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ABSTRACT 
 

 
 

Short Time Scale Thermal Mechanical Shock Wave Propagation in High Performance 

Microelectronic Packaging Configuration. (August 2004) 

Mahavir Nagaraj, B.E., Bangalore University, Bangalore, India 

Chair of Advisory Committee: Dr. Chii-Der S. Suh 

 
 

 The generalized theory of thermoelasticity was employed to characterize the 

coupled thermal and mechanical wave propagation in high performance microelectronic 

packages.  Application of a Gaussian heat source of spectral profile similar to high 

performance devices was shown to induce rapid thermal and mechanical transient 

phenomena.  The stresses and temporal gradient of stresses (power density) induced by 

the thermal and mechanical disturbances were analyzed using the Gabor Wavelet 

Transform (GWT).  The arrival time of frequency components and their magnitude was 

studied at various locations in the package.  Comparison of the results from the classical 

thermoelasticity theory and generalized theory was also conducted.  It was found that the 

two theories predict vastly different results in the vicinity of the heat source but that the 

differences diminish within a larger time window.  Results from both theories indicate 

that the rapid thermal-mechanical waves cause high frequency, broadband stress waves 

to propagate through the package for a very short period of time.  The power density 

associated with these stress waves was found to be of significant magnitude indicating 

that even though the effect, titled short time scale effect, is short lived, it could have 
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significant impact on package reliability.  The high frequency and high power density 

associated with the stress waves indicate that the probability of sub-micron cracking 

and/or delamination due to short time scale effect is high.  The findings demonstrate that 

in processes involving rapid thermal transients, there is a non-negligible transient 

phenomenon worthy of further investigation. 
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CHAPTER I 

INTRODUCTION 

 

 Over the past few decades, digital devices have come to be ubiquitous in our 

daily lives.  Rapid developments in microelectronics design and fabrication have led to 

high performance devices that are cost effective and easily accessible to everyone.  New 

technologies for designing and manufacturing integrated circuits are being developed 

daily as the microelectronics industry continues its relentless pursuit of faster, lighter, 

smaller and cheaper devices.  

 Electronic packaging is an integral part of the development cycle of digital 

devices.  It encompasses a wide variety of design and testing processes that help the 

industry develop reliable, high-performance devices.   

Packaging can be broadly classified as chip level, board level and system level 

packaging depending on the various levels of a system as illustrated in Figure 1-1.  

Although every level of packaging is as important as the other, chip level 

packaging poses additional challenges due to size constraints.  

 

Design of Chip Level Packages 

 Chip scale packages serve the very important function of connecting the 

chip or Integrated Circuit (IC) device to its carrier.  Several technologies exist for 

packaging the silicon die which is at the core of every IC device.   

 

The thesis follows the style and format of ASME Journal of Electronic Packaging. 
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Figure 1-1 Levels of electronic packaging (adapted from [1]) 
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While a complete discussion of the different packaging technologies is beyond 

the scope of this research, a few typical examples are presented here. 

 Chips can be connected to their carrier in one of the following ways:  

 Wire Bond 

In this method (Fig. 1-2) the silicon die is backbonded to the carrier using an 

adhesive bond or other suitable means. The chip I/O pads are then bonded to the 

carrier pads using gold or aluminum wires.  

 

 

Figure 1-2 Schematic of a wire bonded device 

 

 

Wire bonding is the most commonly used chip-bonding technology. However 

due to limitations on the number of wire bonds that can be placed within a chip 

and improvements in reliability with other technologies, several parameters of 

wire bond technology need to be enhanced. 

 Flip Chip 

As the name indicates, in this technology, the chip is flipped to face the substrate 

surface.  The terminal pads are attached to the substrate using solder or gold 

Bond Wire

Die

Substrate Back Bond 
Adhesive 
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bumps (see Fig. 1-3). Flip Chip packaging has several advantages over wire 

bonding. 

 

 

 

Figure 1-3 Schematic of flip chip package 

 

The use of solder balls to connect the die to the substrate allows the entire surface 

of the die to be used for interconnects, rather than just the edges as in the case of 

wire bonding.  This also allows for reduction in the size of dies leading to better 

yield and cost reductions.  These advantages have led to a strong interest in 

developing flip chip technologies even though the design was conceived several 

decades back. 

 

Testing of Chip Level Packages 

 Testing of packages involves the study of the reliability of a microelectronic 

package.  By definition, reliability is the ability of the product to perform according to 

the quality and performance requirements over the intended product life.  Therefore, test 

methodologies are used to study the reliability of a device before it enters the market. 

Chip 
Encapsulant 

Die

Substratesolder Balls
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 Several different testing methodologies are employed in the packaging industry 

to determine failure modes.  Since the focus of this research is on the thermal and 

mechanical behavior of packages, some testing procedures and simulations related to 

thermal-mechanical analysis are described here.  It should be noted that these tests 

constitute only a small portion of all the testing processes that are used in the industry to 

ensure electrical and physical performance of the package during operation. 

 Analytical simulations using the Finite Element Analysis (FEA) and 

Environment Tests are commonly employed to characterize packages and improve 

reliability.  Environmental Tests are designed to help the packaging engineer evaluate 

the robustness and reliability of a package in field environment.  Thermal Cycling and 

Thermal Shock testing are some of the commonly used environmental tests.   

Thermal cycling is used to observe the behavior of a package when it is placed in 

a varying temperature environment such as spacecraft applications or automobiles.  The 

differences in Coefficients of Thermal Expansion (CTE) for various materials used in 

the package is believed to induce thermal stresses which leads to plastic deformation and 

eventual failure when the package is subjected to thermal loads.  Accelerated life tests 

are conducted by using high frequency and wide temperature ranges which induce 

failure in a much shorter duration than in the field environment.  The results of the 

accelerated life tests are then extrapolated to make predictions on the performance life of 

the package.  

 Thermal shock testing is conducted to study the effect of rapid temperature 

changes on a package.  Liquid thermal shock testing involves the rapid transfer of a 
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package between two liquid baths maintained at different temperatures varying by as 

much as 120 °C.  The failure modes associated with thermal shock testing are cracking, 

delamination of coatings and permanent change in electrical characteristics. 

 Several other experimental techniques are used to characterize package reliability 

and failure modes.  Test processes specified by organizations such as Joint electron 

device engineering council (JEDEC) are widely used in the industry to conduct 

standardized accelerated life tests. 

Experimental tests such as the ones described above help to test packages for 

operation under several environmental conditions in a short duration of time.  However, 

considerable costs are involved since the package has to be prototyped before being 

tested.  Therefore, predictive modeling using tools such as FEA are increasingly being 

used to study the thermo-mechanical behavior of packages while still in the design stage.  

While analytical models cannot substitute for experimental tests, significant cost 

reductions can be achieved by predicting failure during prototyping as is mentioned in 

[1].  

FEA have been used extensively to predict failure modes such as solder joint 

fatigue during the prototyping stage.  Vandevelde et al. [2] conducted a parameter based 

thermomechanical modeling of Chip Scale Package (CSP) assemblies.  Using 

parameters related to solder joint geometry, CSP dimensions and a fatigue prediction 

model, the authors were able to show a good match between the predicted and 

experimental results.  Several other researchers, including Amagai [3], have conducted 

extensive studies on CSPs and flip-chip assemblies using FEA.  
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High Performance Microelectronic Packages 

 High performance microelectronic devices and packages are devices which have 

a high I/O count and operate at high clock speeds.  Such high performance devices 

require reliable and efficient packaging so that the device is able to perform as expected.  

Flip Chip Ball Grid Array (BGA) packages have been identified as the most effective 

package for these purposes.  This technology is used, for example, in the commercially 

available Intel® Pentium® 4 Extreme Edition processor [4] which has 478 I/O pins and 

is capable of operating at 3.2 GHz.  The processor is expected to dissipate over 100 W of 

power during operation at room temperature. 

It is clear that the package has to be able to withstand severe thermal loads while 

suffer no significant loss in the performance of the device.  Moreover, the high clock 

speed implies that the thermal sweep associated with the electrical clock signal is 

induced within the first few nanoseconds of operation.  

 

Need for Improvements in Packaging Reliability Analysis 

The current trend in the microelectronics industry is directed towards devices 

with micro and nano-scale circuit elements operating at very high clock speeds.  Current 

package testing methodology still relies heavily on experimental tests which are 

conducted after the prototyping phase.  It is obvious that, in comparison, predictive 

modeling can significantly reduce the requirement for redesign.  Therefore, there is a 

need to understand the underlying physics of failure modes, mechanisms and identify 
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potential problems before the prototyping stage for packaging technology to keep pace 

with developments in Large Scale Integration (LSI) technologies and other technology 

drivers in the semiconductor industry. 

When dealing with thermal issues related to packaging, the common notion and, 

in some cases, misconception is that the mismatch of coefficients of thermal expansion 

(CTE) between circuit elements and package components is the cause for thermal 

stresses and failure.  While this might be the case at elevated temperatures above 125 °C, 

thermal gradients in spatial and temporal gradients are more likely to be the cause for 

thermal stresses at operational temperatures.  Large temporal and spatial gradients of 

temperature due to small but rapid increment in temperature can arguably cause damages 

such as cracks or delamination, which could accumulate over a period of time before 

leading to eventual failure.  Since such damages are expected to occur in the first few 

microseconds of operation, before the device reaches steady state temperature, these 

dynamic transient phenomena can be referred to as “short time scale effects”. 

 

Research Objectives 

The goal of this research is to study the thermo-mechanical load induced in a 

high performance microelectronic package during the first few microseconds of 

operation upon power-on and to correlate the induced loads to modes of packaging 

failure.  Using a generalized theory of thermoelasticity, the propagation of the induced 

thermal disturbance as a wave will be studied.  The coupling of thermal waves and 

mechanical waves generated in flip-chip packages due to rapid thermal transients 
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induced during power-on is also investigated.  To the best of the author’s knowledge, 

there are no previous reports on the use of generalized thermoelasticity theories for 

studying packaging reliability.  

 The objectives established to achieve the goal are: 

 Investigate the difference between using generalized thermoelasticity theory as 

compared to the classical formulation so that an appropriate thermoelasticity 

model can be chosen when short time scales are considered. 

 Develop numerical models to study the propagation of thermal-mechanical 

waves and study their temporal and spectral characteristics so that predictions on 

thermal and mechanical behaviors can be made. 

 Demonstrate the existence of short time scale effects due to propagation of 

thermal disturbance and broadband mechanical shock waves of extremely high 

frequency. 

 Establish the short time scale effects using the fundamental concepts of power 

density and investigate their implications on packaging reliability.   

 Predict failure modes due to the propagation of surface and bulk thermal-

mechanical shock waves in flip-chip configuration so that design modifications 

can be suggested to improve the reliability of the package. 
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CHAPTER II 

DYNAMIC THEORY OF THERMOELASTICITY 

 

Thermoelasticity is the study of the influence of temperature of an elastic body 

on the stress and strain distributions in the body and also of the inverse effect of 

deformation on the temperature distribution.  It is a well known fact that most materials 

undergo volumetric variations when subjected to temperature variations.  The stresses 

induced by these variations are called thermally induced stresses, or simply thermal 

stresses.  

The classical theory of thermoelasticity has been extensively studied and 

numerous volumes providing a rigorous mathematical treatment to the derivation of the 

theory from fundamental thermodynamics are available.  While a brief discussion on the 

development of the classical theory is presented here for completeness, the works by 

Nowinski [5] and Nowacki [6] are referred. 

 To incorporate the effect of temperature variations on the stress distribution, 

consider the equation of motion in the following Cartesian tensor form: 

    ,ij j i ib Uσ ρ ρ+ =       (2-1) 

where σij is the stress tensor; ρ the density; bi  the body force vector and Ui  the 

displacement component. 

Assuming a linear relation between temperature variation and the induced strain, the 

induced thermal strain is  

θβε ijij =        (2-2) 
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where εij  is the strain tensor; βij  the thermal expansion coefficient tensor; θ, the 

incremental temperature [T-To], where To is the datum temperature and T is the absolute 

temperature. 

The modified Hooke’s law incorporating thermal strains is  

ij ijkl kl ijCσ ε β θ= −          (2-3) 

where Cijkl  is the elastic modulus tensor. 

The kinematic and constitutive equations for a linear, isotropic, homogenous material 

undergoing small deformation are as follows: 

lkij U ,=ε        (2-4) 

2ij ij kk ij ijσ λδ ε µε βδ θ= + −       (2-5) 

Using Eqs. (2-4) and (2-5), after several mathematical simplifications, Eq. (2-1) 

becomes,  

   , , ,( ) k ki i kk i i iU U b Uλ µ µ βθ ρ ρ+ + − + =      (2-6) 

 To include the effect of deformation on the temperature distribution of the body, 

consider the basic energy balance equation 

, ,ij j i j je T v qρ = −       (2-7) 

where e is the specific internal energy per unit mass; qj the heat flux vector; vj the 

velocity vector.  For a body at rest, Eq. (2-7) reduces to  

,j je qρ = −        (2-8) 

The specific internal energy is a function of the strain tensor and temperature, and can be 

expressed as  



12 

( , ) ( , ) ( , )ij ij ije T T T W Tε η ε ε= +  (2-9) 

where W is the free energy and η is the specific entropy.  

In the absence of a heat source, the energy equation can be expressed as 

, ,v o ij i j j jc T U qρ θ β+ = −    (2-10) 

where cv is the specific heat at a constant volume. 

 Assuming Fourier’s law of heat conduction, the flux vector is related to the 

thermal gradient as  

     jiji kq ,θ−=      (2-11) 

where kij  is the thermal conductivity tensor.  The energy equation now becomes, 

ijijjiijov kUTc ,,, ][ θβθρ =+     (2-12) 

where 

αµλβ )23( +=     (2-13) 

is the thermoelastic coupling constant with λ and µ, the Lame’s constants and α the 

coefficient of thermal expansion for the material.  Upon simplification, for a 

homogenous isotropic material, Eq. (2-12) takes the form 

    kkovkk UTck ,, βθρθ +=     (2-14) 

Using del (∇ ) and Laplacian operator ( 2∇ ), Eqs. (2-6) and (2-14) can be expressed as 

 ( ) UUU ρθβµλµ =∇−∇∇++∇ .2      (2-15) 

θβθρ 2
0 ∇=∇+∇+ kUUTcv     (2-16) 



13 

where θ and U represent the temperature and displacement fields respectively.  From  

Eqs. (2-15) and (2-16), it is clear that there exists a coupling between the thermal and 

mechanical fields when non-negligible strain rates are considered. 

 

Paradox in the Classical Thermoelasticity Theory 

 In the derivation of the classical theory above, it can be seen that the heat flux 

vector is assumed to satisfy the Fourier’s Heat Conduction law.  Due to this reason, the 

theory describes a finite propagation speed for elastic waves while it predicts an infinite 

speed of propagation for the thermal disturbance.  The latter part, which is clearly 

unrealistic, arises from the fact that the Fourier’s Heat Conduction law assumes that 

thermal disturbances travel at an infinite speed through a medium irrespective of the 

dimensions of the medium.  This implies that if a heat source is suddenly applied at any 

point in a body, the thermal disturbance induced by the heat source is instantaneously 

felt at every other point in the body. 

 To compensate for this flaw in the Fourier’s Law, several models were proposed 

as modifications.  Maxwell coined the term second sound to describe finite velocity 

thermal waves.  See review article by Joseph and Preziosi [7] for a detailed history of 

second sound.  In 1967, Cattaneo [8] proposed a modified heat conduction equation 

which included a time dependent flux term to compensate for the infinite velocity of 

propagation.   

 

The explicit form of the so-called Maxwell-Cattaneo Law is  
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θτ ∇−=+
∂
∂ kq

t
q

              (2-17) 

where τ is the time required to establish heat conduction after a heat source has been 

suddenly applied and is commonly referred to as thermal relaxation time.  It should be 

noted that as τ approaches zero, Eq. (2-17) reduces to the Fourier’s Heat Conduction 

Law.  Introducing the time derivative term of heat flux in the heat conduction equation 

implies that heat conduction occurs due to propagation of thermal disturbances as waves 

of finite velocity.  Several authors, notably Chandrasekharaiah [9], have indicated that 

the hyperbolic heat conduction Eq. (2-17) should be used in place of the parabolic 

Fourier’s Law for applications where short time intervals, high heat fluxes or low 

temperatures are involved.  Therefore, in addition to this research, the hyperbolic 

equation has been shown to be more accurate than the Fourier’s Law in areas such as 

cryogenics [10] and lasers [11].  

 Due to the coupling of thermal and mechanical fields in classical thermoelasticity 

theory, modifications in the heat conduction law would also apply to the thermoelasticity 

equations.  Generalized Thermoelasticity refers to the development of thermoelasticity 

theory that takes into account the finite propagation speed of thermal disturbance as a 

wave and its effect on the coupled thermal-mechanical field.  While several models have 

been developed to incorporate the hyperbolic heat conduction equation into 

thermoelasticity theory [12], two models which are considered landmarks in the field of 

generalized thermoelasticity are described here. 
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Generalized Theory with Non-Fourier Heat Conduction (LS Model) 

 In 1967, Lord and Shulman [13] proposed the first known generalized theory 

which used the Maxwell-Cattaneo equation to describe a heat flux vector in an elastic 

half space.  Using the hyperbolic equation in the derivation of the classical theory 

described earlier, the energy equation, Eq. (2-11), becomes 

   ])[1( ,, kkovkk UTc
t

k βθρτθ +
∂
∂

+=    (2-18) 

Expanding this equation and using vector notation we get, 

      2( ]v v oc c T U U kρ θ ρ τθ β τ θ+ + ∇ + ∇ = ∇     (2-19) 

Eqs. (2-19) and (2-16) together form the coupled generalized thermoelasticity 

model as described by Lord and Shulman, henceforth referred to as the LS Model.  The 

equations represent a thermoelastic wave of finite velocity which is induced due to an 

external thermal, mechanical or thermomechanical load.  It can be seen from Eq. (2-19) 

that the LS Model uses only a single thermal relaxation time constant.  

 

Generalized Theory with Two Relaxation Constants (GL Model) 

 The Green and Lindsay Model [14] is characterized by a set of PDEs in which, in 

comparison to the classical theory, the displacement and thermal fields are generalized 

by the use of two relaxation time constants.  A detailed derivation of this theory can be 

found in Suh [15].  The salient feature of this theory is that instead of assuming the 

Maxwell-Cattaneo law as a substitute for the Fourier’s Law, the GL model has been 

developed using the entropy production inequality function. 
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The field equations for the GL theory are 

         ( ) UtUU ρθθβµλµ =∇+∇−∇∇++∇ )(. 1
2    (2-20) 

θβθρθρ 2
02 ∇=∇+∇++ kUUTtcc vv    (2-21) 

Two new time constants, t1 and t2, are introduced here.  The GL theory allows for 

a finite propagation speed of thermal energy depending on t2.  It can also be seen that not 

only does the mechanical field depend on the heat flux but also on the temporal gradient 

of heat flux which depends on t1.  Therefore, the GL model predicts a finite wave 

propagation speed for both the thermal and mechanical fields.  In comparison to the 

classical theory, there is a strong coupling between the thermal and mechanical fields.  

 Several other models for generalized thermoelasticity have also been developed.  

Notably, the Green and Naghdi (GN) model which predicts the propagation of 

thermomechanical waves without damping and is therefore referred to as 

‘thermoelasticity without energy dissipation’.  Comparisons of several generalized 

thermoelasticity theories can be found in [12]. 
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Discussion  

 While both the LS and GL model accommodate for the finite propagation of 

thermal waves, the theories are fundamentally different in that the thermodynamics 

principles used in their derivations are not the same.  Although both theories have been 

shown to be very similar in resolving thermal and mechanical waves by Suh [15] and 

others [10], several mathematical and thermodynamics issues need to be considered.  

Suh [15] and Wegner et al. [16] have contended that while the LS model violates the 

entropy inequality at the fundamental level, the GL model does not.  On the other hand, 

Chandrasekharaiah and Srinath [17] reviewed the GN model in comparison to the LS 

and GL models and found that the GL model predicts discontinuities in the displacement 

fields which are physically unrealistic in a continuous media.  Rigorous mathematical 

analyses have been conducted by several authors in an attempt to conclusively find the 

correct generalized theory but as of this date, there exists no conclusive proof about the 

accuracy of one theory over the other.  This is probably due to the fact that even though 

the theories are entirely different in their approach to form a coupled thermoelasticity 

theory, they are remarkably similar in their formulation.  

 For the purposes of this research, the GL theory has been used to model short 

time scale behavior.  Since it has been shown that the GL model does not violate the 

basic principles of thermodynamics and the problem at hand has a thermal source, it is 

appropriate that the theory following thermodynamics is used.  The decision to use the 

GL model is also reinforced by the fact that although the concept of relaxation times is 

physically comprehensible, only the GL theory has been shown to provide an order of 
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magnitude of the relaxation time without violating the fundamental physics of the 

problem.  Using aluminum, Suh [18] has shown that although both the GL and LS 

models resolve coupled thermomechanical waves, only the GL model provides an order 

of magnitude of the relaxation time for which there is a steady resolution of the 

mechanical wave.  The LS model on the other hand predicts a steady speed of 

mechanical wave irrespective of the order of magnitude of the thermal relaxation time.  

Since it is practically impossible to experimentally determine the relaxation time for a 

material, the GL model provides some idea about the magnitude of the relaxation time 

which can be used for modeling purposes.  Richardson et al. [19] discussed the short-

time thermoelastic transients that are observed in aluminum after absorption of a sub-

picosecond laser pulse.  The authors concluded that the GL model would provide a better 

approximation of the experimental data than the classical thermoelastic equations.  A 

detailed description of the procedure used to determine the relaxation time constants in 

the GL model is provided in the following chapter. 
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CHAPTER III 

COUPLED THERMAL-MECHANICAL MODEL 

 

 For the various purposes of the research, the GL model had been adopted to 

investigate the many thermal-mechanical behaviors of a high performance 

microelectronic package during power-on.  To model the package using the GL model, 

the relaxation time constants need to be determined. 

 

Determination of Thermal and Mechanical Relaxation Time Constants 

The GL model uses two relaxation time constants to resolve thermal and 

mechanical waves traveling at finite speeds.  Therefore, by ascertaining the range of 

relaxation time constants within which thermal and mechanical wave speeds are stable, 

we can predict the order of magnitude of the relaxation time constants.  This method has 

been adapted from Suh [15]. 

Consider a plane harmonic wave propagating with a phase velocity c in a 

direction defined by the propagation vector p represented by 

[ ( . )]( , ) i x p ctU x t Ade γ −=      (3-1) 

where x is the position vector, d is the unit vector defining the direction of particle 

motion and  γ=2π/λ is the wave number, where λ is the wavelength.  A scalar 

temperature wave that is coupled with the displacement wave may be assumed of the 

form  

         [ ( . )]( , ) i x p ctx t Be γθ −=       (3-2) 
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A similar representation can be found in Achenbach [20].  Substituting U and θ into 

Equations 2-15 and 2-16 and eliminating the constant B, we obtain, 

2( ) ( )( . )c d p d pµ ρ λ µ− + + +  

   
2 2 2

0 1 1
2

2

1 ( )
( . ) 0

[ ]v v

T c i t c t c
p d p

c c i K t c
β γ γ
ρ γ γ

⎛ ⎞ ⎡ ⎤− +
=⎜ ⎟ ⎢ ⎥⎜ ⎟ + −⎢ ⎥⎝ ⎠ ⎣ ⎦

     (3-3) 

where Kv=k/(ρcv) is the thermal diffusivity.  From wave theory, direction of particle 

motion (d) can be either parallel or perpendicular to direction of wave propagation (p) 

giving rise to longitudinal or shear waves, respectively.  These waves are investigated as 

follows. 

 For the case when d≠+p, p.d=0 is implied by dot product definition and therefore 

Eq. 3-3 becomes  

     c µ
ρ

=        (3-4) 

Eq. 3-4 defines shear waves.  From Eq. 3-4 it can be concluded that shear waves are not 

functions of relaxation time constants and they have no influence on the temperature 

field. 

 For the case when d=+p, p.d=+1 and Eq. 3-3 becomes, 

2 2 2
2 0 1 1

2
2

1 ( )
( 2 ) 0

[ ]v v

T c i t c t c
c

c c i K t c
β γ γ

λ µ ρ
ρ γ γ

⎛ ⎞ ⎡ ⎤− +
+ − + =⎜ ⎟ ⎢ ⎥⎜ ⎟ + −⎢ ⎥⎝ ⎠ ⎣ ⎦

    (3-5) 

This shows that the phase velocity c depends on the wave number γ, and the relaxation 

times which indicate that thermoelastic waves are dispersive and attenuative.  Solving 

Eq. 3-5 for c and setting γ→∞, we obtain 
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1/ 2
2 2

2

2

4
2

v Lm m K c t
c

t

⎡ ⎤± −⎢ ⎥= ±
⎢ ⎥
⎣ ⎦

    (3-6) 

where 
2

2 0 1
2 2L

V

T t
m t c Kv c

β
ρ

= + +   

Table 3-1 gives the numerical values of c1 and c2 for different values of t2 and the 

ratio t1/t2 for silicon.  The material properties for Si are 

Young’s Modulus (E)  165 GPa  

Poisson Ration (ν)  0.22 

Density (ρ)   2330 kg/m3 

Specific heat (cv)  700 J/kg°C 

Thermal conductivity (k) 155 W/m°C 

Expansion coefficient (α) 2.3 µε/°C 

It can be seen that the mechanical wave speed is essentially constant for t2 less than 

1x10-13 seconds.  With increasing values of t2, the resolution begins to deteriorate.  This 

implies that the order of magnitude of relaxation time is at least 1x10-13 seconds.  Similar 

observations were made by Suh in [15] for aluminum.  
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Table 3-1 Phase velocities for GL model for different values of relaxation time ratios for 

silicon material 

Relaxation Time t2 (sec) 
Ratio 

t2/t1 

Phase Velocity 

c1 (m/sec) 

Phase Velocity 

c2  (m/sec) 

2.8 x10-14 10 58258.81 8991.42 

2.8 x10-14 5 58258.67 8991.44 

2.8 x10-14 2 58258.62 8991.45 

2.8 x10-13 10 18423.97 8990.97 

2.8 x10-13 5 18423.47 8991.22 

2.8 x10-13 2 18423.18 8991.36 

2.8 x10-12 10 5824.13 8994.12 

2.8 x10-12 5 5825.00 8992.78 

2.8 x10-12 2 5825.51 8992.00 
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The major attribute of the GL model being able to predict the order of magnitude of the 

relaxation time constants makes it a suitable choice for this research. 

 After selecting a suitable thermoelasticity model, the next stage of the research 

was to set up numerical models to solve the Initial-Boundary Value Problem (IBVP) 

which is described next.  

 

Description of One Dimensional Numerical Model 

  Since the objective of the research is to simulate the short time scale transient 

thermomechanical behaviors inside a flip chip packaging configuration, explanation is 

required to justify the use of the generalized theory of thermoelasticity as the 

formulation of choice.  To demonstrate that results predicted by the GL theory are 

significantly different from those predicted by the classical theory, a one dimensional 

(1D) model was used to model the propagation of thermo-mechanical waves in a silicon 

die when a heat source due to the square waveform electrical pulse is applied at the 

boundary. 

The assumption made here is that the heat is generated in the doped portion of 

the silicon die and that the doped region is of a hemispherical shape (Fig. 3-1).  Guo and 

Xu [21] have used a similar model to simulate the propagation of thermal wave through 

a doped silicon region when subjected to a heating pulse.  

Since the model in consideration has radial symmetry, the field equations for the 

GL model are converted to spherical polar coordinates by adopting the scheme proposed 
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by Sharief and Darwish [22].  The field equations for the GL Model in spherical polar 

coordinates are as follows: 

   

2

1 2

2 2

2 02 2

2( 2 )

2 2( )v

u u T uT t
r r r r t t

T T T T u uk c t T
r r t t r rr t

λ µ β ρ

ρ β

∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + − + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ = + + +⎜ ⎟∂ ∂ ∂ ∂∂ ∂ ⎝ ⎠

             (3-7) 

Using the following non-dimensional variables  

r*= cLηr, t*= cL
2ηt, t1*= cL

2ηt1, t2=cL
2ηt2 

where cL is the longitudinal wave velocity and η is a normalizing constant ρcv/k, 

we obtain the normalized one dimensional form of the GL model as  

2

1 2

2 2

22 2

2

2 2

u u uc t
r r r r t t

u ut g
r r t t r rr t

θθ

θ θ θ θ

∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ − + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ = + + +⎜ ⎟∂ ∂ ∂ ∂∂ ∂ ⎝ ⎠

     (3-8) 

where c = (3λ+2µ)αT0/(λ+2µ) and g = (3λ+2µ)α/ρcv are the thermomechanical coupling 

constants.  Note that the asterisks used for all non-dimensional variables have been 

dropped in Eq. (3-8) for convenience.    
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Figure 3-1 Model of an IC element for one dimensional case where r0 defines the 

doped region 
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 A heating source of the temporal characteristics shown in Fig. 3-2 is chosen to 

simulate the heating profile during power-on.  Assuming the clock speed of the 

processor to be 1 GHz, the heat source would have a time period of 1 nanosecond.  With 

this in mind, the heating profile is chosen to be a Gaussian function as follows: 

    
23 [ ( ) ]

4( )
t
btf t a e

b

−
=        (3-9) 

where a and b are constants chosen to control the peak amplitude and rise time of the 

function.  Specifically, the heat source is to simulate the dissipation of heat from a 

junction, with the assumption that approximately 0.001°C of temperature increase is 

reached within 0.5ns. 

Since the problem is of one-dimensional, the length of the problem domain is 

chosen to be of sufficient length so that there is no interference from the reflected waves 

from the right boundary. Reflected waves act as noise signals which add frequency 

components to the  signal which is being analyzed. 
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Figure 3-2 Heat source profile used to simulate heating of junction point during  

power-on 
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Description of Two Dimensional Numerical Model 

 The objective of the 1-D model is to demonstrate the differences between the 

classical thermoelasticity theory and the generalized thermoelasticity theory.  To study 

the impact of short time scale effects on package reliability, the propagation of thermal-

mechanical waves in a typical package configuration needs to be simulated and 

analyzed.  Ideally, a complete 3-D FEA simulation would provide a complete insight 

into such a problem.  However, the hardware requirements for such a simulation are 

extreme.  A typical Flip Chip On Board (FCOB) configuration cross-section as shown in 

Fig. 3-3 was chosen for the two-dimensional analysis.  FCOB has been extensively used 

in the industry in the past few years for high performance microprocessor applications 

although the concept was developed a few decades back by IBM.  The dimensions were 

adopted from Lau et al. [23].  A heat source similar to the one defined for the 1D model 

is applied at a point in the silicon die to simulate the heat generated at a junction point in 

the circuit.  

 The 2D equations for the GL model, adopted from Suh [15], are as follows: 
 

2 2 2

0 22 2 2

2 2 2 2 2

12 2 2

2 2 2 2 2

12 2 2

v v
u vk C T C t

t t x yx y t

u v u u uE t
y x y x x tx y t

u u v v vE t
y x y x y tx y t

θ θ θ θρ β ρ

θβ θ ρ

θβ θ ρ

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − − + =⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂∂ ∂ ∂⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + + − + =⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + + − + =⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂⎣ ⎦⎢ ⎥⎣ ⎦

  (3-10) 
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Figure 3-3 Axisymmetric cross section of flip chip on board assembly  
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where u and v are displacement variables in X and Y direction and θ is the temperature 

variable.  

 

Issues Relevant to Numerical Modeling 
  
 Several issues need to be considered while conducting a numerical investigation.  

While there are a wide variety of numerical tools and commercial software packages 

available which implement the finite element method, very few packages allow the user 

to define governing equations in the problem domain.  However, in the case of the 

present problem, the governing equations are quite different from the ones that are 

implemented in most commercial packages.  In most cases, the only option available is 

to create a detailed finite element code.  Since the objective of this research is to 

investigate propagation of thermal-mechanical waves in electronic packages and not the 

development of a finite element code, FEMLAB®, a package recently introduced by 

Comsol Inc., was chosen to conduct the numerical simulations.  FEMLAB® allows users 

to define governing equations chosen by the user over complex problem domains in 1D, 

2D and 3D.  
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While the program is flexible in that equations and boundary and initial 

conditions can be formulated as required, there are limitations on the complexity of the 

model that can be solved due to computer hardware requirements.  Moreover, in 

problems involving wave propagation, the mesh required needs to be highly refined to 

accurately capture wave characteristics.  Using the equation relating wave velocity, c, to 

its frequency, f, and wavelength λ,  

λfc =      (3-11) 

the approximate wavelength of the thermal and mechanical waves can be computed.  

Since the problem uses a gigahertz heat source, the maximum frequency of thermal and 

mechanical waves to be expected is also in the gigahertz range.   Using the phase 

velocities of thermal and mechanical waves from Table 3-1, the approximate wavelength 

of thermal and mechanical waves can be determined for the silicon die.  The wavelength 

obtained by using Eq. 3-11 can then be used to determine the optimal mesh size to 

capture the wave characteristics. 
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CHAPTER IV 

RESULTS OF ONE DIMENSIONAL NUMERICAL ANALYSIS 

 

 As mentioned in Chapter III, the objective of the 1-D numerical simulation is to 

highlight the differences between the classical and generalized theories of 

thermoelasticity.  The main advantage of the generalized theory is that it overcomes the 

paradox of infinite speed of the propagation of thermal disturbances.  However, since the 

classical theory predicts an infinite speed of propagation, it implies that the disturbance 

essentially has an infinite frequency.  This makes it difficult to capture the wave 

characteristics of a thermal-mechanical disturbance described in the classical theory 

using FEM since it requires an extremely large number of elements in the finite element 

mesh.  Moreover, large core memory is required when the spatial resolution and time 

scale resolution required to capture a dynamic phenomenon such as the present problem. 

 To overcome this difficulty, the 1-D results are separated into two sections.  In 

the first section, using a small ‘bar’ of approximately 100 nanometers (nm), the 

qualitative differences between classical and generalized theories are presented.  In the 

second section, a 1-D ‘bar’ of 0.45 mm is used to compute various parameters, such as 

temperature, displacement and stress, and present results from the generalized theory. 

The advantage of separating the analysis is that it allows for visualization at two 

different scales without the requirement of large computational power. 
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Analysis of 100 nm Bar 

 The temperature and displacement profiles at three locations on a 100 nm bar at 

10 nm, 30 nm and 50 nm for the generalized (hyperbolic) theory and the classical 

(parabolic) theory are compared to highlight the differences between the two theories, 

which are the attenuation characteristics of thermal-mechanical waves as well as the 

effect of coupling of thermal and mechanical waves in the generalized theory.  The 

classical theory can be considered as a special case of the generalized theory where 

t1=t2=0.  Therefore, with decreasing values of the relaxation time constants, the 

generalized theory and classical theory would predict similar temperature and 

displacement profiles.  Comparing the data at 10 nm (Figs. 4-1 and 4-2), it can be seen 

that the classical theory and generalized theory for t1=2.8x10-13 and t2=2.8x10-14 seconds 

do not exhibit any significant difference.  However, it can be seen that for the applied 

normalized temperature increase of 0.001°C, the maximum amplitude of normalized 

temperature at 10 nm is between 1x10-5 and 1x10-7 for different combinations of  
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Figure 4-1 Time domain plots of temperature increment at 10 nm for various 

combinations of t1 and t2 and the parabolic case 
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Figure 4-2 Time domain plots of normalized displacement at 10 nm for various 

combinations of t1 and t2 and the parabolic case 
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relaxation time constants.  This clearly exhibits the attenuative nature of the thermal-

mechanical waves.  It can also be seen that for t1=2.8x10-11 and t2=2.8x10-12 seconds and 

t1=2.8x10-12 and t2=2.8x10-13 seconds, the propagation of thermal wave is at a finite 

speed as compared to the parabolic case.  The plots also show the coupling between 

thermal and mechanical wavefronts due to the coupling terms in Eq. 3-8.  

It should also be noted here that the generalized theory predicts maximum 

displacement amplitude which is several orders of magnitude higher than that predicted 

by the classical theory. 

At 30 nm (Figure 4-3 and 4-4), the plots show the continued attenuation of the 

thermal-mechanical waves.  In addition, the separation of the thermal and mechanical 

wavefronts due to different velocities of propagation is also seen.  For the plots 

t1=2.8x10-11 and t2=2.8x10-12 seconds in Fig. 4-4, two displacement wave fronts exist; 

one due to the coupling of thermal and mechanical waves and another purely mechanical 

wavefront.  A similar coupling effect is also observed in other plots which become more 

prominent as time progresses. 
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Figure 4-3 Time domain plots of normalized temperature at 30 nm for various 

combinations of t1 and t2 and the parabolic case 
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Figure 4-4 Time domain plots of normalized displacement at 30 nm for various 

combinations of t1 and t2 and the parabolic case 
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Fig. 4-5 shows the thermal profile at 50 nm corresponding to t1=2.8x10-11 and 

t2=2.8x10-12 seconds. Fig. 4-6 shows the two displacement wavefronts: one purely 

mechanical and the other due to the coupling between the thermal and mechanical 

wavefronts.  It is interesting to note that the amplitudes of both the mechanical waves are 

comparable.  Finally, comparing the displacement profiles, the arrival time of the 

mechanical wave remains steady as predicted by Eq. 3-6 and Table 3-1. 

 The stress and power density results for the various cases considered in this 

section are presented next.  Uniaxial stresses are computed for the one-dimensional 

results.  The concept of power density is used extensively in this research and, therefore, 

warrants a detailed discussion.  The term power density here refers to the temporal 

gradient of stresses.  A simple analysis reveals that the units for the temporal gradient of 

a stress are W/m3 as  

2 3 3 3
N Nm J W

t m s m s m s m
σ∂

= = = =
∂  

Therefore, the stress gradient indicates the power density per unit volume. 
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Figure 4-5 Time domain plots of normalized temperature at 50 nm for various 

combinations of t1 and t2 and the parabolic case 
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Figure 4-6 Time domain plots of normalized displacement at 50 nm for various 

combinations of t1 and t2 and the parabolic case 
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  It should be mentioned here that standard fatigue testing could also be quantified 

using the same definition of power density.  During fatigue testing, the specimen to be 

tested is cycled between two pre-determined stress values at a constant loading 

(oscillating) frequency.  Mechanical failure, i.e. fatigue fracture, occurs when a certain 

number of stress cycles are completed.  The frequency of the stress cycling usually 

varies between several hertz to several kilohertz.  

Figures 4-7 through 4-12 show the plots of power density and stress at 10nm, 

30nm and 50 nm.  The order of magnitude of the power density increases for decreasing 

order of magnitude of thermal relaxation time constants.  This can be explained by 

considering Eq. 3-8.  The thermal and mechanical relaxation constants play a significant 

role in the equation when the time scale being considered is of the same order of 

magnitude or a few order of magnitudes higher than the values of relaxation time 

constants.  Therefore, a direct correlation between increasing order of magnitude of 

relaxation time constants and power density values is seen in the plots.   

The fact that GL theory describes power density that is at least one magnitude 

higher than the parabolic case indicates that short time scale effects have a prominent 

and immediate effect in the vicinity of the heat source. 

Another noticeable feature in the power density and stress plots is the rapid decay 

of the magnitude of power density which follows from the attenuative behavior of the 

thermal and mechanical waves as discussed previously. 
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Figure 4-7 Time domain plots of power density at 10 nm for various combinations of t1 

and t2 and the parabolic case 
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Figure 4-8 Time domain plots of stress at 10 nm for various combinations of t1 and t2 

and the parabolic case 



45 

 

 
 
 
 
 
 
 

0 0.2 0.4 0.6 0.8 1 1.2
x 10

-11

-8000

-6000

-4000

-2000

0

2000

4000

6000

time(sec)

po
w

er
 d

en
si

ty

t2=2.8e-14

0 0.2 0.4 0.6 0.8 1 1.2
x 10

-11

-1.5

-1

-0.5

0

0.5

1

1.5 x 10
5

time(sec)

po
w

er
 d

en
si

ty

t2=2.8e-13

 
 
 

0 0.2 0.4 0.6 0.8 1 1.2
x 10

-11

-3

-2

-1

0

1

2

3 x 10
5

time(sec)

po
w

er
 d

en
si

ty

t2=2.8e-12

0 0.2 0.4 0.6 0.8 1 1.2
x 10

-11

-1000

-800

-600

-400

-200

0

200

400

600

800

time(sec)

po
w

er
 d

en
si

ty

parabolic

 
 
 
 
 
 
Figure 4-9 Time domain plots of power density at 30 nm for various combinations of t1 

and t2 and the parabolic case 
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Figure 4-10 Time domain plots of stress at 30 nm for various combinations of t1 and t2 

and the parabolic case 
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Figure 4-11 Time domain plots of power density at 50 nm for various combinations of t1 

and t2 and the parabolic case 
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Figure 4-12 Time domain plots of stress at 50 nm for various combinations of t1 and t2 

and the parabolic case 
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Numerical oscillations in the plots of stress and power density for t2= 2.8x10-14 

were observed (Figs. 4-11 and 4-12).  This makes it difficult to identify the similarities 

or differences between the different values of relaxation time constants.  Gabor Wavelet 

Transform (GWT) provides simultaneous time and frequency information as compared 

with other signal processing tools such as the Fast Fourier Transform.  GWT allows the 

presence of various frequencies in the time domain signal along with their arrival time to 

be identified.  It also allows if the signal is dispersive or non-dispersive to be easily 

determined.  By conducting a time-frequency analysis using GWT, numerical 

oscillations are isolated as high frequency content and the underlying spectral 

characteristics of the signal are revealed.  

Time-frequency analysis of the power density plots reveals that although the 

frequency content varies for different relaxation time values, they all have a broadband 

spectrum and the peak frequencies are similar.  
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Figure 4-13 GWT plots of power density at 10 nm for various combinations of t1 and t2 

and the parabolic case 
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Figure 4-14 GWT plots of power density at 30 nm for various combinations of t1 and t2 

and the parabolic case 
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Figure 4-15 GWT plots of power density at 50 nm for various combinations of t1 and t2 

and the parabolic case 
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The following conclusions can now be reached: 

 The classical and generalized theories predict different amplitudes for thermal 

and mechanical waves.  These differences diminish with reducing order of 

magnitude of the relaxation time constants. 

 The thermal and mechanical waves are highly attenuative since the amplitude 

drops by several orders of magnitude within a very short time span. 

 The thermal-mechanical waves are dispersive which can be observed in the GWT 

plots.  Figs. 4-13 to 4-15 show that the frequency spectra of the same stress wave 

vary all the way from one location to the next, thus demonstrating the 

characteristics of a dispersive wave.   

 The power density predicted by GL model is at least one magnitude higher than 

that predicted by the classical theory.  Therefore, a prominent effect of using the 

GL model over classical theory for characterizing short time scale effects can be 

observed close to the heat source.  

 Depending on the choice of relaxation time constants as predicted by the GL 

model, there could be significant implications of neglecting the use of 

generalized theory in problems involving short time scales.  

 

Analysis of 0.45 mm Bar 

In this section, analysis of the generalized theory using a one dimensional bar of 

0.45 mm is presented.  Since one of the objectives of this research is to predict possible 
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failure modes of microelectronic packages, the choice of dimension for the 1-D bar is 

based on the feature size commonly found in high performance IC devices. 

The choice of relaxation time constants was shown to significantly affect the 

characteristics of the thermal-mechanical wave in the previous section.  Therefore, a 

comprehensive analysis of each combination of relaxation time constants from Table 3-1 

is presented here. 

Three locations, at 15 microns, 100 microns and 200 microns, on the one 

dimensional silicon bar are chosen for the analysis.  Eq.3-8 is used to model the thermal-

mechanical wave phenomena when a Gaussian thermal pulse is applied at the left 

boundary of the bar.  

Figs. 4-16 through 4-18 show the plots of the normalized temperature and heat 

flux at the three locations for different values of relaxation time constants.  Different 

ratios of t1/t2 are plotted in the same figure to provide for comparison.  It can be seen in 

Fig. 4-16 that there are essentially two thermal disturbances traveling through the bar.  

The first disturbance is seen at the right end of the plot, whereas the second one appears 

at approximately 2 nanoseconds at 15 microns.  These two disturbances captured at 15 

microns mirror the observations made in the previous section.  Fig. 4-16 shows that the 

thermal wave travels much faster than the mechanical wave and is also highly 

attenuative.  It is interesting to note that as compared to the previous section, irrespective 

of the choice of relaxation time constants, the initial thermal wave and the coupled 

thermal-mechanical wave pass through the location at the same time.  
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Figure 4-16 Plots of temperature increment and heat flux for different values of 

relaxation time at 15 microns
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 Figure 4-17 Plots of temperature increment and heat flux for different values of  

relaxation time at 100 microns 
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Figure 4-18 Plots of temperature increment and heat flux for different values  

of relaxation time at 200 microns 



58 

 

This is in sharp contrast to the plots in the previous section where the thermal and 

mechanical waves were markedly different for the various combinations of relaxation 

time constants.  This can be explained by the fact that by the time the waves traverse 

through 15 microns, the effect of different values of relaxation time constants 

diminishes.  Small differences in values of temperature and arrival time of thermal and 

mechanical disturbances are observed in the numerical data which support the accuracy 

of the numerical analysis.  

Plots in Figs. 4-17 and 4-18 show the propagation of the thermal-mechanical 

disturbance.  Once again, the attenuation of the wave is seen as it drops by several orders 

of magnitude when it reaches 15 microns.  

It can be seen in Figs. 4-19 through 4-21 that the mechanical wave appears at the 

same time instant as the thermal wave in Figs. 4-16 through 4-18.  Using the numerical 

data from these plots, it is seen that this thermal-mechanical disturbance travels at the 

same velocity predicted for a longitudinal wave traveling through silicon.  It should be 

noted here that although the displacement magnitude is of sub-nanometer scale, the 

stress magnitude are of a few Pascals in magnitude.  
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Figure 4-19 Plots of displacement and stresses for different values of relaxation  

time at 15 microns 
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Figure 4-20 Plots of displacement and stresses for different values of relaxation  

time at 100 microns 
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Figure 4-21 Plots of displacement and stresses for different values of relaxation 

time at 200 microns 
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These plots clearly indicate that by only observing displacement magnitudes, it 

would appear that the effect of thermal-mechanical wave propagation is insignificant.  

This is far from the truth, since, by definition, magnitudes of stresses and strains depend 

on the spatial gradient of displacement.   For the problem at hand, both the spatial and 

temporal gradient of the thermal-mechanical wave are high due to the short time scale 

and small feature length in consideration.  Therefore, stress waves of significant 

magnitude (due to spatial gradient) and frequency (due to temporal gradient) can be 

expected.  To this end, a Gabor Wavelet Transform (GWT) analysis is conducted on the 

temperature and stress data to study the spectral characteristics of these waves. 

Figs. 4-22 and 4-23 show the GWT plots of temperature and stress waves, 

respectively, for t1 = 2.8x10-13 seconds and t2 = 2.8x10-14 seconds.  The differences in the 

time domain plots for different values of relaxation time constants are minor in terms of 

the signal width and do not give any appreciable differences in the GWT plots.  

Therefore, only plots for one set of relaxation time constants are presented here for the 

sake of brevity. 
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Figure 4-22 GWT mesh plots of thermal wave at three different locations 
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Figure 4-23 GWT mesh plots of stress wave at three different locations 
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To generate the GWT plots presented here, the frequency range of 0-6 GHz was 

kept constant.  Since the frequency of the input heat source is 1 GHz, this range was 

chosen to capture all possible frequencies that might exist in the signal.  Fig. 4-22 shows 

the GWT plots of the temperature waves shown in Figs. 4-16 through 4-18.  Several 

features of thermal-mechanical coupled waves can be readily observed.  The signal has a 

peak magnitude around the 1 GHz range.  This implies that the frequency which has the 

highest magnitude of wavelet coefficient (dark red region) is in the same range as the 

frequency of the input heat source.  It can also be seen that the thermal wave exhibits a 

broadband nature with frequency content present for almost the entire 6 GHz range.  

This characteristic of thermal-mechanical waves has been well-documented by Suh [16].  

The topmost GWT plot in Fig. 4-22 also shows the existence of a low frequency 

component due to the thermal wave.  Another characteristic that is immediately 

noticeable is the dispersive nature of these waves.  This behavior is observed both in 

Figs. 4-22 and 4-23 which indicates that thermal-mechanical waves under study here are 

highly dispersive. 

Finally, plots of power and power density associated with the thermal-

mechanical waves are presented in Figs. 4-24 through 4-26.  A simple dimensional 

analysis reveals that the temporal gradient of temperature distribution provides an 

indication of power in degrees Celsius/second.  
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Figure 4-24 Plots of power and power density for different values of relaxation  

time at 15 microns 
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Figure 4-25 Plots of power and power density for different values of relaxation  

time at 100 microns 
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Figure 4-26 Plots of power and power density for different values of relaxation 

time at 200 microns 
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Similarly, the temporal gradient of stress provides the power density in Watts per 

unit volume.  Figs. 4-24 through 4-26 provide a quantitative estimate of both these 

quantities.  The most striking feature of these plots is the order of magnitude of the 

power density.  In comparison to the order of magnitude of the displacement and 

temperature increase, the power density varies between 2 KW/m3 and 80 KW/m3.  This 

can be explained as follows.  Although the displacement magnitudes are low, the spatial 

gradient of displacement (strain) is significant due to the small feature size in 

consideration.  The product of strain with the elastic modulus gives the stress value 

associated with these thermal-mechanical waves.  Since silicon has an elastic modulus of 

165 GPa, the stresses are of non-negligible magnitude.  The temporal gradient of stresses 

gives the power density value which is also high owing to the short time scales in 

consideration.  To reiterate the statement made earlier, assuming that small amplitudes 

of displacement imply negligible effects would be misleading for the problem under 

consideration here. 

 A classical theory analysis for the 0.45 mm 1D bar was also conducted.  The 

results (Figs. 4-27 through 4-29) show that the differences between the classical theory 

and generalized theory diminish with increasing distance from the heat source.  Identical 

results were obtained for the hyperbolic case and parabolic case in terms of magnitude 

and waveform. 
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Figure 4-27 Plots of temperature increment and heat flux at 15, 100 and 200 microns 

using the classical theory 
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Figure 4-28 Plots of displacement and stresses at 15, 100 and 200 microns using 

the classical theory 
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Figure 4-29 Plots of power and power density at 15, 100 and 200 microns using the 

classical theory 
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Discussion of Results and Summary 

 A qualitative analysis for two different dimensional scales of the Green-Lindsay 

Theory in comparison with the classical thermoelasticity theory is presented in this 

chapter.  It is seen that the differences between the GL theory and the classical theory 

significantly depend on the time window that has been considered.  The GL theory 

predicts significantly higher values of power density as compared to the classical theory 

when a time window close to the order of magnitude of relaxation time constants is 

considered.  However, even within this time window, the attenuative and dispersive 

characteristics of thermal-mechanical waves prevail.  The choice of thermal and 

mechanical relaxation time constants strongly affects the amplitudes of thermal and 

mechanical waves when the feature size is of nanometer scale.  With decreasing order of 

magnitude of relaxation time constants, these differences also diminish.   

For larger spatial distances, thus longer time window, these differences diminish.  

The coupling of thermal and mechanical waves of considerable magnitude is clearly 

seen in all the plots presented.  The thermal and thermal-mechanical waves are highly 

attenuative and their amplitudes drop by several orders of magnitude within a very short 

time and distance as seen in Figure 4-30.  The spectral characteristics of these waves 

seem to strongly depend on the frequency of the input heat source.  The power and 

power density plots indicate that small amplitude displacements (caused by a small 

temperature increase) occurring in a short time over short distances lead to non-

negligible power and power density values. 
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Figure 4-30 Time domain plots of various parameters at 50 microns, 100 microns and 

150 microns 
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            To summarize, when time scales of the order of magnitude close to the relaxation 

time constants are considered, the GL model and the classical theory are 

characteristically different.  On the other hand, when larger time scales are considered, 

the GL and classical theory predict similar, if not exactly identical, results.  Since the 

time window considered implicitly involves the spatial window as well, short time scale 

effects are significantly different in the vicinity of the heat source as compared to 

locations that are spatially distant from the heat source.  

 For high performance packages in consideration, the Joule heating associated 

with high clock speed during power-on can be in the Gigahertz range.  The data 

presented in this chapter indicates that a non-negligible dynamic phenomenon, titled 

“short time scale effects,” can occur in the first few microseconds of operation as these 

short time scale effects would disappear very fast due to the attenuative and dispersive 

nature of the waves that are generated.  However, to assume that, based on the 

temperature and displacement magnitudes, the short time scale effect has little impact on 

the reliability could be misleading when the power and power density associated with 

these short time scale effects is considered.  In the next chapter, a typical flip-chip on 

board (FCOB) cross-section is subjected to a short time scale analysis similar to the 

analysis presented in this chapter. 
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CHAPTER V 

SHORT TIME SCALE DYNAMIC EFFECTS AND PACKAGE RELIABILITY 

 

Results of Two Dimensional Numerical Analysis 

 As explained in Chapter III, a typical FCOB cross-section was chosen for 

analysis.  A heat source was applied at a point in the silicon die and numerical 

simulation was conducted for 0.1 microseconds with a 0.2 nanosecond time step.  Since 

a 1 GHz heat source was applied, a maximum frequency in the same range is expected.  

The 0.2 nanosecond time step allows for a maximum resolution of 2.5 GHz based on 

Nyquist’s sampling theorem.  

The complexity of the model and governing equations require considerable 

computational power from the PC.   Special care had to be taken to create a mesh which 

was sufficiently small to capture the wave phenomena.  Of all the regions in the model, 

the Al layer presented problems during modeling since an extremely high mesh density 

is required to correctly resolve a 1 micron layer in a model of approximately 1.5 mm by 

1.5 mm.  One simulation was conducted on a model with an Al layer included which 

took approximately 160 hours of computation time.  To overcome this problem, another 

analysis was conducted without the Al layer included in the model to identify the effect 

of Al layer on short time scale effects.  Fig. 5-1 is a repetition of Fig. 3-3 showing the 

various locations on the model that were chosen to collect data for analysis. 
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Figure 5-1 Locations on the FCOB cross section from where data is collected 
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Figs. 5-2 and 5-3 show the time domain and GWT plots of displacement along 

the X-axis at location 2 for the two models.  Several differences are observed due to the 

absence of the Al layer.  The displacement magnitude is much lower without the Al 

layer.  The arrival time of the displacement wave is also affected by the absence of the 

layer.  However, it has to be noted here that although displacement magnitudes are 

different, the spectral characteristics of both the plots are comparable.  The peak 

frequency observed in both the signals is approximately 800 MHz.  In the model without 

the Al layer, the peak frequency appears at approximately 10 ns as compared to 8 ns in 

the model without the Al layer.  The differences in magnitude, although significant, are 

not entirely relevant to the scope of this research since the objective of the research is to 

provide a qualitative insight into short time scale effects.  Moreover, at best, the 2D 

model can only provide a qualitative estimate since it cannot be comparable to a full-

fledged 3D model.  With this in mind, it can be concluded that although the absence of 

the Al layer causes significant differences in magnitude of displacement, the frequency 

content associated with the displacement profile for the two models is comparable.  

Therefore, to save on the computational requirements for analyzing the complete model, 

the Al layer was removed in the model used for further analysis.  
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Figure 5-2 Time domain and GWT plots of displacement data at location 2 with 

aluminum layer included  
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Figure 5-3 Time domain and GWT plots of displacement data at location 2 without 

aluminum layer  
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 Numerical simulations were conducted using the revised 2D model.  In this 

section, the results of the simulations are presented.  As discussed in the previous 

chapter, the parameters of interest are (a) spectral characteristics of the thermal-

mechanical waves and (b) power density associated with these waves.  To analyze the 

spectral information, the GWT of normal and shear stresses at the various locations in 

Fig. 5-1 are presented.  The power density associated with these stress waves is also 

presented.  Since the magnitude of the power density holds more interests, only time 

domain plots of power density are shown.  

Figs. 5-4 through 5-7 show the time domain and GWT plots of stress waves and 

time domain plots of power density at location 1.  Several high frequency components 

are seen in the GWT plots with frequencies in the range of 400 MHz to 800 MHz.  The 

GWT plot of the shear wave (Fig. 5-6) reveals a peak frequency of 800 MHz at 10 ns.  

Figure 5-7 shows the plots of power density associated with the normal and shear 

stresses.  The magnitude of power density is considerably larger for both the normal and 

shear stresses.  It should be noted here that unlike the 1D analysis, in which the length of 

the bar was chosen to prevent reflected waves, the dimensions for the 2D model were 

based on the FCOB configuration.  Therefore, several reflected wave fronts are also 

captured in the time domain and GWT plots.  Since location 1 is the interface of silicon 

with underfill epoxy and Cu pads, high frequencies can be expected due to the stiffness 

of silicon. 
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Figure 5-4 Time domain and GWT plots of normal stress wave σxx at location 1 
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Figure 5-5 Time domain and GWT plots of normal stress wave σyy at location 1 
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Figure 5-6 Time domain and GWT plots of shear stress wave σxy at location 1 
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Figure 5-7 Time domain plots of power density for σxx, σyy and σxy at location 1 
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Figures 5-8 through 5-11 show the plots for stress waves and power density at 

location 2.  Again, peak frequency of about 800 MHz is observed in all the plots at 10 

ns.  The power density associated with these stress waves is also considerable.  Several 

other high frequency components are also observed in the GWT plots.   

It should be noted here that although silicon is anisotropic in nature, for the 

purposes of this research, it was considered isotropic in the X-Y plane (Fig. 5-1).  This is 

justified by the fact that for the 2D model considered, the elastic modulus can be 

assumed to remain constant across the cross section due to the small thickness of the 

silicon wafer, which is approximately 0.5mm.  The underfill material is assumed to be 

elastic even though it is viscoelastic. Considering the magnitude of the induced strain 

and the short time window for this analysis, the strain rate is small enough to be 

negligible for the viscoelastic underfill material.  Therefore, the strain can be assumed to 

vary linearly with stress and modeled as an elastic material. 
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Figure 5-8 Time domain and GWT plots of normal stress wave σxx  at location 2 
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Figure 5-9 Time domain and GWT plots of normal stress wave σyy  at location 2 
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Figure 5-10 Time domain and GWT plots of shear stress wave σxy at location 2 
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Figure 5-11 Time domain plots of power density for σxx, σyy and σxy at location 2 
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Figures 5-12 through 5-15 show the time domain and GWT plots at location 3.  

A striking feature of these plots is the sharp reduction in the peak frequencies observed 

in the GWT plots.  The peak frequency observed is between 400 and 500 MHz as 

compared to 800 MHz at locations 1 and 2.  The arrival time of the high frequency 

component is approximately 40 ns.  This phenomenon can be explained as follows.  

Location 3 is the interface of solder and underfill.  Location 1 and 2 are interfaces with 

silicon and copper.  Both silicon and copper have considerably high elastic moduli (165 

GPa and 83 GPa, respectively).  In comparison, the Young’s modulus of solder is 

approximately 25 GPa.  Stiff materials allow high frequency waves to propagate through 

them while allowing for small displacements.  The converse, low frequency waves with 

large deformations, is true for softer materials such as solder.  Therefore, as the thermal-

mechanical wave propagates through solder to reach location 3, it loses the high 

frequency components.  The power density is also a few orders of magnitude lower than 

the power density at locations 1 and 2. 
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Figure 5-12 Time domain and GWT plots of normal stress wave σxx at location 3 
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Figure 5-13 Time domain and GWT plots of normal stress wave σyy wave at location 3 
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Figure 5-14 Time domain and GWT plots of shear stress wave σxy at location 3 
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Figure 5-15 Time domain plots of power density for σxx, σyy and σxy at location 3 
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 At location 4 (Figs. 5-16 through 5-19), the frequency content is much lower than 

all the points considered earlier.  The peak frequency is approximately 200 MHz.  This is 

again due to the fact that solder has a low elastic modulus.  The arrival time of the stress 

wave with the peak frequency is approximately 70 ns.  

Figures 5-20 to 5-23 show the time domain and GWT plots for location 5.  It is 

interesting to note that the frequency content is higher at this interfacial point as 

compared to the point within the solder (location 4).  The power density associated with 

the stress waves is comparable to those obtained at location 3.  The arrival time of the 

frequency component with the largest amplitude is close to the end of the time window 

considered for this simulation.  

Figs. 5-24 to 5-27 show the time domain and GWT plots for location 6.  

Although this location is similar to location 2 (refer Fig. 5-1), it is further away from the 

heat source.  This difference is revealed in the GWT plots (Figs. 5-24 through 5-26).  

The high frequency stress wave observed at location 2 is also seen at location 6, with the 

difference being that the arrival time of the high frequency content.  Figs. 5-8 through 5-

10 show the arrival time of the high frequency components at approximately 10 ns.  The 

same frequency components arrive at location 6 at approximately 50 ns (Figs 5-24 

through 5-26). 
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Figure 5-16 Time domain and GWT plots of normal stress wave σxx at location 4 
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Figure 5-17 Time domain and GWT plots of normal stress wave σyy at location 4 
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Figure 5-18 Time domain and GWT plots of shear stress wave σxy at location 4 
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Figure 5-19 Time domain plots of power density for σxx, σyy and σxy at location 4 
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Figure 5-20 Time domain and GWT plots of normal stress wave σxx at location 5 
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Figure 5-21 Time domain and GWT plots of normal stress wave σyy at location 5 
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Figure 5-22 Time domain and GWT plots of shear stress wave σxy at location 5 
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Figure 5-23 Time domain plots of power density for σxx, σyy and σxy at location 5 
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Figure 5-24 Time domain and GWT plots of normal stress wave σxx at location 6 
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Figure 5-25 Time domain and GWT plots of normal stress wave σyy at location 6 
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Figure 5-26 Time domain and GWT plots of shear stress wave σxy at location 6 
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Figure 5-27 Time domain plots of power density for σxx, σyy and σxy at location 6 
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Results from the 2D analysis of the FCOB configuration using classical theory 

are presented next.  Results from two locations, location 2 and 6, are found in Figs. 5-28 

through 5-33.  The classical theory predicts identical results to those obtained from the 

generalized GL theory.  This is identical to the analysis conducted in Chapter IV.  Since 

locations 2 and 6 are separated by 35 and 90 microns, respectively, from the heat source, 

the differences between the GL and classical theory diminish to such an extent that they 

can be considered identical.  This analysis also indicates that the spectral characteristics 

are alike for GL and classical theory.  These conclusions mirror the conclusions reached 

in Chapter IV.  

Short Time Scale Effects versus Long Time Scale Effects 

 A comprehensive analysis of stress waves and the associated power 

density generated due to a gigahertz heat source was described in the previous section.   

From the results of the analysis, it is clear that there is a non-negligible dynamic effect 

which occurs during the first few microseconds of operation.  The propagation of 

thermal waves due to rapid heating during power-on and the induced mechanical waves 

has been demonstrated in a two-dimensional cross section of flip-chip configuration.   
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Figure 5-28 Time domain and GWT plots of σxx wave at location 2 using classical theory 
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 Figure 5-29 Time domain and GWT plots of σyy wave at location 2 using classical 

theory 
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 Figure 5-30 Time domain and GWT plots of σxy wave at location 2 using classical 

theory 
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Figure 5-31 Time domain and GWT plots of σxx wave at location 6 using classical theory 



114 

 

0 0.2 0.4 0.6 0.8 1
x 10-7

-4

-3

-2

-1

0

1

2

3

time(sec)

S
tre

ss
 (P

a)

 
 

Figure 5-32 Time domain and GWT plots of σyy wave at location 6 using classical theory 
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Figure 5-33 Time domain and GWT plots of σxy wave at location 6 using classical theory 

 



116 

 

To reiterate the results presented in the previous chapter, the displacement, temperature, 

power and power density at location 2 are plotted in Fig. 5-24.  The displacement and 

temperature magnitudes are low but the associated power and power density values are 

non-negligible.  

 The power density values indicate that a high magnitude of energy is associated 

with the propagation of these waves.  The high power density coupled with the high 

frequency of these waves suggests that the propagation of these waves can cause damage 

to the device.  The results presented in the previous section also suggest that the high 

frequency content is prominent along the interfaces.  The interface of solder and copper 

is of special interest since the most common mode of failure in flip chip configuration is 

due to cracking in solder balls.  Bogatin [24] reported that Kulicke and Soffa Inc. has 

conducted numerous thermal cycling tests on flip chip packages and predicted that the 

failure mode is cracking on the die side of the solder ball. 
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Figure 5-34 Time domain plots of displacement, temperature increment, power and 

power density at location 2 
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 These results indicate that although short time scale effects last for a very short 

time, the effects are dominant in the first few microseconds of operation.  This is in 

sharp contrast to the long time scale failure where the coefficient of thermal expansion 

mismatch is believed to be dominant.  Research in the area of chip failure has 

predominantly focused on eliminating mismatch of CTE.  However, with the present 

standards of manufacturing, it is unlikely that cracks are initiated solely through CTE 

mismatch.  In other words, assuming that the elimination of CTE mismatch is the 

solution to reliability problems is misleading at best.  

Possible Failure Modes due to Short Time Scale Effects 

 Short time scale effects are generated due to sharp gradients in displacement and 

temperature fields.  Spatial and temporal gradients which occur in a short time negate the 

effect of small displacements.  Forster et al. [25] conducted experiments on TRIACs.  

Large amplitude of current was applied in a very short period of time on a TRIAC which 

led to catastrophic failure due to cracking and fusion in silicon.  This indicates that large 

gradients have a detrimental effect.  While short time scale effects may not cause 

catastrophic failure of devices, it is possible that they may induce small defects that grow 

when the device reaches its steady state operating temperature. 

 Drawing an analogy with standard fatigue tests, we observe that the temporal 

gradient of stresses (power density) in fatigue test is high due to large amplitude of stress 

being cycled at relatively low frequencies.  On the other hand, short time scale effect is 

caused due to small magnitude stresses being cycled at extremely high frequencies.  
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Therefore, the power density in both fatigue testing and short time scale effect are 

relevant metrics in predicting failure.  

The results shown in the previous sections indicate that both the normal and 

shear stress waves exhibit high frequency, high power density characteristics.  Since 

interfaces of materials are more susceptible to separation due to high frequency wave 

propagation through the interface, one possible failure mode due to short time scale 

effects is delamination inside the package due to shear waves.  The high frequency of 

normal and shear stress waves and high power density associated with these waves 

indicate that sub-micron cracks could be induced in the package.  From the results 

obtained at the interface of copper and solder (location 2), it can be seen that solder 

interface is highly susceptible to damage due to short time scale effects.  This reflects the 

solder ball cracking failure mode.  

 The failure mode due to short time scale effect can be described as follows: there 

is a high probability of high frequency, high power density stress waves propagating 

through the package inducing sub-micron cracks and delamination within the first few 

microseconds of operation.  Large magnitude thermal stresses due to CTE mismatch 

increase the growth rate of these cracks and delamination when steady state operating 

temperature is reached.  Therefore, in comparison with short time scale effects, the 

damage due to CTE mismatch can be considered as a long time scale effect.  The cracks 

induced by short time scale effect and their growth due to CTE mismatch induced 

thermal stresses could lead to eventual mechanical disconnectivity of circuit components 

and hence electrical disconnectivity, at which point the package fails. 
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

 

 The thermal-mechanical effect of a high frequency thermal source in a high 

performance microelectronic package has been studied.  Using two different theories of 

thermoelasticity, the propagation of high frequency thermal-mechanical waves was 

demonstrated.  It was found that the generalized thermoelasticity theory and the classical 

theory vary significantly when very short time scales (in the picosecond range) are 

considered.  When longer time windows (in the microsecond range) are considered, the 

differences between classical and generalized theories disappear.  This implies that short 

time scale effects are immediate and prominent in the vicinity of the heat source.  Even 

though short time scale effects can be considered to be “strongest” in the first few 

nanoseconds, thermal-mechanical coupling implies that significant effects can be 

observed even in the microsecond time scale.  However, the attenuative and dispersive 

characteristics of the thermal-mechanical waves imply that these effects are prominent in 

the first few microseconds of operation and are insignificant thereafter, thus justifying 

the term “short time scale” effect. 

Both the GL and classical theories predict high frequency, high power density 

stress waves propagating through the package.  The frequency of the waves is strongly 

dependent on the material properties and the distance from the heat source.  The peak 

frequencies were found to be highest at the interfaces of dissimilar materials.  It was also 

observed that stiff materials (such as silicon) allow high frequency waves to propagate 
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through them with small displacements while softer materials (like solder) allow for 

larger displacements of much lower frequencies.  Power density was also found to be 

significantly higher at the interfaces as compared to interior points of the solder or 

underfill.  While the values presented in the analysis are qualitative at best, they serve as 

a valid means of comparison.  

It was mentioned in Chapter I that large temporal and spatial gradients of stresses 

could imply that short time scale effects might be the dominant effect rather than CTE 

mismatch during the first few microseconds of operation of high performance 

microelectronic devices.  It was also hypothesized that short time scale effects could 

induce sub-micron crack formation. 

Based on the analysis conducted, it was found that short time scale effects 

involve stress wave propagation of high frequencies (in the same range as the heat 

source frequency), broadband spectrum and high power density.  When these factors are 

considered together, it would be reasonable to state that there is a high probability of 

sub-micron cracking or delamination being induced by the short time scale effect.  

The implications of these conclusions are broad in terms of packaging design.  If 

short time scale effect needs to be controlled to improve package reliability, it requires a 

suppression of high frequency wave propagation.  This can be achieved in several ways. 

Clearly, stiff materials (i.e. with high elastic modulus) allow for high frequency wave 

propagation.  Use of materials which allow for attenuation/damping of waves could help 

in reducing the impact of short time scale effect.  Changes in circuit layout design could 

also be made to aid in destructive interference of high frequency stress waves. 
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 Results from this research indicate that in processes involving rapid thermal 

transients, there is a non-negligible transient phenomenon. This conclusion has 

implications on several other areas of research such as semiconductor and MEMS 

fabrication using pulsed lasers and other processes involving rapid thermal transients.  

 Future work in the study of short time scale effects could be a detailed analysis 

using 3D models of packages.  This research serves to not only provide proof of short 

time scale effects but also suggests a thermoelastic framework which is suitable for the 

study.  The fact that these effects can be observed in the first few microseconds implies 

that it is not feasible at present to experimentally validate these findings.  However, 

results obtained show a good correspondence with pre-existing failure mode results for 

high performance packages. 
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APPENDIX A 

 

Procedure for 1D Model in FEMLAB 3.0a 

While the procedure is quite detailed to recreate the  analysis, the main steps are 

highlighted here. For more information, the reader is referred to FEMLAB 

documentation. 

1. Choose 1D in Model Navigator and Choose PDE Modes > Coefficent Form 

>Time-Dependent Analysis and Set Dependent Variables as u, v, p and q 

Additional variables v and q have been defined to set double time derivatives 

of temperature and displacement terms in equation 3-8.  

2. Click Draw >Specify Geometry> Line. Set Line dimensions based on 

analysis and normalizing variables. Click OK to create geometry 

3. Click Physics> Subdomain Settings to specify equations. Based on equation 

for analysis, set parameters for all the coefficients and click OK. 

4. Click Physics> Boundary Settings and set Dirichlet Conditions on Left 

Boundary. Set p (temperature variable) to Gaussian function and q ( time 

derivative of p) to be derivative function of Gaussian to maintain consistent 

initial conditions. 

5. Click mesh, initialize mesh. Click refine mesh until suitable mesh refinement 

is achieved.  

6. Click Solve> Solver Parameters. Set Solver to UFMPACK, Time stepping 

based on requirements, Relative and Absolute Tolerances. 
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7. Click Options> Constants and set constant values for relaxation time etc.  

8. Click Solve. Runtime varies based on solver chosen and set tolerance limits. 

9. Use options in Post Processing Menu to visualize results. 

 

Procedure for creating 2D model in FEMLAB 3.0a 

1. Choose 2D> PDE Modes>Coefficient form> Time Dependent Analysis in 

Model Navigator menu. 

2. Set dependent variables to be u, v, p , q , m and n. where m = du/dt , n = 

dv/dt, q = dp/dt.  These variables are used to define double time derivatives 

of displacement and temperature variables in eqns. 2-20 and 2-21 

3. Define Geometry based on flip chip configuration. The process to create the 

geometry is quite involved and the reader is referred to FEMLAB 

Documentation for detailed instructions. 

3. Specify equations in Subdomain settings by assigning coefficients for the 

appropriate term. 

4. Click initialize mesh in mesh mode to create coarse mesh. In the author’s 

experience, several modifications had to be made to the default mesh 

generated to achieve suitable accuracy. 

5. Choose appropriate solver. For 2D problems, iterative solvers such as 

GMRES with UFMPACK or Incomplete LU Preconditioner were found to be 

faster than Direct Solvers (UFMPACK and SPOOLES). 
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