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ABSTRACT 
 
 
 

Phylogeny of Geophagine Cichlids from South America (Perciformes: Labroidei). 

(August 2004)  

Hernán López Fernández, B.S., Universidad de Los Andes, Venezuela  

Co-Chairs of Advisory Committee:  Dr. Kirk O. Winemiller 
     Dr. Rodney L. Honeycutt 

 
 
 

Three new species of cichlid fishes of the genus Geophagus, part of the 

Neotropical subfamily Geophaginae, are described from the Orinoco and Casiquiare 

drainages in Venezuela.  Phylogenetic relationships among 16 genera and 30 species of 

Geophaginae are investigated using 136 morphological characters combined with DNA 

sequences coding for the mitochondrial gene NADH dehydrogenase subunit 4 (ND4) 

and the nuclear Recombination Activating Gene 2 (RAG2).  Data from previous studies 

are integrated with the new dataset by incorporating published DNA sequences from the 

mitochondrial genes cytochrome b and 16S and the microsatellite flanking regions Tmo-

M27 and Tmo-4C4.  Total-evidence analysis revealed that Geophaginae is monophyletic 

and includes eighteen genera grouped into two major clades.  In the first clade, the tribe 

Acarichthyini (genera Acarichthys and Guianacara) is sister-group to a clade in which 

Gymnogeophagus, ‘Geophagus’ steindachneri, and Geophagus sensu stricto are sister to 

‘Geophagus’ brasiliensis and Mikrogeophagus; all these are in turn sister-group to 

Biotodoma, Dicrossus and Crenicara.  In the second clade, Satanoperca, Apistogramma 

(including Apistogrammoides), and Taeniacara are sister to Crenicichla and Biotoecus.  

Monophyly and significantly short branches at the base of the phylogeny indicate that 

genera within Geophaginae differentiated rapidly within a relatively short period.  High 

morphological, ecological, and behavioral diversity within the subfamily suggest that 

geophagine divergence may be the result of adaptive radiation. 
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CHAPTER I 

 

INTRODUCTION 

 

Cichlid fishes are one of the largest and most diverse families of vertebrates.  

Their explosive radiations in the East African Great Lakes are some of the most 

astonishing examples of adaptive radiation among vertebrates (e.g. Barlow 2000; 

Schluter 2000), and have rightfully become models in the study of evolutionary biology 

(e.g. Meyer 1993; Stiassny and Meyer 1999; Kornfield and Smith 2000; Verheyen et al. 

2003).  Unfortunately, interest in the East African radiations has largely eclipsed the 

study of riverine cichlids, and little is known about the evolution of this large portion of 

the family.  Fluviatile cichlids are highly diverse, and new species are continually 

described from West and Central Africa (e.g. Lamboj and Snoeks 2000; Lamboj and 

Stiassny 2003; Lamboj 2004;), and especially from the Neotropics (e.g. Kullander 1980; 

1986; 1988; 1989; 1990; Kullander et al. 1992; Lucena and Kullander 1992; López-

Fernández and Taphorn 2004).  According to Reis et al. (2003), 406 species of 

Neotropical cichlids were described by the end of the year 2002, and they estimated 

another 165 remaining to be described. 

This dissertation provides a systematic analysis of the Neotropical cichlid 

subfamily Geophaginae, offering the most resolved genus-level phylogeny available to 

date.  Clarification of phylogenetic relationships within the geophagine clade is required 

for studying the evolutionary biology of these ecologically and morphologically diverse 

cichlids.  The present work establishes the systematic foundation for comparative study 

of the evolution of geophagine diversity.  Chapter I summarizes the status of systematic 

knowledge of geophagine cichlids, briefly describes geophagine taxonomic diversity, 

and introduces the remarkable ecological, behavioral, and morphological diversity of the 

clade.  This chapter aims to highlight the potential of geophagines as a model system for 

_______________ 

This dissertation follows the style and format of Evolution. 
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the study of evolutionary ecology of riverine tropical fishes.  Chapter II provides a 

description of 3 new species of Geophagus from the Orinoco and Casiquiare drainages 

of Venezuela (López-Fernández and Taphorn 2004).  This chapter underscores the need 

for intense taxonomic work on geophagine cichlids, and provides an example of how to 

use taxonomic descriptions as summaries of knowledge about particular taxa.  When 

presented in this manner, species descriptions provide a starting point for future 

biological research.  The establishment of a phylogeny provides an interpretive 

framework for detailed studies of geophagine evolution, therefore, chapters III and IV 

pertain to the reconstruction of phylogenetic relationships within Geophaginae.  Chapter 

III is a molecular study of phylogenetic relationships derived from analyses of combined 

mitochondrial and nuclear DNA sequences.  This chapter also includes a comparison of 

relative rates of molecular evolution among Neotropical cichlid clades, especially among 

geophagine genera.  Finally, the phylogenetic evidence is used to evaluate the hypothesis 

that patterns of divergence within these Neotropical riverine cichlids provide evidence of 

an adaptive radiation.  Chapter IV explores geophagine relationships with the combined 

analysis of molecular and morphological characters.  This is the first comprehensive 

total-evidence analysis of a Neotropical cichlid clade.  The relative contribution of 

different kinds of data and congruence among partitions are analyzed, and a provisional, 

but completely resolved, phylogeny of Geophaginae is proposed.  Finally, taxonomic 

and evolutionary implications of the proposed phylogeny are addressed, as well as 

aspects of cichlid evolution that may affect our ability to recover a strongly supported 

geophagine phylogeny.  Chapter V summarizes the main conclusions of this study, and 

suggests an integrative approach for studying the evolutionary history of the geophagine 

adaptive radiation. 
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SYSTEMATICS OF NEOTROPICAL CICHLIDS 

 

Several informal attempts have been made to classify the genera of the American 

Cichlidae (e.g. Kullander 1983; 1986; 1996; Kullander and Nijssen 1989; Kullander and 

Silfvergrip 1991).  Only recently, however, formal cladistic analyses of the Neotropical 

clades have been carried on by Kullander (1998) and Farias et al. (1998; 1999; 2000; 

2001), leading to some understanding of high-level relationships among major groups 

(see also Stiassny 1991; Casciotta and Arratia 1993).  Using a morphology-based 

phylogeny, Kullander (1998) subdivided the Neotropical Cichlidae and the African 

genus Heterochromis into six subfamilies and several tribes.  The subfamilies 

Retroculinae (genus Retroculus) and Cichlinae (Cichla, Crenicichla, and Teleocichla) 

constituted the basal clades of the American assemblage.  Heterochromidinae 

(Heterochromis) was nested between these two and Astronotinae (Astronotus and 

Chateobranchus), which constituted the sister group to the rest of the Neotropical 

assemblage.  The more derived subfamilies, Geophaginae and Cichlasomatinae, included 

all the remaining genera within the American cichlids.  Cichlasomatinae comprised three 

tribes (Acaroniini, Heroini, and Cichlasomatini), and included more than 25 genera.  

Geophaginae were divided into three tribes: Acarichthyini (genera Acarichthys and 

Guianacara), Crenicaratini (Biotoecus, Crenicara, Dicrossus, and Mazarunia), and 

Geophagini (Geophagus, Mikrogeophagus, ‘Geophagus’ brasiliensis, ‘Geophagus’ 

steindachneri, Gymnogeophagus, Satanoperca, Biotodoma, Apistogramma, 

Apistogrammoides and Taeniacara).  Recent molecular (Farias et al. 1999) and total 

evidence analyses including Kullander’s morphological data (Farias et al. 2000; 2001) 

showed Heterochromis to be part of a monophyletic African clade, which in turn is sister 

to the entire Neotropical assemblage.  Additionally, Crenicichla was nested within 

Geophaginae, and Chaetobranchus and Chaetobranchopsis were weakly placed between 

Geophaginae and Cichlasomatinae.  Despite the contribution of these analyses to the 

clarification of higher-level relationships, the lack of relevant taxa limits the 

phylogenetic resolution of these studies and leaves many questions of geophagine 
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relationships unanswered.  Although geophagine monophyly seems indisputable, there is 

considerable disagreement between morphological and molecular evidence when 

analyzed separately, and the relationships within Geophaginae are not clear.   

Kullander (1998) defined Geophaginae based on the combination of six 

ambiguous morphological synapomorphies that appear together only in that clade but are 

individually observed in other Neotropical taxa.  Within the subfamily, the tribe 

Crenicaratini is diagnosed by seven non-unique synapomorphies and contains small 

species with many autapomorphic characters and loss of osteological features (Kullander 

1990).  This condition may be related to the small size, and difficulties in determining 

homology could complicate the establishment of valid relationships (Buckup 1993).  

Unfortunately, Farias et al.’s studies (2000; 2001) included either Crenicara or 

Biotoecus, but never analyzed them together, and failed to include Dicrossus, thus 

leaving Crenicaratini monophyly untested.  Kullander’s Acarichthyini were 

characterized by two unique synapomorphies, and monophyly is supported by most 

molecular and combined evidence (Farias et al. 1999; 2000).  The tribe Geophagini was 

characterized by the combination of four synapomorphies, two of them unambiguous.  

This clade was relatively well supported by morphological features (Kullander 1998), 

especially by the possession of an epibranchial lobe, a laminar, anteroventral expansion 

of the first epibranchial bone, supporting a connective tissue pad (Kullander’s character 

5, state 1).  No other group of cichlids or any other fish group is known to bear such a 

structure (Kullander 1998).  The epibranchial lobe of the Geophagini is probably present 

in the Crenicaratini, but it is not clear from Kullander’s (1998) character descriptions if 

he considers the structures in both groups as homologous.  Kullander’s analysis was 

based on an extensive taxon sampling of cichlids, and his proposed geophagine 

relationships were based on the analysis of 13 genera of geophagines (sensu Kullander) 

plus Crenicichla and Teleocichla.  The studies of Farias et al. (1999; 2000; 2001) are not 

suited for testing Kullander’s hypothesis, because taxon sampling is insufficient.  Farias 

et al. (2000) included only 11 genera in their molecular total evidence analysis and 9 in 

the combined analysis of molecular and morphological data.  Their second (Farias et al. 
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2001) study included just 8 of the 18 genera of Geophaginae.  All their total evidence 

analyses lacked the genera Satanoperca, Biotoecus, Crenicara, Dicrossus, and the 

‘Geophagus’ steindachneri group, and several additional genera were present in some 

analyses but absent in others (Farias et al. 2000; 2001).  Clearly, exclusion of these taxa 

makes it impossible to test the monophyly of Kullander’s (1998) tribes Crenicaratini and 

Geophagini, and impedes further resolution of internal relationships within the 

subfamily.  Better taxon sampling and incorporation of new data are requisites to clarify 

relationships within Geophaginae.   

 

TAXONOMIC, ECOMORPHOLOGICAL, AND REPRODUCTIVE DIVERSITY OF 

GEOPHAGINAE 

 

Geophaginae is a mostly South American clade that includes 18 genera and over 

180 described species (Kullander 2003), with many remaining to be described (Weidner 

2000).  Only two species in the ‘Geophagus’ steindachneri group (‘G.’ pellegrini and 

‘G.’ crassilabris) reach the southern portion of Panama, and the genus as a whole has a 

trans-Andean distribution, with the Lake of Maracaibo being its eastern-most limit.  All 

other genera are exclusively South American.  Only Satanoperca (7 described species), 

Crenicichla (74), and Apistogramma (53) are common in the Orinoco, Amazonas, La 

Plata, and the Guianas basins, with the remaining genera having more restricted ranges.  

Geophagus sensu stricto (14), Biotodoma (2), Biotoecus (2), Dicrossus (2), and 

Mikrogeophagus (2) are present in both the Orinoco and Amazonas basins, although the 

latter has a disjunct distribution, being in the Orinoco and the upper Madeira drainages, 

but not in the main Amazon stem.  Guianacara (4) is present in black waters of the 

Orinoco basin and in the Guianas.  Acarichthys (1) is widespread in the Amazon and the 

Guianas, and Crenicara (2) and Apistogrammoides (1) are restricted to the Amazon.  

The ‘Geophagus’ brasiliensis group (4) is restricted to the Atlantic drainages of Brazil 

and Uruguay, and Gymnogeophagus (9) is present only in the La Plata basin (i.e. 

Paraguay, Uruguay and Paraná drainages).  The remaining genera have very localized 
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distributions, with Taeniacara (1) being known only from the Rio Negro (Brazil), 

Mazarunia from the Mazaruni river (Guyana), and Teleocichla (7) from the Rio Xingu 

(Brazil) (see Kullander 2003 for more details on distribution). 

A common phenomenon in the history of geophagine taxonomy was the 

description of genera and species with broad distributions, sometimes spanning almost 

all of South America (e.g. Geophagus Heckel, Geophagus surinamensis (Bloch 1791), 

Satanoperca jurupari (Heckel 1840), see Gosse 1975).  Recent taxonomic work, 

however, has revealed that these widely distributed genera and species actually included 

large numbers of unrecognized taxa (e.g. Kullander 1983; 1986; Kullander and Nijssen 

1989; López-Fernández and Taphorn 2004).  Although taxonomic knowledge of 

geophagine cichlids has improved significantly in the last three decades (e.g. Kullander 

1986, 1988, 1989, 1998; Kullander and Nijssen 1989), a thorough description of 

geophagine diversity is not available.  For example, Kullander’s (1986) partial revision 

of the genus Geophagus (sensu Gosse 1975) resurrected the genus Satanoperca.  

Kullander also restricted Geophagus to taxa with paired caudal extensions of the swim 

bladder lined by epihemal ribs, leaving some species of Geophagus without formal 

generic assignment.  These species are part of two distinct genera in need of description 

and, in this study, are treated as the ‘Geophagus’ steindachneri and ‘Geophagus’ 

brasiliensis groups, which are distinguished from Geophagus sensu stricto (Kullander 

1986).  Species-level taxonomy also has improved significantly (e.g. references), but 

large numbers of species are still in need of description.  Apparent lack of morphological 

variation among species seems to be an important factor disguising the high species 

richness of some genera.  For example, the species Geophagus surinamensis was 

thought to be largely distributed over the Orinoco, Amazon and Guianas drainages, but 

recent revisions have revealed a complex of 10 described species (Kullander and Nijssen 

1989; Kullander et al. 1992; López-Fernández and Taphorn 2004) with many more still 

in need of description.  Recent revisions of museum collections and field exploration in 

relatively inaccessible places are revealing additional diversity, and many species are 

known that have not yet been described.  Current knowledge of geophagine diversity is 
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sufficient to establish the generic relationships within the group, and to begin unraveling 

their potentially complex evolutionary history, but this work needs a parallel and 

continuous effort of basic taxonomic research, oriented both towards a better 

understanding of the clade’s biology and to its conservation. 

In addition to their taxonomic diversity, geophagine cichlids are highly versatile 

in their ecology, morphology, and reproductive strategies.  Much of geophagine 

morphological variability may be associated with feeding mode and habitat use.  The 

typical geophagine feeding behavior involves sifting of the substrate using the branchial 

apparatus in a “winnowing” behavior (Laur and Ebeling 1983; Drucker and Jensen 

1991), expelling the sand or mud through the opercular openings while food particles are 

ingested.  The epibranchial lobe of some geophagine taxa has been hypothesized to be an 

adaptation involved in benthic invertebrate feeding, but has never been studied from a 

functional or ecomorphological point of view (Lowe-McConnell 1991).  Other 

morphological features, such as the ventrally flattened body, and the relatively dorsal 

position of the eyes are also indication of geophagine substrate-based feeding (e.g. 

Winemiller et al. 1995).  Broad morphological variation exists among substrate-sifting 

geophagines (e.g. Geophagus, Satanoperca, Biotodoma), and this variation may reflect 

diversity in feeding mechanics.  Some taxa deviate significantly from the general 

geophagine plan, and have undergone body-size reduction (e.g. Apistogramma, 

Biotoecus, Dicrossus), possibly involving a change from substrate sifting to invertebrate 

picking.  Crenicichla has an elongate body and its feeding habits are predatory, with 

many piscivorous species.  Most Geophaginae are generally found in shallow, clear, or 

black waters with muddy or sandy bottoms throughout tropical and subtropical South 

America (e.g. Lowe-McConnell 1969; 1991; Goulding 1988; Weidner 2000).  Within 

this general kind of habitat, however, there is extensive variation.  Large bodied 

substrate sifters are usually associated to relatively open waters with little structure and 

slow currents (e.g. Geophagus, Satanoperca), whereas dwarf taxa tend to be associated 

with very shallow water and highly complex structure formed by leaf-litter and woody 

debris (e.g. Biotoecus, Apistogramma).  Some taxa inhabit clear, relatively deep waters 
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in association with rocky shores (e.g. Guianacara) or fast currents (e.g. Teleocichla).  

Life histories among geophagines are also highly variable, and their reproductive 

biology and parental care behaviors include numerous variations of a generalized 

equilibrium strategy involving high reproductive investment (Winemiller and Taphorn 

1989; Winemiller and Rose 1993).  Typical monogamous pairs with substrate spawning 

are found in Crenicichla, Biotodoma, Guianacara, and several species of other genera 

(e.g. Cichocki 1976; 1977; Weidner 2000).  Geophagus, Gymnogeophagus, 

‘Geophagus’ brasiliensis, and some species of Satanoperca take either the eggs or larvae 

into one or both parents’ mouth for incubation (e.g. Weidner 2000; López-Fernández 

and Taphorn 2004).  Species of the ‘Geophagus’ steindachneri group are polygynous, 

and the eggs are fertilized after the female takes them in her mouth (Weidner 2000).  

“Dwarf” geophagines can be typical substrate spawners (e.g. Biotoecus) or polygynous 

harem-forming (Apistogramma) (e.g. Linke and Staeck 1984; Barlow 2000).  Crenicara 

punctulatum is a protogynous species in which social structure may influence sex change 

(Carruth 2000).  Integration of geophagine morphological, ecological, and behavioral 

diversity into a coherent picture of the group’s evolutionary history can only be done in 

an explicit phylogenetic context, and providing this context is the central goal of this 

dissertation. 
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CHAPTER II 

 

Geophagus abalios, G. dicrozoster AND G. winemilleri (PERCIFORMES: 

CICHLIDAE), THREE NEW SPECIES FROM VENEZUELA* 

 

INTRODUCTION 

 

Gosse (1975) divided the South American genus Geophagus Heckel into several 

genera based on the number of supraneural bones.  Biotodoma Eigenmann & Kennedy 

has 2 supraneurals, Gymnogeophagus de Miranda-Ribeiro has 0 and Geophagus has 1.  

Gosse’s definitions were later revised by Kullander (1986), who resurrected Satanoperca 

(Heckel) as distinct from Geophagus, and restricted the latter to include only species 

with paired caudal extensions of the swim bladder lined by 6-12 epihemal “ribs”, and 

more caudal than precaudal vertebrae (see also Kullander & Nijssen 1989; Kullander et 

al. 1992).  Kullander’s generic assignments have been corroborated by recent 

phylogenetic analyses of geophagine cichlids (Kullander 1998; Farias et al. 1999, 2000, 

2001).  As currently recognized, the genus Geophagus sensu stricto (Kullander 1986; 

Kullander & Nijssen 1989) includes eleven described species, and numerous others 

remain unnamed (e.g. Kullander 1986; Kullander & Nijssen 1989; Kullander et al. 1992; 

Weidner 2000). 

Since Kullander (1986) and Kullander and Nijssen (1989), most populations of 

Geophagus referred to as G. surinamensis (Bloch) (Gosse 1975) have been recognized 

as different taxa.  The Geophagus surinamensis “complex” includes 7 described species 

(G. surinamensis, G. brokopondo Kullander and Nijssen, G. brachybranchus Kullander 

and Nijssen, G. camopiensis Pellegrin, G. proximus (Castelnau), G. megasema Heckel  

and G. altifrons Heckel) and an undetermined number of undescribed species with deep 

_______________ 

*Reprinted with permission from “Geophagus abalios, G. dicrozoster and G. winemilleri 
(Perciformes: Cichlidae), three new species from Venezuela,” by Hernán López-
Fernández and Donald C. Taphorn.  Zootaxa 439:1-27. 2004 by Magnolia Press. 
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bodies and heads, a mid-flank spot of variable size, and either with infraorbital stripe 

absent (e.g. G. surinamensis) or limited to a preopercular black mark (e.g. G. 

brachybranchus).  Geophagus species outside the G. surinamensis complex have a 

complete infraorbital stripe, including G. grammepareius Kullander and Taphorn, G. 

taeniopareius Kullander and Royero, G. argyrostictus Kullander G. harreri Gosse and 

probably several undescribed species known to the aquarium trade (Weidner 2000). 

Originally described from Surinam (Kullander & Nijssen 1989), Geophagus 

brachybranchus was identified from the Cuyuní drainage by S. O. Kullander and DCT 

(Taphorn et al. 1997), and is the only described species of the G. surinamensis complex 

known to occur in Venezuela. Other populations of Geophagus in the country have 

traditionally been identified as G. surinamensis (e.g. Mago-Leccia 1970; Axelrod 1971; 

Machado-Allison 1987), which is restricted to the Surinam and Marowijne rivers in 

eastern Surinam (Kullander & Nijssen 1989), or G. altifrons (Royero  et al. 1992; 

Machado-Allison et al. 1993), which has an Amazonian distribution (Kullander 1986).  

These populations actually represented three undescribed species: two were identified by 

S. O. Kullander and D. C. Taphorn (1996 unpubl.) and the third by HLF and D. C. 

Taphorn (2002 unpubl.) during recent surveys of collections at the Museo de Ciencias 

Naturales de Guanare.  Specimens of these three species appear to have been known for 

some time in the German aquarium trade, and two of them were referred to as 

Geophagus ‘stripetail’ or G. ‘Rio Negro I’, and G. sp “Columbia”, respectively 

(Weidner 2000).  In this paper, we described these three new species from the Orinoco 

and Casiquiare drainages of Venezuela; provide maps of their known distribution, and a 

key for the identification of the Venezuelan species of Geophagus.  

 

MATERIALS AND METHODS 

 

All measurements were taken using dial calipers to the nearest 0.1 mm when 

linear distance was less than 130 mm, and with a tape measure to the nearest mm when 

more than 130 mm. Counts of fin rays and scales were made under a dissecting scope.  
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Counts and measurement procedures follow those described in Kullander (1986) and 

Kullander and Nijssen (1989).  Following Kullander et al. (1992) and Kullander (1996), 

scales in a horizontal row were counted on the row immediately above that one 

containing the lower lateral line (E1); rows above E1 (epaxial scales) are numbered E2 

and higher, and rows below E1 are numbered H1 (hypaxial scales) and higher (Figure 

2.1). Vertebral counts were made from x-rayed and/or cleared and stained specimens 

following protocols in Dingerkus and Uhler (1977) or Taylor and Van Dyke (1985).   

Museum abbreviations: MCNG, Museo de Ciencias Naturales de Guanare, 

Guanare; AMNH, American Museum of Natural History, New York. 

 

 

 

 
FIG. 2.1.  Diagrammatic representation of scale nomenclature, head markings, and lateral bar patterns of 
Geophagus as used in this paper.  Abbreviations are as follows: E1, first epaxial longitudinal series of 
scales, used to count number of longitudinal scales; E6, last epaxial longitudinal series of scales; H1-H5, 
hypaxial longitudinal series of scales; IOS, infraorbital stripe; MLS, mid-lateral spot; POM, preopercular 
mark; ULL, upper lateral line; LLL, lower lateral line; 1-7, lateral bars.  Scale nomenclature after 
Kullander (1992, 1996).  Infraorbital, preopercular and mid-lateral black markings are observable both in 
live and preserved specimens; lateral bar patterns are generally visible only on preserved specimens, and 
sometimes on stressed live specimens. 
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 Geophagus abalios N. SP 
 

Holotype 

MCNG 47600, 163.0 mm SL; Venezuela: Apure: Río Cinaruco: Laguna Larga 

(6.5339°N 67.4150°W); K. Winemiller, H. López-Fernández, D.A. Arrington, L. Kelso-

Winemiller, H. López-Chirico and J. Arrington, 1-3 Jan 1999. 

 

Paratypes 

MCNG 30939, 3, 86.0-115.0; Venezuela: Anzoátegui: Río Orinoco: Laguna 

Tineo (8.1903°N 63.4722°W); M.A. Rodríguez, 04 April 1987. - MCNG 33723, 3, 54.3-

132.0; Venezuela: Bolívar: Río Orinoco: Laguna Bartolico (7.6417°N 66.1167°W); 

M.A. Rodríguez, 13 Jan 1987. -  MCNG 35035, 1, 74.4 mm SL; Venezuela: Amazonas: 

Río Casiquiare: Playa Macanilla (2.4331°N 66.4547°W); K.O. Winemiller and D. 

Jepsen, 31 Jan 1997. - MCNG 40878, 1, 112.1 mm SL; Venezuela: Apure: Río 

Cinaruco: Laguna Guayaba; D.A. Arrington and J. Arrington, 12 April 1999. - MCNG 

41124, 2, 45.5-55.5 mm SL; Venezuela: Apure: Río Cinaruco; D.A. Arrington and J. 

Arrington 14 April 1999. – AMNH 233634 (ex-MCNG 44865), 1, 96.3 mm SL; 

Venezuela: Apure: Río Cinaruco (6.5333°N 67.4164°W); D.A. Arrington and J.A. 

Arrington, 16 March 1999. - MCNG 47602 (ex-MCNG 6278), 1, 151.0 mm SL; 

Venezuela: Apure: Rio Cinaruco: Hato Las Delicias (6.5750°N 67.2361°W); D.C. 

Taphorn, C. Lilyestrom and B. Stergios, 11 Jan 1982. – MCNG 47601, 2, 96.3-160.0 

mm SL; collected with holotype. - AMNH 93052, 2, 132.9-150.0 mm SL; Venezuela: 

Amazonas: Río Mavaca: small tributary on left bank; C.J. Ferraris and R. Royero, 10 

March 1989.
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FIG. 2.2.  Diagrammatic representation of preopercular markings and lateral bars distinguishing 

Geophagus species within the G. surinamensis complex.  a, G. dicrozoster, n. sp.; b, G. abalios n. sp.; c, 
G. winemilleri n. sp.; d, G. brokopondo; e, G. brachybranchus; f, G. surinamensis; g, G. proximus; h, G. 
megasema; i, G. camopiensis, and j, G. altifrons.  Preopercular markings are visible in both live and 
preserved individuals; lateral bar patterns are generally visible only in preserved specimens. 
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FIG. 2.3.  Geophagus abalios Holotype. MCNG 47600, 163.0 mm SL; Venezuela: 
Apure: Río Cinaruco: Laguna Larga (6.5339°N 67.4150°W). 
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FIG. 2.4.  Geophagus abalios.  Uncatalogued specimen, adult in breeding coloration 
immediately after capture at the type locality: Laguna Larga, Río Cinaruco, Apure State, 
Venezuela.  6.3335°N, 67.2471°W. 
 

 

 

Diagnosis 

The lack of head markings distinguishes G. abalios n. sp. (Figures 2.2, 2.3 and 

2.4) from Geophagus grammepareius, G. taeniopareius, G. harreri and G. argyrostictus, 

which have a complete infraorbital stripe, and from G. dicrozoster n. sp., G. winemilleri 

n. sp., G. brachybranchus and G. proximus, which have a black preopercular marking.  

Preserved specimens of Geophagus abalios can be distinguished from all other 

Geophagus species without head markings except G. brokopondo by the possession of 

six vertical, parallel bars on the flank (Figures 2.1 and 2.2); it can be distinguished from 

G. brokopondo by the anterior three bars, which are medially bisected by a clearer area, 

giving the impression of two thinner bars, whereas in the latter species all bars are solid; 

additionally, the sixth bar in G. abalios is elongate and restricted to the dorsal half of the 

caudal peduncle, above the lower lateral line, and in G. brokopondo the line covers the 

entire caudal peduncle (Figures 2.2b and 2.2d).



  

TABLE 2.1.  Morphometrics of Geophagus winemilleri, G. abalios, and G. dicrozoster.  Numbers in bold highlight 
morphometric differences among the species.  
 
 Geophagus abalios  Geophagus dicrozoster  Geophagus winemilleri 

           

    

n Mean Min Max Stdev n Mean Min Max Stdev n Mean Min Max Stdev

SL 17 107.9 45.5 192.0 42.5 20 129.7 44.8 202.0 51.0  15 86.6 37.0 195.0 54.7

Percent SL                 

                  

               

               

         

               

               

   

              

                 

                 

   

                  

                 

            

 

Head length 17 31.3 31.0 34.0 0.7 20 31.1 29.5 32.5 0.8 15 31.9 30.3 33.8 1.2

Body depth 17 40.7 36.0 46.2 2.9 20 38.8 32.6 42.4 2.4 15 38.9 34.3 44.6 3.7

Caudal peduncle depth 17 12.8 11.9 13.7 0.5 20 12.0 10.6 13.0 0.6 15 12.0 11.1 13.1 0.5

Caudal peduncle length 17 19.2 16.7 21.8 1.5  20 20.9 16.7 24.4 1.5 15 19.3 17.5 21.2 0.9

Pectoral fin length 17 35.2 31.9 40.5 2.9 20 33.9 28.6 39.0 2.8 15 33.6 27.5 39.8 4.0

Pelvic fin length 17 45.3 27.2 79.4 13.1 20 42.8 24.1 64.9 13.8 15 39.6 27.3 69.4 15.0

Last D spine length 17 17.4 14.1 19.6 1.4  19 17.0 11.6 20.2 2.8  15 15.8 12.2 20.2 2.5

Percent HL    

Snout length 17 46.5 38.2 59.7 5.4 20 46.7 36.4 54.9 4.9 15 43.4 34.1 54.8 5.8

Orbital diameter 17 31.1 26.8 41.6 3.9 20 31.3 25.8 38.6 3.6 15 33.8 28.3 39.6 3.3

Head depth 17 100.0 91.9 113.0 6.6 20 100.7 84.3 112.3 8.8  15 98.6 80.8 120.3 12.6

Head width 17 41.6 39.5 45.7 1.7 20 42.2 40.1 44.4 1.1 15 43.0 40.5 46.2 1.8

Interorbital width 17 25.3 20.8 28.3 2.3 20 25.7 19.3 29.9 3.0 15 23.1 17.7 33.0 4.3

Preorbital depth 17 35.6 25.0 43.8 5.9  20 35.3 22.9 43.0 6.2 15 29.0 19.2 42.1 7.7

 

16
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Description 

Based on holotype (163.0 mm SL) and 16 paratypes 45.5-192.0 mm SL with 

notes on variation among smaller specimens.  Measurements and counts are summarized 

in Table 2.1.  Sexes appear to be isomorphic. 

Shape.  Moderately elongate; dorsal outline more convex than ventral outline; 

head slightly broader ventrally than dorsally, chest flat; specimens 45.0 mm SL and 

smaller more elongate, with rounder nape; interorbital area moderately concave.  Dorsal 

head profile straight, slightly concave in front of orbit, straight or slightly convex in 

specimens smaller than 112.0 mm SL, then sloping to dorsal-fin origin; dorsal-fin base 

descending, slightly convex to last ray, dorsal caudal peduncle forming a moderately 

concave curve to caudal-fin base.  Ventral head profile straight, slightly descending to 

pelvic-fin insertion; chest slightly convex in one specimen 192.0 mm SL; straight, 

horizontal from pelvic-fin insertion to origin of anal fin; anal-fin base straight, 

ascending; ventral caudal peduncle straight to slightly concave, slightly ascending or 

horizontal in specimens 45.0 mm SL and smaller; ventral caudal peduncle 1.5-1.6 times 

in dorsal.  Lips moderately wide, lower without caudally expanded fold (see Kullander et 

al. 1992; Figure 3).  Maxilla reaching at most one third of the distance between nostril 

and orbit; ascending premaxillary process reaching slightly above midline of orbit.  

Opercule, preopercule, cleithrum, postcleithrum, and post-temporal lacking serration. 

Scales.  E1 33(4), 34(10), 35(3); scales between upper lateral line and dorsal fin 

5.5-7.5 anteriorly, 2.5 posteriorly.  Scales between lateral lines 2.  Scales on upper lateral 

line 21(1), 22(4), 23(9), 24(1) and lower lateral line 13(1), 14(3), 15(6), 16(5).  Anterior 

1/3-1/2 of cheek naked, remainder with ctenoid scales; cheek scale rows 8-9.  Opercule 

and subopercule covered with ctenoid scales.  Interopercule with ctenoid scales caudally, 

otherwise naked.  Single postorbital column of cycloid scales.  Occipital and flank scales 

ctenoid.  Circumpeduncular scale rows 7 above upper, 9 below lower lateral lines, 

ctenoid. 

Fin scales.  Pectoral and pelvic fins naked.  Dorsal fin with double or triple 

columns of ctenoid scales along interradial membranes to one third to one half of fin 
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height.  Scaly pad at base of dorsal fin formed by irregularly arranged small, ctenoid 

scales extending from first spine to fifth to seventh soft ray; specimens 55.5 mm SL or 

smaller, pad scales are cycloid or moderately ctenoid.  Anal fin scaled on anterior 

section of soft portion, scales ctenoid, arranged in a single column along interradial 

membranes to one quarter to one third of fin height; anal fin naked in specimens 55.5 

mm SL or less.  Scaly pad on base of anal fin, scales small, ctenoid.  Caudal fin entirely 

scaled except the tip of rays, and membranes between D3 and V3, scales ctenoid.  

Accessory caudal fin extension of lateral line between V4-V5, absent on dorsal lobe. 

Fins.  Dorsal XVII-11(1), XVII-12(1), XVIII-10(2), XVIII-11(6), XVIII-12(5), 

XIX-11(2); anal III-8(14), III-9(3).  Spines increasing in length from first to sixth, equal 

length to ninth, then slightly shorter; lose membranes behind spine tips (lappets) acutely 

pointed, up to 1/3 the length of spines.  Soft portion moderately expanded and pointed, 

reaching about 1/3 of caudal-fin length, rays 3-6 longest but not produced into filaments; 

specimens 56.0 mm SL and smaller with rounded soft portion, not quite reaching caudal-

fin base.  Anal fin pointed, with 2nd and 3rd soft rays slightly produced, not reaching 

caudal fin or barely beyond its base in specimens 90.6 and 192.0 mm SL.  Caudal fin 

emarginate with lobes of approximately the same length and without filaments; one 

specimen 112.1 mm SL with slightly produced rays D8 and V8.  Pectoral fin elongate, 

more or less triangular, longest at 4th ray, reaching 1st or 2nd anal-fin soft rays, then 

progressively shorter ventrally.  Pelvic fin triangular, first ray produced into a filament 

reaching 5th anal-fin soft ray; in one specimen 112.1 mm SL reaching over 1/2 of caudal-

fin length; specimens 45.5 mm SL or less with rays only slightly produced, reaching at 

most 1st spine of anal fin. 

Teeth.  Outer row of upper jaw with 10-28, blunt, slightly recurved unicuspid 

teeth; much larger than in inner rows, extending along most of premaxillary length.  2-3 

inner rows, separated by a clear gap from outer row; teeth very thin, pointed, straight or 

slightly recurved unicuspids.  Inner rows parallel to outer over its length, not forming a 

tight pad.  Outer row of lower jaw with 6-25 unicuspid, blunt, slightly recurved 

unicuspids; medial 4-5 teeth larger than rest on outer row, cylindrical, slightly recurved, 
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blunt and more labially positioned than rest of row.  Inner rows 3-4, only on medial third 

of dentary, separated from outer row by distinct gap; teeth long, thin, straight or slightly 

recurved, much smaller than outer row. 

Gills.  External rakers on first gill arch; 9(5), 10(3) on epibranchial lobe, 1 in 

angle and 12(7), 13(2) on ceratobranchial, none on hypobranchial.  Microbranchiospines 

on the outer face of second to fourth arches.  Gill filaments with narrow basal skin cover. 

Tooth plates.  Lower pharyngeal tooth plate elongate; width of bone 80% of 

length; dentigerous area 80% of width; 30 teeth in posterior row, 10 in median row.  

Anteriormost teeth subconical or subcylindrical, erect; most teeth laterally compressed 

and with small, low ridge rostrally, cusps on caudal half of teeth; lateral marginal teeth 

on anterior half like anteriormost, on caudal half smaller and thinner; posteromedial 

teeth much larger, nearly round in circumference, posterior cusps, almost blunt (Figure 

2.5).  Ceratobranchial 4 with 4 toothplates with 11, 28, 6 and 4 teeth. 

 

 

 

 
FIG. 2.5.  Geophagus abalios, lower pharyngeal toothplate on occlusal view. From 
MCNG 40636, 70.5 mm SL; scale bar 1 mm. 
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Vertebrae.  14+18=32(1), 14+19=33(1), 15+18=33(3), 15+19=34(5), 

15+20=35(1), 16+18=34(4); 11-13 epihemal ribs. 

 

Color pattern in alcohol (Figure 2.3) 

Base color grayish yellow; nape, snout and upper lip darker gray, fading caudally 

to base color towards cheek; lower lip yellowish white.  No markings on the head, 

preopercule immaculate.  Opercule darker on dorsal third; lower half of opercule and 

subopercule dusky yellow; silvery white in some specimens, probably depending on 

preservation.  Ventrally, gill cover yellowish white; white in some specimens; 

branchiostegal membrane grayish. Chest white laterally and ventrally; in best preserved 

specimens white extends ventrally to base of caudal fin and to scale row H3 on caudal 

peduncle (Figure 2.1).  Flanks with 6, dorso-ventrally directed, yellowish-gray bars 

fading or disappearing ventrally (Figure 2.2b).  Bar 1 expands from the 4th or 5th 

predorsal scale to the base of the 4th dorsal-fin spine; its anterior edge delimited by the 

extrascapular and its posterior edge descending vertically and disappearing ventrally at 

the pectoral-fin insertion.  Bar 2 extends between the 6th and 8th dorsal-fin spines, and 

runs vertically to H7.  Bar 3 extends between the 10th and 13th dorsal-fin spines, and runs 

parallel to bar 2, fading ventrally at H6-H7.  Bars 1-3 are generally bisected dorso-

ventrally by a lighter column about 1 scale wide, giving the appearance of being two 

narrow bars in some specimens; this feature may be lost on poorly preserved specimens.  

A diffuse, blackish medial spot coincides with bar 3, extending rostro-caudally between 

scales 11-12 and 14-15 of E3 and dorso-ventrally between E3 and E1, such that the 

upper lateral line traverses the upper-most row of scales of the spot.  Bar 4 extends 

between the bases of dorsal-fin spines 13-14 to 16-18, descends vertically and fades at 

H4-H5.  Bar 5 extends between the first soft ray and ray 4-5 of dorsal fin, it descends 

vertically and disappears at H3-H4; in other specimens the bar is located between the 

last dorsal-fin spine and ray 3.  Bar 6 extends from the base of the 6-7 (4-5 in some 

specimens) dorsal-fin rays and extends to the base of the caudal fin; bar is restricted to 
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dorsal portion of caudal peduncle, above lower lateral line, and is longer horizontally 

than vertically (Figure 2.2b). 

 Dorsal fin dusky, lappets dark gray or blackish, forming a dark edge along fin; 

soft and posterior third of spinous portion white-spotted on interradial membranes; four 

distinguishable longitudinal, parallel, grayish stripes alternate with light stripes along 

most of fin, turning almost hyaline rostrally; number of stripes increases with size to 6 in 

a 192.0 mm SL specimen.  Anal fin hyaline to slightly dusky; 4 longitudinal, parallel 

gray stripes along soft portion of fin (5 in largest specimen).  Caudal fin dusky, with 

round, whitish spots increasing in size towards dorsal edge; spots develop into horizontal 

stripes in larger specimens and a 192.0 mm SL specimen shows virtually no spots; 

specimens 55.5 mm SL and smaller with 4 dark, vertical bars.  Pectoral fin immaculate.  

Pelvic fin whitish gray, dusky distally; dusky in largest specimen (192.0 mm SL), spine 

and first ray whitish gray to dusky. 

 

Live colors (Figure 2.4) 

Background color greenish gray, breeding specimens more metallic gray.  Head 

without markings except for iridescent blue on the upper lip, continued as a stripe 

extending to the corner of the preopercule, and a slight marking of the same color on the 

ventral edge of orbit.  A variable number of iridescent blue spots on the preopercule 

apparently limited to breeding specimens.  Six yellow stripes extend between the base of 

dorsal and H4-5; in adult, breeding specimens, dorsal-most stripes appear as brownish-

orange vermiculations and spots.  Ventrum distinctly white; breeding adults with bright 

orange or red chest.  Dorsal and anal fins reddish with faint iridescent blue horizontal 

banding that turns brighter during breeding; caudal brownish red with iridescent blue 

spots and bands in no clear pattern; pelvic reddish orange with iridescent blue banding, 

first ray white or very light blue.  An aquarium photograph in Weidner (2000: 148, 

Figure 2.1) of an unidentified Geophagus from Venezuela is undoubtedly of a mature 

adult of G. abalios. 
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Distribution and habitat (Figure 2.6) 

Geophagus abalios is commonly found in black or clear water rivers in the 

llanos, and is known from the Apure, Cinaruco-Capanaparo, and Aguaro-Guariquito 

drainages.  Its current northern-most collection locality is “Las Majaguas” dam in the 

Río Cojedes, where it was probably introduced by recommendation of the Venezuelan 

ichthyologist A. Fernández-Yépez.  According to his account (Fernández-Yépez and 

Anton 1966), Geophagus species were not naturally present in the reservoir, and he 

recommended the introduction of "Geophagus surinamensis" along with some other 

species, presumably for sport fishing purposes.  G. abalios reaches the Andean piedmont 

to the west, and is the only Geophagus found in clear to white water seasonal lagoons 

along the main-stem of the Orinoco to the east (Rodríguez and Lewis Jr. 1990, 1994).  

The species appears restricted to the Caura drainage on the Guyana Shield, but it extends 

into the tributaries of the middle and upper Orinoco, including the Ventuari, Mavaca, 

and along the Río Casiquiare, nearly to the headwaters of the Río Negro. 

 

Etymology 

From the Greek a, not or without and balios, spotted.  In reference to the lack of 

preopercular markings.  To be regarded as an adjective in masculine form. 

 

Geophagus dicrozoster N. SP. 

 

Holotype 

MCNG 40996, 193.0 mm SL; Venezuela: Apure: Río Cinaruco: Laguna Larga 

(6.5339°N 67.4150°W); D.A. Arrington and J. Arrington, 13 April 1999.  

 

Paratypes 

MCNG 30020, 7, 44.8-138.0 mm SL; Venezuela: Bolívar: Río Caroní: 

Campamento Guri; J.D.Williams and K.M. Ryan, 14 April 1994. – AMNH 233636 (ex-

MCNG 40853), 1, 154.0 mm SL; Venezuela: Apure: Río Cinaruco:  Laguna Oheros;  
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FIG. 2.6.  Known distribution area of Geophagus abalios n. sp. (▲), G. dicrozoster n. 
sp.(●), and G. brachybranchus (□) in Venezuela.  One dot may represent more than one 
collection locality. 

 

 

 

D.A. Arrington and J. Arrington, 12 April 1999. - MCNG 40311, 22, 12.2-84.6 

mm SL (2 measured); Venezuela: Apure: Rio Cinaruco: Laguna Guayaba (6.5897°N 

67.2400°W); D.A. Arrington and J. Arrington, 16 March 1999. – AMNH 233635 (ex-

MCNG 47603), 5, 109.6-178.0 mm SL; Venezuela: Apure: Río Cinaruco: Laguna Larga 

(6.5339°N 67.4150°W); K. Winemiller, H. López-Fernández, A. Arrington, L. Kelso-

Winemiller, H. López-Chirico and J. Arrington, 1-3 Jan 1999. – MCNG 47604, 4, 177.0-

202.0 mm SL; Venezuela: Apure: Río Cinaruco.  
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FIG. 2.7.  Geophagus dicrozoster Holotype. MCNG 40996, 193.0 mm SL;  Venezuela: 
Apure: Río Cinaruco: Laguna Larga (6.5339°N 67.4150°W). 
 

 

 

Diagnosis 

A preopercular mark distinguishes Geophagus dicrozoster n. sp. (Figures 2.2, 2.7 

and 2.8) from G. grammepareius, G. taeniopareius, G. argyrostictus and G. harreri, 

which have a complete infraorbital stripe (Figure 2.1), and from G. abalios n. sp., G. 

brokopondo, G. surinamensis, G. megasema, G. camopiensis, and G. altifrons, which 

lack head markings.  Preserved specimens of G. dicrozoster can be distinguished from 

other species with preopercular mark by the possession of seven vertical, parallel lateral 

bars, as opposite to G. winemilleri n. sp. (4 bars) and G. brachybranchus and G. 

proximus (no bars) (Figure 2.2). 
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Description 

Based on holotype (120.2 mm SL) and the 19 paratypes 63.4 -202.0 mm SL with 

notes on variation among smaller specimens.  Measurements and counts are summarized 

in Table 2.1.  Sexes appear to be isomorphic. 

Shape.  Moderately elongate; dorsal outline more convex than ventral outline; 

head broader ventrally than dorsally; specimens 63.4 mm SL and smaller more elongate; 

interorbital area moderately concave.  Dorsal head profile moderately convex, ascending 

to dorsal-fin origin, except in front of orbit where slightly concave, in specimens smaller 

than 65.0 mm SL, straight from orbit to dorsal-fin origin; dorsal-fin base descending, 

arched to last ray, then forming a horizontal, moderately concave line to caudal-fin 

insertion.  Ventral head profile straight, slightly descending to chest; slightly convex to 

pelvic-fin insertion; straight, horizontal from pelvic-fin insertion to origin of anal fin; 

anal-fin base slightly convex, ascending; ventral caudal peduncle moderately concave, 

slightly ascending or horizontal in specimens 64.0 mm SL and smaller.   

 

 

 

 
FIG. 2.8.  Geophagus dicrozoster.  Uncatalogued specimen, young adult immediately 
after capture at the type locality: Laguna Larga, Río Cinaruco, Apure State, Venezuela.  
6.3335°N, 67.2471°W. 
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Lips moderately wide, lower with slightly caudally expanded fold (see Kullander 

et al. 1992, Figure 3).  Maxilla reaching 1/3-2/3 of the distance between nostril and orbit; 

ascending premaxillary process reaching slightly above midline of orbit.  Opercule, 

preopercule, cleithrum, postcleithrum, and post-temporal lacking serration. 

Scales.  E1 34(3), 35(7), 36(8), 38(2); scales between upper lateral line and 

dorsal fin 6.5-8.5 anteriorly, 2.5-3.5 posteriorly.  Scales between lateral lines 2.  Scales 

on upper lateral line 19(1), 20(7), 21(8), 22(4) and lower lateral line 14(1), 15(4), 16(3), 

17(9), 18(3).  Anterior half of cheek naked, remainder with ctenoid scales; cheek scale 

rows 9-10.  Opercule covered with ctenoid scales.  Caudo-ventral area of subopercule 

naked, remainder with ctenoid scales.  Interopercule with cycloid scales caudally.  Single 

postorbital column of ctenoid scales, particularly in largest specimens.  Occipital and 

flank scales ctenoid.  Circumpeduncular scale rows 7-9 above upper, 9-11 below lower 

lateral line, ctenoid. 

Fin scales  Anal, pectoral and pelvic fins naked.  Dorsal fin scaled on spinous and 

soft portions, scales ctenoid, and arranged in double or triple columns along interradial 

membranes up to one third to one half of fin height.  Scaly pad at base of dorsal formed 

by irregularly arranged small, ctenoid scales extending from first spine to third to 

seventh soft ray.  Anal scaleless, scaly pad on base of anal absent, at most a few small 

scales on base of anterior portion of fin, moderately ctenoid.  Caudal fin scaled along its 

entire surface, except the tip of rays, and part of membranes between D3 and V3, scales 

ctenoid.  Accessory caudal fin extension of lateral line between V4-V5, absent on dorsal 

lobe. 

Fins.  Dorsal XVI-12(2), XVI-13(1), XVII-11(2), XVII-12(9), XVII-13(1), 

XVIII-11(2), XVIII-12(2); anal III-7(1), III-8(18), III-9(1).  Dorsal-fin spines increasing 

in length from first to sixth, equal length to ninth, then slightly shorter; lappets pointed, 

short; soft portion round, reaching just beyond caudal-fin insertion; moderately pointed 

in a 202.0 mm SL, and reaching about a third of caudal-fin length; rays 4-6 longest but 

not produced into filaments; in specimens 63.0 mm SL and smaller dorsal fin not 

reaching caudal-fin insertion.  Anal fin round, moderately pointed in largest specimens, 
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with rays 2-5 longest, not reaching caudal fin or barely beyond its base in largest 

specimens.  Caudal fin emarginate with lobes of approximately the same length and 

without filaments; one specimen 120.2 mm SL with slightly produced ray D8.  Pectoral 

fin elongate, more or less triangular, longest at 4th ray, reaching 1st or 2nd anal-fin spines, 

then progressively shorter ventrally.  Pelvic fin triangular, first ray produced into a 

filament reaching 3rd anal-fin soft ray; in a specimen 202.0 mm SL almost reaching 

caudal-fin insertion; specimens 45.5 mm SL or less with slightly or not produced rays, 

reaching at most 1st anal-fin spine. 

Teeth.  Outer row of upper jaw with 17-26 approximately cylindrical, frequently 

blunt, slightly recurved, unicuspid teeth; larger than in inner rows, extending along most 

of premaxillary length; 6-7 inner rows, separated by a clear gap from outer row; teeth on 

outer row thin, slightly recurved unicuspids, forming a pad.  Outer row of lower jaw 

with 16-22 blunt, slightly recurved unicuspid teeth; median 3 teeth more labially 

positioned than rest of row; inner rows 6 (4 in small specimens), forming a pad, 

separated from outer row by distinct gap; teeth thin, slightly recurved unicuspids. 

Gills.  External rakers on first gill arch; 10(11), 11(1) on epibranchial lobe, 1 in 

angle and 12(3), 13(7), 14(2) on ceratobranchial, none on hypobranchial.  

Microbranchiospines on the outer face of  second to fourth arches.  Gill filaments with 

narrow basal skin cover. 

Tooth plates.  Lower pharyngeal tooth plate elongate (Figure 2.9); width of bone 

80-82% of length; dentigerous area 80% of width; 28 teeth in posterior row, 11 in 

median row.  Anteriormost teeth subconical, laterally compressed and erect; cusps 

posterior, slightly curved rostrad, small rostral edge ridge; lateral marginal teeth with 

same cusp pattern, teeth thinner and more laterally compressed towards caudal edge of 

plate; posteromedial teeth much larger, almost cylindrical, cusps posterior, almost blunt.  

Ceratobranchial 4 with 5 toothplates with 4-6, 5-7, 5-13, 6-11 and 3-7 teeth; one of two 

specimens with 7 toothplates with 6, 4, 5, 5, 4, 3 and 3 teeth on left side. 

Vertebrae.  14+18=32(1), 14+19=33(10), 15+18=33(3), 15+19=34(1); 11-12 

epihemal ribs. 
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FIG. 2.9.  Geophagus dicrozoster, occlusal aspect of lower pharyngeal tooth plate.  From 
MCNG 40623, 88.4 mm SL; scale bar 1 mm. 
 

 

 

Color pattern in alcohol (Figure 2.7) 

Background color grayish yellow; nape, snout, upper lip and naked portion of 

cheek darker gray, scaled portion of cheek lighter; lower lip yellowish white.  Vertical, 

blackish mark in the corner of the preopercule, continued into the interopercule as a faint 

spot; indistinguishable or faded in specimens smaller than 65.0 mm SL.  Opercule with a 

dark, brown spot on dorsal edge, reaching first scale of upper lateral line, otherwise 

uniformly dusky yellow or silvery white in some specimens probably depending on 

preservation.  Ventrally, gill cover dusky yellow or yellowish white in some specimens; 

branchiostegal membrane also yellowish, grayish brown in one specimen 202.0 mm SL.  

Chest yellow laterally and ventrally, white in many specimens, juveniles with distinctive 

silvery-white chest region; in best preserved specimens dusky yellow or white extends 

ventrally to base of caudal fin and to H3 on caudal peduncle flanks.  Flanks with 7, 

dorso-ventrally directed, dark-gray bars fading or disappearing ventrally (Figure 2.2a).  

Bar 1 expands from the 7th-8th predorsal scale to the base of the dorsal fin between spines 

4-5 forming an inverted triangle; its anterior edge roughly delimited by the extrascapular 
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and its posterior edge descending ventrally to the pectoral-fin insertion.  Bar 2 extends 

between the base of dorsal-fin spines 6-7 and 9, and runs vertically to H6-7.  Bar 3 

extends between the base of dorsal-fin spines 10-11 and 12-13, descends ventrally and 

slightly caudally oriented, fading progressively to H6-7.  A well-demarked, black medial 

spot is located on bar 3, extending rostro-caudally between scales 11 and 14-15 of E3 

and dorso-ventrally between the lower half of E4 and E1, such that the upper lateral line 

traverses the dorsal 1/4 –1/3 of the spot.  Bar 4 extends between the bases of dorsal-fin 

spines 14-15 to 17, and descends ventro-caudally to the upper lateral line, where it 

merges with bar 5 such that the two bars form a “Y” shaped figure (Figure 2.2a); in 

specimens 50.0 mm SL or less, bar 4 may appear as a spot on the base of the dorsal, not 

quite reaching bar 5.  Bar 5 extends between the base of dorsal-fin spine 18 and ray 1 or 

rays 1-2 and rays 4-5, it descends vertically fading at H1-2.  Bar 6 extends from the base 

of the 7-8 dorsal fin rays to the second postdorsal scale in the caudal peduncle, descends 

vertically and fades at H1-2.  Bar 7 covers the area between the last 4-5 lower lateral line 

scales and the base of the caudal fin, disappearing ventrally at H2. 

 Dorsal fin dusky, lappets dark gray or blackish, forming a faint dark edge along 

fin; dorsal fin immaculate except a few indistinct whitish spots in the membranes of 

caudal half of soft portion; in specimens 63.0 mm SL or smaller, three dusky 

longitudinal, parallel, stripes alternate with light stripes along soft portion of dorsal fin.  

Anal fin hyaline to slightly dusky; 4 longitudinal, parallel gray bands along soft portion; 

largest specimen with dark gray lappets.  Caudal fin gray-brown, with whitish 

longitudinal bands of variable length and elongate spots, forming no evident pattern; 

specimens up to 85.0 mm SL with 4 dark, vertical bands that gradually turn into the 

above described pattern with increasing size.  Pectoral fin immaculate.  Pelvic fin dusky, 

darker distally; spine and first ray whitish gray to dusky. 
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Live colors (Figure 2.8) 

Dark markings as in alcohol specimens.  Background color yellowish olive 

green; head silvery with yellow on gill cover, snout gray, upper lip iridescent blue 

extending behind lips to preopercular mark.  Dorsal fin reddish with faint iridescent blue 

spots, especially on the soft portion; some specimens with proximal third of spiny 

portion yellow, probably due to breeding condition; anal fin red or reddish with 

distinctive iridescent blue horizontal banding; caudal fin reddish with a variable pattern 

of iridescent blue stripes and spots.  Five to seven faint, yellow horizontal stripes 

alternating with olive green along body, but not always distinct. 

 

Distribution and habitat (Figure 2.6) 

Geophagus dicrozoster is common in the black waters of the Caura and Caroní 

drainages of the Guyana Shield; it is also present in all major tributaries of the middle 

and upper Orinoco, including the drainages of the Cataniapo, Ventuari, Atabapo, 

Ocamo, and Mavaca, as well as the Casiquiare and the headwaters of the Río Negro.  In 

the llanos, G. dicrozoster is restricted to the moderately black-watered Río Cinaruco, 

although further collections will likely show its presence in the nearby Río Capanaparo 

and its tributaries.  No specimens have been captured from white water, or from llanos 

clear water drainages as the Aguaro-Guariquito. 

 

Etymology 

From the Greek dikros, forked, and zoster, belt.  Given in reference to the “Y” 

formed by lateral bars 4 and 5.  To be regarded as an adjective in masculine form. 

 

Geophagus winemilleri N. SP. 

 

Holotype 

MCNG 35486, 195.0 mm SL; Venezuela: Amazonas: Río Siapa: Laguna Yocuta, 

(2.1347° N 66.3742° W); K. Winemiller and D. Jepsen, 21 Jan 1997. 
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Paratypes 

MCNG 12227, 9, 24.5-47.3 mm SL (4 measured); Venezuela: Amazonas: Río 

Casiquiare: El Porvenir, approx. 60 Km. from confluence with Río Negro (2.0833°N 

66.5°W); L. Nico, E. Conde, P. Cardozo, G. Aymard and B. Stergios, 15 April 1985. – 

AMNH 233637 (ex-MCNG 12301), 1, 188.0 mm SL; Venezuela: Amazonas: Caño 

Emoni, 2 Km. upstream from confluence with Río Siapa (2.1167°N 66.3333°W); L. 

Nico, E. Conde, P. Cardozo, G. Aymard and B. Stergios, 17 April 1985. - MCNG 37858, 

29, 19.2-149.0 mm SL (5 measured); Venezuela: Amazonas: Río Casiquiare: Isla 

Cuamate, past Solano (2.0083°N 66.8994°W); L. Nico, S. Walsh, A. Arrington and A. 

Añez 07 Jan 1998. – AMNH 233638 (ex-MCNG 42016), 13, 18.0–113.6 mm SL (2 

measured); Venezuela: Amazonas: Río Negro: Punta de Barbosa community (1.9844°N 

67.1183°W); L. Nico, H. Jelks and H. López-Fernández, 06 Jan 1999. - MCNG 42386, 

2, 97.9-118.3 mm SL; Venezuela: Amazonas: Río Negro: Mavajaté rapids (1.9872°N 

67.1233°W); L. Nico, H. Jelks, A. Barbarino, et al., 18 Jan 1999. 

 

Diagnosis 

A preopercular mark distinguishes Geophagus winemilleri (Figures 2.2, 2.10 and 

2.11) from G. grammepareius, G. taeniopareius, G. argyrostictus and G. harreri, which 

have a complete infraorbital stripe, and from G. abalios n. sp., G. brokopondo, G. 

surinamensis, G. megasema, G. camopiensis, and G. altifrons, which lack head 

markings.  Preserved specimens of G. winemilleri can be distinguished from other 

species with preopercular mark by the possession of  4 ventrally-inclined, parallel lateral 

bars, as opposite to G. dicrozoster n. sp. (7 bars) and G. brachybranchus and G. 

proximus (no bars) (Figure 2.2). 
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FIG. 2.10.  Geophagus winemilleri Holotype.  MCNG 35486, 195.0 mm SL.  Venezuela: 
Amazonas: Río Siapa: Laguna Yocuta, (2.1347° N 66.3742° W). 
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FIG. 2.11.  Geophagus winemilleri.  AMNH 233638, adult paratype immediately after 
capture at comunidad Punta Barbosa, Río Negro headwaters, Amazonas State, 
Venezuela. 1.9844°N, 67.1183°W. 
 

 

 

Description 

Based on holotype (195.0 mm SL) with notes on variation in 14 paratypes 41.8 to 

188.0 mm SL.  Measurements and counts are summarized in Table 2.1.  Sexes appear to 

be isomorphic. 

Shape.  Moderately elongate; dorsal outline more convex than ventral outline; 

head broader ventrally than dorsally; specimens 45.0 mm SL and smaller with rounder 

nape; interorbital area moderately concave.  Dorsal head profile slightly curved above 

upper lip, then straight, steeply ascending to orbit, slightly convex or straight (specimens 

smaller than 118.0 mm SL) in front of orbit, then sloping to dorsal-fin origin; 

descending, slightly convex to last ray of dorsal fin, then straight, almost horizontal to 

caudal-fin base.  Ventral head profile straight, slightly descending; chest moderately 
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convex; straight, horizontal from pelvic-fin insertion to origin of anal fin; anal-fin base 

straight, slightly ascending; ventral caudal peduncle straight, slightly ascending; caudal 

peduncle about 1.5 times longer ventrally than dorsally.  Lips moderately wide, lower 

with slightly caudally expanded fold (see Kullander et al. 1992, Figure 3).  Maxilla not 

quite reaching middle vertical line between nostril and orbit; ascending premaxillary 

process reaching lower half of orbit.  Opercule, preopercule, cleithrum, postcleithrum, 

and post-temporal lacking serration. 

Scales.  E1 32(1), 34(5), 35(9); scales between upper lateral line and dorsal fin 

6.5-7.5 anteriorly, 2.5 posteriorly.  Scales between lateral lines 2.  Scales on upper lateral 

line 21(1), 22(4), 23(5), 24(3), 25(2) and lower lateral line 13(1), 14(5), 15(5), 16(2).  

Anterior 1/3 to 1/2 of cheek naked, remainder with ctenoid scales; cheek scale rows 7-8.  

Opercule and subopercule covered with ctenoid scales;  interopercule naked except 

caudo-dorsal region with ctenoid scales.  Single postorbital column of mostly ctenoid 

scales.  Occipital and flank scales ctenoid.  Circumpeduncular scale rows 7 above upper, 

9 below lower lateral lines, ctenoid. 

Fin scales.  Anal, pectoral and pelvic fins naked.  Dorsal fin scaled in spinous 

and soft portions, scales ctenoid, arranged in double or triple columns along interradial 

membranes to ¼-½ of fin height.  Scaly pad at base of dorsal fin formed by irregularly 

arranged, small, ctenoid scales extending from 2nd or 3rd spine to 5th or 6th ray.  Reduced 

scaly pad on anterior portion of base of anal fin, from second spine to second or third 

ray, scales small, ctenoid.  Caudal fin scaled in its entire surface, except the tip of rays, 

and membranes between D2 and V2, scales ctenoid.  Accessory caudal fin extensions of 

lateral line between D3-D4 and V4-V5. 

Fins.  Dorsal XVIII-10(1), XVIII-11(4), XVIII-12(2), XIX-10(2), XIX-11(5), 

XIX-1(1); anal III-7(2), III-8(13).  Spines increasing in length from first to sixth, equal 

length to ninth, then slightly shorter; lappets acutely pointed, up to ¼ the length of 

spines.  Soft portion pointed, reaching the base of caudal fin, except for rays 4-5, 

reaching about ½ of caudal-fin length; specimens smaller than 76.3 mm SL with rounded 

soft portion, not quite reaching caudal-fin insertion.  Anal fin with 3rd soft ray 
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moderately produced, reaching about ¼ of caudal-fin length, otherwise scarcely reaches 

base of caudal fin.  Caudal fin emarginate with lobes of approximately the same length 

and without filaments in studied specimens.  Pectoral fin elongate, more or less 

triangular, longest at 4th ray, reaching 1st or 2nd anal-fin soft rays, then progressively 

shorter ventrally.  Pelvic fin triangular, first ray produced into a filament reaching 1/3 of 

caudal peduncle length; in one specimen 149.0 mm SL reaching 1/3 of caudal-fin length; 

specimens 45.5 mm SL or less without produced rays, not reaching base of anal fin. 

Teeth.  Outer row of upper jaw with 19-31, slightly recurved, unicuspid teeth; 

slightly larger than in inner rows, extending along most of premaxillary length.  Three to 

four inner rows with no clear gap separating them from outer row; teeth unicuspid, very 

thin, pointy, straight or slightly recurved.  Inner rows parallel to outer on all its length, 

not forming a pad.  Outer row of lower jaw with 7-28 unicuspid, blunt, slightly recurved, 

unicuspids; outer row restricted to median 1/3 of dentary length in holotype and large 

specimens, but extending farther in specimens 118.0 mm SL and smaller.  Inner rows 3-

4, separated from outer row by distinct gap; teeth long, thin, straight or slightly recurved 

unicuspids, smaller than outer row, and forming a pad on median region of dentary. 

Gills.  External rakers on first gill arch; 9(2), 10(4), 11(4) on epibranchial lobe, 1 

in angle and 11(1), 12(6), 13(3) on ceratobranchial, none on hypobranchials.  

Microbranchiospines on the outer face of second to fourth arches; gill filaments with 

narrow basal skin cover. 

Tooth plates.  Lower pharyngeal tooth plate elongate (Figure 2.12); width of 

bone 84% of length; dentigerous area 76% of width; 30 teeth in posterior row, 11 in 

median row.  Anteriormost teeth subconical, erect, laterally compressed; cusps on caudal 

half, slightly curved anteriorly, small rostral edge ridge; lateral marginal teeth as 

anteriorly on rostral edge, gradually flatter and smaller caudally; posteromedial teeth 

much larger, nearly round in circumference, medial or slightly posterior cusps, almost 

blunt.  Ceratobranchial 4 with 5 toothplates with 4, 14, 6, 6 and 2 teeth. 
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FIG. 2.12.  Geophagus winemilleri, lower pharyngeal toothplate in occlusal view.  

From MCNG 12227, 41.7 mm SL; scale bar 1 mm. 
 

 

 

Vertebrae.  14+19=33(1), 14+20=34(1), 15+19=34(13); 11-13 epihemal ribs.  

 

Color pattern in alcohol (Figure 2.10) 

Base color grayish yellow; nape, snout and upper lip dark gray, fading caudally 

to base color towards cheek; lower lip yellowish white.  The only marking on the head is 

a vertical, dark mark in the corner of the preopercule, roughly parallel to its caudal edge, 

fading ventrally but continued into the interopercule in large specimens; 

indistinguishable or faded in specimens smaller than 70 mm SL.  Gill cover slightly 

darker than base color.  Flanks with four, broad, ventro-caudally directed, yellowish-

gray bars running from dorsal to ventral regions and disappearing below the lower lateral 

line (Figure 2.2c).  Bar 1 expands from the 4th or 5th scale, anterior to dorsal-fin origin, to 

the base of the 5th or 6th dorsal-fin spine, extends over the anterior portion of the flank 

and disappears in the region caudal to the pectoral-fin insertion.  Bar 2 extends from the 

7th or 8th to the 11th or 12th dorsal-fin spine, runs parallel to bar 1 and disappears 

approximately at the level of H1.  A blackish medial spot coincides with bar 2, extending 

rostro-caudally between the scales 10 and 13 of E3 and dorso-ventrally between the 

lower half of E3 and E1, such that the upper lateral line borders the dorsal edge of the 
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spot.  Bar 3 extends between the 13th or 14th dorsal-fin spine to the 1st or 2nd soft ray, and 

runs parallel to bar 2 to H1 or H2, where it fades.  Bar 4 extends between the base of the 

3rd and the last dorsal-fin ray, and disappears in H1; in some specimens bar 4 can start at 

the base of the 1st or 2nd dorsal-fin ray and then appears merged with bar 3 at its base, but 

it is clearly separated ventrally (Figs. 1, 2c).  A fifth, faded vertical bar can generally be 

distinguished covering the caudal-most 4 or 5 columns of scales of the caudal peduncle, 

but this bar tends to turn into a grayish colored area in larger specimens. 

Dorsal fin hyaline to smoky, lappets dark gray or blackish; soft portion with 

white spotting on the interradial membranes, forming a more or less parallel pattern of 

horizontal stripes; in specimens 149.0 mm SL and smaller, 3 longitudinal, parallel, 

grayish stripes alternate with hyaline stripes along most of the dorsal fin, fading into an 

increasingly indistinguishable pattern rostrally.  Anal fin dusky to grayish; two 

longitudinal, parallel darker stripes along soft portion of fin.  Caudal fin dusky, with 

indistinct pattern ranging from round spots to longitudinal, whitish stripes, or a 

combination of both; specimens 45.5 mm SL and smaller with 2 or 3 blackish, vertical 

bands.  Pectoral fin immaculate.  Pelvic fin dusky to dark gray, spine and first ray 

whitish to slightly dusky. 

 

Live colors (Figure 2.11) 

Live specimens show the same dark markings as described for preserved 

individuals.  Snout gray turning bluish gray in the cheek, gill cover yellow with 

iridescent blue spots on each scale, lips yellowish white.  Flanks are bluish silver with 

five longitudinal yellow stripes between base of dorsal fin and H1.  Dorsal and anal fins 

brownish red with iridescent blue longitudinal banding; pelvic fin bright red with 

iridescent blue banding, first ray white; caudal fin red, with large iridescent blue to white 

spots.  An aquarium picture in Weidner (2000: 125, Figure 3: Geophagus sp. “Rio Negro 

I”) shows unpaired fins and pelvic with a much brighter red than specimens 

photographed shortly after capture in the wild (HLF pers. obs.). 
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Distribution and habitat (Figure 2.13) 

Geophagus winemilleri is an uncommonly caught species (a revision of nearly 

400 lots of Geophagus at MCNG resulted in only 6 lots of this species), known only 

from the black waters of the lower Casiquiare drainage and the headwaters of the Río 

Negro in southern Venezuela (Figure 2.13).  The scarcity of collections does not allow 

determining whether the species reaches the Orinoco main-stem.  Individuals of this 

species are commonly sold in the market at the town of Barcelos, Brazil, in the middle-

course of the Río Negro (HLF pers. obs.).  An undescribed species known in the German 

aquarium trade as G. sp. “Rio Negro I” or G. sp. “stripetail” (Weidner 2000) corresponds 

well with the characters of G. winemilleri; according to Weidner’s locality data, the 

species might extend as south as the Archipelago das Anavilhanas, near the confluence 

of the Rio Negro with the Amazonas. 

 

Etymology 

Named for Dr. Kirk O. Winemiller, who led the field expeditions to the Río 

Casiquiare region during which most of the type specimens of G. winemilleri were 

collected, and in recognition of his nearly two decades of contributions to ecology and 

tropical fish biology, many of which have been based on Venezuelan fishes. 

 

 

 

 

 



 39

 
FIG. 2.13.  Known distribution area of Geophagus winemilleri n. sp. (▲), G. 
grammepareius (■), and G. taeniopareius (●) in Venezuela.  One dot may represent 
more than one collection locality. 

 

 

 

KEY TO THE VENEZUELAN SPECIES OF GEOPHAGUS 

 

1 Infraorbital stripe complete (Figure 2.1), extending from ventral edge of orbit to edge 

of preopercule or dorsal half of interopercule ……….……………………...……..…….2 

-  Infraorbital stripe absent, or reduced to dark mark on preopercule (Figure 2.1) 

…..…………………………………………………………………………………...…...3 
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2 Dorsal fin base with sheath of scales; faint horizontal stripes on flank 

……...……………………………………………………..…….……… G. taeniopareius 

-  Dorsal fin base without sheath of scales; no horizontal markings on flank 

……..………………………………………………..……….….……  G. grammepareius 

 

3  Base of gill filaments on first gill arch largely covered by broad flap of skin; no 

discernible lateral bars on preserved specimens (Figure 2.2e); Cuyuní river drainage 

…………………..…………………………………………………… G. brachybranchus 

-  Base of gill filaments on first gill arch with narrowly covered with skin at base; 4 to 7 

lateral bars on preserved specimens; Orinoco or Río Negro drainages 

………………….………………….....…………………………………………………..4 

 

4  Seven dark pes on flank, with pes 4 and 5 forming a “Y” pattern; ventral caudal 

peduncle contained 1.1 to 1.3 times in dorsal caudal peduncle; subopercule 

caudoventrally naked (Figure 2.2a)…………………………..………..….. G. dicrozoster 

- Fewer than seven bars on flank; ventral caudal peduncle contained 1.5 to 1.6 times in 

caudal peduncle; subopercule fully scaled ...…………………………………….………5 

 

5 Dorsal lobe of caudal fin with accessory lateral line extension between rays D3 and 

D4; preopercular mark present; four, broad and parallel, caudo-ventrally inclined lateral 

bars on flank (Figure 2.2c)……………...………….…………….….……. G. winemilleri 

- Dorsal lobe of caudal fin without accessory lateral line extension; preopercular mark 

absent; six, vertical and parallel bars on flank (Figure 2.2b)...………….....…. G. abalios 

 

DISCUSSION 

 

Three species of Geophagus from the “surinamensis complex” are described, 

elevating the described species in the genus to fourteen, and the known Venezuelan 

species to six.  The new species Geophagus abalios, G. dicrozoster and G. winemilleri 
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are diagnosable from species outside the G. surinamensis complex by the lack of a 

complete infraorbital stripe (Figs. 1, 2), which can be absent (G. abalios) or reduced to a 

preopercular mark (G. dicrozoster, G. winemilleri).  The combination of coloration and 

squamation characters distinguishes the three species from each other, and from the 

other seven described species within the G. surinamensis complex (Figure 2.2).  Lateral 

bar patterns have been used as diagnostic characters in other genera of Neotropical 

cichlids, notably Mesonauta (Kullander & Silfvergrip 1991; Schindler 1998) and 

Apistogramma (e.g. Kullander 1980).  It is clear from the present paper that some 

species of Geophagus present well-defined and stable patterns of lateral bars, and these 

can be used as diagnostic characters.  Color photographs of aquarium specimens suggest 

that double-bar patterns and the lack of a preopercular mark, as observed in G. abalios n. 

sp., occur together in yet undescribed species (e.g. Weidner 2000, Geophagus sp. 

“Maicuru”, G. sp. “Porto Franco”, G. sp. “Tapajós Orange Head”).  This apparent 

consistency may reflect underlying phylogenetic relationships within Geophagus, and 

may provide useful sets of characters for future phylogenetic analysis within the genus.  

Although little is known of the ecology of Geophagus abalios and G. 

dicrozoster, it appears that they share many essential aspects of their biology.  Field 

observations in the Río Cinaruco (south-western Venezuelan llanos) indicate that both 

species are mouthbrooders (HLF unpubl.).  Both species are among the most abundant in 

samples from lagoon, or to a lesser extent, channel habitats over bare sandy bottoms, 

although they can be abundant in structured habitats with submerged wood or rocks 

(Arrington 2002).  On at least one occasion, G. dicrozoster was captured in rapids near 

the headwaters of the Río Negro (K. Winemiller et al. unpubl.).  Preliminary diet 

analyses indicate that, at least qualitatively, both species share a diet of benthic insect 

larvae dominated by chironomids (Diptera), trichopterans and ephemeropterans (HLF 

unpubl.).  Given the great similarity of these species in overall morphology, color 

patterns, feeding modes, and probably reproductive behavior, it is remarkable that they 

seem to share the same habitats in an extensive manner.  The ecology of G. winemilleri 

is almost entirely unknown: all available records and observations indicate that it 
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inhabits black waters with sandy bottoms, and it probably is a “larvophilous” mouth 

brooder (Weidner 2000). 

Geophagus abalios and G. dicrozoster are sympatric in most of their known 

distribution, and frequently are found in the same habitats, particularly in the Cinaruco 

river, southern Apure State (HLF unpubl.).  Their syntopy will probably be shown to be 

more extensive once they are distinguished in collections, where they are commonly 

referred to as G. surinamensis or G. altifrons (e.g. Mago-Leccia 1970; Machado-Allison 

1987; 1993; Royero et al. 1992).  The broad distribution of both species in the Orinoco 

basin suggests they should be as common in Colombia as they are in the Venezuelan 

portion of the basin.  It is not clear from current distributional knowledge whether the 

range of G. abalios and G. dicrozoster extends further south than the headwaters of the 

Río Negro.  The known distribution of  G. winemilleri is restricted to the lower 

Casiquiare and the upper Río Negro, but the species may be present in the Río Ventuari 

drainage of the middle Orinoco basin (D. C. Taphorn and C. Montaña unpubl.).  The fish 

diversity of the middle Orinoco and its tributaries is poorly known, and further 

collections are needed to clarify whether G. winemilleri is present in the upper 

Casiquiare and upper-middle Orinoco region.  G. winemilleri is known to occur in the 

middle Río Negro (HLF pers. obs.).  Weidner (2000) indicates that all aquarium imports 

come from the Río Negro and refers to a case in which the species was caught in the 

Archipelago das Anavilhanas, just north of Manaus.  Further taxonomic, phylogenetic 

and distributional studies in the Río Negro will be necessary before a fruitful discussion 

of the biogeographic history of Geophagus in this region is possible. 

 

 



 43

CHAPTER III 

 

MOLECULAR PHYLOGENY AND RATES OF EVOLUTION OF 

GEOPHAGINE CICHLIDS FROM SOUTH AMERICA (PERCIFORMES: 

LABROIDEI) 

 

INTRODUCTION 

 

The Neotropical cichlid subfamily Geophaginae encompasses 18 genera and over 

180 described species (Kullander 2003), with many more in need of description (e.g. 

Kullander 2003; López-Fernández and Taphorn 2004).  Although knowledge of 

geophagine biology is limited, this group of fishes displays diverse ecology, 

morphology, and reproductive behavior.  Their overall morphological and behavioral 

diversity suggests ecomorphological specialization for feeding and habitat use (e.g. 

Winemiller et al. 1995; López-Fernández unpubl.).  For instance, some taxa share a 

common feeding mode based on sifting of benthic invertebrates (e.g. Lowe-McConnell 

1991; Winemiller et al. 1995), while others are strict piscivores.  Geophagines also 

exhibit a variety of reproductive modes, from typical substrate spawners to 

mouthbrooding, and are the only riverine cichlids approaching the reproductive 

versatility of lacustrine cichlids (e.g. Wimberger et al. 1998; Barlow 2000; Weidner 

2000).  Several genera and species of geophagines are syntopic in South American rivers 

(e.g. Winemiller et al. 1995; Arrington and Winemiller 2003), thus ecomorphological 

and behavioral specialization may facilitate niche partitioning within species-rich 

ecological communities.  Such extensive ecological specialization may constitute an 

adaptive radiation.  According to Schluter (2000), an adaptive radiation results from the 

fast divergence of a monophyletic lineage into multiple, ecologically specialized 

descendants.  In an adaptive radiation, relationships among taxa should display short 

branch lengths at the base of the phylogeny, reflecting rapid differentiation.  Therefore, a 

phylogeny for Geophaginae is required to determine if the subfamily constitutes an 
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adaptive radiation, and to frame investigations of ecological and morphological 

divergence within the adequate phylogenetic context. 

Recent phylogenetic analyses of the Cichlidae (Kullander 1998; Farias et al. 

1999, 2000, 2001) have improved understanding of high-level relationships within the 

Neotropical clade (e.g., definition of subfamilies), yet even here there are disagreements.  

Using a morphology-based phylogeny, Kullander (1998) subdivided the Neotropical 

Cichlidae and the African genus Heterochromis into six subfamilies.  The Retroculinae 

(genus Retroculus) and Cichlinae (Cichla, Crenicichla, and Teleocichla) constituted the 

basal clades of the American assemblage.  The African Heterochromidinae 

(Heterochromis) was nested between the latter two and Astronotinae (Astronotus and 

Chateobranchus), thus rendering the Neotropical cichlids paraphyletic.  The more 

derived subfamilies Geophaginae and Cichlasomatinae included all the remaining genera 

within the American cichlids.  Geophaginae included 16 genera and were divided into 

three tribes: Acarichthyini (Acarichthys and Guianacara), Crenicaratini (Biotoecus, 

Crenicara, Dicrossus, and Mazarunia), and Geophagini (Geophagus, Mikrogeophagus, 

`Geophagus` brasiliensis, `Geophagus` steindachneri, Gymnogeophagus, Satanoperca, 

Biotodoma, Apistogramma, Apistogrammoides and Taeniacara).  Cichlasomatinae 

included two large, sister subclades: the Cichlasomini and the Heroini. 

In disagreement with the definition of Kullander, molecular studies (Farias et al. 

1998, 1999) and total evidence analyses (Farias et al. 2000, 2001), including Kullander’s 

morphological data, found the Neotropical Cichlidae to be monophyletic and 

Heterochromis to be basal to the African clade.  Farias et al. (1999, 2000, 2001) also 

found the genera Crenicichla and Teleocichla nested within Geophaginae, expanding the 

subfamily to 18 genera, and challenging the previously proposed relationship between 

Crenicichla, Teleocichla and the basal genus Cichla (Stiassny 1987, 1991; Kullander 

1998).  Although Farias et al.’s studies have convincingly supported monophyly of 

Geophaginae, suprageneric arrangements of taxa are unclear, and the internal 

relationships within the subfamily are currently not established.  Farias et al. (1999, 

2001) also found that geophagine cichlids had significantly faster rates of molecular 
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evolution than other Neotropical cichlids.  However, the focus of their analysis was on 

the higher-level relationships within the Cichlidae, and their sampling of Geophaginae 

was limited.  Thus far, no comprehensive assessment has been provided for either the 

relationships among geophagine genera, or the degree of rate heterogeneity observed 

among taxa.  If such rate heterogeneity is extensive within the group, the derivation of 

phylogenies with some techniques can be difficult (Felsenstein 1978, 2004). 

A molecular phylogeny of Geophaginae was reconstructed by integrating 

published molecular data from four loci and including new sequences from the 

mitochondrial gene ND4 and the nuclear gene RAG2.  In addition, taxon sampling was 

expanded with respect to previous studies to include 16 of the 18 genera and 30 species 

of geophagines.  These data are used to:  (1) evaluate relationships among genera of 

Geophaginae; (2) explore the extent of rate heterogeneity within geophagine cichlids; 

and (3) evaluate the evidence supporting an adaptive radiation for the group. 

 

MATERIALS AND METHODS 

 

Taxon sampling 

DNA sequence data were collected for a fragment of the mitochondrial ND4 

(NADH dehydrogenase subunit 4) gene and of the nuclear RAG 2 (Recombination 

Activating Gene 2) gene.  Specimens examined included 21 genera and 38 species of 

Neotropical cichlids, and when possible, sequences were obtained from two individuals 

of each species.  Ingroup samples included 16 of 18 genera and 30 species (Table 3.1) of 

Geophaginae sensu Farias et al. (1999, 2000, 2001), excluding only the genera 

Teleocichla and Mazarunia, for which tissue samples could not be obtained.  The genus 

Geophagus sensu lato actually includes three distinct genera, of which two are in need of 

description (e.g. Kullander 1986; Kullander and Nijssen, 1989).  Each of these genera is 

represented by one species in this study, and they are referred to as ‘Geophagus’ 

brasiliensis and ‘Geophagus’ steindachneri, which must not be confused with the genus 

Geophagus sensu stricto.  One species of each of the genera Cichlasoma, Mesonauta and 

 

 



 

TABLE 3.1 List of taxa for which ND4 and RAG2 were sequenced in this study with collection localities and accession 
numbers to GenBank.  More detailed locality data are available from HLF on request.  Taxa and accession number for 
sequences of 16S, cytochrome b, Tmo-M27 and Tmo-4C4 used to build the supermatrix are also given.  Superscript numbers 
indicate the original publication of non-original sequences.  References are as follows: 1: Farias et al. (2001); 2: Farias et al. 
(1999); 3: Farias et al. (2000); 4: Zardoya et al. (1996); 5: Kumazawa et al. (1999); 6: Streelman and Karl (1997); 7: Farias, 
Meyer and Ortí, Unpublished; 8: Tang (2001) and 9: Farias et al. (1998).   
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     Accession numbers
 # Fish Collection locality ND4 16S Cytochrome b RAG2   Tmo-4C4 Tmo-M27

Outgroup taxa           
Astronotus sp.     

  
 
   

    
      

    

 
 

         
    

        
 

  

 
      

    

 

        

2 Aquarium trade AY566776 AF0489982

A. crassipinnis 
  

AB0189875

A. ocellatus 
 

AY566740 AOU703456

A. ocellatus 
 

AOU636684 

A. ocellatus 
 Cichla intermedia 1 Río Cinaruco, Venezuela AY566788 AY566752

Cichla orinocensis 1 Río Cinaruco, Venezuela AY566786 AF0490182 AF3706431 AY566751 AF1130643 AF1126023

Cichla temensis 2 Río Cinaruco, Venezuela 
 

AY566793 AF0490192 AF3706441 AY566755
Retroculus sp.

 
1 Macapá, Brazil
  

AY566774 AF1125912 AF3706401 AY566737 AF1130613 AF1125993

Cichlasomatinae
Cichlasoma orinocense 2 Apure, Venezuela AY566778 AF0458459 AF1451283

C. bimaculatum 
AY566747 AF1130753

C. amazonarum 
AF1126133

C. amazonarum 
Hoplarchus psittacus 1 Río Cinaruco, Venezuela AY566789 AF0458559 AF3706731 AY566760 AF1130743 AF1126123

Mesonauta egregius 2 Caño Maporal, Venezuela AY566782 AF0458599

M. insignis 
AF3706751

M. insignis 
AY566748 AF1130663

M. insignis 
AF1126043

M. insignis 
Geophaginae

Acarichthys heckelii 2 Aquarium trade AY566768 AF0490042 AF3706531 AY566733 AF1130833 AF1126213

Apistogrammoides pucallpaensis 2 Río Orosa, Perú AY566770 AY566735
Apistogramma hoignei 1 Caño Maporal, Venezuela AY566781 AF0490062 

Apisto. sp.2 
AF3706561 
Apisto. sp. 

AY566746 AF1130953 
Apisto. sp.2 

 

AF1126333 
Apisto. sp.2 

 Apistogramma agassizi 2 Río Orosa, Perú AY566787 AF0490052 
Apisto. sp.1 

AY566749

Biotodoma wavrini 2 Río Cinaruco, Venezuela 
  

AY566784 AF0490072 AF3706571 AY566726 AF1130823 AF1126203

Biotodoma cupido 2 Río Orosa, Perú AY566772 AY566723
Biotoecus dicentrarchus 2 Río Cinaruco, Venezuela AY566792 AF1126417 

Biotoecus sp. 
AY566754

Crenicara punctulatum 2 Río Nanay, Perú - AF0490082 
Crenicara sp. 

AF3706551 
Crenicara sp. 

AY566742 AF1130903 
Crenicara sp. 

  

AF1126283 
Crenicara sp. 

 Crenicichla geayi 2 Río Las Marías, Venezuela AY566771 AF0458489

Creni. sp. 
AF3706451

Creni. sp. 
AY566736

 
 
 
 

 



 

TABLE 3.1 Continued 
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     Accession numbers
 # Fish Collection locality ND4 16S Cytochrome b RAG2   Tmo-4C4 Tmo-M27

Crenicichla af. lugubris  2 Río Cinaruco, Venezuela   AY566785 AF0490022  
C. lugubris 

AF3706461

C. regani 
AY566750 AF1130873

C. regani 
AF1126253

C. regani 
Crenicichla sveni 2     

      
       

       
  

     

       

 

      
     

 

  

 

     
       

   

   
      

       
   

Apure, Venezuela AY566779 AF2859398  
C. lepidota 

AY566743 U703356

C. saxatilis 
CSU636674

C. saxatilis 
 Crenicichla af. wallacii 2 Río Cinaruco, Venezuela

  
AY566790 AY566753

Dicrossus sp. 2 Aquarium trade AY566767 AY566731
Geophagus brachybranchus 2 Río Cuyuní, Venezuela AY566763 AY566727
Geophagus grammepareius 1 Río Claro, Venezuela AY566796 AF1126427

G. argyrostictus 
AY566724 AF1130923

G. argyrostictus 
 

AF1126303

G. argyrostictus 
Geophagus abalios 2 Río Cinaruco, Venezuela AY566795 AF0458509

G. altifrons 
AY566757 AF1130913

G. altifrons 
AF1126293

G .altifrons 
 Geophagus dicrozoster 2 Río Cinaruco, Venezuela AY566794 AF0490092

G. cf. proximus 
AY566756

Geophagus surinamensis 2 Haut Maroni, French Guiana AY566777 AF1125972 

Geophagus sp. 
AF3706581 

Geophagus sp. 
AY566741 AF1130933 

Geophagus 
AF1126313 

Geophagus sp. 
‘Geophagus' brasiliensis 2 Aquarium trade AY566766 AF0490162 AF3706591 AY566732 AF113088 AF112626

‘Geophagus' steindachneri 2 Aquarium trade, origin not 
known 

AY566765 AF3706601 AY566730

Guianacara n. sp. ‘Caroni’ 2 Río Claro, Venezuela AY566762 AF0490102 
Guianacara sp. 

AF3706541 

Guianacara sp. 
AY566725 AF1130843 

Guianacara sp. 
AF1126223 

Guianacara sp. 
Gymnogeophagus balzanii 1 Aquarium trade, probably from 

Uruguay 
- AF1125947  

G. gymnogenys 
AF3706611 

G. gymnogenys 
AY566739 AF1130853

G. gymnogenys 
  

AF1126233

G. gymnogenys 
 Gymnogeophagus rhabdotus 2 Aquarium trade, probably from 

Uruguay 
AY566775 AF0490112

G. labiatus 
AF3706621

G. labiatus 
AY566738

Mikrogeophagus altispinosus 2 Aquarium trade AY566764 AF0458572 AY566729 AF1130893 AF1126273

Mikrogeophagus ramirezi 2 Caño Maporal, Venezuela AY566780 AY566744
Satanoperca daemon 2 Río Cinaruco, Venezuela AY566791 AF0490132 

S. acuticeps 
AF3706631

S. acuticeps 
AY566758

Satanoperca jurupari 2 Río Orosa & R. Nanay, Perú AY566783 AF0490142 AF3706641 AY566745
Satanoperca mapiritensis 2 Río Pao & R. Morichal Largo, 

Venezuela 
AY566761 AY566728

Satanoperca pappaterra 2 Río Paraná, Brazil
 

AY566773 AY566759
Taeniacara candidi 2 Aquarium trade AY566769 AF1125922 AF3706651 AY566734 AF1130943 AF1126323
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Hoplarchus were added to the ingroup to further test geophagine monophyly 

against its sister-group Cichlasomatinae (Kullander 1998; Farias et al. 2000, 2001).  

Based on previous knowledge of cichlid relationships (Oliver 1984; Stiassny 1991; 

Kullander 1998; Farias et al. 1999, 2000, 2001), three species of Cichla and one of 

Astronotus and Retroculus were used as outgroups.  Throughout the paper, references to 

both ingroup and outgroup pertain to the above designation of taxa.  Whenever possible, 

more than one species per genus were sampled to test genus-level monophyly, and to 

improve robustness and resolution of the analysis (e.g. Graybeal 1998; Zwickl and Hillis 

2002). 

In addition to new data from the ND4 and RAG2 genes, a “supermatrix” (Gatesy 

et al. 2002) was derived from previously published sequences of the mitochondrial 

protein-coding cytochrome b and the ribosomal 16S genes, the nuclear microsatellite 

flanking-region Tmo-M27, and the nuclear locus Tmo-4C4 (See Table 3.1 for references 

and accession numbers).  The supermatrix allowed for a total-evidence analysis of all 

molecular data available for Geophaginae.  Given the objective of resolving genus-level 

relationships, species-level taxonomic mismatches between new data and published 

sequences were circumvented by creating composites of species to improve resolution at 

the genus level.  Whenever possible, species combinations in the supermatrix (Table 3.1) 

were based on previous knowledge of intra-generic phylogeny as well as phylogenetic 

analyses from the new data, which supported genus-level monophyly.  For example, 

Satanoperca daemon was combined with S. acuticeps following Kullander and Ferreira 

(1988), and Gymnogeophagus rhabdotus with G. labiatus based on Wimberger et al. 

(1998).  However, a lack of explicit phylogenetic information often caused decisions to 

be based on rather arbitrary criteria that helped reduce the amount of missing data.  This 

approach, thus, should satisfy the objective of providing a robust analysis of inter-

generic relationships, but species-level relationships recovered from the supermatrix are 

necessarily spurious and are not being reported.  When published sequences were 

lacking for a genus or locus, that part of the matrix was coded as missing data (?). 
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Molecular methods 

The DNeasy kit (Qiagen) was used to extract  total genomic DNA from muscle 

tissues stored in 95% ethanol.  The mitochondrial ND4 gene (~650 bp) was amplified 

using standard PCR protocols (94°C denaturation, 60 sec., 48°C annealing 60 sec., 77°C 

extension 45 sec. for 35 cycles) and directly sequenced using primers Nap 2 (Arévalo et 

al. 1994) and ND4LB (Bielawsky et al. 2002) and the internal sequencing primer Geo-

ND4F (5’ TCCTCCCCCTRATAATTCTKGC 3’), specifically designed for this study.  

The nuclear RAG 2 gene (~1000 bp) was amplified using a touchdown PCR protocol 

(94°C, 30 sec. denaturation, 62°C, 60°C, and 58°C, 2 cycles each; then 56°C for 25 

cycles, 60 sec. annealing, and 72°C 90 sec. extension).  PCR products were gel extracted 

using the Quiaquick kit (Qiagen) before sequencing.  Amplification and external 

sequencing primers (F2 & R7) were from Lovejoy and Collette (2001) and the internal 

sequencing primers Geo IF (5' AGGTCCTACATGCCTACATGC) and GeoIR (5' 

GGGGCTGCCTTGCARAAGC) were developed specifically for this study.  Forward 

and reverse DNA strands were sequenced with fluorescent-labeled dideoxynucleotide 

terminators (BigDye, PE Biosystems) following the protocol of Sanger et al. (1977) and 

using an automated ABI Prism 377 or 3100 sequencer (PE Biosystems). 

 

Alignment 

All new sequences were compared to published DNA sequences using NCBI’s 

BLAST search to confirm their identity.  Since cichlid sequences of ND4 and RAG2 

were not available before this study, sequences significantly matching the expected 

nucleotide regions in any teleosts were considered accurate and included in the analyses.  

Forward and reverse sequences were edited and aligned in Sequencher 4.0 (Genecodes), 

and a consensus sequence was constructed for each specimen of each taxon.  

Unambiguous sequences of the ND4 fragment could not be obtained for the geophagine 

taxa Crenicara punctulatum and Gymnogeophagus balzanii, thus they were removed 

from the ND4 matrix and treated as missing data in the combined analyses (Table 3.1).  

Preliminary multiple alignment of all sequences was determined with Clustal X 
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(Thompson et al. 1994), using default gap penalties.  Several gap penalties were used to 

account for any indels involving codons and overall higher level of nonsynonymous 

substitutions observed for ND4.  The 16S fragment was aligned using the secondary 

structural model of Xenopus laevis predicted by the Gutell Lab at the University of 

Texas at Austin (Cannone et al. 2002: http://www.rna.icmb.utexas.edu).  A total of 29 

base pairs in regions of ambiguous structural alignment were excluded because 

positional homology could not be established.  The alignments of microsatellite flanking 

region Tmo-M27 and nuclear locus Tmo-4C4 were checked for unnecessary gaps or 

obvious alignment mistakes, but otherwise were used unmodified.  GenBank accession 

numbers for new sequences used in this study are given in Table 3.1; a Nexus file with 

the alignments for all loci is available from HLF on request. 

 

Phylogenetic analyses  

A total of four different datasets were analyzed using maximum parsimony and 

Bayesian approaches: ND4, RAG2, ND4 and RAG2 combined (Total Evidence dataset), 

and all six genes (ND4, cytochrome b, 16S, RAG2, Tmo-4C4 and Tmo-M27) combined 

in the supermatrix described above and in Table 3.1.  Each dataset was analyzed 

following the procedures described below: 

Parsimony analyses.  Parsimony analyses, both equally and differentially 

weighted, were performed in PAUP* v4.0b10 (Swofford, 2002) using 100 replicates of 

heuristic search with random addition sequence and Tree Bisection and Reconnection 

(TBR) branch swapping.  As a means to partially accommodate rate heterogeneity and 

saturation effects at certain positions under parsimony, two-parameter step matrices were 

used to differentially weight transitions and transversions for each of the six aligned 

gene fragments.  Transition/transversion ratios were estimated using ML on a Neighbor-

Joining tree constructed using the HKY85 model of nucleotide substitution (Hasegawa et 

al. 1985) in PAUP*.  Support for the parsimony-derived topologies was estimated with 

nonparametric bootstrap (Felsenstein 1985) and Bremer support indices (Bremer 1988, 

1994) with searches performed in PAUP*.  Bootstrap included 100 pseudoreplicates and 
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10 heuristic search replicates under the same conditions of the original search, for both 

the equally and differentially weighted analyses.  Bremer support was estimated only for 

the strict consensus tree of the unweighted MP analysis with topological constraints 

implemented in MacClade 4.0 (Maddison and Maddison 2000) and 100 replicates of 

heuristic search using random addition sequences and TBR. 

Bayesian analyses.  Bayesian phylogenetic analyses of each of the four data sets 

(ND4, RAG2, Total evidence and the supermatrix) were run in MrBayes 3.0b4 

(Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003).  This version of 

MrBayes implements a modified Metropolis coupled Markov Chain Monte Carlo (MC3) 

algorithm that independently samples trees and the parameters of the model of evolution 

from each data partition (Ronquist and Huelsenbeck 2003).  The program produces 

topologies of the combined data, but uses separate models of evolution for each 

partition.  Initial models of molecular evolution were selected using nested Likelihood 

Ratio Tests as implemented in ModelTest (Posada and Crandall 1998).  Once the general 

model was obtained for each partition, specific parameters of nucleotide substitution 

were left to vary using default priors, thus each model could accommodate several 

possible rate models (Huelsenbeck and Imennov 2002).  For each data set, phylogenetic 

analyses were run for 2 x 106 generations, sampling every 100 generations for a total of 

20,000 samples per run (Leaché and Reeder 2002). 

Log-likelihood values of each sample against the number of generations were 

plotted, and the Markov chain was considered to have attained stationarity when log-

likelihood estimates reached a stable value (Huelsenbeck and Ronquist 2001; Leaché 

and Reeder 2002).  All samples with likelihood values below the stationarity level were 

discarded as burn-in.  Three methods were applied to each data set to avoid estimating 

phylogenies corresponding to local optima. 1) The MC3 algorithm implemented in 

MrBayes was employed.  This approach  facilitates an efficient search of tree space by 

using three incrementally heated chains along with the cold chain from which 

parameters are derived.  Heated chains reduce the height of suboptimal peaks and fill 

valleys between peaks; by randomly swapping with the heated chains, the cold chain can 
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more effectively explore tree space, reducing the chance of being trapped on local 

suboptimal peaks (Geyer and Thompson 1995; Huelsenbeck and Ronquist 2001; 

Ronquist and Huelsenbeck 2003).  2) For each data set, the MC3 analyses were repeated 

with different starting trees until not less than four runs converged on the same mean 

stationarity value.  Samples were then used from the four runs which converged on the 

highest likelihood.  3) For each of the four convergent analyses, 50% majority rule 

consensus trees were separately estimated, and mean values calculated for the 

parameters of nucleotide substitution. 

 

Comparison of molecular and morphological topologies 

Kullander (1998) proposed a classification of Geophaginae based on his analysis 

of 91 morphological characters.  Likelihood-based tests of Kishino-Hasegawa (KH, 

Kishino and Hasegawa 1989) and Shimodaira-Hasegawa (SH, Shimodaira and 

Hasegawa 1999), as implemented in PAUP*, were used to compare the MP and 

Bayesian topologies with that of Kullander’s morphological analysis.  Kullander used a 

consensus of character states for each genus, and taxon sampling was slightly different 

between his analysis and this study; to make the topologies more comparable, the trees 

were modified such that a single branch represented each genus, and Taeniacara candidi 

was removed because it was not included in Kullander’s study.  Topological tests were 

performed using the ND4, RAG2 and total evidence datasets, but due to the amount of 

missing data (e.g. Satanoperca, Biotoecus), meaningful comparisons using the 

supermatrix dataset could not be performed.  In addition, topological comparisons with 

Farias et al.’s (1999, 2000, 2001) molecular trees were not performed due to their 

reduced taxon sampling. 

 

Rates of molecular evolution 

The two cluster test (TCT) and the branch length test (BLT) of Takezaki et al. 

(1995) in the LINTRE program (1995, http://www.bio.psu.edu/People/Faculty/Nei/Lab) 

were performed.  These tests offer two different approaches to test whether a group of 
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sequences evolves in a clock-like fashion.  The TCT is a generalized version of the 

relative-rate test (RRT, Li and Bousquet 1992; Tajima 1993) that allows one to evaluate 

whether a lineage in a phylogeny evolves significantly faster than other lineages.  The 

TCT is less sensitive to unbalanced tree topology than the original RRT (Robinson et al. 

1998).  The BLT tests whether the branch length of a lineage is significantly longer or 

shorter than the average branch length across the tree (Takezaki et al. 1995), thus 

detecting whether a lineage evolves significantly faster or slower than the others do.  

Accuracy and power of the tests increase when the tree is rooted with the nearest 

outgroup (Robinson et al. 1998), and when taxon sampling is increased (Robinson et al. 

1998; Sorhannus and Van Bell 1999).  With this in mind, Astronotus was used as the 

outgroup following the results of Farias et al. (2000), and performed the tests including 

all species in the phylogeny. 

 

RESULTS 

 

ND4 

The aligned ND4 dataset included 648 base pairs.  A single codon deletion was 

found in Retroculus sp. at position 126, and in all species of Cichla and in Biotodoma 

cupido at position 130.  Homogeneity of nucleotide composition was not rejected by the 

X2 test (X2 = 90.111, df = 105, p > 0.8) as implemented in PAUP* 4.0b10 (Swofford 

2002).  The HKY85 model of substitution revealed an overall transition/transversion 

ratio of 2.23, which was used for the weighted parsimony analysis.  The largest overall 

genetic distance (uncorrected sequence divergence = 41.52%) occurred among the 

geophagine taxa Crenicichla wallacii and Dicrossus sp., and the smallest divergence 

(4.78%) between Geophagus brachybranchus and G. surinamensis.  Sequence 

divergence between geophagine cichlids and outgroup taxa ranged between 16.2% 

(Guianacara n. sp. ‘Caroní’ x Cichla orinocense) and 36.8% (Crenicichla wallacii x 

Cichla intermedia).  Divergence between geophagine and cichlasomine taxa varied 

between 18.3% (Cichlasoma orinocense x Geophagus brachybranchus) and 37.9% 
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(Mesonauta egregius x Crenicichla wallacii).  Saturation plots for 648 bp and 36 taxa of 

ND4 (Figure 3.1) showed an overall saturation of transitions beyond 15-20% divergence, 

a pattern mostly due to the effect of high rates of change at third positions.  

Transversions showed little or no overall saturation, as only third positions showed a 

tendency to saturate beyond 30 to 35% divergence.  

Unweighted parsimony analysis of ND4 consisted of 395 informative sites for 36 

taxa and produced 2 most parsimonious (MP) trees of 2770 steps with a global 

consistency index (CI) of 0.30, retention index (RI) of 0.39, and rescaled consistency 

index (RC) of 0.12.  The difference between the two unweighted MP trees was the 

position of species within the genus Geophagus.  Transition/transversion weighted 

parsimony included 403 informative sites, producing a single MP tree of 3918.91 steps 

and CI = 0.32, RI = 0.41 and RC = 0.13.  Both unweighted and weighted parsimony 

analyses produced essentially the same topology (Figure 3.2A), with a weakly supported 

monophyletic Geophaginae.  The best supported relationships within the subfamily were 

a clade uniting Satanoperca, Apistogramma (including Apistogrammoides) and 

Taeniacara (the “Satanoperca clade” from here on), and the monophyly of most genera. 

The unweighted analysis produced a paraphyletic Mikrogeophagus, which was 

monophyletic in the weighted topology.  A general time reversible model of molecular 

evolution was used for the Bayesian analysis, including invariants and gamma-

approximated site-specific rate heterogeneity (GTR + I + Г).  Four independent runs 

converged in the same likelihood range after approximately 25,000 generations; the first 

50,000 (500 trees) were discarded as burn in.  Fifty percent majority rule topologies and 

model parameters for each run (19,500 trees/samples per run) were identical, thus all 

trees were combined into the final topology (Figure 3.2B).  The Bayesian analysis 

produced a monophyletic Geophaginae, recovered the “Satanoperca clade” as did the 

MP analysis, and supported a sistergroup relationship between Geophagus and 

‘Geophagus’ steindachneri.  Most other support was given to the monophyly of various 

genera.

 

 



  

 
FIG. 3.1.  ND4 saturation plots showing transitions (filled circles) and transversions (empty circles).  A) first positions; B) second positions; C) third positions; D) all positions.  Graphs 
represent absolute number of nucleotide substitutions against uncorrected percent sequence divergence (p-distance) from pairwise taxa comparisons. 
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FIG. 3.2.  Topologies derived from DNA sequences of the mitochondrial gene ND4.  A) Consensus of most parsimonious topologies derived from equally weighted (2 MP trees) and 
transition/transversion weighted (1 MP tree) analysis of a 648 bp of the mitochondrial NADH dehydrogenase subunit 4 (ND4).  Boostrap support, based on 100 pseudoreplicates, for 
unweighted/weighted analyses is given above branches (only scores >50% are shown); Bremer decay indices for the equally weighted analysis are given below branches.  Support values for 
nodes a-c are given to the right of the tree.  See text for tree statistics.  B) 50% majority rule Bayesian topology derived from ND4 sequences with a GTR + I + Γ general model of evolution.  
The topology resulted from combining 78,000 trees from 4 independent runs of 2 x 106 generations sampling every 100 trees with burn in of 50,000 generations/500 trees for each analysis.  
Posterior probabilities are given above branches.  Highlighted clade (see discussion): SC = Satanoperca clade. 56
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RAG2 

The RAG2 dataset included 976 base pairs, with no differences in length among 

the 38 taxa included.  Homogeneity of base pairs was not rejected by the X2 test (X2 = 

7.498, df = 111, p = 1.0), and the HKY85 model of nucleotide substitution resulted in a 

transition/transversion ratio of 2.41.  The largest overall genetic distance (7.2%) 

occurred among the geophagine taxa Apistogramma hoignei and Biotodoma cupido, and 

the smallest between Geophagus brachybranchus and G. surinamensis, which showed 

no difference in their sequences for the RAG2 fragment.  Sequence divergence between 

geophagine cichlids and outgroup taxa ranged between 6.7% (Acarichthys heckelii x 

Retroculus sp.) and 2.6% (Acarichthys heckelii x Cichla temensis).  Divergence between 

geophagine and cichlasomine taxa varied between 6.4% (Apistogramma hoignei x 

Mesonauta egregius) and 3.0% (Acarichthys heckelii x Hoplarchus psittacus).  

Saturation plots for the aligned 976 bp from 38 taxa revealed no apparent saturation of 

nucleotide substitution at any codon position (plots not shown). 

Unweighted parsimony analysis of RAG2 included 155 parsimony informative 

sites for 38 taxa, producing 152 MP trees of 483 steps and CI = 0.70, RI = 0.71 and RC 

= 0.50.  The transition/transversion weighted analyses included 159 informative sites and 

produced 36 MP trees of 681.99 steps and CI = 0.71, RI = 0.73 and RC = 0.52.  The 

strict consensus trees of both analyses were virtually identical as was overall bootstrap 

support (Figure 3.3A).  Three multi-genus clades were unresolved at the base of a 

monophyletic Geophaginae: the Tribe Acarichthyini (Acarichthys and Guianacara), the 

“Satanoperca clade,” and a clade including Biotodoma, Mikrogeophagus, Geophagus 

sensu lato, Gymnogeophagus, Crenicara and Dicrossus, referred to as the “Big clade” 

from here on.  RAG2 Bayesian analyses were run using a GTR + I + Г model of 

nucleotide substitution.  Of six independent runs, two converged at a lower likelihood 

range than the other four and were discarded.  The four analyses converging at highest 

likelihood values were then used for tree construction as described for ND4, but in this 

case the first 1,000 trees were discarded as burn in.  As before, 50% majority rule 

consensus trees and parameters of sequence evolution for each of the four analyses were 
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identical, thus topologies were combined onto a single tree (Figure 3.3B).  The Bayesian 

topology was essentially identical to the parsimony tree, except for the incorporation of 

Crenicichla and Biotoecus at the base of the “Big clade”, thus leaving the geophagine 

phylogeny as a polytomy of three clades, each with at least two genera (Figure 3.3B, and 

see discussion) 

 

Total evidence 

The combined datasets of ND4 and RAG2 produced a matrix of 1624 bp for 38 

taxa.  Since ND4 sequences were not available for Crenicara punctulatum and 

Gymnogeophagus balzanii (see methods), these were treated as missing data.  The 

unweighted parsimony analysis included 550 informative positions and produced 1 MP 

tree of length 3304 with CI = 0.36, RI = 0.42 and RC = 0.15.  The 

transition/transversions weighted parsimony analysis consisted of 562 informative sites 

and produced 1 MP tree of 4667.94 steps with CI = 0.37, RI 0.44 and RC = 0.16 (Figure 

3.4A).  The total evidence parsimony analyses produced a monophyletic Geophaginae 

with poorly resolved internal relationships, but with some common elements with the 

independent analyses, particularly the “Satanoperca clade” and some components of the 

“Big clade”.  Bayesian total evidence analyses were performed under unlinked GTR + I 

+ Г models of nucleotide substitution for each partition.  The final topology (Figure 

3.4B) was derived exactly as described for ND4; parameters of sequence evolution for 

ND4 and RAG2 were not different from those estimated during the individual analyses.  

The Bayesian topology was similar to the RAG2 Bayesian tree, but completely resolved: 

the Tribe Acarichthyini was basal to a clade in which the “Big clade,” with (weakly 

supported) Crenicichla and Biotoecus at its base, was sister to the “Satanoperca clade”..

 



 

 
 
FIG. 3.3.  Topologies from DNA sequences of the nuclear gene RAG2.  A) Consensus of most parsimonious topologies derived from equally weighted (152 MP trees) and 
transition/transversion weighted (36 MP trees) analysis of a 976 bp of the nuclear Recombination Activation Gene 2 (RAG2).  Boostrap support, based on 100 pseudoreplicates, for 
unweighted/weighted analyses is given above branches (only scores >50% are shown); Bremer decay indices for the equally weighted analysis are given below branches.  Support values for 
nodes a-o are given to the right of the tree.  See text for tree statistics.  B) 50% majority rule Bayesian topology using RAG2 sequences with a GTR + I + Γ general model of evolution.  The 
topology resulted from combining 76,000 trees from 4 independent runs of 2 x 106 generations sampling every 100 trees with burn in of 100,000 generations/1000 trees for each analysis.  
Posterior probabilities are given above branches.  Highlighted clades (see discussion): BC = Big clade; CrC = Crenicarine clade; GC = Geophagus clade; MkC = Mikrogeophagus clade; SC = 
Satanoperca clade; TA = Tribe Acarichthyini. 59

 



 

 
FIG. 3.4.  Topologies from the combined ND4 and RAG2 datasets.  A) Consensus of most parsimonious topologies derived from equally weighted (1 MP tree) and transition/transversion 
weighted (1 MP tree) analysis of the combined 1624 bp of the mitochondrial ND4 and the nuclear RAG2.  Boostrap support, based on 100 pseudoreplicates, for unweighted/weighted 
analyses is given above branches (only scores >50% are shown); Bremer decay indices for the equally weighted analysis are given below branches.  Support values for nodes a-j are given to 
the right of the tree.  See text for tree statistics.  B) 50% majority rule Bayesian topology using ND4 and RAG2 sequences with unlinked GTR + I + Γ general models of evolution.  The 
topology resulted from combining 78,000 trees from 4 independent runs of 2 x 106 generations sampling every 100 trees with burn in of 50,000 generations/500 trees for each analysis.  
Posterior probabilities are given above branches.  Highlighted clades (see discussion): BC = Big clade; CrC = Crenicarine clade; GC = Geophagus clade; MkC = Mikrogeophagus clade; SC = 
Satanoperca clade; TA = Tribe Acarichthyini. 60
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Super matrix 

The supermatrix (Table 3.1 and see methods) contained sequences from six 

molecular markers: ND4, RAG2, cytochrome b, 16S, Tmo-M27 and Tmo-4C4, for a total 

of 3960 aligned base pairs from 38 taxa, of which several are composites of more than 

one species.  The unweighted parsimony analysis contained 1161 informative sites, and 

recovered 2 MP trees of 6215 steps with CI = 0.40, RI = 0.39 and RC = 0.16.  For ND4 

and RAG2 the same transition/transversion ratios as for other analyses were used, and 

the following ratios were calculated for the remaining partitions: cytochrome b = 2.27, 

16S = 2.32, Tmo-M27 = 3.90, Tmo-4C4 = 1.90.  The weighted parsimony analysis 

included 1185 informative sites, producing a single MP tree of 6225 steps with CI = 

0.40, RI = 0.39 and RC = 0.16 (Figure 3.5).  Parsimony analysis of the supermatrix 

strongly supported geophagine monophyly and recovered the “Satanoperca clade”, but 

otherwise failed to recover relationships found in analyses of RAG2 and the total 

evidence dataset; all new relationships found in the analysis were weakly supported.  

Bayesian analysis of the supermatrix was performed using unlinked models of 

nucleotide substitution for each one of the six partitions.  A GTR + I + Г model was used 

in all cases, except for Tmo-M27, for which the HKY85 + Г model was employed.  Four 

independent runs produced identical model parameters and partial topologies, thus all 

samples were combined after discarding the first 500 trees of each run as burn in (Figure 

3.6).  Bayesian analysis of all the molecular data produced a monophyletic Geophaginae 

with Guianacara at the base of a three-clade polytomy.  This polytomy included a 

mildly supported clade including Crenicichla, Biotoecus and Acarichthys, and the “Big 

clade” and “Satanoperca clade”, both with strong support.  
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FIG. 3.5.  Consensus of most parsimonious topologies derived from equally weighted (2 MP trees) and transition/transversion 
weighted (1 MP tree) analysis of the combined 3960 bp of the mitochondrial ND4, cytochrome b and 16S and the nuclear RAG2, 
Tmo-M27 and Tmo-4C4.  Boostrap support, based on 100 pseudoreplicates, for unweighted/weighted analyses is given above 
branches (only scores >50% are shown); Bremer decay indices for the equally weighted analysis are given below branches.  See text 
for tree statistics.  Highlighted clades (see discussion): CrC = Crenicarine clade; SC = Satanoperca clade. 
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FIG. 3.6.  50% majority rule Bayesian topology derived from the combined 3960 bp of the mitochondrial ND4, cytochrome b, and 
16S and the nuclear RAG2, Tmo-M27, and Tmo-4C4.  Unlinked GTR + I + Γ general models of evolution were used for all partitions 
except Tmo-M27, for which a HKY85 + Γ model was used.  The topology resulted from combining 78,000 trees from 4 independent 
runs of 2 x 106 generations sampling every 100 trees with burn in of 50,000 generations/500 trees for each analysis.  Posterior 
probabilities are given above branches.  Highlighted clades (see discussion): BC = Big clade; CrC = Crenicarine clade; GC = 
Geophagus clade; MkC = Mikrogeophagus clade; SC = Satanoperca clade. 
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With the exception of the most basal nodes, this analysis resolved most of the 

intergeneric relationships within Geophaginae, and defined three subclades within the 

subfamily. 

 

Comparison of molecular and morphological topologies 

The KH and SH tests indicated that all molecular phylogenies were significantly 

more likely than Kullander’s (1998) morphological topology (Table 3.2).  Based on the 

KH tests, of all parsimony topologies, only the ND4 tree was found to be more likely 

than both Kullander’s and the Bayesian ND4 tree.  In contrast, the Bayesian topologies 

of the RAG2 and TE datasets were significantly more likely than either Kullander’s or 

the parsimony topologies.  The SH tests, expected to be more conservative (Shimodaira 

and Hasegawa, 1999), did not reject the hypothesis of equal likelihood when Kullander’s 

topology was compared to either of the ND4 trees.  The Bayesian RAG2 and TE 

topologies were consistently better than Kullander’s tree according to the SH test.  The 

parsimony and Bayesian topologies based on RAG2 were not significantly different (SH 

test), but the TE Bayesian topology was found to be significantly more likely than the 

TE parsimony tree.  These findings suggest an effect of ND4 in determining 

incongruence between the total evidence trees. 
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TABLE 3.2.  Results of the Kishino-Hasegawa and Shimodaira-Hasegawa tests 
comparing Kullander’s (1998) morphology-based phylogeny with the molecular 
phylogenies obtained in this study. 
 

 Parameters Kullander MP Bayesian 

ND4 -ln L 6656.33 6642.26 6655.56 

 ∆ -ln L 14.07 Best 13.30 

 KH-test P < 0.05  < 0.05 

 SH-test P 0.142  0.147 

     

RAG2 -ln L 3530.65 3444.68 3438.05 

 ∆ -ln L 92.6 6.62 Best 

 KH-test P < 0.05 < 0.05  

 SH-test P < 0.01 0.481  

     

TE -ln L 21590.92 21566.08 21524.20 

 ∆ -ln L 66.72 41.89 Best 

 KH-test P < 0.05 < 0.05  

 SH-test P < 0.05 < 0.05  

 

 



 66

Rate heterogeneity 

The TCT analysis revealed significant rate heterogeneity among lineages (ND4: 

Q = 1719.5, df = 35, p < 0.0001; RAG2: Q = 9200, df = 37, p < 0.0001), with numerous 

rate differences revealed among taxa for both ND4 and RAG2 (Table 3.3).  As found by 

Farias et al. (1999, 2000, 2001), geophagine cichlids showed overall faster rates of 

molecular evolution than other Neotropical taxa in both mitochondrial and nuclear 

genes.  It is interesting that Retroculus, an outgroup genus morphologically similar to 

large-bodied geophagines, also revealed significantly fast rates of ND4 evolution, 

although this was not the case for RAG2.  Extensive rate heterogeneity occurred among 

and within genera of geophagines as well, but patterns were not always the same in both 

genes.  Crenicichla and Taeniacara showed the fastest mitochondrial rates, whereas 

Apistogramma had the fastest nuclear rates.  Rate heterogeneity was also detected within 

genera in both genes, particularly in Crenicichla, Apistogramma, Satanoperca, and 

Biotodoma.  The BLT indicated that rate heterogeneity is much more extensive in ND4 

than in RAG2.  In ND4, the genera Biotodoma, Dicrossus, Crenicichla, Apistogramma, 

and Taeniacara showed at least one species with significantly longer branches than 

average (Table 3.4), indicating an accelerated rate of molecular evolution.  In contrast, 

Guianacara, Acarichthys, Mikrogeophagus, and Geophagus sensu lato showed 

significantly shorter branches than average.  Interestingly, all non-geophagine taxa, with 

the exception of Retroculus (p>0.05), showed significantly shorter branches and thus 

lower rates of evolution in the mitochondrial gene.  RAG2 showed a less heterogeneous 

pattern of evolution, and only Biotodoma and Apistogramma (including 

Apistogrammoides) showed accelerated rates of molecular evolution, whereas 

Guianacara, Acarichthys and one species of Geophagus sensu stricto showed 

significantly lower rates.  Of the non-geophagine taxa, only Cichla had significantly 

shorter branches, whereas the rest were not significantly different from the average 

length. 

 



 

TABLE 3.3.  Assessment of rate heterogeneity among clades by the Two Cluster Test (Takezaki, Rzhetsky and Nei, 1995).  Q-
values evaluate overall rate heterogeneity; P-values determined from the chi-square distribution.  Model used for TCT was 
Tamura Nei + Г as implemented in LINTRE. 
 
Gene (df) TCT Clades contributing to rate heterogeneity and their rate relationships P-value 

ND4 (35) Q = 1719.5 Crenicichla af. wallacii > C. geayi (26) <0.001 

   

  

    

  

    

    

    

    

  

    

    

    

    

    

  

P <0.0001 Crenicichla af. wallacii, C. geayi > C. sveni, C. af. lugubris <0.001

Crenicichla > Taeniacara  <0.001 

Crenicichla, Taeniacara > Retroculus <0.001

Crenicichla, Taeniacara, Retroculus > All geophagines <0.001 

All geophagines, Retroculus > Hoplarchus, Mesonauta <0.001

Mesonauta > Cichla <0.05

Biotodoma cupido > B. wavrini <0.001

Apistogramma agassizi > Apistogrammoides, Apistogramma hoignei <0.001

Apistogramma> Satanoperca  <0.001 

Satanoperca pappaterra > Biotoecus <0.01

Acarichthys > ‘Geophagus’ steindachneri <0.001

Gymnogeophagus > Guianacara <0.001

Mikrogeophagus > Geophagus <0.001

Guianacara, Mikrogeophagus, Geophagus, Gymnogeophagus > ‘Geophagus’ brasiliensis <0.001
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TABLE 3.3.  Continued 
 
Gene (df) TCT Clades contributing to rate heterogeneity and their rate relationships P-value 

  Acarichthys, Biotodoma, Dicrossus, ‘Geophagus’ steindachneri, Satanoperca, 

Apistogramma > Biotoecus, Satanoperca pappaterra 

<0.01 

  

  

   

    

  

  

    

  

  

    

    

    

    

Acarichthys, Biotodoma, Biotoecus, Dicrossus, ‘Geophagus’ steindachneri, Satanoperca, 

Apistogramma > Guianacara, Mikrogeophagus, Geophagus, ‘Geophagus’ brasiliensis, 

Gymnogeophagus 

<0.001 

RAG2 (37) Q= 9200 Mesonauta> Hoplarchus <0.001

P <0.0001 Cichla intermedia > C. temensis <0.05

Retroculus > Cichla <0.05

  All geophagines > Retroculus, Cichla <0.001

  All other geophagines > Acarichthys <0.001

Crenicichla geayi > C. sveni <0.001

Crenicichla sveni, C. geayi > C. af. wallacii  <0.01 

Biotodoma, Mikrogeophagus, Crenicara, Dicrossus, Geophagus, ‘Geophagus’ 

brasiliensis, ‘G.’ steindachneri, Gymnogeophagus > Crenicichla 

<0.01 

Apistogrammoides > Apistogramma hoignei <0.001

Apistogramma agassizi > Apistogrammoides, A. hoignei <0.01

Apistogramma, Apistogrammoides > Taeniacara <0.001

Satanoperca > S. daemon <0.001
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TABLE 3.3.  Continued 
 
Gene (df) TCT Clades contributing to rate heterogeneity and their rate relationships P-value 

    Satanoperca, Apistogramma, Taeniacara > Guianacara, Biotoecus <0.001

    

    

    

    

  

    

    

    

  

Biotoecus > Guianacara <0.001

Crenicara > Dicrossus <0.01

Biotodoma cupido > B. wavrini <0.01

Biotodoma > ‘Geophagus’ brasiliensis <0.001

Biotodoma , ‘Geophagus’ brasiliensis > Mikrogeophagus, Geophagus , ‘Geophagus’ 

steindachneri 

<0.001 

Gymnogeophagus > ‘Geophagus’ steindachneri <0.01

‘Geophagus’ steindachneri, Gymnogeophagus > Geophagus <0.001

Geophagus grammepareius > Geophagus <0.01

Guianacara, Biotoecus, Satanoperca, Apistogramma, Taeniacara > Biotodoma, 

Mikrogeophagus, Crenicara, Dicrossus, Geophagus, ‘Geophagus’ brasiliensis, ‘G.’ 

steindachneri, Gymnogeophagus, Crenicichla 

<0.001 
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TABLE 3.4.  Branch Length Test of rate heterogeneity (Takezaky, Rzhetsky and Nei, 
1995).  P-values are reported followed by a sign indicating rate increase (+) or rate 
decrease (-) in comparison with the average rate for all taxa.  Model used for BLT was 
Tamura Nei + Г as implemented in LINTRE 
. 
 BLT, P-value, Rate of evolution 

Taxon name 

df = 35 

ND4 

df = 37 

RAG2 

Guianacara n.sp. ‘Caroní’ <0.001 - <0.05 - 

Acarichthys heckelii <0.01 - <0.001 - 

Biotodoma wavrini NS  NS  

Biotodoma cupido <0.001 + <0.05 + 

Mikrogeophagus altispinosus NS  NS  

Mikrogeophagus ramirezi <0.05 - NS  

Biotoecus dicentrarchus NS  NS  

Crenicara punctulatum N/A  NS  

Dicrossus sp. <0.01 + NS  

Geophagus surinamensis <0.001 - NS  

Geophagus brachybranchus <0.001 - NS  

Geophagus abalios <0.001 - NS  

Geophagus dicrozoster <0.001 - <0.05 - 

Geophagus grammepareius <0.001 - NS  

‘Geophagus’ brasiliensis <0.001 - NS  

‘Geophagus’ steindachneri <0.001 - NS  

Satanoperca pappaterra NS  NS  

Satanoperca jurupari NS  NS  

Satanoperca mapiritensis NS  NS  

Satanoperca daemon NS  NS  

Gymnogeophagus rhabdotus NS  NS  

Gymnogeophagus balzanii N/A  NS  

Crenicichla af. wallacii <0.001 + NS  
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TABLE 3.4.  Continued 
 
 BLT, P-value, Rate of evolution 

Taxon name 

df = 35 

ND4 

df = 37 

RAG2 

Crenicichla sveni <0.001 + NS  

Crenicichla af. lugubris <0.001 + NS  

Crenicichla geayi <0.001 + NS  

Apistogrammoides pucallpaensis NS  <0.001 + 

Apistogramma agassizi <0.001 + <0.001 + 

Apistogramma hoignei NS  <0.01 + 

Taeniacara candidi <0.001 + NS  

Hoplarchus psittacus <0.001 - NS  

Mesonauta egregius <0.001 - NS  

Cichlasoma orinocense <0.001 - NS  

Retroculus sp. NS  NS  

Cichla orinocensis <0.001 - <0.001 - 

Cichla intermedia <0.001 - <0.05 - 

Cichla temensis <0.001 - <0.001 - 
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DISCUSSION 

 

Phylogenetic relationships of Geophaginae 

Under both parsimony and Bayesian analyses, the ND4 matrix produced a 

monophyletic Geophaginae, albeit with questionable support (Figure 3.2); analyses of all 

other datasets, both MP and Bayesian, indicated stronger support for geophagine 

monophyly (Figures 3.3-3.6).  With the exception of ND4, all analyses recovered a 

monophyletic cichlasomatine clade in which Hoplarchus and Mesonauta were grouped 

in accordance with previous studies of the tribe Heroini (Kullander 1998; Farias et al. 

1999, 2000, 2001).  Analyses of ND4 supported monophyly of most geophagine genera, 

and a sister-group relationship between Geophagus sensu stricto and ‘Geophagus’ 

steindachneri, but failed to provide any other well-supported intergeneric associations.  

Within the geophagine clade, most combined analyses consistently found two 

monophyletic groups including 12 of the 16 genera in this study and a weakly supported 

clade including the remaining four genera.  The overall arrangement of taxa in the 

molecular trees (Figs. 2-6) is in disagreement with the topology described by Kullander 

(1998, see KH and SH tests in Table 3.2).  For convenience of discussion, each major 

group diagnosed by the molecular data will be examined separately in the following 

paragraphs. 

The “Satanoperca clade.”  The relationship uniting Satanoperca with the sister-

taxa Apistogramma and Taeniacara (the “Satanoperca clade”) was consistent in all 

analyses, and support for it was generally high (Figures 3.2-3.6).  Farias et al. (1999, 

2000, 2001), using 16S and cytochrome b sequences, observed a similar pattern in 

independent analyses, but found an alternative arrangement of Apistogramma grouping 

with Crenicichla in their total evidence analysis (Farias et al. 2000, 2001).  In contrast to 

the molecular data, a “Satanoperca clade” was not supported by previous morphological 

analyses (Kullander 1998).  The consistency and high support for the “Satanoperca 

clade” in all of this study’s analyses, however, provides strong support for the 

monophyly of this clade.  Within Apistogramma, the ND4, RAG2 and total evidence 
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analyses (i.e. those with no missing data) coincided in grouping A. hoignei with the 

monotypic Apistogrammoides, suggesting the latter includes an exceptional, 

autapomorphic species of Apistogramma that does not warrant separate generic status.  

One point of incongruence between the ND4 and RAG2 datasets is the placement of 

Satanoperca pappaterra as sister to Biotoecus by the ND4 gene (Figure 3.2), whereas 

both the RAG2 and total evidence analyses place this taxon as part of a monophyletic 

Satanoperca (Figures 3.3-3.4).  There are at least three explanations for this 

incongruence.  First, the sequence shared between S. pappaterra and Biotoecus is the 

result of a pseudogene.  This seems unlikely.  Base composition of ND4 sequences for 

these two taxa is similar to that of other taxa examined, as well as to previously reported 

data for ND4 in fish (Bielawski et al. 2002).  In addition, no electropherograms revealed 

evidence of multiple sequences, and all primers (external and internal), when used in 

independent combinations of PCR amplifications, resulted in similar sequences.  Second, 

the close ND4 relationship may have resulted from contamination.  This also appears 

unlikely.  Uncorrected genetic distance between S. pappaterra and Biotoecus (p = 

24.9%) is not very different from the distance between Biotoecus and the other species 

of Satanoperca (S. daemon = 22.3%, S. mapiritensis = 25.2%, S. jurupari = 24.6%).  

Third, it is possible that S. pappaterra and Biotoecus are more similar in rates of ND4 

evolution relative to other species of Satanoperca.  Although the BLT for rate 

heterogeneity does support this hypothesis (Table 3.4), comparisons with the TCT 

revealed a slower rate of change in S. pappaterra and Biotoecus relative to the other 

species of Satanoperca (Table 3.3).  In such cases of heterogeneity, relationships can be 

obscured (i.e. highly heterogeneous rates, frequent non-synonymous amino acid 

substitutions).  This notion is reinforced by the fact that the unweighted parsimony 

analysis of ND4 was unable to recover a monophyletic Mikrogeophagus, whereas the 

weighted and the Bayesian analyses did find the genus to be monophyletic.  Finally, 

ND4 may simply be too noisy for comparisons involving high levels of divergence as in 

the case of Satanoperca pappaterra relative to its congeners. 
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The “Big clade.”  Supported by parsimony and Bayesian results from RAG2 and 

most combined analyses, the “Big clade” included Biotodoma, Mikrogeophagus, 

Geophagus sensu lato, Gymnogeophagus, Crenicara, and Dicrossus (Figures 3.3, 3.4B-

3.6).  Four elements, with various degrees of resolution depending on the analysis, are 

contained within this group.  1) A monophyletic genus Biotodoma, 2) a 

“Mikrogeophagus clade” in which that genus is sister to ‘Geophagus’ brasiliensis, 3) the 

“Geophagus clade,” including a basal ‘Geophagus’ steindachneri and a sister-group 

relationship to Gymnogeophagus, and 4) the “crenicarine clade” containing Crenicara 

and Dicrossus.  Highest resolution of relationships within the “Big clade” were obtained 

from the Bayesian analysis of the supermatrix (Figure 3.6), with a pectinate arrangement 

of the “crenicarine clade” at the base, followed by Biotodoma and then a clade 

containing the sister “Mikrogeophagus” and “Geophagus” clades.  The “crenicarine 

clade” partially corresponds to the tribe Crenicaratini of Kullander (1998), but he had 

originally included Biotoecus, which appeared elsewhere in this study’s analyses.  Based 

these results, recognition of a separate tribe seems unwarranted, as crenicarines group 

within a larger clade containing other genera.  The relationship between 

“Mikrogeophagus” and “Geophagus brasiliensis” represents an association not found by 

other studies.  Given this study’s increased taxon sampling and overall increase in 

sequence data, one might expect more resolution within Geophaginae.  

Acarichthys, Guianacara, Crenicichla and Biotoecus.  The sister-group 

relationship between Acarichthys and Guianacara (tribe Acarichthyini in Kullander’s 

classification) has been repeatedly proposed, both by morphological (Kullander 1998), 

molecular (Farias et al. 1999), and some (Farias et al. 2000), but not all (Farias et al. 

2001), total evidence analyses.  Although supported by both RAG2 and the Bayesian 

total evidence results, the ND4, parsimony total evidence, and supermatrix analyses 

failed to support the monophyly of this clade.  Failure to recover this clade could be due 

to scarcity of data, as Acarichthys is a monotypic genus, and only one species of 

Guianacara was included.  Therefore, better taxon sampling may provide better support 

for the relationship (Graybeal 1998; Zwickl and Hillis 2002).  Nonetheless, when other 
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studies have identified this clade, support has been comparatively low with respect to 

other relationships (e.g. Farias et al. 1999, Figure 3; Farias et al. 2001, Figure 4).  In the 

final Bayesian analysis, Guianacara occurred at the base of Geophaginae, and 

Acarichthys weakly grouped with Biotoecus, as sister to Crenicichla.  Interestingly, a 

sister-group relationship of Crenicichla, Teleocichla and the Acarichthyini was observed 

by Farias et al (1999) in their 16S phylogenetic analysis.  A clear pattern emerged in 

which Guianacara and Acarichthys appear as “peripheral” genera, not immediately 

related to the bulk of the geophagine diversity found in the “Satanoperca clade” and in 

the “Big clade”.  The same scenario seems likely for Crenicichla and Biotoecus.  The 

phylogenetic position of these two genera within Geophaginae remains elusive.  The 

Bayesian RAG2 and total evidence analyses grouped them at the base of the “Big clade” 

with moderate support (55 to 77% posterior probability), but this arrangement 

disappeared in the 6-gene analysis, where they grouped with Acarichthys.  Although the 

general morphology of both genera is superficially similar (e.g. elongate, shallow 

bodies), there is no clear indication that they are closely related.  In previous studies, 

Crenicichla sometimes grouped with Apistogramma (e.g. Farias et al. 2000, 2001, total 

evidence), but the consistency of the “Satanoperca clade” seems to rule out that 

possibility.  Resolution of relationships of these four genera likely will require increased 

taxon sampling, especially for Crenicichla and Guianacara, as Acarichthys is monotypic 

and Biotoecus has only two known species. 

In summary, the most resolved molecular phylogeny of Geophaginae was 

obtained by Bayesian analysis of the supermatrix dataset, including six different 

molecular markers (Figure 3.6).  Within the monophyletic Geophaginae, two lineages 

were well supported; the first was the “Big clade,” with the crenicarine clade at the base, 

followed by Biotodoma as sister to a dichotomy in which the “Mikrogeophagus clade” 

was sister to a pectinate “Geophagus clade” with Gymnogeophagus at the base.  The 

second strongly supported clade was the consistently recovered “Satanoperca clade”.  

The “Big clade” and the “Satanoperca clade” found in this study include most of the 

taxa formerly assigned to the Tribe Geophagini (Kullander 1998), but also contain 
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genera from Kullander’s Tribe Crenicaratini.  Finally, a third, weakly supported clade 

included a sister relationship between Crenicichla and a dichotomy of Acarichthys and 

Biotoecus.  In agreement with previous molecular and total evidence work (Farias et al. 

1998, 1999, 2000, 2001), the genus Crenicichla was found to be part of the geophagine 

clade, but no clear support for its position within the subfamily was found.  Kullander’s 

tribe Acarichthyini was not consistently recovered in this analysis, and Guianacara was 

left either at the base of the geophagine clade (Bayesian tree) or as sister to 

Gymnogeophagus (MP tree) in the six-gene analyses.  In conclusion, two, well-

supported supra-generic groupings within Geophaginae were found, but the relationships 

of the genera Crenicichla, Biotoecus, Acarichthys and Guianacara remain uncertain and 

demand further study.  Newly observed relationships in this analyses are probably the 

combined result of increased datasets and taxon sampling.  The general tendency in this 

study was to find improved resolution in the combined, larger datasets, and additional 

data should further resolve geophagine relationships. 

 

ND4 versus RAG2 and Parsimony versus Bayesian analysis  

A strikingly different pattern was observed between ND4 and RAG2.  Whereas 

ND4 yielded comparatively low resolution and parsimony and Bayesian analyses were 

inconsistent with each other (Figure 3.2), RAG2 was highly consistent and offered high 

resolution at deep levels within the geophagine phylogeny (Figure 3.3).  ND4 alone was 

able to recover a monophyletic Geophaginae and the “Satanoperca clade,” but it was 

otherwise limited to establishing genus-level monophyly.  Basal relationships within 

Geophaginae were unresolved, and resolution outside the group was poor.  On the other 

hand, RAG2 recovered not only geophagine monophyly, but also the major clades 

within it.  RAG2 was the only dataset generating a hypothesis of relationship for 

Crenicichla and Biotoecus, albeit with low support. 

The lack of resolution and inconsistency found in ND4 are likely the result of 

saturation effects and/or rate heterogeneity.  ND4 showed saturation of third position 

transitions and overall transitional saturation beyond 15% divergence (Figure 3.1), a 
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pattern congruent with observations in cichlid cytochrome b (Farias et al. 2001) and 

characiform 16S (Ortí and Meyer 1997).  Saturation at third positions reduces resolution 

at deep levels in the phylogeny, but can still be informative on relationships among 

closely related, recently diverged lineages (Farias et al. 2001), thus the relatively well 

supported monophyly of most genera.  The extensive rate heterogeneity found in ND4 

(Tables 3.3 and 3.4) showed short (e.g. Geophagus) and long branches (e.g. Crenicichla) 

within the geophagine tree.  This situation potentially can create long branch attraction, 

making parsimony analyses inherently inconsistent (Felsenstein 1978, 2004).  RAG2 

showed no evidence of nucleotide saturation, and its rates of molecular evolution were 

less heterogeneous (Table 3.4).  RAG2 produced highly resolved, consistent, and well 

supported topologies both under parsimony and Bayesian methods. 

Parsimony-derived topologies of the different datasets were incongruent, and 

with the exception of RAG2 (Figure 3.3), they were inconsistent with the Bayesian 

topologies.  Results consistently showed that, whenever mitochondrial genes were 

involved (particularly ND4 and cytochrome b), parsimony performed poorly due to the 

effects of saturation and extensive rate heterogeneity in the mitochondrial genes (see 

Tables 3.3 and 3.4, and Farias et al. 2001).  Bayesian analyses were congruent among 

themselves, and resolution and support generally increased with the amount of data.  

Because Bayesian analyses incorporate explicit models of nucleotide substitution, they 

should present the advantages of maximum likelihood analysis when confronted with 

non-homogeneous patterns of molecular evolution (e.g. Holder and Lewis 2003; 

Felsenstein 2004).  Although not completely resolved, the Bayesian topology derived 

from the 6-gene matrix (Figure 3.6) offered the most resolved and best-supported 

hypothesis of geophagine relationships. 
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Implications of the molecular phylogeny: Are geophagine cichlids an adaptive 

radiation? 

According to Schluter (2000), adaptive radiations are characterized by four 

features: common ancestry, rapid speciation, phenotype-environment correlation, and 

trait utility.  Based on this definition, Geophaginae may provide an example of an 

adaptive radiation of Neotropical cichlids.  Geophaginae clearly are a monophyletic 

clade, both according to the results presented in this paper and to previous research (e.g. 

Farias et al. 2000).  More revealing is the fact that, judging from the Bayesian 

phylograms, their phylogeny is characterized by short basal branches (Figures 3.2B, 

3.3B, 3.4B and 3.6).  These short branches can indicate either lack of information to 

resolve basal relationships, or fast differentiation at the base of the tree (e.g. Kontula et 

al 2003).  Considering that we used nearly 4,000 base pairs from six different genes and 

obtained a robust topology with the combined analysis, it seems unlikely that the short 

basal branches are due only to lack of data.  Instead, it seems reasonable to assume that a 

short period of fast diversification characterized the origin of geophagine diversity, 

allowing little time for character fixation, and thus resulting in small amounts of 

phylogenetic information associated with that period.  Geophagines thus seem to fulfill 

Schluter’s requirements of monophyly and rapid divergence. 

It is also interesting that patterns of molecular evolution in the group are 

characterized by strong lineage-specific rate heterogeneity, suggesting a different 

evolutionary trajectory for each genus after its differentiation.  It is possible, though in 

need of further study, that these differences in evolutionary patterns reflect adaptive 

divergence.  This explanation warrants further investigation because geophagine cichlids 

possess remarkably diverse life history, ecological, and behavioral specializations.  

Geophagine reproductive strategies range from large-bodied, mouth-brooding, 

monogamous species with relatively large generation times (e.g. Geophagus) to small-

bodied, polygynous substrate spawners that reach sexual maturity much earlier (e.g. 

Apistogramma).  The importance of ecological specialization in the evolution of the 

group is also evident in the association between form and function in relation to trophic 
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biology and habitat use.  Ecomorphological patterns range from deep bodied fishes with 

ventrally-oriented mouths that ingest and sift sandy substrates for invertebrates (e.g. 

Geophagus, Satanoperca), to elongate piscivores with terminal mouths (Crenicichla), 

and small species that inhabit highly structured habitats and feed mostly on epibenthic 

invertebrates (e.g. Taeniacara, Biotoecus, Apistogramma).  Ecomorphology may 

determine both lineage-specific evolutionary trajectories and patterns of community 

assembly.  Although inconclusive, these patterns strongly suggest a correlation between 

phenotype and environment, which is Schluter’s third requisite to consider a clade as an 

adaptive radiation.  At present, evidence of the fourth requisite, trait utility, is almost 

completely lacking.  Explicit analyses of functional morphology and ecological 

performance of geophagines are needed.  In conclusion, geophagine cichlids provide an 

outstanding group for the investigation of adaptive radiation of fishes in fluviatile 

habitats. 
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CHAPTER IV 

 

MORPHOLOGY, MOLECULES AND CHARACTER CONGRUENCE IN THE 

TOTAL-EVIDENCE PHYLOGENY OF SOUTH AMERICAN GEOPHAGINE 

CICHLIDS (PERCIFORMES: LABROIDEI) 

 

 

The problems of phylogeny reconstruction in the face of muted 
morphological variation are manifold, yet without a sound 
phylogenetic framework our understanding of the behaviour, 
ecology and evolution of these fascinating fishes is greatly 
diminished.  There is clearly great incentive to continue with 
phylogenetic studies of the family Cichlidae. 

⎯M. L. J. Stiassny 1991 

 

INTRODUCTION  

 

The subfamily Geophaginae constitutes an adaptive radiation of 18 genera and 

over 180 described species with remarkable morphological, ecological and reproductive 

diversity (Chapter III).  Overall geophagine morphological and behavioral diversity 

strongly suggest ecomorphological specialization for feeding and habitat use (e.g. 

Winemiller 1995; Chapter III), and their reproductive versatility ranges from substrate 

spawning to mouth brooding, and from monogamy to polygyny in various combinations 

(e.g. Wimberger et al. 1998; Barlow 2000; Weidner 2000).  Syntopy of genera and 

species in South American rivers indicates that ecomorphological specialization may 

also be related to niche partitioning in highly diverse ecological communities (e.g. 

Winemiller and Pianka 1990; Winemiller 1991; Arrington 2002). 

Phylogenetic studies of cichlids have traditionally focused on higher-level 

relationships within the family Cichlidae, and have been based on morphological 

characters (e.g. Cichocki 1976; Stiassny 1981, 1987, 1991; Oliver 1984; Kullander 

1998).  However, limited morphological variation and extensive convergence among 
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cichlid taxa result in extensive homoplasy and decreased phylogenetic resolution (e.g. 

Stiassny 1987, 1991).  Morphological convergence is rampant among cichlids due to the 

enormous ecological versatility of the group, which has undergone frequent adaptive 

modifications associated with trophic ecology, habitat use, reproductive biology, and 

behavior (e.g. Cichocki 1976; Winemiller et al. 1995; Rüber and Adams 2001).  

Ecologically significant variation in cichlids can be derived from relatively minor 

morphological modifications (see Stiassny 1991 for a review), leaving a relatively 

limited set of morphological characters to use in phylogenetics.  Despite these 

drawbacks, morphological analysis frequently has provided a robust diagnosis of the 

higher-level evolutionary relationships (e.g. Stiassny 1991; Kullander 1998). 

Recent molecular studies (e.g. Meyer 1993; Zardoya et al. 1996; Roe et al. 1997; 

Martin and Bermingham 1998; Farias et al. 1999; Verheyen et al. 2003), and some that 

employ total evidence analysis combining molecular and morphological data (Farias et 

al. 2000, 2001) have elucidated higher-level relationships within the Cichlidae.  

Furthermore, independently derived molecular data offer a broader context for the 

evaluation of underlying homology in morphological data.  From the interaction of 

molecular and morphological datasets, congruence of homologous characters should 

emerge, allowing morphology to contribute to overall phylogenetic resolution (e.g. 

Chippindale and Wiens 1994; Wiens and Reeder 1995; Baker and DeSalle 1997; Baker 

et al. 1998; Hillis and Wiens 2000).  Although incongruence is expected to occur among 

separate analyses of different data (e.g. Brower et al. 1996), it cannot be predicted a 

priori.  Only combined analyses can uncover underlying homology from characters that 

appear homoplastic when examined separately (Cognato and Vogler 2001; Damgaard 

and Cognato 2003; Hodges and Zamudio 2004).  Under these circumstances, homoplasy 

inherent to each partition is accommodated in the totality of the data, allowing the 

common phylogenetic signal to dominate the analysis, frequently producing better 

resolution and better supported trees (Chippindale and Wiens 1994; Wiens and Reeder 

1995; Brower et al. 1996; Baker et al. 2001). 
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A total evidence approach, combining molecular and morphological data, should 

favor the emergence of congruent phylogenetic signal above the pervasive homoplasy of 

cichlid morphology, resulting in the “sound phylogenetic framework” needed to 

understand cichlid evolution.  Building upon improved understanding of higher-level 

relationships, the next logical step is to clarify the phylogeny within groups of cichlids.  

Large numbers of morphological characters, derived from taxonomic and high-level 

phylogeny studies, are potentially available for the analysis of clades within the 

Cichlidae (e.g. Pellegrin 1904; Regan 1905a, 1905b, 1920; Cichocki 1976; Greenwood 

1979; Stiassny 1981, 1987, 1991; Kullander 1983, 1998; Oliver 1984; Casciotta and 

Arratia 1993a, 1993b).  These characters, however, need careful evaluation as high-level 

studies usually include reduced taxon sampling, and may overlook important variation 

essential for phylogenetic resolution at lower levels.  The combination of diverse 

phylogenetic information, along with currently available molecular datasets (Chapter 

III), should provide resolved and well-supported hypotheses of relationships within 

groups of cichlids.   

The subfamily Geophaginae was formally proposed by Kullander (1998) based 

on a morphological phylogenetic analysis of Neotropical taxa.  In his classification, the 

subfamily included 16 genera divided into three tribes: Acarichthyini (genera 

Acarichthys and Guianacara), Crenicaratini (Biotoecus, Crenicara, Dicrossus, and 

Mazarunia), and Geophagini (Geophagus, Mikrogeophagus, ‘Geophagus’ brasiliensis, 

‘Geophagus’ steindachneri, Gymnogeophagus, Satanoperca, Biotodoma, 

Apistogramma, Apistogrammoides, and Taeniacara).  In Kullander’s analysis, the 

subfamily was sister to the subfamily Cichlasomatinae, which included most of the 

remaining Neotropical cichlid diversity; the genera Retroculus (tribe Retroculinae), 

Cichla and Crenicichla (Cichlinae), Astronotus and Chaetobranchus (Astronotinae), and 

the African Heterochromis, were arrayed at the base of a paraphyletic Neotropical 

cichlid assemblage. 

Molecular (Farias et al. 1998, 1999) and total evidence studies including 

Kullander’s morphological data (Farias et al. 2000, 2001), however, have challenged the 
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above classification.  Farias et al. (1999, 2000, 2001) repeatedly found the Neotropical 

Cichlidae to be monophyletic and Heterochromis to be basal to the African clade.  The 

genera Crenicichla and Teleocichla were nested within Geophaginae, expanding the 

limits of the subfamily, and challenging a proposed relationship between Crenicichla, 

Teleocichla and the basal genus Cichla (Cichocki 1976; Stiassny 1987, 1991).  

Monophyly of Geophaginae sensu Farias et al. (2000) has been confirmed by an 

expanded molecular study of the group (Chapter III) with analysis of a molecular matrix 

of six loci including 16 genera and 30 species of geophagines and representatives of all 

other Neotropical clades.  Chapter III’s phylogeny significantly improved resolution of 

genus-level relationships within the subfamily, and revealed the existence of at least two 

well-defined clades within Geophaginae, but often with low support.  The study also 

revealed the existence of extremely short branches at the base of the tree and significant 

heterogeneity of rates of molecular evolution among genes and taxa.  Further resolution 

of geophagine relationships is a requisite for the study of the evolutionary biology of 

their adaptive radiation. 

In this chapter, a new and extensive morphological dataset of geophagine 

cichlids is aimed at resolving the genus-level relationships within the subfamily.  The 

morphological dataset includes characters described in previous studies, but most have 

been modified for better representation of morphological variation within the subfamily 

Geophaginae.  Additionally, a number of characters are proposed here for the first time 

after examination of a large number of geophagine and other Neotropical taxa.  The 

study includes a large amount of well-known osteological characters derived from 

previous studies of cichlid phylogenetics (e.g. Cichocki 1976; Oliver 1984; Kullander 

1998).  Additionally, an important amount of recently proposed characters of external 

morphology was added, including squamation and scale structure (Lippitsch 1993, 1995, 

1998), squamation in the lateral line (Webb 1990), and color pattern (e.g. Kullander 

1990; Kullander et al. 1992; López-Fernández and Taphorn 2004).  The morphological 

dataset of 136 characters was combined with the six-loci molecular dataset of Chapter III 

in a total-evidence analysis of over 4,000 characters.  The main goal is to improve 
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resolution and support for the genus-level phylogeny of geophagine cichlids by 

incorporating morphological information.  Additionally, the topologies produced by 

molecular, morphological and combined data under parsimony and Bayesian paradigms 

are contrasted, congruence among different partitions of molecular and morphological 

data is analyzed, and the potential role that character incongruence and the pattern of 

geophagine evolution may have on the phylogenetic inference of relationships within the 

clade is discussed. 

 

METHODS 

 

Taxon sampling 

DNA sequence data and morphological characters were collected for 21 genera 

and 38 species of Neotropical cichlids.  Ingroup taxa included 30 species and 16 of the 

18 genera of the subfamily Geophaginae (Farias et al. 1999, 2000, 2001; Chapter III).  

The genera Teleocichla and Mazarunia were not included in the study because 

specimens and tissue samples were not available.  The genus Geophagus sensu lato was 

divided into Geophagus sensu stricto (Kullander 1986, and see López-Fernández and 

Taphorn 2004), ‘Geophagus’ brasiliensis and ‘Geophagus’ steindachneri.  The latter 

two are undescribed genera, each including several species.  One species of each of the 

genera Cichlasoma, Mesonauta and Hoplarchus were added to the ingroup to test 

geophagine monophyly against its sister group Cichlasomatinae (Kullander 1998, 2000, 

2001).  Outgroup taxa included three species of Cichla and one of Astronotus and 

Retroculus, respectively (Oliver 1984; Stiassny 1991; Kullander 1998; Farias et al. 1999, 

2000, 2001).  Throughout the paper, the terms ingroup and outgroup will refer to the 

above listing of taxa. 

 

Molecular dataset 

DNA data consisted of a combined supermatrix of three mitochondrial and three 

nuclear genes amounting to approximately 4,000 nucleotides (Chapter III).  The 
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molecular dataset included sequences of the nuclear gene RAG2 for all species, and of 

the mitochondrial gene ND4 for 36 of the 38 species in this study.  Additionally, it 

contained published sequences of the mitochondrial genes 16S and Cytochrome b, the 

microsatellite flanking region Tmo-M27, and the nuclear marker Tmo-4C4 for most 

geophagine genera.  Due to differences in taxon sampling among published studies and 

this one, sequences of different species were combined in order to increase resolution at 

the genus level.  Details about DNA sequencing protocols, alignment, criteria to 

combine sequences into the supermatrix, and accession numbers are given in Chapter III 

(Table 3.1). 

 

Morphological dataset 

One hundred and thirty six characters of external morphology and osteology 

were analyzed both separately and in combination with the molecular supermatrix.  Most 

external morphological characters were based on Lippitsch (1993).  A few were added 

from the descriptions of lateral line configuration in Webb (1990), and previous 

descriptions of color pattern (Kullander 1986, 1990, 1998; Kullander and Ferreira 1988; 

Kullander and Nijssen 1989; Kullander and Silfvergrip 1991; Kullander et al. 1992).  

Osteological characters were based on a revision of the extensive literature on cichlid 

morphology, but were derived mostly from Cichocki (1976), Oliver (1984), Stiassny 

(1987, 1991), Casciotta and Arratia (1993a) and Kullander (1998).  This study’s revision 

of geophagine morphological diversity produced several additional characters used for 

the first time in this study.  Descriptions of all morphological characters, illustrations, 

and detailed bibliographic references are given in Appendix II. 

Most morphology-based efforts to elucidate cichlid phylogenies have focused on 

higher-level relationships within the family (e.g. Stiassny 1987, 1991), within specific 

African clades (e.g. Oliver 1984; Lippitsch 1993, 1995), Neotropical clades (e.g. 

Cichocki 1976; Casciotta and Arratia 1993), or a combination of the two (Kullander 

1998).  Additionally, an extensive description of characters has been published, but not 

included in formal phylogenetic analyses (e.g. Pellegrin 1904; Regan 1920; Kullander 
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1980, 1983, 1986, 1990; Kullander and Nijssen 1989).  A significant portion of these 

studies was reviewed in search of previously proposed characters that could be of 

relevance for establishing the phylogeny of Geophaginae.  Understandably, these studies 

present a diversity of approaches to character description, often lack uniformity in 

nomenclature, and sometimes have described characters in a way that does not allow 

their direct use in phylogenetics.  Numerous characters were redescribed such that they 

could be used in the context of the present analysis.  Characters that did not vary within 

the taxa examined were excluded, and in several cases, the original characters were split 

into several characters to facilitate coding or clarify the delimitation of character states.  

For example, Lippitsch’s (1993) character 44 included both scale size and squamation 

pattern: lateral chest scales can be equal or smaller than flank scales; if they are smaller, 

they can be imbricating or not.  The character was divided into size of lateral chest scales 

(character 16, Appendix II) and juxtaposition pattern of lateral chest scales (character 17, 

Appendix II). 

Description and scoring of external morphology characters was based on direct 

observation of formalin-fixed, ethanol-preserved specimens.  Meristic characters were 

evaluated on both sides of each specimen to account for variability.  Osteological 

characters were analyzed in cleared and stained specimens (Dingerkus and Uhler 1977; 

Taylor and Van Dyke 1985) and/or dry, articulated skeletons.  Whenever possible, 

observations were made on several individuals per species to account for intraspecific 

variability.  A complete list of the material examined for morphological analysis is given 

in Appendix III, and cross-references to voucher specimens from which molecular data 

were obtained are given where appropriate.  Detailed collection localities and other 

museum data for catalogued material are available from the NEODAT project website 

(www.neodat.org) and/or from HLF on request.  Uncatalogued specimens used for 

morphological analysis and voucher specimens used for tissue sampling are or will be 

deposited at the American Museum of Natural History, New York. 

All morphological characters were polarized using the outgroup method, keeping 

multistate characters unordered.  Details on polarity decisions for each character are 
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given in the character description (Appendix II).  The coded matrix of morphological 

characters is given in Appendix IV.  Although the focus of the analysis is placed at the 

generic level, whenever possible several species per genus were analyzed, providing 

explicit tests of monophyly for the genera, and facilitating coding when genera are 

polymorphic for a character (see Wiens 2000). 

 

Phylogenetic analyses 

The molecular dataset was analyzed in a previous study (Chapter III), thus in this 

paper the morphological dataset was analyzed by itself and in combination with the 

molecular supermatrix.  Both parsimony and Bayesian phylogenetic methods were 

performed on each dataset according to the following procedures.   

Parsimony analyses.  Parsimony analyses, both equally and successively 

weighted, were performed in PAUP* (Swofford 2002) using 100 replicates of heuristic 

search with random addition sequence and Tree Bisection and Reconnection branch 

swapping (TBR).  In previous analyses of the molecular data (Chapter III) transition to 

transversion ratios were used to reweight characters under parsimony, but morphological 

data do not allow for an equivalent weighting rationale.  Given this limitation, a 

posteriori differential weighting was performed (Chippindale and Wiens 1994: 286) by 

successive approximation (SA) analyses (Farris 1969), using the maximum value of the 

rescaled consistency index (rc) of each character as implemented in PAUP*.  SA favors 

topologies in which homoplasy of the most consistent characters is minimized (Chase 

and Palmer 1997), thus helping reduce the effect of sequence saturation and rate 

heterogeneity in the molecular data, and assigning higher weights to the least 

homoplastic characters in the morphological dataset (Felsenstein 2004).  Support for 

parsimony-derived topologies was estimated with non-parametric bootstrap (Felsenstein 

1985) and Bremer support indices (Bremer 1988,1994) with searches performed in 

PAUP*.  Bootstrap values were derived from 100 pseudoreplicates, each with 10 

heuristic searches using random addition sequence and TBR.  Bremer support was 
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estimated using topological constraints implemented in MacClade (Maddison and 

Maddison, 2000) under the same conditions of the original heuristic search in PAUP*. 

Bayesian analyses.  Bayesian analyses of the morphological and the total 

evidence datasets were performed in MrBayes 3.0b4 (Huelsenbeck and Ronquist 2001; 

Ronquist and Huelsenbeck 2003).  This version of MrBayes incorporates a modified 

Metropolis coupled Markov Chain Montecarlo (MC3) that allows the independent use of 

different models of evolution for each partition, including morphological characters 

(Ronquist and Huelsenbeck 2003).  The inclusion of morphology is achieved through the 

implementation of Lewis’ (2001) likelihood model for discrete morphological 

characters.  This model assumes equal state frequencies, and can be combined with a 

gamma distribution to account for evolutionary rate heterogeneity among characters, but 

the model does not include an invariants estimate, because invariant characters are 

normally removed from morphological datasets (Nylander et al. 2004).  Given these 

features of the model, the morphological partition was analyzed using a GTR + Г 

substitution model that does not favor any particular direction of character change.  This 

model approximates the conditions of a parsimony analysis with equal weights and 

unordered characters.  More detailed and flexible models for morphological character 

evolution have been used (Nylander et al. 2004), but are not currently available in 

software packages.  Nucleotide substitution models were the same as used in Chapter III.  

Parameters of substitution in all models and all partitions were unlinked and left to vary 

freely under MrBayes default priors, so that each model could accommodate several 

possible rate parameters (Huelsenbeck and Imennov 2002).  Each Bayesian analysis was 

run for 2 x 106 generations, sampling every 100 generations for a total of 20,000 

trees/samples per run.  Log-likelihood values for each sample were plotted against the 

number of generations to determine whether the Markov chains had attained stationarity 

by reaching a stable likelihood value (Huelsenbeck and Ronquist 2001; Leaché and 

Reeder 2002).  Samples with values below the stationarity level were discarded as burn-

in.  Three methods to avoid deriving phylogenies from suboptimal peaks of tree space 

were applied, including 1) the MC3 algorithm of MrBayes; 2) the MC3 searches repeated 
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with different starting trees, until not less than four independent searches converged to 

the same likelihood; and 3) for each of the four convergent runs, independently 

estimating 50% majority rule trees, and comparing the parameter values for each 

partition.  Further details of each procedure are given in Chapter III. 

 

Partitioned Bremer Support 

To explore the effect of different partitions on the inferred phylogenies and to 

evaluate the degree of congruence between partitions, the local (node level) support for 

each topology was compared by calculating Partitioned Bremer Support (PBS) for each 

node (Baker and DeSalle 1997; Baker et al. 1998).  PBS reveals if a partition in the 

simultaneous analysis supports the total evidence tree, and indicates how much each 

partition contributes to the overall Bremer support of each node.  A positive value of 

PBS shows support for a particular node by a given partition, while a negative value 

indicates that the most parsimonious explanation of the data in that partition is not 

congruent with the combined tree.  PBS values were calculated using 100 heuristic 

search replicates in TreeRot, version 2 (Sorenson 1999).  The total tree length and each 

partition’s length in the Bayesian total-evidence tree were calculated in PAUP* using the 

“describe trees” function, and subsequently entering the constraints file obtained from 

TreeRot.  PBS values from the total-evidence analyses were also used to summarize the 

overall congruence between each partition using the method of Sota and Vogler (2001).  

PBS values obtained from each simultaneous analysis were compared using Spearman’s 

ranked correlations.  This procedure allows for a comparison of the support offered by 

each partition in the simultaneous and separate analyses.  A positive correlation indicates 

congruent support between partitions, whereas a negative correlation indicates opposing 

support.  Lack of correlation indicates that support is not associated with the partitions 

being tested (Cognato and Vogler 2001; Damgaard and Cognato 2003).  Spearman’s 

correlations were calculated in SPSS® version 11.0 for Windows®. 
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Internal Branch Tests 

Internal Branch Tests (IBT) were used to determine whether the short basal 

branches in the geophagine phylogeny (Chapter III) represent credible relationships or a 

polytomy in which apparent relationships are spurious.  IBTs are oriented to establish 

the reliability of a tree by determining whether the length of its internal branches is 

significantly different from zero (Nei and Kumar 2000).  A bootstrap-based IBT was 

used, in which a distribution of internal branch lengths for the topology being tested is 

created, and used to determine whether the branches are significantly positive (Dopazo 

1994; Sitnikova et al. 1995, Sitnikova 1996).  The IBT was performed in MEGA2 

version 2.1 (Kumar et al. 2001), using the combined molecular data set to build distance-

based trees under Neighbor Joining (NJ) and Minimum Evolution (ME).  Trees were 

produced under the Kimura-2-parameter (1980) and the Tamura-Nei (1993) models of 

nucleotide substitution, both with and without a gamma distribution to account for 

among-site rate heterogeneity (Swofford et al. 1996; Felsenstein 2004). 

 

RESULTS 

 

Phylogenetic relationships 

Morphology.  A total of 136 morphological characters were analyzed using both 

unweighted parsimony and successive approximation.  The unweighted analysis resulted 

in eight most parsimonious (MP) trees of 638 steps and global consistency index (CI) of 

0.34, retention index (RI) of 0.64 and rescaled consistency index (RC) of 0.22.  The 

eight alternative trees differed in the position of the genera Geophagus, Satanoperca, 

and Gymnogeophagus with respect to each other, but were otherwise identical, as was 

the successive approximation tree.  The strict consensus tree of the morphological 

analysis (Figure 4.1A) showed a monophyletic, but weakly supported, Geophaginae 

including Crenicichla at the base of the tree.  Most intergeneric relationships had low or 

moderate support, except for three clades that grouped the genera Acarichthys and 

Guianacara (tribe Acarichthyini [Kullander 1998] from here on), Apistogramma 
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(including Apistogrammoides) and Taeniacara, and Dicrossus and Crenicara 

(crenicarine clade from here on, see Chapter III), respectively.  Four independent 

Bayesian searches converged in the same likelihood after approximately 5 x 105 

generations or 5,000 trees, and the first 10,000 trees were discarded as burn in.  Fifty 

percent majority rule topologies and model parameters for each of four runs were 

identical, thus all trees were combined into the final topology (Figure 4.1B).  The 

Bayesian analysis recovered a monophyletic Geophaginae, including Crenicichla at the 

base as in the MP analysis.  The two trees were generally similar, but the Bayesian 

analysis placed the clade including Acarichthys, Guianacara and Biotodoma near the 

base of the tree, whereas it was part of the main clade in the MP analysis.  

Combined analyses.  The combined analysis (CA) of the morphological and 

molecular datasets included 4096 characters, of which 1292 were parsimony 

informative.  The equal-weight parsimony analysis produced 2 MP trees of 6918 steps 

and CI = 0.33, RI = 0.42 and RC = 0.17.  Both trees were completely resolved and 

showed a monophyletic Geophaginae, but the relationships within the subfamily were 

markedly different, showing incongruent intergeneric relationships, and rendering the 

strict consensus tree unresolved at the base (not shown).  The successive approximation 

tree was identical to one of the equal weight topologies, but support was weak for most 

inter-generic nodes within Geophaginae (Figure 4.2A, Table 4.1).  

 



 

 
FIG. 4.1.  Topologies derived from analysis of morphological data.  A) Strict consensus of 8 MP topologies derived from 136 equally weighted morphological characters.  Topologies differed 
in the position of the genera Geophagus, Satanoperca and Gymnogeophagus, but were otherwise identical, as was the successive approximation tree.  Bootstrap support based on 100 
pseudoreplicates is given above branches; Bremer support values based on 100 replicates of heuristic search are given below branches.  See text for tree statistics.  B) 50% majority rule 
Bayesian topology derived from morphological data analyzed under Lewis (2001) stochastic model of morphological evolution using a GTR model allowing for different rates among 
characters.  The topology resulted from combining 40,000 trees from four independent runs of 2 x 106 generations sampling every 100 trees with burn in of 1 x 106 generations/10,000 trees 
for each analysis.  Highlighted clades (see discussion): TA = tribe Acarichthyini, SBT = Small-bodied taxa. 92

 



 93

In general, bootstrap and global Bremer support values were congruent with each 

other, and strongly supported the crenicarine clade and clades uniting ‘Geophagus’ 

steindachneri with Geophagus sensu stricto, and Apistogramma with Taeniacara, 

respectively. 

Four independent Bayesian searches with the combined data converged in the 

same likelihood value after approximately 100,000 generations; the first 2,000 trees were 

discarded as burn in.  A fifty percent majority rule consensus was built with the 

combined trees from all four runs (Figure 4.2B, Table 4.1).  The Bayesian topology was 

essentially identical to that obtained with the molecular data alone (Chapter III, Figure 

3.6), with the exception that the Cichlasomatinae was grouped as sister to Geophaginae.  

The monophyletic Geophaginae had Guianacara at the base of the tree.  The remainder 

of the subfamily was grouped in an unresolved tricotomy including a poorly supported 

clade uniting Acarichthys, Biotoecus and Crenicichla, the “Satanoperca” clade 

(Satanoperca, Apistogramma and Taeniacara), and the “Big clade,” that included 

several subclades: The “Mikrogeophagus’ clade (Mikrogeophagus and ‘Geophagus’ 

brasiliensis), the “Geophagus” clade (Gymnogeophagus, ‘Geophagus’ steindachneri, 

Geophagus sensu stricto), the crenicarine clade, and Biotodoma.  Most posterior 

probabilities were high, but several nodes were weakly supported.

 



 

 
FIG. 4.2.  Topologies derived from analysis of total-evidence dataset.  A) Successive approximation topology from 2MP trees derived from 4096 characters of morphology and six molecular 
loci (nuclear: RAG2, Tmo-M27, Tmo-4C4; mitochondrial: ND4, cytochrome b, 16S).  Bootstrap support based on 100 pseudoreplicates, Bremer decay indices, and Partitioned Bremer 
Support values based on 100 replicates of heuristic search for each partition are given in Table 1 for each numbered node on the tree.  See text for tree statistics.  B) 50% majority rule 
Bayesian topology derived from data analyzed using unlinked models of morphological evolution/nucleotide substitution for each partition.  The topology resulted from combining 72,000 
trees from four independent runs of 2 x 106 generations sampling every 100 trees with burn in of 200,000 generations/2,000 trees for each analysis.  Posterior probabilities, Bremer decay 
indices, and Partitioned Bremer Support values based on 100 replicates of heuristic search for each partition are given in Table 1 for each numbered node on the tree.  Highlighted clades (see 
discussion): TA = tribe Acarichthyini, BC = Big clade, SC = “Satanoperca clade”, CC = “Crenicichla clade”, GC = “Geophagus clade”, CrC = “Crenicarine clade”, MkC = “Mikrogeophagus 
clade”. 94

 



 

TABLE 4.1.  Support for genus-level trees obtained from the total matrix through A) successive approximation using parsimony (Figure 4.2A) and B) 
Bayesian analysis (Figure 4.2B).  BS = Bootstrap values, DI = Bremer support values (Decay Index), PP = Posterior probabilities.  Partitioned Bremer 
support values for each partition under both analysis methods are shown.  Node numbers refer to node labels for the respective trees in Figure 4.2. 
 

   Partitioned Bremer Support 

 Parsimony (A) Bayesian (B) Morphology RAG2 Tmo-M27 Tmo-4C4 Cytochrome b 16S ND4 

                   BS DI PP DI A B A B A B A B A B A B A B

Node 1                    <50 1 52 -70 0 -25 7 4.5 0 1 0.5 -4.5 -17.5 -8.5 3 -10 8 -27.5

Node 2                    

                    

                    

                   

                    

                    

                   

                    

                  

                  

                  

                  

                  

                  

                   

                   

       

                   

96 12 67 -70 2.7 -25 11.8 4.5 0 1 3.2 -4.5 -9.7 -8.5 -2.2 -10 6.2 -27.5

Node 3 <50 0 98 -64 -7 -14.5 3.5 -0.5 0 1 -0.5 -3 -3.5 -5 3 -12.5 4.5 -29.5

Node 4 <50 0 100 -70 -7 -25 3.5 4.5 0 1 -0.5 -4.5 -3.5 -8.5 3 -10 4.5 -27.5

Node 5 <50 0 89 -67 -7 -16.5 3.5 8 0 1 -0.5 -2.5 -3.5 -16 3 -10.5 4.5 -30.5

Node 6 <50 3 59 -70 8.5 -25 3.5 4.5 0 1 2 -4.5 -7.5 -8.5 -0.5 -10 -3 -27.5

Node 7 <50 0 76 -70 -7 -18 3.5 1 0 1 -0.5 -4 -3.5 -5 3 -13 4.5 -32

Node 8 72 6 100 -58 10.5 -22.3 -5 16.3 0 1 1.5 -1.3 3.5 -18.2 -2.5 -12.2 -2 -21.3

Node 9 <50 0 100 -70 -7 -32 3.5 8 0 1 -0.5 -5 -3.5 -12 3 -7 4.5 -23

Node 10 97 20 100 -50 1 -24 16.5 21 3 4 9.5 5 -7.5 -16 5 -5 -7.5 -35

Node 11 <50 0 100 -70 -7 -32 3.5 8 0 1 -0.5 -5 -3.5 -12 3 -7 4.5 -23

Node 12 <50 0 72 -70 -7 -25 3.5 4.5 0 1 -0.5 -4.5 -3.5 -8.5 3 -10 4.5 -27.5

Node 13 <50 1 100 -52 0 -14 7 11 0 2 0.5 -5 -17.5 -24 3 -5 8 -17

Node 14 100 18 100 -48 11 -23 6.5 16 1 1 -0.5 -3 -15.5 -21 5 -6 10.5 -12

Node 15 99 22 100 -53 2 -30 11.5 19 0 0 1.5 -2 -12.5 -20 4 -7 15.5 -13

Node 16 98 17 100 -65 -5 -23 14.5 8 -1 2 2.5 -5 -11.5 -20 3 -7 14.5 -20

Node 17 77 5 100 -55 2 -29.5 3.5 12 1 1 -0.5 -4 -11.5 -12.5 3 -7 7.5 -15

Node 18 99 15 - - -4.5 - 7.5 - 0 - 0.5 - -4 - 3 - 12.5 - 

Total -20.8 -403.8 108.8 150.3 4 21 17.2 -57.3 -135.7 -224.2 44.8 -149.2 101.7 -408.8
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Partitioned Bremer Support and modified combined analyses 

Evaluation of PBS values from the combined analyses revealed some 

incongruence among partitions (Table 4.1).  Negative PBS values in at least some nodes 

of all partitions indicate that homoplasy is common across the data.  Negative values 

were, not surprisingly, much more frequent in the Bayesian tree than in the parsimony 

topology.  This is because the former is far removed from the most-parsimonious 

topology, and is derived using a method at odds with a parsimony-based measure of 

support.  Although one might argue that using PBS on a topology not derived by 

parsimony is not informative, or is “unfair,” the exercise produces some interesting 

results, as will be shown below.  Pairwise comparisons of PBS values between partitions 

(Tables 4.2 and 4.3) showed both positive and negative values, which indicate that even 

though there is incongruence among partitions, there are also important elements of 

agreement in their phylogenetic information.  Significantly positive correlations among 

several partitions, both in the parsimony and Bayesian analyses, indicate strong 

congruence within the data.  Significantly negative correlations were all associated with 

the cytochrome b partition, in both the parsimony and Bayesian topologies.  Cytochrome 

b was significantly incongruent with RAG2 and ND4 in both analyses, and additionally 

with morphology under parsimony and 16S under Bayesian analysis.  Correlations to all 

other partitions also were negative, albeit non-significant.  Since no other partition 

showed a systematic negative correlation with the remainder of the data, it seemed clear 

that the phylogenetic signal in cytochrome b was in strong conflict with the overall 

dataset, thus the partition was removed from the dataset and the simultaneous analysis 

repeated with a reduced total evidence matrix (RTE) 
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TABLE 4.2.  Pairwise Spearman’s correlation of Partitioned Bremer Support values for 
each partition in the successive approximation analysis of the total matrix.  ** P < 0.01; 
* P< 0.05. 
 

 Morphology RAG2 Tmo-M27 Tmo-4C4 Cyt b 16S ND4 

Morphology - 0.270 0.395 0.579* -0.518* -0.084 0.154 

RAG2  - 0.026 0.647** -0.696** 0.426 0.537* 

Tmo-M27   - -0.122 -0.186 0.473* -0.213 

Tmo-4C4    - -0.375 -0.179 0.043 

Cyt b     - -0.362 -0.670**

16S      - 0.314 

ND4       - 

 

 

 

 

TABLE 4.3.  Pairwise Spearman’s correlation of Partitioned Bremer Support values for 
each partition in the Bayesian analysis of the total matrix.  ** P < 0.01; * P< 0.05. 
 

 Morphology RAG2 Tmo-M27 Tmo-4C4 Cyt b 16S ND4 

Morphology - -0.121 0.434 0.285 -0.122 -0.283 -0.268 

RAG2  - 0.165 0.373 -0.866** 0.675* 0.535* 

Tmo-M27   - -0.227 -0.285 0.424 -0.179 

Tmo-4C4    - -0.103 -0.224 -0.203 

Cyt b     - -0.689** -0.675* 

16S      - 0.531* 

ND4       - 
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The RTE dataset included 2971 characters, of which 885 were parsimony 

informative.  The parsimony analysis resulted in 2 MP trees of 4877 steps with CI = 

0.38, RI = 0.46 and RC = 0.18.  The MP trees differed only in the position of 

‘Geophagus’ steindachneri, which was alternatively placed as sister to 

Gymnogeophagus or Geophagus sensu stricto.  The latter arrangement was supported by 

bootstrap analysis, but had no Bremer support (Figure 4.3).  The parsimony topology 

was completely resolved and almost identical to the tree obtained by parsimony when all 

data were included, but for the majority of nodes, support was increased by the removal 

of the cytochrome b partition (Figures 4.2A and 4.3, Table 4.1).  Geophaginae 

monophyly was strongly supported, and all genera were grouped into two large clades, 

although with low support.  The first clade included the sister-group relationship 

between the tribe Acarichthyini and the “Big clade;” the second clade grouped the 

“Satanoperca” clade with a weakly supported group uniting Crenicichla and Biotoecus 

(the “Crenicichla” clade from here on).  Bayesian analyses converged on the same 

likelihood after approximately 1 x 106 generations, thus the first 10,000 trees were 

discarded as burn in and a majority rule consensus tree was built by combining all 

remaining trees.  Bayesian analysis without cytochrome b produced a topology very 

similar to the parsimony tree, although not as completely resolved (Figure 4.4).  The 

strongly supported Geophaginae included a tricotomy of the Acarichthyini, the Big clade 

as sister to the “Satanoperca” clade, and finally the “Crenicichla” clade.  Within the Big 

clade, the “Geophagus” clade was strongly supported, but the “Mikrogeophagus” clade 

was paraphyletic, including Crenicara and Dicrossus.  All disagreement between the 

parsimony and Bayesian trees was located at deep branches of the phylogeny.  PBS 

analysis of the RTE topologies (not shown) revealed the mitochondrial gene ND4 and 

the nuclear locus Tmo-4C4 had most of the negative values in the parsimony analysis; 

the Bayesian tree showed a similar pattern, but in addition, all 16S values were negative.  

Despite this apparently large incongruence, no correlation was significantly negative in 

either analysis, and further removal of data was not deemed appropriate. 

.
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FIG. 4.3.  50% majority rule Bayesian topology derived from the reduced total evidence matrix (RTE) from which the cytochrome b 
partition was removed.  Analysis consisted of 2971 characters of morphology and five molecular loci (nuclear: RAG2, Tmo-M27, 
Tmo-4C4; mitochondrial: ND4, 16S).  The topology resulted from combining 40,000 trees from four independent runs of 2 x 106 
generations sampling every 100 trees with burn in of 1 x 106 generations/10,000 trees for each analysis; posterior probabilities are 
given by each node.  See text for tree statistics.  Highlighted clades (see discussion): TA = tribe Acarichthyini, BC = Big clade, SC = 
“Satanoperca clade”, CC = “Crenicichla clade”, GC = “Geophagus clade”, CrC = “Crenicarine clade”. 
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FIG. 4.4.  Strict consensus topology from 2MP trees derived from the reduced total evidence matrix (RTE) from which the 
cytochrome b partition was removed.  Analysis consisted of 2971 characters of morphology and five molecular loci (nuclear: RAG2, 
Tmo-M27, Tmo-4C4; mitochondrial: ND4, 16S).  Bootstrap support based on 100 pseudoreplicates is given above branches; Bremer 
support values based on 100 replicates of heuristic search are given below branches.  See text for tree statistics.  Highlighted clades 
(see discussion): TA = tribe Acarichthyini, BC = Big clade, SC = “Satanoperca clade”, CC = “Crenicichla clade”, GC = “Geophagus 
clade”, CrC = “Crenicarine clade”, MkC = “Mikrogeophagus clade”. 
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Internal Branch Tests 

Although MEGA2 does not allow for the use of pre-defined trees, the topologies 

obtained by NJ and ME (not shown) were not radically different from those obtained by 

parsimony and Bayesian analyses using the molecular data.  Under all models of 

nucleotide substitution, with and without a gamma distribution to account for among-site 

rate heterogeneity, the IBTs consistently found the length of basal branches non-

significantly different from zero.  With the exception of the branch at the base of the 

clade uniting ‘Geophagus’ steindachneri and Geophagus sensu stricto, all intergeneric 

relationships showed branches with confidence probabilities much lower than 95% (Nei 

and Kumar, 2000; Kumar et al. 2001).  These results clearly suggest that geophagine 

basal branches are extremely short, and explain the low support obtained for the deeper 

nodes in the tree. 

 

DISCUSSION 

 

Phylogenetic relationships of Geophaginae: Morphological analyses 

Both morphology and total-evidence analyses produced a monophyletic 

Geophaginae, but relationships derived from the morphological and the combined 

analyses were markedly different.  Monophyly of all genera was supported by the 

morphological data, except in the case of Apistogrammoides, which was grouped with 

Apistogramma, thus corroborating previous molecular results (Chapter III).  When 

analyzed alone, the morphological dataset grouped all the small-bodied taxa, the so-

called “dwarf cichlids,” into a monophyletic clade (SBT in Figure 4.1A,B), and failed to 

recover most of the intergeneric groupings found under total evidence.  The dwarf 

cichlid clade included Mikrogeophagus, Apistogramma, Taeniacara, Dicrossus, 

Crenicara and Biotoecus, and was poorly supported by six ambiguous synapomorphies 

(Characters 24, 51-54, 110).  Neither the total evidence nor the molecular analyses 

supported a clade of small-bodied taxa.  Morphological characters supporting this clade 

are probably correlated with body-size reduction, and do not represent true secondary 
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homologies (sensu de Pinna, 1991).  Other studies have found that body-size reduction 

usually determines the parallel “miniaturization” of certain structures, creating non-

homologous, convergent derived conditions (e.g. Buckup 1993).  Perhaps the best 

illustration of the bias introduced by miniaturization is the grouping of Dicrossus, 

Crenicara, and Biotoecus (Figure 4.1A,B).  This relationship was first found by 

Kullander (1998) in his morphological analysis, but has never been recovered from any 

molecular or total evidence analysis (Farias et al. 1999, 2000, 2001, Chapter III).  

Instead, the total evidence analyses suggest that Biotoecus is related to Crenicichla and 

has no close relationship with the crenicarine clade (Figures 4.3 and 4.4, and see below).  

The interaction of morphological characters with the molecular dataset produced 

different topologies than those obtained from morphology alone and heightened support 

for most clades.  Numerous other studies have found that the combination of 

morphology and molecules often produces arrangements not recovered by either data 

type alone, and increases overall support (see Brower et al. 1996; Baker and DeSalle 

1997; 1998; Wiley et al. 1998; Hodges and Zamudio 2004). 

A remarkable difference between this study’s morphological results and previous 

morphology-based analysis of Neotropical cichlids is the finding of Crenicichla being 

grouped with Geophaginae.  In previous morphological analyses, Stiassny (1987, 1991), 

Casciotta and Arratia (1993a), and Kullander (1998) found Crenicichla to be sister to 

Cichla.  Stiassny (1987) proposed the most comprehensive analysis of characters uniting 

the two genera, including both myological and osteological traits.  Several of Stiassny’s 

osteological characters were found to be more variable than expected, both in and 

outside Cichla and Crenicichla (e.g. urohyal morphology, Stiassny’s character 2, was 

not included in this study because its high variability did not allow for a satisfactory 

coding scheme).  In some cases, new character states were identified, with the 

consequence of reducing support for the former hypothesis (e.g. vomerine head 

morphology, Stiassny’s character 5, this study’s character 88).  In this study, Crenicichla 

is unambiguously placed within Geophaginae by sharing the possession of a reduced 

number of concavities in the frayed zone of the fourth upper pharyngeal toothplate 

 



 103

(Character 113, state 1).  This study is the first one to find congruence between 

morphological and molecular evidence regarding the relationships of Crenicichla.  

Finally, this study indicates that the genus Teleocichla, sister to Crenicichla (Stiassny 

1987; Farias et al. 2000), also belongs in Geophaginae. 

 

Phylogenetic relationships of Geophaginae: Total-evidence analyses 

Total evidence analyses of morphological and molecular data produced similar 

topologies, differing only in the way the tribe Acarichthyini, Crenicichla and Biotoecus, 

and the grouping of some taxa within the “Big clade” (Figure 4.2A, B).  Some of this 

disagreement disappeared with the removal of the cytochrome b partition, revealing that 

incongruence among the data was to an extent responsible for the lack of resolution in 

the phylogeny.  The following paragraphs elaborate on the phylogenetic relationships of 

Geophaginae based on the RTE dataset (i.e. without cytochrome b).  Clade nomenclature 

followed that used in Chapter III, but is expanded when necessary. 

The “Big clade.”  Despite contradictory support (low on the MP tree and high on 

the Bayesian tree), the monophyly of the “Big clade” seems well established.  Both 

parsimony and Bayesian analyses recovered the “Geophagus clade” (Figures 4.2B, 4.3 

and 4.4), in which Gymnogeophagus is sister to a clade formed by ‘Geophagus’ 

steindachneri and Geophagus sensu stricto.  Among previous studies, only Kullander’s 

(1998) included all these taxa, and he found ‘G.’ steindachneri to group with 

Satanoperca, whereas Gymnogeophagus grouped with Apistogramma, and Geophagus 

sensu stricto remained unresolved at the base of the tribe Geophagini.  Morphological 

analyses produced yet different arrangements (Figure 4.1), but none of the results 

suggested a relationship between ‘Geophagus’ steindachneri and Satanoperca or 

between Gymnogeophagus and Apistogramma.  The consistency of this study’s 

molecular (Chapter III) and total evidence results (Figures 4.3 and 4.4) strongly suggests 

that the “Geophagus clade” is likely a monophyletic unit, even though support for its 

monophyly is not very high (see also next section of the discussion).  The remaining 

relationships within the “Big clade” are less clear, although there is some evidence to 
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prefer the parsimony topology.  Both MP and Bayesian analyses recovered the 

crenicarine clade, but the relationships of this group to other genera are not strongly 

resolved.  The parsimony analysis grouped the crenicarines with Biotodoma, but with 

low bootstrap and marginal Bremer support values.  Alternatively, the Bayesian tree 

showed the crenicarines grouped with Mikrogeophagus, placing Biotodoma at the base 

of the “Big clade,” but with the lowest posterior probability in the tree.  It seems 

favoring the parsimony results is cautious and advisable in this particular case for at least 

two reasons, including 1) it has been repeatedly suggested that support from posterior 

probabilities is inflated, misrepresenting the actual support that a dataset provides for 

clade monophyly (e.g. Suzuki et al. 2002; Douady et al. 2003; Simmons et al. 2004); and 

2) the total-evidence parsimony topology (Figure 4.4) supports the monophyly of the 

“Mikrogeophagus clade” (Mikrogeophagus + ‘Geophagus’ brasiliensis), which was 

repeatedly found in most of this study’s analyses (Figures 3.3, 3.4 and 3.6).  Although 

the parsimony topology is provisionally preferred, only additional data and taxon 

sampling could further clarify relationships within the “Big clade”. 

The tribe Acarichthyini, the “Crenicichla clade,” and the “Satanoperca clade.”  

Previous molecular analyses (Chapter III, Figures 4.5 and 6) suggested that these clades 

were located at the base of Geophaginae, but no clear relationships could be determined.  

Analysis of the RTE dataset recovered the tribe Acarichthyini (Acarichthys + 

Guianacara) both under parsimony and Bayesian analyses.  Unlike previous molecular 

analyses (Chapter III), the Acarichthyini were not related to Crenicichla and Biotoecus, 

suggesting the morphological dataset had an effect on the results.  Nonetheless, 

Acarichthys and Guianacara were grouped only by ambiguous morphological 

synapomorphies of squamation (character 31, reversal to state 0), color pattern (character 

75, state 1) and osteology (character 114, state 2; character 122, state 1).  Kullander 

(1998) formally proposed the tribe Acarichthyini based on characters of the first 

epibranchial bone (his character 14), the lower pharyngeal jaw (his character 20), the 

shared expansion of the basisphenoid and the parasphenoid wing (his character 36, and 

see also Kullander and Nijssen, 1989), and the infraorbital series (his character 44).  
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Evaluation of these characters revealed wide variation and perhaps ontogenetic 

variability as well.  Particularly, the basisphenoid expansion varies among species of 

Guianacara (e.g. Guianacara sphenozona, G. n. sp. ‘caroni’), and as interpreted here, 

the parasphenoid wing is expanded in several other taxa (e.g. Geophagus, and see 

Appendix III).  Additionally, the basisphenoid shape varies independently from the 

parasphenoid.  Differences between our character states and those of Kullander are 

probably due to differences in taxon sampling when evaluating morphological 

characters.  However, regardless of the characters used the tribe Acarichthyini is 

frequently recovered in both morphological and molecular analyses (Kullander 1998; 

Farias et al. 1999, Farias et al. 2000, Chapter III).  RTE parsimony and Bayesian 

analyses in this study consistently recovered the tribe (Figures 4.3 and 4.4), although 

with unclear resolution of its relation to other geophagines.  The parsimony analysis 

placed it as sister to the “Big clade,” but with low support, whereas the Bayesian 

analysis left it as part of a tricotomy at the base of Geophaginae. 

Crenicichla and Biotoecus were grouped as a weakly supported clade by the 

parsimony total evidence (Figure 4.2A, Table 4.1) and by both RTE analyses.  In 

contrast with the molecular dataset and the Bayesian total evidence analysis, genera in 

the Acarichthyini and the “Crenicichla clade” do not appear to be related.  Despite its 

weak support, the “Crenicichla clade” is unambiguously defined by the absence of 

divergent ridges anterior to NLF0 (character 76, state 1), the lack of frontal crest 

(character 77, state 1), and the possession of a cartilaginous pharyngobranchial 1 

(character 104, state 1).  No other clade in this study is supported by three unambiguous 

morphological synapomorphies.  Interestingly, the grouping of the two genera also was 

recovered by the parsimony analysis of the molecular supermatrix alone (Chapter III, 

Figure 3.5).  Relationship of the “Crenicichla clade” to other geophagines is not clearly 

resolved, but some evidence supports its sister relationship with the “Satanoperca 

clade,” instead of Acarichthys, as previously suggested by the molecular supermatrix 

analysis (Chapter III). 
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The “Satanoperca clade” (Satanoperca, Apistogramma and Taeniacara) is the 

most consistently recovered intergeneric arrangement among geophagines (see Chapter 

III, and figures in this paper), but recovered relationships to other geophagines are 

weakly supported.  The parsimony RTE analysis grouped the “Satanoperca” and 

“Crenicichla” clades, and three ambiguous morphological apomorphies supported that 

arrangement.  On the other hand, Bayesian analysis grouped it with the “Big clade,” with 

weak support and no morphological apomorphies.  Based on support, and presence of 

some morphological synapomorphies, the parsimony topology is provisionally preferred, 

but more evidence will be needed to corroborate whether the “Satanoperca” and 

“Crenicichla” clades are sister to each other. 

In summary, the MP analysis of the reduced total evidence dataset produced the 

most resolved and supported hypothesis of relationships among geophagine cichlids 

(Figure 4.3).  Monophyly of the subfamily was strongly supported by all analyses, and 

its sister-group relationship with the Cichlasomatinae was well supported (Figures 4.3 

and 4.4), including five unambiguous morphological characters (43, 50, 55, 117, 119).  

In the MP topology, two large, sister clades encompassed all genera within 

Geophaginae.  In the first of these, the tribe Acarichthyini (Acarichthys + Guianacara) 

was placed as sister to the “Big clade.”  Within the latter, the “Geophagus clade” 

(‘Geophagus’ steindachneri + Geophagus sensu stricto, and both sister to 

Gymnogeophagus) was sister to the “Mikrogeophagus clade” (Mikrogeophagus + 

‘Geophagus’ brasiliensis), and in turn, the “Geophagus” and “Mikrogeophagus” clades 

were sister to the crenicarine clade and Biotodoma.  The second main clade within 

Geophaginae was formed by the sister relationship between the “Satanoperca clade” 

(Satanoperca + Apistogramma and Taeniacara) and the “Crenicichla clade” 

(Crenicichla + Biotoecus).  Alternatively, but with very low support, the Bayesian 

analysis suggested the sister relationship of the “Satanoperca clade” and the “Big clade,” 

leaving the Acarichthyini and the “Crenicichla clade” unresolved in a polytomy at the 

base of the tree (Figure 4.4). 
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Phylogenetic relationships recovered in this study were derived from the largest 

data set and taxon sample of geophagine cichlids analyzed to date.  Some of these 

relationships have important implications for the definition and classification of the 

subfamily Geophaginae.  The inclusion of the genus Crenicichla is justified both on 

molecular and morphological evidence, reconciling formerly opposed hypotheses of 

relationships (e.g. Stiassny 1987, 1991; Kullander 1998; Farias et al. 2000).  These 

results confirm those of Farias (e.g. 1999, 2000) and justify the expansion of the 

subfamily from 16 to 18 genera by the addition of Crenicichla and its sister taxon 

Teleocichla.  Likewise, the results refute the reality of the subfamily Cichlinae (Cichla, 

Crenicichla, Teleocichla) erected by Kullander (1998), thus leaving the relationships of 

Cichla in need of further study.  The topologies suggest Cichla may be related to 

Retroculus (e.g. morphological characters 45 and 121, but see Farias et al. 2000), but 

that problem must be left for a study of basal relationships among cichlids, with proper 

taxon sampling.  The tribe Acarichthyini (Kullander 1998) was well supported, and 

appears to be related to the “Big clade,” but a more extensive analysis of morphology 

within Guianacara is needed to better understand the synapomorphies supporting the 

group (see above), as Acarichthys appears to be a monotypic genus.  The relationship of 

Crenicichla with Biotoecus, and the monophyly of the “Big clade” suggest that the tribes 

Crenicaratini and Geophagini, as proposed by Kullander (1998), do not reflect actual 

relationships within Geophaginae.  The Crenicaratini originally included Dicrossus, 

Crenicara and Biotoecus, but all combined data consistently grouped Dicrossus and 

Crenicara with the “Big clade.”  Kullander’s Geophagini grouped all genera, with the 

exception of those in the Acarichthyini and Crenicaratini, but the inclusion of the 

crenicarine clade and the separation of Satanoperca and Apistogramma from the “Big 

clade”, renders the Geophagini paraphyletic. 

Finally, the arrangement of multi-generic lineages at the base of the geophagine 

tree is not entirely clear, and further data will be needed to offer stronger support for 

relationships.  Likewise, a better-supported phylogeny of the subfamily will be needed 

before any definitive effort of revising geophagine classification is made.  The 
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parsimony topology is provisionally accepted because it offers a more resolved 

hypothesis, supported by several morphological synapomorphies.  In contrast, Bayesian 

relationships were less resolved ad supported by fewer morphological apomorphies.  

Additionally, because support for relationships at the base of the Bayesian tree (e.g. “Big 

clade” + “Satanoperca clade”) is particularly weak, and posterior probabilities may 

represent inflated support (Suzuki et al. 2002; Douady et al. 2003; Simmons et al. 2004), 

basal relationships based on Bayesian analysis must be considered cautiously.  

Furthermore, the total-evidence parsimony analysis recovered relationships congruent 

with those from other analyses performed in this study, whereas the Bayesian topology 

did not.  Nonetheless, both MP and Bayesian hypotheses showed weakly supported 

supra-generic arrangements at the base of the tree.  The generality of this observation 

suggests that low support is not due to lack of data or potential problems associated with 

phylogenetic methods, but to the characteristics of the geophagine phylogeny itself.  

Several elements that characterize geophagine evolution appear to complicate the 

recovery of a well-supported phylogeny, and offer important insight into the 

evolutionary history of this group of Neotropical cichlids. 

 

Limitations for the resolution of geophagine phylogeny 

Incongruence.  Removal of the cytochrome b partition determined a moderate but 

generalized increase in support for the parsimony topology, especially for nodes within 

Geophaginae (Figures 4.2A and 4.3, Table 4.1).  The RTE dataset also produced very 

similar topologies under both parsimony and Bayesian analysis, which was not the case 

when cytochrome b was included in the dataset.  It must be remembered that the 

cytochrome b, 16S, Tmo-M27 and Tmo-4C4 partitions are incomplete, and have 

important amounts of missing data.  Although phylogenetic analyses have frequently 

shown great resistance to error due to missing data (Wiens and Reeder 1995), it is not 

possible to predict the effect of an incomplete matrix on a particular analysis.  Under 

total-evidence, missing data may increase incongruence of a given partition if reduced 
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taxon sampling causes a biased representation of homoplasy and/or homology within the 

data. 

Although parsimony seems to perform adequately even with large amounts of 

missing data (Wiens and Reeder 1995), the author is not aware of any study that has 

addressed the effect of missing data on maximum likelihood or Bayesian analyses. When 

cytochrome b is included, it appears that the parsimony analysis downplays the 

conflicting effect of this partition, favoring the interaction of the congruent signal from 

the other partitions.  PBS values (Table 4.1) suggest that the topology is dominated by 

the congruent signal of most partitions, treating cytochrome b characters as non-

informative homoplasy.  This topological congruence is obtained at a cost, however, 

because support for nodes within Geophaginae is lower in the total evidence analysis 

than it is in the RTE.  Ultimately, removal of cytochrome b does have a positive effect 

on the overall topology by increasing support for most of its nodes, even if the topology 

itself is not very different.  In the Bayesian analysis, incongruence from cytochrome b is 

not being downplayed by the signal in other partitions, essentially because in the 

Bayesian analysis (as in Maximum Likelihood), topologies are not exclusively 

determined by synapomorphy, but by all characters (Felsenstein 1988, 2004; Lewis 

2001).  This interpretation seems appropriate, as the removal of cytochrome b causes an 

evident shift of Bayesian results towards the parsimony topology.  Whether differences 

in support (under parsimony) or topology (under Bayesian analysis) are due to the 

cytochrome b partition having a different evolutionary history, to the effect of missing 

data, or to some other source of homoplasy cannot be determined until a complete data 

set is available for analysis.  I prefer to provisionally accept the phylogeny obtained by 

removing cytochrome b, until a more complete dataset can be analyzed and the sources 

of incongruence can be studied. 

Adaptive radiation.  Support for the basal branches in the geophagine phylogeny, 

as measured by Bremer support, bootstrap and posterior probabilities, is lower than 

support for branches near the tips, and especially lower than support for clades outside 

the subfamily.  The IBTs of the molecular data corroborate the weakness of the basal 
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geophagine relationships, and confirm the previous conclusion that basal branches are 

extremely short (Chapter III).  Short branches at the base of a tree may be the 

consequence of lack of information for that particular level of the phylogeny, but are 

also the characteristic signature of a period of rapid differentiation associated with 

adaptive radiation (e.g. Hodges 1997; Jackman et al. 1997; Kontula et al. 2003).  Even 

after removal of the cytochrome b partition, the analysis includes the majority of genera 

within Geophaginae, nearly 3,000 base pairs from five different loci, and a substantial 

morphological dataset.  It is unlikely that low support for basal branches results from 

lack of data.  Short, weak basal branches could result from reduced character fixation 

during a short, fast period of adaptive radiation that gave place to the geophagine genera.  

Furthermore, previous studies have repeatedly shown that geophagine cichlids evolve at 

significantly faster rates than other Neotropical cichlids, and that rate heterogeneity is 

pervasive at the molecular level (Farias et al. 1999, 2000; Chapter III).  The group 

appears to have experienced extensive parallelisms at the morphological level (e.g. body 

size reduction, see above), adding to the extensive homoplasy within the clade.  The 

combination of short branches, rate heterogeneity, and morphological homoplasy 

undoubtedly hinders the process of phylogenetic inference, and complicates the 

estimation of a well-supported phylogeny (e.g. Felsenstein 1978; Tateno et al. 1982; 

Hillis and Wiens 2000). 

An evolutionary process with the characteristics of an adaptive radiation implies 

that complete phylogenetic resolution, if attainable, may not produce basal nodes with 

the strong statistical support found for more recent (e.g. species-level divergence) or 

slower diversification events (e.g. the cichlasomatine diversification, see Chapter III).  It 

is evident that some relationships repeatedly found in the data, but with consistently low 

support are likely to represent real relationships for which not many characters are 

available (e.g. the “Big clade”, “Mikrogeophagus clade”).  Resolving uncertain 

relationships and establishing further support for weak relationships within the 

geophagine clade will require the addition of yet more data, and the improvement of 

taxon sampling (Graybeal 1998; Rannala et al. 1998; Zwickl and Hillis 2002).  The 
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former should include slow-evolving, nuclear genes, which are more likely to contain 

informative characters for diversification events near the base of the tree (e.g. Springer et 

al. 2001).  The latter should include better sampling of species-poor genera like 

Guianacara, Biotoecus, Dicrossus and Crenicara.  Additionally, samples of the genus 

Teleocichla should help further resolve the relationship between Crenicichla and 

Biotoecus, and the position of these genera within Geophaginae.  The current limitations 

of the geophagine phylogeny are essential for understanding the evolution of this clade 

of fluviatile cichlids.  A phylogeny difficult to recover is part of a complex evolutionary 

puzzle in which ecological, behavioral and morphological diversity are also 

fundamental.  Integrating phylogenetics with a clear understanding of the biology of 

these fishes should reveal the evolutionary processes behind this virtually unknown 

adaptive radiation. 
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CHAPTER V 

 

CONCLUSION 

 

Geophagine cichlids from South America constitute a species-rich clade of 18 

genera with remarkable ecological, anatomical, and behavioral diversity.  As such, this 

group of riverine Neotropical cichlids offers a unique opportunity for studying 

evolutionary processes and the origin of diversity in freshwater tropical fishes.  The 

fundamental goal of this dissertation was to produce a sound phylogenetic hypothesis of 

geophagine relationships, and to this end, I used a total-evidence approach combining 

molecular and morphological data.  Additionally, aspects of geophagine molecular 

evolution and generalities of the clade’s evolutionary process were analyzed.  The 

resulting total-evidence parsimony tree is the best estimate of geophagine relationships 

to date.  Analysis of evolutionary patterns also supports monophyly of the subfamily 

Geophaginae and reveals a rapid diversification, providing further evidence for an 

adaptive radiation.  The main findings of this study are summarized in the following 

paragraphs.  Each section offers a brief discussion of remaining aspects on which 

research should focus in the future. 

 

PHYLOGENETIC RELATIONSHIPS 

 

DNA sequences of the mitochondrial ND4 and the nuclear RAG2 genes were 

analyzed separately, in combination, and as part of a super-matrix in which they were 

combined with published sequences of the mitochondrial 16S and cytochrome b genes, 

the microsatellite flanking region Tmo-M27, and the nuclear fragment Tmo-4C4.  

Molecular data were analyzed alone and in combination with a morphological matrix of 

136 external and osteological characters.  Molecular and morphological data were 

collected for 38 species of Neotropical cichlids from all major lineages, and included 16 

of 18 genera and 30 species of Geophaginae, representing the largest and best 
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taxonomically sampled phylogenetic analysis of the group to date.  All molecular, 

morphological, and total-evidence phylogenetic analyses performed in this study found 

the subfamily Geophaginae to be monophyletic.  The generic composition and internal 

relationships within the subfamily differ from that proposed by Kullander (1998) based 

on morphological analysis.  Resolution of relationships within the clade significantly 

expands the results of previous molecular and total-evidence studies by Farias et al. 

(2000, 1999, 2001) due to the expanded dataset and improved taxon sampling. 

Parsimony analysis of the combined molecular and morphological data produced 

the most resolved and best supported topology (Figure 4.4), recovering relationships not 

found by analyses of the separate datasets.  Although support for basal nodes is often 

low, this phylogeny is, for the time being, the best estimate of geophagine relationships.  

In this tree, a strongly supported, monophyletic Geophaginae includes two large clades, 

each in turn including two sister, multi-genus lineages.  The first clade contains the tribe 

Acarichthyini (Kullander 1998), formed by the genera Acarichthys and Guianacara.  

The Acarichthyini is sister to the “Big clade,” in which the “Geophagus clade” (genera 

Gymnogeophagus, ‘Geophagus’ steindachneri, Geophagus sensu stricto) is sister to the 

“Mikrogeophagus clade” (‘Geophagus’ brasiliensis, Mikrogeophagus), and both are 

sister to a monophyletic group including the crenicarine clade (Dicrossus, Crenicara) 

and Biotodoma.  The second large clade within Geophaginae includes the “Satanoperca” 

and “Crenicichla” clades; in the former, Taeniacara is sister to Apistogramma 

(including Apistogrammoides) and both are sister to Satanoperca; in the latter, 

Crenicichla and Biotoecus are sister to each other. 

The phylogeny coincides with Kullander’s (1998) and some of Farias et al.’s 

(1999, 2000) analyses in recovering a monophyletic tribe Acarichthyini, which was 

supported by both morphological and molecular synapomorphies.  Other aspects of the 

tree differ from previous hypotheses.  The best supported is the inclusion of Crenicichla 

within Geophaginae, a relationship previously found through molecular analysis, but 

never on the basis of morphological characters.  In this analysis, both molecular and 

morphological datasets unambiguously place Crenicichla among the geophagines.  By 
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implication, the genus Teleocichla is also included within Geophaginae, as its sister 

relationship to Crenicichla is well established on both molecular and morphological 

evidence.  The relationship of Biotoecus and Crenicichla, supported by three 

unambiguous morphological synapomorphies, also was reported here for the first time.  

The remaining inter-generic relationships were not proposed before, and resulted from 

the increased taxon sampling in comparison to previous analyses.  Despite low support 

(Figure 4.4.), the “Big clade” was consistently recovered by several analyses (see 

chapters III and IV), and its monophyly seems apparent, if not by support, at least by a 

criterion of repeatability (Chen et al. 2003).  Within the “Big clade,” the existence of 

three groups seems clear, but support for relationships among them is far from strong.  

The sister relationship of Crenicara and Dicrossus is well supported; the genus 

Mazarunia likely belongs in this clade, as its close relationship to both Dicrossus and 

Crenicara is well established (Kullander 1990).  The sister relationship of the 

crenicarine clade to Biotodoma is weakly supported, and further analysis is be needed to 

confirm the position of that genus.  The “Geophagus” and “Mikrogeophagus” clades 

also were repeatedly recovered.  Despite low support, their consistent recovery suggests 

a monophyletic relationship, but this conclusion is more tentative.  Relationships within 

the “Satanoperca clade” are among the best supported within Geophaginae, and the 

clade was recovered by all molecular and total evidence analyses.  The sister-group 

relationship between the “Crenicichla” and “Satanoperca” clades is weakly supported, 

and the alternative arrangement as sister to the “Big clade” found by the Bayesian 

analysis (Figure 4.3) should not be discarded until an enlarged dataset is analyzed.  In 

conclusion, relationships within Geophaginae are completely resolved by analysis of the 

present dataset, but basal relationships are less strongly supported.  Complete resolution 

and high support for all basal nodes may not be attainable, due to the fast diversification 

process associated with an adaptive radiation at the base of the tree.  Only a small 

amount of informative characters is available to resolve basal relationships, suggesting a 

low rate of character fixation during the diversification events at the base of the 

geophagine radiation.  Further analysis, using both an enlarged dataset that includes 
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slow-evolving genes, informative at the base of the tree, and improved taxon sampling, 

is recommended. 

 

TAXONOMIC IMPLICATIONS 

 

Three new species of Geophagus sensu stricto were described from the Orinoco 

and Casiquiare drainages of Venezuela (Chapter II, López-Fernández and Taphorn 

2004), raising the total number of species in the genus to 14.  Although not explicitly 

stated in chapter II, the descriptions attempted to summarize current knowledge about 

the taxa.  I believe that alpha-level taxonomic work is necessary for rapid and accurate 

identification of specimens, detecting lacunae of information about taxa, and the 

establishment of a starting point for studies of systematics, ecology, evolutionary 

biology, or biogeography (see also López-Fernández and Winemiller 2000, 2003).  To 

this end, a series of steps were taken to describe the species.  1) As far as possible, 

descriptions included external morphological characters previously coded for use in 

phylogenetic analysis of geophagines (see Chapter IV and Appendix III).  This approach 

allows ready expansion of the available phylogenetic matrix by standardizing characters 

used to describe new taxa.  2) Diagnoses of new species were complemented with 

illustrations of relevant diagnostic characters for all taxa in the genus, and keys were 

provided for all Venezuelan taxa.  Ideally, this should be done for all taxa in the genus, 

but it was evident that such characters are not available from the scarce literature, and 

specimens of all species were not available for comparison.  3) Nomenclature for 

diagnostic characters was standardized with respect to previous studies or created when 

necessary.  This is intended to create a standard for future taxonomic work, such that 

studies can be more easily integrated when expanding phylogenetic datasets and 

identification keys.  4) A summary of available information on geographic distribution 

was given in the form of maps complemented with lists of museum lots examined, to 

facilitate re-examination of collection material.  5) Finally, in a more informal way, all 
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available ecological and reproductive information was provided in the specific 

descriptions and in the discussion. 

Above the species level, the phylogeny resulting from this study has some 

significant implications for the taxonomy of Geophaginae.  At the broadest level, the 

inclusion of the genera Crenicichla and Teleocichla confirms Farias et al.’s findings 

(1999, 2000, 2001) and elevates the number of valid geophagine genera to 18 (but see 

below).  The inclusion of Crenicichla within Geophaginae implies that Kullander’s 

(1998) subfamily Cichlinae (Cichla, Crenicichla, and Teleocichla) is not a valid taxon, 

and the phylogenetic position of Cichla with respect to other Neotropical taxa remains 

unresolved (but see Farias et al. 2000, 2001; Stiassny 1987, 1991).  Within Geophaginae, 

the tribe Acarichthyini (Kullander 1998) was relatively well supported, but the 

remainder of Kullander’s geophagine classification is at odds with the phylogeny.  The 

nesting of the crenicarine clade (Crenicara and Dicrossus) within the “Big clade” 

renders Kullander’s tribes Crenicaratini and Geophagini paraphyletic.  Paraphyly of 

these taxa was further indicated by the grouping of Biotoecus (formerly part of the 

Crenicaratini) with Crenicichla, and by the association of Satanoperca and 

Apistogramma outside of the “Big clade” (but see Figure 4.3 for an alternative 

arrangement).  Finally, Apistogrammoides pucallpaensis was nested within 

Apistogramma in all phylogenetic analysis, indicating that the monotypic 

Apistogrammoides Meinken 1965 should be considered a junior synonym of 

Apistogramma Regan 1913.  Other than including Crenicichla and Teleocichla in 

Geophaginae, recognizing the paraphyly of the Cichlinae, and synonymizing 

Apistogrammoides, it seems the most cautious course of action to wait until a more 

strongly supported phylogenetic hypothesis is available before proposing a new 

classification of Geophaginae. 
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CHARACTER CONGRUENCE AND MOLECULAR EVOLUTION 

 

Character congruence among molecular and morphological partitions under total-

evidence was examined in both parsimony and Bayesian topologies.  The addition of 

morphology improved overall resolution and support for the phylogeny.  When analyzed 

alone, the morphological dataset produced a topology significantly different from the 

molecular or total-evidence topologies.  Disagreement was attributed to extensive 

morphological convergence among taxa that have undergone body-size reduction.  When 

morphology was analyzed in the broader context of total-evidence, underlying homology 

emerged and the combined analysis produced the most resolved and supported topology. 

The cytochrome b partition was found to be incongruent with all other partitions 

in the total-evidence analysis.  Removal of this part of the molecular data did not change 

the parsimony topology, but increased support for several of its nodes.  On the other 

hand, removal of cytochrome b data caused the Bayesian total-evidence tree to shift 

towards the parsimony topology.  Convergence of the Bayesian tree towards the 

parsimony hypothesis suggests that cytochrome b contains significant homoplasy.  

Because Bayesian analysis uses all characters for topology reconstruction (Lewis 2001; 

Felsenstein 2004), homoplasy has a disproportionate effect on the result.  Yet, parsimony 

accounts only for synapomorphic characters, thus downplaying the effect of homoplasy 

on the final topology.  The cytochrome b partition has a large amount of missing data, 

thus it is not possible to know if incongruence is caused by the absence of characters or 

if it is due to some peculiarity associated with the evolution of this mitochondrial gene.  

Consideration of the above factors determined the provisional acceptance of the 

parsimony topology as the best estimate of geophagine phylogeny; additionally, 

Bayesian posterior probabilities are known to overestimate phylogenetic support, thus 

the parsimony topology provided a more conservative hypothesis of relationships. 

Expanding on the results of Farias et al. (1999, 2000), Geophaginae were found 

to evolve significantly faster than other Neotropical cichlids.  It also was found that rate 

heterogeneity within the group is extensive among and within genera, and among genes.  
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The fastest rates of evolution for the mitochondrial gene ND4 were found in Crenicichla 

and Taeniacara, but Apistogramma rates were fastest in the nuclear gene RAG2.  ND4 

was more extensively heterogeneous than RAG2, although some genera presented either 

significantly accelerated or decelerated rates of evolution in both genes.  Statistical 

analysis of branch lengths under several models of molecular evolution showed that 

internal (basal) branches are, for the most part, not significantly different from zero.  

These results partially explain the weak support found for most basal branches, as they 

indicate that phylogenetic information associated with the base of the tree is scarce; they 

also are indicative of fast divergence of geophagine genera from their common ancestor. 

 

ADAPTIVE RADIATION AND FUTURE RESEARCH 

 

Short branches at the base of a phylogenetic tree may either result from lack of 

data or reflect rapid differentiation with reduced fixation of characters.  The dataset from 

which the geophagine phylogeny was derived included 136 morphological characters 

and DNA sequences from five loci it is unlikely that a lack of data is the cause of short 

basal branches.  Instead, the results suggest that Geophaginae radiated rapidly with 

limited character fixation during their initial burst of diversity, resulting in a phylogeny 

inherently difficult to recover due to scarcity of synapomorphies at the base of the tree.  

Origin of the geophagine genera is likely the result of adaptive radiation into unoccupied 

ecological space.  Sudden ecological opportunity may appear through (1) development 

of novel phenotypic characters that open ecological niches previously unoccupied, (2) 

through the creation of new, ecologically unexploited habitat, or (3) a combination of 

these and other factors (see Schluter 2000).  Geophagine cichlids fulfill the phylogenetic 

requirements of Schluter’s (2000) definition of adaptive radiation, i.e. monophyly and 

rapid divergence.  Future studies into geophagine evolution must address whether the 

diverse ecomorphological, life history, and behavioral traits of geophagine cichlids 

fulfill the requisites of correlation with the environment and of having adaptive value.  A 

research program should focus on using the phylogeny as the appropriate evolutionary 
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context for discerning the historical circumstances and evolutionary trajectories of 

geophagine adaptive radiation. 

The establishment of divergence dates for nodes in the phylogeny should provide 

a temporal anchor to place the geophagine radiation in the complex geological and 

hydrological history of South America (e.g. Lundberg et al. 1998).  This task constitutes 

a significant challenge due to the pervasive heterogeneity of rates of molecular 

evolution, which complicates accurate estimation of divergence times based on 

molecular clocks (e.g. Kumar and Hedges 1998; Bromham et al. 2000).  Additionally, 

the fossil record for cichlids in general and Neotropical clades in particular is scarce and 

poorly dated (Woodward 1898, 1939; Cockerell 1923; Schaeffer 1947; Bardack 1961; 

Casciotta and Arratia 1993), making it difficult to establish reliable calibration points for 

a molecular clock.  Studies of evolutionary patterns in morphology and ecology probably 

hold the most promising prospects for future research.  Ecological traits associated with 

feeding, habitat use, and life histories are remarkably diverse, and each of these elements 

of geophagine biology offers a distinct avenue for comparative research on geophagine 

evolution.  Many geophagine cichlids feed by some form of substrate sifting to retain 

benthic invertebrates that constitute their diet.  This pattern of feeding varies across 

genera, however, and some taxa are invertebrate pickers or piscivores.  Although most 

geophagines inhabit clear or black waters with slow currents, habitats range from 

shallow, lentic waters with varying degrees of structural complexity to reophilic 

conditions.  The generalized equilibrium life-history strategy of cichlids (Winemiller and 

Taphorn 1989; Winemiller and Rose 1993) underwent several modifications in 

geophagines, with reproductive modes approaching the versatility of those seen in 

cichlids from the African Great Lakes.  Many communities harbor several genera and 

species of geophagine cichlids that reveal patterns of resource partitioning and niche 

differentiation.  The origin of geophagine ecological diversity and the environmental 

conditions associated with its appearance are one of the most interesting aspects in the 

evolution of these cichlids.  A great deal is known about functional morphology of 

cichlids and related fishes, particularly with regard to feeding (e.g. Barel 1983; 
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Wainwright 1988; Drucker and Jensen 1991) and locomotion.  This knowledge provides 

a platform to develop better understanding of geophagine biomechanics and 

ecomorphological patterns of resource use in the wild (e.g. Winemiller 1989, 1991; 

Winemiller et al. 1995).  Studies of biomechanics and functional morphology should be 

used to establish the adaptive value of morphological traits associated with feeding and 

habitat use (e.g. Wainwright 1987, 1994; Winemiller 1991; Westneat 1995, 1997).  

Phylogeny-based comparative methods should be used to remove similarity due to 

phylogenetic relatedness from studies of ecomorphological patterns.  Covariation of 

ecological, behavioral, and morphological traits independently from phylogeny should 

indicate which character associations are adaptive and not simply ancestral traits (e.g. 

Felsenstein 1985; Coddington 1988; Harvey and Pagel 1991).  Ecomorphological 

studies, of both geophagine taxa and fish communities, including geophagines, should 

clarify the ecological role of geophagine cichlids in the communities of which they are 

part.  Furthermore, ecomorphological studies should elucidate mechanisms of resource 

partitioning and the basis of coexistence of syntopic geophagine genera and species in 

riverine environments of South America.  Study of Geophaginae offers an exceptional 

opportunity to study adaptive radiation in riverine cichlids, and a unique view into the 

evolution of one of the most successful and diverse groups of vertebrates. 
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APPENDIX I 

CATALOGUE NUMBERS FOR DISTRIBUTION MAPS 
 
Catalogue numbers from MCNG used to draw the distribution maps in Figures 2.9 and 
2.13.  Details on each locality are given with each species description and/or are 
available at the Neodat project website (http://www.neodat.org). 
 
Geophagus abalios.  MCNG 6111, 6660, 7023, 7681, 7827, 9390, 10118, 10195, 11413, 
12359, 13220, 15892, 15979, 18643, 18652, 18684, 18734, 18767, 20060, 20238, 
20300, 20631, 24241, 24303, 24757, 25952, 27197, 27962, 28076, 28081, 28139, 
28158, 29781, 29866, 29880, 29939, 29959, 29987, 30680, 30714, 30728, 30745, 
30769, 30801, 30855, 30882, 30921, 30939, 31010, 31018, 31027, 31061, 31073, 
31096, 31182, 31221, 31231, 31255, 31288, 31326, 31342, 31349, 31364, 31366, 
32668, 32682, 32836, 33153, 33157, 33173, 33197, 33211, 33269, 33851, 33976, 
35209, 36769, 37650, 38232, 38317, 38707, 38735, 40385, 40591, 40878, 40976, 
41368, 43979, 44865, 44866, 43825, 45028, 45029, 45034, 45040, 44690.  Geophagus 
dicrozoster.  6219, 6278, 12135, 16388, 18156, 20143, 20191, 21422, 21598, 21599, 
21783, 22013, 22300, 22356, 22460, 22874, 22904, 23012, 23750, 24387, 25902, 
26343, 26454,  27130,  27792,  29582,  29714,  30010,  30020,  30040,  30045,  30054,  
30062,  30462,  36629,  36682,  36770,  36790,  36808,  37858,  37975,  8225,  38423,  
38503,  38785,  39240,  39271,  39334,  39355,  39364,  39406,  39531,  39545,  39550,  
39572,  39591,  39613,  39633,  39671,  39692,  39735,  39777,  39822,  39853,  39872,  
39910,  39924,  39952,  40007,  40022,  40068,  40219,  40343,  40383,  40414,  40453,  
40482,  40776,  40815,  40839,  41019,  41111,  41124,  41127,  41145,  41151,  41158,  
41170,  41176,  41208,  41226,  41284,  41318,  41352,  41363,  41384,  41389,  41422,  
41428,  41442,  41445,  41487,  41502,  41533,  41565,  41668,  42424,  44862,  44863,  
44864,  44589,  44600,  44607,  44612,  45030,  45033,  45035,  45037,  45039,  44699,  
44762,  44773.  Geophagus winemilleri.  12227,  12301,  35486,  37858,  42016,  
42386.  Geophagus brachybranchus.  1023, 13542, 16506, 29535, 45103.   Geophagus 
grammepareius. 17247, 18096, 18183, 18243, 18263, 18296, 18310, 18318, 18349, 
18407, 18408, 18553, 18571, 18598, 18755, 18792, 18921, 18922, 18943, 18945, 
19330, 19476, 25480, 34396, 34413, 47545.  Geophagus taeniopareius. 7631, 12461, 
12541, 16389, 17719, 21512, 21603, 22168, 22367, 22428, 22459, 22506, 22509, 
22578, 22723, 22875, 23013, 23199, 24304, 24397, 25700, 27168, 28862, 34814, 
38523, 46033, 46395, 46420, 46467, 46521, 46543. 
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APPENDIX II 
 

DESCRIPTION OF MORPHOLOGICAL CHARACTERS 
 

References to the original papers where the characters were proposed are given 
when appropriate.  To the best of our knowledge, characters without bibliographic 
reference are proposed here for the first time in a phylogenetic context.  Numbers in 
brackets correspond to character states used in this paper.  Refer to Appendix III for the 
coded matrix of characters states in the 38 taxa included in this study. 
 
SQUAMATION PATTERNS 
 
1 Operculum squamation (Lippitsch 1993: Ch. 1).  Fully scaled [0], Kullander (1986: 
190, Fig. 65); partially scaled [1].  State 1 does not include the naked “opercular spot” 
(Lippitsch 1993), which is characteristic of most African cichlids (Stiassny 1991), and 
was not observed in the taxa studied. 
   
2 Opercular scales (Lippitsch 1993: Ch. 2, modified).  Cycloid [0]; ctenoid [1].  Degrees 
of ctenoidi were considered as different character states by Lippitsch (1993); because we 
were unable to establish clear limits between degrees of ctenoidi, we have preferred to 
code the character as binary. 
 
3 Subopercule squamation (Lippitsch 1993: Ch. 4).  Fully scaled [0], Lippitsch (1993: 
912, Fig. 2a); caudo-ventral rim naked [1], Lippitsch (1993: 912, Fig. 2a).  State 1 
restricted to cases in which the space left between the outermost row of scales and the 
edge of the subopercle is wide enough to contain another row of scales. 
 
4 Subopercule scales (Lippitsch 1993: Ch. 5, modified as Ch. 2).  Cycloid [0]; ctenoid 
[1].  
 
5 Interopercule squamation (Lippitsch 1993: Ch. 6).  Caudo-dorsally scaled [0]; 
caudally scaled [1], Lippitsch (1993: 913, Fig. 3b); fully scaled [2], Lippitsch (1993: 
913, Fig. 3a); scaleless [3].   
 
6 Interopercule scales (Lippitsch 1993: Ch. 7, modified as Ch. 2).  Cycloid [0]; ctenoid 
[1].  
 
7 Cheek squamation (Lippitsch 1993: Ch. 10).  Fully scaled [0], Kullander (1986: 196, 
Fig. 68); rostral half naked [1]; rostro-ventrally naked [2], Kullander (1986: 130, Fig. 
35); rostrally naked [3]; ventrally naked [4]; scaleless [5].  A rostral half naked (state 1) 
implies a straight, almost vertical line separating the caudal, scaled region from the 
rostral naked area.  A rostrally naked cheek (state 3) lacks scales in the rostral-most 
portion of the cheek, but the naked area never reaches as much as half of the cheek, and 
the line separating the scaled from the naked portion is of irregular shape.  A fully scaled 
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cheek was considered the plesiomorphic state based on Astronotus and two of the three 
species of Cichla. 
 
8 Cheek scales (Lippitsch 1993: Ch. 11. modified as Ch. 2). Cycloid [0]; Ctenoid [1].  
 
9 Postorbital squamation (Lippitsch 1993: Ch. 12).  Single column [0], Lippitsch (1993: 
915, Fig. 5a); more than 2 columns [1]; 2 columns [2] Lippitsch (1993: 915, Fig. 5b).  
Character restricted to scales immediately behind the orbit.  The outgroup is highly 
variable, the plesiomorphic state was defined based on Lippitsch (1995). 
  
10 Postorbital scales.  Cycloid [0]; Ctenoid [1].  
 
11 Size of occipital scales compared to dorsal scales (Lippitsch 1993: Ch. 17, modified).  
Smaller [0]; equal [1].  Dorsal scales refer to scales above the upper lateral line (ULL).  
Lippitsch’s character was multistate, but we could not distinguish between her “not 
significant, significant, and extremely small scales”. 
 
12 Dorsal scales (Lippitsch 1993: Ch. 20, modified as Ch. 2).  Cycloid [0]; ctenoid [1].  
Polarity based on Astronotus and on basal cichlids and most labroids (Lippitsch, 1995).   
 
13 Flank scales (Lippitsch 1993: Ch. 25).  Circular [0]; ovoid, long axis vertical [1]; 
ovoid, long axis horizontal [2].  Evaluated on scales below the ULL and behind the 
caudal edge of the pectoral fin.  
 
14 Lower median of caudal peduncle squamation (Lippitsch 1993: Ch. 41).  3 rows [0]; 
2 rows [1]; 4 rows [2]; 5 rows [3]; 6 rows [4]; 7 rows [5]; 8 rows [6]; 11 rows [7].  
Involves the number of scale rows between the lower lateral line (LLL, not included) 
and the row of scales posterior to the base of the anal fin (not included).  Because the 
character was polymorphic among outgroup taxa, polarity was based on the Malagasy 
cichlid Ptychochromis.  Cichlids from Madagascar are well established as the most basal 
members of the family (Stiassny 1991; Kullander 1998; Farias et al. 1999, 2000), and 
have been used before to determine plesiomorphic states (e.g. Lippitsch 1995).   
 
15 Scales on lateral chest  (Lippitsch 1993: Ch. 43, modified as Ch. 2).  Ctenoid [0]; 
cycloid [1]. The lateral chest area is located caudal to the gill cover, ventral to the 
insertion of the pectoral fin, and rostral to the imaginary line between the pectoral and 
pelvic fin insertions. 
 
16 Size of lateral chest scales compared to flank scales (Lippitsch 1993: Ch. 44, part, 
modified as Ch. 11).  Smaller [0], Greenwood (1979: 271, Fig. 1); equal [1], Greenwood 
(1979: 272, Fig. 2).   
 
17 Juxtaposition pattern of lateral chest scales (Lippitsch 1993: Ch. 44, part).  
Imbricating [0]; not imbricating [1]. 
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18 Transition from chest to flank scales (Lippitsch 1993: Ch. 45).  Gradual [0]; abrupt 
[1], Greenwood (1979: 272, Fig. 2).  A gradual transition implies that scales in the chest 
and flank are the same size, or that change in size occurs across several rows of scales.  
An abrupt change implies two rows of differently sized scales lying next to each other, 
see also Lippitsch (1990: 280).  
 
19 Ventral chest squamation (Lippitsch 1993: Ch. 46). Fully scaled [0]; scaleless [1].  
Involves the area between the insertion of the pelvic fins and the ventral margin of the 
branchiostegal membrane. 
 
20 Chest scales (Lippitsch 1993: Ch. 47, modified as Ch. 2). Cycloid [0]; Ctenoid [1].  
21  Size of ventral chest scales compared to lateral chest scales (48).  Smaller [0]; equal 
[1].  In state 0, ventral scales are less than half the size of the lateral chest scales.  
 
22 Juxtaposition pattern of ventral chest scales (Lippitsch 1993: Ch. 48). Imbricating 
[0]; not imbricating [1].   
 
23 Transition from ventral to lateral chest scales (Lippitsch 1993: Ch. 49).  Gradual [0]; 
abrupt [1].  Evaluated as character 18.   
 
24 Squamation between pelvic fins (Lippitsch 1993: Ch. 51).  Irregular [0]; biserial [1]; 
uniserial [2].  Interpreted from Lippitsch (1993: 915) as the number of scale rows 
between the insertion of the pelvic fins.  Irregular arrangement involves a variable 
number of scales not arranged in a clear pattern, usually with several scales between the 
pelvics.  Uniserial and biserial involve one or two rows of scales between the pelvic fins, 
respectively. 
 
25 Large interpelvic scale (Lippitsch 1993: Ch. 52).  Absent [0]; present [1]. 
 
26  Scales on belly (Lippitsch 1993: Ch. 54, modified as Ch. 2).  Ctenoid [0]; cycloid [1].  
Involves the area caudal to the base of the pelvic fins and rostral to the anus. 
 
27 Size of belly scales compared to flank scales (Lippitsch 1993: Ch. 55).  Smaller [0]; 
equal [1].  Evaluated as character 16. 
 
28 Transition from belly to flank scales (Lippitsch 1993: Ch. 56).  Gradual [0]; abrupt 
[1].  Evaluated as character 18.   
 
29 Scales on anal-genital region (Lippitsch 1993: Ch. 58, modified as Ch. 2).  Ctenoid 
[0]; cycloid [1].  See comments on character 2.  Restricted to scales immediately 
surrounding the anus and the urogenital papilla.   
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30 Caudal fin squamation (Lippitsch 1993: Ch. 65).  Fully scaled [0]; partially scaled 
[1]. 
 
31 Scales on caudal fin (Lippitsch 1993: Ch. 66, modified as Ch. 2).  Cycloid [0]; 
Ctenoid [1]. 
 
32 Pattern of caudal fin squamation (Lippitsch 1993: Ch. 67, modified).  Rays densely 
covered [0]; single rows on inter-radial membranes [1]; staggered rows on inter-radial 
membranes [2].   
 
33 Squamation of pectoral fin (Lippitsch 1993: Ch. 73).  Scaleless [0]; partially scaled 
[1].  Polarity based on Astronotus, Cichla intermedia, and Lippitsch (1993). 
  
34 Squamation of dorsal fin (Lippitsch 1993: Ch. 60, part, modified as Ch. 11).  Scaled 
[0]; scaleless [1].  
 
35 Scaled portion of dorsal fin (Lippitsch 1993: Ch. 60, part).  Soft portion only [0]; 
both soft and spinous portions [1]. Characters 35 to 37 are inapplicable for taxa with 
naked dorsal fin. 
 
36 Scales on dorsal fin (Lippitsch 1993: Ch. 61, modified as Ch. 2).  Ctenoid [0], cycloid 
[1]. 
 
37 Squamation pattern of dorsal fin (Lippitsch 1993: Ch. 62).  Double or multiple rows 
on inter-radial membranes [0]; single rows on inter-radial membranes [1]. 
 
38 Squamation pattern on base of dorsal fin (Lippitsch 1993: Ch. 63).  With scaly pad 
[0]; without pad or sheath [1], (Kullander et al. 1992: 363, Fig. 2); with vestigial sheath 
[2]; with well developed sheath [3], (Kullander et al. 1992: 363, Fig. 2).  In our 
interpretation of Lippitsch (1993) character, a scaly pad refers to a distinct area at the 
base of the dorsal fin, with scales smaller than those on the flanks.  Contrary to a sheath, 
the pad does not cover any portion of the fin. 
 
39 Scales on pad or sheath of dorsal fin (Lippitsch 1993: Ch. 64, modified as Ch. 2).  
Ctenoid [0]; cycloid [1]. 
 
40 Squamation of anal fin (Lippitsch 1993: Ch. 68, part).  Scaled [0]; scaleless [1]. 
 
41 Scaled portion of anal fin (Lippitsch 1993: Ch. 68, part).  Soft portion only [1]; both 
soft and spiny portions [1].  Characters 41 to 43 inapplicable for taxa with naked anal 
fin. Polarity based on Astronotus. 
 
42 Scales on anal fin (Lippitsch 1993: Ch. 69, modified as Ch. 2).  Ctenoid [0]; cycloid 
[1]. 
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43 Squamation pattern of anal fin (Lippitsch 1993: Ch. 70).  Multiple rows on inter-
radial membranes [0]; single rows on inter-radial membranes [1]. 
 
44 Squamation pattern on base of anal fin (Lippitsch 1993: Ch. 71).  With scaly pad [0]; 
without pad or sheath [1]; with vestigial sheath [2]; with well developed sheath [3]. 
 
45 Scales on pad or sheath of anal fin (Lippitsch 1993: Ch. 72, modified as Ch. 2).  
Cycloid [0]; Ctenoid [1]. 
 
DERMAL BONES 
 
46 Preopercular edge.  Smooth [0]; serrated [1].  Serration of dermal bones has been 
used as a taxonomic character (e.g. Kullander 1980, 1990; Kullander & Staeck 1990), 
but not used in phylogenetic analysis (but see Kullander 1990). 
 
47 Supracleithral edge.  Smooth [0]; serrated [1]. 
 
48 Post-temporal edge.  Smooth [0]; serrated [1]. 
 
LIPS 
 
49 Lower lip fold at the symphyseal zone.  Discontinuous [0]; continuous [1]. 
 
50 Type of lip fold (Stiassny 1987). [0] Type I, African; [1] type II, American.  See also 
Kullander (1983, 1986). 
 
LATERAL LINE SYSTEM AND ASSOCIATED SQUAMATION 
 
51, 52, 53, 54 Opening of the frontal pores.  Multiple [0]; single [1].  The opening of the 
frontal pores NLF0 (50), NLF1 (51), NLF2 (52) and NLF3 (53) (see Barel et al. 1977: 
91, Fig. 8) at the skin surface can have single or multiple openings.  Generally, the four 
openings share the same state, except in Biotodoma, Gymnogeophagus and Cichlasoma, 
which suggest there is independence between pores. 
 
55 Number of preopercular lateralis canal foramina (Stiassny 1987; 1991: Ch. 17). [0] 
7; [1] 6; [2] 5.  See also Kullander (1998: Ch. 47). 
 
56 Number of lateralis canals on the dentary (Casciotta and Arratia 1993a: Ch. 15).  [0] 
5; [1] 4.  See also Kullander (1983: Ch, 3; 1998, Ch. 45, 46). 
 
57 Trunk canal pattern of the lateral line.  D4 [0]; D1 [1]; D2 [2]; D3 [3]; D8 [4]; D8.5 
[5]; D9 [6]; continuous lateral line [7].  Characters 54 to 59 refer to the original analysis 
of lateral line configuration and ontogeny of Webb (1990: 412-413, Fig. 4 and Table 1) 
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and are explained in detail in that paper.  Condition D8.5 (State 5) is described from 
Apistogrammoides pucallpaensis; it consists of a lower lateral line with pored scales as 
in Webb’s condition D9, and an upper lateral line with only a few tubed scales rostrally 
as in Webb’s condition D8.  The continuous lateral line condition (State 7) has been 
amply discussed regarding the phylogenetic position of Cichla (Stiassny 1981, 1987, 
1991); we have considered it autapomorphic, regardless of whether it has truly arisen de 
novo, or is an atavistic expression of a basal percomorph condition (Stiassny 1992).   
 
58 Number of overlapping tubed scales.  4 or less [0]; 7 or more [1].  Overlapping refers 
to scales in the ULL and LLL that are located in the same column.  Scales are normally 
not arranged in straight columns, but forming a zigzag pattern.  Scales were considered 
to be in the same column when located in the same dorso-ventral zigzagging line. 
 
59 Number of ULL pitted scales caudally from last tubed ULL scale.  7 or less [0]; 15 or 
more [1].  Scale types were evaluated following descriptions in Webb (1990: 409). 
 
60 Number of scale rows between ULL and LLL.  2 or 3 [0]; 4 or 5 [1].  Although there 
is no apparent discontinuity between the two states, we did not find any taxon with an 
intermediate condition.  Specimens of some species may have 2 or 3 (Retroculus), or 4 
or 5 rows of scales (Cichla intermedia), but we did not find any taxon with 3 or 4 rows. 
 
61 Number of scale rows between ULL and dorsal origin.  6-7 rows [0]; 1 row [1]; 2 
rows [2]; 3 rows [3]; 4 rows [4]; 5 rows [5]; 8-11 rows [6]; 12 rows [7]; 14 rows [8]; 18 
rows [9].  See comments on character 57.  States including a range of counts represent 
taxa with individuals presenting any of the numbers included in the range; states with a 
single number of scales rows represent taxa in which we did not observe individual 
variation. 
 
62 Number of scale rows between last ULL tubed scale and base of the dorsal fin.  2-5 
rows [0], 0.5 rows [1], 1 row [2], 11 or more [3].  See comments on character 58.  A 0.5 
row is determined by the presence of a single scale approximately half the size of a 
normal flank scale.  
 
63 Dorsal caudal ramus (Kullander 1998: Ch. 78).  Absent [0]; present between caudal 
rays D3 and D4 [1]; present between caudal rays D2 and D3 [2]. 
 
64 Ventral caudal ramus.  Present between caudal rays V4 and V5 [0]; present between 
caudal rays V3 and V4 [1]; absent [2]. 
 
COLOR PATTERN 
 
65 Caudal spot (Kullander 1998: Ch. 88, part).  Present [0]; absent [1].  Involves a dark 
mark, ocellated or not, on the base of the caudal peduncle.  Characters 63 and 64 
inapplicable if caudal spot is absent. 

 



 148

 
66 Caudal spot position.  Dorsal [0]; medial [1]. 
 
67 Caudal spot type.  Ocellus [0]; blotch [1]; Dicrossus band [2].  The “Dicrossus band” 
refers to a single, faint, vertical band only present in Dicrossus and Biotoecus.   
 
68 Dorsal spot.  Absent [0]; present [1].  The so-called “Tilapia spot” (Trewavas 1983 in 
Kullander 1998); among Neotropical taxa, an equivalent dark blotch at the base of the 
soft portion of the dorsal fin is found only in Retroculus.  Kullander indicates its 
presence in Heros (Kullander 1998) and we have observed a comparable character in 
some specimens of Hoplarchus and Mikrogeophagus altispinosus.  It is difficult to 
ascertain whether the spot observed in these derived Neotropical taxa is homologous 
with the dorsal spot found in many African and Madagascan taxa. 
 
69 Suborbital stripe.  Absent [0]; complete, extending from the lower edge of the orbit to 
the interopercule [1]; from the lower edge of the orbit to the preopercule (inclusive) [2]; 
limited to the cheek [3]; limited to the preopercule [4]; complete except for the 
preopercule [5]. 
 
70 Supraorbital stripe.  Absent [0]; directed caudad [1]; directed rostrad  [2]. 
 
71 Postorbital stripe.  Absent [0]; present [1]; present, Dicrossus type [2].  The 
“Dicrossus type” consists of an isosceles triangular shaped blotch with its base on the 
caudal edge of the orbit and its tip pointing caudad. 
 
72 Preorbital stripe (Kullander 1998: Ch. 89, modified).  Absent [0]; present, 
Apistogramma type [1]; present, Dicrossus type [2].  The Apistogramma stripe is thin, 
dark with smooth or irregular edges, directed rostrally but slightly inclined ventrally; the 
Dicrossus stripe is broad, sharp-edged and directed rostrally. 
 
73 Lateral band.  Present [0]; absent [1].  A lateral band is a more or less 
distinguishable, frequently spotted, dark band running from behind the opercle to the 
base of the caudal fin; it is sometimes continued on the head by the postorbital and 
preorbital stripes.  Character evaluation in some taxa can be confounded by ontogenetic 
stage, for example, in Cichla, the band is present in juveniles, but disappears (C. 
orinocensis, C. temensis) or is modified (C. intermedia) in the adults.  We have coded 
Cichla based on adult specimens. 
 
74 Body bars.  Faint [0]; forming a spotted, interrupted midline [1]; camouflage-like [2]; 
barred [3]; forming a checkerboard pattern [4].  Most cichlids present a faint pattern of 
vertical bars on the flanks, and generally, the spots forming the lateral band coincide 
with the body bars.   
 
75 First dorsal ray membranes.  Immaculate [0]; black or dark colored [1]. 
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NEUROCRANIUM 
 
76 Presence of divergent frontal ridges anterior to NLF0 (Cichocki 1976: Ch. 3, 
modified).  Present [0]; absent [1].  See also Stiassny (1991:12-13) (Figure II.1).   
 
77 Presence of medial frontal crest.  Present [0]; absent [1].  (Figure II.1).   
 
78 Composition of the pharyngeal apophysis of the basicranium (Regan 1920).  
Consisting of parasphenoid only [0]; consisting of both the parasphenoid and the 
basioccipital [1].  See also Cichocki (1976: Ch. 6) and Kullander (1998: Ch. 28) for a 
discussion of the pharyngeal apophysis in Neotropical cichlids.   
 
79 Expansion of the dorsal parasphenoid wing (Kullander and Nijssen 1989).  Absent 
[0]; present [1].  Kullander & Nijssen (1989, Fig. 47) indicated that an expansion in both 
the parasphenoid wing and the basisphenoid were synapomorphic for Acarichthys and 
Guianacara (see also Kullander 1998: Ch. 36).  We found an expanded parasphenoid 
wing is common among geophagines, and not necessarily associated with a basisphenoid 
expansion (see character 5) (Figure II.1). 
 
80 Basisphenoid expansion.  Present [0]; absent [1].  Kullander and Nijssen (1989)  
(Figure II.1). 
 
81 Caudal expansion of the mesethmoid.  Absent [0]; present [1].  In lateral view, the 
mesethmoid covers less than 1/5 of the orbit diameter (e.g. Cichla, Retroculus); in the 
derived condition, it can cover up to ¼ of the total orbital diameter (Figure II.1). 
 
82 Sphenotic foramen and canal, borne on the anterodorsal region of the expanded 
postorbital process of the neurocranium (Stiassny 1987, Fig. 6).  Absent [0]; present [1]. 
 
83 Opening of NLF4. Single pore [0]; 2 opposed pores at the end of the tubes formed by 
a broken canal [1]. (Figure II.1). 
 
84 Opening of NLF5.  Single pore [0]; double pore [1]; NLF5 absent [2].  (Figure II.1).   
 
85 Line of the sphenotic-pterotic canal.  [0] moderately angled (140-160 degrees); [1] 
sharply angled (120 degrees or less); [2] approximately straight (180 degrees) (Figure 
II.1). 
 
86 Suture between the vomerine wing and the parasphenoid bar (Stiassny 1991: Ch. 8, 
Fig. 1.12).  [0] interdigitating; [1] straight. 
 
87 Mesethmoid-Vomer interaction (Casciotta and Arratia 1993: Ch. 2). [0] sutured; [1] 
not sutured. 
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88 Shape of the rostral margin of the vomerine head (Stiassny 1987: Ch. 5, Fig. 5, 
modified).  [0] Ridged; [1] indented; [2] flat.  (Figure II.1). 
 
SUSPENSORIUM 
 
89 Foramen on the lateral face of the ascending process of the premaxilla (Cichocki 
1976: Ch. 15). [0] absent; [1] present. 
 
90 Development of the dermal splint of the palatine shaft (Kullander 1998: Ch. 50).  [0] 
Long, largely contiguous with the rostral edge of the ectopterygoid; [1] Short, reaching 
the ectopterygoid, but not contiguous with it; [2] Absent, the caudal end of the palatine is 
lined across the ectopterygoid.  (Figure II.2). 
  
91 Shape of the maxillary process of the palatine (Kullander 1998: Ch. 51).  [0] 
flattened dorsoventrally;  [1] cylindrical. 
 
92 Morphology of the posteroventral palatine laminar expansion (Cichocki 1976: Ch. 
20, modified). [0] narrow, thick, and largely contiguous with the anterodorsal margin of 
the endopterygoid; [1] approximately triangular, with a gap between the lamina and the 
anterodorsal edge of the endopterygoid; [2] well developed, largely contiguous with the 
anterodorsal margin of the endopterygoid; [3] thin and narrow, contiguity with the 
endopterygoid restricted to its extreme ventral margin or not contacting it at all; [4] 
lamina absent, the palatine and the endopterygoid are not contiguous.  (Figure II.2). 
 
93 Axial lateral palatine ridge (Cichocki 1976: Ch. 21, modified). [0] present; [1] absent. 
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FIG. II.1.  Semi-diagrammatic illustration of dorsal (left) and lateral (right) view of the neurocrania of a) Cichla intermedia (AMNH, 
Uncatalogued); b) Geophagus dicrozoster (MCNG 40623); c) Crenicichla af. lugubris (AMNH, Uncatalogued).  Scale bar = 5 mm.  
Abbreviations: Bph = basisphenoid; DFR = divergent frontal ridges;  FC = frontal crest; Meth = mesethmoid; NLF4-5 = neurocranial 
lateral line foramina; PphW = parasphenoid wing; Sph-Pt = sphenotic-pterotic canal; V = vomerine head. 
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94 Structure of the axial lateral palatine ridge. [0] single, reduced ridge separating the 
maxillary process of the palatine from the posteroventral expansion; [1] single, well 
developed ridge in the same position as in state 0; [2] bifurcated, well developed ridge 
with an axial arm as in states 0 and 1, and an additional maxillary or anteriorly directed 
ridge following the caudo-rostral direction of the maxillary process; [3] lack of medial 
ridge, but presence of a reduced ridge following the contour of the maxillary process. 
(Figure A.2). 
 
95 Suture between hyomandibular and metapterygoid (Oliver 1984: Ch. 24). [0] present; 
[1] absent.  See also Stiassny (1987, Fig. 7). 
  
96 Pointy extension in the anterodorsal corner of the interoperculum, in medial view.  
[0] absent; [1] present. 
 
PHARYNGEAL OSTEOLOGY 
 
97 Relative direction of the uncinate process of the first epibranchial in relation to the 
anterior arm (Cichocki 1976: Ch. 30, modified). [0] caudally directed; [1] approximately 
parallel.  See also Stiassny (1991: 26-27) and Kullander (1998: Ch. 3).   
 
98 Relative lengths of the anterior arm and uncinate process of first epibranchial (Oliver 
1984: Ch. 1). [0] approximately equal; [1] uncinate process longer than the anterior arm; 
[2] uncinate process shorter than anterior arm.  See also Oliver (1984: Ch. 9), Stiassny 
(1991: Ch. 1, 24) and Kullander (1998: Ch. 1). 
 
99 Deep indentation in the dorsal margin of the uncinate process of the first 
epibranchial (Kullander 1998: Ch. 3).  [0] Absent; [1] present.  Mentioned by Kullander 
(1998: Ch. 3, special condition of state 2) for Satanoperca, but he did not offer a detailed 
description.  We interpreted a fold, forming a sharp angle at the base of the uncinate 
process, as the indentation referred to by Kullander. 
 
100 Relative widths of the uncinate process and anterior arm of epibranchial 1 
(Kullander 1998: Ch. 4).  [0] uncinate process wider; [1] both processes approximately 
equal.  See Kullander (1986, Fig. 37 and 107). 
 
101 Development of an anterior laminar expansion (lobe) of epibranchial 1 (Cichocki 
1976: Ch. 32). [0] absent; [1] present, fully developed; [2] present, reduced; [3] present, 
deep instead of laminar. (Figure II.3) 
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FIG. II.2.  Semi-diagrammatic illustration of the anterior portion of the suspensorium in left lateral view, highlighting features of the 
palatine and associated dermal bones.  a) Retroculus lapidifer (MNRJ, Uncatalogued); b) Crenicichla af. lugubris (AMNH, 
Uncatalogued); c) Crenicara latruncularium (AMNH 39751); d) Biotodoma cupido (AMNH 39940); e) Apistogramma hoignei 
(AMNH, Uncatalogued); f) Geophagus dicrozoster (MCNG 40623).  Scale bar = 1 mm.  Abbreviations: ALR = axial lateral ridge of 
the palatine; DS = dermal splint of the palatine; Ect = ectopterygoid; End = endopterygoid; MR = maxillary ridge of the palatine; Q = 
quadrate. 
.
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FIG. II.3.  Semi-diagrammatic illustration of the first epibranchial and the associated 
pharyngobranchial in right, approximately antero-dorsal view.  Position of the 
pharyngobranchial is not necessarily natural.  a) Cichla temensis (AMNH, 
uncatalogued); b) Retroculus lapidifer (MNRJ, Uncatalogued), above: approximately 
rostral view, below: anterodorsal view; c) Geophagus dicrozoster (MCNG 40623); d) 
Crenicara latruncularium (AMNH 39751).  Scale bar = 1 mm.  Abbreviations:  AA = 
anterior arm of epibranchial 1; IAC = interarcual cartilage; PhB-1 = pharyngobranchial 
1; UP = uncinate process (posterior arm) of epibranchial 1. 
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FIG. II.4.  Semi-diagrammatic illustration of second epibranchial in left, approximately 
antero-dorsal view.  a) Cichla temensis (AMNH, Uncatalogued); b) Crenicichla af. 
lugubris (AMNH, Uncatalogued); c) Mikrogeophagus ramirezi (AMNH, Uncatalogued); 
d) Geophagus dicrozoster (MCNG 40623).  Scale bar = 1 mm.  Abbreviations: BE = 
bony expansion of the second epibranchial; CC = cartilage cap. 
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102 Rostral margin of epibranchial 2 bearing an antero-ventral laminar expansion.  [0] 
expansion present, with reduced cartilage cap; [1] expansion present without cartilage 
cap; [2] expansion and cartilage reduced; [3] expansion present with fully developed, 
axe-shaped cartilage cap. (Figure II.4). 
 
103 Presence and shape of the interarcual cartilage (Kullander 1998: Ch. 22).  [0] 
Present, globular; [1] present, elongate; [2] absent. 
 
104 Condition of the first pharyngobranchial.  [0] Bony, [1] cartilaginous.   
 
105 Lateral expansion at the base of pharyngobranchial 1. [0] Absent, [1] present. 
 
106 Rostrocaudal flattening of pharyngobranchial 1.  [0] Absent, [1] present. 
 
107 Gill rakers on ceratobranchials.  [0] Present; [1] absent.   
 
108 Shape of expansion of EB4.  [0] Expansion large, giving an approximately square 
shape to inner half of epibranchial 4; [1] expansion triangular;  [2] expansion follows the 
contour of epibranchial 4.  (Figure II.5) 
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FIG. II.5.  Semi-diagrammatic illustration of fourth epibranchial in left, approximately antero-dorsal view.  a) Cichla temensis 
(AMNH, Uncatalogued); b) Geophagus dicrozoster (MCNG 40623).  Scale bar = 1 mm.  Abbreviations: LE = laminar expansion of 
the fourth epibranchial. 

 



 158

109 Fourth ceratobranchial toothplates (Cichocki 1976: Ch. 39).  [0] Absent; [1] 
present, separated from the outer gill rakers.  See also Stiassny (1991: Ch. 3). 
  
110 Unicuspid teeth on external gill rakers of ceratobranchial 4. [0] Present; [1] absent. 
 
111 Lateral gill rakers on ceratobranchial 5 (Cichocki 1976: Ch. 40, Fig. 1.21). [0] 
Absent; [1] present, attenuate, ossified at least at the base and lacking teeth; [2] present, 
forming low, rounded, and heavily ossified tooth plates.   
 
112 Suture of the lower pharyngeal jaws (Casciotta and Arratia 1993a: Ch. 16). [0] 
Fully sutured along the saggital axis; [1] not fully sutured.  Kullander (1998) indicates 
that this character may change ontogenetically. 
  
113 Number of concavities in the frayed zone at the caudal edge of the fourth upper 
pharyngeal toothplate (Casciotta and Arratia 1993a: Ch. 17, Fig. 24A,B).  [0] 3 or 
more; [1] 2; [2] 1.  See also Casciotta and Arratia (1993, Fig. 12-13). 
  
PECTORAL GIRDLE 
 
114 Anteriorly directed spinous process on the distal postcleithrum (Stiassny 1987: Ch. 
3, Fig. 2). [0] Absent;  [1] present;  [2] present, reduced to short, blunt process directed 
anteriorly.  Kullander (1998, Ch: 49) added state 2. 
 
115 Relative length of the medial process of the proximal extrascapula.  [0] about 2 
times in distal process; [1] of approximately equal length as the distal process;  [2] at 
least 4.5-5.0 times in distal process. (Figure II.6).
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FIG. II.6.  Semi-diagrammatic illustration of the post-temporal and proximal 
extrascapula in left, lateral view.  a) Retroculus lapidifer (MNRJ, Uncatalogued); b) 
Cichla temensis (AMNH, Uncatalogued), c) Satanoperca mapiritensis (MCNG 37262).  
Scale bar =1 mm.  Abbreviations: DP = distal process of the medial extrascapula; MExs 
= medial extrascapula; MP = medial process of the medial extrascapula; Ptt = post-
temporal.
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INFRAORBITAL SERIES 
 
Nomenclature used to identify the elements of the infraorbital series is generally not 
comparable among the work of different authors.  Following outgroup analysis, we have 
adopted the nomenclature used by Kullander (1986).  The plesiomorphic condition 
among Neotropical cichlids is the possession of seven infraorbitals, including two 
lacrimal ossicles, as found in Cichla, Astronotus, and Retroculus (e.g. see Kullander 
1998; Farias et al. 1999, 2000, 2001).  The nomenclature of individual ossicles is as 
follows (and see Fig. 11a): 1 = anteriormost lacrimal, 2 = second lacrimal, (1+2) = the 
fused lacrimals, 3 to 6 = infraorbitals beyond lachrymal, 7 = dermosphenotic.  Any 
combination of numbers in parentheses indicates fusion of the corresponding elements 
(Figure II.7). 
 
The following infraorbital characters are derived and modified from Cichocki (1976, 
characters 45, 46 and 48, Figs. 1.24 to 1.26), Oliver (1984, character 17, Fig. 5), and 
Kullander (1998, character 3).  See also Kullander (1986, Fig. 102) and Kullander (1996, 
Fig. 13A-C). 
 
116 Infraorbitals 4, 5 and 6. [0] All unfused; [1] (4+5), 6; [2] (4+5+6). 
 
117 Lacrimals. [0], unfused; [1] fused. 
 
118 Infraorbital 3. [0] present, [1] absent. 
 
119 Number of canals in the lacrimal. [0] 3+1 (three on 1, one on 2), [1] 4, [2] 3. 
 
120 Direction of the posterior canal of the lacrimal. [0] posteroventrally directed, [1] 
posterodorsally directed. 
 
121 Posterior canal of the lacrimal.  [0] Extensively open along the caudal margin, 
forming a half tube; [1] canal terminates in a single pore. 
 
122 Ratio of depth to length of the lacrimal.  [0] longer than deep; [1] deeper than long; 
[2] approximately as long as deep. 
 
123 Notch in the anterodorsal edge of the lachrymal.  [0] present, [1] absent.  See also 
Oliver (1984: Fig. 5) and Cichocki (1976: Fig. 1.24). 
 
124 Shape of infraorbital 3.  [0] Tubular; [1] tubular, with a ventrally directed laminar 
expansion; [2] tubular, with ventral and dorsally directed laminar expansions. 
 
125 Association between lacrimal (1+2 or 2) and infraorbital 3.  [0] contiguous, but not 
overlapping; [1] overlapping.
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FIG. II.7.  Semi-diagrammatic illustration of infraorbital series in left, lateral view.  a) 
Cichla temensis (AMNH, Uncatalogued); b) Geophagus dicrozoster (MCNG 40623); c) 
Satanoperca mapiritensis (MCNG 37262); d) Biotodoma cupido (AMNH 39940).  Scale 
bar = 5 mm.  Nomenclature: 1-7 = plesiomorphic number of infraorbital ossicles, where 
1 and 2 are separate lacrimals, and 7 is the dermosphenotic; 1+2 = derived, “fused” 
lacrimals; 4+5 = fusion of ossicles 4 and 5; 4+5+6 = fusion of ossicles 4, 5, and 6. 
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126 Pointed dorso-caudal laminar expansion of the lacrimal contiguous with the 
anterodorsal edge of infraorbital 3. [0] Absent; [1] present. 
  
AXIAL SKELETON 
 
127 Number of predorsal bones (Cichocki 1976: Ch. 50).  [0] 2, [1] 1, [2] 0.  See also 
Stiassny (1991: Ch. 25) and Kullander (1998: Ch. 67). 
 
128 Procurrent spinous process on the anterodorsal margin of the first dorsal fin 
pterygiophore (Cichocki 1976: Ch. 51). [0] Absent; [1] present. 
 
129 Total vertebral number (Cichocki 1976: Ch. 57, modified). [0] 32 or more, [1] 26-
29, [2] 23-24.  See also Stiassny (1987: Ch. 4). 
  
130 Number of anterior vertebrae (Cichocki 1976: Ch. 57, modified). [0] 10-15, [1] 18-
24.   
 
131 Number of anterior vertebrae with centra exhibiting relative frontal compression 
(Cichocki 1976: Ch. 58).  [0] 3, [1] 4, [2] 2, [3] 1, [4] 0. 
 
132 Development of parhypurapophysis (Cichocki 1976: Ch. 60). [0] Well developed, 
terminating at about the mid-longitudinal axis of the vertebral; [1] absent; [2] reduced, 
terminating not more than one half the distance from its base to mid-vertebral axis. 
 
133 Number of epihemal caudal ribs (Kullander 1998: Ch. 75). [0] 0, [1] 7 or more. 
 
134 Development of vertebral hypapophyses (Pellegrin 1904, Fig. 8).  [0] Short, paired; 
[1] long, co-ossified distally; [2] absent.  See also Kullander (1998: Ch. 77). 
 
135 Vertebrae bearing expanded hypapophyses (Pellegrin 1904). [0] 4; [1] 3. 
 
136 Parapophyses of first 2 caudal vertebrae fused, and in turn fused to first anal 
pterygiophore. [0] Absent; [1] present.   
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APPENDIX III 
 

MATERIAL EXAMINED 
 
List of material examined for morphological analysis and vouchers specimens for tissue 
samples used for DNA sequencing.  For each genus the following information is given: 
species name, museum acronym and catalogue number; collection year; preparation 
mode and number of exemplars (A = alcohol, CS = cleared and stained, DS = dry 
skeleton, numbers in parentheses indicate number of voucher specimens from which 
tissue samples for DNA sequencing was taken); country of collection, drainage or 
state/county, collection locality.  Catalogue numbers starting with an H are cross-
referenced with museum numbers, and indicate the samples used for DNA sequencing 
from the tissue collection, Laboratory of Wildlife Genetics, Department of Wildlife and 
Fisheries Sciences, Texas A&M University.  Museum abbreviations are as follows: 
AMNH – American Museum of Natural History, New York, USA; BM (NH) = British 
Museum (Natural History), London, UK; MCNG = Museo de Ciencias Naturales de 
Guanare, Guanare, Venezuela; MNHN = Muséum National d’Histoire Naturelle, Paris, 
France; MNRJ = Museu Nacional do Rio de Janeiro, Brazil; NLU = North Eastern 
Louisiana University, Monroe, USA; TCWC = Texas Cooperative Wildlife Collection, 
College Station, USA.  Uncatalogued material will be deposited at the Department of 
Ichthyology of the American Museum of Natural History, unless otherwise indicated.  
More detailed locality data, if available, can be found at the Neodat project’s website 
(www.neodat.org), on the websites of each museum, or on request from HLF. 
 
OUTGROUP TAXA 
 
Astronotus crasspinnis: (AMNH 221982); 1987; A = 1, CS = 1; Argentina, no further 
data.  
  
Astronotus sp.: (TCWC 7502.28); 1993; A = 1; Venezuela, Portuguesa, Caño Maraca at 
Finca Urriola. - (AMNH Uncatalogued, H6297-6298); 2001; A = 2(2); Aquarium trade. 
 
Cichla intermedia: (AMNH Uncatalogued); 2002; DS = 1; Venezuela, Apure, Río 
Cinaruco, Pica Raya reef. - (AMNH Uncatalogued); 2002; DS = 1; Venezuela, Apure, 
Río Cinaruco. - (AMNH Uncatalogued); 2001; A = 1; Venezuela, Apure, Río Cinaruco. 
- (MCNG 39581); 1999; CS = 1; Venezuela, Apure, Río Cinaruco. - (MCNG 41117); 
1999; CS = 1; Venezuela, Apure, Río Cinaruco. - (H6238, No voucher); 2000; 
Venezuela, Apure, Río Cinaruco at Payara hole (reef point). 
 
Cichla orinocensis: (AMNH Uncatalogued); 2002; DS = 1; Venezuela, Apure, Río 
Cinaruco, Laguna Larga N shore. - (AMNH Uncatalogued); 2002; DS = 1; Venezuela, 
Apure, Río Cinaruco. - (TCWC 8312.08); 1994; A = 2, CS = 3; Venezuela, Bolívar, Río 
Caroní, NE Guri reservoir near dam F. - (TCWC 7500.37); 2001; A = 1; Venezuela, 
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Apure, Río Apure at Laguna Larga. - (H6237, No voucher); 2000; Venezuela, Apure, 
Río Cinaruco at Payara hole (reef point). 
 
Cichla temensis: (AMNH Uncatalogued); 2002; DS = 1; Venezuela, Apure, Río 
Cinaruco, Laguna Larga. - (AMNH Uncatalogued); 1994; A = 7, CS = 3; Venezuela, 
Apure, Río Cinaruco. - (AMNH Uncatalogued); 2000; A = 1; Venezuela, Apure, Río 
Cinaruco, Laguna Larga at mouth of Caño Largo. - (AMNH Uncatalogued); 2000; A = 
1; Venezuela, Apure, Río Cinaruco at Laguna Larga. - (H6239, No voucher); 2000; 
Venezuela, Apure, Río Cinaruco at Payara hole (reef point). 
 
Retroculus lapidifer: (BM(NH) 1970.10.28:59); 1968; A = 1; Brazil, Mattogrosso, Rio 
das Mortes, Xaventina Island. - (MNRJ Uncatalogued); 1999; A = 3, CS = 2; Brazil, 
Goiás, Rio Maranhão, at Cachoeria do Macadinho. -  (MNRJ SM 21-521 E. P. 
Caramaschi); 1999; A = 1; Brazil, Rio Tocantins, Serra da Mesa reservoir at dam. 
 
Retroculus sp.: (H6293, No known voucher); No date; Brazil, Macapá. 
 
CICHLASOMATINAE 
 
Cichlasoma orinocense: (AMNH Uncatalogued, H6209-6210); 2000; CS, T = 2; 
Venezuela, Apure, road from La Pedrera (Táchira State) to Guasdualito, a few minutes 
after Las Guacas. - (AMNH Uncatalogued, H6211); 2000; A = 2(2); Venezuela, Apure, 
Caño Maporal at iron bridge on road to UNELLEZ modulo.  
  
Hoplarchus psittacus: (AMNH Uncatalogued); 2002; DS = 1; Venezuela, Apure, Río 
Cinaruco. - (AMNH Uncatalogued); 2002; DS = 1; Venezuela, Apure, Río Cinaruco. -  
 (MCNG 39961); 1999; A = 7, CS = 2; Venezuela, Apure, Río Cinaruco, Laguna 
Oheros. - (MCNG Uncatalogued, H6241); 2000; A = 1(1); Venezuela, Apure, Río 
Cinaruco, Caño at mouth of Laguna Larga. 
 
Mesonauta egregius: (AMNH Uncatalogued, H6226-6227); 2000; A = 3(3), CS = 1(1); 
Venezuela, Apure, Caño Maporal at iron bridge on road to UNELLEZ modulo. 
 
GEOPHAGINAE 
 
Acarichthys heckelii: (AMNH 14352); 1937; A = 3, CS = 2; Guyana, Essequibo, 
Essequibo river at Rockstone. - (AMNH 221358); 1977; A = 1; Brazil, Amazonas, 
branch of the Rio Janauacá at mouth of Lago do Castanho. - (AMNH Uncatalogued, 
H6288-6289); 2000; A = 2(2); Aquarium trade. 
 
Apistogrammoides pucallpaensis: (AMNH Uncatalogued, H6203-6204); 1999; A = 8(4), 
CS = 2; Perú, Río Orosa, Pacaurillo and/or Madre Selva reserve. 
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Apistogramma hoignei: (AMNH Uncatalogued); 2000; A = 1; Venezuela, Apure, road 
from La Pedrera (Táchira State) to Guasdualito, a few minutes after Las Guacas. - 
(AMNH Uncatalogued, H6223); 2000; A = 4(3); Venezuela, Apure, Caño Maporal at 
iron bridge on the road to UNELLEZ modulo. 
 
Apistogramma agassizi: (AMNH 21582); No date; CS = 1; Peru, Amazon basin. - 
(AMNH Uncatalogued, H6199-6200); 1999; A = 3(3); Perú, Río Orosa, Pacaurillo 
and/or Madre Selva reserve. 
 
Biotodoma cupido: (AMNH 40148); 1964; A = 1; Bolivia, Beni, Arroyo Grande, 2 km 
W Guayamerín, ca. 1.5 km above mouth. - (AMNH 215177); No date; A = 47; Guyana, 
Demerara, Malali. - (AMNH 39940); 1964; A = 10, CS = 2; Bolivia, Beni, Río Iténez, 2 
km SE Costa Marques, Brazil. - (AMNH 43359); 1935; CS = 1; Guyana, Demerara, 
Malali. - (AMNH Uncatalogued; H6195-6196); 1999; A = 3, T = 3; Perú, Río Orosa, 
Pacaurillo reserve.  
 
Biotodoma wavrini: (AMNH Uncatalogued); 1999; A = 17, CS = 2; Venezuela, Apure, 
Río Cinaruco at Laguna Larga. - (MCNG 41367, H6202); 1999; A = 1(1); Venezuela, 
Apure, Río Cinaruco at Laguna Larga. - (AMNH Uncatalogued, H6230); 2000, A = 
6(6); Venezuela, Apure, Río Cinaruco at Payara hole (reef point). - (AMNH 
Uncatalogued); 2000, A = 2; Venezuela, Apure, Río Cinaruco, Laguna Larga at mouth 
of Caño Largo. 
 
Biotoecus dicentrarchus: (AMNH 221350); 1977; A = 1; Brazil, Amazonas, Ilha de 
Marchantaria. - (NLU 75944); 1999; A = 20; Venezuela, Apure, Rio Cinaruco at Laguna 
Larga. - (AMNH Uncatalogued); 1999; A = 1; Venezuela, Apure, Río Cinaruco. - 
(AMNH Uncatalogued, H6249-6250); 2000; A = 12(6), CS = 4; Venezuela, Apure, Río 
Cinaruco at Laguna Larga. 
 
Crenicara punctulatum: (AMNH 78126); 1987; A = 1; Peru, Loreto, Rio Tahuayo, 
tributary of Rio Amazonas, at Huasi village. - (AMNH 39917); 1964; CS = 2; Bolivia, 
Beni, Pond in arroyo below lower campo of Pampa de Meio, ca. 12 km SE Costa 
Marques, Brazil. 
 
Crenicara latruncularium: (AMNH 39751); 1964; A = 13, CS = 2; Bolivia, Beni, Río 
Iténez, 2 km SE Costa Marques, Brazil. - (AMNH Uncatalogued, H6301-6302); 2003; A 
= 2(2); Aquarium trade. 
 
Crenicichla geayi: (AMNH Uncatalogued, H6207-6208); 2000; A = 1(1), CS = 1(1); 
Venezuela, Portuguesa, Río Las Marías at Quebrada Seca. 
 
Crenicichla af. lugubris: (AMNH Uncatalogued); 2002; DS = 1; Venezuela, Apure, Río 
Cinaruco, Caño Largo. - (AMNH Uncatalogued); 2002; DS = 1; Venezuela, Apure, Río 
Cinaruco. - (AMNH Uncatalogued); 2002; DS = 1; Venezuela, Apure, Río Cinaruco. - 
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(MCNG 40225); 1999; A = 1; Venezuela, Apure, Río Cinaruco at Laguna Larga. - 
(MCNG 41034); 1999; A = 1; Venezuela, Apure, Río Cinaruco at Laguna Estrechura. -  
 (MCNG 40122); 1999; CS = 1; Venezuela, Apure, Río Cinaruco at Laguna Las 
Guayabas. - (H6230, No voucher); 2000; Venezuela, Apure, Río Cinaruco at Payara hole 
(reef point). - (H6242, No voucher); 2000; Venezuela, Apure, Río Cinaruco at Laguna 
Larga. 
 
Crenicichla sveni: (AMNH Uncatalogued, H6213-6214); 2000; A = 2(2), CS = 2(2); 
Venezuela, Apure, road between Guasdualito and Elorza. 
 
Crenicichla af. wallacii: (AMNH Uncatalogued, H6244-6245); 2000; A = 2(2), CS = 
2(2); Venezuela, Apure, Río Cinaruco at Laguna Larga. - (AMNH Uncatalogued); 2000; 
A = 2; Venezuela, Apure, Río Cinaruco, Laguna Larga at mouth of Caño Largo. 
 
Dicrossus filamentosus: (MCNG 12190); 1985; A = 12, CS = 5; Venezuela, Amazonas, 
Caño Iguarapo, aprox. 1 km above mouth, near Piedra de Culimacare of Río Casiquiare. 
 
Dicrossus sp.: (H6285, Sample is voucher); 2000; Aquarium trade. 
 
Geophagus abalios: (AMNH Uncatalogued); 2002; DS = 1; Venezuela, Apure, Río 
Cinaruco. - (AMNH Uncatalogued); 2002; DS = 1; Venezuela, Apure, Río Cinaruco. - 
(MCNG 40636); 1999; CS = 1; Venezuela, Apure, Río Cinaruco. - (H6259-6260, No 
vouchers); 2000; Venezuela, Apure, Río Cinaruco at Laguna Larga. 
 
Geophagus brachybranchus: (AMNH 72130); 1982; A = 2; Guyana, Essequibo, sandbar 
on N bank of Cuyuní river, just W of Caowrie creek mouth. - (AMNH 215202); No date; 
A = 19; Guyana, Demerara, Demerara river at Wismar. - (AMNH 72098); 1982; A = 2; 
Guyana, Essequibo, Kartabo point, between Cuyuní river mouth and Mazaruni river 
mouth. - (AMNH 54944); 1979; CS = 3; Surinam, Nickerie, Camp Hydro, ca. km 370, 
ca. 30 km N Tiger Falls. - (AMNH 54881); 1979; A = 26; Surinam, Nickerie, Toeboeroe 
creek, km 220, 300-900 m from mouth. - (AMNH Uncatalogued, H6271-6272); 2000; A 
= 3(3); Surinam, Nickerie, Toeboeroe creek, km 220, 300-900 m from mouth. 
 
Geophagus dicrozoster: (AMNH Uncatalogued); 2002; DS = 1; Venezuela, Apure, Río 
Cinaruco, Caño Largo. - (AMNH Uncatalogued); 2002; DS = 1; Venezuela, Apure, Río 
Cinaruco. - (AMNH Uncatalogued, H6255-6256); 2000; A = 5(4); Venezuela, Apure, 
Río Cinaruco at Laguna Larga. - (AMNH Uncatalogued); 2000; A = 1; Venezuela, 
Apure, Río Cinaruco at Payara hole (reef point). 
 
Geophagus grammepareius: (MCNG 34396); 1994; A = 2, CS = 3; Venezuela, Bolívar, 
Río Caroní near Río Claro. - (AMNH Uncatalogued, H6265); 2000; A = 1(1); 
Venezuela, Bolívar, Río Claro at bridge on the road to Guri. 
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Geophagus surinamensis: (MNHN 2001.2275); 2001; A = 2; French Guiana, Antécume 
Pata, Upper Maroni river. - (MNHN 2001.2279, H6299); 2001; A = 2(1); French 
Guiana, Antécume Pata, Upper Maroni river. - (MNHN 2001.2280, H6300); 2001; A = 
2(1); French Guiana, Antécume Pata, Upper Maroni river. - (MNHN 2001.2281); 2001; 
A = 3, CS = 2; French Guiana, Antécume Pata, Upper Maroni river. 
 
‘Geophagus’ brasiliensis: (AMNH 222386); 1991; A = 7, CS = 3; Brazil, Sâo Paulo, Rio 
Pardo at Riberão Preto. -  (AMNH Uncatalogued, H6286-6287); 2000; A = 2(2; 
Aquarium trade. 
 
‘Geophagus’ steindachneri: (MCNG 758); 1976; A = 11, CS = 2; Venezuela, Trujillo, 
Río Motatán at Puente 3 de febrero. -  (AMNH Uncatalogued, H6283-6284); 2001; A = 
2(2); Aquarium trade. 
 
Guianacara n. sp. ‘caroni’: (AMNH 91068); 1990; CS = 1; Venezuela, Bolívar, Río 
Paragua above second rapids above Río Carapo mouth. - (AMNH Uncatalogued, H6266-
6267); 2000; A = 27(5), CS = 2; Venezuela, Bolívar, Río Claro, at bridge on the way to 
Guri. 
 
Gymnogeophagus balzanii: (AMNH 1278); 1901; A = 1, CS = 1; Paraguay, Río 
Paraguay at Asunción.  – (AMNH Uncatalogued, H6296); 2001; Aquarium trade. 
 
Gymnogeophagus rhabdotus: (AMNH Uncatalogued, H6296); 2001; A = 1(1).  
Aquarium trade. - (AMNH 12348); 1933; A = 5, CS = 3; Argentina, Buenos Aires. - 
(AMNH Uncatalogued, H6294-6295); 2001; A = 2(2).  Aquarium trade. 
 
Mikrogeophagus altispinosus: (AMNH Uncatalogued, H6278-6279); 2000; A = 5(5), CS 
= 2; Aquarium trade. 
 
Mikrogeophagus ramirezi: (AMNH Uncatalogued); 2000; A = 1; Venezuela, probably 
Monagas State, no other data available. - (AMNH Uncatalogued, H6217-6218); 2000; A 
= 4(4), CS = 2(2); Venezuela, Apure, Caño Maporal at iron bridge on the way to 
UNELLEZ modulo. 
 
Satanoperca daemon: (AMNH Uncatalogued); 2002; DS = 1; Venezuela, Apure, Río 
Cinaruco. - (AMNH Uncatalogued); 2002; DS = 1; Venezuela, Apure, Río Cinaruco. - 
(AMNH Uncatalogued); 2002; DS = 1; Venezuela, Apure, Río Cinaruco. - (AMNH 
Uncatalogued); 2000; A = 5; Venezuela, Apure, Río Cinaruco, Laguna Larga at mouth 
of Caño Largo. - (AMNH Uncatalogued); 1999; A = 6, CS =1; Venezuela, Apure, Río 
Cinaruco at Laguna Larga. - (MCNG 37255); 1997; A = 1, CS = 1; Venezuela, Guárico, 
Aguaro-Guariquito National Park, Caño Charcotico. - (AMNH Uncatalogued, H6261-
6261); 2000; A = 2(2); Venezuela, Apure, Río Cinaruco at Laguna Larga. - (MCNG 
Uncatalogued, H6248); 2000; A = 1(1); Venezuela, Apure, Río Cinaruco at Laguna 
Larga. 
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Satanoperca jurupari: (AMNH 12752); 1934; A = 8, CS = 1; Brazil, Amazonas, Rio 
Livramento, tributary of Rio Madeira. - (AMNH Uncatalogued, H6198); 1999; A = 1(1); 
Perú, Río Orosa at Yanashi. - (H6198, No voucher); 1999; Perú, Caño Santa Rita, Nanay 
drainage. 
 
Satanoperca mapiritensis: (AMNH Uncatalogued, H6263-6264); 2000; A = 2(2); 
Venezuela, Bolívar, Río Pao at the most E cross with road between Maripa and Ciudad 
Bolívar. - (AMNH Uncatalogued, H6274-6275); 2000; A = 4(4); Venezuela, 
Anzoátegui, Río Morichal Largo. - (AMNH Uncatalogued); 1999; CS =1; Venezuela, 
Apure, Río Cinaruco at Laguna Larga. 
 
Satanoperca pappaterra: (AMNH 40103); 1964; A = 8, CS = 2; Brazil, Rondonia, 
Overflow pond of Rio Guaporé 1 km W Costa Marques. (H6309-6310, No 
vouchers);2000; Brazil, Rio Paraná. 
 
Taeniacara candidi: (AMNH Uncatalogued, H6290-6291); 2000; A = 2(2), CS = 1; 
Aquarium trade. 
 
ADDITIONAL MATERIAL EXAMINED 
 
African taxa 
 
Paratilapia mellandi: (AMNH 9011); 1925; A = 4; Angola, Cunene river at Capelongo. 
 
Paratilapia polleni: (AMNH 217760); 1988 or 1990; CS = 1; No further data. 
 
Ptychochromis oligacanthus: (AMNH 97028); 1990; A= 3, CS = 2; Madagascar, 
Tamatave, Bay Lake, 1 km S of turnoff from Marolambo-Mananjary road. 
 
Ptychochromoides katria: (AMNH 93700); 1990; CS = 5; Madagascar, River 
Novosivolo below Zule’s village, large side-pool off mainstream. 
 
Tylochromis leonensis: (AMNH 59650); 1990; A = 11; Sierra Leone, River Taia, 
Taiama Bridge. 
 
Tylochromis variabilis: (AMNH 57162); 1915; CS = 1; Congo, Stanleyville. 
 
Outgroup 
 
Cichla ocellaris: (AMNH 97396); No date; CS = 1; No further data. 
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Cichlasomatinae 
 
Heros n. sp. ‘common’  (AMNH Uncatalogued); 2002; DS = 1; Venezuela, Apure, Río 
Cinaruco. - (AMNH Uncatalogued); 2002; DS = 1; Venezuela, Apure, Río Cinaruco. 
 
Mesonauta festivum: (AMNH  40053); 1964; CS = 3; Bolivia, Beni, Río Baures, 500 
miles above mouth, on left. 
 
Geophaginae 
 
Biotodoma af. cupido: (AMNH 12751); 1934; A = 2; Brazil, Amazonas, Rio 
Livramento, tributary of Rio Madeira. 
 
Guianacara sphenozona: (AMNH 54857); 1979; A = 5; Surinam, Nickerie, Kabelebo 
river, 1 km S Avanavero falls. - (AMNH 54763); 1979; A = 18; Surinam, Nickerie, 
Kapoeri creek, ca. 7 km from junction of Corintijn [Corantijn] river. - (AMNH 17635); 
1938; A = 4; Guyana, Essequibo, blackwater creek at Essequibo river headwaters. - 
(AMNH 54939); 1979; CS = 5; Surinam, Nickerie, Camp Hydro, ca. km 370, ca. 30 km 
N Tiger Falls. 
 
Gymnogeophagus gymnogenys: (AMNH 57055); 1985; A = 2, CS = 1; Brazil, Rio 
Grande do Sul, near Porto Alegre. 
 
Geophagus harreri: (AMNH 16434); 1939; A = 2; Surinam, Marowijne, Litani river 
near Tapoute. 
 
Geophagus megasema: (AMNH 39936); 1964; A = 1; Bolivia, Beni, Río Iténez 5 km 
SW Costa Marques, Brazil. 
 
Geophagus taeniopareius: (AMNH 56180); 1981; A = 2, CS = 2; Venezuela, Amazonas, 
Río Cataniapo, ca. 800 m from mouth, near Puerto Ayacucho. 
 
Satanoperca leucosticta: (AMNH 215096); 1935; A = 8; Guyana, Demerara, Demerara 
river at Wismar. - (AMNH 7090); 1908; A = 3; Guyana, Demerara, Maduni creek.-  
(AMNH 214849); 1934; A = 2; Guyana, Demerara, Demerara river at Malali. - (AMNH 
215206); No date; Guyana, Demerara, Demerara river at Wismar. 

 



 

 

APPENDIX IV 
 

CODED MATRIX OF MORPHOLOGICAL CHARACTERS 
 
 
 
                       1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4  
     1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 
Acarichthys heckelii   0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 1 0 1 0 1 - - - 1 - 1  
Apistogramma agassizi   0 1 0 1 2 0 4 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 1 2 1 0 0 0 0 1 0 1 0 1 - - - 1 - 1 
Apistogramma hoignei  0 1 0 0 2 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 2 1 0 0 0 0 1 0 1 0 1 - - - 1 - 1 
Apistogrammoides pucallpaensis 0 1 0 0 2 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 2 1 0 0 0 0 1 0 1 0 1 - - - 1 - 1 
Astronotus sp.    0 0 0 0 0 0 0 0 2 0 1 0 0 5 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 
Biotodoma cupido    0 0 0 0 3 - 2 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 - - - 1 - 1 
Biotodoma wavrini    0 0 1 0 3 - 3 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 1 0 1 0 1 - - - 1 - 1 
Biotoecus dicentrarchus   1 0 1 0 3 - 2 0 0 0 0 1 1 0 1 0 1 1 1 - - - - 2 0 1 0 0 0 1 0 1 0 1 - - - 1 - 1 
Cichla intermedia    0 0 0 1 1 0 0 0 1 1 0 1 0 7 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 - - - 0 1 0 
Cichla orinocensis    0 0 0 1 1 1 0 0 1 1 0 1 0 6 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 
Cichla temensis    0 0 0 0 0 0 2 0 1 1 0 1 2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 
Cichlasoma orinocense   0 1 0 1 2 1 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 1 2 0 0 
Crenicara punctulatum   1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 2 1 0 0 0 0 1 1 1 0 1 - - - 1 - 1 
Crenicichla geayi    0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 1 1 0 1 0 1 - - - 1 - 1 
Crenicichla af. lugubris   0 0 0 0 0 0 0 0 1 0 0 0 2 8 1 0 0 1 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 - - - 1 - 1 
Crenicichla sveni    0 0 0 0 0 0 0 0 1 0 0 0 1 4 1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0 2 0 1 - - - 1 - 1 
Crenicichla af. wallacei   0 0 0 0 0 0 0 0 1 0 0 0 1 4 1 0 0 1 0 0 1 0 0 0 1 1 0 1 1 1 0 1 0 1 - - - 1 - 1 
Dicrossus sp.     1 1 1 0 0 0 ? ? 0 ? 0 1 1 0 0 0 0 0 0 1 1 0 0 2 1 0 1 0 0 1 0 1 0 1 - - - 1 - 1 
Geophagus abalios    0 1 0 1 1 1 1 1 0 1 0 1 1 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0  
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                       1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 
     1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 
Geophagus brachybranchus   0 1 0 1 0 0 1 1 0 1 1 1 1 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 
Geophagus dicrozoster   0 1 1 1 1 0 1 1 0 0 0 1 1 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 
Geophagus grammepareius   1 1 0 0 0 0 1 0 0 0 1 1 1 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 1 - - - 1 - 1 
Geophagus surinamensis   0 1 0 1 0 1 1 1 0 0 0 1 1 2 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 - 0 
‘Geophagus’ brasiliensis   0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 - - - 1 - 1 
‘Geophagus’ steindachneri   0 1 0 1 3 - 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 1 3 0 1 
Guianacara n. sp. ‘caroni’   0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 1 0 1 0 1 - - - 1 - 1 
Gymnogeophagus balzanii   1 0 1 0 0 0 0 0 0 0 0 1 1 2 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 1 1 0 0 1 0 1 1 - 0 
Gymnogeophagus rhabdotus   1 0 1 0 3 - 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 1 0 1 - - - 1 - 1 
Hoplarchus psittacus   0 0 0 0 1 0 0 0 0 0 0 1 1 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 
Mesonauta egregius    0 0 0 0 2 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 - 1 1 1 0 0 0 0 1 0 0 0 
Mikrogeophagus altispinosa   0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 2 0 0 0 0 0 1 1 1 0 1 - - - 1 - 1 
Mikrogeophagus ramirezi   0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 2 1 0 0 0 0 1 1 1 0 1 - - - 1 - 1 
Retroculus sp.    0 1 1 1 0 1 1 0 0 1 0 1 1 3 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 1 
Satanoperca daemon    1 0 0 0 0 0 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 - - - 1 - 1 
Satanoperca jurupari   1 1 1 1 0 1 0 1 0 1 0 1 1 6 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 - - - 1 - 1 
Satanoperca mapiritensis   1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 - - - 1 - 1 
Satanoperca pappaterra   1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 - - - 1 - 1 
Taeniacara candidi    0 0 ? ? 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 2 1 0 0 0 0 1 1 1 0 1 - - - 1 – 1 
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                            4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8 

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 
Acarichthys heckelii   - - - 1 - 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 5 0 1 2 1 - - 0 1 1 0 0 0 0 1 0 0 0 1 0 
Apistogramma agassizi   - - - 1 - 0 0 0 1 1 1 1 1 1 1 1 4 0 0 0 2 1 1 2 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 
Apistogramma hoignei   - - - 1 - 0 0 0 1 1 1 1 1 1 1 ? 4 0 0 0 2 1 1 2 0 1 1 0 1 1 1 1 0 1 1 0 0 0 0 1 
Apistogrammoides pucallpaensis  - - - 1 - 0 0 0 1 1 1 1 1 1 1 1 5 0 1 0 2 1 1 2 0 1 1 0 1 1 1 1 1 0 1 0 0 0 0 1 
Astronotus sp.    0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 ? 0 0 0 0 1 
Biotodoma cupido    - - - 1 - 0 0 1 0 1 0 0 1 0 1 0 3 0 0 0 0 0 0 2 1 - - 0 1 1 0 0 1 0 0 0 0 0 0 1 
Biotodoma wavrini    - - - 1 - 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 5 0 1 2 1 - - 0 1 1 0 0 0 0 0 0 0 0 0 1 
Biotoecus dicentrarchus   - - - 1 - 0 0 0 0 1 1 1 1 1 2 1 6 - - 0 1 2 1 2 0 1 2 0 0 0 2 0 0 1 1 1 1 0 0 0 
Cichla intermedia    1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 - 0 - 8 3 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 
Cichla orinocensis    1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 3 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 
Cichla temensis    1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 - - - 8 - 0 0 0 0 0 0 0 0 1 1 1 3 0 0 0 1 0 0 
Cichlasoma orinocense   0 0 1 2 1 0 ? ? 0 1 0 1 0 0 1 1 1 0 0 0 3 0 1 2 0 0 0 0 0 0 0 1 1 0 ? 0 0 0 0 1 
Crenicara punctulatum   - - - 1 - 1 0 1 0 1 1 1 1 1 1 1 2 0 0 0 3 2 1 2 0 1 - 0 0 3 0 1 0 4 0 0 0 0 1 1 
Crenicichla geayi    - - - 1 - 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 6 0 0 2 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 
Crenicichla af. lugubris   - - - 1 - 1 0 0 0 1 0 0 0 0 1 0 1 0 0 1 9 3 0 2 0 0 1 0 3 0 1 1 1 0 0 1 1 0 0 1 
Crenicichla sveni    - - - 1 - 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 2 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 
Crenicichla af. wallacei   - - - 1 - 1 1 0 0 1 1 1 1 1 1 ? 1 0 0 0 6 0 0 2 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 
Dicrossus sp.    - - - 1 - 1 1 1 0 1 1 1 1 1 1 1 4 0 0 0 3 2 1 2 0 1 2 0 0 0 2 2 0 4 0 0 0 0 1 1 
Geophagus abalios    0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 6 0 0 0 1 - - 0 0 0 0 0 1 0 0 0 0 0 1 1 
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                             4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 8 

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 
Geophagus brachybranchus   - - - 1 - 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 2 1 0 1 - - 0 0 0 0 0 1 0 0 0 0 0 1 1 
Geophagus dicrozoster   - - - 1 - 0 0 0 0 1 0 0 0 0 1 0 0 - 0 0 6 0 0 0 1 - - 0 4 0 0 0 1 0 0 0 0 0 1 1 
Geophagus grammepareius   - - - 1 - 0 0 ? 0 1 0 0 0 0 1 0 0 0 0 0 0 2 1 1 1 - - 0 2 0 0 0 1 0 0 0 0 0 1 1 
Geophagus surinamensis   0 0 1 1 - 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 - - 0 0 0 0 0 1 0 0 0 0 0 1 1 
‘Geophagus’ brasiliensis   - - - 1 - 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 3 2 1 0 0 1 1 0 2 1 0 0 0 0 0 0 0 0 1 1 
‘Geophagus’ steindachneri   - - - 3 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 4 2 0 0 0 1 1 0 3 1 0 0 0 0 0 0 0 0 1 0 
Guianacara n. sp. ‘caroni’  - - - 1 - 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 4 2 1 2 1 - - 0 1 1 0 0 0 0 1 0 0 0 1 1 
Gymnogeophagus balzanii   0 0 1 1 - 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 5 0 0 0 1 - - 0 3 2 0 0 1 0 0 0 0 0 1 1 
Gymnogeophagus rhabdotus   - - - 1 - 0 0 0 0 1 1 1 1 1 1 ? ? ? ? 0 4 2 ? ? 1 - - 0 3 1 0 0 1 0 0 0 0 0 1 1 
Mesonauta egregius    0 0 1 3 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 4 0 2 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 
Hoplarchus psittacus   0 0 1 3 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 6 0 1 2 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 
Mikrogeophagus altispinosa  - - - 1 - 1 0 0 0 1 1 1 1 1 1 0 2 0 0 0 3 2 1 0 1 - - 1 2 1 0 0 1 0 1 0 0 0 1 1 
Mikrogeophagus ramirezi   - - - 1 - 0 0 0 0 1 1 1 1 1 1 ? 1 0 0 0 3 2 0 0 0 1 1 0 2 1 0 0 0 0 1 0 0 0 0 1 
Retroculus sp.   - - - 0 0 0 0 ? 0 0 0 0 0 ? 0 1 0 1 0 0 0 0 0 1 1 - - 1 0 1 0 0 0 0 0 0 0 0 0 0 
Satanoperca daemon    - - - 1 - 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 5 0 1 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 1 
Satanoperca jurupari   - - - 1 - 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 4 2 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 1 
Satanoperca mapiritensis   - - - 1 - 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 4 2 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 
Satanoperca pappaterra   - - - 1 - 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 5 2 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 ? 
Taeniacara candidi    - - - 1 - 0 ? ? 1 1 1 ? 1 1 2 1 4 0 0 0 1 1 1 2 0 1 1 0 1 0 1 1 1 0 0 0 0 0 0 1 
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                                                                       1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
                                 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 
                                 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 
Acarichthys heckelii   0 0 0 0 0 0 0 0 1 0 1 2 0 1 ? 0 1 0 0 0 0 3 0 0 1 1 0 0 1 1 0 0 1 2 2 1 1 0 1 1 
Apistogramma agassizi   1 0 0 0 0 0 1 0 0 0 0 3 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 2 0 0 1 1 1 1 1 
Apistogramma hoignei   1 0 0 0 0 1 1 0 0 0 0 3 0 1 1 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 2 0 2 1 1 1 1 1 
Apistogrammoides pucallpaensis  1 0 0 0 0 0 1 0 0 0 0 3 1 - 1 1 1 1 0 0 1 0 1 0 1 1 0 0 0 1 1 0 2 0 0 1 1 1 1 1 
Astronotus sp.    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
Biotodoma cupido    1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 3 1 0 1 0 0 0 1 1 0 0 1 2 2 2 1 0 1 1 
Biotodoma wavrini    0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 0 0 1 3 1 0 1 1 0 0 1 1 0 0 1 2 2 2 1 0 1 1 
Biotoecus dicentrarchus   1 0 0 0 0 1 0 0 0 1 1 1 0 1 1 ? 1 1 0 1 0 3 0 1 0 0 1 0 0 1 0 0 ? ? ? - 1 1 2 0 
Cichla intermedia    1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 
Cichla orinocensis    1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 
Cichla temensis    1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 0 
Cichlasoma orinocense   1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1 2 0 0 0 ? 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 1 1 
Crenicara punctulatum   1 0 0 0 0 1 1 0 1 1 1 1 0 1 1 0 0 1 0 1 2 0 0 0 1 1 0 0 0 1 0 0 1 0 0 2 1 0 1 1 
Crenicichla geayi    1 1 1 0 2 1 0 2 0 2 0 4 1 0 ? 0 1 1 0 1 0 1 0 1 1 1 0 2 1 0 1 0 1 1 ? ? ? 0 ? ? 
Crenicichla af. lugubris   1 0 1 0 2 0 0 2 0 2 0 4 1 - 1 0 1 1 0 1 0 1 0 1 0 0 0 2 1 0 2 0 1 1 0 0 1 0 1 1 
Crenicichla sveni    1 1 1 0 2 0 0 1 0 2 0 4 1 - 1 0 1 1 0 1 0 1 0 1 1 1 0 2 1 0 2 0 1 1 1 0 1 0 1 1 
Crenicichla af. wallacei   1 1 1 0 0 0 0 2 0 2 0 4 1 - 1 ? 1 1 0 1 0 1 ? ? ? ? 0 2 1 0 2 0 1 ? 1 0 1 0 1 1 
Dicrossus sp.    1 0 0 0 0 1 0 0 1 1 1 1 0 1 1 ? 0 1 0 0 2 0 2 0 0 0 1 0 0 1 0 0 1 0 0 2 1 0 1 1  
Geophagus abalios    0 0 0 0 1 0 0 0 1 0 1 2 0 2 0 1 1 0 0 0 1 3 1 0 1 1 0 0 1 1 0 0 1 0 2 1 1 0 1 1  
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                                                                       1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
                                 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 
                                 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 
Geophagus brachybranchus   0 0 0 0 1 0 0 0 1 0 1 2 0 2 0 1 1 0 0 0 1 3 1 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 
Geophagus dicrozoster   0 0 0 0 1 0 0 0 1 0 1 2 0 2 0 1 1 0 0 0 1 3 1 0 1 0 0 0 1 1 0 0 1 0 2 1 1 0 1 1 
Geophagus grammepareius   0 0 0 0 0 0 0 0 1 0 1 2 0 2 0 1 1 0 0 0 1 3 1 0 1 1 0 0 1 1 0 0 1 0 2 1 1 0 1 1 
Geophagus surinamensis   0 0 0 0 1 0 0 0 1 0 1 2 0 2 0 1 1 0 0 0 1 3 1 0 1 1 0 0 1 1 0 0 1 2 2 1 1 0 1 1 
‘Geophagus’ brasiliensis   1 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 2 1 1 0 1 1 
‘Geophagus’ steindachneri   0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 
Guianacara n. sp. ‘caroni’  1 0 0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 2 2 1 1 0 1 1 
Gymnogeophagus balzanii   0 0 0 0 1 0 0 0 0 0 0 2 0 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 2 2 1 0 1 1 
Gymnogeophagus rhabdotus   0 0 0 0 2 0 0 0 0 0 1 ? 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 2 2 1 0 1 1 
Hoplarchus psittacus   0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 2 2 2 1 0 1 1 
Mesonauta egregius    1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 1 0 0 0 0 3 0 0 1 1 0 0 1 0 0 0 0 0 2 2 1 0 1 1 
Mikrogeophagus altispinosa  1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 2 0 1 1 0 1 1 
Mikrogeophagus ramirezi   1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 2 0 1 1 0 1 1 
Retroculus sp.   0 0 0 0 1 0 0 0 0 0 0 1 0 3 0 1 0 1 0 1 3 1 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 
Satanoperca daemon    1 0 0 0 0 0 0 0 0 0 0 2 0 0 1 1 0 1 1 0 1 3 1 0 1 1 0 0 0 1 0 0 1 0 2 2 1 0 1 1 
Satanoperca jurupari   0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 1 0 1 1 0 1 3 1 0 1 1 0 0 0 1 0 0 1 0 2 2 1 0 1 1 
Satanoperca mapiritensis   0 0 0 0 1 0 0 0 0 0 0 2 0 0 1 1 0 1 1 0 1 3 1 0 0 1 0 0 0 1 0 0 1 0 2 2 1 0 1 1 
Satanoperca pappaterra  ? 0 0 0 1 0 0 0 0 0 0 2 0 0 ? 1 0 1 1 0 1 3 1 0 1 1 0 0 0 1 0 0 1 0 2 2 1 0 1 1 
Taeniacara candidi    1 0 0 2 2 1 0 0 0 0 1 3 1 - 1 1 0 1 0 0 2 1 1 0 0 0 0 0 0 ? 1 0 2 0 1 - 1 1 ? ? 
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     1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
                            2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 
                             1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 
Acarichthys heckelii   1 1 0 ? 1 1 1 0 1 0 0 0 0 0 1 0 
Apistogramma agassizi   1 0 1 0 1 1 1 0 2 0 2 1 0 2 – 0 
Apistogramma hoignei  ? 0 ? 0 1 ? 1 0 2 0 2 1 0 2 – 0 
Apistogrammoides pucallpaensis  1 0 1 1 1 1 1 0 2 0 2 1 0 2 – 0 
Astronotus sp.    1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 
Biotodoma cupido    1 2 0 2 0 1 0 0 1 0 0 0 0 0 1 0 
Biotodoma wavrini    1 2 0 2 0 1 0 0 1 0 0 0 0 0 1 0 
Biotoecus dicentrarchus  ? 0 0 - - 0 1 0 1 0 2 2 0 0 1 0 
Cichla intermedia    0 0 0 2 1 0 0 0 0 0 2 0 0 0 1 0 
Cichla orinocensis    0 0 0 2 1 0 0 0 0 0 2 0 0 0 1 0 
Cichla temensis    0 0 0 2 1 0 0 0 0 0 2 0 0 0 1 0 
Cichlasoma orinocense   1 0 1 0 1 0 0 0 1 0 1 2 0 0 0 0 
Crenicara punctulatum   1 0 0 0 0 0 1 0 1 0 0 2 0 0 1 0 
Crenicichla geayi   ? 0 0 ? ? ? 2 0 0 1 4 1 0 2 – 0 
Crenicichla af. lugubris   1 0 0 0 1 0 2 0 0 1 2 1 0 2 – 0 
Crenicichla sveni   ? 0 ? 0 ? 0 2 0 0 1 3 1 0 2 – 0 
Crenicichla af. wallacei  ? 0 0 0 ? 0 2 0 0 1 3 1 0 2 – 0 
Dicrossus sp.    1 0 0 0 0 1 1 0 1 0 2 2 0 2 – 0 
Geophagus abalios    1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 0 
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     1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
                            2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 
                             1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 
Geophagus brachybranchus   1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 0 
Geophagus dicrozoster   1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 0 
Geophagus grammepareius   1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 0 
Geophagus surinamensis   1 1 0 1 1 1 1 0 1 0 0 0 1 1 1 0 
‘Geophagus’ brasiliensis  ? 2 0 0 0 1 1 0 1 0 2 2 0 0 1 0 
‘Geophagus’ steindachneri   1 1 0 1 1 1 1 0 1 0 2 0 0 1 1 0 
Guianacara n. sp. ‘caroni’  1 1 0 2 1 1 0 0 1 0 0 0 0 0 1 0 
Gymnogeophagus balzanii   1 1 0 1 1 1 2 1 1 0 0 0 0 1 1 0 
Gymnogeophagus rhabdotus   1 2 0 1 1 1 2 1 1 0 0 2 0 1 1 0 
Hoplarchus psittacus   1 2 0 0 1 0 0 0 1 0 0 2 0 1 1 1 
Mesonauta egregius    1 2 0 0 1 0 0 0 1 0 0 1 0 1 1 1 
Mikrogeophagus altispinosa  1 0 0 2 1 0 1 0 1 0 0 2 0 0 1 0 
Mikrogeophagus ramirezi   1 0 0 0 0 0 1 0 1 0 0 2 0 0 1 0 
Retroculus sp.   0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 
Satanoperca daemon    1 1 0 0 1 1 1 0 1 0 1 0 0 1 1 0 
Satanoperca jurupari   1 1 0 1 1 1 1 0 1 0 1 0 0 1 1 0 
Satanoperca mapiritensis   1 1 0 1 1 1 1 0 1 0 1 0 0 1 1 0 
Satanoperca pappaterra   1 1 0 ? 1 1 1 0 1 0 1 0 0 1 1 0 
Taeniacara candidi   ? 0 0 - - 0 1 0 2 0 2 1 0 2 – 0 
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