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ABSTRACT

Topics in Ordinal Logistic Regression and Its Applications. (August 2004)
Hyun Sun Kim, B.S., Dongguk University, Seoul, Korea;
M.S., Dongguk University, Seoul, Korea

Chair of Advisory Committee: Dr. Suojin Wang

Sample size calculation methods for ordinal logistic regression are proposed to
test statistical hypotheses. The author was motivated to do this work by the need
for statistical analysis of the red imported fire ants data. The proposed methods use
the concept of approximation by the moment-generating function. Some correction
methods are also suggested. When a prior data set is available, an empirical method
is explored. Application of the proposed methodology to the fire ant mating flight
data is demonstrated. The proposed sample size and power calculation methods are
applied in the hypothesis testing problems. Simulation studies are also conducted to

illustrate their performance and to compare them with existing methods.
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CHAPTER I

INTRODUCTION

Logistic regression is broadly used in many scientific fields, such as biostatis-
tics and epidemiology. It is a simple and effective method to describe the effects
of some explanatory variables on a categorical response variable. There are many
examples where the association between a binary response, such as “healthy” or “un-
healthy”, and some covariates is desired. Standard logistic regression techniques play
an important role in such cases. When the response variable has an ordinal nature,
ordinal logistic regression is often a natural extension of standard logistic regression.
A common ordinal logit model using cumulative logits considers a natural ordering of
response categories. This model assumes a variable’s effect on the odds of response
below category i is the same for all <. The odds ratio of cumulative probabilities
in the expression is called a cumulative odds ratio. The log of the cumulative odds
ratio is proportional to the distance between the values of the explanatory variables,
with the same proportionality constant applying to each cut-point. Because of this
property, this model is called a proportional odds model (McCullagh (1980); Agresti
(1996)).

McCullagh (1980) developed and discussed a general class of regression models
for ordinal data. The purpose of his paper was to investigate structural models
appropriate to measurements on an ordinal scale. In particular, he introduced the

most commonly used ordered logit model: the proportional odds. The proportional

The format and style follow that of Journal of the American Statistical Association.



odds model is widely useful in practice because its interpretation is simple and it
has potentially greater power than multinomial logit models for ordered response
variables.

Much literature exists on approximations to the power and sample size of dif-
ferent statistical tests within logistic regression model (Mehta, Patel, and Tsiatis
(1984); Hilton and Mehta (1993); Lui (1993)). Whittemore (1981) considered sample
size approximations in the case of standard logistic regression with small response
probability. At present, sample size issues in ordinal logistic regression setting do not
appear to have been studied in depth in the literature.

Our research was mainly motivated by the need of statistical analysis of our
fire ant study. A study of the red imported fire ant mating flights is considered
because of its structure and environmental importance (Callcott and Collins (1996);
Greenberg, Vinson, and Ellison (1992)). The red imported fire ant is one of the
most destructive insects in the US due particularly to its ability to disperse through
mating flights (Porter, Bhatkar, Mulder, Vinson, and Clair (1991); Li and Heinz
(1998)). Understanding of environmental cues triggering mating flights would be
vital to a comprehensive control solution. The method of ordinal logistic regression
modeling is employed to identify environmental factors associated with mating flights.
Our statistical analyses indicate that ambient temperature, relative humidity, wind
speed, barometric pressure, change in the barometric pressure, and recent rain are
significant factors that trigger or influence fire ant mating flights. Rainfall one or two
days prior is almost a necessity for mating flights to take place. A drop in barometric
pressure, mild wind, temperature between 72-92 °F' (22-33 °C') and humidity 30-69%
are associated with high activity. Ordinal logistic regression is effective in identifying
environmental cues triggering fire ant mating flights. Identification of these factors

provides some important information about the reproduction process of the fire ant



and will help us devise a lasting control strategy.

There are two objectives in this dissertation. The first one is to suggest sample
size and power calculation methods for ordinal logistic regression to test statistical
hypotheses. The second one is to fit a suitable model and check the reliability of the
model using the red imported fire ant mating flights dataset. We will also apply the
sample size calculation techniques to the fire ant mating flights data set.

One reason for our sample size consideration is that the proportional odds model
is not a member of standard generalized linear models because of the multivariate
nature of the response variable (Halekoh (2004)). Thus, the previous approaches
(Self and Mauritsen (1988); Self, Mauritsen, and Ohara (1992)) for estimating power
and sample size calculation within the framework of generalized linear models may
not be suitable for ordinal logistic models. Therefore, we propose to develop sample
size calculation methods within the proportional odds model structure (McCullagh
(1980)). Such a sample size is needed to construct a test of hypotheses in ordinal
logistic regression having a desired power. Whittemore (1981) considered a test for a
single parameter with other parameters treated as nuisance parameters. Our approach
first extends Whittemore’s method in two directions within the proportional odds
model: (a) when the probabilities of response categories are small and (b) testing for
multiple parameters.

Another contribution of this research is to propose a method for the case where
at least one of cumulative response probabilities is not small. Furthermore, we sug-
gest an empirical method to calculate Fisher’s information matrix without using the
assumption of small response probabilities when a prior data set is available. The
results are compared with those obtained by the Monte Carlo method and those in
the previous literature.

The rest of the dissertation is organized as follows. In Chapter II, we introduce



the logistic regression model and give a brief background of sample size calculation
methods for the binary logistic regression. The concept of approximation by the
moment generating function is briefly reviewed. The sample size calculation technique
for the ordinal logistic regression is developed in Chapter I1I. We discuss the proposed
method used in hypotheses testing problems. In Chapter IV, a modification of the
sample size calculation for the logistic regression is introduced. We approximate
the sample size calculation method by using the moment generating function. Some
correction methods are also discussed to improve the performance. Furthermore,
some results of simulation studies are illustrated. The results are compared with
those obtained by Monte Carlo method and the previous literature. The design of
the fire ants mating flights data is described in Chapter V. Some concluding remarks

are given in Chapter VI. Some mathematical details are given in the Appendix.



CHAPTER II

LITERATURE REVIEW

2.1 Introduction

In this chapter we review the model and sample size calculation methods to test
hypothesis about a parameter. A brief review of the model and likelihood function
is given in Section 2.2. Sample size approximations and the closely related Fisher
information matrix for the estimated parameters in a multiple covariate binary logistic
regression are discussed in Section 2.3. That can be approximated by the augmented
Hessian matrix of the moment-generating function for the covariates. The power and
sample size calculations for generalized linear model are briefly reviewed in Section

2.4.

2.2 Model and Likelihood Function

For simplicity, in this research we consider the following proportional odds model

to a response variable which has the ordinal nature.
2.2.1 The Proportional Odds Model

Suppose that the k ordered categories of the response have probabilities 7 (),
mo(z), -+, mr(z) when the covariates have the value z. Let Y be the response
which takes values in the range 1,---,k with the probabilities given above, and
let x;(z) be the odds that ¥ < j given the covariate values z, that is k;(z) =
Pr(Y <jlz)/{1 = Pr(Y <jlz)}. Then the proportional odds model is defined in
McCullagh (1980) as

rj(z) = Kjexp(n'z) (1< <k),



where 7 is a vector of unknown parameters. The ratio of corresponding odds

Kj(2y)/kj(2y) = exp{n'(z, —zy)}, (1<j<k),

is independent of j and depends only on the difference between the covariate values,
Lo — Xq.

Since the odds for the event Y < j is the ratio v;(z)/{1—,(z)}, where v;(X) =
m(X) + -+ mj(X), the proportional odds model is identical to the linear logistic

model
log[y;(z)/{1 =@} = 0; +n'z (1 <j<k),
with 6; = logr;, so that the difference between corresponding cumulative logits is

independent of the category involved (McCullagh (1980)).

2.2.2 Likelihood Function

Let the response cell counts be {n;;} with row totals n;, ny and column or
category totals {n;}. Let R;; be the cumulative row sums, therefore n; = Ry, is
the ith row total. Under the assumption of multinomial sampling in each row, the
marginal distribution of R;; conditional only on the row total n; is binomial with
index n; and parameter v;;.

The contribution from a single multinomial observation (nq,--- ,ng) to the like-
lihood function is m{* - - -7 * with the probabilities 7;. Since we are dealing with

cumulative probabilities, we define

Rl = Ny,
Rg = N + Nna,
k

R, = an:n.

J=1



In terms of the parameters of the cumulative transformation, the likelihood can

be written as the product of k — 1 quantities (McCullagh (1980))
() (52 HE) (=) )
72 V2 73 73
y { ('Vk—l)Rkl ('Vk — e ) Rk—Rkl}
Tk Tk

These factors are respectively the probability given R, that the first two cells divide

in the ratio Ry : Ry — Ry; the probability given R3 that the proportion in cell 3 relative

to cell 1 and 2 combined is Ry : R3 — Ry and so on for the other components.

2.3 Sample Size Approximations

In this section, the approximation method of sample sizes needed to test hypothe-
ses about 7; with specified significance and power is given against given alternatives
in the case when the probability of response is small in standard logistic regression
(Whittemore (1981)). The calculations are based on a simple closed-form approxima-
tion to the asymptotic covariance matrix of the maximum likelihood estimates. We

deal with studies in which a random sample is drawn from the joint distribution of

(Y, X), where

e Y is a binary response,

o X'=(Xy,---,X;) is a vector of covariates.
Assume that

e Pr(X) is the conditional probability of response given X = z, that is, Pr[Y =
11X = z],

e logitPr(z) = 0, +n'z.



For a given sample size n the likelihood of the observations v, 2, v =1,--- ,n
is

L(6y,n) Hf ()1 = p(a®))

where f(z) is the joint p.d.f. of x and it depends on none of the unknown parameters,

01, n. If the logistic model is valid, the maximum likelihood estimates él,ﬁ satisfy

(élvﬁ/> ~ N((elvﬂ/)v I_l(elvﬂ/))

approximately. The (i, j)th entry of I is

B [02logL]
on;On;

(2.1)

691+QIX

(1 +661+g’§)2
where 4,5 = 0,1,...,8, no = 61, and Xy = 1 and X' = (Xy,---,X). When the

conditional response probability p = Pr(X) is small, use of the binomial expansion

(1-p)'=14p+0(p?) in (2.1) gives
Iij = neelE[XineQX]. (22)

Let m(n) = E (e”X) denote the moment-generating function of X, with m; =
om/on;,i=1,---,sand m;; = *m/On;0n;, i,j =1,---,s. We extend this notation
by defining my = mgpo = m, and mgy; = m;o = m;, i = 1,---,s. Then (2.2) can be
written

I; = ne”my;(n), i,j7=0,1,---s. (2.3)
To express (2.3) in matrix form, let m™ denote the s-dimensional column vector of
first partials of m, and let m® be the s x s Hessian matrix of second partials of m.
We define the augmented Hessian of m to be the (s + 1) x (s + 1) matrix H defined
by



This enables us to write (2.3) as
1(61,1) = ne H ), 2.4)

Thus, the asymptotic covariance matrix of the estimates él, ﬁ' is approximately

[ne® H(n)]~! and the asymptotic variance of 7, is

var(7;) ~ (ne‘gl)_lv(ﬂ), (2.5)

where v(n) is the second diagonal entry of H~'(n).
To estimate the sample size needed to test at level o, with power> 1 — 3, the

hypothesis 7; = 0 against the alternative 1, = 7;, We use the approximation (2.5).
ne® > [0'2(1°)za + 0! ()25 /07, (2.6)

where n° = (0,m2,...,m5)", 1 = (71,m2, ..., M), and 2 is the 100(1 — ¢)th percentile

of the standard normal distribution.

2.3.1 The Multivariate Case

From the definition of H(n), we can derive the second diagonal entry of H(n) ™"
When the distribution for X is of a general multivariate exponential type, we can
estimate the sample size needed to achive a given power and significance level for
tests about 7;. The moment-generating function for X is of the form (Bildikar and

Patil (1968))

m(t) = e‘](ﬁ-ﬁ-i)-‘](f)’ (2.7)

where r is a vector of parameters and ¢ is a real-valued function of s variables whose
Hessian matrix of second derivatives exists and is positive definite. The mean of X is
given by the vector gV (r) of first partials of ¢, evaluated at r, and the variance of X

is given by Hessian g (r). (A.1) (in the Appendix A) shows that v(n) is e?®)~7F2)
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times the first diagonal entry of the inverse of q, evaluated r + n:
v(n) = "7 (x4 )] (2.8)

2.4 Power and Sample Size Calculations for Generalized Linear Models

A sample size and power estimation is described within the framework of gen-
eralized linear models (Self and Mauritsen (1988)). This approach is based on the
score test under contiguous alternatives and is applicable to tests of composite null hy-
potheses. Commonly used test statistics can be derived as score statistics from within
the framework of generalized linear models (GLM). In the GLM independent scalar
response variables, Y7, --- Y, are assumed to have probability density functions of

the form (Gart and Tarone (1983))
exp[Y;f; — b(6:) + c(Yi)], (2.9)

where the canonical parameter #; has a relationship with the expected value of Yj,
w; = b'(0;), where b’ denotes the first derivative of b. The u; is related to linear
predictors, 6;, by the link function g in the expression 7; = g(u;). The 6; are assumed

to have the following linearly parameterized form
0; = Zb + X\, (2.10)

where Z; is a p-vector of covariates, X; is a g-vector of covariates, and ¢ and A repre-
sent the associated unknown regression coefficients. We want to test the hypothesis
1 = 1)y while treating A as a nuisance parameter. The score test is based on the
statistic Sy (¢, 5\0), where )\ is a solution to the equation S,(1p, A) = 0 and S,
and S, represent derivatives of the log-likelihood function with respect to ¥ and A,
respectively. The test statistic is a quadratic form in S,y (1o, 5\0) and is referred to
its asymptotic distribution under the null hypothesis, which is a central chi-square

distribution on p degrees of freedom.
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2.4.1  An Approzimation to the Power of the Score Test

The score test statistic is computed as the quadratic form

T = Spy (0, o)V Sy (Y0, Ao), (2.11)

where V,, represents an estimate of the covariance matrix of S, (1o, Xo). In order to
approximate the distribution 7,, under alternative hypotheses, the limiting destribu-
tion of Sy (%o, 5\0) is described. Note that \g is generally not a consistent estimator

of \. It converges to some value A\j which is defined as the solution to the equation
iMoo E[Spy (10, A)] = 0. (2.12)

Taylor series arguments are used to obtain an approximation to S, (o, 5\0) for which

the error is O,(n™!). This approximation is given by

Sm/f(%a 5\0) ~ Snw(d% )\3) - I;¢A[;AA_1Snw(1/f0, )\3)7 (2-13>

where I\ and I}, represent elements of the expected information matrix evaluated
at 1o and Aj. Let &, and X, denote the mean and covariance matrix of (2.13),
respectively.

Based on the limiting normality of S, (o, Xo) the distribution 7T, is approximate
by a chi-square distribution on p degrees of freedom with noncentrality parameter,
Vn, given by

EnZn En- (2.14)

In the special case of generalized linear models, the form of S, and S, implied by

(2.11) may be used to write expression (2.13) as

n

Z[Yi — (o, A A ZT, (2.15)

i=1
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where A; is the first derivative of 6; with respect to n;, Z; represents Z;— I\, I . ¢
and p; is written to show explicitly its dependence on ¢ and A. It follows that the

expected value, &,, and covariance matrix, ¥, of (2.13) are given by the expressions

n

> (0, X) = i, A A Z; (2.16)
i=1
and
S ule NAZ 77 (2.17)
i=1

where v; (¢, \) = var(y;).
2.4.2  An Implementation

Self and Mauritsen (1988) made the simplifying assumption that all of the co-
variates in the model are categorical. As the first step in the calculations, values for
the parameters ¢, A, and {II;;i = 1,--- ;m} are specified. If the average response
is specified in addition to the regression parameters, then the intercept parameter in

the model is found as the solution to the equation

H= Zﬂiﬂi(wak)a (2.18)

where i denotes the population mean response. If parameter values for ¢» and X are

chosen, Aj is computed as the solution to the equation

m

Z IL[ps (¥, A) = pa(o, Ag)] A X = 0. (2.19)

i=1
Solving equation (2.15) is equivalent to fitting the null model in a weighted analysis
where the data are taken to be u; (1, A);i =1,--- ;m}. In a case of logistic regression,
the response variable, Y;, follows a Bernoulli distribution with probability of response
(11)

. In order to compute the
(1 — pa)

i~ The link function is the logistic function log
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intercept parameter given values for the other parameters and a value for the overall

probability of response, equation (2.15) is solved with the iteration scheme

o= Z IT; i (1, A
i—1

B Xm: o exp(a + Zlv + X!)\)

2T oxplat 20+ XN

= exp(Zi + X!)\)
== Hz 9
exp(@) ) Ty expla+ 2 + X/N)

1=1

and

= exp(Zi + X[\)
=1 —1 I1; .
o8l og{; "1+ exp(at=1 4+ Zly + X[N)

The main emphasis of the paper (Self and Mauritsen (1988)) in this section
is estimating sample size within the framework of GLM. However, as mentioned in
Chapter I our ordinal regression study does not appear to be suitable, but the score
test method can be applied to improve our approximation methods by contiguous

alternatives.
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CHAPTER III

ORDINAL LOGISTIC REGRESSION

3.1 Introduction

As discussed in Chapter I, sample size issues in ordinal logistic regression setting
do not appear to have been investigated. In this chapter we introduce a sample size
calculation method for ordinal logistic regression by the large sample properties of the
maximum likelihood estimate. In Section 3.2, the ordinal logistic model is mentioned
again. The likelihood function of the ordinal logistic regression and a brief review of
the maximum likelihood estimate are given in Section 3.3. To obtain the asymptotic
variance, the derivation of the Fisher information matrix is given in Section 3.4. The
sample size calculation for the ordinal logistic regression to test the parameters is

given in Section 3.5.

3.2 Model

We deal with studies in which a random sample is drawn from the joint distri-
bution of (Y, X), where Y is an ordinal response and X' = (X7, ..., X,) is a vector of
covariates. Let 7,;(X) denote the classification probabilities Pr(Y = j|.X) of response
variable Y, 7 = 1,2,...,k at value X' = (X1, Xs,..., X,) for a set of explanatory
variables X1, Xs,..., X,. Here our interest is centered on the problem of relating
' = (m(X), m(X),...,m(X)) to the predictor X.

Since our response categories have a natural ordering, logit models should utilize
that ordering. We use the proportional-odds model that is described below. The

ordered multiple response models assume the relationship

logit[Pr(Y < jlX)] =0;+nX, j=12,... k-1
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where 0 is a vector of the intercept parameters and 1’ = (11,72, ..,7s) is the slope
parameter vector not including the intercept term. By construction, 6; < 6,4, holds.
This model fits a common slopes cumulative model that is a parallel lines regression
model based on the cumulative probabilities of the response categories.

Let 7;(X) = m(X)+. .. +7;(X). Then 7 (X) = m(X), 12(X) = m1(X) +m2(X),
and y,(X) = m(X) + ...+ m(X) = 1. The ordinal logistic regression model in our

setting is given as follows:

logit(y1) = 10g<1 %7 ) =01+ mX1 +mXe + ...+ 15X,
- n

logit(vs) = log(1 727 ) =0y + mX1 +mXo+ ... + 10X,
- )2

logit(yx—1) = 10%(%) =01 +mX1 + X0+ ... + 1. X,,
— Yr-1
where
€6j+ﬂ/£
Yi(X) = m(X) + m(X) +... +m(X) = T3 X j=1..., k=1, (31)

and v, = 1. This model is known as the proportional-odds model because the odds-

ratio of the event (Y < j) is independent of the category indicator.

3.3 Likelihood Function

When more than one observation on Y occurs at a fixed z(*) value, it is sufficient

to record the number of observations ngv) and the number of “j” outcomes, for j =
1,....k. Thus we let Y® refer to these counts rather than to individual binary
responses. The {Y") v = 1,...,n} are independent multinomial random variables

Y® ~ multinomial(ngv), . ,n,(:)) with E(Y®)) = ng.v)vj(z(”)), where n§”) +...+



n,(:) = 1. We define

Ry

Ry

16

Since we are dealing with cumulative probabilities, in terms of the parameters of

the cumulative transformation, the likelihood can be written as the product of £ — 1

quantities. The joint probability mass function of (Y7,...,Y,) is proportional to the

product of n multinomial functions.

3.5.1 Likelihood Function

For a given sample size n the likelihood of the observations y™, 2" v =1,...,n

18
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where f(z) is the joint p.d.f. of z.

unknown parameters, (€', 7').

FE) fy™1z™)

Fy ")

)ﬁ>< NQ %M)Rﬁ—ﬁm}
7
D)
75"
) ;>1<7(v) %(gu)l)Rliv)_Rli’”l} 52
s | |

It is assumed that f(z) does not depend on

(U) _R(U)

If the logistic model is valid, the maximum likelihood estimates é,, ﬁ/ satisfy

é,ﬁ/ ~ N((Qlaﬂ,)> I_l(Q,aﬂ/))
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approximately.

3.4 The Fisher Information Matrix

To derive the information matrix, we have the following derivations. First, the

log-likelihood is

log L

Since

n

= > {leog(%l) + (Ru2 — Rut)log (o2 — 7e1) — Ruzlog(ye2)

v=1

+Ry2log(ve2) + (Ruz — Ry2)10g(7Ve3 — Yu2) — Ruslog(yes) + - ..

+Rv,k—110g(711,k—1) + (Rv,k - Rv,k—lﬂog(f)/v,k - 7@,16—1) — Rv,klog(VU,k)}

n

- Z {valog(’}/vl) + (RU2 - va)IOg(’YUZ - ’Vvl)

v=1

+(Rv3 - Rv2)10g(%3 - 71)2) +...+ (Rv,k - Rv,k—l)log(’}/v,k - Vv,k—l)}

n 661+Q/£u
= Z {valog<1 + 691+77/£u)

v=1 0otz ez,

+(Ryo — va)10g<1 + o2z, o 1+ 691"‘2'%)
efatn'z, ef2tn'z,

+(Ry3 — Ryo)log <1 +oefstrz, 4 ee2+"’£u>

69k71+2,§v
+...+ (Ror — Rv,k—1)10g<1 - W) }

et2tn'z, ez, ettn'z, _ bitn'z,
08 Ootn'z, 01+n'z - log O2+n'z 01+n'z
14 e?E ] 4 1T (14 €T (1 4 T2
/
el Zy (692 —01 )

(1 + 6624—@’@”)(1 + eﬁﬁ-g’zv)’

= log



the log-likelihood function is

log L = i {Rm <91 + 'z, —log[l + 691—'—2,%])

v=1
+(Ry2 — Ri1) (ﬂ/% + log(e? — %) — log(1 + e”T7'2v) —log(1 + 691+g'%)>
R = o) (12, + 0g( = %)~ og(1 + €71%) — g1 + 4772 )
+...— (1 = Ryp—1)log(1 + 69k1+n’£v)}.

From this log-likelihood, we calculate derivatives

dlog L - ez,
= Ra(l— ——+—
00, Z { L ( 1+ ez,

v=1

et htn'z,
+(Rv2_Rv1>< )}7

I e e

8210g L " eeﬁﬂlzv 691+92
6‘9% o Z { — Ry (1 4 691+ﬁ’zv>2 - (RU2 - RUI) (602 — 601)2 }’

v=1
a2log L n €€1+92
= Ry — Ryt)————— .
891892 UZ:; {( 2 1)(692 _ 691)2}
9?log L
89169] ! J ) ) 3
PlogL [ o Xy
891077] o = v2 (1 + 661+Ql£v)2 ) ] = 4,..., ,

Olog L - efi editn'z,
092 - Z {(Rv,i - Rv,i—l) (69

- i — ebi-1 N 1+ elitn'z,
V=

0; 0i+n'z
e Vi T Ly
+(Ryiv1 — Ru,i)( - ) },

— €9i+1 _ 691' 1 + eei-i-ﬁlzv

2 n 0i+n'z,
a;)T?L = ; { — (Ryit1 — Ru,i—1)(1fe@m
pditbio Dit0it1
(Roi — Ryi-1) (Vi — ehi1)? — (Ryiy1 — Rv,i)m}>
1=2,....k—2,
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8210g L n €€i+9i*1
= vi— Ryil)——F =S¢, 1=2,...,k—1,
00;00,_, ; {(R i Buin) (ef — eeil)z} t

9?log L
=0 =7 =2
goop, O lmdl=2

Plog L X i+,
== _Rvi _Rvi— < 7 3 .:27"'71{‘1_27
90,1 Z { (Ruita i-1) (1+ Sditn 2,2 } t

v=1

8log L n eOk—1 efr—1tn'z,
a@k_l = ; {(Rv,k—l - Rv,k—Q) <69k1 — ePr—2 - 1+ eek*1+ﬁ,§v

er—1tn'z,
_(1 - Ry,k—l) <1 + e9k1+?7’£u) }7

efr—1+0k—2

-1 — _
(9k1 69k2>2

69k,1+ﬁlﬁu
—(1 - Ry,k—?) (1 + eek,1+g’zv)2 }’

Plog L
02, = Z { — (Rop—1 — Rop—2)

v=1

?log L - X efe-1tn'z,
a0 o, —(1- RU — - 7 P
89k_1877j ; { ( ok 2) (1 + 69k71+ﬂ 2U>2 }

dlog L - X, ez,
o~ 1{R“ (X‘HT T (Roz = Fo)

01+n'z, 0o+’
X X._Xvielﬁz”_Xvi€2Q£” n
S IO IO

X, el
(1= Royn) ( - —) }

1 4 frrtne,

v=

and

Olog L z": . _XvinjeelJrﬂ@u
omidn; v (14 efrtne,)?

v=1

XUinj 661+Elz” Xm'XUj 662 +Q,£“
+(Rv2 - va) ( - (1 + 691+Q1£U)2 - (1 + 692+Q@u)2

X i Xjeln-1tne,
+...+(1—Rv7k_1)<— i )}

(1 + efsrtne,)?




20

Thus, the (i, 7)th entry of the (k+s—1) x (k4 s — 1) Fisher information matrix [ is

2
I - —E[8 logL]

962

014"z

where
F(w, B) = f(Rlo)f(2),
Bl(OMR) = [ [ aCOnR) (e R
= [ [ sOn(R) F(Rla) @i
= [os@{ [ nmsrio} i
BRI == — Ry == O

(1 + 691—1—2’2)’ (1 € e€z+g’£)’

691+Q'£ 691+Q'£
Vo) = [ e R i

692+Q’£ 691+Q,§
— L (1 + 6924—2/2) (1 + 691+ﬂl2)2f(x)dx'

By using these

ehtn'z ef1+02
Ill = nE Rg

(1 + )2 + (R =~ Ry (92 — ef1)2

etz ehtn'z
= nE e T
(1+ P2F02) (1 1 hHuz)e

etz ehtn'z ef1+062
+nkE o T
(1 4 ef2tn z) (1 + efhrtn Q) (

ef2 691)27
[ - etz ehtn'z etz
TRV By T (14 Py [ (e — ey

O2+n'z

e 691+ﬂ'2 .
I k-1 = ”E{XJ’(I + ) (1 4 itz }’ J=1.s




9?log L
o= o

69i+1+ﬂl2 60i*1+ﬁl§ eé)ﬁ-ﬂ’g
- nE{ <(1 +eltrn) (14 69“”@)) (1 4 elitn'z)2

eeri—g’z 69"*1—’@/& elitbi-1
((1 + eei-iﬂ’z) - (1 + 69i1+n’£)> (eei — 69’“1)2

69i+1+ﬁ'£ €9i+Q'£ elit0it1 )
((1 + e@i+1+ﬁ’£) - (1 _|_ e@i‘f‘ﬁlm)) (697;+1 _ 697;)2 }’ 2 S L S kj - 27
0;+n'z Oi—1+n'z 0;+6; 1
e M e A e .
Lijor = —nE((l T T Ty egiﬁﬁ,m)) g 2SSkl

=0, if|i—j|>2andi,j=1,...k—1,
Oit1+n'z Oi1+n'z Oi+n'z
e q e q e’itl
Lijir—1 = nE{Xj<(1 + el - (1+ 69i1+g’r)) (1+ 69i+g’w)2}’
ifi=2,....,k—2and j=1,...,s.

eOr—1+n'z eOr—2tn'z k110K 2
Iy1p-1 = nE{ ((1 + Or1te) - (1+ e€k2+77’m)) (efk—1 — ePr—2)2
elr—2tn'z elr—1tn'z
+<1 - (1 + e%z-ﬁ-n’z)) (1 + 69k71+Q’£)2 }’

eOr—2tn'z efr-1+n'z .
Ik—17j+k‘—l = TLE{X] <]- - (1 + 66k2+77/£)) (1 T eek*1+ﬁ/§)2 }a ] = 1, e, S,

and

Livh—1j4e—1 =

B {8210g L}
On;On;
6914—2,& 662-’_2,£
= nE{X,-Xj {’VQW + (73 — ’Yl)m

69k71+ﬂl2
+ ...+ (1 - %—2) (1 + 69k1+n’r)2} }

el tn'z ethitn'z
= ’N,E{XZX] [(1 + 602+El§) (1 + 661+Ql£)2
( elstn'z ehtn'z ) eletn'z

2 7 7
1+693+gg 1+691+gg 1 +692+gg)2

eOr—2tn'z eOr—1+n'z
+oot (1 - 1+ €€k2+g'r) (1 + 69k1+ﬂ/$)2:| }’

ij=1,...,s.

21
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The estimated asymptotic covariance matrix of the estimates (é’, n)is I _1(é’, 7).

3.5 Sample Size Calculations

The goal of a sample size calculation is to obtain a sample that is just sufficiently
large enough to be confident of being able to obtain an inference with required preci-
sion. It is very important because it is directly related to the cost and time involved
in a survey or data collection.

Consider the problem of testing the null hypothesis Hy : n = 0 against the
one-sided alternative Hy : 7 = 7 to test at level a with power > 1 — 3. When the
distribution of 7 is treated as normal with mean 7 and variance o2. The critical region
is

ﬁ>za<%), if 7> 0,
h< —2 <ﬂ> if 7 < 0,
vn
where z, is the 100(1 — «)th percentile of the standard normal distribution. The

sample size n will be found so that the test has a specified power 1 — (3 at the

alternative H, : 7 = 7). The sample size n is thus chosen so that

Pr(ﬁ>za(%) Im=n>0,0=0,)=1-0
or
0o

Pr(n < —z, <\/ﬁ

)\n:ﬁ<0,a:aa):1—ﬂ.

This can be rewritten as

g0 n 1 p o~
1 (I)(Zaaa aa/\/ﬁ)_l G, if n >0,

and

00 7 e~
S|—2p,————|=1-03, if .
(zo_a aa/\/ﬁ) G, ifn<O0



23

If > 0 and an approximate n, a solution of the above formula satisfies

o) n
Zog— —

= —25.
0o Ou/\/n 7

On the other hand, if 77 < 0, a solution of the above formula satisfies

0o Ul

—Zao_—a — W = Z3-

Then

. (2000 + 2504)*
— = :

for both cases (7 > 0 and 77 < 0).

Now, let us consider testing for multiple parameters. We wish to test the hypothe-
sis Ho:n, = 0against Hy : g, =1n,. Let ' = (m1,....n5) = (. my), 0 = (- mp),
and 1, = (Mp+1,--..,7ms). It is equal to test the hypothesis Ho : An = 0 against

Hy : An = A7. Since the maximum likelihood estimates satisfy

>
S

é = a ~ Nk+s—1 ) I_l(?)

3>
B

asymptotically, where
1(00) 1(0n)

I(nd) I(mm)

Then the maximum likelihood estimates of 7 satisfy

I(¢) =

iy~ Ny(n AL () — I(0)I(09)~"1(0n)} )

and

Ay =17, ~ Ny, AU () — T(n0)1(00) " 1(0m)} " A"),
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where _ -
10 0] 0 0
01 .0 10 0
A= (Ipxp’ OpX(s—p)) = |
00 .10 ...0
L - pxs

Let 1 = n=1{I(nn) — I(n0)1(06)~11(0n)}~*. Then, the sample size needed to

test at level a with power > 1 — 3 is

2
n > { Fa/2 + 2 } : (3.3)
JTAAI®A) AR [if (AT A1) A7

where z. is the 100(1 — ¢)th percentile of the standard normal distribution.
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CHAPTER IV

METHODS FOR SAMPLE SIZE CALCULATIONS

4.1 Introduction

To calculate sample size, we used the Fisher information matrix as a covariance
matrix in Chapter III. There are many different ways to calculate the Fisher informa-
tion matrix for the estimated parameters in an ordinal logistic regression. The main
issue in this chapter is the integration for each component of the Fisher information
matrix.

As one of the calculation methods, the Fisher information matrix can be ap-
proximated by the moment-generating function. The approximation is valid when
the probabilities of response categories are small. In section 4.2 we use the approx-
imation method to calculate the required sample size to test at level «, with power
1 — 3, the null hypothesis n , = 0. That approximation uses the first term of Taylor’s
expansion and it contains some sources of error. To reduce the error, we consider
corrections and such methods are provided in Section 4.3 to Section 4.5. When the
probabilities of response categories are small, the first two terms of Taylor’s expansion
can be considered as a correction method and it is provided in Section 4.3. If the prob-
abilities of response categories are not small, the error of the approximations above
are not negligible. For that reason, another correction method is proposed in Section
4.4. In Section 4.5 we use the empirical method to improve small sample problems.

In addition, simulation results for suggested methods are presented in Section 4.6.
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4.2 Sample Size Calculations with Small Response Probabilities

4.2.1 FEzxpansion of functions in power series: Taylor series

Suppose that f(x) and its derivatives f'(x), f"(x), ..., f™(z) exist and are
continuous in the closed interval a < x < b and that f (”“)(z) exists in the open

interval ¢ < x < b. Then

" (n)
f(z) = f(a)+ f'(a)(x —a) + fQ—(ﬁ)(z —a)P+...+ f n'(a) (x—a)"+ R,, (4.1)
where R,,, the remainder, is given in either of the forms
_ f(n—i-l)(é“) n+1 )
R, = m(m —a)"m, (Lagrange’s form)
(n+1)
R, = fi(a(x —&)"(x —a), (Cauchy’s form)

n!
where &, which lies between a and z, is in general different in the two forms (Spiegel
(1974)). As n changes, £ also changes in general. If for all z and ¢ in [a, b] we have

lim,, .o R, =0, then (4.1) can be written

F@) = @) + Fa)e—a) + D0 @ a2 4

f(a)

a0 (x—a)+..., (4.2)

which is called the Taylor series or expansion of f(x). In case a = 0, it is often called

the Maclaurin series or expansion of f(x). We use the following expansions:

e Maclaurin expansion of f(z) = z/(1+ 2):

f0) 5, f0) 5

f(z) = f(0)+f'(0)z+Tz R
= 04+z—224+22+...

_ Z(—l)v+12v,

v=1



27

e Maclaurin expansion of g(z) = z/(1 + 2)*

9"(0) 5, g9(0) 4

g(z) = ¢g(0)+4'(0)z+ 254 ="

21 3!
= 042—-2224+33+ ...
= Z(—l)”“vz”.
v=1

. . . . . /
Useing the Maclaurin expansion in power of %7 leads to

e X - +1f 00 X
e G ey
(1+ eoﬁﬁ'&) —
and
elitn'X °

. w41 0i+n' X w
(g omrm = 2D el

w=1

Let m(n) = E[e”¥] denote the moment-generating function of X, with m; =

om/on;, i =k,....k+s—1and my = 0*m/On;On;, 1,5 =k,...,k+s—1. We extend
this notation by defining mg = moo = m, and mgo; = m;o=m;, i =k,...,k+s—1.
When the probabilities of k — 1 categories of response are small for likely x,

elitn' X

_ 040X 20
m—€] 1 +O(€ ]).

Then,
- B 9?log L
- el tn'z fhtn'z,
- n ! !
{ (1+ ePT2) (1 4 e in'ze)2 }
ef2tn'z ehtn'z el +02
E 7 - 7
+n { (1 + 692+g z) (1 + 691+g z) } (662 _ 661)2
6146
= n{E(e”2) — E(eeﬁﬂ/z)}i6 e + O(e%?)
(602 _ 691)2
691-1—92 0
— 2
- n(692—691)m(ﬁ)+0(6 )7
691+92
L = —n m(ﬂ) + 0(6202)7

(e =)
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Lj=0("), 3<j<k+s—1,

0 691'71 €9i+1 N
Jp— i " . -
I;; = ne {(eei b + (0 — o) } m(n) + O(e™*), 2<i<k-—2,

€€i+€i*1
Lijio1=—n {m} m(n) + o), 2<i<k-1,

Ii,j:O(ewj), ifj—et>2andi,j=2,...,k—1,

L;=0(), ifi=2... k—2andj=Fk,... . k+s—1,

626.1671

[k_l’k_l = { (eekfl — 691#2) } m(ﬁ) + 0(6201#1)7
Lot jik-1 = ne™my(n) + O(e**1), j=1,....s,

and

Liviot -1 = ne*my(n) + O(e¥1), i, j=1...,s.

To express I;; in a matrix form, let m® denote the s -dimensional vector of first
partials of m, and let m® be the s x s Hessian matrix of second partials of m. We
define the augmented Hessian of m to be the (k+s—1) x (k+s—1) matrix H defined
by

m(ﬂ)cll Czlm(l)/(ﬂ)
m®W(n)Cy  m®(n)

where C/21 = (0, ceey 0, 1>1><(l~c—1)7

[ C11 C12 e Clk—1 ]
Coy — Cfl 0?2 . 027;?_1 |
i Ck—1,1 Ck—12 -+ Ck—1k-1 i
cij =0 (f i —j[ > 2), en = 66k5?210:€i)601)’ Cisi—1 = —eekfi;jei;)gil), Ciiy =
(€6i+0¢71) (eeﬁeiﬂ) 69’“*1

(i=2,...,k—2),and ¢x_1 -1 =

k-1 (€9i _ 691'71) 691“*1(69”1 _ €€i) -1 — efr—2’
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If kK =2, then ¢;; = 1. This enables us to write [;; as

1(0,m) = ne’-1H (8, 1). (4.3)

Thus, the asymptotic covariance matrix of the estimates é/ = (él, ﬁ') is approximately
[ne 1 H (0, Q)]_l. We first consider testing for one parameter. In particular, the

asymptotic variance of 7; is

var(iy) == (ne’=*) " v(n), (4.4)

where v(n;) is the k™ diagonal entry of H~'(0,n). We use the approximation (4.4) to
estimate the sample size needed to test at level a, with power> 1 — 3, the hypothesis

n = 0 against the alternative 17y = 1; > 0. The approximated sample size, n, satisfies
et > [v12(0)zq + v () 25)% /77 (4.5)

where v(0) is the £ diagonal entry of H=1(0y,...,0,_1,0,1,...,10s)", v(17) is the k"
diagonal entry of H=1(61,...,0k_1,71,M2,...,ms), and z. is the 100(1 — c)th percentile
of the standard normal distribution. In particular, when there are only two response

categories, the Hessian of m to be the (s + 1) X (s + 1) matrix H defined by

m m
H(f,n) = :

B m® m®

and (4.5) reduces to the binary logistic case (Whittemore, 1981), as expected.
When the distribution for X is of a general multivariate exponential type, the

moment-generating function for X is of the form

m(t) = exp{q(y +1t) —q(7)}, (4.6)

where 7 is a vector of parameters and ¢ is a real-valued function of X variables whose

Hessian matrix of second derivatives exists and is positive definite. Let q™ denote
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the s-dimensional vector of the first partials of ¢, and let g be the s x s Hessian

matrix of the second partials of g. Then

m™ = q(y +1) x m(8)

and
/
m® = [qV(y + 1) (3 +8) +q® (3 + O)]m(t).
Then the asymptotic covariance matrix of j’l = (11, ...,7ns) is approximately
(nek_l)_l [H(Q> ﬂ)]2_21’
where
Hll H12
H'=
H21 H22

and [H(0, 7)) = H** (See Appendix A).
For binary response variable with one covariate which has a standard normal
distribution, the approximated sample size for desired power 1 — 3 is

- (20 4 25/

n
)
nert

For a response variable with three categories and one covariate which has a
standard normal distribution, the approximated sample size for desired power 1 — (3
is

(20 + 25 T/4]2

=
nie’

Let us now consider testing for multiple parameters. We wish to test the hy-
pothesis Hy : 1, = 0 against Hy : n, = n,. Let ' = (m,....ns) = (n,n),)
;1 = (myeoymp)s and 0 = (Mpy1,.--,ms). It is equal to test the hypothesis
Hy : An = 0 against H; : An = Af. Then the maximum likelihood estimates
satisfy

Afy =13, ~ Np(n,, (nef=H1AH?A')
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asymptotically, where

1 0 .0 | 0 0
01 0 | 0 0
A= (Ipxpv OpX(s—p)> = |
00 .1 | 0 ... 0
L - pxs

The estimated sample size needed to test at level a with power > 1 — (3 is

2

P SV ST D
\/Q/A'(AHgZAI)—lA@ \/ﬁ’A’(AHfQA’)—lAﬁ

where z. is the 100(1 — ¢)th percentile of the standard normal distribution.

As an example, for a response variable with three categories and two covariates

which have a joint normal distribution,

0 10
X ~ N,

0 01

the approximated sample size to test the hypothesis ' = (11,72) = (0,0) against the

alternative Q’ = (m,m2) = (71, 72) is
6 ~9 | =2 I AN
ne’ =Nz [T B+ 2 [ [exp (T (7§ +713)

1 ﬁ%+ﬁ§) r
= = — za+exp<— Z
n%+77§[ 4 ’

For a response variable with three categories and s covariates which have a joint

normal distribution,

>
2
=
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the approximated sample size to test the hypothesis

77/:(77177727---7773): (0707”‘707771?4-17”'77]8)

against the alternative

77/: (7717/)727"'7778) - (77/1777]29'"7ﬁpanp+l>'--ans)

is
= i=pt1 7 /2 1 p 2
ne® > € pp —— | 2a 1+ 23€Xp <_Z Z ﬁjz» : (4.8)
j=1"1j =1

since H? = e~ {'=0/2+'mbyi=1 (Appendix A),

p
\/ﬁ’A’(AngA’)—IAﬁ = | g nd)/2 Z ﬁ?a
=1

and

p
\/ﬁ/A,(AHsz/)_lAﬁ — 6(25):1 f]z'2+2'?:p+1 772‘2)/2 Z 77/)2

j=1
Thus, the approximated sample size to test the hypothesis " = (1, 12,73) = (0,0,73)
against the alternative o' = (11,72, 13) = (71, 72, 13) is

/2 2 s\ 12
ne? > =5 |%a T €XD _InT Z3
7+ 13 4

4.3 A Bias Correction

In this section we will consider the error in the sample size approximation and a
correction is presented for situations when the approximating is not good. If we add

one more term for the approximation,

elitn'X

. ’ . ’ .
m = X g 204X | O(e30),

It follows that

691 +02

G ) = 26 m () + O,

]11:71,
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€9i+9i71 _ . . -
L1 = —nm{m(ﬂ) — (e + 66”1)m(2ﬂ)} + 0, i=2,... k-1,

I;=0, ifli—j|>2andi,j=1,...,k—1,
[l,j—l—k—l = n€€1+92mj(2ﬁ) + 0(6302), j = 1, oS,

elitti—1 0.
69i+9i+1

7692‘){7%(@ — 2€6im(2ﬂ)}:| + 0+, =2 ... k-2,

+n |: (60i+1 _

L jyror = n(e" 0 —e" 0 ym )+ 0(e¥ ) ifi=2,... . k—2and j=1,...,s,
6201671

(69’“1 — 691“*2)

Liy jnor = ne” 1 {my;(n) — (26" +€%2)m;(2n)} + O(e™ 1), j=1,....5,

[k—l,k—l =n

() — 26 (2} + (),

and

Livg—1 k-1

B [02log L]
OniOn;
= e myy(n) — 2% my (20)} + O(), Q=1

To express I;; in a matrix form, we define the augmented Hessian of m to be the

(k4+s—1)x (k+s—1) matrix H* defined by

m(2ﬁ)A11 Azlm(”’(%)

H*(¢) = H(¢) — B )
m®(2n) Ay 2™ m® (2n)
where
1
Ay = = (0 (= ), (e )
dll d12 ce dl,k—l
d21 d22 cee d2,k—1

All == )

dip—11 dig—12 ... drp—1-1
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20; 0;_1 0i11

e’ e’ e’ t
diy; = 2 1i=1,...,k—2
K ee—1 | ebi — ebi—1 + eliv1 — ebi |’ ’ ’ ’

66i+0i—1 (69i + 691'71)
efr—1 (69i — 662'—1) !

diji-1 = —

626.1671

and dy_q1 1 =2——m——.
k—1k—1 N

4.4 Sample Size Calculations with General Response Probabilities

In many cases with more than two response categories, we have several response

probabilities which can be small or large. In this case,

) XS DT o<

(1+2) S (=) i < 2 < oo,

and it is simply approximated by

pbitnz elitnr 1 O(e20), if 0, + nz <0,

0;+nz
14 efm e~ Oitne) 1 O(e=4), if §; +nx > 0,

0 [%

where e” is small when 6; + nx < 0 (or e% is small when 6; + nx > 0). For
example, there is a response variable with three categories which has small response

probability for the first category and large probability for the sum of two categories,

] €€1+7]:c eGg—i—nx
l1.e., W < 0.5 and m > 0.5. Then
661-1—7790

_ 014z 20
(1+691+nx>2 = ¢! i +O(€ 1)7

and

ef2tnz

e (¢ 1) —26
15 ) = e 2T L O(e™2).
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0 61+ et
~ —b2=nT) _ iTnry\y . -
Ill ~ n{E(e ) E(e )}(692 _691)2
ef1+02 o 0
= ”m{e *m(—n) —e"m(n)}
]12 ~ —IH, 113 = 0, 122 ~ ]11 + n6_92m(—7]), IQ3 = ne“gzml(—n), and 133 =

ne~%my;(—n). Then

m(—n)
ne—92 {m(—ﬁ)mu (—77) —my (_77)} .

var(n) ~

If X ~ N(0,1), then var(n) = e /ne~? and

o, (2o + zge_ﬁ%/‘l]Q

n>e —
Uk

4.5 Empirical Methods

When we have the information, such as pilot study, we can get the required
sample size using the given data. From the given data, we can calculate the sample
size empirically.

An important role is played in nonparametric analysis by the empirical distribu-
tion which puts equal probabilities n~! at each sample value y; (Davison and Hinkley
(1997)). The corresponding estimate of F is the empirical distribution function (EDF)

F, which is defined as the sample proportion

Ply) = ﬂ{yjnﬁ y}‘

where {A} means the number of times the event A occurs.

Suppose that we have no parametric model, but that it is sensible to assume
that Y, ...,Y, are independent and identically distributed according to an unknown
distribution function F. We use the EDF F' to estimate the unknown CDF F. We

shall use F just as we would a parametric model: theoretical calculation if possible,
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otherwise simulation of datasets and empirical calculation of required properties. In
the case of the average, exact moments under sampling from the EDF are easily
found. We shall use Y* to denote the random variable distributed according to the
fitted model F, and the superscript * will be used when the moments are calculated

according to the fitted distribution. For example,
* (V% * * - 1 —
B(V) = E'(Y) =Y~y =0

j=1

Using the EDF leads to

) 1 m 661+Q’£u 6€1+€2
1y =3 { R g + (s~ ) g |
. 1 & e
I, = —n— ; {(Rvg - va)m}>

I;;=0, if|i—j|<2andi,j=1,....k—1,

* 1 e Xviegl—‘rﬁlgﬂ .
[1,j+k—1 = na Z {me}, 7=1...,s,

v=1
1 & efitn'z,
*
I; = n_ Z {(Rv,z’+1 - Rv,i—l)m
v=1
€€i+9i,1 €€i+9i+1
(Rv,i - Rv,i—l)m(Rv,i-‘rl - Rv,i)m}>
1=2,...,k—2,
" efiti1
* .
ii—1 — — Z {(Rv,i - Rv,i—l)m}, 1= 2, Ce ,k — 17
v=1
1 <& X elitn'z,
% _ v]
R I Loy Uz:; {(Rmﬂ - Rv,i—l)m},

ifi=2,....,k—2and j=1,...,s,

m eOk—1+0k—2

. 1
[k—l,k—l = TLE Z {(R%k—l - Rv,k—Z) (66’“*1 _ 69’“*2)2

v=1
69k,1+ﬁlﬁu
—'—(1 — Rv,k—?) (1 4 eekfl‘f‘ﬁ/Ev)Z }’
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m

. 1 ij 69/%7 1+n'z, ]
I vjie = e Z {(1 — Ry p—2) (1 + elvzye |7 j=1,...,s,

v=1
and
m /
* 1 R Xvinjeel—Fg%
itk—1j4+k—1 — ”_E vl 7
i+ J+ m gt (1 + 691+Q Lj)z

XUiXU ‘661 +Q,§” sz'Xv '692—'—2/211
+(Rv2 - va) ; o'z é Tz
(14 M TIee)2 (1 4 72T )2

Xvinj69k71+ﬂl2“ ..
+...+(1 —Rv’k_l)<(1 Ty ) | i,j=1,...,s.

The asymptotic covariance matrix of the estimates é’z(é/, ) is I74(o).

4.6 Simulation Study

In order to evaluate the adequacy of the approximation, we used the method
described above to calculate sample sizes required to achieve selected size and power
for tests within logistic regression models. We performed computer simulations to
estimate the power when the calculated sample sizes were used. Each Monte Carlo
estimate of sample size was based on 10,000 generated data sets.

For convenience, we refer to the sample size calculation method with the first
term of Taylor series as a M1 and the sample size calculation method with the first

and second terms of Taylor series as a M2.
4.6.1 Binary Response Case with One Covariate

When k£ = 2, the elements of Fisher information matrix are

X .0tz
X; X;er ™ i1
) 17]_ 7--'737

where X; = 1. We wish to test the hypothesis Hj : n, = 0 against Hy n, =1

Suppose we have one covariate, consider the problem of testing the null hypothesis
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Hy : n =0 against the one-sided alternative H4 : n = 1 to test at level a with power

g 6914-77'm
! ((1 + eeﬁn’x)?)
0 'z 0 'z 01+n'z 2
n2E e : B XiXje 1+,77 —n2E ﬂ
(14 efrtn'e)? (14 efrtn'e)2 (14 efrtn'e)2

o)

1 — 3. Then

Var(n) =

and

o [ 2aV/0(0) + 25/0(1) ’
n > 7 .
When X ~ N(0,1), the approximated sample size by the small response proba-

bilities (M1) method is

where m(n) = e”/2, v;(n) = e""/2, and the approximated sample size, n, satisfies
ny > e M zo 4+ e T 22 )i (4.9)
If we consider the approximation error and add one more term (M2),
v(n)" = vi(n)[L +2¢" R(n)] + O(&?),

where

R(n) = vi(n)[mu(2n) +m=2(n)m(2n)m3(n) — 2m™=" (n)ma (n)ma (2n)]

= (P +1)e2
For the standard normal distribution

v (n) ~ e‘”2/2[1 + 2¢01 (7]2 + 1)63"2/2]
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Table 1: Sample sizes and powers, where sample sizes are for one-tailed test (k

2,s=1,p=1, " =0.05)

47

M1 M2 Empirical method Monte

n n  Power n  Power n  Power n
0.05 || 49439.54 0.77 | 54393.97 0.81 | 59153.82 0.84 | 53241.57
0.11 || 10198.22 0.77 | 11228.59 0.81 | 12211.31 0.84 | 10993.75
0.17 | 4257.76 0.77 | 4694.21 0.81 5107.46 0.84 | 4597.26
0.23 || 2316.71 0.77 | 2559.23 0.81 2787.06 0.84 | 2506.99
0.29 || 1449.65 0.77 | 1605.70 0.81 1750.90 0.84 | 1573.25
0.35 988.89 0.77 | 1099.17 0.81 1200.48 0.84 | 1077.11
0.41 715.23 0.77 798.51 0.81 873.68 0.84 782.50
0.47 539.59 0.77 605.75 0.81 664.01 0.84 593.50
0.53 420.22 0.76 474.98 0.81 521.56 0.84 465.16
0.59 335.46 0.76 382.38 0.81 420.43 0.84 374.11
0.65 273.14 0.76 314.58 0.81 346.10 0.84 307.27
0.71 226.02 0.75 263.62 0.81 289.90 0.84 256.82
0.77 189.56 0.75 224.53 0.81 246.40 0.84 217.85
0.83 160.78 0.74 194.07 0.81 212.07 0.84 187.18
0.89 137.70 0.74 170.05 0.82 184.51 0.84 162.63
0.95 118.92 0.73 150.99 0.82 162.07 0.84 142.71
1.01 103.45 0.72 135.81 0.83 143.57 0.84 126.34
1.07 90.57 0.72 123.75 0.83 128.14 0.84 112.74
1.13 79.75 0.71 114.27 0.84 115.16 0.84 101.33
1.19 70.58 0.70 106.95 0.85 104.13 0.84 91.67

and
2
noe® > |V 26020 + (e PR+ 26 (g + 1P 2z | [ (4.10)

The graphical representation of the sample sizes for the simulation are given

in Figures 1-4. Since the sample sizes depended on the two parameters, #; and 7,

simultaneously, we fixed one parameter. If we change two parameters, the estimated

sample sizes fluctuated too much. To show the performance of the approximation

methods according to the response probability, Figures 5-8 are given. In those figures,

power depends on 7).

Table 1 presents sample sizes computed by (4.9), (4.10), empirical method, and
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Table 2: Sample sizes and powers, where sample sizes are for one-tailed test (k =
2,s=1,p=1, " =0.25)

M1 M2 Empirical method Monte
n n Power n Power n  Power n

0.05 || 9887.91 0.64 | 14842.34 0.79 | 16775.73 0.84 | 15097.37
0.11 || 2039.64 0.64 | 3070.00 0.79 3468.43 0.84 | 3123.01
0.17 | 851.55 0.64 | 128797 0.79 1454.39 0.84 | 1310.12
0.23 || 463.34 0.64 705.80 0.79 796.43 0.83 717.71
0.29 || 289.93 0.64 445.88 0.79 502.59 0.83 453.07
0.35 | 197.78 0.63 307.90 0.79 346.46 0.83 312.44
0.41 || 143.05 0.63 226.10 0.80 253.75 0.83 228.92
0.47 | 107.92 0.63 173.77 0.80 194.24 0.83 175.32
0.53 84.04 0.62 138.38 0.80 153.79 0.83 138.89
0.59 67.09 0.62 113.45 0.80 125.07 0.83 113.02
0.65 54.63 0.61 95.32 0.80 103.94 0.83 94.00

0.71 45.20 0.60 81.83 0.81 87.95 0.83 79.61
0.77 37.91 0.60 71.63 0.81 75.56 0.83 68.46
0.83 32.16 0.59 63.84 0.82 65.76 0.83 59.65
0.89 27.54 0.58 27.86 0.83 57.89 0.83 52.57
0.95 23.78 0.58 53.30 0.84 51.47 0.83 46.79
1.01 20.69 0.57 49.89 0.85 46.16 0.83 42.02
1.07 18.11 0.56 47.41 0.86 41.73 0.83 38.03
1.13 15.95 0.56 45.75 0.88 37.98 0.83 34.66
1.19 14.12 0.55 44.81 0.89 34.79 0.83 31.79

Monte Carlo method and estimated powers for selected values of a = 0.05, § =
0.2, e = 0.05, and = 77 > 0 when the explanatory variable has the standard
normal distribution. For the empirical method, we generated pseudo standard normal
random numbers. In this simulation, we assumed the size of empirical data set is
30. The estimated sample sizes from the empirical method are the mean value of
100 simulation runs in each case. Table 2 presents sample sizes under the same
conditions as Table 1 except ¢’ = 0.25. Tables 1-4 and Figures 1-8 show that the
approximation method M1 and M2 performed very well under the small response

probability condition.



Table 3: Sample sizes and powers, where sample sizes are for one-tailed test (k

2,s=1,p=1, " =0.50)

SRP SRP2 Empirical method Monte

7 n Power n Power n Power n
0.05 || 4943.95 0.51 | 9898.38 0.77 | 12082.65 0.84 | 10872.24
0.11 || 1019.82 0.51 | 2050.17 0.77 2500.38 0.84 | 2251.11
0.17 || 425.78 0.51 | 862.17 0.77 1049.95 0.83 945.92
0.23 231.67 0.51 | 474.09 0.77 576.07 0.83 519.41
0.29 144.97 0.51 | 300.85 0.77 364.39 0.83 328.85
0.35 98.89 0.51 | 208.92 0.77 251.90 0.83 227.56
0.41 71.52 0.50 | 154.44 0.77 185.07 0.83 167.38
0.47 53.96 0.50 | 119.63 0.78 142.16 0.83 128.72
0.53 42.02 0.50 96.12 0.78 112.98 0.83 102.43
0.59 33.55 0.49 79.58 0.78 92.24 0.83 83.73
0.65 27.31 0.49 67.60 0.79 76.97 0.83 69.96
0.71 22.60 0.49 58.73 0.80 65.40 0.83 59.53
0.77 18.96 0.48 52.06 0.80 56.43 0.83 51.43
0.83 16.08 0.48 47.02 0.81 49.32 0.83 45.02
0.89 13.77 0.48 43.22 0.82 43.60 0.83 39.86
0.95 11.89 0.47 40.38 0.84 38.93 0.83 35.63
1.01 10.34 0.47 38.34 0.85 35.06 0.83 32.14
1.07 9.06 0.47 36.97 0.86 31.83 0.82 29.21
1.13 7.98 0.46 36.20 0.88 29.09 0.82 26.73
1.19 7.06 0.46 35.97 0.90 26.75 0.82 24.61
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The results in Tables 1-4 show us that the approximation (4.9) is suitable when

the response probabilities are small but it always under estimates. The approxima-

tion with corrected term (4.10) performs better than the approximation (4.9) when

the response probabilities are small, but it highly over estimates when the response

probabilities are large.

Table 5 shows power values in cases where the values of the test parameter are

not small.

In this case, the first and second methods are far from our objective

value. So, here we suggest one more method. In this method we consider the mean

value theorem and the Taylor approximation.

The Taylor polynomials can be a



Table 4: Sample sizes and powers, where sample sizes are for one-tailed test (k

2,s=1,p=1, " =0.75)

SRP SRP2 Empirical method | Monte

7 n Power n  Power n Power n
0.05 || 3295.97 0.42 | 8250.40 0.74 | 10965.84 0.84 | 9866.02
0.11 679.88 0.42 | 1710.23 0.74 2270.15 0.84 | 2043.40
0.17 || 283.85 0.42 | 720.23 0.74 953.82 0.84 | 859.14
0.23 154.45 0.42 | 396.84 0.74 523.71 0.83 | 472.14
0.29 96.64 0.42 | 252.49 0.74 331.57 0.83 | 299.23
0.35 65.93 0.42 | 175.90 0.74 229.44 0.83 | 207.31
0.41 47.68 0.42 | 130.53 0.75 168.76 0.83 | 152.68
0.47 35.97 0.41 | 101.54 0.75 129.79 0.83 | 117.58
0.53 28.01 0.41 81.97 0.76 103.28 0.83 93.70
0.59 22.36 0.41 68.23 0.76 84.43 0.83 76.71
0.65 18.21 0.41 58.29 0.77 70.54 0.83 64.19
0.71 15.07 0.41 50.94 0.78 60.02 0.83 54.70
0.77 12.64 0.41 45.44 0.79 51.85 0.83 47.32
0.83 10.72 0.41 41.30 0.80 45.38 0.83 41.48
0.89 9.18 0.41 38.21 0.81 40.17 0.83 36.77
0.95 7.93 0.41 35.94 0.83 35.91 0.83 32.92
0.01 6.90 0.41 34.35 0.84 32.38 0.82 29.73
1.07 6.04 0.40 33.34 0.86 29.43 0.82 27.05
1.13 5.32 0.40 32.85 0.87 26.93 0.82 24.79
1.19 4.71 0.40 32.85 0.89 24.79 0.82 22.85
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method to form polynomial approximation of complicated functions. We can make

approximations based on the mean value and extended value theorems. The extended

mean value theorem concludes

f(2) = f(a) + f(a)(z — a) + f"(c) (= — a)*/2

for some ¢ between a and z, provided f”(z) is continuous on [a,b]. Here f(z) =

z(1 + 2)72 is approximated by a second order polynomial.

f(z) =

z

(14 2)?

1
—+
z

f‘//(cl)

f"(c2)
2

1
2

2+ L2 if0<z2<1,

ifl <z < oo.



ol

Table 5: Sample sizes and power values in cases where the values of the test parameter
are not small (one-tailed test, k = 2,s = 1,p = 1, e’ = 0.25)

M1 M2 M3 Empirical method | Monte
il n Power n  Power n  Power n Power n
0.5 || 94.91 0.60 | 154.46 0.78 | 184.10 0.84 172.00 0.81 | 164.78
0.6 || 64.75 0.59 | 110.03 0.78 | 128.50 0.83 121.10 0.81 | 115.92
0.7 || 46.61 0.59 | 83.82 0.79 | 94.99 0.83 90.42 0.81 | 86.50
0.8 || 34.87 0.58 | 67.47 0.80 | 73.27 0.83 70.51 0.81 | 67.44
0.9 || 26.86 0.57 | 57.01 0.81 | 58.41 0.82 56.87 0.81 | 54.38
1.0 || 21.17 0.56 | 50.39 0.83 | 47.83 0.82 47.11 0.81 | 45.06
1.1 16.99 0.54 | 46.49 0.86 | 40.07 0.81 39.90 0.81 | 38.17
1.2 ] 13.84 0.53 | 44.72 0.88 | 34.27 0.81 34.42 0.81 | 32.93
1.3 || 11.42 0.52 | 44.84 0.91 | 29.86 0.81 30.15 0.81 | 28.86
1.4 9.53 0.52 | 46.84 0.94 | 26.48 0.81 26.76 0.81 | 25.63
1.5 8.02 0.51 | 50.96 0.97 | 23.86 0.81 24.03 0.81 | 23.02
1.6 6.82 0.50 | b57.71 0.98 | 21.81 0.81 21.80 0.81 | 20.89
1.7 | 5.84 0.49 | 68.02 0.99 | 20.16 0.81 19.95 0.81 | 19.13
1.8 5.03 0.49 | 83.38 1.00 | 18.80 0.82 18.40 0.81 | 17.65
1.9 4.37 0.48 | 106.22 1.00 | 17.64 0.82 17.09 0.81 | 16.39
2.0 3.82 0.47 | 140.47 1.00 | 16.63 0.82 15.97 0.81 | 15.33
2.1 3.36 0.47 | 192.62 1.00 | 15.74 0.82 15.01 0.81 | 14.41
2.2 2.97 0.47 | 273.45 1.00 | 14.93 0.82 14.18 0.81 | 13.61
2.3 2.64 0.46 | 401.25 1.00 | 14.20 0.82 13.46 0.81 ] 12.92
2.4 | 2.36 0.46 | 607.59 1.00 | 13.54 0.82 12.83 0.81 | 12.31

" "
To find C} = # and Cy = f (202)’ we simply assume Cf = 1/2* — 1/(1 + 2*)2.
Then, z = "7 2% = ¢fim(n) = ee/2, and C) = 1/eh+7°/2 — 1 /(ef117°/2)2 By
this method (M3)

v (n) & e T2 4+ Crelt (i 4+ 1)/

ngef > | /(14 2e%)z, + \/e—ﬁ2/2[1 + Crefr (12 4 1)e37/2) 25 2 /i, (4.11)
The conclusions drawn from Table 5 are demonstrated graphically in Figure 9. From
Figure 9, it seems that the new bias correction method are suitable when the test
parameter 7 is large under the alternative hypothesis. The empirical simulation re-

sults show us that every calculated sample sizes are a little bit over estimated but
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Figure 9: Power values in cases where the values of the test parameter are not small
(" = 0.25).
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it performed well when the test parameter n is greater than 1 under the alternative

hypothesis.
4.6.2  Three Response Categories Case 1.

Now we consider three response categories with one covariate case. When we
have one covariate, the variance of n is simply calculated using the elements of the
Fisher information matrix

111[22 - [122
[11[22133 + 2112123[13 - —[123]22 - 1223[11 - 1122]33

= ).

Var(n) =

Assume that the cumulative probability of the first two categories are small. Then

the third diagonal entry of H~'(¢) is simply

v(n) = m/{mmi; —mi}(n).

For a response variable with three categories and one covariate which has a standard

normal distribution, the approximated sample size for desired power 1 — (3 is
n1e? > [z0 + ¢ 722 )i, (4.12)

by the small response probabilities (M1) method. If we consider the approximation

error and apply a correction term (M2). Then the corrected sample size is

2
noge?? > [za\/ 1+ 2ef2 + 25\/6_772/2 [1 + 2(n2efr + 692)63’72/2]] /72 (4.13)

Table 6 presents sample sizes computed by (4.12), (4.13), and Monte Carlo
method and estimated powers for selected values of a@ = 0.05, 3 = 0.2, e = 0.05,
e” = 0.15, and = 77 > 0 when the explanatory variable has the standard normal
distribution. The results in Table 6 show us that the approximation (4.12) is suit-

able when the response probabilities are small but it always under estimates. The



Table 6: Sample sizes and powers, where sample sizes are for one-tailed test (k

3,s=1,p=1, ¢ =0.05 and ¢’ = 0.15)

M1 M2 Empirical method Monte

Ul n Power n  Power n Power n
0.05 || 16479.85 0.71 | 21437.79 0.80 | 24258.37 0.85 | 21131.89
0.11 3399.41 0.71 | 4433.38 0.80 4939.78 0.84 | 4376.60
0.17 1419.25 0.70 | 1859.47 0.80 2107.91 0.84 | 1847.24
0.23 772.24 0.70 | 1018.77 0.80 1160.99 0.85 | 1006.30
0.29 483.22 0.70 643.63 0.81 720.36 0.84 631.61
0.35 329.63 0.70 444.72 0.81 498.19 0.84 435.01
0.41 238.41 0.70 327.09 0.81 363.45 0.85 315.14
0.47 179.86 0.70 252.17 0.82 292.81 0.85 239.68
0.53 140.07 0.69 201.92 0.82 219.71 0.85 189.60
0.59 111.82 0.69 167.02 0.83 176.32 0.85 152.27
0.65 91.05 0.68 142.26 0.84 149.96 0.85 127.16
0.71 75.34 0.68 124.60 0.85 122.84 0.85 105.74
0.77 63.19 0.67 112.20 0.87 106.45 0.85 90.82
0.83 53.59 0.66 103.92 0.89 93.57 0.86 78.17
0.89 45.90 0.66 99.13 0.91 80.20 0.86 78.17
0.95 39.64 0.65 97.51 0.93 70.61 0.85 60.17
1.01 34.48 0.65 99.08 0.96 62.86 0.85 53.34
1.07 30.19 0.64 104.12 0.98 57.49 0.86 47.84
1.13 26.58 0.64 113.33 0.99 51.53 0.86 42.39
1.19 23.53 0.63 127.89 1.00 45.97 0.85 38.95

o4

approximation with corrected term (4.13) performs better than the approximation

(4.12) when the response probabilities are small, but it highly over estimates when

the response probabilities are large the same as in the binary response case. Figures

10-11 graphically show the results of Table 6.

4.6.3 Three Response Categories Case 2.

When there are three response categories with one explanatory variable and the

cumulative probability of the first two response categories are greater than 0.5, the

third diagonal entry of H~'(¢) is simply

v(n) = m(=n)/{m(=n)mi(—=n) — mi(—=n)}n).
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Table 7: Sample sizes and powers, where sample sizes are for one-tailed test (k
3,s=1,p=1,¢e" =0.5, and e’ =7)

M1 M2 Empirical method | Monte
7 n Power n  Power n Power n
0.5 || 4.75 0.16 | 118.63 0.91 92.83 0.84 | 82.01
0.6 || 3.24 0.16 | 80.94 0.90 65.68 0.84 | 57.51
0.7 1 2.33 0.16 | 58.26 0.89 49.35 0.84 | 43.76
0.8 1.74 0.16 | 43.59 0.88 37.92 0.83 | 34.02
0.9 1.34 0.16 | 33.57 0.86 30.64 0.83 | 27.93
1.0 || 1.06 0.17 | 26.46 0.84 25.42 0.83 | 23.00
1.1 ] 0.85 0.17 | 21.23 0.82 21.83 0.83 | 19.81
1.2 ] 0.69 0.17 | 17.30 0.80 18.72 0.83 | 17.08
1.3 || 0.57 0.18 | 14.27 0.78 16.57 0.83 | 15.12
1.4 ] 048 0.18 | 11.91 0.76 14.86 0.83 | 13.52
1.5 ] 0.40 0.19 | 10.03 0.74 13.43 0.83 | 12.14
1.6 || 0.34 0.19 8.52 0.72 11.95 0.82 | 11.06
1.7 1 0.29 0.20 7.30 0.70 11.02 0.82 | 10.16
1.8 ] 0.25 0.20 6.29 0.68 10.10 0.82 9.52
1.9 || 0.22 0.21 5.46 0.67 9.52 0.82 8.73
2.0 || 0.19 0.21 4.77 0.65 8.89 0.82 8.22
2.1 0.17 0.22 4.20 0.64 8.33 0.82 7.67
2.2 0.15 0.22 3.71 0.62 7.93 0.82 7.31
2.3 || 0.13 0.23 3.30 0.61 7.46 0.82 6.91
2.4 | 0.12 0.23 2.95 0.59 7.06 0.82 6.64

To compare this formula with small probability formula, we use

e M1

n1e?? > 24 + e‘ﬁ2/4zﬁ]2/772.

M2 method is our suggested method.

o M2

nie % > [20 + €_ﬁ2/42ﬁ]2/772.
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(4.14)

(4.15)

The results in Table 7 show us that the approximation (4.14) is not suitable

when the response probabilities are not small and it always under estimates. The
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suggested approximation (4.15) performs much better than the approximation (4.14)
when the response probabilities are not small, and it over estimates when the response
probabilities are large. When we evaluate a large alternative value, small sample size is
required to obtain a certain power, it contains another error associated with using the
standard normal approximation to the distribution of maximum likelihood estimate

(n—n)/+/var(n). Thus a small value of approximated sample size yields serious error.
4.6.4  Remarks on Simulation Results

From these simulation results, we have the following summary.

e The suggested method (M1) works well when the response categories have small

probabilities.

e For the binary response cases, we can use two correction methods. If the re-
sponse probability is small, the formula (4.10) works very well. Alternatively, in

cases where the response probability is not small, (4.11) has better performance.

e For the three response categories case, (4.13) works well if the response proba-

bilities are small.

e If the probabilities of response categories are not small, we can apply (4.15) ex-
cept in the small sample size cases. To reduce the approximation error, another

consideration is discussed in Chapter VI.

e If a data set is available, we can apply an empirical method to estimate the
sample size. It is suitable when the response categories do not have small

probabilities.

Note that all our computations were conducted in Splus.



20

Sample size

100

80

60
\

40
\

Emp
Monte Carlo

\
1.0

Eta

Figure 12: Power for fixed et = 0.5 and %2 =7

29



Power

1.0

0.8

0.6

0.4

0.2

0.0

————— Emp30
——— power=0.8

\

\ \ \ \ \ \
0.72 0.74 0.76 0.78 0.80 0.82

P

Figure 13: Power for fixed et = 0.5 and %2 =7

60



61

CHAPTER V

ANALYSIS OF THE FIRE ANT DATA

5.1 Introduction

In this chapter we use ordinal logistic regression to carry out the data analysis for
the fire ant data set. In Section 5.2 we briefly give the background of fire ants. Next
we describe the methodology of the observational study. In Section 5.4 we discuss the
statistical model. The results of the analysis of the fire ant data is given in Section
5.5. Short implementations of the sample size calculation methods are included in

Section 5.6. The conclusions of the analysis are given in Section 5.7.

5.2 Background

The red imported fire ant Solenopsis invicta Buren is a soil nesting social insect
native to South America. This species was accidentally introduced into the United
States in the beginning of the 20th century and has become arguably one of the
most destructive pests ever to invade the US. The fire ant has been spreading in all
directions from Alabama, where it first landed, at an estimated rate of over 1 million
hectares per year, and now occupies all the southern states (Callcott and Collins
(1996)), including the recently conquered New Mexico and California. This notorious
invader reached Texas in the late 1950’s and currently causes an estimated annual loss
of 300 million dollars to the Texas economy alone (Porter, Bhatkar, Mulder, Vinson,
and Clair (1991); Li and Heinz (1998)). Hundreds of million dollars have been spent,
primarily on pesticides, in fighting what is now obviously a losing war against the
fire ant. It is clear that there is no easy answer to the fire ant problem. We must

learn more about the pest’s biology, ecology, and genetics in search of an effective
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and environmental safe control solution.

The understanding of the genetic basis for the fire ant’s great success as an
invading species and a major pest is vital to the development of an effective and
sustainable control strategy. At present, however, experimental studies that require
controlled mating cannot be done readily due to the many unknown environmental
cues that trigger fire ant mating flights. In the natural environment, a typical mature
colony has tens of thousands of workers, all sterile females, hundreds of winged males,
queen-to-be, and one or more egg-laying queens (Greenberg, Vinson, and Ellison
(1992); Vinson (1997)). Any time of the year when a fire ant colony matures, queens-
to-be and males will, under the right environmental conditions, emerge from the home
nest to embark on mating flights (Vinson (1997)). After mating on the wings a male
will drop dead and a fertilized female, now a new queen, can land within a radius of
2 kilometers, sheds her wings and starts producing hundreds of eggs a day for up to
7 years (Vinson (1997)). It would take just a few mating flights to infest an area that
would cost million dollars to eradicate the fire ant temporarily. Obviously, the ability
to manipulate mating flights has significant value in the development of effective and
environmentally sound control measures.

Weather conditions are known to influence many behaviors in humans, animals,
and insects, including the fire ant. In humans, for example, fluctuations in some mete-
orological factors are known to influence the onset of childbirth (Driscoll (1995)); and
arthritis patients can painfully feel the approach of a weather front (Aikman (1997)).
Numerous winged and wingless arthropods actively take advantage of weather changes
in search of abundant food sources. For example, a wingless spider mite from a de-
pleted food source may raise its front body and become airborne when uplifting air
movement is available (Li and Margolies (1994)). Another example is that a black-fly

can sense the change in air pressure as little as 0.25 millibar generated by passing
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clouds and disperse accordingly (Wellington (1974)). Weather conditions play a ma-
jor role in mating flights in some ant species, although the time of day at which
mating flights occur is apparently programmed by a species-specific duel rhythm in
some others. For the fire ant, early observations indicated that mating flights take
place between 10 a.m. to 4 p.m. in a sunny and warm day (> 24 °C or 75.2 °F)
with gentle wind, and often 1-2 days after a rain (Vinson (1997)). These observations
suggest that fire ant mating flights are related to meteorological factors or change
in the factors. We hypothesize that some meteorological factors are responsible for
triggering a mating flight, while other weather conditions are merely prerequisites for
the activity to occur.

In this dissertation we investigate the relationships between a large set of me-
teorological factors and fire ant mating flight activities, aiming at identifying cues
that trigger these events. Specifically, we report our experimental procedure that is
designed efficiently to capture all relevant behaviors and activities related to mating
flights in field observations. We also develop a statistical model for analyzing mating
flight activities in relation to a variety of weather conditions, such as, temperature,
barometric pressure, the change of the pressure, relative humidity, wind speed, time

of day, and rain.

5.3 Methodology for the Observational Study

5.8.1 General Characteristics of Fire Ant Mating Flights

Vinson (1997) described some results of observational study on fire ant mating
flights. According to Vinson (1997), such mating flights may occur from mature
colonies during any part of a year when proper conditions occur, usually in the spring
and fall. These colonies produce large numbers of winged females and males referred

to as reproductives, sexuals, or alates. The winged females are about 1 cm in length,
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brownish-red in color, and have a head just slightly smaller than the thorax. On the
other hand, winged males are black and slightly smaller, and their heads are distinctly
smaller than the thorax. These reproductives accumulate in the colony until induced
by environmental conditions to initiate a mating flight. Vinson (1997) observed that
just prior to the mating flight, workers come out through small openings and become
very active on and around the surface of the nest. Males first emerge from these
openings and fly away or climb surrounding vegetation to facilitate flight. Females
begin to emerge an hour or so later and join the males in flight. We collected our own
extensive data on fire ant mating flights to be described as follows. Our data confirm

some of the conclusions in the previous study, but differ in others.
5.8.2  Fire Ant Data Collection

We collected data of the mating flights daily from April 1, 2001 to June 30, 2002.
Our study covers this period of time. The data collection was setup with 3 response
variables viz. Worker, Winged Male, and Winged Female. Each of these response
variables had 3 levels: 0 for ‘not active’, 1 for ‘moderately active’, and 2 for ‘very
active’, respectively. For the males and females, 1 indicates their appearance outside
of mounds and 2 indicates the occurrence of mating flights. We also recorded other
traits of workers, males, and females for the study.

In this research, we usually started observation from 10 a.m. to 5 p.m., the neces-
sary duration of a day that would cover all possible flight activities. The observations
were taken every 30 minutes. The data were collected by observing several mounds
near the Texas A&M campus, usually 7 days a week at 30 a minutes interval. Only

the nests that participated in mating flights were studied.
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Table 8: Example of observations every half hour: From 9:30 a.m. to 5 p.m. on May

1, 2001 in College Station.

Date | Time Dry Bulb % Relative Wind Barometric Sea Level
Temp (F) Humidity Speed (KT)  Pressure Pressure
5/1 | 0923 76 70 8 29.71 174
5/1 | 0953 78 64 9 29.71 173
5/1 | 1023 80 61 7 29.71 172
5/1 | 1053 81 58 6 29.70 170
5/1 | 1123 82 55 6 29.69 166
5/1 | 1153 84 53 6 29.67 161
5/1 | 1223 84 54 6 29.66 155
5/1 | 1253 83 55 7 29.64 150
5/1 | 1323 83 54 7 29.63 146
5/1 | 1353 88 53 6 29.62 142
5/1 | 1423 84 52 6 29.60 138
5/1 | 1453 84 51 5 29.59 134
5/1 | 1523 84 51 7 29.58 130
5/1 | 1553 84 51 9 29.57 126
5/1 | 1623 84 51 9 29.57 125
5/1 | 1653 84 51 8 29.56 125
5/1 | 1723 83 54 8 29.56 124

5.3.3 Weather Data Collection

We can use a number of predictor variables that describe weather conditions.

The weather data were obtained at the website ‘National Virtual Data System’ with

weather station’s name ‘College Station, TX’ (they were recorded within 1-2 miles of

our observation sites). The weather data are available every 30 minutes or one hour

for 24 hours a day. There are eight meteorological variables available for analysis.

Table 1 illustrates such weather data for May 1, 2001.

5.8.4  Organizing Data

The activities measured by 0, 1, or 2 are used as the response variable and me-

teorological factors are used as predictor variables. Rain is added as one of predictor
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Table 9: Frequencies of the combined variable MF.
‘ Activity ‘ MF ‘

0 6612
1 132
2 96

variables because it is an important factor to induce mating flights (Vinson (1997)).
The rain variable was recorded as 0 for no rain on the previous two days and 1 for rain
on either of the previous two days. In this paper, by the “previous” day we mean the
duration from the previous day (including today). In addition, we expect the change
of barometric pressure to be an important predictor variable. We simply define the
change of barometric pressure to be +1 (—1) if the current pressure is higher (lower)
than the pressure half hour ago, and 0 for no change. Therefore, predictor variables
include dry bulb temperature, % relative humidity, wind speed, wind direction, ve-
locity for gusts, barometric pressure, pressure tendency, sea level pressure, change of
barometric pressure, and rain for a preliminary analysis. In our large data set with
thousands of observations, there are more than 98% of zeros for winged male and
female variables. In our statistical analysis all the observations from 10 a.m. to 5
p.m. were used. Our data set shows that only one appearance of males (at 10:30
a.m.) and no mating flights were observed between 10 a.m. to 12 p.m. throughout
our observation period of 456 days. This is in contrast to other observational studies
in the literature; see Vinson(1997).

The MF in the table is the combined variable of Male and Female defined to be the
maximum value of the male and female’s activities, since it is a good measure of overall
mating flight activities. The resulting combined variable has the frequencies given in

Table 2. In this paper we concentrate on studying this combined characteristic only.
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5.3.5 Observed Traits

Most mating flights were observed in the springs of 2001 and 2002, one or two
days after a rain. According to our observations, the winged females have a brownish-
red head and thorax and dark-brown abdomen that is bigger than the head and
thorax. In contrast, winged males are black and their body size is small. Under the
proper conditions, workers and males usually come out of the nest first followed by
females within 30 minutes. This is slightly shorter period of time than one hour or
so suggested in the literature (Vinson (1997)). It appears that the temperature plays
a role in the timing of female appearances. Most of them come out within 5 minutes
after males in the spring and summer and in about 30 minutes in the other seasons.
Workers become excited and they run continuously outside of the nest, while winged
males and females climb up nearby grass or objects and take off onto mating flights.
In general, males can fly away right after they come out, while females need more
time to start flying. In the spring and fall, workers are generally very active all day
long on the days when the mating flights occur. Around the time of flight, workers are
very excited and run around the mound, while during other times they walk around.
In the summer, they come out right before the males are out. Workers are even more
excited when females are out. After females fly away, most workers go back into the
nest. while both winged males and females can be found in the same mound, one
form is usually dominant. Thus, it is likely that males and females from different
colonies mate in the air. According to the literature, mating flights may occur from
mature colonies during any part of a year when proper conditions occur, usually in
the spring and fall. In contrast, our mating flight data were collected mostly during
the spring and summer. According to our observations, most mating flights occurred

when the temperature was around 28 °C' (82 °F') and one or two days after a rain
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during time period of 1 p.m. to 5 p.m. It is somewhat different from Vinson’s study
that indicated that mating flights usually take place between 10 a.m. to 4 p.m. When
mating flights occur, it is generally partially cloudy with mild wind. In the summer,
the females look very strong and can fly far away but many males look weak and die
near the nests. It is interesting to note that some fire ants make their mounds under

roadways, probably because they are cool in the summer and warm in the winter.

5.4 Statistical Modeling

Let 7;(X) denote the classification probabilities Pr(Y = j — 1|.X) of response
variable YV, j = 1,2,3 at value X7 = (X}, Xy, -, X;) for a set of explanatory
variables X, X5, ---, X;. Here our interest is centered on the problem of relating
7l = (m(X), ma(X), m3(X)) to the predictor X. We propose to use a form of logistic
regression model for the combined variable MF. Since the combined variable MF has
3 levels of response, we consider ordinal logistic regression.

Since our response categories have a natural ordering, logit models should utilize
that ordering. For this purpose we will use the proportional-odds model that is

described below: the ordered multiple response model assumes the relationship
logit[Pr(Y <j—1X)]=6,+7'X, j=12,

where 6; are two intercept parameters and QT = (m,m2, -, M) is the slope parameter
vector not including the intercept terms. By construction, 6; < 65 holds. This model
fits a common slopes cumulative model that is a parallel lines regression model based
on the cumulative probabilities of the response categories.

The ordinal logistic regression model in our setting is given as follows:

T + o
1—77'1—71'2

logit(m) = log(1 m ) =0 + Xy +mXo + -+ e X, (5.1)

logit(m + 7T2) = 10g< ) = 92 + 7]1X1 + 7}2X2 + -+ 77ka, (52)
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where
efrtn" X
m(X) = Y (5.3)
2t X
m(X) + m(X) = 14 x (5.4)
and

7T1+7T2—|—7T3:1.

This model is known as the proportional-odds model because the odds-ratio of
the event (Y < j — 1) is independent of the category indicator. We can compute
the estimated odds for X, X, - -+, X}, respectively, through any standard statistical
software, such as SAS. Through a formal statistical test, the empirical result given in
the next section suggests that this model appears to be reasonable for analyzing our
data.

Here we take X' = (X1, X5, -, X)) to be the standardized meteorological
variables mentioned earlier, such as the dry bulb temperature, % relative humidity,
wind speed, and barometric pressure, and their squared terms, change of barometric
pressure, and rain. Then, we apply the method of maximum likelihood to obtain

estimates, 6’s and 7’s, for @’s and 7’s, respectively. Thus we can find the following

estimates
) eél-i-ﬁT&
m(X) = ma (5.5)
. A eéz-i-ﬁT&
T1(X) + 72(X) = 14 efati™X (5.6)

For each X, mj(X) = Pr(Y = j — 1|X) can then be estimated by 7.

After a preliminary inspection and model fitting, we eliminated variables, wind
direction, velocity for gusts, pressure tendency, and sea level pressure from our further
analyses since they are either scientifically irrelevant or closely correlated to other

independent variables in our model.
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5.5 Data Analysis

We propose to apply the ordinal logistic regression approach because it is best
suited for response variable of ordinal values. We wish to identify best independent
variables for predicting the response variable of combined MF. Since each meteoro-
logical measure has a different scale, the standard score can be used to help analyze
such a multiple logistic regression. The standardization is carried out by subtract-
ing the sample mean from each observed variable and dividing the difference by the
sample standard deviation. From a practical point of view, it is sensible to include
the quadratic term for each meteorological measure in our model, since we know that
the best chance of mating flight occurs somewhat in the middle of the range of each
measure. Figure 1 appears to support this argument. Since it is possible that the
linear and quadratic terms are strongly correlated we included the linear terms only
when such a term is significant in fitting the model that has the linear and quadratic
terms for that meteorological measure as the only independent variables. After fitting
each of the reduced logistic regression models with only one meteorological variable
and its square term each time, we concluded that the linear terms of temperature,
barometric pressure, and wind speed are significant since the Wald x? statistic gave
a p-value less than 0.01 for each of the cases. On the other hand, for the linear term
of humidity, the Wald y? statistic gave a p-value of 0.054. Therefore, we opted to
eliminate this term from further analyses.

Now our new model has the following independent variables: the standardized
temperature (X7 ), barometric pressure (X3), and wind speed (Xj5) and their squared
terms, the squared standardized humidity (X7), change of barometric pressure (Xy),
and rain (Xg). Define X, = X?, X, = X2, and Xg = X? and X7 = (Xy,---, Xp).

Then we can use the maximum likelihood estimation procedure to obtain parameter
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estimates for 01, 65, and n” = (ny,- -+, n9) in model (1)-(2).
From the relationship of the standardized term and the squared standardized

term, we can rewrite model (1)-(2) as follows:

logit(m) = 61 +mX1 + n2Xo + n3X3 + Xy + 15X
+n6Xe + 17 X7 + 13 Xg + 19 Xo
= 07+ X1 + X5 + 3 Xz + 0 X5+ 05 X5

+ns Xg + 17 X7 + 13 Xs + 15 X,

logit(m +ma) = O +mXy + naXo + 13Xz + naXy + 175 X5
+16 X6 + 17 X7 + 15 Xs + 19X
= O +m Xy + Xy + 03Xz + 0y XT +15X5

+15 X + 17 X7 + 105 Xs + 19 Xo,

where X3 = (X1 — 1), X} = (X3 — ¢3)?, and X§ = (X5 — ¢5)? with selected
¢k, k= 1,3,5. In our data analyses, we used their maximum likelihood estimates
¢x = Mk/(2Mks1), so that ¢ = 0.34, ¢35 = —0.71, and é5 = —1.66. Therefore, it
is of interest to test the hypothesis that fire ant mating flights are most likely to
occur when the standardized temperature, barometric pressure, and wind speed are
0.34, -0.71, and -1.66, respectively. That is, the temperature is 82.1 °F (27.8 °C),
barometric pressure is 29.6 and wind speed is 1.6 KT, as is explained in the next
paragraph. We call these values estimated optimal values. Then, we wish to test the

equivalent hypotheses
Hy:ny =n3 =mn; =0 versus H; : Not H,.

Since the p-value for the hypothesis testing result is highly insignificant, the null
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Table 10: Parameter estimates for the combined variable MF with adjusted predictor
variables.

| Parameter | 67 65 w5 mp  m  m w5 w5 |
| Estimate |3.02 392 116 021 012 0.18 0.55 -0.99 |

hypothesis is not rejected and the properly reduced model is
logit(m) = 0] + 15 X5 + i Xy + 05 Xg + m7 X7 + ngXs + 19Xo, (5.7)

and

logit(my + ma) = 05 + 3 X5 + ny X5 + ng Xg + n3 X7 + ng Xs + 15 Xo.

This model also appears to be reasonable intuitively in light of Figure 10, which
indicates that mating flights occur most likely around certain value of temperature,
humidity, barometric pressure, and wind speed. Since model (1)-(2) above assumes
identical effects of X for the first two categories of the response, we can use the score
statistic to test such an assumption of parallel lines. The p-value of the test for the
proportional odds assumption was 0.20, suggesting that the assumption is reasonable.

After running the statistical analysis, the significant predictor variables were ob-
tained to be the re-centered squared standardized temperature, barometric pressure,
wind speed, squared standardized humidity, change of barometric pressure, and rain,
respectively. The estimates are shown in Table 3. The analysis quantifies the influence
of each variable on mating flights. For instance, if X5 = X = X¢ = X; = X3 =0,
and Xg = 0 then the estimated logit values are logit(7;) = 3.02 and logit(7; + 72) =
3.92, and thus m = 0.953, o = 0.028, and 75 = 0.019. Here, X; = 0 implies that the
temperature in the actual scale is 0.34 times one sample standard deviation above the
sample mean of 77.28. Likewise, X; = 0 implies that the barometric pressure is 0.71
times one sample standard deviation below the sample mean of 29.69, X} = 0 implies

that the wind speed is 1.66 times one sample standard deviation below the sample
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mean of 7.72, X; = 0 implies that the % relative humidity is the sample mean of 54.14,
Xg = 0 implies that the barometric pressure does not change from half hour ago, and
X9 = 0 implies that there was no rain on the previous two days. The sample standard
deviations of temperature, humidity, barometric pressure, and wind speed are 14.21,
17.51, 0.17, and 3.68, respectively. Similarly, if X5 = X} = X¢ = X7 = Xg =0, and
Xog = 1 then logit(7m) = 3.02—0.99 = 2.03 and logit(7; +72) = 3.92—0.99 = 2.93 and
m = 0.884, 1, = 0.065, and 73 = 0.051, where Xy = 1 means that there was a rain on
either (or both) of the previous two days. The estimates 75 (=0.100) and 73 (=0.085)
increase dramatically when Xg = —1, that is, when the barometric pressure drops.
Since females and males come out of the nest in preparation of flight, the probability
of mating flight activity is quite high at .185 (75 + 73) under these conditions. See
Table 4 for the estimated n’s for selected values of X.

Judging from c-statistics available in SAS our statistical analysis shows that
aside from the temperature condition rain exerts the most influence for mating flights,
followed by dropping in barometric pressure. That is, for males and females to embark
on a mating flight, a rain in the previous two days is nearly a necessary condition
and dropping in barometric pressure facilitates the timing of flight. This notion is
supported by our observations that 80.2% of mating flights occurred when there was
a rain on the previous day and 10.4% when there was a rain two days before and
that 89.6% of mating flights occurred when barometric pressure was dropping and
7.3% of mating flights occurred when barometric pressure was unchanged. Without
a rain mating flights are very unlikely to occur. For example, when X; = X] =
Xg = X7 = Xg =1, and Xg = 0, the temperature is lower than 67.9 °F (19.9 °C)
or higher than 96.3 °F (35.7 °C'), the humidity is lower than 37% or higher than
72%, the barometric pressure is lower than 29.4 or higher than 29.7, the wind speed

is higher than 5.3 KT or no wind, rising barometric pressure, and there was a no
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Table 11: Example of estimated 7’s for the combined variable MF. The case X5 =
X; = X§ = X7 = 0 implies that temperature is 82.1 °F', barometric pressure is 29.6,
wind speed is 1.61, and humidity is 54.1%. Variable Xg is for change of barometric
pressure and Xy is for rain.

‘ X; XZ Xg X7 Xg Xg ‘ 1 Up) T3 ‘

0 0 0O 0 -1 0 ]0922 0.045 0.033
0 0 0 0 -1 1 |0.815 0.100 0.085
0 0 0O 0 0 0 0953 0.028 0.019
0 0 0 0 0 1 ]0.884 0.065 0.051
0 0 0O o0 1 00973 0.016 0.011
0 0 0O 0 1 1 10.930 0.040 0.030
0 0 0 1 -1 0 ]0934 0.038 0.028
0 0 0 1 -1 1 ]0.840 0.088 0.072
0 0 0 10 0 ]0961 0.023 0.016
0 0 0 10 1 ]0901 0.056 0.043
1 1 1 0 -1 1 0951 0.029 0.020
1 1 1 0 0 0 0989 0.007 0.004
1 1 1 0 0 1 0971 0.017 0.012
1 1 1 0 1 0 0994 0.003 0.003
1 1 1 0 1 1 10983 0.010 0.007
1 1 1 1 -1 0 ]0.984 0.010 0.006
1 1 1 1 -1 1 ]0959 0.024 0.017
1 1 1 10 0 ]0991 0.005 0.004
1 1 1 10 1 ]0976 0.014 0.010
1 1 1 1 10 10995 0.003 0.002
1 1 1 1 1 1 10.986 0.008 0.006

rain, the estimated probability function (73) of mating flights is as low as 0.002. The
table also indicates that an increase or decrease in temperature, humidity, barometric
pressure, or wind speed from their estimated optimal values would lead to a decrease
of 73 for mating flights.

Considering each meteorological variables marginally, we can obtain their ranges
for high activities of mating flights. Specifically, about 90% of flights occurred when
temperature was between 72-92 °F' (22-33 °C'). The same percentage of flights oc-

curred when barometric pressure was between 29.5-29.9, humidity was between 30-
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69%, and wind speed was between 0.7-11 KT, respectively.

5.6 Sample Size and Power for the Fire Ant Data

When the distribution for X is of a general multivariate exponential type with

density
f(z,m) = h(z)exp{z'n —q(n)},

the moment-generating function for X is of the form
m(s) = etwto =), (5.8)

where 7 is a vector of parameters and ¢ is a real-valued function of p variables whose
Hessian matrix of second derivatives exists and is positive definite. The mean of X
is given by the vector q(l)(ﬁ) of first partials of ¢, evaluated at 1, and the variance of
X is given by Hessian q® (1)

First, consider the case where X; is temperature. We only want to test the

coeffient parameter for temperature. We simply apply the formula
n > [z 4 e T 252 {e i)

If6, =3, 6, =4, and n = 1. Then to test Hy : n = 0 against H; : n = —1, the
sample size can be calculated from the univariate Normal distribution and the value
is n = 107. The adjusting for the normal covariates by corrected term is n = 178. If
we want to consider other variables and assume that temperature, humidity, pressure,
and wind speed are normally distributed and those variables are independent. Then,
by the formula (4.8) approximated sample sizes are in Table 10.

Second, consider the case where X; is Bernoulli variable with parameter 7, in-
dependent of X, ..., X, and X = (Xy,...,X,) ~ No_1(11,%). This applies to our

model to the rain X; = 1, or no rain X; = 0. Then if n = (n1,...,ns)", where



7

Table 12: Sample size for the combined variable MF.

Test 7 Nuiance Nuisance Sample
Variables Variables Parameters Size
Temp 1 0, =3 107
Temp 1 Humidity 0y =3,1n=0.2 109
Temp 1 Humidity,Pressure 0, =3, =1(02,0.2) 111
Temp 1 Humidity,Wind Speed | 6y =3, n = (0.2,0.1) 109
Temp 1 Humidity, Wind Speed | 5 = 3, n = (0.2,0.1) 112
Press 0.2
Temp, Humid | 1, 0.2 0y =3 102
Temp, Humid | 1, 0.2 | Pressure 0, =3, n=1(0.2) 104
Temp, Humid | 1, 0.2, 0y =3 97
Press, Wind 0.2,0.1
m = loglt(ﬂ-) and f] = (7727 s 7778)/ = Z_lluv
flz) = h(z)exp{z'n —q(n)}
= 7 (1—m)'" " h(Z)exp{Z'E " p — %HZ}_lH}

where ) = (log =

— X7,

h(g)exp{xllogl

q(n) =

and 0’ is a s — 1 vector. Thus,

and

Hence using the independence of X; and X, - -

=

(M2, - ms)’

v(n)

a®( )it = [

1

1
l1—m

{

) + mem

men

(_

bex

(1+em
, Xs and n

~ ]- ~I ~
} exp(—7'p — 37 1) (

N 1.,
p(—7'p— 577’277)

log(1—m)+3uXtp) =

(1+em

1
T b utlog(L—m) — S pE ),
— ’7T _— u— A

2

{log(1 + e™) + 1i%q},

= (7717'” 77]8)/ andﬁ:

5

6771

(5.9)
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Table 13: Sample size for the combined variable MF with adjusted predictor variables.

Test variable | Nuisance variables Sample size
Rain 313
Rain Temp 190
Rain Humidity 307
Rain Wind Speed 312
Rain Temp, Humid 186
Rain Temp, Humid, Pressure 183

Thus to test Hy : 5= (0,72,...,ns) against Hy : = (01, - , 1), the sample size can
be calculated from the univariate Bernoulli case, adjusting for the normal covariates
by multiplying by a factor of exp(—7'p — 1/27'37). where the test parameter under
alternative hypothesis are n; = —1 for rain, 7, = 1 for temperature, n3 = 0.2 for

humidity, n, = 0.2 for pressure, and 75 = 0.1 for wind speed.

5.7 Conclusions

Our data analysis and results show that ordinal logistic regression appears to be
a useful approach for modeling fire ants mating flights. The fitting model indicates
that weather conditions, such as rain, changing in barometric pressure, time of day
when mating flights occur, temperature, and wind speed are important factors that
influence the initiation of fire ant mating flights. According to our analysis, the
best chance for fire ant mating flights to occur is when there is mild wind (2 KT),
temperature is around 82 °F' (28 °C'), humidity is around 54%, barometric pressure is
around 29.6 and dropping, and most importantly there was a rain on the previous day
or within two days. The model-identified weather conditions are in good agreement
with previous observations (Vinson (1997)) that fire ant mating flights occur in warm,
sunny and calm weather after a rain. The model also reveals the significance of

dropping in barometric pressure in the initiation of mating flights. Similar effects of
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dropping barometric pressure were reported in other animals (e.g., Li and Margolies
(1994); Wellington (1974)). It is likely that the effect of barometric pressure on a
broad range of biological functions may be largely explained through the change of
the pressure. Identification of these meteorological factors on fire ant mating flights
will add our ability in monitoring population dynamics and movement of the species
in a region. Knowledge of the significance of these conditions may enable scientists in
creating a laboratory-based micro-environment to study behaviors and genetics that
are associated with or conditioned upon mating flights. It is conceivable that the
statistical modeling, analyses and reasoning found useful in our investigation of fire
ant mating flights may be employed for broader use in studying the behavior of other

insects and animals.
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CHAPTER VI

CONCLUSIONS

6.1 Summary

In this dissertation, we have proposed sample size calculation methods for ordinal
logistic regression to tests for statistical hypotheses. We have also considered to test
the multiple parameters. We gave a simple closed-form formula for approximated
sample sizes when the probabilities of the response categories are small. This method
has been approximated by the moment generating function. It was discussed in
Whittemore (1981) that the sample size for logistic regression with small response
probability. We extended that approach to the ordinal response case. According
to our simulation results, suggested sample size calculation methods appear to be
suitable under the small response probabilities assumption. The results have been
verified in Chapter IV. Since the suggested methods were derived within the limit of
small response probabilities assumption, adjustments of the sample size calculation
methods were needed. We have considered bias correction steps. For the binary
response case, we could apply the simple closed form by the moment generating
function when the response variable had small probability. If the test parameter
had a large value under alternative hypothesis, our suggested bias correction method
by the mean value theorem has been successfully implemented to approximate the
sample size.

Furthermore, we have also considered the general case with no assumption about
small probabilities of response categories. To calculate Fisher’s information matrix
without using some assumptions, we have employed the empirical estimation method

when some data are available. Additional simulation studies have also been carried
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out.

6.2 Possible Extensions

We have developed the sample size calculation methods in the parametric case
of covariate variables. It is conceivable that the methodology can be extended to
non-parametric case of covariates. We have used a normal approximation to test
statistical hypothesis. Alternatively, we can consider the score test or the likelihood
ratio test. We will also consider how to control the nuisance parameters to reduce
the approximation errors. Furthermore, it is possible to use a plug-in method in
approximating the intractable integrals needed in the spirit of Jensen’s inequality.
The objective function is neither a convex nor concave function which seems to help
reduce the approximation errors. Preliminary numerical results show that this simple
plug-in approach appears to be a quite accurate approximation to the true sample

sizes. All this will be explored in the future.
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APPENDIX A

A.1 Derivation of Covariance Matrix

This theorem is can be found in standard textbook such as Graybill (p.19).
Theorem:

If a matrix B is has submatrices such as

By B
B = ,
By B
then the inverse matrix is
B1_ {B11 — B12B3;' B } 7! —Bi{' Bio{ B2 — BuBy{' Bio}
—32_21321{311 — 31232_21321}_1 {By — leBl_llBlz}_1

By this theorem, we derive the inverse matrix of the following Hessian matrix.

Since our matrix has submatrices such as

mCiq CZlm(l)l
H(Q) = ,

m®c,, m®
the inverse matrix also has submatrices.

H_l Hll H12

where

H22 = {m(z)—m(l)C'zl(mCH)_lczlm(l), -1
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and

C’21C11_1021 = (Cll_l)k—l,k—l-

Therefore, lf k’ = 2, (Cll_l)k—l,k—l =1. If k’ = 3, (Cll_l)k—l,k—l = 611/{611022 —
0%2} = 1. If k’ = 4, (Cll_l)k—l,k—l = {611022 — 6%2}/{611022033 — 053011 — 6%2033}. If
k =5, (Cll_l)k—l,k—l = {011022033 - 053011 - 0%2033}/{011022033044}- If k> 6,

1

/ —1 —1
C21011 Co = (Cu )k—l,k—l = .
Ck—1,k—1

Example:
When the distribution for X is of a general multivariate exponential type, the

moment-generating function for X is of the form
fX) = M(X)exp{X'y — q(7)}
the moment-generating function for X is of the form (Bildikar and Patil (1968))

min) = B(e)

and

Then

H? = {m®(n) - m~'m™ ()m®' ()}

— e lay+m—a()} [q(2) (y+ Q)]—1’
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for k =2, 3.
It X ~ Ny(p, ),

S (z—p)'S " (z—p)

flo) = @n)E e 2

1
= h@)exp{a’S"p - Spxpl,

where v = X7, q(y) = WS p = 'Sy,

H?? — e—{ﬂ’Eﬂ/Q—i—ﬁ'ﬂ}E—l,
for k =2 or 3. When k£ > 6,

H? = {m® () = [megy pa] " m® ()m™ ()}~
- b2 .
— e lay+m) q(z)}[q@)(l +1) + ek-1q(1)(1 + ﬁ)q(l)(l +1)] 1

and

O —2 -1

’ ! €
H22 — o~ {n'En/2+p'n} |0 4 - (0 +p)(Sn + )’
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APPENDIX B

B.1 Calculations of Corrected Terms

B.1.1 Binary Response Case with One Covariate

When we have a binary response variable (k = 2), the elements of Fisher infor-

mation matrix is

X, Xj6€1+g’£ o
IZ]Z”E(W 5 Z,j:1,...,3,

where X; = 1. When we have one covariate, consider the problem of testing the null

hypothesis Hj : n = 0 against the one-sided alternative H4 : 7 = 1) to test at level «

eh +n'x
S (o)

with power 1 — 3. Then

Val"(n) == 661+77/x X.Xj€61+n/x X.691+77lx 2
2 (3 o 2 1
6 (e ) £ s e ) ~ 2 (5 )
1
= 50(77)-
etn'z

The full expansion for the right-hand side of 5 in power of 1 +7'® ig

(14 o'z

014"z a

= (=1t

=1

€
(1 + 691+g’2)2

Then

o) — (= 1) e i)
) T e () [ (= 1) e (0] — [ (1) e (1)

and

Letting € = €1, we have



where

v(n)

89

[m(n) — 2em(2n) + O(¢*)][mu (1) — 2ema1(2n) + O(€?)]
—[ma(n) — 2em1(2n) + O(*)]?

m(n)mu (n) — m(n)?

—2e{m(n)mu1(2n) +m(2n)mai(n) — 2ma(n)ma(2n)} + O(*)

{m(n)ymu(n) — ma(n)*}
_ 2¢[m(2n)ma1(n) + m(n)mai(2n) — 2ma(n)ma(2n)] &2
b e A o B o o)

m(n) {1 - 2m§2§ (20 () + m () (20) — 2m1(n)m1(2n)]}

X

m(n) — 2em(2n)

m(n) {1 — 262523 [m(2n)ma1(n) + m(n)mq1(2n) — 2m1(n)m1(2n)]}

[1 — 2em(2n)m ™~ (n )]
1 — 2evi(n)[m11(2n) +m=1(n)m(2n)m1i(n) — 2m=1(n)my(n)m1(2n)]
+0(€?).

Use of the binomial expansion (1 —z)~! =1+ z + O(2?),

v(n)" = o[l = 2em(2n)m=" ()][1 + 2ev(n){mi1(2n)

+m ! ()m(2n)mar (n) — 2m ™" (n)ma (n)ma (2)}] + O(€%)
= vi(n)[1+ 2evi(n){mu1(2n) +m*(m)m(2n)mi (n)

—2m~ ())ma(n)ma(2n)}] + O(*),
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or

v(n)* = vi(n)[1 + 2¢R(n)] + O(€?),

where R(n) = vy (1) [ma (2n) + m~2(n)m(2n)m?(n) — 2m~"(5ymy ()my (2q)] is of the

required form.
B.1.2 The Binomial Expansion

The binomial expansion is also can be found in standard textbook. If we have
an expression of the form (1 + )", where 22 < 1, then we can replace the expression
using the binomial expansion. Here n can be an integer or half-integer, positive or
negative. When the magnitude of x is less than one, we can write the following power
series in x:

1
(1—|—x)”:1—|—na;—|—§n(n—1)m2—|—~-~

Notice that if the magnitude of x is less than one, higher powers of x are smaller than
x. Therefore, the series expansion can be terminated with a finite number of terms
where the remaining terms are negligible. For example, we may make the following
replacement:

1
1+z)"=1+nz+ §n(n— 1)z”

Note that the additional higher power terms are now missing - they were "negligible.”
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B.1.3 Three Response Categories Case with One Covariate with Small Response Prob-
abilities
It is likewise the binary case, we can derive the information matrix. The log-

likelihood has following form:

n 601+77:cv
log L = Z {Rv110g<m)
v=1 . 01+,
+(Ryz — va)log<1 bt 11 eel+nxv>

O2+nzy
e R 2

1+ ef2+nzy

n

= Z {va (91 + nx, — log[l + 691—“7:0”])

v=1

+(Rys — Ry1) (nxv + log(e” — e™) — log(1 + e®+m™) —log(1 + 661—“7%))
—(1 — Ry2)log(1 + 692“7:””)}

and the derivatives are

Jlog L u ehrtnze el ehrnze
891 — Z {va (1 — 41 T 6914’775”71) + (RU2 - va) ( - 602 _ 691 - 1 + €€1+77w” ;

v=1

dlog L - e?2 ef2tnzy eb2Hnzy
90, ~ {<R”2 = f) ( — T ) (U R T ) ¢

v=1

Jlog L = z, ety z, ety
= 2 (e )+ e o (-

v=1
Ty ef2tnze Ty ef2tnzy
S A— N — [
]_ _l_ 6924‘775511 ( 1)2) 1 + 692‘1'77"571 ’
€€1+17mu

8210g L n 691+92 691+17my
= A e — (R = o) G+ ) |

v=1

0%log L n et +02 el2tnz
879% = Z { - (RUQ - va) <(692 _ 691)2 + (1 + e€z+77%)2)

6€2+17mu
_(1 - RU2> (1 + 692+77xv)2) }7
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Plog L < e +o2
= Rv - Rv 7 o 9o (0
891892 UZ:; {( 2 1>(662 — 691)2}
0?log L " efitnzo
00:0n Z{ ~ At T g }

Plog L < O2-+neo
iy = 32~ (R0 |

v=1
and
0*log L - x2efrtnee x2ef2tnen
oz ; { e (1 + efrtm)2 (1= Ru) (1+ efotman)2 ) [
The elements of the information matrix are
[02log L]
I, =-E|——
11 I 89% | )
[0%log L]
I, = —-E
2 | 06,00, |’
[02log L]
I3 =—-E
13 I 891877 _7
[0%log L]
Iy = —E|—2—
22 I 89% | )
[&%log L]
Iz = —E
23 I 892877 _7
and
[02log L]
I3 = —-E|——
33 o
Use of Taylor’s expansion in power of e 71X
60j+nX S 1 0, +nX v (v S 1 X v S v+1 v _wvnX
m=2ﬁ{w 9“0 Zﬁg ' {eX} —Zl( 1)+ esetn
d’l)
where ¢; = i << 1, g(”)(z) = I (1 er z)’ g(v)(o) = (=1)"*l, g(0) = 0,
1
g0 (0) = (=) v =1, 00

- - - 0;+nX w (w w+1 w wnX
L L - S

w= 1 w=1
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where ¢; = e << 1, f¥)(z) = ( ) F0) = (=1)%w!+(=1)"+(w+1)!,
f(0) =0, and 1/w!f™)(0) = . Then the full expansion for the right-hand
side of I;; in powers of %+ is
I = nE -1 v+1 €V — v &ean
11 {;( ) ( 2 1)(62—61)2

n Z(_1>v+1€geunX Z(_l)w—klwewewnX}
v=1 w=1

1 (€1 + €)
nX _ \®1 T ©2) opXx 2
(€2 — 61)6 (€2 — 61)6 roe)

= n€1€2E[

+H{e™ — 2™ + O(e3) He™ — 261e” + O(E%)}}

1 2
nX _ ie%’x + O(fg)}

= naek [m (€2 —€1)

€1€2

— 0 {m(n) — 2e;m(2n) + O(eg)] ,

(€2 — €1)

o0

I — _nE[Z(_l)UH(Eg_g{)%evnx]

v=1 (62 A
€1€2

- (a) — -+ cm20) + 0

(€2 —€1)

113 — nE |in Z(_1>v+1 an Z w+1wewewan|

v=1

— e (20 + 0()|
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133

]22

I23

[e.9]

_ nE[Z<—1>”“<e§ _ ey 92

_ 2
v=1 (62 61)

+(1 _ Z( 1)v+1€zl)em7X) Z(—l)w+lw€;ﬂ€w"X}

v=1 w=1

1 (61 +€) ox 2
e = 22X L Oe
(62 - 61) (62 - 61) ( 2)

1
+—{e™ — 26e** + O(e3)}
€1

= 7’L€1€2E|:

e — e 4+ O ~ 20 +0()]

€

- [m<n>—2ezm<2n>+0<e§>],

€ — €1

e}

= B[, (1= Y1) 3 (-1 e
| : |

v=1 w=1

Xy
= neekl {—{e"‘x — 26¢”™ + 0(e3)}

€1

— X {e™ — e + O(e3) H{e™ — 2e0e™ + O(eg)}]

. [mm (61 + 2e)ma(21) + 0<e§>] |

[e.e]

nk |:X3 2 v+1 UT]X 2 w—i—lwewewnX

v=1
—|—X§(1 _Z( v+1 v an Z w+1w€w6wnX:|
v=1 w=1
nejea B [Xf{e"X — e 4 O(2)He™ — 262 + 0(2)}
X2
+ 0™ — 260X + O(€2)}

€1

—Xg{e”X — X 4 O(ef)}{enx — 2e,e21% 4+ O(e%)}]

nes |f7’L11(7]) — 2627”11(27]) + O(E%) .

94
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Use of the information matrix, variance of 7 is calculated as follows:

[11]22 - [122

Va0 = T T 9TaTaahs — [loy — Dylys — 1300,
where 1115 = nzﬁ [m2(17) —2(e1 + e2)m(n)m(2n) + O(e%)] )
1, = L) — 2(es + i) + 03,
hutis = 1y = 2 () = 2+ cpmtm(en) + 03,
I Ipol33 = ng%m(n) {m(n)mu(n)

“afer + ex)m(2n)mus(n) — 2eam(nmas (2n) + 0<e§>]

— )| )
2 e () - 20 e (1) + 0(d)
st = 2% [eoms () (2) + O,
113]22 =n (62 — 61) |i0(62):|?
s = o T L manta) = 26 + cmOm(im o)

—2eam?(n)mq1(2n) + O(e%)]

- "a—a) lmm(n)mu(n) - 2(62 o) (€1 + e2)m(2n)mas (1)
2 amtm(2n) + 0,
Bl = i) mo)  2er-+ 2e0yms s 20

~deum(@n)m2 () fm(n) + 0<e§>] ,



96

and

]11]22[33 + 2—[12I23]13 - 13%3[22 - [122]33 - 1223[11

n3%m(n) {{m(n)mu(ﬁ) — mf(n)} — 2(ey + €2)m(2n)m1(n)

+262{2m4 (n)m1(2n) — m(n)ma1(2n) + m(2n)mi(n)/ m(n)}}

= ) [t - mi)} - 204 - 20,

where A = m(2n)mi1(n) and Ay = m(2n)mai(n) — 2ma(n)ma(2n) + m(n)mi(2n) —

m(2n)mi(n)/m(n). Then

i) = 2(es + cm(20) + O(&)

var(n) =
nes [{m(n)mn(ﬁ) —mi(n)} — 2641 — 2634, + 0(65)]

L 2(es-+ cm(20)fla) + O(&)

v1(n)
nea 1= 2614101 0) /(o) ~ 2 s () m()O(6)
where vy (n) = m(n)/{m(n)mi1(n) — m?(n)}. By the Binomial theorem

L 2(es-+ cm(20)fla) + O(&).|

|i1 — 2€1A1U1 (n)/m(?]) - 2€2A2U1 (U)/m(n) + O<€%):|
_ [1 — 2(e1 + ex)m(2n) fm(n) + 0<e§>}

X {1 + 2e1 Ajv1(n) /m(n) + 262 A3v1(n)/m(n) + O(%)}
=1—2(e1 + e2)m(2n)/m(n) + 261 Ayvi(n) /m(n) + 2e2 Agv1(n) /m(n)

+0(e3).

Therefore,

~—

vi1(n
ne, m(n) m(n)

var(n) =
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where

Ri(n) = em(2n)ma(n) + e2{m(2n)mu(n)
—2my (n)ma(2n) +m(n)mii (2n) — m(2n)mi(n) /m(n)}
and
Ra(n) = (€1 + €2)m(2n).
When X ~ N(0,1), m(n) = e"/?, my(n) = ne™, mui(n) = (1+9%)e” /2,
m(2n) = e, my(2n) = 20e®”, my1(2n) = (1 + 49%)e®”. Thus

vi(n) = e" 2 {em (L4 p?)en 2 — e} = T2,

Ri(n) = e1(1+ 1)’ /? 4 265712,
Ray(n) = (&1 + €)™,

and
6_772/2

var(i) & |1+ (2P + 2e)" 2

Nneq
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