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ABSTRACT

On Adaptive Transmission, Signal Detection and Channel Estimation for Multiple

Antenna Systems. (August 2004)

Yongzhe Xie, B. S., Shanghai Jiaotong University;

M. Eng, The National University of Singapore

Chair of Advisory Committee: Dr. Costas N. Georghiades

This research concerns analysis of system capacity, development of adaptive trans-

mission schemes with known channel state information at the transmitter (CSIT) and

design of new signal detection and channel estimation schemes with low complexity

in some multiple antenna systems. We first analyze the sum-rate capacity of the

downlink of a cellular system with multiple transmit antennas and multiple receive

antennas assuming perfect CSIT. We evaluate the ergodic sum-rate capacity and show

how the sum-rate capacity increases as the number of users and the number of receive

antennas increases. We develop upper and lower bounds on the sum-rate capacity

and study various adaptive MIMO schemes to achieve, or approach, the sum-rate

capacity. Next, we study the minimum outage probability transmission schemes in a

multiple-input-single-output (MISO) flat fading channel assuming partial CSIT. Con-

sidering two special cases: the mean feedback and the covariance feedback, we derive

the optimum spatial transmission directions and show that the associated optimum

power allocation scheme, which minimizes the outage probability, is closely related to

the target rate and the accuracy of the CSIT. Since CSIT is obtained at the cost of

feedback bandwidth, we also consider optimal allocation of bandwidth between the

data channel and the feedback channel in order to maximize the average throughput

of the data channel in MISO, flat fading, frequency division duplex (FDD) systems.
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We show that beamforming based on feedback CSI can achieve an average rate larger

than the capacity without CSIT under a wide range of mobility conditions. We next

study a SAGE-aided List-BLAST detection scheme for MIMO systems which can

achieve performance close to that of the maximum-likelihood detector with low com-

plexity. Finally, we apply the EM and SAGE algorithms in channel estimation for

OFDM systems with multiple transmit antennas and compare them with a recently

proposed least-squares based estimation algorithm. The EM and SAGE algorithms

partition the problem of estimating a multi-input channel into independent chan-

nel estimation for each transmit-receive antenna pair, therefore avoiding the matrix

inversion encountered in the joint least-squares estimation.
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CHAPTER I

INTRODUCTION

The use of multiple transmit/receive antennas has emerged as a promising solution

for high data rate communication over wireless channels. The resulting multiple an-

tenna system can provide crucial spatial diversity and additional “degrees of freedom”

which, if appropriately exploited, can yield significant capacity gains [1, 2].

This work sets two goals in the research of multiple antenna wireless systems.

One is to analyze the capacity of some multiple antenna systems and develop adap-

tive transmission schemes with emphasis on exploring channel side information at the

transmitter. The other is to introduce new signal detection and channel estimation

schemes with low complexity. More specifically, the dissertation has studied the er-

godic sum-rate capacity of a multiple input and multiple output (MIMO) broadcast

system and some candidate adaptive transmission schemes assuming perfect channel

state information at the transmitter side (CSIT), minimum outage probability trans-

mission in a multiple input and single output (MISO) fading channel with partial

CSIT, optimal bandwidth allocation in a FDD system, and efficient EM-type signal

detection and channel estimation algorithms for multiple antenna fading channels

with application to cellular systems.

A. Dissertation Outline

Chapter II introduces some background knowledge on capacity analysis, and trans-

mission and detection schemes for multiple antenna systems.

Chapter III analyzes the sum-rate capacity of the downlink of a cellular sys-

This dissertation follows the style of IEEE Transactions on Automatic Control.
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tem with multiple transmit antennas and multiple receive antennas assuming per-

fect CSIT. Modelling the downlink as a flat fading multiple-input-multiple-output

(MIMO) broadcast channel (MIMO-BC), we evaluate the ergodic sum-rate capacity

using the duality between a MIMO multiple access channel (MIMO-MAC) and a

MIMO-BC. We show how the sum-rate capacity increases as the number of users

and the number of receive antennas increase. We also develop upper and lower

bounds on the sum-rate capacity and study various adaptive MIMO schemes to

achieve or approach the sum-rate capacity. Sub-optimal transmission schemes, such

as ranked known interference cancellation based on channel matrix triangulation and

zero-forcing beamforming based on channel matrix inversion are shown to be able to

achieve close to capacity performance.

In Chapter IV, we consider transmission schemes assuming partial CSIT, since

perfect channel state information can be too optimistic in practice. We derive the

minimum outage probability transmission schemes in a multiple-input-single-output

(MISO) flat fading channel for two special cases: the mean feedback case where the

CSIT and the actual channel state are jointly Gaussian, and the covariance feedback

case where only the spatial covariance matrix of the channel states is known at the

transmitter. In the case of mean feedback, the optimal transmission strategy is proven

to be transmitting several independent data streams in the direction of the channel

mean vector and its orthogonal directions. In contrast to the case of maximizing the

ergodic capacity, the optimum power allocation scheme which minimizes outage prob-

ability is closely related to the target rate. For both mean and covariance feedback,

we show that it is more desirable to spread the power over all transmission directions

than beamforming to a single direction for sufficiently small target rates.

In Chapter V, we study the joint optimization of the forward data channel and the

feedback channel in terms of bandwidth allocation in order to maximize the average
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throughput of the data channel in a MISO frequency division duplex (FDD) system.

In FDD systems, CSI is usually estimated by the receiver and then fed back to the

transmitter through a reliable link, which inevitably requires additional bandwidth

and power. If one views bandwidth and power as common resources that can be

shared by the data and feedback channels, the question is whether the increased

capacity is worth the penalty paid for it. We consider two models of the partial

CSIT: the noisy CSIT which is jointly Gaussian distributed with the actual channel

state, and the quantized CSIT. In the first model, we use distortion rate theory to

relate the CSIT accuracy to the feedback bandwidth. In the second model, we derive

a lower bound on the achievable rate of the data channel based on the ensemble of a

set of random quantization codebooks. We show that in the MISO flat fading channel

case, beamforming based on feedback CSI can achieve an average rate larger than the

capacity without CSIT, under a wide range of mobility conditions.

Chapter VI proposes a Space Alternating Generalized Expectation-Maximization

(SAGE) aided List-BLAST detection scheme, which can achieve performance close

to that of the maximum-likelihood detector with low computational complexity. The

SAGE algorithm searches for the ML solution iteratively by resolving the interfer-

ence among signals from different transmit antennas. To improve the probability of

convergence to the ML solution, multiple initial points are used. The List-BLAST

algorithm, which exhausts the constellation points in the first layers of a BLAST

detection scheme, is shown to be an excellent way to generate initial points. The

complexity of the proposed detection scheme is compared with that of the sphere

detection scheme, and it is shown to have a number of implementation advantages.

In Chapter VII, we study channel estimation for an orthogonal frequency divi-

sion multiplexing (OFDM) system with multiple transmit antennas in a frequency

selective fading channel. We propose the EM and the SAGE iterative channel esti-
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mation algorithms and compare them with a recently proposed least-squares based

estimation algorithm. We study the convergence properties of the proposed schemes,

the overall system performance and implementation issues through both theoretical

analysis and simulation. At each iteration and for every OFDM link, the EM-type

algorithms partition the problem of estimating a multi-input channel into indepen-

dent channel estimation for each transmit-receive antenna pair, therefore avoiding

the matrix inversion encountered in the joint least-squares estimation. We also show

that the convergence rate for both algorithms is unrelated to the channel delay profile

and decreases when the length of the channel or the number of transmit antennas

increases.

Finally, we conclude the dissertation with a summary on the major contributions

in Chapter VIII.

B. A Note on Notation

Throughout the dissertation, if not otherwise specified in each chapter, we use the

following general rules in notation.

We use boldface and lower case letters to denote vectors and boldface and upper-

case letters to denote matrices. Superscripts T , ∗ and H denote transpose, conjugate

and transpose conjugate of a matrix or a vector, respectively; A−1, tr(A) and |A|

denote the inverse, trace and determinant of matrix A, respectively; In denotes the

identity matrix of dimension n; when there is no ambiguity on the dimension, I is

used to denote the identity matrix; A[i, j] denotes the [i, j]th entry of matrix A; ai

denotes the ith entry of vector a.

E(·) is the expectation operator; ā will also be used to denote the mean of a.

Symbol
4
= is used for definition. Both the scalar or the vector Gaussian distribution
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is denoted as N (α, Σ) with α denoting the scalar or vector mean and Σ denoting the

variance or the covariance matrix. f(a|b) or p(a|b) is used to denote the conditional

PDF of the random variable a given b. E(a|b) is used to denote conditional mean.

Since we do not need to distinguish between a random variable and its value by using

different notations in this dissertation, the variable on the right side of the conditional

symbol | always denotes the actual value of the corresponding random variable if not

otherwise specified.

Given a sequence a1, a2, · · · , an of positive numbers, we say that a positive num-

ber bn is of the order of O(an) as n → ∞ if an

bn
is bounded by some constant.
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CHAPTER II

A BRIEF OVERVIEW OF MULTIPLE ANTENNA SYSTEMS

Multiple antenna systems were first used at the receiver side to provide multiple

independent spatial copies of the received signal to combat fading in wireless com-

munication systems. The recent interest is mainly in the use of multiple transmit

antennas because some important applications limit the use of multiple receiver an-

tennas. For example, it is hard to implement two independent antennas on a small

mobile device. If multiple antennas are used on both the transmitter and receiver side

in a rich scattering wireless channel, the capacity of such a system with channel known

at the receive side can increase linearly as the minimum of the number of transmit

and receive antennas increases [1][2]. This discovery has triggered enormous research

interests in multiple antenna systems in recent years. In this chapter, we will briefly

introduce some capacity results, well known transmission and detection schemes of

multiple antenna systems, which are closely related to the rest of the chapters.

A. Channel Models and Capacity Analysis

1. Single User MIMO, MISO, SIMO Channels

Consider the point-to-point communication over a rich-scattering frequency non-

selective wireless channel with Nt transmit antennas and Nr receive antennas. The

system in each channel use can be modelled as follows:

y = Hx + w, (2.1)

where H is a Nr × Nt matrix denoting the channel, with each element of the matrix

modelled as i.i.d. zero mean, circularly symmetric, complex Gaussian with normalized
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variance. If Nr = 1, the channel is usually referred to as multiple input single output

(MISO) channel . Similarly, we can define a single input and multiple out channel

(SIMO) when Nt = 1, and a multiple input and multiple out (MIMO) when Nt 6= 1

and Nr 6= 1. w ∼ N (0, σ2
nI) is a Nr × 1 vector denoting the circularly symmetric

complex Gaussian noise corrupting the different receivers. y is the received signal

vector of dimension Nr × 1. x denotes the Nt × 1 complex transmit signal (column)

vector. Let S
4
= E[xxH ]. The transmitter is constrained in total power as:

tr(S) = P. (2.2)

a. Ergodic Capacity

The Ergodic capacity is the maximum average achievable rate of a channel with zero

error probability. The ergodic capacity of multiple antenna systems with two different

assumptions is summarized below:

• CSI perfectly known only at the receiver. In this case, the average mutual

information I(x;y|H) between the input and output given H is maximized

when x is complex Gaussian distributed and can be computed as

I(x;y|H) = log
∣

∣INr
+ HSHH

∣

∣ (2.3)

The ergodic capacity is maximized when S = P
Nt

INt
[1].

• CSI perfectly known at both the transmitter and receiver. Let the singular value

decomposition (SVD) of H be H = UDVH, where U and V are unitary ma-

trices and D is a diagonal matrix. Since U and V are available at both the

transmitter and receiver, the channel as shown in equation (2.1) can be diago-

nalized by pre-filtering (multiply) x by matrix V, and post-filtering (multiply)

the received vector y by UH . Since orthogonal transformation does not change
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the distribution of x and W, the MIMO channel is transformed into a paral-

lel set of N = min{Nt, Nr} Gaussian scalar channels, whose capacity can be

achieved by the water-filling power allocation scheme over space and time [3].

b. Outage Capacity

In some scenarios of wireless communications, due to delay limits, channel cannot be

assumed to be ergodic during the transmission of a code word. For example, the well

known quasi-static fading channel model assumes channel remains constant within

a transmission block, but changes independently from block to block. In this case,

the mutual information expression can be treated as random entities, giving rise to

capacity-versus-outage considerations [4].

The channel outage probability is simply defined as

εo = Prob(I(x;y) < Rt), (2.4)

where Rt is the target rate. We can also define the outage capacity Cε as the maximum

achievable rate at the given target outage probability. For example, C1% = 3 (bit)

means that three bits per channel-use can be achieved with a probability of 99%.

2. Sum-Capacity of Multiple User Systems

We consider here two kinds of multiple user systems: the multiple access channel,

where multiple transmitters (or users) communicate to a single receiver and the broad-

cast channel where a single transmitter communicates to multiple receivers (or users).

In a cellular system, the multiple access channel corresponds to the uplink (from mo-

bile to base) and the broadcast channel corresponds to the downlink.
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A K user MIMO-MAC channel can be modelled as

y =

K
∑

k=1

Hkxk + w, (2.5)

where Hk denotes the matrix channel between the kth transmitter and the receiver.

The transmitted signal vector xk of the kth user usually has an individual power

constraint as

tr(Sk) ≤ Pk (2.6)

where Pk is the available transmission power of transmitter k.

The MIMO-BC channel can be modelled as

yk = Hkx + wk, 1 ≤ k ≤ K, (2.7)

where yk is the received signal of the kth user; Hk denotes the matrix channel between

the transmitter and the kth receiver; wk denotes the white Gaussian noise at the kth

receiver. The transmit power constraint can be expressed as

K
∑

k=1

tr(Sk) ≤ P, (2.8)

where P is the available total transmission power.

In a multiple user system, one usually defines the capacity region to be the closure

of the set of achievable rate vectors (R1, R2, . . . RK), where Rk denotes the rate of the

kth user [5]. Besides the capacity region, sum-rate capacity, defined as the maximum

achievable sum-rate,
∑K

k=1 Rk, is often used to measure the total throughput of a

multiple user system.
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a. Gaussian MIMO MAC

Let Xc
k denote the set of all user’s transmit vectors except xk. The capacity region

of a MAC channel is the closure of the convex hull of all rate vectors (R1, R2, . . .RK)

satisfying

Rk ≤ I(xk;y|Xc
k), for any k, (2.9)

K
∑

k=1

Rk ≤ I(x1,x2, . . . ,xK;y) (2.10)

for some input distribution satisfying the power constraints. For the case of a MIMO-

MAC channel, the capacity region is shown to be [6]

R =
⋃

tr(Sk)≤Pk,Sk�0

B(S1,S2, . . . ,SK), (2.11)

where Sk � 0 means that Sk should be positive semi-definite. B(S1,S2, . . . ,SK) is

defined as the set of (R1, R2, . . . RK) achieved by a given choice of power allocation

scheme (S1,S2, . . . ,SK), which can be expressed as

Rk ≤ log2(|HkSkH
H
k + I|); for any k, (2.12)

K
∑

k=1

Rk ≤ log2

(∣

∣

∣

∣

∣

K
∑

k=1

HkSkH
H
k + I

∣

∣

∣

∣

∣

)

. (2.13)

The last equation also shows the sum-rate for the given power allocation scheme,

which can be maximized over all possible choices of power allocation schemes to

obtain the sum-rate capacity.

b. Gaussian MIMO BC

Compared to the multiple access channel, the broadcast channel is less understood.

Only the capacity region of a small class of broadcast channels, called degraded

broadcast channels, is known [5]. The most simple type of degraded broadcast channel
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is formed by two-user scalar AWGN channels, where one receiver (corresponding to

the “good” user) experiences a Gaussian noise with less variance than that of the

other user’s receiver (the “bad” user). The border of the capacity region in this case

can be achieved by cancellation at the receivers; the “bad user” always treats the

encoded information for the good user as Gaussian interference; the “good user” can

always decode the “bad” user’s information first and then cancel its effect and decode

its own information.

However, a Gaussian MIMO-BC channel is usually not degraded; thus, its capac-

ity region is unknown. The capacity region and the sum-rate capacity of MIMO-BC

and MIMO-MAC have been shown to be closely related. A more detailed treatment

of this topic will be given in Chapter III, where the ergodic sum-rate capacity of a

fading MIMO-BC is derived and analyzed based on this relation.

B. Transmission and Detection Schemes for Multiple Antenna Systems

1. Space-time Coding

The concept of space-time coding was first proposed by Tarokh et al. to improve data

rate and reliability of communications over fading channels using multiple transmit

antennas [7]. By carefully designing the codewords, potential spatial diversity pro-

vided by multiple transmit antennas can be achieved. For example, in a slow and

frequency non-selective Rayleigh fading channel, performance is shown to be deter-

mined by matrices constructed from pairs of distinct code sequences. The minimum

rank among these matrices quantifies the diversity gain, while the minimum determi-

nant of these matrices quantifies the coding gain. Based on these criteria, space-time

trellis codes have been designed to achieve 2-3 dB away from the outage capacity. The

decoding of space-time trellis codes requires a maximum-likelihood (ML) sequence de-
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tection scheme, whose complexity increases exponentially as the the number of trellis

states increases.

Another well known type of space-time codes is the orthogonal space-time block

codes which have a very simple ML decoding scheme such as the Alamouti’s scheme for

a system with two transmit antennas [8][9]. Although the orthogonality can simplify

detection, it usually results in capacity loss except in some special cases [10]. Some

recently proposed block codes can achieve close to capacity rate while maintaining a

relatively simple decoding structure [10].

Space time coding techniques usually assume no CSIT. Reliable communication

is achieved by careful design of the structure of the code sequences. In this thesis, we

are mainly focused on techniques utilizing either full or partial CSIT.

2. ML Detection and Sphere Decoding

Assume that transmit signal x in the channel model of equation (2.1) is composed of

uncoded QAM or QPSK signals. We assume perfectly known H at the receiver side.

The maximum-likelihood (ML) detector can be expressed as

x̂ = arg min
x∈ΩNt

||y − Hx||2 (2.14)

where ΩNt denotes the set of constellation points in the complex Nt-dimensional space.

Since exhaustive search for the ML solution over the whole set of ΩNt is too complex

to be implementable, sphere decoding can be used to reduce complexity. Equation

(2.14) can be shown to be equivalent to the following:

x̂ = arg min
x∈ΩNt

(x − xls)
HRHR(x − xls), (2.15)

where xls = (HHH)−1HHy is the least-square or zero-forcing estimate of x assuming x

is continuous; R is the upper triangular matrix in the QR decomposition of H = QR.
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To solve (2.15), the sphere decoder avoids the exhaustive search by considering only

those points satisfying (x−xls)
HRHR(x−xls) ≤ r2. This search can be implemented

efficiently by exploiting the triangular structure of R as shown in [11, 12].

3. ZF and MMSE Detector

Assume Nr ≥ Nt. Both the zero-forcing (ZF) and the minimum mean square error

(MMSE) detectors perform linear transformation over the received signal y as

y
′

= BHy = BHHx + BHw (2.16)

ZF uses B = H(HHH)−1; MMSE uses B = H(HHH + I

SNR
)−1. Symbol-by-symbol

detection is then performed on y
′

to detect each element of x. Note that since noise

becomes correlated after the transformation, symbol-by-symbol detection, although

very simple, is not optimal.

4. BLAST

Different from linear detectors such as ZF and MMSE, the Bell Lab Layered Space-

Time (BLAST) scheme [13] is based on nulling and cancelling as introduced below.

Denoting the QR decomposition of H = QR, we can perform a linear transformation

on the received signal as y
′

= QHy; the system can be expressed as

y
′

= Rx + w
′

, (2.17)

where w
′

= QHw has the same distribution as w since Q is unitary. In the trian-

gulized model above, each row denotes a different encoding/decoding layer with the

kth layer interfered only by layers with indexes larger than k. Considering the N th
t

row (layer) of (2.17), which denotes an underlying scalar channel, one can first detect

xNt
; assuming x̂Nt

is correct, the interference of R[Nt − 1, Nt]x̂Nt
can be subtracted
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from layer Nt − 1 and x̂Nt−1 can be detected as in a scalar channel. Similarly, layer

Nt − 2, Nt − 3, · · · , 1 can be detected in order. In practice, nulling and cancelling is

conducted in a certain order. One usually hopes to first detect the strongest channel

in order to minimize error propagation [14].

5. Beamforming for MISO Channels

The MISO channel is a very important type of channel in wireless communication

systems, and in particular cellular systems due to the fact that multiple receive an-

tennas are hard to implement in a mobile device due to the limited space constraint.

Two types of transmit diversity schemes are standardized in the current third gener-

ation cellular systems [15]. The closed loop diversity or beamforming, requires CSIT;

the open loop diversity, including selection diversity and space time block codes, etc.

does not require CSIT.

Consider the channel model of (2.1), where H = h is a 1×Nt vector. Assuming

perfect CSIT at the transmitter, the beamforming scheme simply transmits a single

data stream, which is weighted by a vector h

||h|| and then transmitted over different

Nt antennas. It can be easily shown that this schemes achieves the capacity of the

MISO channel.

6. Transmitter Side Pre-filtering: Zero-Forcing Beamforming and Ranked Known

Interference

In a single user system, if both the transmitter and the receiver have perfect CSI,

singular value decomposition suggests a natural adaptive transmission scheme that

can achieve capacity. Both transmitter and receiver antennas need to co-operate

in order to implement the multiplications of V and UH for diagonalizing the H [3].

However, in a multi-user broadcast channel, since receivers belonging to different users
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cannot co-operate, only transmitter side pre-filtering can be used. We introduce below

two pre-filtering techniques, namely Zero-Forcing Beamforming (ZFB) and Ranked

Known Interference (RKI) 1 which can be viewed as the dual of ZF and BLAST

MIMO detectors, respectively [16].

Consider a broadcast channel model similar to (3.1) with Nt transmit antennas

at the base and K
′

users, each with a single receive antenna (Nt = 1). In the case of

Nr 6= 1, we can view K
′

= NrK, and still apply the same technique. Let X = Bv,

where B denotes the pre-coding filter and v is a K
′ × 1 vector with the k

′ th
element

denoting the information signal intended for User k
′

.

In ZFB, B = HH(HHH)−1, so that the system is reduced to K
′

independent

parallel Gaussian channels whose power gain can be shown to be [16]

bk′ = 1/(HHH)−1[k
′

, k
′

]. (2.18)

Note that ZFB requires K
′ ≤ Nt for the pseudo-inverse to be available.

Let m = rank(H). Consider a QR-type decomposition H = GQ, where G ∈

CK
′×m is a lower triangular matrix and Q ∈ Cm×Nt has orthonormal rows. In RKI,

B = QH and the channel becomes a set of m scalar sub-channels with interference as

follows:

y
′

k = G[k
′

, k
′

]vk′ +
∑

j<k′

G[k
′

, j]vj + wk′, k
′

= 1, 2, . . . , m. (2.19)

We denote dk′ = |gk′ ,k′ |2 as the power gain of the k
′ th

sub-channel to be used later.

Since v and G are known at the transmitter, the interference in each channel is

non-causally known at the transmitter; therefore, it can be pre-subtracted before

transmission using the “dirty paper” type coding schemes [17, 18]. Since the ordering

1RKI is renamed as “zero-forcing dirty paper coding” in [16]
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of the users affects the total achievable rate, the scheme is referred to as “ranked

known interference”. Note that in this scheme, the base can at most communicate

with Nt mobiles at a given instant, as in ZFB.
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CHAPTER III

ON THE SUM-RATE CAPACITY OF MIMO FADING BROADCAST

CHANNELS

A. Introduction

A challenge in the design of cellular systems originates from the sharing of a com-

mon transmission medium by multiple users. On one hand, the system capacity of

current generation cellular systems is limited by intra-cell and inter-cell interference,

motivating techniques aimed at mitigating or suppressing multi-user interference. On

the other hand, if some knowledge of user channels is available at the transmitter,

adaptive transmission techniques, such as optimal resource allocation and interference

pre-subtraction schemes, can be employed to exploit multi-user diversity and avoid

multi-user interference, which can greatly improve overall system capacity.

Consider a single cell and assume interference from other cells is modelled as

Gaussian noise for mathematical convenience. Additionally, it is assumed the fading

states of all the mobiles are known at the transmitter and all the receivers. Then,

due to the presence of multi-user interference, the optimal power control scheme that

maximizes the sum-rate of all the users in the cell for both uplink and downlink

should consider the fading states of all the user channels. For the case of a single

antenna at both the base and the mobile, the authors in [19] show that the maximum

ergodic sum-rate capacity for uplink is achieved by a “water-filling” scheme across the

mobile users. In other words, at any instance, the base need communicate only with

the mobile enjoying the best received signal-to-noise-ratio (SNR). Similar results hold

true for the downlink channel. If multiple transmit antennas are available at the base,

adaptive antenna array techniques [15] can be employed to maximize the received
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effective SNR of a mobile. The base can still communicate with the single user with

the best effective SNR. If a mobile also has multiple receive antennas, a multiple-

input-multiple-output (MIMO) data link can be established between the mobile and

the base. At a given time, the base can communicate with the user whose MIMO

link has the largest potential rate. This scheme is referred to as single-user-MIMO

(SU-MIMO) in later discussions.

Recently, the authors in [6] showed that the optimal power control scheme that

achieves the ergodic sum-rate capacity of a fading MIMO multiple-access-channel

(MIMO-MAC) is one that may allow multiple mobile users to communicate with the

base. In particular, up to 1
2
N(N +1) mobile users can communicate with the base at

a given instant, where N denotes the number of receive antennas at the base. Can

this result be directly extended to the downlink MIMO-broadcast channel (MIMO-

BC)? To answer this question, the sum-rate capacity of a non-degraded Gaussian

MIMO-BC needs to be evaluated first, whose capacity region is not known [5]. In

[16], an interference pre-subtraction strategy using “dirty paper” type coding [17, 18]

was proposed and shown to achieve the sum-rate capacity in the case of two transmit

antennas and two users each with one receive antenna. Ref. [20] extended the work of

[16] to the more general case of arbitrary number of users and antennas, and showed

that the optimal precoding structure corresponds to a decision feedback equalizer

that decomposes the broadcast channel into a series of single-user channels with

interference pre-subtracted at the transmitter. Ref. [21] established a duality between

the “dirty paper” achievable region for the MIMO-BC and the capacity region of the

MIMO-MAC channel. The authors also showed that the sum-rate capacity of a

Gaussian MIMO-MAC is the same as that of the Gaussian MIMO-BC with equal

total power constraint, which greatly simplifies the evaluation of the sum-capacity

of the MIMO-BC. The duality concept and sum-rate capacity of the MIMO-BC was
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also independently studied in [22]. Applying the duality theory, Ref. [6]’s results

could be extended to the fading MIMO-BC, i.e., the optimal power control scheme

should allow the base to communicate with more than one mobiles simultaneously.

Therefore, SU-MIMO may not be optimal.

In this chapter, we use convex optimization techniques to solve the optimal

power allocation problem, evaluate the sum-rate capacity, and derive upper and lower

bounds on the sum-rate capacity of the fading MIMO-BC. We show that the sum-

rate capacity of the fading MIMO-BC with perfect channel state information at the

transmitter (CSIT) increases with the number of users K, but at an asymptotically

very low rate [23].

In practice, the optimal solution requires large computation and can be hard

to implement. Therefore, we study three sub-optimal multiple transmit antenna

schemes, SU-MIMO, ranked known interference (RKI) [16] and zero-forcing beam-

forming (ZFB) [16, 24], in terms of achievable sum-rate and rate-loss compared to

the optimal scheme [23]. Independent work on the topic has also appeared recently

in [25, 26].

Note that all results in this chapter are based on the assumption that the number

of transmit antennas Nt satisfies Nt � K, which is practically reasonable for cellular

systems. For wireless LAN applications, a recent paper [25] studied the sum-rate

capacity when the number of receive antennas is Nr = 1 and K grows to infinity in

a fixed ratio with Nt (Nt

K
= β > 1), and evaluated the rate of linear growth of the

sum-rate capacity. Finally, we note again that perfect CSIT is a key assumption in

our model. In practice, a time division duplex (TDD) system under slow mobility

conditions could be a good approximation of the model assumed in this correspon-

dence, because in this case the channel states for the downlink could be estimated

accurately from the uplink.
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This chapter is organized as follows: In Section B we discuss the sum-rate ca-

pacity of the fading MIMO-BC and derive an upper-bound to it. In Section C we

introduce three transmit pre-processing schemes based on RKI, ZFB and SU-MIMO

to exploit multi-user diversity. We also derive the performance of a sub-optimal RKI

scheme, which can serve as a lower-bound on the sum-rate capacity. Section D in-

cludes simulation results and Section E concludes.

B. Sum-Rate Capacity of Fading MIMO-BC

Consider a discrete-time fading MIMO-BC with Nt transmit antennas at the base and

K mobile users each with Nr receive antennas. Let x ∈ CNt×1 denote the transmitted

vector, Hk[j, i] the i.i.d. zero-mean flat fading channel gain between transmit antenna

i (1 ≤ i ≤ Nt) and receive antenna j (1 ≤ j ≤ Nr) for User k (1 ≤ k ≤ K) and

wk ∈ CNr×1 the white Gaussian noise vector with wk ∼ N(0, I). Let yk ∈ CNr×1

denote the received vector of the kth user. We have

y = Hx + w, (3.1)

where y = [yT
1 yT

2 · · ·yT
K ]T , H = [HT

1 HT
2 · · ·HT

K]T and w = [wT
1 wT

2 · · ·wT
K ]T ,

respectively.

As shown in [21], the sum-rate capacity of a Gaussian MIMO-BC is equal to the

sum-rate capacity of its dual Gaussian MIMO-MAC channel under the same total

power constraint at the transmitter side. This dual MIMO-MAC channel has Nt

receive antennas at the base-station and K users each with Nr transmit antennas,

with the channel gain between transmit antenna j of User k and receive antenna

i equal to H∗
k[j, i]. Given all users’ CSI available at both the transmitter and the

receiver side, the sum-rate capacity of the dual Gaussian MIMO-MAC based on fixed
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channel state H is [27]

CMAC
sum (H) = max

Sk

log

(∣

∣

∣

∣

∣

K
∑

k=1

HH
k SkHk + I

∣

∣

∣

∣

∣

)

, (3.2)

where Sk is the covariance matrix of the transmitted complex Gaussian signal vector

of User k, subject to the sum power constraint
∑K

k=1 tr(Sk) ≤ P . According to the

duality result of [21], we can evaluate the ergodic sum-rate-capacity of the fading

MIMO-BC as

CBC
sum = EH

{

CMAC
sum (H)

}

, (3.3)

where the expectation is with respect to the joint channel distribution of H. Since

the value of H is known at the transmitter, CBC
sum is achieved by choosing the optimal

Sk for each channel state. The problem of maximizing the ergodic sum-rate capacity

of the fading MIMO-BC can be formulated as

CBC
sum = max

Sk(H)
EH

[

log

(∣

∣

∣

∣

∣

K
∑

k=1

HH
k Sk(H)Hk + I

∣

∣

∣

∣

∣

)]

(3.4)

subject to:

K
∑

k=1

tr(Sk(H)) ≤ P (3.5)

Sk(H) � 0, for k = 1, 2, ..., K. (3.6)

where P is the total available power at the base-station. Note that A � 0 means A is

a positive semi-definite matrix. Here, instead of using a long-term average power con-

straint (E[
∑K

k=1 tr(Sk(H))] ≤ P ) [28], we use a short-term power constraint, which

is a more practical assumption in the cellular downlink. Due to the sum power con-

straint, this problem is different from the one encountered in computing the sum-rate
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capacity of the fading MIMO-MAC [6, 27], where each user has an individual power

constraint (tr(Sk(H)) ≤ Pk for all k). A recent paper [29] extended the iterative

water-filling algorithm of [27] to be used in solving the sum power constrained opti-

mization. Although the proposed algorithm is shown to converge in the simulations,

a rigorous proof on the convergence and the efficiency of the algorithm in the general

case is yet not available. Note that the constrained optimization problem ((3.4) -

(3.6)) is convex with the objective function containing the determinant of a complex

Hermitian matrix. This type of problem can be numerically solved by the interior

point method of [30]. However, we need to transform the complex matrix optimiza-

tion problem into an equivalent real format before using the method in [30], which

can only deal with real matrices. This process is shown in Appendix A.

Here, we develop an upper bound which is more informative. To simplify no-

tation, we denote Sk(H) by Sk. Let hi
k denote the ith column of Hk and ξi =

∑K
k=1 hi

k
H
Skh

i
k, for i = 1, 2, · · · , Nt. Letting Ψ =

∑K
k=1 HH

k SkHk + I, we have

Ψ =



















ξ1 + 1 . . . . . . . . .

. . . ξ2 + 1 . . . . . .

...
...

. . .
...

. . . . . . . . . ξNt
+ 1



















. (3.7)

Let λj
k denote the jth eigenvalue of Sk and λmax

k = maxj λj
k. Letting hmax

i = maxk ||hi
k||2,

we have

ξi ≤
K
∑

k=1

||hi
k||2λmax

k , for i = 1, 2, · · · , Nt, (3.8)

≤ hmax
i

K
∑

k=1

λmax
k , for i = 1, 2, · · · , Nt, (3.9)

where || · || denotes Euclidean norm and the first inequality above is in view of the
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Rayleigh-Ritz theorem [31]. ||hi
k||2 is actually the effective channel power gain if

maximum ratio combining is employed at the receiver side for the link between User

k and base antenna i. The power constraint is equivalent to
∑K

k=1

∑Nr

j=1 λj
k = P (note

that λj
k ≥ 0 for any k and j), which suggests

K
∑

k=1

λmax
k ≤ P. (3.10)

We have the following series of bounds:

CBC
sum ≤ E

{

log

[

Nt
∏

i=1

(ξi + 1)

]}

(3.11)

≤ E

{

log

[

Nt
∏

i=1

(

hmax
i

K
∑

k=1

λmax
k + 1

)]}

(3.12)

≤ NtE [log (1 + hmax
1 P )] , (3.13)

where the first inequality is in view of Ψ being positive definite and Hadamard’s

inequality, the second is in view of (3.9) and the third because the hmax
i are identically

distributed random variables and (3.10). We note that the bound in equation (3.11)

without expectation is true for every fading state, and therefore also true when the

expectation is taken.

Remarks:

• ||hi
k||2 (k = 1, 2, . . . , K) are i.i.d. random variables having central Chi-square

distribution with 2Nr degrees of freedom, denoted as χ2
2Nr

. The corresponding

probability density and cumulative density functions are

f(z) = zNr−1e−z/(Nr − 1)! (3.14)
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and

F (z) = 1 − e−z

Nr−1
∑

i=0

zi

i!
, (3.15)

respectively. The asymptotic cumulative distribution function of hmax
1 (K →

∞), which is the maximum of K i.i.d. χ2
2Nr

distributed random variables, can

be evaluated according to [32, 33] as

F (z) = exp
[

−e−(z−lK)
]

, (3.16)

where lK can be computed by solving the following equation

e−lK

(

Nr−1
∑

i=0

liK
i!

)

=
1

K
. (3.17)

Since lK > 0, we have
∑Nr−1

i=0
liK
i!
≥ 1 with equality iff Nr = 1. Therefore, equa-

tion (3.17) suggests that lK ≥ ln(K), i.e., the channel gain hmax
1 grows, on aver-

age, at least as ln(K). Moreover, a larger Nr results in a larger lK . However, for

any fixed Nr, we always have limK→∞
ln(K)

lK
= limK→∞[1−ln(

∑Nr−1
i=0

liK
i!

)/lK] = 1.

Therefore, as K → ∞, lK increases as ln(K) independent of Nr.

To see how CBC
sum can be affected by K, we use Jensen’s inequality to further

bound the right-hand side of (3.13):

CBC
sum ≤ Nt log [1 + E (hmax

1 )P ] (3.18)

= Nt log
[

1 + P [γ + lK + Ei(1, e
lK)]
]

(3.19)

≈ Nt log [1 + P (γ + lK)] , (3.20)

where

Ei(n, x) =

∫ ∞

1

e−xt/tndt (3.21)
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is the exponential integral and γ = 0.577215... is Euler’s constant. The approx-

imation in (3.20) is quite good since

Ei(1, e
lK ) <

∫ ∞

1

e−elK tdt (3.22)

≤
∫ ∞

1

e−Ktdt =
e−K

K
, (using lK ≥ ln(K)) (3.23)

even for a moderate value of K = 5, e−K

K
= 0.0013 � γ. Therefore, for large

K, we can ignore Ei(1, e
lK ). We also note that the RHS of (3.18) is also a

good approximation of the RHS of (3.13) when K is large as shown in the

simulation results. This is because the asymptotic distribution of hmax
1 is highly

concentrated around lK, so Jensen’s inequality is fairly tight.

• The upper bound of (3.18) suggests that the sum-rate capacity of a fading

MIMO-BC with perfect CSI available at the transmitter is mainly limited by

Nt when Nt � K. The upper bound increases log-likely with Nr, which can be

roughly concluded by the fact that E[||hi
k||2] = Nr. This result is not surprising

since the sum-rate-capacity of the MIMO-BC is bounded by the capacity of the

Nt × (NrK) single user MIMO channel where receivers can cooperate. Then,

according to [1], the ergodic capacity of the single user MIMO channel can

increase linearly only with min{Nt, NrK} = Nt due to Nt � K. However, we

note that as K → ∞ (3.18) is an asymptotically tighter bound than the capacity

of the cooperative MIMO system at high SNR. This is because the capacity of

the single user MIMO system increases log-likely at high SNR as K increases

due to receiver cooperation. In contrast, the proposed upper bound of (3.20)

increases log-likely with lk at high SNR, which in turn increases as ln(K) as

K → ∞. It is well known that the sum-rate capacity increases with increasing

number of users due to “multi-user diversity” when perfect CSIT is available
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[19, 33]. However, the upper bound suggests that the increase is rather slow for

large K (at most of the order of log(ln(K)) rate).

C. Preprocessing to Achieve Multi-user Diversity

As shown in Appendix A, although computing the optimum power allocation for the

dual multiple access channel is possible, it is very complex for large Nt, Nr and K. We

also need to transform the optimal solution into the optimal power allocation scheme

for the downlink broadcast channel by use of the duality relations [21]. Moreover, all

the computations must be repeated for different channel states. Even if the optimum

power allocation is available, implementing it is sometimes non-trivial. According

to a result on optimal transmission for fading MIMO-MAC in [6] and the duality

result in [21], the optimum transmission scheme that maximizes the ergodic sum-rate

capacity of a MIMO-BC could allow the base to transmit up to Nt(Nt + 1)/2 users

simultaneously at a given instant. It is not clear how simultaneous transmission to

more than Nt users by interference pre-cancellation can be implemented efficiently.

Thus, the need for practical, albeit suboptimal, schemes.

In this section, we consider using two transmitter-side preprocessing schemes,

RKI and ZFB, to transmit to a selected group of Nt out of K users to achieve

multiuser diversity for the cellular downlink in Subsection 1. In Subsection 2 we

derive the achievable sum-rate of RKI using another selection scheme called group

user selection whose achievable sum-rate is easy to compute and can serve as a good

lower bound to the sum-rate capacity (as shown by simulations).
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1. Multiuser Diversity in a Fading MIMO-BC

We assume a TDMA-like setting where the channel for each user remains constant

in each time slot, but varies independently in different time slots. In a given time

slot, the channel gains associated with different transmit and receive antenna pairs

are modeled as i.i.d. complex Gaussian random variables. The time-slot is assumed

long enough that the associated capacity of the instantaneous channel is achievable.

Perfect CSI for all users is assumed available at the base-station.

We consider three different schemes: ZFB, RKI and SU-MIMO. In ZFB and RKI,

each mobile user has a single receive antenna. In a given time slot, the base selects the

K
′

= Nt users out of K users who have the largest sum-rate capacity to communicate

with. In the SU-MIMO case, each user has Nt receive antennas. In a given time slot,

the base selects the MIMO-link (Nt×Nt) which has the largest capacity out of all the

users’ MIMO links. In all the schemes, the optimum “water-filling” power allocation

is used across the associated parallel sub-channels.

Denoting the eigenvalues of matrix HHH by {λk}, the power gain associated

with parallel sub-channels for SU-MIMO, RKI and ZFB are {λk}, {dk} and {bk}

(k = 1, 2, . . . , Nt), respectively. To obtain the optimal solution, we could exhaustively

search through all possible combinations of users for the best. This method is referred

to as exhaustive ranking. The number of choices required to be considered in the

exhaustive ranking is CNt

K for ZFB, Nt!C
Nt

K for RKI and K for SU-MIMO. As Nt

increases, the complexity for the RKI and ZFB schemes is high for a relatively large

K (say, K = 40). Therefore, in RKI and ZFB, we consider a sub-optimal, but much

simpler user selection criterion, which requires considering only about NtK choices.

The scheme is as follows: first, we select from K users the one with the largest d1; we

then fix d1 and select from the remaining (K − 1) users the one causing the largest
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d2. We repeat until all Nt users are selected. This scheme is referred to as successive

best user selection in later discussions.

2. A Lower Bound on the Sum-Rate Capacity

The achievable sum-rate by SU-MIMO can be evaluated as the average value of the

maximum of K independent single user MIMO capacities. However, it is hard to the-

oretically evaluate the achievable sum-rate of RKI and ZFB using either exhaustive

ranking or successive best user selection. This is because both user selection cri-

teria introduce dependence among the associated parallel sub-channels, whose joint

distribution is difficult to compute.

We consider the following user selection criterion in RKI so that the resulting

achievable sum-rate can be analytically computed. The sum-rate capacity of the

resulting sub-optimal scheme is then a lower-bound on the sum-rate capacity. Denote

the k
′

-th row of H (see Equation (3.1)) as hk′ , where 1 ≤ k
′ ≤ NrK. hk′ is therefore

the vector channel between the transmitter and the k
′

-th receive antenna. We first

randomly divide all NrK such vectors into Nt non-overlapping groups. Each group

has φi vectors, such that
∑Nt

i=1 φi = NrK. Next, we select from group 1 the vector

that maximizes the first scalar sub-channel power gain d1. Given the (i− 1) selected

vectors, we then select from group i the vector that maximizes di successively until all

Nt vectors are selected. Obviously, di is independent for different i. We can further

show that di has the same distribution as the maximum of φi i.i.d χ2
2(Nt−i+1) random

variables [16, 34], whose CDF is easy to derive. Therefore, the achievable rate of such

a system with uniform power allocation becomes a computable lower bound to the
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sum-rate capacity as shown below:

CBC
sum > RRKI−LB =

Nt
∑

i=1

E

[

log

(

1 +
P

Nt
di

)]

. (3.24)

In practice, one can simply select φi = bKNr

Nt
c for 1 < i ≤ Nt, and φ1 = KNr − (Nt −

1)bKNr

Nt
c. The corresponding achievable sum-rate is denoted as RKI-LB in Figures 2

and 3 in the simulation section that follows.

Using Jensen’s inequality as a good approximation rather than an inequality1

and similar derivations in Section B, as K → ∞, we have

RRKI−LB ≈
Nt
∑

i=1

log

[

1 +
P

Nt
(γ + li

K′ )

]

, (3.25)

where li
K′ can be computed by solving the following equation for x,

e−x

(

Nt−i
∑

j=0

xj

j!

)

=
1

bKNr

Nt
c . (3.26)

Following the same arguments as in Section B, the lower bound increases approx-

imately log-likely with li
K′ , which increases at the order of ln(bKNr

Nt
c) as K → ∞

independent of i and Nt.

D. Simulation Results

We conducted simulations to evaluate the sum-rate capacity and the derived upper

bounds of the fading MIMO-BC, and comparatively studied the proposed practical

schemes in Subsection 1. In all the results, we define SNR as the received SNR at

each receive antenna. Since we have normalized both channel gain and noise, SNR =

P .

1Since we are considering a lower bound on the sum-rate capacity, we need an
inequality in the other direction. The simplified expression obtained is thus not a
lower bound, but an approximation.
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Fig. 1 plots the derived upper-bounds and the actual channel sum-rate capacity

for Nt = 2. For all SNR levels evaluated, doubling of Nr could only result in a capacity

increase of less than 1 bit per transmit antenna. For both Nr = 1 and Nr = 2,

the upper bound is about 0.7 bits per transmit antenna above the actual capacity.

Although not very tight, the upper bounds estimate the trend of the capacity increase

quite well.

Fig. 2 compares the average achievable sum-rate per transmit antenna for the

three schemes in the case of Nt = 2. We also plotted the performance of a scheme

termed single-user beamforming (SU-BF), which transmits only one data stream to

the user enjoying the highest SNR using the closed-loop transmit diversity scheme

[15] in each time slot. We note again that each mobile is assumed to have two receive

antennas in the case of SU-MIMO, but only one receive antenna in all the other

cases. In both ZFB and RKI, exhaustive ranking is used. For both SNR levels, SU-

BF performs the worst, and only achieves a rate slightly large than half of that of RKI

or ZFB at SNR = 30 dB. When the number of users is small, SU-MIMO achieves the

largest sum-rate. This is because SU-MIMO allows both transmitter side and receiver

side co-processing; the corresponding parallel sub-channels with power gain {λk} have

larger capacity than those with {dk} and {bk}; therefore SU-MIMO performs better

than RKI and ZFB which do not allow receiver side co-processing. However, for a large

number of users K, both RKI and ZFB outperform SU-MIMO due to a larger multi-

user diversity gain, although only a single receive antenna is used. This can be simply

explained by the fact that in RKI and ZFB we have significantly more selections than

that in SU-MIMO. Note that in the SU-MIMO scheme, the Nr receive antennas of

a user have to be selected together. In contrast, in ZFB and RKI, selection of users

to communicate is more “flexible”; the associated Nt parallel sub-channels can be all

“good” with higher probability.
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Fig. 1. Upper-bounds on sum-rate capacity for Nt = 2. (“Bxtyr”,“ABxtyr” and

“Cxtyr” denote capacity bound (equation (3.13)), asymptotic bound (equa-

tion (3.20)), and sum-rate capacity with Nt = x and Nr = y, respectively; “sl”

and “dl” denote solid line and dotted line, respectively.
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Another interesting fact is that the performance gap between RKI and ZFB is

very small under our assumption of Nt � K, because in this case the selected Nt user

channels tend to be orthogonal to each other, so the associated power gains dk and bk

tend to be close. The sum-rate capacity (associated with Nr = 1) is almost achieved

by both schemes at large K, which is in contrast to the case studied by [16, 25] where

K grows to infinity in a fixed ratio with Nt (Nt

K
= β > 1). In that case, ZFB only

achieves a large fraction (70% − 80%) of the sum-capacity. Therefore, our setting

of a fixed Nt and a much larger K favors the use of ZFB over RKI in a practical

cellular system, since the latter requires nested lattice codes, whose encoding and

decoding is not easy, to implement interference pre-subtraction [18]. Comparing the

achievable sum-rate of ZFB corresponding to K = 20 and K = 40, we conclude that

doubling the number of receive antennas for each user will not significantly increase

the achievable sum-rate of ZFB if the number of users is relatively large. However,

if each user is equipped with at least Nt receive antennas, zero-forcing receivers can

be used instead to decompose each user’s MIMO channel into Nt scalar sub-channels

as shown in [35]. Note that in this case, only power gains of KNt scalar channels are

fed back to the base for user selection, while ZFB requires the feedback of CSI of K

Nt × Nt MIMO channels in a frequency division duplex (FDD) system. The lower

bound (Equation (3.24)) discussed in Subsection 2 with Nr = 1, denoted as RKI-LB,

is shown to have an asymptotically lower rate than both RKI and ZFB, but is still

very tight in this case.

Fig. 3 compares the average achievable sum-rate per transmit antenna for the

case of Nt = 4. Similar results are observed as in Fig. 2. Note that the upper bound

is much looser as compared with the case of Nt = 2. The required number of users for

both ZFB and RKI to outperform SU-MIMO is much larger than the case of Nt = 2

at the same SNR. It is also more obvious that a larger number of users is required for
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Fig. 3. Achievable sum-rate per transmit antenna (Nt = 4).

ZFB and RKI to outperform SU-MIMO at lower SNR than at high SNR.

Fig. 4 shows the performance of ZFB and RKI using the successive best user

selection for Nt = 2 (denoted as SUB-ZFB and SUB-RKI, respectively). In both cases,

the loss due to simplified selection is negligible compared to exhaustive ranking.

E. Conclusion

We have evaluated the sum-rate capacity of the flat fading MIMO-BC with perfect

CSI at the transmitter, both through exact numerical computation and derived upper

and lower bounds. We show that as the number of users K → ∞, the upper bound

increases log-likely with a parameter which only increases on the order of ln(K).

Therefore, the increase of sum-rate capacity due to multi-user diversity cannot be

above this rate asymptotically. We have also comparatively studied by simulation
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three different MIMO transmission schemes, RKI and ZFB which transmit to a se-

lected set of Nt users each with one receive antenna, and SU-MIMO which transmits

to the “best” single user with Nt receive antennas. For Nt � K, ZFB and RKI are

shown to be able to achieve higher capacity than SU-MIMO due to larger multi-user

diversity caused by more flexible user selection; both RKI and ZFB are shown to be

able to achieve rates close to the sum-rate capacity.
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CHAPTER IV

MINIMUM OUTAGE PROBABILITY TRANSMISSION WITH IMPERFECT

FEEDBACK FOR MISO FADING CHANNELS∗

A. Introduction

In wireless communications, in addition to the ergodic capacity which characterizes

the long-term average achievable rate limit of a fading channel, information outage

capacity [4] is also used since practical codeword lengths are limited due to delay

constraints. Perfect channel state information at the transmitter (CSIT) has been

shown to significantly improve the channel outage capacity for both single and mul-

tiple antenna systems [28, 36]. However, if only imperfect CSIT is available, is the

optimum transmit strategy changed? How is the outage capacity affected? These

questions are usually hard to answer partly due to the difficulty in evaluating the

distribution of the instantaneous mutual information.

Some recent papers proposed some partial CSIT models in the case of multiple

transmit antennas and a single receive antenna and studied optimum transmission in

terms of maximizing the ergodic capacity using these models [37, 38]. Here we are

interested in the models of [38]. It is assumed that the receiver has perfect channel

state information, and feedback some channel information to the transmitter. Based

on the feedback, the transmitter models the channel as shown in the following two

cases:

• Mean Feedback: The channel distribution is modelled at the transmitter as h ∼

N (h̄, σ2
hI), where the mean h̄ could be interpreted as an estimate or prediction

∗ c© 2003 IEEE. Reprinted, with permission, from Y. Xie, C. N. Georghiades
and A. Arapostathis, “Outage probability for MISO fading channels with imperfect
feedback,” Proc. IEEE Globecom, San Francisco, CA, Dec. 2003, pp. 1674-1678.
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of the channel based on feedback and σ2
h as the variance of the estimation or

prediction error. This is the case of slow fading.

• Covariance Feedback: The channel distribution is modelled as h ∼ N (0, Σ).

This models very fast fading, in which the feedback channel fails to provide

an accurate estimate of the current channel value. However, Σ, determined by

the relative geometry of the propagation paths, changes slowly compared to the

fading, thus can be tracked by feedback. Moreover, Σ is practically the same

for both the uplink and the downlink channels in FDD systems and, therefore,

can be estimated from uplink data, obviating the need for feedback [39].

The solution in both cases is determined by solving simple numerical optimiza-

tion problems. When there is a moderate disparity between the strengths of different

paths from the transmitter to the receiver, it is nearly optimal to employ the sim-

ple beamforming strategy that concentrates all the transmit power in the strongest

direction indicated by the feedback. This problem is further studied by [40, 41] for

some special MIMO channels in the case of covariance feedback. The condition for

beamforming to be optimal is studied in [41, 42, 43]. In this chapter, we study the

optimal transmission strategies in terms of minimum outage probability for the case

of mean feedback. In particular, we prove that the optimal transmission directions

in this case are the same as in maximizing the ergodic capacity. Note that a recent

paper [44] also studied the same problem and provided a proof, which, however, seems

to be wrong (See Appendix II of [44], in particular, the derivation associated with

Equation (65) and (66)). We also provide some supplemental results on minimum

outage probability transmission in the case of covariance feedback other than those

presented in [41]. Note that for fast fading, it may not be meaningful in the covariance

feedback case to consider channel outage capacity as defined in [4] and in this chapter
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when a codeword may experience different channel states. However, our results for

this case can be used to illustrate how knowledge of Σ at the transmitter can affect

the outage capacity of a block fading channel [45].

B. Mean Feedback

Consider the discrete model of a multiple-input-single-output (MISO) fading channel

[38],

y = xHh + n, (4.1)

where n ∼ N (0, σ2
n) is circularly symmetric complex Gaussian noise with variance 1

2
σ2

n

per dimension. Let Nt denote the number of transmit antennas. h is an Nt×1 complex

Gaussian channel vector modelled as h ∼ N (h̄, σ2
hI) and x denotes the complex

transmit signal vector. Define S
4
= E[xxH ]. For a given S, since the optimum input

distribution of x that maximizes the conditional mutual information I(x; y|h = h)

for any fixed channel realization h is zero mean complex Gaussian, the problem of

minimal outage transmission can be formulated as

min
S

ε(R) = min
S

Pr

[

log2

(

P

σ2
n

hHSh + 1

)

< R

]

(4.2)

= min
S

Pr
[

hHSh < t
]

(4.3)

subject to: tr(S) = 1, (4.4)

where t
4
= σ2

n

P
(2R − 1); R and P denote the target rate and available power, respec-

tively. Note that here we only consider short-term power control [28] so that P is not

a function of time. Since S is positive semi-definite, we have the eigenvalue decom-

position (EVD) S = UDUH , where D = diag{d1, d2, · · · , dNt
} is a diagonal matrix

with di ≥ 0 indicating the power allocated to transmission directions indicated by
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the corresponding column vectors of unitary matrix U. Letting ν = UHh, we have

ν ∼ N (UHh̄, σ2
hI). The problem can then be expressed as

min
U,D

ε(t) = min
U,D

Pr
[

νHDν < t
]

(4.5)

= min
{di},{ν̄i}

Pr

[

Nt
∑

i=1

di|νi|2 < t

]

(4.6)

subject to:

Nt
∑

i=1

di = 1 (4.7)

and

Nt
∑

i=1

|ν̄i|2 = ξ
4
= ‖h̄‖2, (4.8)

where νi ∼ N(ν̄i, σ
2
h) are independent circularly symmetric complex Gaussian random

variables. Therefore, |νi|2 is non-central Chi-square distributed with 2 degrees of

freedom and a non-centrality parameter |ν̄i|2. To minimize ε(t), we need to find

the optimal values of |ν̄i| and di for i = 1, 2, · · · , Nt, subject to their individual

constraints. We first fix the power allocation to each transmit antenna by fixing the

di and consider the optimization with respect to |ν̄i|. The following Lemma helps

provide a solution.

Lemma 1. Given two real and independent random variables X ∼ N (x̄, 1), Y ∼

N (ȳ, 1), and γ > 1, then

min
x̄,ȳ

Pr(X2 + γ−2Y 2 < q2)

subject to x̄2 + ȳ2 = m2 is attained at x̄ = m, ȳ = 0 for any q.

The proof is given in the Appendix B. Based on this lemma, we have the following

proposition:

Proposition 1. Without loss of generality, assume d1 > di for 2 ≤ i ≤ Nt. Then

the optimal solution of the problem in (4.6) is achieved by |ν̄1|2 = ξ, |ν̄i| = 0 for all



41

i 6= 1.

Proof. Since the distribution of |νi| is not dependent on θ
4
= arctan

(

Im{ν̄i}
Re{ν̄i}

)

, without

loss of generality, we can let νi = ai + jbi for all 1 ≤ i ≤ Nt, where ai ∼ N(|ν̄i|, 1
2
σ2

h)

and bi ∼ N(0, 1
2
σ2

h) are two independent real Gaussian random variables. Therefore,

the optimization over ν̄i can be equivalently transferred to the optimization over {āi}.

Denote the optimal solution as {āopt
i } (i = 1, 2, · · ·Nt) and the associated mini-

mum outage probability as εmin. Assume there exists some k, (k 6= 1), such that āopt
k >

0. Construct Z1 = d1a
2
1+dka

2
k = d1(a

2
1+

dk

d1
a2

k) and Z2 =
∑Nt

i=2,i6=k dia
2
i +
∑Nt

i=1 dib
2
i . Let

the cumulative distribution function (CDF) of Z1 and the probability density function

(PDF) of Z2 be FZ1(x) and fZ2(x), respectively. Applying Lemma 1 to FZ1(x), we

have the following inequality

εmin = Pr[Z1 + Z2 < t] =

∫ t

0

FZ1(t − x)fZ2(x)dx >

∫ t

0

F
′

Z1
(t − x)fZ2(x)dx (4.9)

where F
′

Z1
is the CDF associated with another solution {ā′

i} (i = 1, 2, · · ·Nt), in which

ā
′

k = 0, ā
′

1 =
√

(āopt
1 )2 + (āopt

k )2 and ā
′

i = āi for all i 6= 1, k. Since the solution of {ā′

i}

achieves lower outage probability than εmin, {āopt
i } is not optimal, which contradicts

our assumption. Thus, we have āopt
i = 0 for any i 6= 1 .

When there are more than only d1 which have equal largest value, it can be

easily shown that the choice of ā2
i can be arbitrary within this set, as long as their

sum is equal to ξ. Therefore, allocating ξ to a single ā2
i is still optimal, which in-

dicates that the optimal choice of ν̄ is [β, 0, · · · , 0]H , where β is a complex scalar

such that |β|2 = ξ. Without loss of generality, let β =
√

ξ. Since ν̄ = UHh̄, we

have U =
[

h̄

||h̄|| ,u2 · · · ,uNt

]

, where {ui} (2 ≤ i ≤ Nt) is an arbitrary set of (Nt − 1)

orthonormal vectors that are orthogonal to h̄. Therefore, the optimal transmission

directions to minimize outage probability are the vector channel mean and its orthog-
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onal directions, which are the same as in the case of maximizing the ergodic capacity

[38].

After U is obtained, we still need to determine the optimal power allocation,

D, in the different transmission directions. Here we will briefly analytically study

this problem and will follow up with numerical results in Section D. Let Zi = di|νi|2

in equation (4.6). Given the optimal U as above, Z1 is non-central χ2-distributed

with 2 degrees of freedom, mean d1(σ
2
h + ξ) and a non-centrality parameter d1ξ. The

Zi, 2 ≤ i ≤ Nt, are each central χ2-distributed with 2 degrees of freedom and mean

diσ
2
h. Therefore, the outage probability can be evaluated (after some simple change

of variables) as:

ε(t) = Pr

[

Nt
∑

i=1

Zi < t

]

=

(

ξ

σ2
h

)Nt e
− ξ

σ2
h

∏Nt

i=1 di

∫∫

D
e
− ξ

σ2
h

∑Nt
i=1

zi
di I0

(

2

√

z1

d1

ξ

σ2
h

)

dz1dz2 · · ·dzNt
(4.10)

where

D 4
=
{

(z1, z2, · · · , zNt
) ∈ R

Nt
∣

∣

Nt
∑

i=1

zi < t/ξ, zi ≥ 0 for 1 ≤ i ≤ Nt

}

and I0(·) is the zeroth-order modified Bessel function of the first kind. We define the

ratio SNRfb
4
= ξ

σ2
h

as the feedback SNR. We see that the minimum outage probability

is strongly a function of SNRfb, which is a measure of the accuracy of CSIT. When t is

sufficiently small, I0

(

2
√

z1

d1

ξ
σ2

h

)

and e
− ξ

σ2
h

∑Nt
i=1

zi
di are approximately 1 and the outage

probability is mainly affected by 1
∏Nt

i=1 di

, which is minimized by making the di equal.

Therefore, for sufficiently small t (associated with a very small outage probability and

a low target rate for given transmission power P and noise covariance σ2
n), the optimal

power allocation tends to spread power over different transmission directions. On

the contrary, as t increases, I0

(

2
√

z1

d1

ξ
σ2

h

)

could increase very rapidly as z1 increases.
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Making d1 larger, and thus the rest of the dis smaller reduces I0

(

2
√

z1

d1

ξ
σ2

h

)

. Therefore,

beamforming, which concentrates power in the direction of the channel mean might be

optimal for larger outage probability. e
− ξ

σ2
h

∑Nt
i=1

zi
di as a function of di is relatively hard

to evaluate due to its dependency on zi. So, the above analysis is only approximate,

but well matches the numerical results to be presented later.

C. Covariance Feedback

Given a fixed power allocation scheme, transmitting along the eigenvectors of the

channel covariance matrix Σ is proven to be necessary and sufficient to achieve min-

imum outage probability in the covariance feedback case [41]. Note that this is the

same strategy as maximizing the ergodic capacity as shown in [38]. Here, to make our

presentation complete, we provide a slightly different, but much more concise proof

using an inequality from [40].

Proposition 2. Let h ∼ N (0, Σ), the EVD of Σ be Σ = UΣDΣUH
Σ , and tr[Σ] = Nt

1.

Choosing S = UΣDSU
H
Σ , where DS is a diagonal matrix, is necessary and sufficient

for minimizing the outage probability.

Proof. We first assume Σ 6= I. Letting S = UΣΨUH
Σ , we need to show that Ψ is

diagonal in order to minimize outage probability. As in the last section, minimizing

the outage probability at a given rate R is equivalent to minimizing

ε(t) = Pr[hHSh < t] (4.11)

= Pr[νH(DΣ
1/2ΨDΣ

1/2)ν < t], (4.12)

subject to: tr(S) = tr(Ψ) = 1, (4.13)

1If tr[Σ] = Ntσ
2, we can always normalize the channel by absorbing σ2 into the

transmit power P
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where ν
4
= D

−1/2
Σ UH

Σ h so that ν is white with distribution of N (0, I). Let Π
4
=

D
1/2
Σ ΨD

1/2
Σ with EVD Π = UΠDΠUH

Π . Then, the minimum outage probability prob-

lem is rewritten as

min
Ψ

ε(t) = min
Π

Pr
[

νHΠν < t
]

, (4.14)

subject to: tr
(

D
−1/2
Σ ΠD

−1/2
Σ

)

= tr (Ψ) = 1. (4.15)

Letting ν ′ 4
= UΠ

Hν, we can further transform (4.14) to:

min
Ψ

ε(R) = min
Π

Pr
[

ν ′HDΠν ′ < t
]

. (4.16)

It is shown in [40] that

tr
(

DΣ
−1/2DΠD

−1/2
Σ

)

≤ tr
(

D
−1/2
Σ ΠD

−1/2
Σ

)

= 1. (4.17)

Comparing equations (4.14) and (4.16), since ν ′ and ν have the same distribution, the

minimum outage probability achieved by the optimal Π can always be achieved by a

diagonal matrix DΠ with at least the same or even more stringent power constraint.

Therefore, choosing Π as diagonal is sufficient to minimize outage probability. Equiv-

alently, this means Ψ is diagonal since Π
4
= D

1/2
Σ ΨD

1/2
Σ . Necessity is easily proven

using the fact that the first equality in equation (4.17) is satisfied if and only if Π is

diagonal. For the trivial case of Σ = I, because any set of orthonormal vectors can

be used as beamforming directions, the theorem is easily proved.

Next, it remains to determine the optimal power allocation in different trans-

mission directions, i.e., the diagonal entries of DS

4
= diag{p1, p2, . . . , pNt

}. Let
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DΣ
4
= diag{λ1, λ2, . . . , λNt

}. The optimal power allocation problem is defined as:

min
{pi}

ε(t) = min
{pi}

Pr

[

Nt
∑

i=1

|νi|2λipi < t

]

, (4.18)

subject to:
Nt
∑

i=1

λi = Nt and
Nt
∑

i=1

pi = 1, (4.19)

where |νi|2 is exponentially distributed. Although tedious, ε(t) in this case can be

computed in a closed form expression. Therefore, we could solve the constrained opti-

mization problem of equation (4.18) numerically. However, the optimization problem

is not convex, which makes it difficult to find the global optimal {pi}. Here, we

coarsely identify the conditions when the optimum strategy is to spread power over

different directions and when to concentrate all the power in a single direction using

majority theory [46], to which we give a brief introduction next.

Majorization: Given two real positive vectors a,b ∈ Rn having equal summation of

all entries. a is majorized by b, denoted as a ≺ b, if the sum of the k smallest entries

of a is greater than or equal to the same sum for b for all k = 1, 2, · · · , n. This is a

mathematical description of the vague concept of a is “less spread out” than b.

Schur-convexity: A real-valued function φ defined on a set of Rn is Schur-convex,

if a ≺ b =⇒ φ(a) ≤ φ(b). φ is Schur-concave, if a ≺ b =⇒ φ(a) ≥ φ(b). Schur-

convexity and Schur-concavity can be viewed as extensions of the increase or decrease

functions defined on R.

Now we consider two special cases for the problem in (4.18):

Case 1: Nt = 2. Then,

ε(R) =

∫ t
(1−p1)λ2

0

[

1 − exp

(

−t − xλ2(1 − p1)

λ1p1

)]

e−xdx (4.20)

= 1 − λ2(1 − p1)

λ2(1 − p1) − λ1p1

e
− t

(1−p1)λ2 +
λ1p1

λ2(1 − p1) − λ1p1

e
− t

p1λ1 . (4.21)
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In particular, when λ1 = λ2, we can show that ε(R) is a Schur-convex function when

t < t0, and Schur-concave function when t ≥ t0 where the constant t0 = 1.2564 . . . is

a solution to the equation e−t − (1 + 2t)e−2t = 0. Therefore, if R ≤ log
(

1 + t0P
σ2

n

)

, we

need to spread power equally on two orthogonal transmission directions to minimize

outage probability; otherwise, we should concentrate on a single transmission direc-

tion to minimize outage.

Case 2: Σ = I, and Nt ≥ 2.

Consider optimizing p1, p2 for some fixed power allocation p̌3, · · · , p̌Nt
on the

remaining directions,

min
{p1,p2}

ε(t′, p1, p2) = min
{p1,p2}

Pr
[

|ν|21p1 + |ν|22p2 < t′
]

, (4.22)

where t′
4
= t −∑Nt

i=3 |ν|2i p̌i. As a function of pi for all i, ε(t, p1, p2, p3, · · · , pNt
) is

defined symmetrically for all pi. Since ε(t
′

, p1, p2) is a Schur-concave function for

vector [p1, p2] if t′ ≥ t0 and a Schur-convex function if t′ < t0, we can conclude that

ε(t
′

, p1, p2, p3, · · · , pNt
) is Schur-convex for some small enough t or Schur-concave for

some large enough t according to Theorem 3.A.5 of [46]2. Therefore, for a given

channel received SNR SNRrv
4
= P

σ2
n
, the optimal power allocation scheme tends to

spread power when target rate R is low, and concentrate power when R is large.

However, in the latter case, the outage probability could be very large (say > 0.5), and

not of practical interest. So, spreading power over different transmission directions

is not necessarily optimum for minimizing outage probability when Σ = I. Through

numerical results, we can also show that when Σ 6= I, the optimal power allocation

schemes still tend to spread power when outage probability is low and concentrate

2Let f(x) be symmetric in each element of x, where x = [x1, x2, ...xN ]. Theorem
3.A.5 states that to prove f(x) is Schur-convex in x, it is sufficient to show f(x)
is Schur-convex in a vector composed of any two elements of x by fixing the other
elements.
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power otherwise.

D. Numerical Results

Figures 5 and 6 plot the achievable minimum outage probability of mean-feedback for

different rates and SNRfb, for a fixed average received SNR, SNRrv
4
=

P (ξ+σ2
h
)

σ2
n

= 8 dB.

We can see outage probability decreases exponentially as the target rate decreases.

SNRfb affects outage capacity significantly, especially at low outage probability. Note

here that the capacity of an AWGN channel at SNR = 8 dB is about C8dB = 2.87

bits/channel-use. To achieve 1% outage, the required SNRfb for 1.15 bits/channel-use

(40% of C8dB) and for 1.72 bits/channel-use (60% of C8dB) is about 9 dB and 12 dB,

respectively. Figure 7 compares the optimal power allocation over different transmis-

sion directions for mean-feedback. When “good” channel feedback is available, the

optimal solution tends to beamform to the direction indicated by the mean with all

available power. On the contrary, “bad” channel feedback may require multiple beams

to be transmitted. Moreover, at higher rate or larger outage probability, beamform-

ing to the direction indicated by the channel mean with all power is optimal. Figure

8 shows the minimum outage probability achievable by covariance feedback with the

optimal power and the equal power allocation schemes for Nt = 2. Let the EVD of

Σ be Σ = UΣDΣUΣ
H and λ1 and λ2 (λ1 + λ2 = 2) be the two diagonal elements

of DΣ. Even when λ1 � λ2, which indicates high spatial correlation between trans-

mit antennas, optimal power allocation cannot significantly reduce outage probability

compared to the scheme in which power is uniformly allocated to both orthogonal

directions.
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E. Conclusion

We have studied the problem of minimum outage probability transmission for a MISO

fading channel in the cases of mean feedback and covariance feedback. In the case

of mean feedback, the optimal transmission strategy is proven to be transmitting

several independent data streams in the direction of the channel mean vector and its

orthogonal directions. When SNRfb is high, the optimal strategy tends to beamform

to the direction indicated by the channel mean. The quality of the channel informa-

tion, measured by SNRfb affects the outage probability significantly. For both mean

and covariance feedback, we show that the optimum power allocation scheme which

minimizes outage probability is closely related to the target rate. It is more desirable

to spread the power over all transmission directions than beamforming to a single

direction for sufficiently small target rates.
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CHAPTER V

OPTIMAL BANDWIDTH ALLOCATION FOR THE DATA AND FEEDBACK

CHANNELS IN MISO-FDD SYSTEMS

A. Introduction

Perfect channel state information at the transmitter (CSIT) has been shown to im-

prove significantly the performance of many wireless systems. For example, at high

SNR, the ergodic capacity of a Nt ×1 multi-input, single-output (MISO) system with

perfect CSIT is approximately log2(Nt) bits larger than that of the same system with

only perfect CSI at the receiver [1]. Perfect CSIT also significantly improves the chan-

nel outage capacity for both single and multiple antenna systems [28, 36]. However,

perfect CSIT can be too optimistic in practice. In frequency division duplex (FDD)

systems, CSI is usually estimated by the receiver and then fed back to the transmitter

through a reliable link, which inevitably requires additional bandwidth and power.

If one views bandwidth and power as common resources that can be shared by the

data and feedback channels, the question is whether the increased capacity is worth

the penalty paid for it. A recent paper studied the problem of how much training is

needed to estimate CSI at the receiver in a MIMO system [47]. To our knowledge,

as far as CSIT is concerned, most literature simply ignores the feedback penalty and

considers the optimization of the data transmission and channel feedback separately.

In this chapter, we study the problem of optimal bandwidth allocation between the

data channel and the feedback channel that maximizes the average throughput of the

data channel in a MISO system. Our solution uses the beamforming scheme [37, 48]

as the performance metric of the data channel and considers two models of the partial

CSIT: the noisy CSIT that models CSI as jointly Gaussian distributed with the ac-
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tual channel state, and the quantized CSIT. In the first model, we use distortion-rate

theory to relate the CSIT accuracy to the feedback bandwidth. In the second model,

we propose a lower bound on the capacity of the data channel based on the ensemble

of a set of random quantization schemes. In both cases, we can explicitly formulate

the achievable rate using a beamforming scheme in the data channel as a function of

the number of feedback bits, and therefore solve for the optimal bandwidth allocated

to the feedback channel.

In the rest of this chapter, Section B introduces the FDD system model assumed,

including the MISO fading data channel, the error-free feedback channel and the

assumption on channel prediction. Section C formulates the problem of joint optimal

bandwidth allocation for the two models of partial CSIT introduced above. Section

D provides numerical results and Section E concludes.

B. The Channel Model

Consider a FDD system consisting of a forward data channel and a CSI-feedback

channel, each using a portion of the total bandwidth, Wtot Hz. We also assume that

Wd and Wf are well separated, therefore the data channel and the feedback channel

are uncorrelated. Assuming both channels fully use Wtot with ideal pulse shaping, we

have

Wtot = Wd + Wf , (5.1)

where Wd and Wf denote the bandwidths allocated to the data channel and the

feedback channel, respectively. Assuming these are passband bandwidths, this im-

plies ISI-free baud-rates for the data and feedback links equal to the corresponding

bandwidths. Thus, in the sequel, we will also refer to Wd and Wf as the baud-rates
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of the data and feedback channel, respectively. We describe the model of the data

channel and the model of channel prediction and CSI feedback in the following two

sub-sections.

1. Data Channel

After matched-filtering and sampling at the symbol rate at the receiver, we assume

an Nt × 1 discrete MISO frequency flat fading model for the data channel as:

y(k) = x(k)Hh(k) + w(k), (5.2)

where Nt is the number of transmit antennas, w(k) ∼ N(0, σ2
n) is circularly symmetric

complex white Gaussian noise and h(k) is the Nt × 1 zero-mean circularly symmetric

complex Gaussian channel vector at time k; x(k) is an Nt×1 complex vector denoting

the transmit signal vector at time k, with power constraint tr(Σx) ≤ P , where Σx
4
=

E[x(k)x(k)H ]. Note that we assume P is a constant which does not adapt to the

channel h. Although water-filling type optimal power control could achieve a higher

average throughput than the fixed-power scheme, the gain in our case is insignificant

at the considered SNR levels [4]. We assume there is no spatial correlation between

antennas, which implies Σh
4
= E[h(k)h(k)H ] = σ2

hI. Denoting the ith element of h(k)

as hi(k) and the maximum Doppler frequency as fd, we assume that {hi(k)} over

the discrete time domain is stationary with its associated continuous time process

bandlimited to fd, and has the same power spectrum for all i.

Based on the feedback, the transmitter establishes some, but not perfect CSI

and uses it to optimize transmission for the data channel. However, the optimal

scheme which achieves the ergodic capacity with partial CSIT is generally unknown.

Even though capacity can be computed numerically in some special cases, it cannot

be expressed explicitly to allow joint optimization of the data channel and feedback
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channel. In the sequel we assume a simplified system where a beamforming scheme

(to a single spatial direction) is used for the data channel [15, 48]. Denoting the unit-

energy weight vector at time k as u(k), the transmitted signal can be expressed as

x(k) = s(k) ·u(k), where s(k) is a scalar signal determined by the source information

bits with E[s∗(k)s(k)] = P . Therefore, the maximum average achievable rate per

channel use, Cb, associated with this beamforming scheme is

Cb = E

[

log2

(

1 +
P |uH(k)h(k)|2

σ2
n

)]

, (5.3)

where the expectation is over the joint distribution of h(k) and u(k). Again, we note

that (5.3) may not yield the capacity since the beamforming scheme in this case may

not be optimal [37]. For the case when the partial CSI and the actual channel state are

jointly Gaussian, [48] has shown that transmitting to multiple orthogonal directions

rather than beamforming to one direction may be required to achieve capacity in

some cases. However, the capacity loss due to beamforming is usually small with

reasonably accurate CSIT. We will also show later that a significant portion of the

capacity of the perfect CSIT can be achieved by a beamforming scheme with a few

bits of feedback per transmit antenna, without the Gaussian assumption. Therefore,

the optimal fraction of bandwidth allocated to the feedback channel derived based

on the beamforming scheme should be close to that derived based on the capacity

achieving scheme.

2. Channel Prediction and CSI Feedback

To distinguish from the discrete time index k of the forward data channel, we use n to

denote the discrete time index of the feedback channel. Note that k and n correspond

to different baud-rates (bandwidths) Wd and Wf , respectively. We assume that the

receiver has perfect causal CSI about h(k) and the feedback channel is error-free
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with a capacity of K bits/channel-use. We use a quantization codebook of B bits to

describe the channel state at a given time and assume that the transmitter cannot

update the CSI until it receives all B bits. Obviously, for a given capacity K, we

should choose B = τK to fully utilize the channel capacity, where τ ≥ 1 is an integer

denoting the number of channel uses. In the case of τ > 1, the quantization bits are

fed back by τ channel-uses.

Since feedback delay is inevitable, the feedback CSI may become outdated in a

fast fading scenario, and could significantly degrade system performance if it is used

directly to adapt channel transmission at time n. To improve the accuracy of the CSI,

channel prediction based on past observations can be used either at the transmitter

or/and at the receiver according to the requirements of different applications. Here,

we consider a simple prediction scheme as follows. At time n−τ , the receiver predicts

h(n) using the past CSI up to n− τ , quantizes it and feeds it back to the transmitter

through τ channel-uses. Thus, at time n, the transmitter receives the quantized

version of the predicted h(n) and uses it to select an optimal beamforming vector,

which remains unchanged until an update of CSI is received at time n + τ . So,

the channel information is actually updated at the rate of
Wf

τ
. If

Wf

τ
> 2fd, the

discrete fading process associated with the sampling rate of
Wf

τ
becomes a band-

limited process; thus, perfect prediction with arbitrary small mean-square error is

possible if the prediction filter’s energy and length are unconstrained [49]. Therefore,

in the subsequent discussion, we assume Wf = 2γτfd, where γ is a scaling factor,

whose value is greater than 1 and depends on practical system considerations. With

this choice of Wf , we further assume h(n) can be perfectly predicted at time (n− τ)

at the receiver. The introduction of γ makes our prediction model more flexible and

practical. A larger value of γ could translate into a less stringent requirement on

the prediction filter design in practical systems. Since the data rate is usually much
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larger than the feedback rate, multiple data symbols could be transmitted using the

same beamforming vector. A relatively large value of γ also ensures that the selected

beamforming vector remains optimal for the data channel before it is updated.

C. Optimal Bandwidth Allocation

Based on the channel model described above, we now study the problem of optimal

bandwidth allocation in terms of maximizing the average throughput for the data

channel with a beamforming scheme. Assuming Wtot, fd, K and γ are fixed param-

eters of the system, we can compute the required feedback bandwidth as a function

of B as:

Wf =
2γfndB

K
Wtot. (5.4)

where fnd
4
= fd

Wtot
is the normalized maximum Doppler frequency with respect to the

total available bandwidth. Let Rd (bits/second) denote the average throughput of the

data channel. Since Wtot can be arbitrary, we are only interested in the normalized

rate Cd
4
= Rd

Wtot
, which is the average achievable rate of the data link per unit total

bandwidth and can be expressed as

Cd(B) =

(

1 − Wf

Wtot

)

Cb(B) = (1 − ηB)Cb(B), (5.5)

where η
4
= 2γfnd

K
and Cb(B) is the maximum average achievable rate in bits/channel-

use using beamforming, as a function of B. Large values of B improve the accuracy

of CSIT, but also reduce the available bandwidth for data transmission. Thus, there

is an optimum value of B that maximizes Cd.

In the rest of this section we will explicitly derive Cb(B) and solve for the optimal

number of feedback bits, Bopt, using two different models of partial CSIT as proposed
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in [37]. The optimal portion of bandwidth allocated to the feedback channel, αopt,

can then be computed as αopt = ηBopt.

1. Noisy Side Information

In this model, the transmitter uses the feedback bits to establish an estimate ĥ(n)

of h(n), which is assumed jointly Gaussian distributed with the actual channel state

h(n). Assuming ĥi(n) is i.i.d. for different i (1 ≤ i ≤ Nt), we use σ2
ĥ

to denote

the variance of each ĥi(n), and ρ
4
= E[hi(n)ĥi(n)∗]/σĥσh to denote the correlation

between hi(n) and ĥi(n). Conditioned on ĥi(n), the transmitter can model the ith

channel as hi(n) ∼ N(σh

σ
ĥ

ρĥi(n), σ2
ε ), where σ2

ε is the variance of the estimation error

and satisfies σ2
ε = σ2

h(1 − |ρ|2).

In the following discussion, we will simplify the notation by ignoring the time

index. Given ĥ, the beamforming vector u is chosen as u = ĥ

||ĥ|| , where || · || denotes

Euclidean norm. Conditioned on ĥ, the composite gain t
4
= uHh due to beamforming

and channel fading is circularly complex Gaussian distributed as t ∼ N
(

σh

σ
ĥ

ρ||ĥ||, σ2
ε

)

.

Therefore, the average achievable rate (bits/channel use) using beamforming and

assuming Gaussian input is

Cb(B) = E

[

log2

(

1 + |t|2 P

σ2
n

)]

(5.6)

= E

{

E

[

log2

(

1 + λ
Pσ2

h

σ2
n

)

| ĥ
]}

=

∫ ∞

0

p(κ)

∫ ∞

0

log2

(

1 + λ
Pσ2

h

σ2
n

)

p(λ|κ)dλdκ (5.7)

where λ
4
= |t|2

σ2
h

denotes the normalized composite power channel gain and is a non-

central χ2-distributed random variable with 2 degrees of freedom, conditioned on

ĥ. The non-centrality parameter κ
4
= ||ρĥ||2

σ2
ĥ

itself is a central χ2-distributed random

variable with 2Nt degrees of freedom. p(κ) and p(λ|κ) denote the probability density
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function (PDF) of κ and the conditional PDF of λ given κ, respectively. Here we can

see that more accurate CSIT (equivalently larger ρ) helps to change the distribution

of the normalized composite channel power gain λ to one with a larger mean. For

the extreme cases, when there is no CSIT, λ is central χ2-distributed with 2 degrees

of freedom and a mean equal to E[λ] = 1; when there is perfect CSIT, λ is central

χ2-distributed with 2Nt degrees of freedom and a mean of E[λ] = Nt.

Now, we need to relate ĥ to the number of feedback bits B. It is natural to define

the mean-squared-error (MSE) 1
Nt

E[||h − ĥ||2] as the distortion measure due to the

Gaussian assumption introduced above. Since h is complex Gaussian distributed, we

can use the distortion-rate function to bound the mean-squared-error as [5][37]

σ2
ε = σ2

h(1 − |ρ|2) ≥ D(R) = σ2
h2

−B/Nt. (5.8)

Note that the lower bound is achievable only when Nt goes to infinity. However, we

simply use the lower bound here to relate CSIT to B even when Nt is small. It is

easy to show that ρ as a function of B in this case satisfies

|ρ(B)|2 = 1 − 2−B/Nt. (5.9)

Note that we only use a beamforming scheme with a fixed power over time at the

transmitter, which only requires knowledge of the vector channel direction; thus, the

feedback information regarding the vector channel norm, ||h||, is not utilized by the

scheme.

Combining (5.5), (5.6) and (5.9), the problem of maximizing Cd(B) in (5.5) with

respect to B can then be formalized as follows:

max
B

Cd(B) = max
B

(1 − ηB)

∫ ∞

0

p(κ; B)

∫ ∞

0

log2(1 + λ
Pσ2

h

σ2
n

)p(λ; B|κ)dλdκ (5.10)

where we have included explicitly in the arguments of the density functions above
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their dependence on B (through the normalized correlation |ρ(B)|.)

2. Quantized Side Information

The optimization problem in (5.10) assumes a system that achieves the distortion-

rate bound on the feedback channel. We now consider a somewhat more practical

case when the CSIT is represented by B quantization bits of the actual channel state

h; but in contrast to the previous model, we do not assume the CSIT and the actual

channel state are jointly Gaussian. We assume a quantization codebook that consists

of {u1,u2, . . . ,uN}, where N = 2B is the size of the codebook. Based on a maximum

channel throughput criterion, the quantizer divides the space of channel vectors h

into N regions {Φ1, Φ1, ..., ΦN} defined as:

Φi
4
=

{

h : log2

(

1 +
P ||h||2

σ2
n

|vH
h ui|2

)

> log2

(

1 +
P ||h||2

σ2
n

|vH
h uj|2

)

, ∀ j 6= i

}

(5.11)

where vh
4
= h

||h|| is a unit vector in the channel direction. Since power adaptation

to ||h||2 is not allowed here, quantization of vh instead of h is enough. If channel

state h belongs to region Φi, then ui is selected as the beamforming vector and

communicated to the transmitter by transmitting its corresponding B bits through

the feedback channel. Since the logarithm is a monotonic function, the quantization

process can be simplified as choosing the output point ui that maximizes |vH
h ui|.

This will be referred to as the maximum absolute inner-product criterion in later

discussions.

The optimal quantization scheme for a given N in general is not known. The

Lloyd-Max algorithm can be used to find a locally optimal set of {Φi} and its cor-

responding {ui} numerically [5, 37]. However, to perform a joint design, we need

to explicitly relate the capacity of the data channel to the size of the quantization
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codebook (we used the distortion-rate function in the previous case to do this). To

overcome this problem, we consider here the average rate achievable by the ensemble

of a set of randomly selected quantization schemes. The obtained average data rate

can serve as both a lower bound to the capacity and a performance benchmark for

practical quantization schemes because there exists at least one practical quantization

scheme which can achieve a rate the same as or higher than the ensemble average rate.

We refer to this lower bound as the random quantization lower bound in subsequent

discussions.

We first introduce some notation and preliminary results to be used later. We

define the unit hypersphere Ω in the Nt > 1 dimensional complex vector space CNt

as Ω
4
= {v : ||v||2 = 1,v ∈ CNt}. The surface area of Ω can be computed as [50, 51]:

A(Ω) =
2πNt

(Nt − 1)!
. (5.12)

We say v and v′ are of square norm of inner product (SNIP) r if |vHv′|2 = r. For a

given v, we define the surface of a spherical cap as Ψ(v, r)
4
= {v′ : |vHv′|2 ≥ r,v′ ∈

Ω}, where 0 ≤ r ≤ 1. Denoting the area of Ψ(v, r) as A(r), which is independent of

the center point v, we have [50]:

A(r) =
2πNt(1 − r)Nt−1

(Nt − 1)!
. (5.13)

It is easy to show that the channel direction vh is uniformly distributed on Ω. The

random vector quantizer can be viewed as a mapping of the unit hypersphere Ω into a

set of N output unit vectors which are chosen independently according to the uniform

distribution over Ω. Therefore, for a given vh, the probability of an output point being

within Ψ(vh, r), defined as P (r), can be computed as:

P (r) =
A(r)

A(Ω)
= (1 − r)Nt−1. (5.14)
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For the entire quantizer, the probability that no output point is within Ψ(vh, r), or

the probability that the maximum SNIP is less than r is (1−P (r))N . In other words,

the cumulative distribution function (CDF) of z , maxi |vH
h ui|2 is

F (z) =
(

1 − (1 − z)Nt−1
)N

, 0 ≤ z ≤ 1. (5.15)

Defining the probability density function (PDF) f(z) as the derivative of F (z), we

can evaluate the average achievable rate of the beamforming scheme over both the

distribution of channel state and the ensemble of the uniformly distributed random

N = 2B level quantizers (after integration by parts) as:

Cb(B) =

∫ ∞

0

f||h||2(t)

∫ 1

0

log2

(

1 +
Pt

σ2
n

z

)

f(z)dzdt

=

∫ ∞

0

f||h||2(t) log2

(

1 +
Pt

σ2
n

)

dt − log2(e)

∫ ∞

0

f||h||2(t)

∫ 1

0

Pt

σ2
n + Ptz

F (z)dzdt

(5.16)

where f||h||2(t) denotes the PDF of ||h||2, which is central χ2-distributed with 2Nt

degrees of freedom. Note that the first term on the RHS of equation (5.16) is the

ergodic capacity with perfect CSIT. The second term, which is an increasing function

of Nt and a decreasing function of N (and thus of B), can be viewed as the average

capacity loss due to non-perfect CSIT. In particular, at high SNR, the capacity loss in

the case of Nt = 2 can be easily shown to be log2(e)
N

. Substituting Cb(B) into equation

(5.5), we can formulate the joint optimization problem for this case.

D. Simulation Results

We first evaluate the random quantization lower bound in (5.16) for different Nt

at SNR of 10 dB in Fig. 9, where SNR is defined as
Pσ2

h

σ2
n

. The achievable rate is

normalized by the capacity of perfect CSIT. We show that 95% of the capacity of a
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Fig. 9. The random quantization lower bound to the achievable rate for the beam-

forming scheme vs B
Nt

for different Nt. Channel SNR, defined as
Pσ2

h

σ2
n

, is fixed

at 10 dB.

perfect CSIT MISO system of Nt = 2, 4, 6, 8 can be achieved by a scheme using two

bits of feedback per transmit antenna at SNR of 10 dB. At a given B
Nt

, the largest

portion of the capacity with perfect CSIT is achieved when Nt = 2. The performance

tends to change little for Nt ≥ 4.

Next, we compare the derived random quantization lower bound with practical

quantization schemes in the interesting case of Nt = 4. Since we could not find

practical quantization schemes for a wide range of feedback bits, B, in the current

literature, we constructed the following three classes of schemes denoted as S1, S2

and S3, respectively, for different B.

• S1: Assume B is a multiple of 3. Normalize h by h1, and uniformly quantize
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the phases of the complex scalars h2/h1, h3/h1 and h4/h1 each with B/3 bits,

respectively. The result of the quantization will be of the form 1
2
[1, ejθ1, ejθ2, ejθ3],

where θ1, θ2 and θ3 denote the independently quantized phases of h2/h1, h3/h1

and h4/h1, respectively.

• S2: Assume B = 4, 6, 8, 10. Two out of B bits are used to indicate the removal

of the element in h with the least power. The remaining three elements form

a new 3 × 1 vector h
′

, which is then normalized to h
′

h
′

1

. Uniformly quantize the

phase of h
′

2/h
′

1 and h
′

3/h
′

1 independently each with (B − 2)/2 bits. This scheme

is motivated by the idea that one of the four paths will most probably fade with

power significantly lower than the rest. So this weakest path should not be

used. If the first element is removed, the quantization result will be something

like 1√
3
[0, 1, ejθ1, ejθ2], where θ1 and θ2 denote the quantized phases of h

′

2/h
′

1 and

h
′

3/h
′

1, respectively.

• S3: In the case of B = 2, choose any set of orthonormal bases to form the

codebook. In the case of B > 2, randomly generate a set of 2B−2 4 × 4 unitary

matrices Ui, i = 1, 2, ..., 2B−2. The codebook consists of all the columns of the

matrix U
4
= [U1 U2 ...U2B−2 ] as the quantizer outputs. The maximum absolute

inner product criterion is used to select the quantization output.

Fig. 10 plots the achievable rates of the three classes of schemes and the random

quantization lower bound for Nt = 4 at SNR of 10 dB. Here in the cases of B
Nt

= 0.75,

B
Nt

= 1 and B
Nt

= 2 in class S3, the achievable rate is associated with the best of

one hundred randomly generated codebooks. Except for the scheme of B
Nt

= 0.75

in S1, all the other schemes in class S1 and class S2 cannot reach the performance

of the random quantization lower bound. All schemes in class S3 outperform the

random quantization lower bound. This is because the maximum norm of inner
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Fig. 10. Achievable rates of practical quantization schemes for Nt = 4 and SNR=10dB.

product quantization criterion is optimal in terms of maximizing the rate while the

independent quantization of each element of h is sub-optimal. However, we should

note that the encoding complexity of the schemes of class S3 increases exponentially

with B. In addition, as B increases, the gain of the schemes of S3 over the random

quantization lower bound decreases as shown in the figure. It can also be easily shown

that the scheme of B
Nt

= 0.5 in class S3 is optimal among all quantization schemes

of B = 2 for Nt = 4, and equivalent to selection diversity. Finally, we note that

the achievable rates plotted in both Fig. 9 and Fig. 10 do not consider the cost of

feedback.

The joint design problem and its optimal performance is demonstrated in Fig.

11, Fig. 12 and Fig. 13. Fig. 11 plots the maximum achievable data rate per unit

total bandwidth, C∗
d , vs η

4
= 2γfnd

K
with the value of C∗

d normalized by the channel
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capacity with perfect CSIT. Fig. 12 plots the optimal fraction of total bandwidth

allocated to the feedback channel for different η to achieve the corresponding rate in

Fig. 11. In both figures, we assume Nt = 4. The random quantization lower bound is

used in evaluating the achievable rate of the data channel. These two figures provide

information on how to jointly design the FDD MISO system to maximize the average

throughput. For example, if uncoded 4-PSK with maximum ratio combining of the

Nt antennas is assumed in the feedback channel, a bit-error rate of about 10−3 can be

achieved at an SNR level of 10 dB [52]. (In this case, the feedback channel is a SIMO

fading channel). Therefore, we can reasonably assume K = 2. If we further assume

γ = 4 for the prediction assumption to be valid, we have η = 0.04 if the normalized

Doppler frequency fnd = 0.01. From Fig. 11, we can achieve a rate of about 74% of

the capacity of perfect CSIT at SNR of 10 dB. Fig. 12 suggests that about 14.5% of

the total bandwidth should be allocated to the feedback channel to achieve this rate.

As SNR increases, a larger portion of the capacity of CSIT can be achieved with a

smaller portion of the bandwidth allocated to the feedback channel for the same η. A

rate larger than the capacity of no-CSIT (only CSI at the receiver) can be achieved

for a wide range of η, which may translate into a wide range of Doppler frequencies

for a fixed γ. For example, assume γ = 4, K = 2 and SNR of 10 dB. According to

Fig. 11, η ≤ 0.09 is required to achieve a rate larger than the capacity of no-CSIT.

This is equivalent to fnd = ηK
2γ

< 0.09
γ

= 0.0225. If Wtot = 100 kHz, the tolerable

maximum Doppler frequency can be as high as 2.25 kHz.

Fig. 13 compares the achievable rates assuming the two different partial CSIT

models vs the number of feedback bits per transmit antenna, B
Nt

. We assume Nt = 32

(the rate distortion bound is tight only when Nt is large), η = 0.005 and SNR = 10

dB. Both models demonstrate similar performance, although strictly speaking the two

cases assume different scenarios on what is fed back to the transmitter. The noisy CSI
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model shows a slightly lower achievable rate at smaller values of B
Nt

because the mean-

squared distortion measure implicitly quantizes the norm ||h||2, which is redundant

in our setting since we use the beamforming scheme with fixed power allocation over

time. Therefore, MSE quantization is less efficient than that based on maximum

absolute inner product. However, as B increases, the portion of B used to quantize

the norm apparently decreases. Eventually, the noisy CSI model indicates a larger

achievable rate than that of the random quantization lower bound. This is because

the achievable rate evaluated using the distortion-rate function translates into an

upper-bound on the achievable rate of the beamforming scheme.

E. Conclusion

We have studied the problem of optimal bandwidth allocation between a MISO fading

data channel and an error-free feedback channel in a FDD system. We proposed a

simple but flexible prediction model based on which the maximum average achievable

rate of the beamforming scheme for the data channel and the associated optimal band-

width allocated to the feedback channel are evaluated under two different assumptions

of the partial CSIT. In addition, we proposed a lower bound on the average achievable

rate of the beamforming scheme using quantized feedback, which can be used as a

performance benchmark for practical channel quantization schemes.
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CHAPTER VI

SAGE-AIDED DETECTION OF MULTIPLE TRANSMIT ANTENNA SYSTEMS

A. Introduction

In a MIMO channel, the received signal at each receive antenna is a superposition

of transmitted signals from different transmit antennas. If the MIMO system has

Nt transmit antennas and uses a constellation of size C, maximum-likelihood (ML)

detection, which searches through all the possible transmitted signals, requires a

complexity proportional to O(CNt), which is hard to implement when C and Nt are

large. Many sub-optimal detectors were proposed in order to reduce the complexity,

such as BLAST detection, zero-forcing (ZF) and MMSE detection. However, all

these schemes perform fairly far from the ML detection scheme. Recently, the sphere

detection algorithm which searches a vicinity of the received signal vector for the

optimum solution was proposed [11][12]. The complexity of the proposed sphere

detection algorithm is polynomial in Nt for a wide range of system parameters [53]. In

this chapter, we propose a sub-optimal detection scheme for the MIMO system based

on the Space Alternating Generalized Expectation-Maximization (SAGE) algorithm

and the List-BLAST algorithm. The proposed scheme can achieve performance close

to that of the ML detection scheme with a complexity of the order of O(CN 2
t ) -

O(CN3
t ), and a flexible trade-off between complexity and performance.
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B. EM and SAGE for Detecting Superimposed Signals

Consider the discrete model of a MIMO frequency-flat fading channel with Nt transmit

antennas and Nr (assume Nr ≥ Nt) receive antennas:

y = Hx + w, (6.1)

where w ∼ N (0, σ2
nI) is a Nt × 1 circularly symmetric complex Gaussian noise vector

with variance N0

2
per dimension. y is the received signal vector of dimension Nr × 1.

H = [h1,h1, . . . ,hNt
] is a Nr × Nt MIMO channel with each element modelled as

i.i.d. zero mean complex Gaussian with normalized variance. We assume the complex

Nt×1 transmit signal vector x = [x1, x2, . . . , xNt
]T satisfy the component-wise power

constraint E[||xi||2] = Es

Nt
, where Es is the total transmit energy in each channel use.

Consider the case that X is composed of uncoded QAM or QPSK signals and

H is assumed perfectly known on the receiver side. The maximum-likelihood (ML)

detector can be expressed as

x̂ml = arg min
x∈ΩNt

||y − Hx||2 (6.2)

where ΩNt denotes the set of constellation points in the complex Nt dimensional space.

Since the search for the ML solution over the whole set of ΩNt is too complex to be

implementable, we take a different approach using the Expectation Maximization

(EM) type algorithm 1.

The EM algorithm was proposed to iteratively solve the maximum-likelihood

estimation problem [54]. Feder and Weinstein [55] proposed an EM solution for

the general parameter estimation problem from superimposed signals. Fessler and

1In the rest of the chapter, we refer to the classical EM algorithm simply as EM
algorithm. EM-type algorithms always refer to both EM and SAGE.
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Hero [56] extended the classical EM algorithm to the SAGE algorithm in which one

alternates between several hidden-data spaces rather than using just one “complete”

data space and updates only a subset of the elements of the parameter vector in each

iteration. They also apply the SAGE algorithm to estimate superimposed signals

in Gaussian noise and show that SAGE converges much faster than EM. We have

recently applied both methods to channel estimation in a multiple transmit antenna

OFDM system [57], which will be treated in detail in the next section. However, we

are now facing a detection problem, where the parameter set is discrete.

We first consider the EM algorithm. We view the observed data y as the “in-

complete” data and define the “complete” data zi as

zi = hixi + wi, 1 ≤ i ≤ Nt, (6.3)

where
∑Nt

i=1 wi = w; thus,
∑Nt

i=1 zi = y. We assume {wi} is i.i.d complex Gaussian

distributed with zero mean vector and covariance matrix σ2
n

Nt
I. The Nr × 1 vector zi

can be viewed as the component of the received signal transmitted by the ith antenna

through the channel hi corrupted by a fraction of the actual noise.

Denote f(z;x) as the probability density function of z parameterized by x. De-

note x̂(k) as the estimate of x in the k th iteration. In the E-step, we compute

U(x, x̂(k)) , E{log f(z;x)} as expressed below, where the expectation operation E{·}

is with respect to the conditional distribution of f(z|y, x̂(k)).

U(x, x̂(k)) = d − E{
Nt
∑

i=1

||zi − hixi||2} (6.4)

= e + x∗
i h

H
i z̄i + xiz̄

H
i hi − |xi|2hH

i hi, (6.5)

where d contains constant terms and e contains all terms independent of x. z̄i denote

the conditional mean of zi given y and x̂(k). Since zi and y are jointly Gaussian, we
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have

z̄i = hix̂
(k)
i +

1

Nt

(

y −
Nt
∑

j=1

hjx̂
(k)
j

)

. (6.6)

In the maximization step, we compute

x̂(k+1) = arg max
x

U(x, x̂(k)). (6.7)

It can be easily shown that

x̂(k+1) = (hH
i hi)

−1hH
i z̄i. (6.8)

In the above derivation, we did not consider the fact that x is discrete and xi

(1 ≤ i ≤ Nt) has to be a constellation point. To force this condition, an intuitive way

is to quantize x̂
(k)
i to its nearest constellation point in each iteration.

Denote ai,j , hH
i hj/(hH

i hi) and bi , hH
i y/(hH

i hi). Substituting equation (6.6)

in (6.8) and considering the quantization process, we can summarize the EM iteration

as follows:

x̃
(k+1)
i = x̂

(k+1)
i +

1

Nt
[bi −

Nt
∑

j=1

ai,jx̂
(k)
j ], for 1 ≤ i ≤ Nt. (6.9)

x̂
(k+1)
i = Q(x̃

(k+1)
i ) (6.10)

where Q(·) denote the quantization process; x̃
(k+1)
i and x̂

(k+1)
i are the unconstrained

estimation and the constrained detection of xi, respectively, in the (k +1)th iteration.

The convergence rate of the EM algorithm is inversely related to the Fisher

information of its complete-data space [56]. In the above algorithm, the noise variance

is distributed over zi for all i; therefore, the Fisher information of zi for x is relatively

large for a certain i. To improve the convergence rate, the SAGE algorithm chooses
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the hidden data space as zi for i = 1, 2, · · · , Nt alternately in each iteration and, thus,

associate all the noise variance with it. Following similar derivation shown above, the

SAGE algorithm can be expressed as:

• Initialize with some x̂
(0)
i for 1 ≤ i ≤ Nt.

• At the (k + 1)th iteration (k = 0, 1, 2, ...):

For i = 1 + [k mod Nt], compute

x̂
(k+1)
i = Q

(

x̂
(k+1)
i +

[

bi −
Nt
∑

j=1

ai,jx̂
(k)
j

])

. (6.11)

For 1 ≤ j ≤ Nt and j 6= i,

x̂
(k+1)
j = x̂

(k)
j . (6.12)

1. Initialization

A proper selection of the initial value of x is very important for the convergence of

both algorithms. Note that the convergence of the EM algorithm to even a local

maximum has not been proved in the case of discrete parameter spaces [58]. In our

simulation, we found that the convergence property of EM is very poor. Even in the

SAGE case, the algorithm usually stopped in one to three iterations according to our

simulations. Therefore, we need to use multiple initial points in order to increase

the probability that the iteration will converge to the ML solution. The solutions of

ZF, MMSE and BLAST are good candidates as initial points. However, we usually

need more in order to improve the performance. Here, we propose a scheme called

List-BLAST detection to produce initial points.

Denote the QR decomposition as H = QR, where Q is a unitary matrix and R is

an upper triangular matrix. We can perform a linear transformation on the received
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signal as y
′

= QHy; the system can be expressed as

y
′

= Rx + w
′

, (6.13)

where w
′

= QHw has the same distribution as w since Q is unitary. In the trian-

gulized model above, each row denotes a different transmission/detection layer with

the kth layer interferenced only by layers with indexes larger than k. In BLAST, one

first detects x̂Nt
; assuming x̂Nt

is correct, the interference of rNt−1,Nt
x̂Nt

can be sub-

tracted from layer Nt − 1 and x̂Nt−1 can be detected as in a scalar channel. Similarly,

layer Nt − 2, Nt − 3, · · · , 1 can be detected in order. In the proposed List-BLAST

scheme, we assume x̂Nt
could take as values all points in the constellation; for a given

x̂Nt
, we use the BLAST algorithm to detect the remaining elements of the vector

[x̂Nt−1, x̂Nt−2, . . . , x̂1]. Therefore, we could list C candidate points, each of which is

a vector in the complex Nt dimensional space. Finally, We can select the one which

has the minimum Euclidean distance to y as the detected symbol vector. It can be

easily shown that the List-BLAST algorithm for Nt = 2 is actually the ML detection

algorithm.

We can also use the listed candidates as initial points in the SAGE algorithm,

which converge to another set of C points. We then compare these C points and select

the one which has the minimum Euclidean distance to y. We refer to this detection

scheme as SAGE-aided list-BLAST detection in the sequel.

It is well known that the performance of the BLAST detection can be improved

by ordering the sequence of nulling and cancelling. Each different order of nulling

and cancelling corresponds to a unique ranking of the columns of the channel matrix

H in the above implementation using QR decomposition. Thus, we can also extend

the list-BLAST algorithm as follows.
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• List-Ranked-BLAST: In this extension, the worst layer with the lowest signal-

to-noise ratio is detected first; the remaining layers are detected from the best

(with the highest SNR) to worst. Note that the optimal detection sequence in

traditional BLAST detection is to detect from the best layer to the worst.

• List-Shifted-BLAST: In this extension, we cyclicly shift (either right or left) the

columns of H by one, and apply the List-BLAST algorithm as described above

to each shifted H. If shifting is performed K times, where 1 ≤ K ≤ Nt, we will

get C ×K points to initialize the SAGE algorithm. The detected signal vector

will be selected from the C×K SAGE solutions using the minimum distance cri-

terion. A larger value of K results in better performance, as will be shown in the

simulation results, but higher complexity. Therefore, the Shifted-List-BLAST

algorithm provides a flexible trade-off between complexity and performance. In

stead of cyclicly shifting the columns of H, random permuting can also be used

in a similar way.

2. Implementation

For complex PSK modulation, sphere decoding can be implemented directly over the

Nt dimensional complex space [12]. However, QAM modulation is usually handled

by decoupling the real and the imaginary components; thus, the sphere detector may

need to search over a 2Nt dimensional real space. In contrast, the SAGE-aided List-

BLAST schemes solve both QAM and PSK detection in the same fashion.

3. Complexity

Assume a block fading channel. We need to consider the computational complexity

for a whole block and that for each vector symbol in the block [59]. We denote the
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first kind of complexity as pre-detection complexity and the second kind of complexity

as the detection complexity. For SAGE-aided detection, the pre-detection complexity

requires O(N 3
t ) computations for QR decomposition or pseudo-inverse of the matrix

channel H depending on whether BLAST or ZF is used to produce the initial points.

If ordered BLAST is required, the computation complexity is still of O(N 3
t ) by using

some fast algorithm [14]. Similarly, sphere detection requires computing of both the

QR decomposition and pseudo-inverse H with a complexity of O(N 3
t ) [12].

Since the channel remains a constant during each transmission block which could

be composed of hundreds of vector symbols, the pre-detection complexity can be very

low per vector symbol and the detection complexity dominates. For computation

overhead for each vector symbol detection, the List-BLAST and the List-Ranked-

BLAST detection require a computation of O(CN 2
t ). List-Shifted-BLAST requires

complexity of O(KCN 2
t ). Each run of SAGE starting from a single initial point

requires a complexity of O(N 2
t ). Note that most of the time the SAGE algorithm

converges in 1 − 3 iterations; the number of iterations when Nt < 8 is not related to

Nt according to our observation in the simulations. Therefore, if we perform SAGE

aided detection on top of List-BLAST or List-Ranked-BLAST, the complexity is still

at O(CN2
t ). If SAGE aided List-shifted-BLAST is performed with K = Nt, the

complexity is O(CN 3
t ).

The complexity of sphere detection is closely related to SNR and channel realiza-

tions. At low SNR, it could require an average complexity of O((2Nt)
4) - O((2Nt)

4.5)

[53]. Some “bad” (with spread singular values of H) channel realizations require

more computation. Some recent publications show that sphere detection requires an

average complexity of O((2Nt)
3) for complex Gaussian fading channels if a good ini-

tial point is selected [60][61]. The complexity of sphere detection also increases with

C [61]. However, the exact relation of C to the complexity order is not clear. In
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our simulations, we found that sphere detection requires much more complexity than

SAGE aided List-BLAST detection schemes.

4. Soft-output Detection

The List-BLAST type algorithm provides us a natural way to decode and gener-

ate soft-information. We assume that the information bits have been encoded with

a channel code, randomly interleaved, Gray-mapped to the constellation, and then

transmitted through Nt different antennas. Therefore, NtM coded bits are transmit-

ted per channel use, where M = log2 C.

At the receiver, MAP joint demodulation and detection can be used. The a

posteriori L-value of the coded bits bk, k = 0, 1, . . . , NtM − 1, conditioned on the

received vector y, is

LD(bk|y) = ln
P [bk = +1|y]

P [bk = −1|y]
. (6.14)

Assume {bk} are independent due to the random interleaver, Equation (6.14) can be

further expressed as:

LD(bk|y) = LA(bk) + ln

∑

x∈Xk,+1
P [y|x] · exp

∑

j∈Jk,x
LA(bj)

∑

x∈Xk,−1
P [y|x] · exp

∑

j∈Jk,x
LA(bj)

. (6.15)

where Xk,+1 is the set of 2NtM−1 bit vectors x having bk = +1;Xk,−1 is the set of

2NtM−1 bit vectors x having bk = −1. LA(bj) = ln
P [bj=1]

P [bj=−1]
. Jk,x is the set of indices j

with

Jk,x = {j|j = 0, 1, 2, NtM − 1, j 6= k, bk = 1}. (6.16)

The second term on the RHS of (6.15) is the extrinsic L-value, and is denoted as

LE(bk|y) to be used later. Since exhaustive listing of Xk,+1 and Xk,−1 is usually

too complex, we can use the List-Shifted-BLAST algorithm together with the SAGE
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algorithm to generate a set L consisted of possible candidates, which can be similarly

divided into two sets Lk,+1 and Lk,−1. Using the max-log approximation, the extrinsic

L-value can be approximated as [12]

LE(bk|y) ≈ max
x∈Lk,+1

{−||y − Hx||2
N0

+ bT
[k]LA,[k]} − max

x∈Lk,−1

{−||y − Hx||2
N0

+ bT
[k]LA,[k]},

(6.17)

where b[k] denotes the sub-vector of b omitting its kth element, and LA,[k] is the

vector of all LA values, also omitting its kth element. It is more desirable to include

both the List-Shifted-BLAST solutions (the initial points in the SAGE algorithm)

and the converged points after the SAGE iterations in L for two reasons. Firstly,

the List-Shifted-BLAST algorithm ensures that Lk,+1 and Lk,−1 will not be a null set

due to the exhaustive listing of the constellation points for each transmit antenna.

Secondly, the SAGE iteration will produce some candidate points in the vicinity of

the received vector 2. These candidates are more reliable to be used in computing

(6.17) using the max-log approximation. We note that the ML solution x̂ml may not

necessarily be the candidate x which maximizes one of the two terms in the RHS of

(6.17), which could be relatively far away from y due to the fact that turbo-coded

system usually operate at very low SNR. Therefore, if one uses a sphere decoder to

list the candidates as in [12], the radius of search in the sphere decoder should be

much larger than that in the case of high SNR, therefore increasing the complexity

of the sphere decoding algorithm.

2x is in the vicinity of y in the sense that ||y − Hx|| < δ, where δ is small.
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Fig. 14. Symbol Error Rate of different detectors for a 4 × 4 MIMO system with

uncoded 8-PSK modulation.

C. Simulation Results

In the following simulations, we define Eb as the signal energy per transmitted infor-

mation bit at the receiver. Thus, we have

Eb

N0

=
Es

N0

+ 10 log10 .
Nt

RNrM
(6.18)

We conducted simulations to evaluate the performance of the proposed SAGE

and the List-BLAST type of algorithms assuming an independently faded MIMO

channel in each channel use. Note that for uncoded system, the average symbol error

rate (SER) and the bit error rate (BER) of the independently faded MIMO channel

are the same as those of the blocked faded MIMO channel. We first consider an

un-coded system, in which the channel coding rate R = 1. Fig. 14 and Fig. 15 show
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Fig. 15. Bit Error Rate of different detectors for a 4 × 4 MIMO system with uncoded

8-PSK modulation.
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Fig. 16. Symbol Error Rate of different detectors for a 4 × 4 MIMO system with

uncoded 16-QAM modulation.
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Fig. 17. Bit Error Rate of different detectors for a 4 × 4 MIMO system with uncoded

16-QAM modulation.



86

the SER and the BER of the ML detector implemented by sphere detection, the ZF

detector, the zero-forcing BLAST detector with optimal detection order (the layer

with the highest SNR is detected first), the List-BLAST detector, the List-Ranked-

BLAST detector, the List-Shifted-BLAST detector and the SAGE aided detectors

for a 4 × 4 MIMO system with uncoded 8PSK modulation scheme. Fig. 16 and

Fig. 17 show the SER and the BER of the different detectors for the same MIMO

system with uncoded 16QAM. It is not hard to show that the ML detection achieves

a spatial diversity order of four in this case. There is no spatial diversity order for

the ZF detector. For both the QAM and the PSK modulation, the BLAST detector

with optimal detection order, denoted as “OP-BLAST” in all the figures, achieves

a spatial diversity order greater than one, but is outperformed by the List-BLAST

detector denoted as “LIST-BLAST” and the List-Ranked-BLAST detector denoted

as “LIST-RBLAST”. The List-BLAST algorithm provides a way to avoid detection

error in the first detection layer (the N th
t layer), which is a Rayleigh fading channel.

Therefore, in the List-BLAST case, error is dominated by the (Nt − 1)th layer, which

has spatial diversity of order two. We can achieve a further 2.5 dB gain by performing

SAGE iterations as shown by the curve denoted as “SAGE-LIST-BLAST”. In the

List-Ranked-BLAST case, diversity order is further improved by ordering the nulling

and cancelling as described in the last section. Actually, the List-Ranked-BLAST

performs almost the same as the ML detection in this 4 × 4 MIMO case. Therefore,

SAGE iterations cannot further improve its performance, and are not required in this

case. Since the List-Ranked-BLAST detection scheme is only of detection complexity

order of O(CN 2
t ), it is an excellent candidate for detection of 4 × 4 uncoded MIMO

systems. Note that the performance of the List-Shifted-BLAST detector in the 4× 4

MIMO systems is also almost the same as the ML detector, and is not plotted in

these figures. But it is more computationally complex than the List-Ranked-BLAST
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Fig. 18. Bit Error Rate of different detectors for a 8 × 8 MIMO system with uncoded

16-QAM modulation.

detector.

Fig. 18 shows the BER of the List-Shifted-BLAST algorithm for different values

of K = 1, 2, 4, 8 for a 8× 8 MIMO system with uncoded 16-QAM modulation. As K

increases, the diversity order achievable by the List-Shifted-BLAST detector increases.

When K = 8, the List-Shifted-BLAST detector can achieve a performance close to

that of the ML detector. For the cases of K < Nt = 8, the SAGE-aided LIST-

Shifted-BLAST detector can achieve an additional gain up to 1 dB over the List-

Shifted-BLAST detector with the same value of K. In constrast to the 4 × 4 MIMO

case, the performance of the List-Ranked-BLAST detector is not close to the ML

performance in this case, and it is not shown in the figure.

Finally, we evaluated the BER performance of turbo-coded MIMO systems. The
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Fig. 19. Bit Error Rate of turbo-coded 4 × 4 MIMO systems with SAGE-aided

List-Shifted-BLAST decoding and the simple soft-output BLAST decoding.



89

rate R = 1/2 16-state parallel turbo code with polynomial (23, 31) is used. Note that

joint demodulation and detection is not performed here: the soft-output generated by

the MIMO demodulator is passed to the turbo decoder, which has 8 iterations; the a

posteriori probability of the coded bits after turbo-decoding is not passed back to the

demodulator for simplicity. The curves denoted as “4PSK-SBLAST” and “16QAM-

SBLAST” in Fig. 19 show the performance of the SAGE-aided List-Shifted-BLAST

detector for a turbo-coded 16-QAM and a 4-PSK 4× 4 MIMO systems, respectively.

Both the initial points generated using the List-Shifted-BLAST algorithm and the

converged points generated using the SAGE algorithm are included in the candidate

set L whose size is 128 and 32 in the case of 16-QAM and 4-PSK, respectively.

The minimum required Eb

N0
to achieve the capacity of the MIMO systems are 1.6

(dB) and 3.7 (dB), respectively [12]. Therefore, the performance of the SAGE-aided

List-Shifted-BLAST detection scheme in these two cases is only 3 and 5 dB away

from the capacity, respectively. As a comparison, we also simulated a simple soft-

output BLAST detection scheme. In this scheme, traditional BLAST with optimal

detection order is used. In each layer, “hard” cancellation of interference from the

previously detected layers is performed; 8 iterations are used in the turbo-decoder;

soft-information of the coded bits after turbo decoding is not passed back to the

demodulator. The performance of this simple soft-information BLAST detection

scheme for the two different modulation schemes is denoted as “4PSK-BLAST” and

“16QAM-BLAST”, respectively. For both cases, the simple BLAST scheme is more

than 6 dB worse than the corresponding SAGE-aided List-Shifted-BLAST detection

scheme.
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D. Conclusion

We have proposed a novel low complexity MIMO detector, called SAGE-aided List-

BLAST detector. We use List-BLAST type algorithm to generate multiple initial

points for the SAGE algorithm; after performing the SAGE iterations, the detector

finally selects the minimum distance point to the received vector from those converged

points generated by SAGE. We show that the List-BLAST type algorithms (including

the List-Ranked-BLAST and the List-Shifted-BLAST) alone can achieve performance

close to the ML detection. The SAGE algorithm can be used in combination with

the List-BLAST algorithm to further improve system performance. The proposed

algorithms have a complexity advantage over the sphere decoding algorithm at low

SNR.
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CHAPTER VII

CHANNEL ESTIMATION FOR OFDM SYSTEMS USING EM ALGORITHMS∗

A. Introduction

In the previous chapters, we have been dealing with transmission and detection as-

suming frequency flat fading channels. In this chapter, we will study channel esti-

mation for a frequency selective fading channel using orthogonal frequency division

multiplexing (OFDM) techniques.

OFDM, which can transform a frequency-selective fading channel into many par-

allel flat fading sub-channels, is an efficient technique to combat multipath delay-

spread in high-rate wireless systems. OFDM has already been accepted for the

new wireless local area network (WLAN) standards (IEEE 802.11a), the European

Telecommunications Standards Institute (ETSI)’s High Performance Local Area Net-

work Type 2 (HIPERLAN/2) and Japan’s Mobile Multimedia Access Communication

(MMAC) systems [62]. With the rapid growth of the Internet, providing advanced

Internet service over wide-area cellular networks is of great commercial interest [63]

. Although in the WLAN standards, data rates up to 54Mbps might be achieved

with conventional OFDM with single antenna, transmission at a peak rate of several

Mbps is extremely challenging in a wide-area network because of significant path-loss,

large delay-spread and fading [64]. To meet these challenges, OFDM schemes com-

bined with transmitter and receiver diversity were proposed, among which space-time

coded OFDM (ST-OFDM) is one of the most efficient transmitter diversity schemes

[7][9][65] [66] [67].

∗ c© 2003 IEEE. Reprinted, with permission, from Y. Xie and C. N. Georghiades,
“Two EM-based channel estimation algorithms for OFDM with transmitter diversity,”
IEEE Trans. Commun., vol. 51, no. 1, pp. 106-115, Jan. 2003.



92

In ST-OFDM, channel state information between each transmit and receive an-

tenna pair is required for coherent decoding. However, for each OFDM tone, since the

received signals are a superposition of signals transmitted from different antennas, the

simple channel estimation techniques used in single transmit antenna systems cannot

be used. This chapter discusses two Expectation-Maximization (EM) type channel

estimation algorithms in such scenarios. The EM-type algorithms essentially convert

a multiple-input channel estimation problem into a number of single-input channel

estimation problems, a much more palatable problem.

Although the discussion in the chapter is based on space-time trellis coded OFDM

systems, the algorithm can be directly used for other OFDM systems with multiple

transmit antennas.

The rest of the chapter is organized as follows. Section B describes transmitter

diversity using space-time coding for OFDM systems and introduces the fading chan-

nel model that is used. Section C addresses least-square (LS) channel estimation for

ST-OFDM systems and introduces a classical EM algorithm and a Space Alternating

Generalized Expectation-Maximization (SAGE) algorithm, both of which are based

on a single received OFDM symbol block. Section D compares the two proposed

algorithms in terms of convergence rate and unifies them in a “message-passing” type

iterative structure. Complexity of implementation and combining of the EM-type

algorithms with the significant-tap-catching (STC) estimator recently proposed by

Y. Li [67] are also discussed. Section E provides simulation results on the conver-

gence of the EM-based algorithms and overall system performance. Finally, Section

F concludes.
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B. ST-OFDM Systems and Channel Model

1. ST-OFDM Systems

An OFDM system with M transmit antennas and one receive antenna is shown in

Fig. 20. At time n, a data block {b(n, k)}, k = 0, 1, 2, . . . , N − 1, where N is the

number of sub-channels (tones), is coded into M different symbol blocks, {xi(n, k)},

k = 0, 1, 2, . . . , N − 1, i = 1, 2, . . . , M . Each block is transmitted through different

antennas over the same bandwidth using N OFDM tones. In other words, between

each transmit antenna and the receiver there is a communication link established by

OFDM. Hence, the received signal after demodulation (performing a Discrete Fourier

Transform (DFT)), is the superposition of M distorted transmitted signals, which

can be expressed in vector form as

rn =
M
∑

i=1

Xi,nHi,n + Wn. (7.1)

Here, Xi,n is an N × N diagonal matrix with Xi,n[k, k] = xi(n, k) representing the

symbol transmitted through the ith antenna over the kth tone at time n. In the

following discussion, Phase Shift Keying (PSK) modulation with unit symbol energy

is assumed, such that |xi(n, k)| = 1 for any i, k and n.
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Hi,n is an N × 1 vector with Hi,n[k] denoting the channel frequency response

at the kth tone between the ith antenna and the receiver at time n. Finally, Wn

is an N × 1 zero-mean, i.i.d. Gaussian vector that models additive noise in the N

sub-channels (tones) at time n. We have

E[WH
n Wn] = δ2

nIN , (7.2)

where IN is an N × N identity matrix and δ2
n is the variance of the additive noise at

time n.

At the receiver, a Viterbi algorithm with the following metric is used to decode

the space-time trellis code:

∥

∥

∥

∥

∥

rn[k] −
M
∑

i=1

Xi,n[k, k]Hi,n[k]

∥

∥

∥

∥

∥

2

, for k = 0, 1, 2 . . .N − 1, (7.3)

where ‖ · ‖ denotes Euclidean norm. Obviously, channel parameter estimation is

essential for decoding space-time codes using the above metric.

2. The Channel Model

The impulse response of the fading channel between the ith transmit antenna and the

receiver, hi(t), can be modelled as

hi(t) =
∑

j

αi,j δ(t − τi,jTs), (7.4)

where τi,j is the channel delay associated with the ith transmitter and the jth path, αi,j

are zero-mean, complex Gaussian random variables with a power-delay profile θ(τi,j)

and Ts is the sampling interval of the OFDM system. Let Tc denote the length of the

cyclic prefix which satisfies Tc = NcTs, where Nc is the number of samples of the cyclic

prefix. For OFDM systems, if the cyclic prefix is sufficiently long ( 0 ≤ τi,jTs ≤ Tc
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for any i and j) and perfect sample timing is assumed, the discrete channel impulse

response at time n can be expressed as an Lh × 1 vector hi,n with tolerable leakage

[68], where Lh satisfies Lh ≤ Nc + 1. Therefore, the frequency response vector Hi,n

can be expressed as

Hi,n = Fhi,n, (7.5)

where F is an N×Lh matrix with F[k, l] = 1√
N

e−i2πkl/N , 0 ≤ k ≤ N−1, 0 ≤ l ≤ Lh−1.

Obviously F is constructed by the first Lh columns of the N ×N square DFT matrix.

C. EM-type Channel Estimation Algorithms

1. Method of Least Squares

For OFDM with transmitter diversity, channel estimation is challenging since the

received signal at each tone is a function of multiple channel distortions.

Modelling the channel impulse response at time n as deterministic but unknown,

a temporal estimation of the channel impulse response vector is obtained by directly

minimizing the following cost function [67]

ĥn = arg min
hn

C(hn) = ‖ rn − Gnhn‖2, (7.6)

where

Gn
4
= [X1,nF X2,nF · · · XM,nF], (7.7)

hn
4
= [hH

1,n hH
2,n · · · hH

M,n]
H , (7.8)

ĥn
4
= [ĥH

1,n ĥH
2,n · · · ĥH

M,n]
H . (7.9)

Ignoring the leakage due to non-uniform channel tap spacing and assuming (7.5)

is the correct channel model, the least squares (LS) solution of (7.6) is also the



96

maximum-likelihood (ML) channel estimate (assuming known transmitted symbols).

If Gn is of full column rank, then the ML solution, ĥ<ML>
n , can be uniquely determined

by

ĥ<ML>
n = (GH

n Gn)−1GH
n rn = Q−1

n Pn, (7.10)

where

Qn
4
=



















ILh
FHXH

1,nX2,nF · · · FHXH
1,nXM,nF

FHXH
2,nX1,nF ILh

· · · FHXH
2,nXM,nF

...
. . .

. . .
...

FHXH
M,nX1,nF FHXH

M,nX2,nF · · · ILh



















(7.11)

Pn
4
= [rH

n X1,nF rH
n X2,nF · · · rH

n XM,nF]H . (7.12)

Here, ILh
denote the Lh ×Lh identity matrix. The special case of M = 2 of the above

solution is the same as in [67].

Since Gn is an N × MLh matrix, a necessary condition for the channels to be

uniquely identifiable is

MLh ≤ N. (7.13)

(7.13) suggests that the channels cannot be uniquely identified from one OFDM

symbol if M times the number of channel delay-taps to be estimated is greater than

the number of tones.

2. The EM-Based Algorithm

A drawback of directly solving (7.10) is that the calculation of the inverse of the

MLh × MLh square matrix, Qn, is required. This inverse matrix requires significant
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computation for large values of Lh and M . To overcome this drawback, the authors in

[67] proposed to use only the L (L < Lh) most significant channel taps to model the

channel of length Lh, thus reducing the size of Qn to ML × ML, a computationally

tolerable level for small L. This method is referred to as significant-tap-catching

(STC) in [67]. Although in most cases this simplified method works well, it may

introduce an irreducible error floor for channels with a power profile that cannot be

represented adequately by the L taps used to represent the channel.

Another solution is to design the training blocks Xi,n for all 1 ≤ i ≤ M to

make Qn diagonal, so that matrix inversion is trivial [69]. However, this method can

only provide channel estimates at the pilot blocks and therefore cannot work in a

decision-directed feedback mode needed to track channel variations.

Instead of minimizing (7.6) directly, EM-type algorithms provide an iterative and

more easily implementable solution. Here we apply both the EM and the SAGE algo-

rithms to the problem at hand. Since the EM-type algorithms have been thoroughly

studied and applied to a number of problems in communication over the years, we

will not describe them in detail in this chapter. The reader is urged to read [54] for a

general exposition to the EM algorithm and [55][56] for applications to the estimation

problem related to the work herein.

In the EM algorithm, we view the observed data rn as the “incomplete” data

and define the “complete” data Yi,n as

Yi,n = Xi,nFhi,n + Wi,n, 1 ≤ i ≤ M, (7.14)

where
∑M

i=1 Wi,n = Wn; thus,
∑M

i=1 Yi,n = rn. Yi,n is the component of the received

signal transmitted by the ith antenna through the channel with impulse response hi,n.

It is easy to show that the EM algorithm for the above particular choice of complete

data takes the following form:
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• E-Step: For i = 1, 2, . . . , M , compute

Ẑ
(k)
i,n = Xi,nFĥ

(k)
i,n , (7.15)

Ŷ
(k)
i,n = Ẑ

(k)
i,n + βi

[

rn −
M
∑

j=1

Ẑ
(k)
j,n

]

. (7.16)

• M-Step: For i = 1, 2, . . . , M , compute

ĥ
(k+1)
i,n = arg min

hi,n

{

‖Ŷ(k)
i,n − Xi,nFhi,n ‖2

}

. (7.17)

The superscript (k) denotes the kth iteration and the βi are chosen such that
∑M

i=1 βi =

1. Solving (7.17), we obtain:

ĥ
(k+1)
i,n = FHX−1

i,nŶ
(k)
i,n . (7.18)

Although not necessary for implementation, equations (7.15), (7.16) and (7.18) can

be combined to yield the following recursion:

ĥ
(k+1)
i,n = ĥ

(k)
i,n + βi

[

FHX−1
i,nrn −

M
∑

j=1

FHX−1
i,nXj,nFĥ

(k)
j,n

]

. (7.19)

Note that Xi,n is a diagonal matrix and, thus, calculation of its inverse is trivial.

Also note that (7.18) is just the well-known LS channel estimation scheme for the

conventional (i.e., single transmit antenna) OFDM system [68]. The motive of the

EM algorithm is clear: At the E-step, it estimates the corresponding component in

the received signal for each of the OFDM links. At the M-step, as in the conventional

OFDM scheme, it divides the corresponding component by the reference symbols

(either known from training, or previously decoded symbols) in the frequency domain

and then performs an IFFT to obtain an updated estimate of the channel impulse

response.

The convergence rate of the EM algorithm is inversely related to the Fisher
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information of its complete-data space [56]. In the above algorithm, the noise variance

is distributed over Yi,n for all i; therefore, the Fisher information of Yi,n for hi,n is

relatively large for a certain i. To improve the convergence rate, we can choose the

hidden data space as Yi,n for i = 1, 2, · · · , M alternately in each iteration and, thus,

associate all the noise variance with it. The SAGE algorithm for this specific problem

is then:

• Initialization: For 1 ≤ i ≤ M ,

Ẑ
(0)
i,n = Xi,nFĥ

(0)
i,n. (7.20)

• At the kth iteration (k = 0, 1, 2, ...):

For i = 1 + [k mod M ], compute

Ŷ
(k)
i,n = Ẑ

(k)
i,n +

[

rn −
M
∑

j=1

Ẑ
(k)
j,n

]

, (7.21)

ĥ
(k+1)
i,n = FHX−1

i,nŶ
(k)
i,n , (7.22)

Ẑ
(k+1)
i,n = Xi,nFĥ

(k+1)
i,n . (7.23)

For 1 ≤ j ≤ M and j 6= i,

Ẑ
(k+1)
j,n = Ẑ

(k)
j,n. (7.24)

A proper selection of the initial value of ĥi,n is very important for the convergence

speed of both algorithms. Intuitively, assuming all the signals transmitted from other

than the ith antenna to be zero (though not true in practice), we can obtain an initial

estimate of the channel for the EM-type iteration as follows:

ĥ
(0)
i,n = FHX−1

i,nrn, i = 1, 2, · · · , M. (7.25)

The introduced EM-type algorithms only provide a channel estimate at time n.
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With this temporal estimate, a complete channel estimation scheme can be developed

according to the time-selectivity of the fading. For high-speed wireless data packet

applications, if a data packet is short compared to the channel coherence time, channel

fading can be assumed to be the same for the whole packet. For each transmitter, one

or two pilot symbol blocks can be sent at the beginning of each packet; the temporal

estimates (or the average of the two temporal estimates in case of two pilot symbol

blocks) can then be used for the whole packet [62]. In this case, each OFDM link can

also be estimated alternately by transmitting at each time a training symbol from a

specified antenna while transmitting no signals from others. The estimation is greatly

simplified at the cost of an M -fold increase in training time. If channel parameters

cannot be assumed constant over the whole packet, but almost the same for several

continuous data symbols, the alternate estimation method cannot be used. In this

case, the EM-type algorithms provide flexibility for both estimation and tracking.

The decoded bits can be encoded again and used to estimate the current channel

parameters, which will be used in the decoding of the next block. Actually, except for

the first training block, we can always use the last channel estimate as the initial value

for the current estimation, which will significantly reduce the number of iterations

(could be less than 3 iterations as shown in the simulation) until convergence. In this

case, the decision-directed EM-type algorithms can be treated as adaptive channel

tracking algorithms. Of course, STC can also be used in the decision directed mode,

but not as efficiently as the EM-type algorithms since it operates independently for

each block and cannot use the previous channel estimates. For applications in which

large delay is tolerable, a more accurate estimation of the channels at each time

could be obtained by passing the temporal estimates through a Wiener filter for each

communication link [62].
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D. Remarks

1. Convergence

It is already proven in [56] that the SAGE algorithm converges faster than the classical

EM algorithm in estimation of superimposed signals in Gaussian noise. The difference

here is that the parameter associated with each superimposed signal is a vector instead

of a variable as in [56]. Here we only give a single analysis on the best convergence

rate of the two algorithms.

If we can write the equation for iterations as follows

ĥ(k+1)
n − ĥ<ML>

n = An(ĥ(k)
n − ĥ<ML>

n ), (7.26)

for some matrix An, the convergence factor can be defined as the matrix spectral

radius ρ(An), the largest magnitude of eigenvalue of An. Obviously, a smaller con-

vergence factor indicates faster convergence rate.

According to Appendix C, we have for EM

An = IMLh
− 1

M
Qn. (7.27)

where IMLh
denotes the MLh × MLh identity matrix.

In the EM algorithm, channel impulse responses associated with each OFDM

link are simultaneously updated during each iteration, while in the SAGE algorithm,

only one OFDM link is updated in each iteration. Since all the OFDM links are

updated every M iterations with the total complexity similar to that of one iteration

in the EM algorithm, for fair comparison, we will count M iterations of the SAGE

algorithm as one iteration in later discussions.



102

For SAGE (see Appendix C):

An = IMLh
− LT (Qn)−1Qn, (7.28)

where LT (Qn) is the lower triangular part of Qn (including the diagonal entries).

According to [56], both the EM and SAGE algorithms converge and we have

ρsage(An) ≤ ρem(An). (7.29)

Qn is Hermitian and non-negative definite, its eigenvalues λi (i = 1, 2, . . . , MLh)

are all real and non-negative and satisfy
∑MLh

i=1 λi = tr(Qn) = MLh, where tr(·) is

the trace operation (assuming PSK is used). Therefore, we have

ρem(An) ≥ 1 − 1/M, (7.30)

where equality holds iff Qn = IMLh
, corresponding to the case when the training

block is designed as in [69]. So the best convergence factor achievable is 1− 1/M for

the EM algorithm. Note that in this best case, the initial guess of ĥ
(0)
i,n as in (7.25)

happens to match the maximum likelihood solution, no further iterations are actually

required. The best convergence factor of SAGE can be zero when Qn = IMLh
, which

means the SAGE algorithm converges in just one iteration regardless of the initial

value.

The convergence factor is a random variable because it is a function of the refer-

ence signal Xi,n, which are random data blocks in the decision-feedback mode. The

distribution of the convergence factor will be affected by the size of Gn, i.e. M , Lh

and N [70]. Especially for the EM algorithm, according to the conjecture in [71](page

166), the smallest eigenvalue of Qn converges to (1 −
√

MLh/N)2 if N → ∞, and
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MLh/N is a constant. Therefore, the asymptotic convergence factor of EM, ρ̃em, is

ρ̃em(An) = 1 − 1

M
(1 −

√

MLh/N)2. (7.31)

Since explicit formulas for the distribution function of the spectral radius of a

random matrix with finite size is not known except for some special matrices [70],

we will compute the distribution of the convergence factor for EM-type algorithms

through simulation in the next section.

2. A “Message Passing” Interpretation

Similar to the iterative “Message Passing” decoding structure in low density parity

check codes (LDPC) [72], we can view the EM-type estimation algorithms as a special

kind of “Message Passing” procedure between variable nodes associated with channel

parameters to be estimated and a check node associated with the observed OFDM

block, as shown in Fig. 21.

At the kth iteration, each variable node Vi passes the message SVi→C = Ẑ
(k)
i,n ,

which is an estimate of Ŷ
(k)
i,n , to the check node C. It then combines all the incoming

messages, computes and passes back an updated message, SC→Vi
= ĥ

(k+1)
i,n to Vi. Note

that there is a hidden constraint for each Vi, i.e., hi,n only has Lh taps.

Based on the constraint that
∑M

i=1 Ŷ
(k)
i,n = rn, the EM and SAGE algorithms use

different message updating schemes at the check node.

For the EM algorithm, to compensate for a non-zero difference rn −∑M
i=1 Ẑ

(k)
i,n

at the check node, Ŷ
(k)
i,n is balanced by adding a fraction (associated with βi) of the

difference to the original value of Ẑ
(k)
i,n so that the constraint is satisfied. An outgoing

message SC→Vi
for (i = 1, 2, · · · , M) is then computed based on Ŷ

(k)
i,n .

In the SAGE algorithm, the constraint is forced to be satisfied at the check node

by setting Ŷ
(k)
i,n to be rn−

∑M
j=1(j 6=i) Ẑ

(k)
j,n with all other Ŷ

(k)
j,n = Ẑ

(k)
j,n (1 ≤ j ≤ M, j 6= i)
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Fig. 21. A Message Passing explanation of the EM-type algorithms.
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unchanged. Otherwise, if all Ŷ
(k)
j,n are updated as Ŷ

(k)
i,n simultaneously, the constraint

will not be satisfied. We can also easily show that (see Appendix C) the corresponding

convergence matrix An = IMLh
− Qn, whose spectral radius is not guaranteed to be

less than 1. Therefore, parallel updating in SAGE will not guarantee convergence.

3. Implementation Complexity for STC-EM and STC-SAGE

Compared with the STC method with direct matrix inversion, EM-type algorithms

have a number of implementation advantages. Note that for all M OFDM links,

the estimation structure is exactly the same. No complex computation union is

involved, except for the FFT/IFFT operations. Since an FFT is a necessary unit of

the demodulator and, hence, already available, the estimator can use the same unit

(an IFFT can be implemented by FFT as IFFT(x) = conj(FFT(conj(x)))) to perform

the FFT and IFFT for the EM-based algorithm.

In the STC algorithm, Qn and Pn can be efficiently computed by (M + M(M −

1)/2) N -point-FFTs/IFFTs as shown in [67]. The inverse of Qn is of computational

complexity O((ML)3). Equation (7.10) can be also regarded as the product of the

pseudo-inverse of Gn and the vector rn, so it can be computed iteratively using Gre-

ville’s method without directly solving the pseudo-inverse (pp. 223 of [73]). However,

the computational complexity is not reduced as shown in Appendix D. In the EM-

type algorithms, the total number of FFTs/IFFTs required is 2MNit and some extra

multiplications (Nit is the number of iterations). Note that FFT/IFFTs (radix-2

type) requires 0.5N log2(N) of multiplications [74]. Therefore, the SAGE algorithm

is preferred than the EM algorithm, and both algorithms are much more efficient in

the decision feedback channel tracking mode, where Nit is small. (For the channel

training block, Xi,n can be designed so that Qn is diagonal.) As will be shown in

our simulations, the number of iterations for convergence can be as low as less than
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3 for the SAGE algorithm, and 10 for the EM in the case of two-transmit anten-

nas and 17 channel taps. An example comparing the complexity of the EM-type

algorithms with STC is given in Appendix D. It is shown that the EM-type algo-

rithms, and especially the SAGE, have much lower computational complexity than

the STC when M and L are large. Actually, the EM-type algorithms can also be

used to solve the matrix inversion encountered in STC, when direct computation of

the matrix inversion is too complex. In this case, from the “Message Passing” point

of view, the hidden constraints at the variable nodes are that non-selected taps in

STC are zero. In other words, the equations in EM and SAGE remain unchanged

except that the DFT matrix F becomes an N ×L matrix with F[k, l] = 1√
N

e−i2πkl/N ,

0 ≤ k ≤ N − 1, l ∈ ΩL, where ΩL denotes the indices of the selected significant taps.

We denote the corresponding algorithms as STC-EM or STC-SAGE.

E. Simulation Results

Simulations were conducted to test the convergence of the EM-type algorithms and

the ST-OFDM system performance using such estimators. The simulation parameters

were set as follows:

• Similar to [67], the entire channel bandwidth was 800 KHz and was divided into

128 sub-carriers (or tones). The symbol duration was 160-µs. An additional 40-

µs guard interval was used to provide protection from intersymbol interference

(ISI) due to channel delay-spread. The Doppler shift was chosen to be 40Hz.

• Two transmit antennas and one receive antenna were employed. The 2-space-

time codes of 4-PSK, 2b/s/Hz with 16 states (their trellis structure is shown in

Fig. 5 of [7]) were used in the simulation.

• The simulations were carried out for two different channel delay and power
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profiles, as shown in Fig. 22. The maximum channel delay of 20-µs was assumed

to be known in all the simulations.

Fig. 23 shows the mean-square-error (MSE) performance of the EM-type algo-

rithms as a function of the number of iterations. It also includes comparisons with the

MSE of the ML estimator and a 9-tap STC estimator. All the results were evaluated

based on 5000 OFDM simulated blocks sent from each transmit antenna. The hilly

terrain (HT) channel profile shown in Fig. 22(b) was used in the simulations. The

initial value of ĥ
(0)
i,n was chosen as in (7.25). β1 and β2 were each chosen to be 0.5. The

signal-to-noise ratio (SNR) is define as Eb/N0, where Eb denotes engergy per infor-

mation bit. It is shown that the EM algorithm converges to the ML estimate within

10-20 iterations on average for SNR ≤ 25dB, while the SAGE algorithm converges to

the ML estimate within 4-6 iterations. The 9-tap STC estimator has a larger MSE

than the ML estimator at SNR = 25dB due to the ignored channel taps. However,

for SNR = 15dB, the 9-tap-STC has the least MSE. This is because the OFDM sys-

tem can only resolve from the HT profile a discrete channel with a small number of

significant taps with the other taps having very small values. At relatively low SNRs,

estimating these taps with small values as done in ML and EM-type estimators may

introduce more error than just assuming them to be zero as in the STC.

Fig. 24 shows the MSE performance of the EM-type algorithm with the initial

value of ĥ
(0)
i,n chosen as the channel estimate of the previous OFDM block. With

the better initial value, the EM estimator converges within 2-10 iterations and the

SAGE estimator converges within 1-3 iterations depending on the SNR. An interesting

phenomenon is that the EM estimate first reaches a lower MSE and then converges

back to that of the ML estimate. This may seem odd at first sight, but one must

remember that ML estimates, which are based on one OFDM block, do not necessarily
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Fig. 22. (a) The uniform power and delay profile; (b) the hilly terrain profile.
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Fig. 23. The convergence of MSE with respect to number of iterations of the EM-type

estimators compared with the MSE of a 9-tap-STC estimator and the ML

estimator. An initial channel estimate is obtained using (7.25). The HT

profile as shown in (b) of Fig. 22 is assumed.
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Fig. 24. The convergence of MSE with respect to number of iterations of the EM-type

estimators compared with the MSE of a 9-tap-STC estimator and the ML

estimator. The EM algorithm is initialized using the last channel estimate.

The HT profile as shown in (b) of Fig. 22 is assumed.

minimize mean-square error.

Fig. 25 compares the MSE performance of different algorithms as a function of

the number of iterations when the delay profile shown in Fig. 22(a) (taken from [75])

was used in the simulations. The initial value of ĥ
(0)
i,n was chosen as in (7.25). It is

shown that the EM-type algorithms converge to the ML estimate with the same rate

as in the case of HT profile. The 9-tap STC estimator has a significantly larger MSE

than the ML estimator at both SNR = 15dB and SNR = 25dB.

Note that although the delays are uniformly spaced in this case, the interval is

not an integer multiple of Ts. Therefore, leakage still exists.The 9-tap-STC has a

significant MSE for both SNR = 15dB and SNR = 25 dB. This is because the ignored
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Fig. 25. The convergence of MSE with respect to number of iterations of the EM-type

estimators compared with the MSE of a 9-tap-STC, 13-tap-STC estimator

and the ML estimator. An initial channel estimate is obtained using (7.25).

The uniform profile as shown in (a) of Fig. 22 is assumed.
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channel taps for this channel power-delay profile are actually not all “insignificant”.

To reduce leakage in STC, we have to increase the number of significant taps to be

13, whose complexity is nearly tripled compared to that of the 9-tap-STC if direct

matrix inversion is used. Note that the 13-tap-STC has a smaller MSE than that of

the ML estimator even at SNR = 25dB. This suggests that almost all the power of

this uniform channel profile is included in 13 taps.

Fig. 26 and Fig. 27 show the effect of channel length Lh and the number of trans-

mit antennas M on the cumulative distribution function (CDF) of the convergence

factor of EM-type algorithms. For the four antenna case, we used uncoded 4PSK due

to the lack of proper space-time codes. The information bits were purely random. For

all cases, the SAGE algorithm has a smaller convergence factor than that of the EM

algorithm and is much less likely to encounter OFDM data blocks that cause very

slow convergence (corresponding to convergence factor ρ ≈ 1). The convergence rate

of both algorithms decreases when M or Lh increases. Note that in Fig. 27, when

Lh increases to 32, Qn becomes a 128 × 128 matrix (note that N = 128); therefore,

it is very likely that it is singular, causing the convergence factor to be near 1. Using

(7.31), we can compute the asymptotic convergence factor of the EM algorithm. For

example, we have ρ̃em = 7/8 for Lh = 16 and M = 2, and ρ̃em = 0.9786 for Lh = 16

and M = 4. In both cases, the asymptotic convergence factors roughly match the

corresponding CDFs.

The bit-error-rate (BER) and word-error-rate (WER) of the ST-OFDM systems

employing the 9-tap-STC estimator and the SAGE estimator, respectively, were com-

pared assuming the HT channel profile. The results are shown in Fig. 28. In this

and the following simulation, for both systems, a frame of 25 OFDM symbol blocks

were transmitted from each antenna with the first OFDM block (known by the re-

ceiver) used for training. For the rest of the blocks, the decoded bits were encoded
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again and used as a reference for channel estimation. For the first training block, the

SAGE algorithm used an initial estimate as shown in (7.25) and 10 iterations. For

the remaining blocks, the previous estimate was used as initial value and 3 iterations

were used.

Note that both systems show similar performance. It is not difficult to see

that the discrete channel for the HT profile actually has very few significant taps.

Therefore, the 9-tap STC is expected to perform well. The SAGE estimate in this

case is actually as good as the ML estimate. It starts to outperform STC only at high

SNRs. This is because at high SNR the channel estimation error caused by ignoring

the insignificant taps becomes apparent.

The same simulations were performed for the uniform channel profile as shown

in Fig. 22(a). The results are shown in Fig. 29. The system performance employing

a 9-tap-STC has a large error floor due to the inaccurate channel estimation. The

13-tap-STC (direct matrix inversion) achieves almost the same performance as the

SAGE estimator. The same performance can also be achieved by a 13-tap STC-

SAGE with only 2 iterations used in the decision-directed channel tracking mode.

The SAGE estimator assumes a complete channel model and therefore is robust to

different kinds of power-delay profiles.

F. Conclusion

Two efficient EM-based channel estimation algorithms for space-time coded OFDM

systems are introduced and compared with each other in terms of convergence rate.

We show that the convergence rates for both algorithms are unrelated with the chan-

nel delay profile, and the convergence rate for both algorithms decreases when the

length of the channel or the number of transmit antennas increases. The EM-type es-
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timators can also be combined with the STC estimator when direct matrix inversion

is computationally prohibitive in STC. Therefore, the resulting ST-OFDM system

can perform well in various multipath channel profiles.
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CHAPTER VIII

CONCLUSION

This work studies various topics in adaptive transmission, capacity analysis, signal

detection and channel estimation for some important multiple antenna systems. The

major contribution of this work is summarized as follows:

• We have evaluated the ergodic sum-rate capacity of the flat fading MIMO-

BC with perfect CSIT, through both exact numerical computation and derived

upper and lower bounds. Given fixed number of transmit and receive anten-

nas in the MIMO-BC system, we show that as the number of users K → ∞,

the upper bound of the ergodic sum-rate capacity increases with the order of

O(log(ln(K))) asymptotically independent of the number of receive antennas.

Sub-optimal transmission schemes, which use ranked known interference cancel-

lation and zero-forcing beamforming to explore multi-user diversity, are shown

to be able to achieve close to capacity performance.

• We have shown that the minimum outage probability transmission schemes for a

flat MISO fading channel in the cases of mean feedback and covariance feedback

are the same as the optimal schemes which maximize the ergodic capacity in

terms of spatial directions. The optimum power allocation scheme over the

optimal spatial directions which minimizes outage probability is closely related

to the target rate. For both mean and covariance feedback, we show that

it is more desirable to spread the power over all transmission directions than

beamforming to a single direction for sufficiently small target rates.

• We have studied the optimal bandwidth allocation between the data channel

and the feedback channel in a FDD MISO flat-fading system. Based on a sim-
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ple but flexible prediction model, the maximum average achievable rate of the

beamforming scheme for the data channel and the associated optimal band-

width allocated to the feedback channel are evaluated under two different as-

sumptions of the partial CSIT. Additionally, we proposed a lower bound on

the average achievable rate of the beamforming scheme using quantized feed-

back bits, which can be used as a performance benchmark for practical channel

quantization schemes.

• We have proposed a novel low complexity MIMO detector, which uses both

the SAGE detection algorithm and the List-BLAST detection algorithm. We

show that the List-BLAST algorithms (including the List-Ranked-BLAST and

the List-Shifted-BLAST) alone can achieve performance close to the ML detec-

tion. The SAGE algorithm can be used in combination with the List-BLAST

algorithm to further improve the system performance

• We have proposed two efficient EM-based channel estimation algorithms for

OFDM systems with transmit diversity to be used in the decision-directed track-

ing mode. We show that the convergence rate for both algorithms is unrelated

with the channel delay profile, and decreases when the length of the channel or

the number of transmit antennas increases.
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APPENDIX A

FORMALIZATION OF THE OPTIMIZATION PROBLEM

The authors in [30] proposed an efficient solution of the following constrained

determinant maximization problem:

min
X

CT X + log
∣

∣G(X)−1
∣

∣ (A.1)

subject to:

G(X) � 0 (A.2)

F(X) � 0, (A.3)

where G(X) = G0 +
∑m

i=1 xiGi and F(X) = F0 +
∑m

i=1 xiFi; C is some real constant

vector having the same dimension as X. X = [x1, x2, . . . , xm]T is required to be a

real vector. To transform the optimization problem of equations (3.4)-(3.6) to the

above format, we can drop the expectation, and consider the equivalent problem of

maxSk
log |Ψ| for some given H. Let X = [RV (S1), RV (S2), · · · , RV (SK)]T , where

RV (A) denotes the N 2 × 1 real vector formed by stacking the N diagonal entries

(which are real), the real and the imaginary part of the N(N − 1)/2 lower-triangular

off-diagonal entries of an N ×N Hermitian matrix A. For any vector z ∈ Cn and ma-

trix A ∈ Cn×m, define ẑ = [Re(z)Im(z)] and Â =







Re(A) −Im(A)

Im(A) Re(A)






. According

to Lemma 1 of [1], we have log |Ψ| = 0.5 log |Ψ̂| . Comparing with the standard ob-

jective function of equation (A.1), we have G(X) = Ψ̂ and C = 0. Note that any

matrix A can be written as A =
∑

n,m En,mA[n, m], where n and m are row and
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column indexes, respectively; En,m is the natural basis of the matrix, or the matrix

with only one non-zero entry En,m[n, m] = 1. Since each entry of the matrix Ψ̂ is

the linear combination of the elements in X, Gi can be determined by identifying

the positions of X[i] in Ψ̂ with its associated linear coefficients, and then constructed

using the corresponding linear combination of En,m.

The constraints of both equation (3.5) and (3.6) can also be transformed into

the desired format of F(X). To simplify illustration, we consider the case where Sk

is real, K = 2 and Nr = 2. We have F = F
′

, where

F
′

=

























S1[1, 1] S1[1, 2] 0 0 0

S1[2, 1] S1[2, 2] 0 0 0

0 0 S2[1, 1] S2[1, 2] 0

0 0 S2[2, 1] S2[2, 2] 0

0 0 0 0 t

























, (A.4)

where t = P − S1[1, 1] − S1[2, 2] − S2[1, 1] − S2[2, 2]. For other values of K and Nr,

F
′

can be similarly constructed. We can easily prove that the constraints as shown

in (3.5) and (3.6) are equivalent to F � 0.

In order to deal with the case where Sk is complex, we use Corollary 2 of [1],

which states that F � 0 and F̂ � 0 are equivalent. Therefore, in this case, the

constraints of (3.5) and (3.6) are equivalent to F = F̂
′ � 0. Fi associated with xi can

be similarly determined as determining Gi. Since F � 0 guarantees G(X) � 0 in our

problem, G(X) � 0 does not need to be implemented explicitly as in the standard

format.
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APPENDIX B

PROOF OF LEMMA 1 IN CHAPTER IV

We restate Lemma 1 as follows:

Given X ∼ N (x̄, 1), Y ∼ N (ȳ, 1), X, Y independent, and γ > 1, then

min
x̄2+ȳ2=m2

Pr(X2 + γ−2Y 2 < q2)

is attained at x̄ = m, ȳ = 0.

Proof. Parameterize x̄ and ȳ, as x̄ = m cos(ϕ), ȳ = m sin(ϕ), with ϕ ∈
[

0, π
2

]

, and let

D 4
=
{

(x, y) ∈ R
2
∣

∣ x2 + γ−2y2 < q2
}

.

Thus,

I(ϕ)
4
= Pr(X2 + γ−2Y 2 < q2) =

1

2π

∫∫

D
e−

(x−x̄)2

2 e−
(y−ȳ)2

2 dx dy

=
1

2π

∫∫

D
e−

(x−m cos(ϕ))2

2 e−
(y−m sin(ϕ))2

2 dx dy.

(B.1)

We convert to polar coordinates x = r cos(θ), y = r sin(θ), θ ∈ [0, 2π). Then, D takes

the form

D =
{

(r, θ) ∈ R
2
∣

∣ r2 cos2(θ) + r2

γ2 sin2(θ) < q2
}

.

For r ∈ [0, γq], let

Θr
4
=
{

θ ∈ [0, 2π)
∣

∣ r2 cos2(θ) + r2

γ2 sin2(θ) < q2
}

.

The integral in (B.1) transforms to

I(ϕ) =
1

2π

∫ γq

0

[∫

Θr

e−
(r cos(θ)−m cos(ϕ))2

2 e−
(r sin(θ)−m sin(ϕ))2

2 dθ

]

r dr. (B.2)
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Note that

Θr =















[0, 2π), if 0 ≤ r ≤ q,

[

αr,
π
2

]

∪
[

π
2
, π − αr

]

∪
[

π + αr,
3π
2

]

∪
[

3π
2

, 2π − αr

]

, if q < r ≤ γq,

(B.3)

where

αr = cos−1
(
√

γ2q2−r2

r2(γ2−1)

)

, q < r ≤ γq, αr ∈
[

0, π
2

]

.

Decomposing the inner integral in (B.2) along the partition of Θr in (B.3) and using

the symmetry properties of the functions, we obtain

∫

Θr

e−
(r cos(θ)−m cos(ϕ))2

2 e−
(r sin(θ)−m sin(ϕ))2

2 dθ = 2

∫ π
2

αr

e−
m2+r2

2 Mϕ(r, θ) dθ, r ∈ (q, γq],

where

Mϕ(r, θ)
4
=2 cosh

(

mr cos(ϕ) cos(θ)
)

cosh
(

mr sin(ϕ) sin(θ)
)

= cosh
(

mr cos(θ − ϕ)
)

+ cosh
(

mr cos(θ + ϕ)
)

.

(B.4)

Therefore, by (B.2),

I(ϕ) =
1

2π

∫ q

0

[
∫ 2π

0

e−
m2+r2

2 emr cos(θ−ϕ)dθ

]

r dr +
1

π

∫ γq

q

[

∫ π
2

αr

e−
m2+r2

2 Mϕ(r, θ) dθ

]

r dr.

(B.5)

The first integral in (B.5) is independent of ϕ and is equal to

1

2π

∫ q

0

[
∫ 2π

0

emr cos(θ) dθ

]

e−
m2+r2

2 r dr.

Hence, in order to establish that I(ϕ) ≥ I(0) for all ϕ ∈
[

0, π
2

]

, it is sufficient to show

that

∫ π
2

αr

Mϕ(r, θ) dθ ≥
∫ π

2

αr

M0(r, θ) dθ, ∀ϕ ∈
[

0, π
2

]

, ∀r ∈ (q, γq].
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We have,

∫ π
2

αr

cosh
(

mr cos(θ + ϕ)
)

dθ =

∫ π
2
+ϕ

αr+ϕ

cosh
(

mr cos(θ)
)

dθ

=

∫ π
2

αr+ϕ

cosh
(

mr cos(θ)
)

dθ +

∫ π
2
+ϕ

π
2

cosh
(

mr cos(θ)
)

dθ

=

∫ π
2

αr+ϕ

cosh
(

mr cos(θ)
)

dθ +

∫ π
2

π
2
−ϕ

cosh
(

mr cos(θ)
)

dθ,

(B.6)

and

∫ π
2

αr

cosh
(

mr cos(θ − ϕ)
)

dθ =

∫ π
2
−ϕ

αr−ϕ

cosh
(

mr cos(θ)
)

dθ

=

∫ αr+ϕ

αr−ϕ

cosh
(

mr cos(θ)
)

dθ +

∫ π
2
−ϕ

αr+ϕ

cosh
(

mr cos(θ)
)

dθ.

(B.7)

By (B.4), (B.6) and (B.7),

∫ π
2

αr

Mϕ(r, θ) dθ =

∫ αr+ϕ

αr−ϕ

cosh
(

mr cos(θ)
)

dθ + 2

∫ π
2

αr+ϕ

cosh
(

mr cos(θ)
)

dθ. (B.8)

Therefore, by (B.8),

∫ π
2

αr

Mϕ(r, θ) dθ −
∫ π

2

αr

M0(r, θ) dθ =

∫ αr

αr−ϕ

cosh
(

mr cos(θ)
)

dθ −
∫ αr+ϕ

αr

cosh
(

mr cos(θ)
)

dθ

=

∫ ϕ

0

[

cosh
(

mr cos(αr − δ)
)

− cosh
(

mr cos(αr + δ)
)]

dδ

= 2

∫ ϕ

0

sinh
(

mr cos(αr) cos(δ)
)

sinh
(

mr sin(αr) sin(δ)
)

dδ

≥ 0.

This completes the proof.
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APPENDIX C

DERIVATION OF THE CONVERGENCE MATRIX FOR THE EM AND SAGE

ALGORITHM IN CHAPTER VII

We first derive the convergence matrix for the EM algorithm as shown in equation

(7.27). Assume βi = β = 1/M for i = 1, 2, . . . , M . (7.19) can be re-written as

ĥ(k+1)
n = ĥ(k)

n + βT[(1M

⊗

rn) − (1M

⊗

Gn)ĥ(k)
n ], (C.1)

where 1M is a M ×1 vector with all entries equal to 1 and
⊗

denotes the Kroenecker

product; T is defined as follows:

T
4
= diag(FHXH

1,n FHXH
1,n · · ·FHXH

M,n), (C.2)

where diag(·) denotes block diagonal matrix appropriately formed.

Substituting (C.1) into (7.26), we have

[An + βT(1M

⊗

Gn) − IMLh
]ĥ(k)

n = βT(1M

⊗

rn) + (An − IMLh
)ĥ<ML>

n . (C.3)

(C.3) is satisfied for any value of ĥ
(k)
n , so that we have

An = IMLh
− βT(1M

⊗

Gn) = IMLh
− 1

M
Qn. (C.4)

Substituting (C.4) into the RHS of (C.3), we can verify that the RHS also equals

zero.
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Next, we consider the SAGE Algorithm. For the kth iteration and the corre-

sponding i, where i = 1 + [k mod M ], assume we have

ĥ(k+1)
n − ĥ<ML>

n = A(i)
n (ĥ(k)

n − ĥ<ML>
n ). (C.5)

Consider the case k = 0 and i = 1. Combining (7.20) - (7.24), we have

ĥ(1)
n = R1 + S1ĥ

(0)
n (C.6)

where

R1
4
= [rH

n X1,nF 0 · · · 0]H (C.7)

S1
4
=

























0 −FHXH
1,nX2,nF −FHXH

1,nX3,nF · · · −FHXH
1,nXM,nF

0 ILh
0 · · · 0

...
. . .

...

0 · · · 0 ILh
0

0 · · · 0 ILh

























. (C.8)

Substituting (C.6) into (C.5), we have

(S1 − A(1)
n )ĥ(0)

n = −R1 + (IMLh
− A(1)

n )ĥ<ML>
n . (C.9)

(C.9) is true for any value of ĥ
(0)
n , so that we have

A(1)
n = S1 = IMLh

− (e1 · eH
1 )Qn. (C.10)

Substitute (C.10) into RHS of (C.9), we can verify that the RHS also equals to

zero. Similarly, we can show

A(i)
n = IMLh

− (ei · eH
i )Qn, (C.11)
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where ei = [0 · · · ILh
· · ·0]H , is a MLh × Lh block matrix, with the ith Lh × Lh block

equal to ILh
. An for the SAGE algorithm can be shown as (according to [56]),

An =

M
∏

i=1

A(i)
n = IMLh

− LT (Qn)−1Qn. (C.12)

If in the SAGE algorithm the message update at the check node is performed

simultaneously for each variable node, we can show

ĥ(k+1)
n = T(1M

⊗

rn) + (IMLh
− Qn)ĥ(k)

n . (C.13)

Following the same procedure as in the derivation of An for the EM algorithm,

we can easily show that

An = IMLh
− Qn. (C.14)
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APPENDIX D

COMPLEXITY COMPARISON OF EM-TYPE ALGORITHMS AND STC

Consider solving (7.10) using Greville’s method (pp. 223 of [73]). Here, we briefly

introduce the algorithm for quick reference. Suppose we need to compute A†y, where

A is a matrix of size N×ML, y is a N×1 vector and † denotes pseudo-inverse. Let Ak

denote the matrix formed by the first k columns of matrix A, where k = 2, . . . , ML.

Partition Ak as Ak = [Ak−1 ak] and denote Ã = [A y]; Greville’s iterative algorithm

is then [73]

A
†
kÃ =







A
†
k−1Ã − dkb

H
k Ã

bH
k Ã






, (D.1)

where dk is the kth column of A
†
k−1Ã. Let ck = ak − Ak−1dk. If ck = 0, then

bH
k Ã = (1 + dH

k dk)
−1dH

k A
†
k−1Ã. (D.2)

If ck 6= 0,

bH
k Ã = (cH

k ck)
−1cH

k Ã. (D.3)

Ignore the number of multiplications that are of order O(ML) or O(N). At the

kth iteration, assuming ck 6= 0, computing ck, bH
k Ã and dk(b

H
k Ã) takes (k − 1)N ,

N(ML + 1) and (k − 1)(ML + 1) multiplications, respectively. The total number of

multiplications, V , can be computed easily as:

V =

ML
∑

k=2

[(k − 1)N + N(ML + 1) + (k − 1)(ML + 1)] ≈ 1.5(ML)2N + 0.5(ML)3.

(D.4)
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If ck = 0, we have V = 2(ML)2N + 0.5(ML)3. Therefore, Greville’s algorithm does

not reduce the complexity order. Here is an example of rough comparison of STC

and EM-type algorithms with parameter settings similar to those used in the sim-

ulation. For M = 2 and N = 128, 13-tap-STC and 7-tap-STC require 138580 and

39004 multiplications respectively according to (D.3). In the worst case, a channel

profile may require all 17-taps to be used for an accurate channel estimation; then,

the required number of multiplications is 241604. If one directly computes Qn, Pn

and Q−1
n , the required approximate number of multiplications for a 7-tap-STC, 13

tap-STC, and 17-tap STC are 4088, 18920 and 40648, respectively. Here we simply

assume the coefficient associated with O((ML)3) is 1, thus the number of multipli-

cations is computed as (M + 0.5 ∗ M(M − 1)) ∗ 0.5 ∗ Nlog2N + (ML)3. Note that

the actual coefficient might be 2 or 2.5 as suggested by setting N = ML in the equa-

tions used to compute V . In contrast, EM-type algorithms require approximately

MNiterN log2(N) multiplications, which is 5376, 10752 and 17920 for Niter equal to

3,6 and 10, respectively. Since Niter = 3 is enough for SAGE and 10 is enough for EM

in this case, SAGE is much less complex than a 13-tap-STC, while the EM algorithm

is of comparable complexity as a 13-tap-STC. These comparisons might become even

more favorable for SAGE as the number of transmit antennas increases.
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