
    

QUANTIFICATION OF CHAOTIC MIXING 

IN MICROFLUIDIC SYSTEMS 

 

 

 

 

A Thesis 

by 

HO JUN KIM 

 

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

 

 

August 2004 

 

 

 

Major Subject: Mechanical Engineering 

 

 

 



    

QUANTIFICATION OF CHAOTIC MIXING 

IN MICROFLUIDIC SYSTEMS 

 

A Thesis 

by 

HO JUN KIM 

 
Submitted to Texas A&M University 

in partial fulfillment of the requirements 
for the degree of 

MASTER OF SCIENCE 

 
 

Approved as to style and content by: 

 

________________________                                       ________________________                                 

Ali Beskok                                                                       Steve Suh 
       (Chair of Committee)                                                                (Member) 

 

________________________                                      ________________________ 
    Paul Cizmas                                                                   Dennis O'Neal 

                  (Member)                                                               (Head of Department) 
 

 

August 2004 

Major Subject: Mechanical Engineering 

  



                                                                                                                                           iii 
 

ABSTRACT 

 

Quantification of Chaotic Mixing in Microfluidic Systems. 

(August 2004) 

Ho Jun Kim, B.S., Hanyang University 

Chair of Advisory Committee: Dr. Ali Beskok 

 

Periodic and chaotic dynamical systems follow deterministic equations such as 

Newton’s laws of motion. To distinguish the difference between two systems, the initial 

conditions have an important role. Chaotic behaviors or dynamics are characterized by 

sensitivity to initial conditions. Mathematically, a chaotic system is defined as a system 

very sensitive to initial conditions. A small difference in initial conditions causes 

unpredictability in the final outcome. If error is measured from the initial state, the 

relative error grows exponentially. Prediction becomes impossible and finally, chaotic 

systems can come to become stochastic system. 

To make chaotic motion, the number of variables in the system should be above 

three and there should be non-linear terms coupling several of the variables in the 

equation of motion. Phase space is defined as the space spanned by the coordinate and 

velocity vectors. In our case, mixing zone is phase space. With the above characteristics 

– the initial condition sensitivity of a chaotic system, our plan is to find most efficient 

chaotic stirrer. In this thesis, we present four methods to measure mixing state based on 

the chaotic dynamics theory. 

The Lyapunov exponent is a measure of the sensitivity to initial conditions and 

can be used to calculate chaotic strength. We can decide the chaotic state with one real 

number and measure efficiency of the chaotic mixer and find the optimum frequency. 

The Poincaré section method provides a means for viewing the phase space 

diagram so that the motion is observed periodically. To do this, the trajectory is 

sectioned at regular intervals. With the Poincaré section method, we can find ‘islands’ 

considered as bad mixed zones so that the mixing state can be measured qualitatively. 
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With the chaotic dynamics theory, the initial length of the interface can grow 

exponentially in a chaotic system. We will show the above characteristics of the chaotic 

system to prove as fact that our model is an efficient chaotic mixer. 

The final goal for making chaotic stirrer is how to implement efficient dispersed 

particles. The box counting method is focused on measurement of the particles 

dispersing state. We use snap shots of the mixing process and with these snap shots, we 

devise a plan to measure particles’ dispersing rate using the box-counting method. 
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CHAPTER I 

 

INTRODUCTION 

 

1. 1.  INTRODUCTION 

 

Flow and species transport in micro-scales experience laminar, even Stokes flow 

conditions. In absence of turbulence, species mixing in micro-scales becomes inherently 

diffusion dominated, and requires very long mixing lengths and large time-scales. This 

creates significant challenges in design of efficient mixers for microfluidic devices, such as 

micro-total-analysis-systems utilized in detection of biological and chemical agents for 

medical, pharmaceutical and homeland security applications. Although majority of the 

previous research concentrated on enhancement of diffusive-mixing by increasing the 

interspecies contact area,  recent work focuses on inducing chaotic advection, which is a 

conceivable method for species mixing enhancement even in the Stokes flow regime [1, 2]. 

In general, for two-dimensional unsteady and three-dimensional steady flows, fluid-

particle trajectories obtained using the Lagrangian description of motion can not be 

integrated analytically, and the particle trajectories exhibit chaotic trends. This result in 

advection of the particles to a larger potion of the flow domain, and the stretching rate 

between groups of particles may become exponential, resulting in efficient mixing. These 

_______________ 

This thesis follows the style and format of Analytical Chemistry. 
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characteristics can not be observed for non-chaotic (integrable) flows. 

Micro-scale species mixing using chaotic advection is becoming a focal point 

in microfluidics. Recently, Stroock et al. [3] has utilized steady Stokes flow in a 

rectangular micro-channel with staggered herringbone-shaped grooved bottom – surface [2].

This geometry imposed alternating secondary flow patterns, resulting in spatially evolving 

three-dimensional  steady Stokes flow.  Experiments  uti l ized confocal  laser  

scanning microscopy based laser-induced-fluorescence measurements. Standard deviation 

of the fluorescence intensity in confocal images, as a function of the downstream distance 

is utilized to determine the mixer efficiency. Chaotic advection resulted in orders of 

magnitude reduction in the mixing length, compared to the diffusive mixing. Qian and Bau 

have theoretically investigated chaotic advection in electroosmotically driven micro-mixer 

under time-periodic variations of the wall zeta potential [3]. Such alterations of the zeta 

potential can be achieved using surface imbedded electrodes. 

 

1. 2.   PURPOSE OF RESEARCH 

 

The purpose of our research is to quantify the mixing efficiency in a chaotic 

microfluidic system using the following approaches: 

1. Lyapunov Exponent: Exponent of the rate of stretching between two adjacent 

particles [4]. 

2. Poincaré Section: Superposition of stroboscopic images of particles captured at 

specified periods [4].   
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3. Interface Stretching Rate: The rate of increase of the interface length by time [5] 

4. Mixing Index: Calculated using the position of dispersed particles [6]. 

The first method requires detailed knowledge about the flow field, and it is computationally 

expensive. It requires high-resolution numerical solutions, which is in general difficult to 

obtain using low-order numerical discretizations. Numerical requirements of other methods 

are not as stringent as the computation of Lyapunov exponents. In fact, the numerical 

complexity is reduced as one goes down the list above. Therefore, it is desirable to develop 

a comprehensive understanding between the behaviors of these various tests. For example, 

without very detailed analysis of a computational mixing simulation, one should be able to 

state the quality of mixing and decide whether the flow is chaotic or not. 

Motivated by this objective, we plan to utilize Qian and Bau's "Chaotic 

Electroosmotic Stirrer" design [5], and test this system under different combinations of 

flow patterns and frequencies, and correlate the outcomes of various tests in a 

comprehensive manner. 

 

1.3. ORGANIZATION OF THESIS 

 

This thesis is organized as follows: In Chapter II, Qian and Bau’s chaotic mixing 

model is reviewed. Chapter III presents concept of finite time Lyapunov exponent and we 

calculate Lyapunov exponent for all possible flow pattern pairs, and compare the converged 

Lyapunov exponent values to find the best mixing conditions. Chapter IV explains the 

Poincaré section concept, and we show Poincaré sections for various cases, including the 
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KAM boundaries, which result in poor mixing zones. In Chapter V, we examine the growth 

of a fluid interface, exponential growth in chaotic states are demonstrated. In Chapter VI, 

we introduce the box counting method, and define a mixing index to quantify the mixing 

efficiency. Finally, in Chapter VII, we conclude and state the future research directions. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

2.1 CHAOTIC MIXING MODEL 

 

In this section, we briefly present a design that induce chaotic mixing using two-

dimensional, time-periodic electroosmotic flows, developed by Qian and Bau [5]. 

Electroosmosis is the process of inducing motion of ionized liquid relative to the stationary 

charged surfaces using applied electric fields. It is an effective mechanism to drive micro-

flows without any mechanical pumping components. Since electroosmosis is driven by the 

electric fields, rapid switching between several different electric field configurations and/or 

temporally varying the surface zeta-potentials create different flow fields, susceptible to 

chaotic advection and mixing. Therefore, electroosmosis enables fast flow response, limited 

only by the flow development time-scales [7]. 

Qian  a n d  Bau [5] i n v e s t i g a t e d  c h a o t i c  a d v e c t i o n  theoretically i n  an 

electroosmotically driven micro-mixer, under time-periodic variations of the wall zeta 

potential, which can be achieved using surface imbedded electrodes [5].  Figure 2-1 shows 

the mixer that consists of a rectangular box with four zeta-potential patterned surfaces on its 

top and bottom surfaces. The left and right walls are electrodes, and they induce a uniform 

electric field. Depending on the magnitude and the sign of the surface zeta potential, a 

uniform slip-velocity is generated on the surface. Qian and Bau obtained the velocity field 
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by solving the Stokes equations subject to various wall slip-velocities. Details of their 

analytical solution and the electrokinetic flow theory will be presented in this thesis. Figure 

2-1 also shows various flow patterns developed by selectively altering the surface zeta-

potential. Figure 2-2 shows the direction of the electric field and the corresponding 

electroosmotic slip velocity on electrode surfaces. 

 

 
Figure 2-1. Qian and Bau’s flow patterns, adapted from [5]. 

 

A time-periodic flow, with period T, can be generated by switching between any two 

flow-patterns with half period time-scales. We utilized various combinations of patterns A, 

B, C, and D, to form time-periodic electroosmotic flows, and we varied the time-period 

from T=1.0 to 8.0 (in convective time-scale units). 
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Figure 2-2. Qian and Bau’s chaotic mixing model [5]. Electrode surfaces and the 
corresponding slip velocity directions are shown 
 

Qian and Bau modeled the flow using the dimensionless Stokes equation.  

 

2Re
V

p V
t

→
→∂ = −∇ + ∇

∂
(2.1)

In the above, { },V U V
→

= is the velocity vector, U and V are the velocity components in the 

X and Y directions, respectively; p is the pressure; and t is the time, and Re is the Reynolds 

number. Equation (2.1) is non-dimensionalized using the fluid kinematic viscosity, 

electroosmotic slip velocity, and the conduit’s half-height, H.  

In their analysis, Qian and Bau assumed that the gap between any adjacent 

electrodes is large compared to the electric double layer thickness (EDL), but it is small 

compared to H. Hence for mathematical simplicity, they neglected the gap between the 
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adjacent electrodes. They also demonstrated that when the gap is relatively small compared 

to H, it has no significant effect on the flow pattern. 

By imposing potential differences between the embedded electrodes covered with 

thin insulating material alters the zeta potential (See Figure 2-2) [5]. In addition, they 

assume that such modulations in the charge distribution on the insulated electrodes do not 

affect the external electric field, Ex. The external electric field interacts with the mobile 

charges in the EDL, to generate fluid motion [5]. The charge polarity (positive or negative) 

dictates the direction of the fluid motion. To the first approximation, the velocity in the 

wall’s vicinity can be approximated with the ‘Helmholtz–Smoluchowski’ electroosmotic 

slip velocity 

x
HD

E
V

ζε
µ

= − � (2.2) 

We must emphasize that Re<<1 in Stokes flows, since all the terms in equation (2.1) 

balance each other, the flow transients represented by the time derivative term in equation 

(2.1) is indeed very fast (since for Re → 0,  ∂V/∂t � �). This enabled Qian and Bau to 

neglect the flow transients, as they switch between the various flow solutions [5].  



	

CHAPTER III 

 

LYAPUNOV EXPONENT AND SENSITIVITY TO INITIAL CONDITION 

 

Sensitivity to the initial condition is a signature of chaos. For chaotic systems, time 

evolution of initially close two particles exhibit exponential divergence. This means that in 

chaotic systems, the position of two initially nearby particles (say 10-6 H apart) will be 

extremely different after a certain time. In this chapter, we introduce the Lyapunov 

exponent as a measure of chaotic strength. 

 

3.1 SENSITIVITY TO THE INITIAL CONDITION IN CHAOTIC STATE 

 

Lyapunov exponents are the average exponential rate of divergence or convergence 

of nearby orbits in phase space. Since the nearby orbits correspond to nearly identical states, 

exponential orbital divergence means that for systems whose initial differences we may not 

be able to initially resolve will soon behave quite differently [8]. This sensitivity to initial 

conditions is the main characteristic of chaotic systems, and chaotic motion of fluid 

particles increases the mixing efficiency by enhancing the dispersion of passive particles. 

As we know, Lyapunov exponent is used to measures the rate of exponential divergence of 

two initially near by trajectories. 



��


 

 

 

Figure 3-1. Ling et al’s model [9] 

 

 

 

Figure 3-2. Flow patterns from Ling et al [9] 
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We first refer to Ling et al’s model to explain sensitivity to the initial conditions. 

The model consists of combinations of two different shear-driven cavity problems shown in 

Figure 3-1 [9]. The flow patterns obtained by shearing the top and bottom cavity surfaces 

are shown in Figure 3-2 [9]. Assuming fast transients for unsteady Stokes flows enable 

alternating the flow field between patterns 1 and 2, which results in chaotic advection. 

Let’s observe dispersion of nearby particles for the steady and time-periodic flows, 

where the time-periodic flow oscillates between the two flow patterns shown in Figure 3-2. 

We initially put 10,000 passive particles in the center of the mixing zone and observe their 

motion. Figure 3-3 shows that deformation of the blob in the center zone is regularly 

shaped for steady flow. This corresponds to the non-chaotic system. In the non-chaotic state, 

the distance between initially adjacent two particles does not change substantially, so that 

the non-chaotic system is insensitive to the initial conditions. 

 

 
Figure 3-3. Deformation of blob in the center of a non-chaotic mixer. The right figure is 
obtained at non-dimensional time t=50 

  

When we employ time-periodic Stokes flow alternating between the patters shown 

in Figure 3-2, we observe that the blob initially in the middle of the mixing section 
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disperses randomly (See Figure 3-4). Snapshots of particle locations at time t=50 is shown 

in both figures. Mixing/dispersion of particles are significantly different in steady versus 

time-periodic flow. 

 

 
Figure 3-4. Deformation of a blob in the center zone of a chaotic mixer. The right figure is 
obtained at non-dimensional time t=50 

 

In Figure 3-5, we show time evolution of three groups of particles for chaotic flow. 

In each group, we employed 100 particles, and located these particles in circle, by keeping 

1-6 distance between adjacent particles. At time t=50, we observe that the initially 

concentrated particles are dispersed to the whole mixing zone. This shows sensitivity of a 

chaotic system to the initial conditions. 
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Figure 3-5. Dispersed particles with chaotic advection. Right figure is obtained at time t=50 

 

The calculation of the largest Lyapunov exponent can be used to represent the 

chaotic strength. Hence, the Lyapunov exponent can be used to quantify the mixing 

efficiency. According to the theory of nonlinear dynamics, the largest Lyapunov exponent 

should be positive in the chaotic state, where the Lyapunov exponent is defined as 



� �

( ) ( )
( )

1 1
lim ln lim ln

0it t

dx t
m t

t t dx
λ

→∞ →∞

� �� �
= = � �� �

� �� �	 
� �

     1,...,i n=   (3.1) 

 

where ( )1m t , ( )2m t  to ( )nm t  are the Eigenvalues of the fundamental solution matrix 

( )0t xΦ , satisfying 

 

( ),t Df x tΦ = Φ� , 

 

where � means solution of flow equation, D means differentiation, x means current 

position, t means current time. Therefore, Lyapunov exponent is a generalization of the 

Eigenvalues at an equilibrium point [10]. 

 

( )( )
( )

11
lim ln
t

dx n t

n t dx n t
λ

→∞

� �′ + ∆
� �=
� �∆ ∆
	 



   (3.2) 

 

This definition is used for the discrete systems. Our research will be focused on 

numerical calculations of the Lyapunov exponents, where we try to determine the time 

period T, which will result in optimum mixing state. 
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3.2   CALCULATION OF THE  LYAPUNOV EXPONENT 

 

We utilized Sprott’s method to calculate the Lyapunov exponents [11]. This method 

uses the general idea of following two nearby orbits, and calculates average logarithmic 

rate of separation of the two orbits. Whenever the orbits get too far apart, a new orbit in the 

vicinity of one of the orbits is chosen. A conservative procedure is to do this at each time-

step, as shown in [11]. The numerical procedure is demonstrated in Figure 3-6. 

 

 

Figure 3-6. Schematic for calculating the Lyapunov exponent using Sprott’s method [11] 

 

We can choose any initial point to track the path of the main particle and to calculate 

the Lyapunov exponent in the mixing zone [8, 11, 12]. At the same time, initial position of 

the virtual (nearby) particle is used to evaluate the distance change between the virtual and 
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main particles �  We then choose the number of time periods that we would calculate the 

Lyapunov exponent. Only when the number of period is sufficiently chosen, the Lyapunov 

exponent can be converged and in other words, the particle can move towards an attractor 

[8, 11, 12]. Then, we decide on size of the initial particle separation 0d . This must be done 

by considering the machine precision. A proper choice for 0d  should be above 1000 times 

of the floating point precision that are being used [8, 11]. 

The algorithm is as follows. We advance both orbits for one iteration and calculate 

the new separation distance 1d  by sum of the squares of the differences in each space 

variable. For example, for a 2-dimensional system with variables x and y, the separation 

would be 

 

( ) ( )
1

2 2 2
1 0 1 0d x x y y� �= − + −

� �
 (3.3) 

 

where the subscripts denote the two orbits, 0 and 1 denoting the virtual and main particles, 

respectively. Then we select the new position of the virtual particle and size of 0d  in next 

time step. Selection of position is very important for convergence of the Lyapunov 

exponent in time. The new position of the virtual particle should be located between the 

main particle and position of the previous virtual particle (See Figure 3-6). Probably, this is 

the most difficult and error-prone step in the algorithm. We then find the logarithm of the 

separation rate, and perform averaging, as described in equation (3.2) [8, 11, 12]. This 

procedure is known as the Finite Time Lyapunov Exponent (FTLE). 

Using these four flow patterns for half a period (T/2) each, we obtain six different 
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pattern combinations (A-B, A-C, A-D, B-C, B-D, and C-D).  Figure 3-6 shows time 

evolution of the Lyapunov exponent for various time periods. We computed the Finite Time 

Lyapunov Exponent (FTLE) for all of these patterns for non-dimensional periods of T=4, 6 

and 8, where T is normalized by the convective time-scale (based in the half channel height 

and the electroosmotic slip velocity from equation (2.2). Variation of the FTLE as a 

function of time for T=4, 6, and 8 cases are shown in Figure 3.6. For all the cases, the 

initial particle location was at (x,y)=(0.5,0.1), and the virtual particles was initially offset by 

510−
� The results have shown that the pattern B-C at T=6.0 has the largest FTLE, 

0.308Fλ = . While, for T=8.0 , 0.199Fλ = and T=4.0, 0.251Fλ = are obtained, 

respectively. Figure 3.7 shows FTLE obtained for pattern B-C at T=6 using three different 

initial conditions. The FTLE converged to the same value, as shown in the figure. The 

FTLE values for other flow patterns and time periods are given in Table 3-1. We observe 

from Table 3-1 that the FTLE for pattern B-C, at T=6.0 case is the largest, one among 

various cases studied here. Therefore, we expect this case to be the best mixing case. We 

must add here that for some pattern combinations islands of bad mixing zones are observed, 

and FTLE at these locations are λF ≈ 0. Therefore, particular attention should be paid to 

such bad mixing zones, and Poincaré section method described in the next chapter can be 

used to determine the effects of these bas mixing zones. 
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Figure 3-7. FTLE exponents for pattern B- C at time periods of  T = 4, 6, 8 

 
Figure 3-8. FTLE at different initial conditions converge to the same value 
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Table 3-1. FTLE values for various patterns at T=4, 6, 8 
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CHAPTER IV 

 

POINCARÉ SECTION ANALYSIS 

 

Poincaré section is a graphical analysis tool used in non-linear dynamics. Poincaré 

section can capture interesting features such as the islands and periodic points. For example, 

islands are bad mixing zones. In this chapter, we will show Poincaré sections of our mixer 

at various flow conditions, and demonstrate destruction of islands (KAM boundaries), and 

increased chaotic strength. 

 

4-1. USEFULNESS OF POINCARÉ SECTION IN CHAOTIC DYNAMICS 

 

First of all, the concept of Poincaré section and its usefulness should be understood. 

Graphical methods - a hallmark of the "nonlinear dynamics" approach- tell us usually more 

than the analytical solution so that we use 'map' and then try to find Poincaré section. Map 

means casual relation between present state and next state in the future. In aspect of particle 

tracking, map is velocity field or velocity information. It is a deterministic rule which tells 

us what happens in the next time step. In Figure 4-1, let’s assume that there is a plane 

crossed by almost all orbits in the phase space. Poincaré map is a tool developed for a 

visualization of the flow in the phase space of more than two dimensions. The Poincaré 

section has one dimension less than the phase space. The Poincaré map maps the points of 

the Poincaré section onto itself. It relates two consecutive intersection points. Note, that 
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only those intersection points counts which come from the same side of the plane [4].  

 

 

Figure 4-1. Understanding of limit cycle in three dimensional phase space 

 

A Poincaré section is a surface in the phase space that cuts across the flow of a given 

system. Figure 4-2, 3 shows a Poincaré section of a three-dimensional orbit.  
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Figure 4-2. Poincaré section of a three-dimensional orbit 

 

The Poincaré maps are useful in highlighting what solution the dynamical system is 

portraying through time. If for example the system is being attracted to a limit cycle, we 

would observe particle locations at discrete times converging to a stationary point or points, 

depending on the period of the solution [4]. 
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Figure 4-3. Poincaré section of periodic points. Left figure shows a single period, while 
right figure shows two periodic points [4] 

 

Most nonlinear dynamics textbooks focus finding the stable state, stable point, fixed point, 

or to generate stable point. But in opposition, we aim to find the unstable points, since these 

unstable points and states are helpful to develop efficient mixers. If one can erase the stable 

points that make particle trajectories converge, then we can obtain efficient chaotic mixing 

schemes. In nonlinear dynamics, the limit cycle shows stable systems. Therefore we would 

like to diminish the number of limit cycles. 

In two (or higher) dimensional state spaces, it is possible to have cyclic or periodic 

behavior. This critical behavior is represented by closed loop trajectories in the state space. 

A trajectory point on one of these loops continues to cycle around that loop for all the time. 

These loops are called cycles, and if the trajectories in the neighborhood of the cycle are 
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attracted towards it, we call these limit cycles. The limit cycle concept is related with the 

island’s concept. In Figure 4-4 we show a Poincaré section, where the limit cycles form 

islands. 

 

 

Figure 4-4. Poincaré section of 2-dimensional unsteady case [4] 
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4-2. POINCARÉ SECTION AND DESTRUCTION OF ISLANDS 

 

In two dimensional cases, the passive particle’s trajectory is consistent with the state 

space trajectory in Hamiltonian system. For this point, the stream function can be 

understood with nonlinear dynamics theory used in Hamiltonian system. The Eulerian 

velocity field derived from the stream function will represent Hamilton’s equations for this 

system [13]. Our study is focused on how the change of period size affects the invariant 

manifolds and for what range of period mixing efficiency will be maximized. To study the 

order of particle trajectory near hyperbolic points or saddle points, a qualitative approach 

was used that involved the tracking of many trajectories located much closed to two 

neighboring saddle points.  

As we know, Poincaré section is a useful tool in studying time-dependent 

Hamiltonian systems. It reduces the complexity of the phase space from a three-

dimensional system to a two dimensional map [14]. When we change the period size, it is 

found that trends of periodic orbits are dependent on period size of perturbation or change 

of pattern. With the Poincaré-Birkhoff theorem, these periodic orbits break up into an 

alternating series of stable and unstable fixed points. 

First of all, we tried to find best pair of pattern for most efficient mixing. In Figures 

4-5 through 4-10, to form the Poincaré section, we utilized 121 markers that were 

uniformly distributed over the flow domain. Then we tracked these particles for 100 periods 

using the A-B, A-C, A-D, B-C, B-D, C-D pattern respectively, and period size was fixed as 

T=6.0. In qualitative estimation, pattern B-C case’ result shows us most efficiently 
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dispersed state in Figure 4-8 and this result was expected when we use Lyapunov exponents 

in the previous chapter. Especially in A-B pattern case (Figure 4-5), one large island and 

small islands centered on large island are located on left top side. And in A-C case (Figure 

4-6), the initial located particles can not be dispersed to left side and consequently, this 

empty space becomes a sort of large island. In Figure 4-7, pattern A-D case, there are four 

small islands in the center of phase space and empty spaces are found in left and right sides. 

In Figure 4-9, pattern B-D case, there are large erratic shaped island is located on left side 

of phase space. Finally, in Figure 4-10, pattern C-D case, in right and left side, non-

negligible empty spaces still exist. With these qualitative estimations, we can decide the 

pattern B-C case is optimal to make best mixing case. 

For detailed study, we fixed pattern case as B-C pattern case and changed the period 

size. If only a single flow pattern (B or C) is used, the Poincaré section would show 

streamlines or regular patterned particle trajectories. However, in Figure 4-11(a), 11(b), 

11(c), various sized islands are shown in the Poincaré section and these islands are visible 

for the high frequency case T=1.0, T=2.0, T=3.0. And also shapes of these islands more 

distinct if frequency is changed to higher.  
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Figure 4-5. Pattern A and B ; T=6.0 ; 121 particles ; 100 periods 

 

 
Figure 4-6. Pattern A and C ; T=6.0 ; 121 particles ; 100 periods 

 

 
Figure 4-7. Pattern A and D ; T=6.0 ; 121 particles ; 100 periods 
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Figure 4-8. Pattern B and C ; T=6.0 ; 121 particles ; 100 periods 

 

 
Figure 4-9. Pattern B and D ; T=6.0 ; 121 particles ; 100 periods 

 

 
Figure 4-10. Pattern C and D ; T=6.0 ; 121 particles ; 100 periods 
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(a) Pattern B and C ; 121 particles ; 100 periods ; T = 1.0 

 
(b) Pattern B and C ; 121 particles ; 100 periods ; T = 2.0 

 

(c) Pattern B and C ; 121 particles ; 100 periods ; T = 3.0 

Figure 4-11. Pattern B and C ; 121 particles ; 100 periods ; T = 1.0, 2.0, 3.0, 4.0, 6.0 We 
fixed pattern pair as B-C pattern and change the period size to check destruction of KAM 
boundaries. 
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(d) Pattern B and C ; 121 particles ; 100 periods ; T = 4.0 

 

(e) Pattern B and C ; 121 particles ; 100 periods ; T = 6.0 

 

Figure 4-11. continued 
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We can determine the main characteristics of chaotic mixing by the location and 

nature of the periodic points. Periodic points are points which return to their original 

position after one or more periods of flow [15,16,17]. In Figure 4-11(a), two groups of 

islands are located and the shapes of islands look like the solar system. By definition, in 

each period, particles can not penetrate the space between the small and large islands. This 

means that any particles that are in these islands will rotate around the islands for the rest of 

their motion. Therefore these islands are bad mixing zones. In Figures 4-11(e) we observe 

that the islands disappear with increasing the period T. We assume that removal of the 

islands will enable well-mixed states. 

Classes of periodic points are decided according to the deformation in their nearby 

regions. There are elliptic stable points at the center of non-mixing rotating region and in 

the center of stretching, there are hyperbolic unstable points. [15, 16, 17]. Kolmogorov-

Arnold-Moser (KAM) boundaries separate sea of chaos and regular territory. In other 

words, sea of chaos is well-mixed region or well dispersed region or territory of hyperbolic 

unstable points, while the regular regions are the bad-mixed zones or bad dispersed region 

or territory of elliptic stable points. Therefore in order to obtain chaotic mixing we should 

avoid the KAM boundaries as much as possible.  

To validate our observation that increasing T destroys the KAM boundaries, we put 

20 markers around the islands and regenerated the KAM boundaries by tracing particle 

motion for 300 time periods. Figures 4-12(a)~(f) show that the KAM boundaries are indeed 

destroyed by increasing the period T. 
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(a) Pattern B and C ; 20 particles ; 300 periods ; T = 1.0 

(b) Pattern B and C ; 20 particles ; 300 periods ; T = 1.5 

 

(c) Pattern B and C ; 20 particles ; 300 periods ; T = 2.0 

 

Figure 4-12. Pattern B and C ; 20 particles ; 300 periods ; T = 1.0, 1.5, 2.0, 2.5, 3.0, 6.0 
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(d) Pattern B and C ; 20 particles ; 300 periods ; T = 2.5 

 

(e) Pattern B and C ; 20 particles ; 300 periods ; T = 3.0 

 

(f) Pattern B and C ; 20 particles ; 300 periods ; T = 6.0 

 

Figure 4-12. continued 
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Figure 4-13. Islands @ Pattern B and C ; T = 1.0, 1.5 

 

In Figure 4-13, the process of breaking up of the KAM curves and area separating 

starts from T=1.5 case. We can find that some regular areas change to chaotic areas with the 

breaking up of the outer KAM curves. In high frequency case, the perturbation doesn’t 

destroy all the features of the unperturbed phase space, because KAM (Kolmogorov-

Arnold-Moser theorem) boundaries prevent the effects of perturbation. In other words, 

KAM boundaries on the inside and outside limit the stochasticity that occurs around the 

hyperbolic points. This prevents the stochastic trajectories from wandering through other 

parts of phase space [14, 18]. 
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Figure 4-14. Islands @ Pattern B and C ; T = 2.0, 2.5 

 

This means that islands can be removed as chaotic strength increases. In Figure 4-14, 

five small islands in case of T=2.0 are destructed in case of T=2.5. These island chains 

obviously tend to limit the stochasticity of trajectories by preventing them from wandering 

to other areas of phase space. On the other hand, the pronounced gaps that exist in the 

cantori structures allow stochastic trajectories to reach a wider ranging area of phase space 

[14, 18]. Finally, in Figure 4-15, the islands are destroyed and this area becomes chaotic. 

This fact shows that increased chaotic strength causes destruction of the KAM boundaries, 

as stated by the KAM theorem [17].  
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Figure 4-15. Islands @ Pattern B and C ; T = 3.0, 6.0 

 

Before breaking up, although particles in these inner chaotic areas move in a chaotic 

regime, the stretching and folding are confined to a very limited area, and good mixing 

cannot be achieved in these areas because most of these inner chaotic areas lie on one side 

of the interface line. These inner chaotic areas also include some periodic areas. This kind 

of nesting of multiple layers is a prominent character of nonintegrable Hamiltonian systems 

[10]. 

In Figure 4-11, we present the Poincaré sections obtained for pattern B-C at periods 

T=1, 2, 4, and 6. The Poincaré sections are obtained by tracking the motion of 121 particles 

for 100 time periods. Islands of bad mixing zones are observed for T=1, 2 cases. The island 

boundaries, also known as the Kolmogorov-Arnold-Moser (KAM) boundaries, separate the 

chaotic and regular regions of the flow [17]. In the figure, we also present the KAM 

boundaries, obtained by tracking 20 particles that were initially located on the KAM 

boundaries, for 300 periods. We observe reduction in the bad mixing zone with increased T. 

For example, the islands disappear for T � 6. The Poincaré section for T=8 is qualitatively 
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similar to that of the T=6 case, and it not shown in the figure. Destruction KAM boundaries 

is desired for enhanced mixing, but is not the sufficient condition for the best mixing case. 

For example, the FTLE for T=6 is considerably larger than that of the T=8 case, and it 

corresponds to the best mixing case among the flow patterns and frequency ranges studied 

in (Kim, 2004). We must indicate that the FTLE values presented above were obtained for 

particles that were outside the bad mixing zones. 
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CHAPTER V 

 

STRETCHING OF INTERFACE 

 

Behavior of interface between two liquids has an important role in mixing case. In 

chaotic mixing state, exponential growth of interface shows how efficiently particles are 

dispersed. Stretching and folding are key issues in chaotic mixing and calculation of 

stretching rate relates with measurement of dispersing degree directly. In this chapter, we 

will show exponential growth of stretching of interface and then explain relation between 

stretching of interface and Lyapunov exponent. 

 

5.1   DEFINITION OF STRETCHING OF INTERFACE 

 

 
Figure 5-1. Line of particles 
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To quantify the degree of mixing, we consider the stretching of a line of particles.  

 

 
(a) Initial interface between red blob and blue blob 

 
(b) interface stretching between red blob and blue blob at 2 periods 

 
(c) interface stretching between red blob and blue blob at 4 periods 

 
Figure 5-2. Interface stretching evolution : B and C pattern T=6.0 case, with 10000 
particles 
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(d) interface stretching between red blob and blue blob at 6 periods 

 
(e) interface stretching between red blob and blue blob at 8 periods 

 
(f) interface stretching between red blob and blue blob at 10 periods 

 
 

Figure 5-2. continued 
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If ( )0S  is summation of an infinitesimal distance between adjacent two particles on a line 

of particles for the initial condition as shown in Figure 5-1, ( )S t  is the corresponding 

change at nondimensional time τ , the line stretching is 

( )
( )0

S

S

τ
λ =  or 

( )
( )ln ln
0

S

S

τ
λ

� �
= � �� �

	 

.                    (5.1) 

As we see in Figure 5-2, the line stretching exhibits a great exponential growth [17, 19, 20, 

21, 22]. Ottino [17] stated that the line stretching has trend of exponential growth, 

( ) ( ) ( )/ 0 expS S Lyapunov Exponentτ τ= ⋅ . 

So we can find relationship between line stretching and Lyapunov exponent. To decide 

optimum frequency, Lyapunov exponents had been calculated for various cases in previous 

chapter. 

First, we calculated stretching of line consisted with 100 particles and initial length 

( )0S is 0.2. The reason why initial length is short is to get enough precision and we were 

sure that this short line will grow exponentially because mixing system is chaotic state. As 

we know B and C pattern with T=6.0 case is most chaotic, the growth rate of this case is 

fastest and exponential. In Figure 5-3, growth of line stretching of B and C pattern at T=6.0 

case is most exponential and fastest. To verify trend of exponential growth, we made log-

linear graph for B and C Pattern at T=4.0 and T=6.0 cases. In Figure 5-4, we can check 

exponential growth of two cases. 

But, in Figure 5-5, after about non-dimensional time 40, growth of line stretching is 

saturated. This is natural result because our mixing zone is a closed space. In Figure 5-6, 
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there is exponential growth of stretching ratio with 1000 particles and in Figure 5-7, 

although the number of particles is different for each case, order of growth of stretching 

ratio is similar. 

If mixing zone is open space, line stretching will grow infinitely with exponential 

aspect. Nishimura et al. made similar results about line stretching in quasi-periodic cavity 

case and they concluded that saturation point is a matter of course in closed space. Also 

they found saturation point will be independent if number of particle is enough, for 

example, above 3000 [21]. In linear-linear graph-Figure 5-8(a), maximum saturation value 

is just 700 because number of particles is only 100. But, in Figure 5-8(b), when 1000 

particles are used, the maximum saturation value is 7000. This saturation value will be 

converged if above 3000 particles are used. 

In this time, the reason why value of stretching rate is saturated is explained using 

graphical result. In Figure 5-9, there are snap shots of corresponding changes of line at non-

dimensional time. In right side, there are connection lines between two adjacent particles. 

After non-dimensional time 20.0, destruction of structure begins. In snap shot of non-

dimensional time 40, particles set up line are totally dispersed. Because particles are 

dispersed in closed space and their positions have limited within finite mixing zone, with 

definition of line stretching value, stretching rate is saturated after enough time. And as we 

see Figure 5-2(e) and 5-2(f), dispersing state is similar with previous state if particles are 

dispersed totally. So we can conclude that stretching rate of closed mixing zone is saturated 

after enough time. 
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Figure 5-3. Interface stretching with 100 particles for various cases 
 

 

Figure 5-4. Comparison between B and C pattern T=4.0 case and T=6.0 case (100 particles 
case). 
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Figure 5-5. Stretching values are saturated after 50 non-dimensional time because mixing 
zone is closed space (100 particles case). 
 

 

Figure 5-6. Exponential growth of stretching ratio with 1000 particles 
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(a) number of particles = 100 

 

(b) number of particles = 1000 
Figure 5-7. Exponential growth of stretching ratio with (a) 100, (b) 1000 particles. 
Although the number of particles is different for each case, order of growth of stretching 
ratio is similar. 
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(a) linear - linear scale (100 particles) 

 

(b) linear - linear scale (1000 particles) 
 

Figure 5-8. Different saturation points - B and C pattern (100, 1000 particles) 
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t = 0.0 

 
t = 10.0 

 
t = 20.0 ( beginning of destruction of structure ) 

 
t = 30.0 

 
t = 40.0 

Figure 5-9. Snap shots of stretching of interface ( B and C pattern , size of T = 4.0 , 1000 
particles ) 
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5.2   STRETCHING RATE AND LYAPUNOV EXPONENT 

 

As we stated in previous sub chapter, the line stretching in chaotic system exhibits a 

great exponential growth and this exponential growth gives us an important hint to find 

useful characteristics of chaotic system [22]. Ottino [17] stated that the line stretching has 

trend of exponential growth,  

( ) ( ) ( )/ 0 expS S Lyapunov Exponentτ τ= ⋅ .            (5.2) 

In Figure 5-10, we calculated stretching exponent in B and C pattern at T=6.0 case with 100, 

1000, 3000 particles. As we expected, with increasing of number of particles, stretching 

exponent is increased. This means that the finally converged exponent indicates Lyapunov 

exponent with same value if enough precision is satisfied. 

As Ottino expected [17], we find converged Lyapunov exponent is same with 

stretching exponent. This means we verify that above equation is reasonable. In Figure 5-11, 

stretching exponent is converged to about 0.3 and Lyapunov exponent of B and C pattern at 

T=6.0 case is about 0.3 in Figure 5-12. And in Figure 5-11 and 5-12, the trend of stretching 

rate corresponds to the order of Lyapunov exponent[23, 24]. In next chapter, we will 

explain about particle dispersing and the trend of particle dispersing also corresponds to the 

trend of Lyapunov exponent and stretching rate. 
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Figure 5-10. Exponential growth of interface stretching : With increasing number of 
particles, the stretching exponent increases  
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Figure 5-11. Exponential growth of interface stretching with 100 particles: this graph shows 
relation between Lyapunov exponent and stretching exponent 
 

 

Figure 5-12. We can find relation between converged Lyapunov exponent and converged 
value of stretching 
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5.3 LINE STRETCHING AND HYPERBOLIC FIXED POINTS 

 

In previous work, we found critical weak points in measurement method of 

stretching field. Due to destruction of structure, the snap shots of stretching field cannot 

have physical meaning any more. The reasons are explained below. 

 

� Initial length was too long and also initial precision was not enough due to small 

number of particles. 

� Our measurement has only local meaning. 

� With superposition, although we can look for fixed points and Lyapunov exponent, 

we lost useful information. 

 

With above reasons, we changed the basic idea to measure length of interface or stretching 

ratio. The new idea is very simple. Instead of one initial line, we split line into small 

fragments. These fragments are fluid elements. Our goal is focused on very thin structure 

(line) so that these fragments have enough roles. In Figure 5-13, there are five fragments’ 

snap shots. As we stated before, the order of stretching ratio follows the order of Lyapunov 

exponent in Figure 5-14. Using fragments, local stretching can be considered and also, we 

can check the positions of hyperbolic fixed points-crossing points of line elements using 

Poincaré section in Figure 5-15. 
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Figure 5-13. Snap shots of stretching of interface 

( B and C pattern , size of T = 6.0 , 500 particles ) 
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Figure 5-14. Stretching ratio : The order of stretching ratio follows the order of Lyapunov 
exponent. 

 

 

Figure 5-15. Positions of hyperbolic fixed points 
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CHAPTER VI 

 

PARTICLE SPREAD 

 

In this chapter, we present box counting method to measure mixing index intuitively. 

If the snapshots of mixing simulation are given, it maybe is easy to estimate mixing state. 

In our case, if particles are dispersed uniformly through whole mixing zone, this state can 

be considered as well-mixed state. But this measurement is just qualitative method. For 

quantitative measurement, reasonable method to decide mixing state is required. Box 

counting method is easy way and also intuitive, direct, reasonable. With these reasons, we 

tried to calculate mixing index using box-counting method. 

 

6.1   DEFINITION OF BOX COUNTING METHOD 

 

      The box counting calculation method quantifies the rate at which particles are dispersed 

by the flow into small uniform boxes [25]. Selecting appropriate size of box is important. If 

the boxes are too large, the method will quantify mixing only on a coarse scale. On the 

other hand, if the cells are too small, only a small portion of the boxes will be occupied at 

any given time. Several criteria can be adopted to select the box size. Jones[26] recognized 

that a perfectly randomized population of particles has a Poisson bin-occupancy 

distribution, and used this information to determine a box size so that on average there was 

one particle per cell. The final goal of this approach is to find homogenization of particle 
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spread state through whole mixing domain. We divide the mixing domain into K boxes, 

area of each box is a. The total area is same with area of mixing zone. So, the equation is 

Ka=A=mixing zone. For M particles, the particle density is �=M/K. We define 

homogenization as the condition that the probability a particle is in a given bin is  

/a A . 

First of all, we suppose that all boxes are equiprobable. Next we wish to determine the 

distribution of boxes containing exactly m particles, assuming this condition is satisfied 

[26]. This is a sort of typical occupancy problem that is well established in probability 

theory. It is easy to show that the solution is the Poisson distribution 

( ) ( )/ !mq m m e ρ
ρ ρ −= .                        (6.1) 

The number of boxes containing m particles is 

Kqρ . 

The mean number of particles per box is, of course, �. In our case, this box size is 

chosen so that for a perfectly random distribution of particles, 98% of the boxes contain at 

least one particle. Numerical tests indicate that such a box size is approximately given by 

s~ 
1
22N

−
,                            (6.2) 

where s is the size of the box and N is the total number of particles. If the simulation is 

made with 10,000 particles, appropriate box size is decided as s=0.02.  
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6.2   HOW TO CALCULATE MIXING INDEX 

 

Let’s assume there are 40,000 particles are dispersed in 10,000 cells. In ideal mixing 

state, there should be 4 particles in each cell to make well mixed state as below 

� 40,000
4.0 /

10,000
particles

particles cell
cells

=  

 

But, in real case, the number of particles contained in each cell can be various. 

I. 0 particle � bad mixed state 

II. 1~3 particles � regular mixed state 

III. 4 particles � well mixed state 

IV. 5+ � bad or regular mixed state 

In case IV, the number of particles should be counted down to 4. This is important 

point for homogeneity. And then, for each cell, calculate the rate of number of particles. We 

call the rate of number of particle as ‘box rate number’. 
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Figure 6-1. Particles located in cells 

 

If we calculate box rate number for Figure 6-1 case, 

( )5.0 4.0
1.0

4.0 4.0
box rate number discounted= → =

( )8.0 4.0
1.0

4.0 4.0
box rate number discounted= → =  

2.0 2.0
0.5

4.0 4.0
box rate number = → =

1.0 1.0
0.25

4.0 4.0
box rate number = → =

After calculating the box rate number for all boxes, make the average number of all 

box rate number. This average value will be “Mixing Index”. 

If we consider only 4 boxes in Figure 6-1,  

 

1.0 1.0 0.5 0.25
0.6875

4
Mixing Index

+ + += =  



� �

To apply to real case, we referred to Ling et al’s share case [9]. They used 

discontinuous cavity flow caused by alternating motion of the top and bottom walls of a 

rectangular cavity. This model is very simple to generate and also practical and efficient. In 

Figure 6-2, there are example of 40,000 particles calculation case and we can compare the 

precision difference with change of box size in Figure 6-3. 

 

 
100X100 boxes 

Figure 6-2. Size of cell for 40,000 particles case 
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Figure 6-3. Coarse selection of box size 

 

In Figure 6-4, 5, 6, there are cases of evolution of deformation of blob. In each case, 

we changed the size of T, as we expected, mixing index grows differently. In Figure 6-7, we 

summarized mixing indices for each case. 
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t = 0.0 t = 5.0 

 
t = 25.0 t = 40.0 

 
t = 50.0 Mixing index 

 

Figure 6-4. Steady case , 10000 particles ; T=10.0
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period= 0.0 period= 0.5 

 
period=2.5 period=4.0 

 
period=5.0 Mixing index 

 

Figure 6-5. T=10.0, 20000 particles 
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period= 0.0 period= 0.5 

  
period=2.5 period=4.0 

 
period=5.0 Mixing index 

 

Figure 6-6. T=11.0, 10000 particles 
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Figure 6-7. Comparison of mixing index :Gradient symbol : steady case ( regular stirring ), 
Diamond symbol : unsteady case, T=10.0 ( chaotic stirring ), Triangular symbol : unsteady 
case, T=11.0 ( chaotic stirring ) 
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In Figure 6-8, 11, 14, the particles are located initially in the center of mixing zone 

and they are dispersed from initial positions. For all flows, particles initially are convected 

exponentially, but dispersing rate decreases as the cells are filled up with particles. 

Consequently, the time evolution of mixing index curves has leveled off in Figure 6-9, 10, 

12, 13, 15, 16. 

As we expected using Lyapunov exponent, the A and D pattern at T=6.0 case flow 

accomplishes only incomplete dispersing with just about 70% of the cells contained by 

particles due to presence of large islands. For the high frequency flow, particle motion is 

regular in almost the entire flow so that it is expected that small portion of cells are 

contained even after 20 period. After 10 period, pattern B and C at T=6.0 and 8.0 flows 

achieve at least 85 % cell coverage. But pattern A and D at T=6.0 flow achieves only 70 % 

cell coverage after even 20 period in Figure 6-9, 10. This order is exactly same with order 

in Lyapunov exponent, Poincaré section and line stretching. In previous sections, we 

expected islands presence and bad mixing effects due to KAM boundaries and low value of 

Lyapunov exponent using Poincaré section. In Figure 6-17, 18, we set the size of T equal to 

6.0 and change only pattern. In this comparison, first case is derived by pattern A and D 

and second case is derived by pattern B and C. As we expected in previous chapters, B and 

C case shows much more efficient curve than A and D pattern case. After enough time 

steps, mixing index of A and D pattern case is still much lower than B and C pattern case. 

In Figure 6-19, 20, even though the size of T in B and C pattern at T=8.0 flow is 

larger than size of T in B and C pattern at T=6.0 flow, the chaotic strength of first case is 

weaker than second case. This causes by the separated high-stretching region. In the 
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separated high-stretching region, particles penetrate and leave such regions slowly [27, 28, 

29]. To decrease the size of separated region, the optimum frequency is required so that 

Lyapunov exponent is used to find such frequency as soon as possible.  

Finally, in Figure 6-21, we put 10000 particles in the center of mixing zone, and 

theses particle sets are consisted of two color groups - blue and red. In chapter 4, the bad 

mixing zone is remained in the center of bottom part when particles are advected by pattern 

B and C at T=6.0 flow. As we expected, the bad mixing zone is also located in the site that 

we found using Poincaré section. With these facts, we can conclude that the cells contained 

no particles are located inside the islands. And also we find that mixing index is 

independent on the number of particles because mixing index of 10000 particles case has 

same trend with 1600 particles case in Figure 6-22. 
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period = 0.0 period = 2.0 

 

 
period = 4.0 period = 6.0 

 

 
period = 8.0 period = 10.0 

 
Figure 6-8. Snap shots of deformation of blob 

A and D pattern : size of T = 6.0, 1600 particles 
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period = 12.0 period = 14.0 

 

                     
period = 16.0 period = 18.0 

 
 

 
period = 20.0 Box size to calculate mixing index 

 

 

Figure 6-8. continued 
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Figure 6-9. A and D pattern, size of T = 6.0 , 1600 particles without concern of number of 
particles per box 

 

 
Figure 6-10. A and D pattern, size of T = 6.0 , 1600 particles with concern of number of 

particles per box
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period = 0.0 period = 2.0 

 

 

 
period = 4.0 period = 6.0 

 

 

 
period = 8.0 period = 10.0 

 

Figure 6-11. Snap shots of deformation of blob 
B and C pattern : size of T = 6.0, 1600 particles 
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period = 12.0 period = 14.0 

 

 
period = 16.0 period = 18.0 

 

 

 
period = 20.0 Box size to calculate mixing index 

 

Figure 6-11. continued 
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Figure 6-12. B and C pattern , size of T = 6.0 , 1600 particles without concern of number of 
particles per box 

 

 
Figure 6-13. B and C pattern , size of T = 6.0 , 1600 particles with concern of number of 
particles per box 
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period = 0.0 period = 1.0 

 

 
period = 2.0 period = 3.0 

 

 
period = 4.0 period = 5.0 

 
 

Figure 6-14. Snap shots of deformation of blob 
B and C pattern , size of T = 8.0 , 1600 particles 
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period = 6.0 period = 7.0 

 

 
period = 8.0 period = 9.0 

 

 
period = 10.0 Box size to calculate mixing index 

 
Figure 6-14. continued 
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Figure 6-15. B and C pattern , size of T = 8.0 , 1600 particles Mixing Index without 
concern of number of particles per box 
 

 
Figure 6-16. B and C pattern , size of T = 8.0 , 1600 particles Mixing Index without 
concern of number of particles per box 
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Figure 6-17. Comparison of Mixing Index between “B and C” and “A and D” ( log - linear 
scale ) : Without concern of number of particles per box, T = 6.0 fixed 

 

 
Figure 6-18. Comparison of Mixing Index between “B and C” and “A and D” ( log - linear 
scale ) : With concern of number of particles per box, T = 6.0 fixed 
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Figure 6-19. Comparison of Mixing Index between B and C T=6.0 and T=8.0 ( log - linear 
scale ) : Without concern of number of particles per box 

 

 
Figure 6-20. Comparison of Mixing Index between B and C T=6.0 and T=8.0 ( log - linear 
scale ) : Without concern of number of particles per box 
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period = 0.0 period = 2.0 

 

 
period = 4.0 period = 6.0 

 

 
period = 8.0 period = 10.0 

 

Figure 6-21. B and C pattern : size of T = 6.0, 10000 particles 
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period = 12.0 period = 14.0 

 

 
period = 16.0 period = 18.0 

 

 
period = 20.0 

 
Figure 6-21. continued 
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Figure 6-22. Mixing Index 
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CHAPTER VII 

 

CONCLUSIONS AND FUTURE WORK 

 

The main conclusions from our work are :  

 

1. Chaotic mixing can result in very efficient mixing due to exponential interface stretching. 

Chaotic advection makes stretching rate grow exponentially. Consequently, mixing 

efficiency is enhanced. 

2. Lyapunov exponent is defined as a quantitative measure of the sensitivity dependence on 

the initial conditions and the average rate of divergence (or convergence) of two 

neighboring trajectories. Lyapunov exponent measures efficiency of divergence of passive 

particles. If Lyapunov exponent is increased, the chaotic strength becomes stronger. 

3. Graphical methods tell us usually more than the analytical solution so that we use 'map' 

and then try to make Poincaré section. In Poincaré section, destruction of KAM boundaries 

(islands) shows increasing chaotic strength. If system becomes fully chaotic, there are no 

islands any more in Poincaré section. 

4. Length of interface was stretched exponentially in chaotic mixing. However, interface 

may lose its coherence as particles are dispersed. So we should carefully consider when 

length of stretching is physical and reasonable. 

5. Box counting method gives quantitative measure of mixing quality. For chaotic state, 

mixing index grows exponentially. 
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In regards to the future work, we recommend that 

1. Computing diffusion case using numerical simulation 

2. Applying 3 dimensional steady case 

3. Applying 3 dimensional unsteady case 

4. Implementing inertial particle case [29, 30, 31] 

5. Quantifying Poincaré section for general usages [32, 33, 34, 35, 36, 37] 

6. Calculating striation thickness using probability density function 
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