a morphologically identical type were 

selected from the blood plate to prepare the inoculum.  The selected colonies were 

suspended into 2.0 ml of 0.45% sterile saline solution (Baxter Healthcare, Deerfield, Ill.) 

in a 12 X 75-mm clear sterile disposable test tube.  To standardize the inoculum density, 

the suspension turbidity was visually measured in the blue zone (67-77%) of the 

colorimeter to the equivalent of a McFarland No. 1 standard.  A transfer tube was 

aseptically inserted into the GNI+ Card Port at the bend section and rotated 180 degrees 

so that the end of the tube was pointing away from the notches on the card.  The mated 

card/transfer tube unit was placed onto the Vitek filling stand in conjunction with the 

long part of the transfer tube, and was subsequently inserted into the test tube.  The 

Vitek filling stands were then arranged onto the filling rack and placed into the filling 

module.  The cards were filled with culture suspension in the filling module which 

pulled a vacuum to remove air in the cards and then released the vacuum to replace the 

void with the inoculum.  The filled cards were sealed at the card port.  The cards were 

placed into the reader/incubator tray where biochemical tests were automatically 

evaluated over a 2-12 h incubation cycle.   

Serological confirmation.  Serological characterizations of isolates were 

performed using an E. coli O157:H7 latex test agglutination kit according to the 
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manufacturer’s directions.  The latex test was used to determine whether colorless 

colonies on CT-SMAC agar plates belong to O157 and/or H7 serogroups, and were 

therefore a potential verocytotoxin-producing strain.  This presumptive identification of 

E. coli O157:H7 was based on latex reagents coated with specific antibodies either for 

anti-O157 somatic or anti-H7 flagellar antigens.  Each latex reagent was coated with a 

different antibody:  a) an antibody against E. coli serotype O157, b) an antibody against 

E. coli serotype H7, and c) normal rabbit globulin as a control latex.  In brief, a 

minimum of 5 well- isolated colonies of the same morphological type were selected from 

a 5% sheep blood agar surface after overnight incubation.  When mixed with latex 

particles, fresh colonies of O157 and/or H7 grown on blood agar more readily illustrated 

antigen presence, because blood agar enhances flagella production.  Prior to the study, 

the latex reagents were allowed to cool to room temperature, and then each reagent was 

suspended using a vortex mixer.  First, a drop of E. coli O157 and E. coli control test 

latex was dispensed on a separate well of the latex test slide.  Then the suspect non-

sorbitol fermenting colonies (NSFC) were selected from CT-SMAC using the provided 

plastic stick.  Colonies belonging to O157 and/or H7 serogroups appeared colorless, but 

others showed pink on CT-SMAC agar plates.  E. coli O157 and control latex 

suspensions were mixed thoroughly on the slide, and the plastic sticks were changed 

between suspensions.  The latex cards were rotated carefully using complete circular 

motions for 1 min, or until agglutination was observed.  Isolates fitting the biochemical 

profile of E. coli and serologically positive for somatic (O) 157, flagellar (H) 7, or both 

antigens were classified as confirmed E. coli O157.   
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Antimicrobial susceptibility testing 

Antimicrobial resistance profiles of E. coli O157:H7 and O157:NM isolates were 

determined via the agar disk diffusion technique in accordance with the National 

Committee for Clinical Laboratory Standards (NCCLS) (81, 82, 83) and previously 

published literature focusing on antibiotic susceptibility of E. coli O157 isolates from 

animals (21, 78, 100).  The Sensi-Disc™  Susceptibility Test System (BBL, Becton 

Dickinson Microbiology Systems, Cockeyville, Md.), including Bacto Müeller-Hinton 

agar plates (Difco) and Sensi-Disc™ Antimicrobial Susceptibility Test Discs (BBL), 12 

discs Sensi-Disc™ Designer Dispenser (BBL), and the recommended quality control 

organisms were used to measure the susceptibility or resistance of the isolates to 

antimicrobial agents and interpreted according to the NCCLS (81, 82, 83).  E. coli 

ATCC 25922 and ATCC 35218, Enterococcus faecalis ATCC 29212, Staphyloccoccus 

aureus ATCC 29213, and Pseudomonas aeruginosa ATCC 27853 were used as control 

microorganisms in antimicrobial minimal inhibitory concentration (MIC) determinations 

of E. coli O157 isolates.  The following antimicrobial agents were included in 

determination of antimicrobial resistance:  Amikacin, Amoxicillin-clavulanic acid, 

Ampicillin, Cefazolin, Cefotetan, Cefoxitin, Ceftazidime, Ceftiofur, Ceftriaxone, 

Cefuroxime, Cephalothin, Chloramphenicol, Ciprofloxacin, Gentamicin, Imipenem, 

Kanamycin, Nalidixic acid, Streptomycin, Sulfisoxazole, Tetracycline, Ticarcillin, 

Tobramycin, and Trimethoprim-sulfamethoxazole (BBL).  Susceptibility tests followed 

NCCLS breakpoints (81, 82, 83).  The twenty-three antibiotics were tested and their 

resistance criteria, as recommended by the NCCLS, are shown in Table 2.   
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TABLE 2. Antibiotics used and their resistance criteria based on inhibition zone 
diameters 

Criteriaa 
(mm) Antibiotic  Abbreviation 

Disk 
concentration 

(µg) R I S 

Amikacin An 30 =12 13-14 ≥15 
Amoxicillin/ clavulanic acid         AMC 20/10 =13 14-17 ≥18 
Ampicillin AM 10 =13 14-16 ≥17 
Cefazolin CZ 30 =14 15-17 ≥18 
Cefotetan CTT 30 =12 13-15 ≥16 
Cefoxitin FOX 30 =14 15-17 ≥18 
Ceftazidime CAZ 30 =14 15-17 ≥18 
Ceftiofur XNL 30 =17 18-20 ≥21 
Ceftriaxone CRO 30 =13 14-20 ≥21 
Cefuroxime CXM 30 =14 15-22 ≥23 
Cephalothin CF 30 =14 15-22 ≥23 
Chloramphenicol C 30 =14 15-17 ≥18 
Ciprofloxacin CIP 5 =15 16-20 ≥21 
Gentamicin GM 10 =12 13-14 ≥15 
Imipenem  IPM 10 =13 14-15 ≥16 
Kanamycin K 30 =13 14-17 ≥18 
Nalidixic acid  NA 30 =13 14-18 ≥19 
Streptomycin S 10 =11 12-14 ≥15 
Sulfisoxazole  G 250 =12 13-16 ≥17 
Tetracycline TE 30 =14 15-18 ≥19 
Ticarcillin TIC 75 =14 15-19 ≥20 
Tobramycin NN 10 =12 13-14 ≥15 
Trimethoprim-
Sulfamethoxazole  SXT 1.25/23.75 =10 11-15 ≥16 

 
R= Resistant; I= Intermediate; S= Susceptibility  
a MIC Breakpoints less than the indicated value indicate the bacterial strain was 
resistant according to NCCLS guidelines. 
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Isolates were streaked for isolation onto TSA agar plates supplement with 5% 

defibrinated sheep blood (Cleveland Scientific) and incubated overnight (18-24 h) at 

35°C.  A minimum of 3-5 well- isolated colonies on the agar plate culture were selected 

and transferred into 5 ml TSB.  The turbidity was adjusted until it reached a minimum 

turbidity equivalent to a 0.5 McFarland standard using a 0.45% sterile saline solution 

and a colorimeter.  The 150-mm Müeller-Hinton agar plates were streaked on the entire 

surface using a sterile cotton swab applicator emerged with the culture suspension.  The 

plates were swabbed, rotating the plate approximately 60° twice to ensure an even 

distribution of inoculum, and finally the rim of the plates was swabbed.  The agar plates 

were allowed to absorb excess inoculum on the surface for maximum 15 min before 

applying the discs.  Twenty-three antibiotic discs were placed firmly onto the surface of 

inoculated agar plates using a 12 disc Sensi-Disc™ Designer Dispenser ensuring the 

discs were in contact with the agar surface.  The discs were dispensed evenly and not 

distributed closer than 24 mm between each center of antibiotic discs in order to prevent 

any complications of multiple antibiotic diffusions.  The agar plates were inverted and 

incubated at 37°C for 16-18 h.  After incubation, the diameter of the inhibition zone of 

the inoculated agar plates was measured (including the 6-mm disc diameter) using a 

caliper (DialMax 150 mm, Scienceware, Bel-art-Products, Pequannock, N.J.).  The 

diameters of the complete inhibition zones were examined by placing the caliper on the 

back of the inverted petri disks.  The apparent zones of inhibition were measured as the 

margin area which displayed no obvious or visible growth.  Results were reported as 
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resistant (R), intermediate (I), and susceptible (S) on the basis of NCCLS guidelines (81, 

82, 83). 

 

rep-PCR 

Genetic profiling of isolates for E. coli O157 markers were completed by 

repetitive sequence-based polymerase chain reaction (rep-PCR).  A single pair of rep-

PCR primers, Uprime-B1 or BOX A1R (5'-CTACGGCAAGGCGAC GCTGAC G-3') 

and Uprime-RI, which compose of primers REP 1R (5'-III ICGICGICATCI GGC-

3') and  REP 2I (5'-ICG ICTTATCIGGCCTAC-3'), was used to generate potential 

toxigenicity information and simultaneously identify the toxin type of each E. coli O157 

isolate.  The result of this testing was a complex rep-PCR DNA banding pattern 

(fingerprint).  Further analysis was performed using computer-based analyses of 

digitized images of fingerprints.  The computer-based analyses generated dendrograms 

that made it possible to visually discriminate E. coli O157 isolates to a specific strain or 

substrain level for comparison, and determine the relatedness of isolates from various 

sources.  rep-PCR was performed by Bacterial BarCodes, Inc. (Houston, Tex.).  The rep-

PCR procedure was accomplished by a) extracting genomic DNA from purified E. coli 

O157, b) preparing a master mix using reagents provided in the repPRO kit (Bacterial 

BarCodes, Inc.) with Taq DNA polymerase (AmpliTaq® DNA Polymerase, Applied 

Biosystems, Foster City, Calif.) and E. coli O157 DNA, c) followed by rep-PCR 

amplification in a thermal cycler 9700 with a 96-well heat block (Applied Biosystems), 

d) electrophoresis and staining of amplified DNA on an agarose gel to visualize the 
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DNA fingerprints, and e) capture of an image of the fingerprints for analysis of their 

relatedness and possible source. 

 

Data analysis   

 All data, including antimicrobial resistance information, were initially entered 

into computer spreadsheets.  The software was used to generate descriptive statistics 

including graphs and charts of E. coli O157:H7 and E. coli O157:NM isolates.  

Prevalence of E. coli O157:H7 and E. coli O157:NM were computed as the number of 

samples with E. coli O157:H7 and E. coli O157:NM divided by the number of samples.  

In addition, rep-PCR DNA fingerprints of E. coli O157:H7 and E. coli O157:NM were 

analyzed using Bionumerics software (Bacterial BarCodes).  Pearson correlation was 

used for determine the significance of comparisons. 
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RESULTS AND DISCUSSION 

Prevalence of E. coli O157 in environmental feedlots 

A total of 1125 environmental samples were collected from feedlots in the Texas 

Panhandle from July 2001 to March 2002.  These samples consisted of 229 chute 

samples, 399 waste water samples, 399 sludge samples, 55 drainage samples, and 23 

retention pond water samples and 20 retention pond sludge samples.   

The total prevalence of E. coli O157 in environmental samples each month 

ranged from 0%-10% (Table 3).  Of the 1125 environmental samples collected from 5 

commercial feedlots, overall 4% (47/1125) were found to be positive for E. coli O157 

(Table 3).  Cattle are reported as the major reservoir of E. coli O157 (25, 68), and in the 

current study, this pathogen was discovered frequently in the cattle feedlot environment.  

Although E. coli O157:H7 shedding in the feces from cattle may lead to contamination 

of the feedlot environment as the current study has shown, other non-bovine reservoirs 

(chutes, waste pond, and retention pond) of E. coli O157 may exist in same environment.  

A number of studies have suggested the possibility of reservoirs for E. coli O157 other 

than cattle (52, 55), and reported E. coli O157 in non-bovine species (67, 95).  

Furthermore, there was a possibility that the environmental sources identified in the 

current study may serve as E. coli O157 transmission routes within and/or between 

feedlot environments.   

In the current survey, the maximum prevalence at any one visit (34%) was found 

in the environment of feedlot 3 in March.  On 19 of 45 (42%) feedlot sampling 
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TABLE 3. Prevalence of E. coli O157 in each feedlot over nine-month sampling period 
 

Feedlot 
 

 
Jula 

 
Aug 

 
Sep 

 
Oct 

 
Nov 

 
Dec 

 
Jan 

 
Feb 

 
Mar 

 
Total 

 
FL1b 

 
1/29c 
(3%) 

 

 
0/33 
(0%) 

 
0/23 
(0%) 

 
0/17 
(0)% 

 
2/30 
(7%) 

 
2/23 
(9%) 

 
0/29 
(0%) 

 
1/29 
(3%) 

 
0/29 
(0%) 

 
6/242 
(2%) 

FL2 0/31 
(0%) 

 

3/33 
(9%) 

1/25 
(4%) 

0/25 
(0)% 

5/29 
(17%) 

0/33 
(0%) 

0/31 
(0%) 

1/29 
(3%) 

2/30 
(7%) 

12/266 
(5%) 

FL3 0/33 
(0%) 

 

1/33 
(3%) 

2/34 
(6%) 

0/35 
(0)% 

0/34 
(0%) 

0/33 
(0%) 

0/29 
(0%) 

0/29 
(0%) 

10/29 
(34%) 

13/289 
(4%) 

FL4 4/25 
(16%) 

 

0/23 
(0%) 

0/23 
(0%) 

0/17 
(0)% 

2/23 
(9%) 

0/23 
(0%) 

0/17 
(0%) 

0/17 
(0%) 

0/17 
(0%) 

6/185 
(3%) 

FL5 2/12 
(17%) 

4/19 
(21%) 

0/18 
(0%) 

1/17 
(6%) 

2/13 
(15%) 

0/13 
(0%) 

0/17 
(0%) 

1/17 
(6%) 

0/17 
(0%) 

 

10/143 
(7%) 

Total 7/130 
(5%) 

8/141 
(6%) 

3/123 
(2%) 

1/111 
(1%) 

11/129 
(9%) 

2/125 
(2%) 

0/123 
(0%) 

3/121 
(2%) 

12/122 
(10%) 

 

47/1125 
(4%) 

 

a Jul: July; Aug: August; Sep: September; Oct: October; Nov: November; Dec: December; Jan: January; Feb: February;  
Mar: March. 
b FL1-5; Feedlot 1-5. 
c O157 Positive/Total Sampled. 
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occasions at least one environmental sample was found positive for E. coli O157 (Table 

3).  This result is lower than that previously reported by Hancock et al. (52) who found 

61% of environmental samples taken from 100 feedlots were positive for E. coli O157.  

The difference in prevalence may be explained by the different sampling and isolation 

protocols employed in the current study and that of Hancock et al. (52), who collected 

fecal samples in order to estimate the feedlot prevalence of E. coli O157.  Armstrong et 

al. (4) reported that estimation of the prevalence of E. coli O157 may vary widely due to 

the diagnostic method employed, the number of samples collected, and the type of 

samples collected.   

Prevalence by month 

Over the 9 month sampling period, January was the only month in which E. coli 

O157 was not detected from any of the environmental sources (n=123) (Table 3).  

Positive E. coli O157 environmental samples were most frequently detected in 

November and March (9 and 10%, respectively) (Table 3).  The widest range of 

prevalence of E. coli O157 (0-34%) was displayed in feedlot 3 (Table 3), and the 

prevalence of E. coli O157 varied most between feedlots (0-34%) during the month of 

March (Table 3).  E. coli O157 was most frequently detected in environmental samples 

during the spring (not including April and May) and summer (July-August), where 5.5 

and 10% respectively of samples were positive.  In this study, the prevalence of E. coli 

O157 between each feedlot over 9 months did not differ remarkably between the five 

feedlots (2-7%) (Table 3).  Seasonal factors may explain the different results obtained in 
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this study; however, samples were collected over a nine-month period only, and so 

results may not accurately reflect seasonal trends.   

Peak prevalence of E. coli O157 was demonstrated in late summer and early fall 

in studies involving North American cattle which is the same period in which the 

Hancock et al. (52) study was conducted.  The effect of time variables may influence the 

outcome of E. coli O157 prevalence in feedlot environment.  Hancock et al. (52) 

predicted that the level of the contamination would drop dramatically at other times 

during the year based on the apparent correlation between positive E. coli O157 cattle 

feces and carcass contamination.  A number of studies (23, 25, 52, 55) showed a 

seasonal peak of E. coli O157 presence in late spring and early summer.  The addition of 

different types of cattle (lactating cows, non- lactating cows, calves, and heifers) in the 

feedlot for each month in the feedlots may be one of the reasons for differences in 

prevalence rates in this study.  Mechie et al. (76) have reported all cattle groups had 

varied excretion rates during the survey with a similar seasonal pattern.  For example, 

excretion rates of E. coli O157 were significantly lower in lactating cows than other 

groups, but lactating cows showed the highest E. coli O157 excretion during the first 

month after calving.  This level fell during lactation and rose to its peak at 7 months 

postpartum.   

Prevalence by feedlot  

Of 45 sample sets tested, the range of overall prevalence of E. coli O157 in 

feedlot 1 to feedlot 5 was 6 (2%), 12 (5%), 13 (4%), 6 (3%), and 10 (7%)  (Table 4).   
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 TABLE 4. E. coli O157 isolation from environmental sources in five cattle feedlots in 

 the Texas Panhandle 

Sources of sample 

Feedlot Chutes Water Sludge Drainage RTa 
Total 

positive Prevalence 
 

FL1b 
 

0/45c 
(0%) 

 

2/96 
(2%) 

 

4/96 
(4%) 

 

0/5 
(0%) 

 
NSd 

 
6/242 

 
2% 

 
FL2 4/45 

(9%) 
 

0/102 
(0) 

 

7/102 
(7%) 

 

1/17 
(6%) 

 
NS 

 
12/266 

 
5% 

 
FL3 3/45 

(7%) 
 

6/108 
(5%) 

 

4/108 
(4%) 

 

0/28 
(0%) 

 

 
NS 13/289 

 
4% 

 
FL4 1/45 

(2%) 
 

0/69 
(0%) 

 

5/69 
(7%) 

 

0/2 
(0%) 

 

 
NS 6/185 

 
3% 

 
FL5 6/49 

(12%) 
 

1/24 
(4%) 

 

2/24 
(8%) 

 

0/3 
(0%) 

 

1/43 
(2%) 

 
10/143 

 
7% 

 
Total 14/229 

(6%) 
 

9/399 
(2%) 

 

22/399 
(6%) 

 

1/55 
(2%) 

 

1/43 
(2%) 

 

47/1125 
(4%) 

 
4% 

 
 

a RT: retention pond.             
b FL1-5: Feedlot 1-5.  
c O157 Positive/Total Sampled.   
d NS: not sampled. 
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Similarly, Hancock et al. (52, 53, 54, 55) presented data that showed E. coli 

O157 existed in most cattle operations, but prevalence was highly variable among herds.  

In the work reported here, E. coli O157 was most often isolated from environmental 

samples from feedlot 5 (7%) (Table 4);  however, there was little difference in the 

prevalence of E. coli O157 between feedlots.  In the current study, feedlots were selected 

without prior knowledge of the O157 status of cattle previously tested in the same 

feedlots.  Although, the prevalence of E. coli O157 in the feedlot environment did not 

differ extensively between feedlots, it did vary widely within feedlots (0-34%) (Table 4).  

In the current study, there was no available information on bovine characteristics or 

conditions of each feedlot which may influence E. coli O157 presence in the feedlot 

environment.  The wide distribution of E. coli O157 after cattle arrive at the large 

feedlots possibly occurs during certain seasons.  New incoming cattle to feedlots have 

been identified to be at a greater risk for shedding E. coli O157 than cattle on feed (30).  

Smith et al. (106) showed the prevalence of cattle shedding E. coli O157:H7 varied 

greatly between pens in each feedlot.  E. coli O157:H7 should be considered common to 

cattle grouped together in pens, and the condition of the pen floor in the feedlots may 

affect the prevalence of cattle shedding the organism.  In addition, the differences in E. 

coli O157 prevalence rate in any feedlot in any month (0-34%) may result from the 

differences in excretion rates of cattle in the feedlots.  The causes of different excretion 

rates are not clearly known, but may result from differences in ruminal development, 

diet, or specific immunity to infection (76).  Reid et al. (93) demonstrated that 

characteristics of the cattle and conditions of each pen in the feedlot may affect the 
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prevalence of E. coli O157 shedding in the feedlot environment.  Park et al. (90) 

revealed fecal shedding of E. coli O157:H7 persisted longer in calves than in adult cattle 

and the type of feed consumed by cattle may influence the prevalence and acid 

resistance of this pathogen.   

The results of the current study have shown that E. coli O157 were present in 

every environmental source in each feedlot (Table 4).  The presence of E. coli O157 in 

different environmental sources ranged from 2-6%. 

There may be varied exposure and transmission within and between feedlots.  

The means of sustaining and transmitting E. coli O157 in the feedlot environment is 

unknown; however, Hancock et al. (51) presented three possible models that account for 

prevalence of E. coli O157 in feedlots and dairy farms, including a) multiple reservoir 

species of E. coli O157, b) the ability of E. coli O157 to transiently colonize many 

species (but at least one species serve as the reservoir), and c) environmental reservoir, 

such as the sedimentary layer of water-troughs.  Furthermore, Hancock et al. (51) 

suggested a possibility that a reservoir other than cattle may exist in feedlots and dairy 

farms.  Besser et al. (10) have shown that E. coli O157 seems to colonize only 

transiently in cattle and long term carriers have not been found.  The shedding of E. coli 

O157 in herds of cattle is intermittent to the level that the organism cannot be detected 

on the majority of sampling visits (52, 55).  Unfortunately, there was lack of prior 

information of E. coli O157 prevalence on cattle and other animals in the feedlots 

surveyed in this study and, therefore, no similar conclusions can be drawn.   
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Prevalence by environmental source 

The results of this study suggest that the chute and sludge from the run-off pond 

are the main sources of E. coli O157 in the feedlot environment sampled as these sources 

had a higher prevalence of E. coli O157 (6%) (Table 5).  A number of studies have 

shown that environmental persistence of E. coli O157 may play a key role in the 

epidemiology of E. coli O157 on farms.  Dargatz et al. (30) and Elder et al. (36) 

indicated the widespread distribution of E. coli O157:H7 in cattle operations.  In 

addition, LeJeune et al. (71) reported that environmental survival of E. coli O157 may 

play an important role in the persistence and dissemination of E. coli O157 on the farms.  

E. coli O157 was found in every source of the feedlot environment.  However, there 

have been no previous reports of the chute and pond sludge as E. coli O157 reservoirs.  

The high E. coli O157 prevalence in the chute area may be due to direct contact of the 

chute with cattle hides when monitoring or medicating the cattle.  Interestingly, E. coli 

O157 was recovered more frequently from sludge samples from the waste water pond 

than from the waste water itself.  E. coli O157 may attach to the organic compounds in 

the water and settle down to the bottom of the pond where sludge was collected.  Water 

trough sediments contaminated with feces from cattle excreting E. coli O157 may serve 

as a long-term reservoir of this organism on the farms and a source of infection for other 

cattle.  Smith et al. (106) suggested that E. coli O157 may be common in feedlot cattle 

populations.  E. coli O157:H7 exposure was widespread and most cattle were exposed to 

the bacteria before weaning (68).  Smith et al. (106) found higher percentages of cattle  
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TABLE 5. Prevalence of E. coli O157 in feedlot environment by month         
and source 

Environmental source of isolates 
Month Sludge Water Chute RTa Drainage Total 

 
July 

 

 
3/45b 
(7%) 

 
1/45 
(2%) 

 
3/27 

(11%) 

 
0/3 

(0%) 

 
0/10 
(0%) 

 
7/130 
(5%) 

 
August 

 

 
2/48 
(4%) 

 
0/48 
(0%) 

 
5/26 

(19%) 

 
1/6 

(17%) 

 
0/13 
(0%) 

 
8/141 
(6%) 

 
September 

 

 
2/42 
(5%) 

 
0/42 
(0%) 

 
0/26 
(0%) 

 
0/6 

(0%) 

 
1/7 

(14%) 

 
3/123 
(2%) 

 
October 

 

 
0/36 
(0%) 

 
0/36 
(0%) 

 
1/25 
(4%) 

 
0/6 

(0%) 

 
0/8 

(0%) 

 
1/111 
(1%) 

 
November 

 

 
8/48 
(2%) 

 
0/48 
(0%) 

 
3/25 

(12%) 

 
0/2 

(0%) 

 
0/6 

(0%) 

 
11/129 
(9%) 

 
December 

 

 
1/45 
(2%) 

 
1/45 
(2%) 

 
0/25 
(0%) 

 
0/2 

(0%) 

 
0/8 

(0%) 

 
2/125 
(2%) 

 
January 

 

 
0/45 
(0%) 

 
0/45 
(0%) 

 
0/25 
(0%) 

 
0/6 

(0%) 

 
0/2 

(0%) 

 
0/123 
(0%) 

 
February 

 

 
2/45 
(4%) 

 
1/45 
(2%) 

 
0/25 
(0%) 

 
0/6 

(0%) 

 
NSc 

 
3/121 
(2%) 

 
March 

 

 
4/45 
(9%) 

 
6/45 

(13%) 

 
2/25 
(8%) 

 
0/6 

(0%) 

 
0/1 

(0%) 

 
12/122 
(10%) 

Total 
 
 

 
22/399 
(6%) 

 
9/399 
(2%) 

 
14/229 
(6%) 

 
1/43 
(2%) 

 
1/55 
(2%) 

 
47/1125 

(4%) 
 

 

a RT: retention pond.   
b FL1-5: Feedlot 1-5.  
c NS: not sampled. 
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shedding E. coli O157:H7 from muddy pen conditions than cattle from pens in normal 

(dry) condition.   

Relationship between environmental factors and E. coli O157 prevalence 

Figures 4-13 illustrate ambient temperature (Fig. 4), dew point (Fig. 5), electrical 

conductivity (Fig. 6), liquid levels in the pond (Fig. 7), sludge temperature (Fig. 8), 

relative humidity (Fig. 9), station pressure (Fig. 10), temperature dry bulb (Fig. 11), 

temperature wet bulb (Fig. 12), and  water temperature (Fig. 13), compared to E. coli 

O157 prevalence in each feedlot environment.  These factors did not apparently correlate 

with prevalence of E. coli O157 in environmental samples.  Similarly, Smith et al. (106) 

found no correlation between cattle held in pens shedding E. coli O157 and the 

temperature, pH, or cleanliness of water from the water tanks, pH of the feed, number of 

cattle held in the pen, mean body weight, or number of days in the feedlot.  An 

association between the environmental condition of feedlots and prevalence of E. coli 

O157 seems biologically possible;  however, the 0% prevalence found in January makes 

an obvious correlation more difficult.  In January, the water, sludge, and ambient 

temperatures were consistently low, 0-8C°, 1-3C°, -1-8C°, respectively, compared with 

other months, where temperatures fluctuated (Fig. 5, 9, and 13).  The minimum 

temperature for the growth of E. coli O157 is 8ºC, with an optimum at 37ºC and 

maximum of 44-45ºC (6).  Freezing environmental conditions may affect the degree of 

injury and death, and influence the survival of E. coli O157.   Previous exposure to stress 

conditions at feedlots may affect the absence of E. coli O157 in January.  The apparent 

high prevalence of E. coli O157 in the feedlot environment in other months may result 
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FIG. 4. Relationship between ambient temperature of the waste pond from July-March 
and prevalence of E. coli O157 in environmental samples. 
 

a FL1-5: Feedlot 1-5.  
b % total prevalence of E. coli O157.  
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FIG. 5. Relationship between dew point from July-March and prevalence of  
E. coli O157 in environmental samples.  
 
a FL1-5: Feedlot 1-5.  
b % total prevalence of E. coli O157. 
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FIG. 6. Relationship between electrical conductivity of the waste pond from July-
March and prevalence of E. coli O157 in environmental samples.  
 

a FL1-5: Feedlot 1-5.   
b % total prevalence of E. coli O157. 
*Absence of point:  no collected data.  
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FIG. 7. Relationship between liquid levels in the waste pond from July-March and 
prevalence of E. coli O157 in environmental samples.  
 

a FL1-5: Feedlot 1-5.  
b % total prevalence of E. coli O157.  
*Absence of point:  no collected data. 
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FIG. 8. Relationship between sludge temperature of the waste pond from July-March 
and prevalence of E. coli O157 in environmental samples.  
 

a FL1-5: Feedlot 1-5.  
b % total prevalence of E. coli O157. 
* Absence of point:  no collected data. 
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FIG. 9. Relationship between relative humidity of the waste pond from July-March 
and prevalence of E. coli O157 in environmental samples.  
 

a FL1-5: Feedlot 1-5. 
b % total prevalence of E. coli O157. 
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FIG. 10. Relationship between station pressures of the waste pond from July-March 
and prevalence of E. coli O157 in environmental samples.  
 

a FL1-5: Feedlot 1-5. 
b % total prevalence of E. coli O157. 
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FIG. 11. Relationship between temperature dry bulb of the waste pond from July-March 
and prevalence of E. coli O157 in environmental samples.  
 

a FL1-5: Feedlot 1-5. 
b % total prevalence of E. coli O157. 
 
 

-20

-10

0

10

20

30

40

T
em

pe
ra

tu
re

 (C
)

0

2

4

6

8

10

%
 P

os
iti

ve

Ju
ly

A
ug

us
t

Se
pt

em
be

r

O
ct

ob
er

N
ov

em
be

r

D
ec

em
be

r

Ja
nu

ar
y

Fe
br

ua
ry

M
ar

ch

Month

FL1
FL2
FL3
FL4
FL5

% Positive

Temperature Dry Bulb from July-March

a 

b

 

 

 

 

 

 

 

 

 



 

 
 

56 

FIG. 12. Relationship between temperature wet bulb of the waste pond from July-
March and prevalence of E. coli O157 in environmental samples.  
 

a FL1-5: Feedlot 1-5. 
b % total prevalence of E. coli O157. 
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FIG. 13. Relationship between water temperature of the waste pond from July-
March and prevalence of E. coli O157 in environmental samples.  
 

a FL1-5: Feedlot 1-5. 
b % total prevalence of E. coli O157. 
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from an increase in the number of E. coli O157 in the feces, prolonged duration of 

shedding of cattle or an increase in the rate of new or repeated infections of cattle.   

 Kudva et al. (66) suggested that E. coli O157 in cattle and sheep manure may 

survive for months under wet environmental conditions, and recovery of these bacteria is 

less likely from dried layers of manure.  In wet weather, during spring and summer 

months, cattle wading through mud could possibly bring to the surface organisms 

surviving in the moist soil.  Lynn et al. (72) showed the ability of E. coli O157 to 

multiply prolifically in the environment if provided moisture and a nutrient source.  In 

addition, Davies et al. (31) reported that marine sediments are able to provide an 

environment in which E. coli have sufficient nutrients to survive and multiply.   

Prevalence of E. coli O157 on cattle hides  

Results of the examination of hide swabs from commercially slaughtered 

cattle for the presence of E. coli O157 are shown in Table 6.  Hide samples were 

collected from the ventral brisket areas of 100 cattle over two days using a sponge 

sampling technique.   

 Overall, 56% (56 of 100) of the hide samples were positive for E. coli O157.  

The presence of E. coli O157 on hides was different on each day with 14% (7 of 50) 

positive for the first and 98% (49 of 50) for the second collection date.  These data are 

not surprising as cattle have been implicated as an E. coli O157 reservoir in cattle 

surveys and traceback studies (25, 68).  E. coli O157 is carried in the intestinal tract of 

cattle and shed in the feces of the animals (23, 39, 124).  The hide of cattle is known to 

be a primary source for E. coli O157 contamination of beef, and bacteria can be  
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TABLE 6. Prevalence of E. coli O157 on cattle hidesa at a commercial 
slaughter plant 

Day No. Samples No. of E. coli 
O157 positive 

 

% Positive 

 
1 

 
50 

 
7 

 
14 
 

2 50 49 98 
 

Total 100 56 56 
 

 

a 100 hide samples were collected  by swabbing 450 cm2 of brisket surface area using sponge  
immediately after the animal was stunned. 
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transferred onto the carcass from the hide during the slaughter and dressing processes 

(93).  All cattle included in the current study were observed to be reasonably clean; 

however, hides were frequently contaminated with E. coli O157.  These results support a 

number of previous studies which reported that a visibly clean hide may not necessarily 

be pathogen free (73, 84, 97).  

No attempt was made in this study to find a precise explanation for the different 

E. coli O157 prevalence on each day; however, it may be related to varying contact 

among cattle.  Similar findings were reported by Elder et al. (36) who found 11 of 29 

lots (38%) to have at least one hide positive for E. coli O157, with 11% (38 of 355) 

overall E. coli O157 prevalence on hides, and prevalence ranging from 0% to 89% and a 

mean of 13%.  Varied levels of the bacteria may be due to differences in fecal shedding 

of individual animals, or differences in survival rates of organism either on hide and/or 

animal-related environments (93).  A number studies have revealed significant variation 

in the number of animals shedding E. coli O157 in feces (1-11%) (39, 55) which would 

directly translate to variation on hides.  

The area of hide sampled in this study may have resulted in a high percentage of 

E. coli O157-positive samples.  Reid et al. (93) reported that the brisket area of hide is 

the most heavily contaminated with E. coli O157.  The brisket area may pose the greatest 

risk for contamination of carcass surfaces, as it is frequently contaminated, and the initial 

cut during dehiding passes centrally through the brisket (93).  The high prevalence of E. 

coli O157 on the brisket-associated hide area may be due to animals lying down on 

contaminated ground either on the farm, during transportation, in lairage 
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(accommodation for farm animals), and/or by contact with the floor within the stunning 

box (93).   

 The overall prevalence of E. coli O157 on cattle hides is higher in the current 

study than previous reports have suggested (36, 93).  In this study hide samples were 

collected in the summer months, in which the presence of E. coli O157 is expected to 

peak.  As mentioned previously, a number of studies have found that peak E. coli O157 

fecal shedding rates occur during summer and early fall, and vary from 0% to 61% on 

some farms (93).  E. coli O157 excreted in the feces in cattle populations are spatially 

and temporally clustered, typically lasting 3-4 weeks (55, 76, 103).  In addition, use of 

immunomagnetic separation and enrichment in the current study may have enhanced the 

isolation of this organism (60, 56, 68). 

 Differences in levels of E. coli O157 on hides may occur as a result of various 

factors, including fecal shedding, farming systems, transport, and lairage-related 

conditions (93).  Prevalence of cattle hide contamination of slaughtered cattle with E. 

coli O157 in the current study differed by day of collection, 14% and 98% for day one 

and two, respectively.  This variation may have been caused by multiple factors, 

including a) slaughtered cattle originating from different farms, b) hygienic conditions 

during farm-to-slaughterhouse transportation and duration of transport, c) differences 

between slaughter house design, practices and hygienic cond ition along unloading-to-

stunning areas (93).  Numerous surveys (7, 105) have identified several modes of 

transmission for E. coli O157 to cattle hides, including animal- to-animal, animal-to-

lairage, and environment-to-animal. 
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Characterization of isolates 

All isolates were serologically confirmed as O157:H7 and/or O157:NM isolates 

using Latex agglutination which the isolates react with monoclonal antibodies directed to 

O157 lipopolysaccharide and the H7 flagella.  Of the 103 E. coli O157 isolates found, 47 

originated from environmental sources, including 30 H7 positive and 17 H7-negative.  

Of the 56 isolates obtained from hide samples were 42 H7 positive and 14 were H7-

negative (Table 7 and 8).    

Serotypes of E. coli O157 isolates in feedlot.  Table 7 summarizes serotype 

information regarding the 47 E. coli O157 isolates collected from environmental samples 

during this study.  The majority (64%) of isolates were identified as H7 positive, and 

36% were H7 negative (O157: NM).  The distribution of the O157:H7 serotype was 

highest in July (n = 7), and lowest on January (n = 0) (Table 7).  E. coli O157:H7 was 

isolated from at least one sample in 17 of 45 sample sets (38%).  Most E. coli O157:H7 

were isolated from pond sludge, water and chute samples.  This study indicates that the 

overall prevalence of E. coli O157:H7 in the feedlot environment is much higher than 

that of E. coli O157: NM.  Unfortunately, from the results of this study it is not possible 

to explain the reasons for the higher prevalence of E. coli O157:H7 over E. coli O157: 

NM.  Overall, at least one E. coli O157:H7 was recovered per month except in   

January.  E. coli O157:H7 isolates were found in each source, ranging from 12 isolates 

in sludge to 1 in the retention pond, and 1 in the drainage samples. 

Serotypes of E. coli O157 isolates on cattle hide.  Table 8 summarizes 

information regarding the 56 E. coli O157 isolates collected from cattle hide 
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TABLE 7. E. coli O157 isolates from samples by month and sources 
Sludge Water Chute RTa Drainage Month of  

Isolation Total H7b NMc Total H7 NM Total H7 NM Total H7 NM Total H7 NM 
Total 

 
July 

 
3 

 
3 

 
0 

 
1 

 
1 

 
0 

 
3 

 
3 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
0 

 
7 
 

August 2 1 1 0 0 0 5 4 1 1 1 0 0 0 0 8 
 

September 2 1 1 0 0 0 0 0 0 0 0 0 1 1 0 3 
 

October 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
 

November 8 4 4 0 0 0 3 1 2 0 0 0 0 0 0 11 
 

December 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 2 
 

January 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 

February 2 1 1 1 0 1 0 0 0 0 0 0 0 0 0 3 
 

March 4 1 3 6 4 2 2 2 0 0 0 0 0 0 0 12 
 
Total 

 
22 

 
12 

 
10 

 
9 

 
5 

 
4 

 
14 

 
11 

 
3 

 
1 

 
1 

 
0 

 
1 

 
1 

 
0 

 
47 

 

a RT: retention pond 
b H7: H7 flagella 
c NM: Non-motile   
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TABLE 8. Serological identification of E. coli O157 on cattle hides at 
commercial slaughter plant 
Collection day No. of  E. coli 

O157 positive 
E. coli 

O157:H7 
E. coli 

O157:NM 
 

 
1 

 
7 

 
3 

 
4 

 
2 

 
49 

 
39 

 
10 

 
Total 

 
56 

 
42 

 
14 
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during the course of this study.  E. coli O157:H7 was isolated more frequently (75%) 

than O157:NM (25%).  E. coli O157:H7 was isolated on both the first (43%) and second 

(80%) collecting date.  No attempts to find precise explanations for the difference in E. 

coli O157:H7 prevalence were made in this study.  However, it can be assumed that the 

high prevalence of E. coli O157:H7 over E. coli O157:NM is due to multiple factors, 

including the different origins of cattle from different farms, and the possibility that E. 

coli O157:H7 may attach more readily to the hide than E. coli O157:NM.  

Antimicrobial resistance compared to isolation source 

Antimicrobial resistance was investigated in 317 E. coli O157 isolates recovered 

from 103 positive samples during the course of this study (Table 9).  The results of the in 

vitro susceptibility testing of E. coli O157 isolates are shown in Table 10.  Seventy six 

(24%) of the isolates analyzed during this study were susceptible to all 23 

antimicrobials.  Of the 317 isolates characterized in the current study, approximately 

56% (176/317) displayed resistance to sulfisoxazole, and 45% (143/317) were resistant 

to cephalothin.  In addition, frequencies of 0-66% of sulfisoxazole , and 41-100% 

cephalothin resistance were found in the E. coli O157 isolates tested in this study (Table 

10).  Antimicrobial use in bovines may be a factor in the emergence of antimicrobial 

resistance in E. coli O157 recovered from feedlot environment and on cattle hides.   

None of the 317 isolates were resistant to cefazolin, imipenem, gentamicin, and 

ciprofloxacin.  Resistance profiles among isolates from sludge, water, and chute were 

largely similar to each other, whereas E. coli O157 isolates from hide showed a different 

pattern compared to the environmental isolates.  E. coli O157 isolates showed the 
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TABLE 9. Sources and serotypes of E. coli O157 isolates 
Number of isolates by serotypes  Source of isolation Total number of 

isolates collected  
O157:H7 O157:NM 

 
Sludge 

 
35 

 
19 

 
16 
 

Water 19 8 11 
 

Chutes 37 24 13 
 

Retention pond  1 1 0 
 

Drainage 4 2 2 
 

Hide 221 69 152 
 

Total 317 123 194 
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TABLE 10. The number of E. coli O157 isolates from various sources resistant to 23 antibiotics 
Resistance to  Source 

of 
isolates FOXa CXM CTT CAZ K TIC S IPM G NN CZ AMC NA CRO  TE AN C CF SXT CIP  GM AM XNL 
 
Sludge 7 5 5 4 1 6 6 0 23 0 0 7 6 2 10 1 7 16 1 0 0 10 8 
 
Water 2 4 3 3 1 4 5 0 11 1 0 4 1 0 5 0 4 12 7 0 0 5 7 
 
Chute 0 1 0 0 4 2 11 0 22 1 0 0 7 0 10 1 0 19 1 0 0 2 9 
 
RTb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
 
Drainage 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 1 0 4 0 0 0 0 0 
 
Hide 0 0 0 0 0 0 0 0 120 0 0 0 18 0 3 1 0 91 1 0 0 0 14 
 
Total 9 10 8 7 6 12 26 0 176 2 0 11 32 2 28 4 11 143 10 0 0 17 38 

 
a FOX:  Cefoxitin;  CXM:  Cefuroxime;  CTT:  Cefotetan;,  CAZ:  Ceftazidime;  K:  Kanamycin;  TIC:  Ticarcillin;  S:  Streptomycin;  IPM:  Imipenem;   
G:  Sulfisoxazole;  NN:  Tobramycin;  CZ:  Cefazolin;  AMC:  Amoxicillin/clavulanic acid;  NA:  Nalidixic acid; CRO:  Ceftriaxone;  TE:  Tetracycline; 
AN:  Amikacin;  C:  Chloramphenicol;  CF:  Cephalothin;  SXT:  Trimethoprim -sulfamethoxazole;  CIP:  Ciprofloxacin;  GM:  Gentamicin;  
AM:  Ampicillin;  XNL:  Ceftiofur. 
b RT:  retention pond.  
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highest level of resistance to sulfisoxazole and cephalothin.  In addition, there was a high 

level of resistance to streptomycin, nalidixic acid, tetracycline, ampicillin, and ceftiofur.  

This finding supports previous studies that found E. coli O157 highly resistant to 

tetracycline, sulfamethoxazole, cephalothin, and ampicillin (41, 78, 129). 

Similar levels of antimicrobial resistance occurred in E. coli O157 isolates from 

sludge and water samples.  This similar pattern may be because both environmental 

samples originated from the same waste pond.  In addition, E. coli O157 isolates from 

the hide were mainly resistant to sulfisoxazole (54%) and cephalothin (41%).  All E. coli 

O157 isolates, regardless of the source of isolation, were susceptible to imipenem, 

cefazolin, ciprofloxacin, and gentamicin, similarly found in previous reports.  Schroeder 

et al. (102) found all E. coli O157 isolates from different sources of isolation (human, 

cattle, swine, and food) were susceptible to cefoxitin, ceftriaxone, gentamicin, nalidixic 

acid, ciprofloxacin, ceftiofur, and trimethoprim-sulfamethozaxole.  

The 35 E. coli O157 isolates recovered from sludge were most resistant to 

sulfisoxazole (66%), cephalothin (46%), ampicillin (29%), and to tetracycline (29%),  

and a small percentage (up to 23%) of isolates were resistant to other antimicrobials 

tested (Fig. 14).  E. coli O157 isolates (n = 19) from water were widely resistant to all 

antimicrobials tested, except imipenem, cefazolin, ceftriaxone, amikacin, ciprofloxacin, 

gentamicin (Fig. 15).  E. coli O157 isolates (n = 37) from chute were mainly resistant to 

streptomycin (30%), sulfisoxazole (59%), tetracycline (27%), cephalothin (51%), and 

ceftiofur (24%) (Fig. 16).  One E. coli O157 isolate recovered from the retention pond 
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FIG. 14. Antimicrobial resistance among E. coli O157 isolates recovered from pond sludge (n = 35). 
  
a FOX:  Cefoxitin;  CXM:  Cefuroxime;  CTT:  Cefotetan;,  CAZ:  Ceftazidime;  K:  Kanamycin;  TIC:  Ticarcillin;  S:  Streptomycin;  IPM:  Imipenem;  G:  Sulfisoxazole;   
NN:  Tobramycin;  CZ:  Cefazolin;  AMC:  Amoxicillin/clavulanic acid;  NA:  Nalidixic acid; CRO:  Ceftriaxone;  TE:  Tetracycline;  AN:  Amikacin;  C:  Chloramphenicol;   
CF:  Cephalothin;  SXT:  Trimethoprim -sulfamethoxazole;  CIP:  Ciprofloxacin;  GM:  Gentamicin;   AM:  Ampicillin;  XNL:  Ceftiofur. 
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FIG. 15. Antimicrobial resistance among E. coli O157 isolates recovered from waste pond water (n = 19). 
 
a FOX:  Cefoxitin;  CXM:  Cefuroxime;  CTT:  Cefotetan;,  CAZ:  Ceftazidime;  K:  Kanamycin;  TIC:  Ticarcillin;  S:  Streptomycin;  IPM:  Imipenem;  G:  Sulfisoxazole;   
NN:  Tobramycin;  CZ:  Cefazolin;  AMC:  Amoxicillin/clavulanic acid;  NA:  Nalidixic acid; CRO:  Ceftriaxone;  TE:  Tetracycline;  AN:  Amikacin;  C:  Chloramphenicol;   
CF:  Cephalothin;  SXT:  Trimethoprim -sulfamethoxazole;  CIP:  Ciprofloxacin;  GM:  Gentamicin;   AM:  Ampicillin;  XNL:  Ceftiofur. 
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FIG. 16. Antimicrobial resistance among E. coli O157 isolates recovered from chute (n = 37). 
 
a FOX:  Cefoxitin;  CXM:  Cefuroxime;  CTT:  Cefotetan;,  CAZ:  Ceftazidime;  K:  Kanamycin;  TIC:  Ticarcillin;  S:  Streptomycin;  IPM:  Imipenem;  G:  Sulfisoxazole;   
NN:  Tobramycin;  CZ:  Cefazolin;  AMC:  Amoxicillin/clavulanic acid;  NA:  Nalidixic acid; CRO:  Ceftriaxone;  TE:  Tetracycline;  AN:  Amikacin;  C:  Chloramphenicol;   
CF:  Cephalothin;  SXT:  Trimethoprim -sulfamethoxazole;  CIP:  Ciprofloxacin;  GM:  Gentamicin;   AM:  Ampicillin;  XNL:  Ceftiofur. 
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was only resistant to cephalothin and susceptible to all other antimicrobials tested (Fig. 

17).  Virtually, all 4 E. coli O157 isolates from drainage were susceptible to most of the 

antimicrobials tested.  It was noted that 25-100% of E. coli O157 isolates from drainage 

were resistant to streptomycin (100%), cephalothin (100%), and amikacin (25%), (Fig.  

18).  E. coli O157 isolates from hide were most 54% resisted to sulfisoxazole, 41%  to 

cephalothin, 8% to nalidixic acid, 1% to tetracycline, and 6% to ceftiofur;  however, less 

than 1% of 221 hide isolates was resistant to amikacin, and to trimethoprim-

sulfamethoxazole (Fig. 19).   

A high level of resistance to sulfamethoxazole and tetracycline among E. coli 

O157:H7 isolates recovered from humans and cattle has been previously reported (102).  

In the current study, it is not surprising that tetracycline-resistance among E. coli O157 

isolates from the feedlot environment was discovered since sulfa drugs and tetracycline 

are approved for use in cattle production (Food and Drug Administration, The FDEA 

Approved Animal Drugist, the Green Book) (40).  In the current study, approximately 9% 

of E. coli O157 isolates recovered were resistant to tetracycline.  This finding supports 

the Schroeder et al. (102) study which found approximately 10% of Shiga Toxin-

producing E. coli isolated from humans, cattle, swine, and food were tetracycline 

resistant. Parallel to Schroeder et al. (102), our study showed low overall resistance to 

amoxicillin-clavulanic acid (3%) among 317 E. coli O157 isolates.   Only 20 and 21% of 

E. coli O157 isolates recovered from sludge and water sample, respectively, were 

discovered to exhibit amoxicillin-clavulanic acid resistance.  However, Galland et al. (41) 

has shown among E. coli O157:H7 isolated from 47% cattle (27 of 57) were resistant to 
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FIG. 17. Antimicrobial resistance among E. coli O157 isolates recovered from retention pond (n = 1). 
 
a FOX:  Cefoxitin;  CXM:  Cefuroxime;  CTT:  Cefotetan;,  CAZ:  Ceftazidime;  K:  Kanamycin;  TIC:  Ticarcillin;  S:  Streptomycin;  IPM:  Imipenem;  G:  Sulfisoxazole;  
NN:  Tobramycin;  CZ:  Cefazolin;  AMC:  Amoxicillin/clavulanic acid;  NA:  Nalidixic acid; CRO:  Ceftriaxone;  TE:  Tetracycline;  AN:  Amikacin;  C:  Chloramphenicol;   
CF:  Cephalothin;  SXT:  Trimethoprim -sulfamethoxazole;  CIP:  Ciprofloxacin;  GM:  Gentamicin;   AM:  Ampicillin;  XNL:  Ceftiofur. 
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FIG. 18. Antimicrobial resistance among E. coli O157 isolates recovered from drainage (n = 4). 
 

a FOX:  Cefoxitin;  CXM:  Cefuroxime;  CTT:  Cefotetan;,  CAZ:  Ceftazidime;  K:  Kanamycin;  TIC:  Ticarcillin;  S:  Streptomycin;  IPM:  Imipenem;  G:  Sulfisoxazole;  
NN:  Tobramycin ;  CZ:  Cefazolin;  AMC:  Amoxicillin/clavulanic acid;  NA:  Nalidixic acid; CRO:  Ceftriaxone;  TE:  Tetracycline;  AN:  Amikacin;  C:  Chloramphenicol;   
CF:  Cephalothin;  SXT:  Trimethoprim -sulfamethoxazole;  CIP:  Ciprofloxacin;  GM:  Gentamicin;   AM:  Ampicillin;  XNL:  Ceftiofur. 
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FIG. 19. Antimicrobial resistance among E. coli O157 isolates recovered from hide (n = 221). 
 
a FOX:  Cefoxitin;  CXM:  Cefuroxime;  CTT:  Cefotetan;,  CAZ:  Ceftazidime;  K:  Kanamycin;  TIC:  Ticarcillin;  S:  Streptomycin;  IPM:  Imipenem;  G:  Sulfisoxazole;  
NN:  Tobramycin;  CZ:  Cefazolin;  AMC:  Amoxicillin/clavulanic acid;  NA:  Nalidixic acid; CRO:  Ceftriaxone;  TE:  Tetracycline;  AN:  Amikacin;  C:  Chloramphenicol;   
CF:  Cephalothin;  SXT:  Trimethoprim -sulfamethoxazole;  CIP:  Ciprofloxacin;  GM:  Gentamicin;   AM:  Ampicillin;  XNL:  Ceftiofur. 
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amoxicillin-clavulanic acid.  The difference between the study of Galland et al. (41) and 

ours may be due to different methodologies (dilution susceptibility test) used to 

determine resistance as well as a difference in resistance breakpoint (>4/2 µg/ml versus 

20/10 µg/ml).  In addition, antibiotic resistance may be due to temporal and geographical 

differences of the studies, as the Galland et al. (41) study was conducted in the 

southwestern regions of Kansas over an 11-month time frame.   

A number of previous studies have demonstrated that antibiotic-resistant 

microorganisms recovered from food animals may colonize the human population via 

the food chain through occupational exposure or waste runoff from animal production 

facilities (118, 127).  Therefore, the possibility exists that the resistance of E. coli O157 

to certain antibiotics may be transferred from cattle to the environment. 

Cattle are implicated as reservoirs of E. coli O157 (129);  therefore, the 

continued use of sulfa drugs and tetracycline derivatives in cattle may increase resistance 

selection among these organisms (127, 129).  It is a possible that these resistant bacteria 

may be transferred from cattle to environment.  This possibility may affect the findings 

of resistance patterns of E. coli O157 isolates recovered from feedlot environment and 

cattle hides.  Interestingly, only a small percentage of E. coli O157 isolates in this study 

were resistant to cefoxitin (3%), chloramphenicol (3%), and nalidixic acid (1%), and 

none of these antibiotics are approved for use in cattle in the U.S.  A similar finding was 

observed by Schroeder et al. (102).   
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In this study, it was observed that there was a connection among the microbial 

ecosystems of cattle, and hide and feedlot environment; however, it may be difficult to 

identify the origin of the antimicrobial resistance observed in this study.   

Multiple antimicrobial resistances        

 Only 9 (3%) of the isolates analyzed were resistant to more than 10 

antimicrobials, however, 126 (40%) isolates were resistant to one or more antimicrobial 

(Table 11).  Multiple antibiotic resistance frequencies were lowest for isolates from the 

retention pond and drainage, while isolates from sludge and water had the highest 

resistance frequencies. 

Multiple antimicrobial resistance in E. coli O157 may be partially due to the 

spread of genetic elements such as plasmids, transposons, and integrons which can carry 

resistance to numerous antimicrobials (129).  Schroeder et al. (102) demonstrated that 

the multiple antimicrobial-resistant phenotypes observed resulted from the spread of 

mobile genetic elements.  In that study, ampicillin-resistant E. coli O157 isolates were      

also resistant to streptomycin and tetracycline, suggesting resistance genes for these 

drugs are linked on plasmids.  A similar observation was found in the current study with 

multiresistance observed more frequently than in the Schroeder et al. study (102).  

Genomic relatedness among E. coli O157 using rep-PCR DNA fingerprinting 

 A total of 101 representative E. coli O157 isolates were submitted for analysis by 

rep-PCR DNA fingerprinting to Bacterial BarCodes, Inc., Houston, Tex.).  These 101 

isolates consisted of 47 E. coli O157 isolates from feedlot environments and 54 hide 

isolates.  Two primers were assessed for their ability to discriminate between the  
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TABLE 11. Multiple antimicrobial resistances among the 317 E. coli O157 isolates  

Number of isolates No. of antimicrobials to which 
resistance was shown Hide 

(n=221) 
Environmental 

(n=96) 
 
0 

 
66 

 
10 
 

1 99 27 
 

2 41 21 
 

3 12 11 
 

4   1   6 
 

5   1   4 
 

6   0   3 
 

7   0   1 
 

8   0   2 
 

9   0   2 
 

>10   0   9 
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isolates:  Uprime-B1 with the DiversiLab fingerprinting kit and Uprime-RI with the 

repPRO fingerprinting kit.  

In the current study, the Uprime-B1 primer resulted in greater discrimination 

between the isolates than Uprime-RI primer and was, therefore, used for the 

interpretation (Fig. 20).  Similarly, Dombek et al. (34) determined that the DNA 

fingerprints obtained with the BOX (Uprime-B1) primer were more effective for 

grouping bacteria strains than the DNA fingerprints obtained with REP (Uprime-RI) 

primers.  

 To reveal the relatedness of E. coli O157:H7 isolates, a dendrogram based on 

Uprime-B1 fingerprint data was constructed (Fig. 21).  All isolates in this study were 

grouped into six clusters, separated at a relative genetic similarity of 53%;  however, 

most isolates obtained from this study had rep-PCR banding patterns identical or closely 

similar to each other with an average similarity coefficient of 92%.  Based on these 

results, the majority of the environmental (29/47) and hide (51/54) isolates fell into the 

first cluster.    

 As shown in Fig. 21, cluster 1 consisted of 80 isolates (29 E. coli O157 isolates 

from environmental feedlot and 51 E. coli O157 isolates from cattle hides) which 

appeared indistinguishable with similarity coefficients greater than 97%.  Cluster 2 

consisted of 9 isolates, all from environmental sources (mostly from feedlot 3), which 

appeared indistinguishable with similarity coefficients greater than 98%.  These isolates 

were highly similar to the isolates in cluster 1 with an average similarity of 96%.  Cluster 

3 consisted of 2 isolates, 1 environment and 1 hide isolate.  These isolates were highly  
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FIG. 20. rep-PCR DNA fingerprint patterns of E. coli O157 strains obtained from 
feedlot environment and cattle hides.  (A) PCR DNA fingerprint patterns generated 
with Uprime-B1 primer with the DiversiLab fingerprinting kit.  (B) PCR DNA 
fingerprint patterns generated with Uprime-RI primers with the repPRO 
fingerprinting kit.  The E. coli O157 strains used for the fingerprint analysis shown 
in panel B are identical to the  strains used for the analysis shown in panel A.   
 
Lanes 1 and 26 contained an external standard, a 1-kb molecular weight ladder.  
Lane 2, 8: E. coli O157:NM, from cattle hides, collecting day 1;  Lanes3-7 E. coli O157:H7 from cattle hide, 
collecting day 1;  Lane s 9, 10, 14, 16, 18, 19:  E. coli O157:NM, from cattle hide, collecting day 2;  Lane 11-
13, 15, 17, 20-25:  E. coli O157:H7 from cattle hide, collecting day 2. 
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FIG. 20. Continued. 
 
Lanes 1 and 26 contained an external standard, a 1-kb molecular weight ladder.  
Lanes 8-9, 17:  E. coli O157:NM, from cattle hide, collecting day 2;  Lanes 2-7,  10-16, 18-25:  E. coli 
O157:H7 from cattle hide, collecting day 2. 
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FIG. 20. Continued.  
 
Lanes 1 and 26 contained an external standard, a 1-kb molecular weight ladder.  
Lanes 2-7:  E. coli O157:H7, from cattle hide, collecting day 2; Lanes 8-9, 11-13: E. coli O157:H7 from F4 on 
Jul; Lane 10: E. coli O157:H7 from F1 on Jul, Lane 14-15:  E. coli O157:H7 from F5 on Jul; Lanes 16-17:  E. 
coli O157:H7 from F2 on Aug; Lane 18:  E. coli O157:NM  from F2 on Aug;  Lanes 19:  E. coli O157:H7 
from F3 on Aug;  Lanes 21: E. coli O157:NM from F5 on Sept; Lanes 20, 22-23: E. coli O157:H7 from F5 on 
Sept;  Lane 24:  E. coli O157:H7 from F2 on Sept;  Lane 25:  E. coli O157:NM from F3 on Sept 
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FIG. 20. Continued.   
 
Lanes 1 and 26 contained an external standard, a 1-kb molecular weight ladder.  
Lanes 2: E. coli O157:H7, from F5 on Oct; Lane 3-4:  E. coli O157:H7 from F1 on Nov; Lane 5:  E. coli 
O157:NM  from F2 on Nov;  Lanes 6, 8:  E. coli O157:H7 from F2 on Nov;  Lanes 7, 9:  E. coli O157:NM 
from F2 on Nov;  Lane 10:  E. coli O157:NM from F4 on Dec;  Lane 11:  E. coli O157:H7 from F4 on Dec; 
Lane 12:  E. coli O157:NM from F5 on Dec; Lane 13:  E. coli O157:H7 from F5 on Dec; Lane 14:  E. coli 
O157:NM  from F1 on Dec; Lane 15:  E. coli O157:H7 from F1 on Dec; Lane 16:  E. coli O157:H7 from F1 on 
Feb; Lane 17:  E. coli O157:NM from F2 on Feb; ; Lane 18:  E. coli O157:NM from F5 on Feb; Lane 19:  E. 
coli O157:NM from F2 on Mar; Lane 20:  E. coli O157:H7 from F2 on Mar; Lane 21:  E. coli O157:H7 from 
F3 on Mar;  Lanes 22-25:  E. coli O157:NM from F3 on Mar. 
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FIG. 20. Continued.   
 
Lanes 1 and 7 contained an external standard, a 1-kb molecular weight ladder.  
Lanes 2-5:  E. coli O157:H7 from F3 on Mar; Lane 6:  E. coli O157:NM from F3 on Mar. 
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FIG. 21. Uprime-B1 dendrogram representing genetic relationships between E. coli O157 isolates based on rep-
PCR fingerprints. 
* Muck: pond sludge 
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FIG. 21. Continued. 
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similar, if not indistinguishable, and had a similarity coefficient of 96%.  These two 

isolates were also very closely related to the isolates in clusters 1 and 2 with an average 

similarity of 93%.  Cluster 4 consisted of 5 environmental isolates.  In this cluster, 

isolates from feedlot 2 (n = 3) and feedlot 5 (n = 1) appeared indistinguishable with a 

similarity coefficient greater than 99%.  The E. coli O157:H7 isolate from the chute of 

feedlot 2 was highly similar to the other isolates in this cluster with a similarity 

coefficient of 95%.  The isolates in cluster 4 were highly similar to the isolates in 

clusters 1 to 3 with an average similarity coefficient of 93%.  Cluster 5 consisted of 4 

isolates, 3 environmental and 1 hide isolate.  These isolates appeared indistinguishable 

with a similarity coefficient of 98%.  Again, these isolates were highly similar to the 

isolates in clusters 1 to 4, with an average similarity coefficient of 92%.  Finally, cluster 

6 contains only one E. coli O157:H7 isolated from a cattle hide.  This isolate appears 

different from all other isolates in this sample set, with an average similarity of 53%.   

 Most of the isolates (100/101) obtained from this study had rep-PCR banding 

patterns closely related to each other.  Due to the low potential of detecting identical 

strains from epidemiologically unrelated sources by chance alone, it is extremely likely 

that E. coli O157 isolates from the cattle production environment, with identical 

subtypes, are related in the terms of ecology and epidemiology (96, 94).  The results of 

the current study revealed possible point source feedlot contamination and within feedlot 

transmission and the possibility of more than one source of E. coli O157:H7 in each 

feedlot.  As most hide isolates were identified as the same type, it may be considered 

that rep-PCR may not be sufficiently discriminatory for E. coli O157 strains, and a use 
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of a more discriminatory method for the subtyping of E. coli O157 isolates may be 

advised.  Akiba et al. (3) previously described the emergence of closely related PFGE 

clonal types during bovine colonization.  Similarly, Mechie et al. (76) found all strains of 

E. coli O157 isolated throughout 15 month study of E. coli O157:H7 in a dairy herd be 

indistinguishable.  However, Akiba et al. (3) and Faith et al. (37) studies found more 

than one type of E. coli O157 strains discovered in the experiment which determined 

genomic DNA by PFGE.  This technique has been used in number of investigations of E. 

coli O157 in cattle environments (37, 51, 70, 91, 96, 103), and is regarded as the “gold 

standard” for subtyping of E. coli O157 in epidemiological studies (34).   

 Bacterial turnover associated with cattle and the cattle environment may create a 

specific condition for selected E. coli O157.  Due to complexity, two previous studies 

(57, 131) suggested that bacterial turnover associated with rumen development and 

interactions with other gastrointestinal flora may result in the creation of a niche suitable 

for the colonization and proliferation of E. coli O157 strain acquired from the drinking 

water microcosm.  The current results may suggest clonal spread of the E. coli O157 

within the feedlots; however, there is the possibility of variation between strains that was 

not detected by rep-PCR.  Similar strains isolated in feedlots indicate a common source.  

In addition, the current results indicated that E. coli O157 isolates may be able to 

maintain, transmit, and persist within feedlot environments.  A similar finding was 

reported by Renter et al. (94) who determined isolation frequency and persistence of E. 

coli O157 strains from range cattle production environments over an 11-month study.  

Rice et al. (96), and Shere et al. (103) reported that E. coli O157 strains were persistently 
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isolated from a bovine production environment for up to 2 years.  Similarly, Laegreid et 

al. (68) indicated the maintenance, transmission, and distribution characteristics of E. 

coli O157 subtypes isolated from production environments.   
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CONCLUSIONS 

 During the course of this study, E. coli O157 was isolated from hide and 

environmental samples.  E. coli O157 was most often isolated with peak prevalence 

during November and March.  The most commonly contaminated sites in the feedlot 

environment were the chute area and sludge from a waste water pond.  When 

environmental factors, such as ambient, water, and pond sludge temperature were low 

temperature, a decrease in the prevalence of E. coli O157 in the feedlot environment was 

observed.  No correlation with other environmental factors, such as liquid levels in the 

pond and electrical conductivity was observed.  Cattle hide has been implicated as one of 

the major sources of E. coli O157.  The number of positive hide samples varied widely 

between days which may reflect different animal husbandry practices between farms.  A 

similar pattern in antibiotic resistance frequencies was detected in E. coli O157 isolates, 

from pond sludge and water samples, while hide isolates had unique antimicrobial 

resistance.  This difference could reflect the intensive use of antibiotics in the cattle for 

therapeutic and prophylactic purposes, and in some cases as growth promoters to 

improve cattle production.  Most E. coli O157 isolates from the feedlot environment and 

hide had a high prevalence of cephalothin and sulfisoxazole resistance.  In addition, 

multiple antimicrobial resistance to more than 10 antibiotics was observed in E. coli 

O157 isolates from feedlot environment.  The increasing prevalence of multiple 

antimicrobial resistance in the isolates of environmental and hide origins may have 

occurred due to intensive use of antimicrobial agents.  A correlation may exist between 
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intensive use of antibiotics and increasing antimicrobial resistance in E. coli O157; 

however, there was no prior documentation in this study to support this observation.  All 

strains of E. coli O157 isolated throughout this study were closely related with regard to 

rep-PCR DNA fingerprinting.  There is the possibility that variation between E. coli 

O157 strains in this study was not detected by rep-PCR, and the use of a more 

discriminatory method may be advised.  However, this finding may demonstrate the 

possible persistence of this specific strain on the cattle hide, since the majority of hide 

isolates were closely related and grouped into one cluster.  This finding has been 

supported by previous research showing closely related strains.  In addition, recovery of 

this strain from cattle hide, and from the feedlot environment on multiple visits, may 

indicate that the maintenance, transmission, and persistence of this strain are enhanced 

by the cattle production environment.  Results obtained from this study may serve to 

assist in developing strategies for adjusting management practices at feedlots to 

minimize the potential for contamination of animals with E. coli O157:H7. 
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