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ABSTRACT 

 

Accounting for the Effects of Rehabilitation Actions on the Reliability of Flexible 

Pavements: Performance Modeling and Optimization. (August 2008) 

Vighnesh Prakash Deshpande, B.E., Sardar Patel College of Engineering, Mumbai 

Co-Chairs of Advisory Committee:  Dr. Ivan Damnjanovic 
 Dr. Paolo Gardoni 

 

A performance model and a reliability-based optimization model for flexible pavements 

that accounts for the effects of rehabilitation actions are developed. The developed 

performance model can be effectively implemented in all the applications that require 

the reliability (performance) of pavements, before and after the rehabilitation actions. 

The response surface methodology in conjunction with Monte Carlo simulation is used 

to evaluate pavement fragilities. To provide more flexibility, the parametric regression 

model that expresses fragilities in terms of decision variables is developed. Developed 

fragilities are used as performance measures in a reliability-based optimization model. 

Three decision policies for rehabilitation actions are formulated and evaluated using a 

genetic algorithm. The multi-objective genetic algorithm is used for obtaining optimal 

trade-off between performance and cost.  

To illustrate the developed model, a numerical study is presented. The developed 

performance model describes well the behavior of flexible pavement before as well as 

after rehabilitation actions. The sensitivity measures suggest that the reliability of 

flexible pavements before and after rehabilitation actions can effectively be improved by 
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providing an asphalt layer as thick as possible in the initial design and improving the 

subgrade stiffness. The importance measures suggest that the asphalt layer modulus at 

the time of rehabilitation actions represent the principal uncertainty for the performance 

after rehabilitation actions. Statistical validation of the developed response model shows 

that the response surface methodology can be efficiently used to describe pavement 

responses. The results for parametric regression model indicate that the developed 

regression models are able to express the fragilities in terms of decision variables. 

Numerical illustration for optimization shows that the cost minimization and reliability 

maximization formulations can be efficiently used in determining optimal rehabilitation 

policies. Pareto optimal solutions obtained from multi-objective genetic algorithm can be 

used to obtain trade-off between cost and performance and avoid possible conflict 

between two decision policies. 
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CHAPTER I 

INTRODUCTION 

Pavements represent a major part of the nation’s transportation infrastructure. With 

utilization and aging, the condition of pavements deteriorates requiring periodic repairs 

and maintenance to sustain their functionality. It is estimated that flexible pavements 

comprise approximately 60 percent of the total paved public roads in the U.S., or 

approximately 500,000 miles [1]. Just to maintain the current condition of these roads, 

the American Association of State Highway and Transportation Officials (AASHTO) 

estimates that transportation agencies across the U.S. will need to increase spending by 

approximately 42 percent [2]. 

Managing such large network of flexible pavements requires timely preventive 

maintenance and planned rehabilitation actions. In pavement engineering applications, 

preventive maintenance represents a planned strategy of treatments such as fog seals, 

microsurfacing, crack seals and other treatments designed to slow down the deterioration 

process without increasing the pavement structural capacity. On the other hand, 

rehabilitation actions represent activities that increase pavement structural capacity, such 

as pavement overlays. Both preventive maintenance and rehabilitation actions should be 

planned in an optimal manner as they require substantial financial, manpower, and 

equipment recourses. Typically, preventive maintenance and rehabilitation actions are 

planned as a part of a design strategy that minimizes pavement’s life-cycle costs. 

Life-cycle cost analysis takes into account all the costs incurred during pavement 

life. In addition to initial construction cost, life-cycle costs include preventive ______________ 
This thesis follows the style of Journal of Reliability Engineering and System Safety. 



2 
 

maintenance costs, rehabilitation costs, as well as users’ costs (e.g., time related, vehicle 

operating, safety, and environmental costs) [3]. Hence, for the assessment of life-cycle 

costs, it is crucial to evaluate pavement performance throughout its service life – before, 

as well as after the application of preventive maintenance and rehabilitation actions. 

Therefore, performance prediction models are essential to the economical design of 

pavements. 

In general, performance prediction can be either deterministic, using sometimes 

conservative (biased) estimates that ignore the inherent uncertainties in the pavement 

performance and deterioration, or probabilistic. The probabilistic nature of pavement 

deterioration arises from two different sources of uncertainty: uncertainty in pavement 

utilization (random input) and uncertainty in pavement response (random output). Since 

pavement structures are type of infrastructure facilities associated with large response 

and utilization uncertainties, it is important to explicitly account for them in developing 

pavement performance models.  

Over the years, a number of researchers have developed probabilistic pavement 

performance models for both project-and network-level applications. Typically network-

level performance models [4-6] take into account the effects of rehabilitation, but 

generally do not consider pavement characteristics and fatigue failure mechanics. 

Reliability models are probabilistic models that can take into account pavement 

characteristics and utilization patterns in the specification of propensity functions. 

Reliability models predict the probability that pavement will perform its intended 

function under a given set of conditions over a specified period of time. If the failure 
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event is well defined, reliability models can be effectively used to predict the 

performance of flexible pavement [7]. The concept of reliability has been implemented 

in modeling pavement performance [7-11]. Zhang and Damnjanovic [7] developed a 

model based on the Method of Moments technique (MOM) that has ability to express the 

reliability function as a closed-form function of basic random variables. The advantage 

of a closed-form function is its suitability for implementation in optimization models. 

Alsherri and George [8] developed structural reliability model based on Monte Carlo 

simulation (MCS). Zhou and Nowak [9] developed system and individual component 

reliability models based on special sampling technique. Chua et al. [10] and Darter et al. 

[11] developed models based on a mechanistic approach for predicting pavement 

distresses in terms of material behavior and structural responses. However, these models 

do not explicitly consider the effect of rehabilitation actions on pavement reliability, 

which is an important shortcoming for their effective implementation in life-cycle cost 

analysis. 

The objective of the research is to develop a model that is able to take into 

account the effects of planned rehabilitation actions on the reliability of flexible 

pavements. The developed model considers multiple failure criteria (fatigue cracking 

and rutting). The model is based on the solution from a multilayer linear-elastic analysis 

to obtain pavement mechanistic responses (tensile and compressive strains) before and 

after the application of rehabilitation actions. In the linear elastic theory, directional 

stresses and strains are obtained by assuming a stress function that satisfies the 

differential equation for specified boundary conditions. Since the differential equation 
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for the layered system cannot be solved analytically, it is solved numerically for 

specified boundary conditions. Hence the relation between pavement responses and 

input decision variables that controls responses are implicit and pavement response 

model can be termed as black-box model. 

Conventionally, the reliability is evaluated using Monte Carlo simulation (MCS) 

technique. However, the MCS technique typically requires a relatively large number of 

simulations in order to obtain sufficiently accurate estimates of failure probabilities and 

it becomes impractical to simulate the black-box model thousands of times. In the 

research, an alternative approach of response surface methodology (RSM) is explored 

for evaluating the reliability. The objective of RSM in reliability analysis is to 

approximate the implicit responses into a closed-form function. The developed response 

model is computationally simple and can be easily simulated to obtain reliability 

estimates. 

Typically in reliability analysis, the performance is modeled in terms of 

fragilities. The fragility in the simple words can be defined as the conditional probability 

of failure given the level of demand. However, the fragilities are the functions of 

decision variables (layer thickness, layer modulus of elasticity) in the sense that stronger 

the pavement lesser is the failure probability and vice versa. The fragilities that are 

expressed in terms of decision variables can be efficiently used in optimization 

formulations. In the research, a parametric regression model is developed to express 

pavement fragilities as the function of decision variables. 
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The primary objective while determining the optimal rehabilitation action is 

safety in performance and economy in design. In addition to balance between safety and 

economy, since the decision variables that control the performance of flexible pavements 

are uncertain, it is necessary to account for the uncertainty in performance. Therefore 

probabilistic optimization technique that accounts for uncertainties is necessary while 

optimizing the rehabilitation actions for flexible pavements. One of the probabilistic 

optimization techniques is reliability-based optimization (RBO). The RBO can be 

efficiently used in balancing the needs between safety in performance and economy in 

design. Though the use of RBO seems attractive and has advantages, the RBO problems 

are complex and require a robust optimization technique that can provide a global 

optimal solution. Traditional optimization techniques which include gradient projection 

algorithms are robust in finding a single local optimal solution. However, complex 

domain like in RBO can have more than one optimal solutions and therefore more robust 

technique is required that can find a near-global solution. In the research, Genetic 

Algorithm (GA) is used because of its efficiency in finding a near-global solution. The 

GA performs a global and probabilistic search thus increasing the likelihood of obtaining 

a near-global solution. 

The remainder of the report is organized as follows. In the next section, models 

for pavement reliability are introduced followed by a review on general repair models 

that account for the effects of rehabilitation actions. In the Chapter II, formulation of 

pavement responses using multilayer linear-elastic analysis is presented. Next the model 

formulation and solution approach is described followed by a numerical example. In 
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Chapter III, response surface methodology and parametric regression modeling of 

fragilities is described followed by numerical example. In Chapter IV, reliability-based 

optimization and problem formulations is discussed followed by discussion on Genetic 

Algorithm. A numerical example is presented to illustrate the developed methodology 

for optimization. Finally a conclusion is presented that summarizes the entire research 

along with important observations.  

1.1 Pavement Reliability 

Reliability models are probabilistic models that predict the probability that a component 

or system will perform its intended function under a given set of conditions at a 

particular instant or over a specified period of time. Limit state functions can be defined 

in a number of different ways to describe whether a specified level of performance is 

met or not. Examples of performance level include safety against collapse, and loss of 

serviceability. Based on design equations and practice, failure events for flexible 

pavements can be mathematically defined using transfer and traffic utilization functions. 

Hence structural limit state functions can be mathematically defined and used to develop 

pavement performance models. 

Pavement reliability generally considers the remaining life expressed as a 

difference between the number of load applications, CN  (capacity), a pavement can 

withstand before failing to meet a specified performance measure, such as roughness or 

rutting, and the number of load applied, DN (demand) [8]. The failure of a pavement 

section occurs when D CN N≥ . The corresponding limit state function ( , )g tx , where x  
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denotes a vector of n  basic variables and t  is the time, can be defined as 

[ ]( ) ( ) ( , )C Dg N N t= −x x x . The probability that D CN N≥  also referred as the probability 

of failure FP , can then be mathematically defined as 

( ), 0FP P g t= ≤⎡ ⎤⎣ ⎦x  (1) 

where, [ ]P ⋅  represents probability that the event ( , ) 0g t ≤x  will occur. Conversely, the 

reliability Rel , which in this context is defined as a probability that the pavement will 

perform its intended function, can be defined as follows 

( )Rel 1 , 0fP P g t= − = >⎡ ⎤⎣ ⎦x  (2) 

Standard reliability techniques including MCS and the first- and second-order reliability 

methods (FORM and SORM) [12, 13, 14] can be used for the solution of Eq. 1 when a 

closed-form in not available.  

1.2 Repair Models and Effects of Pavement Rehabilitation 

While typical reliability models do not consider the effects of repairs and rehabilitation, 

a general class of stochastic repair models is able to account for them. The basic 

assumption in these models is the efficiency of repair actions. Two extremes in modeling 

this efficiency exist: minimal repair, and perfect repair. These effects can be observed on 

their impact on a rate of occurrence of failures (ROCOF) function, which is similar to 

the failure, or hazard, rate function in reliability theory. Minimal repairs, or the actions 

that leave the system in an “As Bad as Old” condition, do not change the ROCOF failure 
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function, or in other words, do not reduce the hazard rate. On the other hand, perfect 

repairs, or the actions that leave the system state in an “As Good as New” condition, 

change the ROCOF function. After the application of a perfect repair action, the system 

is effectively in the initial “As Good as New” state. While the concept of minimal 

repairs is tied to a description of the non-homogeneous Poisson process (NHPP), perfect 

repairs are modeled through application of a renewal process (RP). However, in reality, 

the effects of repairs and rehabilitation actions on a pavement system are neither 

minimal, nor perfect. 

Literature on stochastic repair models reports a class of imperfect models that are 

able to handle situation in which the effect of repair is neither minimal, nor perfect. 

Brown and Proschan [15], Lin et al. [16], and Doyen and Gaudoin [17] have proposed 

different types of imperfect repair models. In general there are two approaches to model 

the effect of imperfect repairs: 1) the approach used in the Brown-Proschan model 

assumes that a system after a repair attains an “As Good as New” state with probability

p , and an “As Bad as Old” state with probability 1- p , and 2) an approach that 

considers a direct effect of repair actions on the ROCOF function. 

Doyen and Gaudoin [17] developed two arithmetic reduction models that take 

into account direct effect of repair actions on the ROCOF function. Arithmetic 

Reduction of Intensity model (ARI) considers a one-time reduction of the failure 

intensity (ROCOF), while the rate of ROCOF stays the same as before the failure. In 

contrast, imperfect repairs in Arithmetic Reduction of Age model (ARA) reduce the 

failure intensity to its initial value, and also change the rate of ROCOF. 
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Even though these models are widely applied in modeling repairs of complex 

mechanical and electrical systems, their applicability to civil infrastructure is limited. 

First, these models do not consider the case when a repair action leaves the system in a 

“Better than New” state. For example, some rehabilitation actions, such as construction 

of a structural overlay can leave the pavement condition with a structural capacity that is 

greater than the initial one. Second, these repair models do not consider the failure 

mechanism of the system, which is an important consideration in the mechanistic-

empirical approach to pavement design. 

The effect of rehabilitation actions on pavement reliability has not been 

extensively studied. In deterministic settings, Abaza [3] proposed a model to take into 

account the impact of overlays on pavement’s structural number (an indicator of 

pavement strength), while Ouyang and Madanat [18] proposed roughness improvement 

functions. Paterson [19] developed a model that considers the effectiveness of pavement 

rehabilitation under various conditions. This model is based on a rehabilitation intensity 

function that estimates the roughness before and after the application of a resurfacing 

action. In probabilistic terms, Damnjanovic [20] developed an analytical model that can 

take into account the effects of planned rehabilitation actions. This model is able to 

capture the stochastic nature of the pavement performance after the application of 

rehabilitation, but it does not consider mechanistic responses of a pavement structure in 

the limit state function. The next section presents a framework for modeling the effect on 

rehabilitation actions on pavement’s responses and their impact on a component and 

system-level reliability.  
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CHAPTER II 

MODELING THE EFFECTS OF REHABILITATION ACTIONS ON 

THE RELIABILITY OF FLEXIBLE PAVEMENTS 

2.1 Model Formulation 

The objective of the research is to develop a model that takes into account the effects of 

planned rehabilitation actions on the reliability of flexible pavements. The model 

considers multiple failure criteria (fatigue cracking and rutting) at the component level, 

and their combined effects at a system-level reliability. The performance of flexible 

pavements can be described as a series system, where the failure of the system occurs if 

any of its components fails. Determining the system reliability requires the mathematical 

formulation of the limit state functions for each component. Let fg  and rg  represent the 

limit state functions for the fatigue cracking and rutting failure criteria, respectively. The 

limit state function sysg  for the flexible pavement system can then be written such that 

( ) ( ) ( )0 , 0 , 0sys f rg t g t g t⎡ ⎤ ⎡ ⎤≤ = ≤ ∪ ≤⎣ ⎦ ⎣ ⎦x x  (3) 

2.1.1 Modeling Component Level Demand and Capacity 

The capacity and demand in the limit state functions for each failure criterion can be 

modeled in terms of the load applications or yearly number of 18-kip equivalent single-

axle load, ESAL and the corresponding accumulated ESAL. With specified yearly traffic 
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growth rate,ω , and ESAL at 0t = , the accumulated ESAL (demand) at any time t , 

( , )DN tx , can be obtained as 

( ) ( ) ( ), , 1D DN t N t ESAL t= − +x x                      1, 2,3,t = …  (4) 

where ( ) (1 ) (0)tESAL t ESALω= + ×  is the ESAL in year t . 

2.1.1.1 Fatigue Cracking 

In a mechanistic-empirical approach to pavement design, the maximum tensile strain, tε

, at the bottom of the asphalt layer is considered to control the allowable number of 

repetitions for fatigue cracking. This critical strain is used in transfer functions to predict 

the performance of flexible pavement for fatigue cracking [21] 

( ) ( ) ( )2 3

1f

f f
C tN f Eε − −=x  (5) 

where, 
fCN  is the allowable number of load repetitions (capacity) before the fatigue 

cracking occurs, E  is the modulus of surface asphalt layer, and 1f , 2f , and 3f  are 

empirical coefficients determined from tests and modified to reflect in-situ performance. 

Once the allowable load repetitions are defined, the limit state function for fatigue 

cracking can be formulated as 

( ) ( ) ( ), ,
ff C Dg t N N t= −x x x  (6) 

2.1.1.2 Rutting 

The design methodology for flexible pavement commonly considers a maximum 

compressive strain cε  at the top of a subgrade layer as the controlling response for 
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rutting. Based on empirical equations developed using laboratory tests and field 

performance data, the allowable load repetitions for rutting can be expressed as [21] 

( ) ( ) 5

4r

f
C cN f ε −=x  (7) 

where, 
rCN  is the allowable number of load repetitions (capacity) for rutting, and 4f and 

5f  are coefficients determined from tests and modified to reflect in-situ performance. 

Finally the limit state function for rutting can be formulated as 

( ) ( ) ( ), ,
rr C Dg t N N t= −x x x  (8) 

The quantities in Eq. 5 and 7 are random and are not readily available. They are 

functions of the basic variables x  and can be computed using pavement response 

models that are based on the theory of linear elasticity. 

2.1.1.3 Pavement Response Model 

Figure 1 shows the typical flexible pavement section for which the critical responses are 

the functions of  

{ , , }=x h E v  

where, h , E , v  are the corresponding vectors of layer thicknesses, layer moduli and 

layer Poisson’s ratios, respectively, while, q  and a  represents the intensity and the 

radius of the applied circular load (e.g., single axle load). Pavement responses can be 

determined with an assumption that the pavement structure behaves as linear elastic 

layered system. The linear elastic theory is based on the following assumptions [21]: 1) 

each layer i  is homogeneous, isotropic, and linearly elastic with modulus iE  and 
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Poisson ratio iv , 2) each layer has a finite thickness ih , except the bottom layer that has 

no lower bound, 3) continuity conditions are satisfied at each layer interface in terms of 

vertical stresses, shear stresses, and vertical displacements. 

 

Figure 1: Flexible pavement section 

 

Based on the assumptions of linear elastic theory, directional stresses can be obtained by 

assuming a stress function φ  for each layer that satisfies the following 4th order 

differential equation 

2 2 2 2

2 2 2 2

1 1 0
r r r z r r r z

φ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

+ + + + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 (9) 

where, r  and z represents cylindrical coordinates in radial and vertical directions 

respectively. Using the stress function, the directional stresses can be computed as 



14 
 

2
2

2(2 )z z z
φσ ν φ

⎡ ⎤∂ ∂
= − ∇ −⎢ ⎥∂ ∂⎣ ⎦

 (10)

2
2

2( )r z r
φσ ν φ

⎡ ⎤∂ ∂
= ∇ −⎢ ⎥∂ ∂⎣ ⎦

 (11)

2 1( )t z r r
φσ ν φ∂ ∂⎡ ⎤= ∇ −⎢ ⎥∂ ∂⎣ ⎦

 (12)

where, zσ , rσ , and tσ  are the stresses at the points under consideration in the vertical, 

radial and tangential directions, respectively. 

Even though the differential equation, presented in Eq. 9, cannot be solved 

analytically, it can be solved numerically for specified boundary conditions. Appendix A 

describes the approach used in the research to solve Eq. 9, 10, 11, 12. Once the stresses 

are computed, the strains required for capacity modeling can be computed as 

[ ]1 ( )t z r tE
ε σ ν σ σ= − +  (13)

[ ]1 ( )c t z rE
ε σ ν σ σ= − +  (14)

where, E  is the modulus of the layer at which the strains are computed. 

The effects of rehabilitation actions are incorporated in the capacity model by 

assuming that an overlay of certain thickness is to be constructed over the existing 

pavement at the time of rehabilitation. After the application of the overlay, the pavement 

structural system is changed. Therefore, the developed model recalculates the pavement 

responses to reflect its new structural specification, and determines the new level of 

allowable number of ESAL  for each failure criteria,
 fCN  and 

rCN . 
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When recalculating pavement responses, two important assumptions are made: 1) 

after the application of an overlay, the tensile strain at the bottom of the overlay is 

considered to be the controlling response for determining the allowable repetitions for 

fatigue cracking, and 2) the modulus of the asphalt layer is updated to reflect its new 

value. The first assumption can be generalized to include any specification of the 

controlling tensile strain. The current assumption conforms to the case when thicker 

overlays are considered. The second assumption represents a reasonable assumption 

since with the utilization and aging the modulus of the asphalt layer decreases. 

Therefore, for the model to capture the true effects of rehabilitation actions, it is 

important to accurately predict the modulus of the asphalt layer before a rehabilitation 

action is undertaken. 

2.1.2 Deterioration of the Asphalt Modulus 

The modulus deterioration process of the asphalt material is regarded as a fatigue 

damage process caused by repetitive loading. Stiffness ratio ( )SR  is typically used to 

quantify the fatigue damage in the asphalt layer. Stiffness ratio is a normalized quantity 

that normalizes the stiffness value relative to its initial value. Figure 2 shows a change in 

asphalt modulus of a top layer with utilization over a period of time. As illustrated in 

Figure 2, in general, decrease in SR is nonlinear and similar to change in reliability over 

time/utilization. Since layers moduli, together with thicknesses of layers fully define 

behavior of a pavement system in term of its responses, to obtain pavement responses 

after application of rehabilitation actions, modulus of top layer at the time of application 

of rehabilitation actions needs to be estimated.  
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Researchers have developed a number of models to predict the deterioration of 

the modulus of asphalt layers. Attoh-Okine and Roddis [22] developed a deterioration 

model based on data obtained from ground penetrating radar (GPR). Ullidtz [23] 

developed an incremental-recursive model based on a mechanistic-empirical approach. 

This incremental-recursive model works in time increments and uses output from one 

season recursively as input for the next. Tsai et al. [24] suggested the application of the 

Weibull theory for developing the incremental-recursive model. 

 

Figure 2: Typical system reliability and asphalt modulus behavior 

Without loss of generality, we adopted a Weibull approach to model nonlinear 
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[ ]{ }2

2

( )( ) exp ( )
( 0) D

E tSR t N t
E t

ολ= = −
=

 (15) 

where, λ  and ο  are the scale and shape parameters, respectively. 

With utilization, a crack initiates in an asphalt layer and propagates from micro 

scale to macro scale. When cracking reaches certain level, water may infiltrate the 

pavement system, further reducing the modulus.  The effect of this excessive cracking 

and water infiltration can be accounted for by multiplying Eq. 15 by a constant (≤ 1) that 

depends on the anticipated condition of the damaged system at the time of rehabilitation. 

With an updated structural system and recalculated responses, the limit state functions 

for the rehabilitated system can be formulated. Once the limit state functions ( fg , rg , 

and sysg ) are defined, the component and system reliability can be determined using 

standard structural reliability techniques [12, 13, 14]. 

2.1.3 Accounting for Correlation in the Basic Random Variables 

Generally, the information on basic random variables is available in the form of 

marginal distributions and correlation coefficients. However, in addition to marginal 

distributions, reliability analysis requires evaluation of the joint probability density 

function (PDF) of the basic random variables. Most of the pavement reliability models 

assume independence between random variables and this reduces the joint PDF to the 

product of marginal distributions. To evaluate the joint PDF of non-negative (as those 

considered here) and hence non-normal basic random variables accounting for their 

correlation, a multivariate distribution model with known marginal distributions and 
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correlation matrix needs to be constructed. This join PDF can be constructed using either 

Rosenblatt [25] or Nataf transformations [26]. 

However, due to the limitation in the range of applicability of the Rosenblatt 

transformation, in the research, the Nataf transformation is used to evaluate joint 

probability. The Nataf transformation is applicable to a wider range of the correlation 

coefficients. With known marginal distributions of the basic random variables in x  and 

correlation matrix [ ]ijρ=R , the joint PDF is written as 

( ) ( ) ( ) ( )
( ) ( )1

1

, o
n

n

f f x f x
z z
ϕ

ϕ ϕ
=

z R
x …

…
 (16)

where ( )ϕ ⋅  is the standard normal PDF, the transformation to the correlated standard 

normal variables z  can be obtained as  

( )1
ii X iz F x− ⎡ ⎤=Φ ⎣ ⎦  (17)

where, ( )Φ ⋅ is the standard normal cumulative distribution function (CDF) and 

,[ ]o o ijρ=R  is such that 

2 ,( , , )j ji i
ij i j o ij i j

i j

xx z z dz dz
μμρ ϕ ρ

σ σ

∞ ∞

−∞ −∞

⎛ ⎞−⎛ ⎞−
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫ ∫  (18)

where, iμ , jμ , iσ , and jσ  are the means and standard deviations of ix  and jx , and 

2 ( )ϕ ⋅  is the 2 dimensional normal PDF with zero means, unit standard deviations and 

correlation coefficient ,o ijρ . 



19 
 

Modified correlation coefficients 'ijρ  are obtained by solving Eq. 18 iteratively 

for each pair of marginal distributions and known ijρ . Alternatively, 'ijρ  can be 

computed using following relation [26] 

where, F  is a function of ijρ  and the marginal distributions of ix  and jx  and  variables 

and is available in Liu and Kiureghian [26] for different combinations of marginal 

distributions. 

2.2 Solution Approach 

With the defined limit state function, the probability of failure for the system and each 

failure criteria can be obtained by solving the following multi-dimensional integral 

[ ]
( )

( )
0

( ) 0 .....
k

k

F k
g

P P g f d
≤

= ≤ = ∫ ∫
x

x x x  (20) 

where, k  corresponds to the system, fatigue cracking and rutting limit states. In this 

research, the probability integral in the Eq. 20 is evaluated using MCS. 

2.2.1 Sensitivity Analysis and Importance Measures 

Sensitivity and importance measures can be computed to assess what the effects of 

changes in the parameters and the random variables are on the fatigue and rutting 

reliability. 

'ij ijFρ ρ= ×  (19)
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2.2.1.1 Sensitivity Analysis 

Sensitivity analysis is used to determine to which parameter(s) the reliability is most 

susceptible. Let ( , )ff x Θ  be the probability density function of the basic random 

variables in x , where fΘ  is a set of distribution parameters (e.g. mean, standard 

deviation, correlation coefficient or other parameters describing the distribution of 

variables in x ). The sensitivity measure for each parameter is given by computing the 

gradient of the reliability index, β , for each failure criteria with respect to each 

parameter and can be expressed as [27] 

,f f

Tβ∇ =Θ u* ΘJ α  (21)

where α  is the vector defined as 

*
*sgn( )

|| * ||
β β= ∇ =u

uα
u

 (22)

where, *u  is the most likely failure point (design point) in standard normal space, 

sgn( )⋅  is the algebraic sign of β , *β∇u  is the gradient vector of β  with respect to *u ,

⋅& &  is the Euclidian norm of the given function, , fu* ΘJ  is the Jacobian of the probability 

transformation from the original space x  to the standard normal space u with respect to 

the parameters fΘ  and computed at ∗u . 

To make the elements in 
f
β∇Θ  comparable, 

f
βΘ∇  is multiplied by the diagonal 

matrix D  of the standard deviations of the variables in x  to obtain the sensitivity vector 

δ : 
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f
βΘ= ∇δ σ  (23)

The vector δ  is dimensionless and makes the parameter variations proportional to the 

corresponding standard deviations, which are measures of the underlying uncertainties. 

2.2.1.2 Importance Measures 

The limit state function is defined by the probabilistic capacity and demand models of 

ESAL’s. Each random variable in x  has a different contribution to the variability of the 

fatigue and rutting limit state functions. Important random variables have a larger effect 

on the variability of the limit state function than less important random variables. 

Knowledge of the importance of the random variables can be helpful while optimizing 

the performance of pavement structures. In addition, a reliability problem can only 

consider the uncertainty of the important variables thus simplifying the process for 

engineering applications. 

The importance vector ( γ ) for the basic random variables in original space can 

be obtained as [28] 

,

,

'
|| ' ||

T
T

T J
= u* x*

u* x*

α J D
γ

α D
 (24)

where 'D  is the standard deviation diagonal matrix of the equivalent normal variables 

'x , defined by the linearized inverse transformation ' ( )= + −x*,u*x x* J u u*  at the design 

point. Each element in 'D  is the square root of the corresponding diagonal element of 

the covariance matrix T′Σ = x*,u* x*,u*J J  of the variables in 'x . 
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2.3 Numerical Example 

To illustrate the developed model, a numerical study is conducted for a typical flexible 

pavement section. The flexible pavement section at the time of construction consists of 

three layers over which an overlay was constructed at the time of rehabilitation. A MCS 

technique was used to estimate the failure probability of the pavement system, 

considering the basic random variables in the limit state functions. Table 1 lists all the 

basic variables x  that enter into the models described above, along with the values of 

the parameters fΘ . Based on physical and geometrical constrains, all the variables are 

assumed to follow a lognormal distribution. The probability of failure, and the sensitivity 

and importance measures are estimated at each time t  (1 11t≤ ≤  years). To determine 

the effects of the correlation between the random variables on the performance of the 

pavement, estimates are obtained considering both correlated and uncorrelated variables. 

Being a more realistic scenario, the sensitivity and importance measures are estimated 

only for the case with correlated variables. 

Figure 3 shows the reliability estimates for uncorrelated variables, before and 

after the rehabilitation obtained for the pavement system (solid line) and the two 

individual failure criteria (fatigue cracking, dotted line, and rutting, dashed line). It is 

observed that shortly after construction and the rehabilitation action, the reliability of 

pavement is more vulnerable to rutting, due to plastic deformations of the layers. Fatigue 

cracking becomes more prominent with time as the accumulated traffic increases. Figure 

4 shows the comparison of the reliability estimates of the system failure for the 

correlated and uncorrelated variables. It is observed that the system reliability increases 
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for the correlated variables indicating that accounting for the correlation between 

variables improves the performance of pavement. Given that the variables in real 

pavements are likely to be correlated, it is important to consider their correlations to 

accurately predict the performance of pavement and avoid underestimating the pavement 

reliability which might lead to an unnecessary early repair. 

 

Figure 3: Reliability estimates for pavement system and individual failure modes (fatigue cracking and 
rutting) obtained from the numerical study considering uncorrelated variables 
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Table 1: Variables considered in the numerical study (Zhang and Damnjanovic [7]) 

Variable Description Distribution 
type 

Mean Coefficient of 
variation (%) 

Overlay thickness ( 1h ) Lognormal 2.2 inches 15 % 

Overlay modulus ( 1E ) Lognormal 400,000 psi 20 % 

Asphalt layer thickness ( 2h ) Lognormal 4.5 inches 15 % 

Asphalt layer modulus ( 2E ) Lognormal 400,000 psi 20 % 

Base layer thickness ( 3h ) Lognormal 8 inches 15 % 

Base layer modulus ( 3E ) Lognormal 20,000 psi 20 % 

Subgrade layer modulus ( 4E ) Lognormal 10,000 psi 20 % 

Yearly ESAL growth rate ( gr ) Lognormal 0.08 20 % 

Initial ESAL ( 0tESAL = ) Lognormal 100,000 ESAL 20 % 

Poisson’s ratio    

Overlay ( 1v ) Deterministic 0.35 - 

Asphalt layer ( 2v ) Deterministic 0.35 - 

Base layer ( 3v ) Deterministic 0.3 - 

Subgrade layer ( 4v ) Deterministic 0.4 - 

Limit state function parameters    

1f  Deterministic 0.0796  - 

2f  Deterministic 3.291 - 

3f  Deterministic 0.854 - 

4f  Deterministic 1.365x10-9 - 

5f  Deterministic 4.477 - 

Loading     

Loading radius ( a ) Deterministic 3.78 inches - 

Tire pressure ( q )  Deterministic 100 psi - 
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Figure 4: Comparison of system reliability estimates obtained for correlated variables and uncorrelated 

variables 
 

The results of sensitivity analysis and importance measures are presented for the 

case of correlated variables. Figure 5 shows the sensitivity measures for the fatigue 

cracking to the means of the random variables used in this example. The positive value 

of a sensitivity measure indicates that the variable serves as a “resistance” (capacity) 

variable.  Conversely, negative value indicates a “load” (demand) variable. Before 

rehabilitation actions, it is observed the means of thickness of asphalt layer, 2( )hμ and 

initial traffic, [ (0)]ESALμ  are the variables to which the reliability is most sensitive 
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variable. Whereas, after rehabilitation actions, it is observed that the fatigue cracking 

becomes most sensitive to the mean of modulus of asphalt layer, 2( )Eμ  than 2( )hμ . 

Thus, with respect to the fatigue cracking failure mode, it is desirable to keep 

asphalt layer as thick as possible in the initial design. Furthermore, because the post-

reliability is most sensitive to 2( )Eμ , it is very important to evaluate the damaged 

condition of the modulus of the asphalt layer at the time of rehabilitation actions and any 

error in doing so can significantly affect accuracy of the estimated reliability of the 

system. In Figure 5, it is also observed that overlay layer modulus, 1E  act as a “load” 

variable. This is in conformance with behavior of flexible pavements with thin to 

moderate thickness asphalt layers where an increase in modulus of asphalt layer 

increases tensile strains; thus increases failure probability for fatigue cracking. It is also 

observed that the sensitivity to the mean of all the variables, except for 2( )hμ , decreases 

with time after initial load application and rehabilitation actions. The sensitivity of 

2( )hμ  increases with time following the application of rehabilitation action.  
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Figure 5: Sensitivities of the means of random variables for fatigue cracking estimates 
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increases tensile strains; thus increases failure probability for fatigue cracking. It is also 

observed that the sensitivity to the mean of all the variables, except for 2( )hμ , decreases 

with time after initial load application and rehabilitation actions. The sensitivity of 

2( )hμ  increases with time following the application of rehabilitation action.  

Similarly, Figure 6 shows the sensitivity measures for rutting to the means of the 

random variables used in this example. Before the rehabilitation action, it is observed 

that the rutting is most sensitive to the means of the thickness of asphalt layer, 2( )hμ  and 

the initial traffic, [ (0)]ESALμ . Similar to the fatigue cracking, in the initial design it is 

desirable to keep the asphalt layer as thick as possible also for rutting. Furthermore, it is 

observed that the sensitivity to the mean of the subgrade layer 4( )Eμ  is high indicating 

the importance of improving the stiffness of subgrade layer. After the rehabilitation, it is 

seen that the rutting is most sensitive to, ( )4Eμ . Thus improving stiffness of the 

subgrade layer can be helpful in the long run when considering the performance of the 

pavement against rutting. 
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Figure 6: Sensitivities of the means of random variables for rutting estimates 

 

Figure 7, shows the importance measures of the random variables for the fatigue 

cracking. For the importance measures, a negative value indicates a “resistance” variable 

and a positive value indicates a “load” variable. Before the rehabilitation action, it is 

observed that 2h  and (0)ESAL  are the most important “resistance” and “load” variables, 

respectively. Whereas, after the rehabilitation, the random variables 2E  and (0)ESAL  

are the most important. This is in conformance with results from the sensitivity analysis. 

It can be said that the behavior of the asphalt layer is critical for the performance of the 

pavement against fatigue cracking. 

0

0.2

0.4

0.6

0.8

1
δ 

= 
σ

 ∇
Θ

f β
 (S

en
si

tiv
iti

es
)

 

 

1 2 3 4 5 6 7 8 9 10 11

-0.2

-0.1

0

-0.3

Time (Years)

 

 

μ(h2)

μ(E2)

μ(h3)

μ(E3)

μ(E4)

μ(h1)

μ(E1)

μ(ESAL0)

μ(ω)



30 
 

 

Figure 7: Importance measures of the random variables for fatigue cracking estimates 
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improve reliability. 
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Figure 8: Importance measures of the random variables for rutting estimates 
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as the accumulated traffic increases, the contribution of the initial traffic to the total 

demand becomes less significant. 
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CHAPTER III 

USE OF RESPONSE SURFACE METHODOLOGY AND 

PARAMETRIC REGRESSION FOR MODELING THE 

FRAGILITIES 

3.1 Response Surface Modeling 

The pavement responses required for capacity modeling can be computed using 

pavement response model that is based on the theory of linear elasticity. In the linear 

elastic theory, directional stresses and strains are obtained by solving the 4th order 

differential equation. The differential equation for the layered system cannot be solved 

analytically and is solved numerically for specified boundary conditions. Therefore, the 

relation between pavement responses and input decision variables that controls 

responses are implicit and pavement response model can be termed as black-box model. 

Conventionally, the limit state function is evaluated using MCS technique. 

However, the MCS technique typically requires a relatively large number of simulations 

in order to obtain sufficiently accurate estimates of failure probabilities and it becomes 

impractical to simulate black-box model thousands of times. Under these circumstances, 

variance reduction techniques can improve the efficiency of MCS and significantly 

reduce the number of simulations. But even after using the variance reduction techniques 

and availability of advanced computers, the computation time is very large, then the 

black-box model can be categorized as very complex. Figure 9 shows the general 

categorization of analytical models based on computational time and structural reliability 
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methods that can be most suitably applied. Since the use of MCS technique becomes 

impractical for very complex models, use of alternative approaches that can provide 

accurate results seem to be justifiable. Based on the computational time, the pavement 

response model presented in the research can be categorized as very complex. In the 

research, an alternative approach of response surface methodology (RSM) is used to 

approximate the black-box model into a closed form function.  

 

Figure 9: Computational time for reliability analysis and suitable reliability methods 

 

3.1.1 Response Surface Methodology (RSM) 

The Response surface methodology has already been widely used in the field of 

reliability analysis [29-34]. The primary objective of RSM in reliability analysis is to 

approximate the implicit responses into a closed-form function of decision variables. 

The approximated function will be computationally simple and can be easily simulated 

to obtain reliability estimates. Typically, the approximated response model can be 

expressed as 

ˆ
ˆ ( )
y y
y f

π= +
= x

 (25)
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where, y  is the actual response, ŷ  is the estimated response, x  is the vector or matrix 

of decision variables, π  is the model error or residual and function f  can be a 

polynomial of any order. Since the pavement responses are non-linear, initially it is 

assumed that second order (quadratic) polynomial will fit appropriately. The general 

form of the second order polynomial can be expressed as 

1
2

0
1 1 1 1

n n n n

i i ii i ij i j
i i i j

y x x x xη η η η π
−

= = = >

= + + + +∑ ∑ ∑∑  (26)

where, 0η , iη , iiη , ijη  are the unknown coefficients to be estimated, n  is the number of 

decision variables. In the above polynomial, even though there are higher order terms, it 

is still a linear combination of variables in x  and can be expressed as  

0
1

l

i i
i

y zη η π
=

= + +∑  (27)

where, z  represents variables, squares of variables and interactions between variables, l  

is the total number of parameters in the polynomial. In quadratic polynomial for n  

variables there are ( 1)( 2) / 2l n n= + +  parameters. Suppose there are k  observations, the 

Eq. 27 can be expressed in matrix notation as 

= +y zη π (28)

where, 
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3.1.2 Least Square Estimation (LSE) 

The estimates of unknown coefficients η  in the quadratic polynomial can be evaluated 

using the least squares estimation technique. In the least square method, unknown 

estimates are obtained by minimizing the sum of the square of errors, ESS  

2

1

k

E i
i

SS π
=

= ∑  (29)

Therefore, the estimators η̂ of η can be obtained by solving following equation 

0ESS
η

∂
=

∂
 (30)

The solution to the Eq. 30 in the matrix notation is 

( ) 1ˆ ' −=η z z z'y  (31)

Once the parameters are estimated, the fitted response surface model can be expressed as 

ˆˆ =y zη  (32)

In least squares estimation, the estimates of coefficients are unbiased estimators under 

the assumption that the errors iπ  are normally distributed and statistically independent 

with zero mean and constant variance 2ς . The next step is to validate the fitted model.  

3.1.3 Statistical Validation of Fitted Model 

There are number of measures that can be used to statistically validate the model. Some 

of the very common measures that are used for statistical validation are discussed. One 

of the most common and simple measure to determine significance of the model is the 

coefficient of determination, 2R  which is obtained as [35].  
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2 R

T

SSR
SS

=  (33)

where, RSS  is the sum of the square due to regression and TSS  is the total sum of 

squares and can be computed as 

2

1ˆ ' '

k

i
i

R

y
SS

k
=

⎛ ⎞
⎜ ⎟
⎝ ⎠= −
∑

η z y  
(34)

T R ESS SS SS= +
 

(35)

where, ESS  is the sum of squares due to error defined in Eq. 29. Value of 2R  is between 

0 and 1 where 1 represents the best fit. However, one of the problems with 2R  is that it 

increases with the addition of variables in the model without giving information about 

usefulness of the new variable in the model. Adjusted 2
adjR  is more preferable as it has 

the advantage that it only increases if the added variable reduces the mean square error 

in the model. The adjusted 2
adjR can be computed as 

2 / ( )1
/ ( 1)

E
adj

T

SS k pR
SS k

−
= −

−
 (36)

Often root means square error ( %RMSE ) is used to determine overall accuracy 

of the fitted model. The %RMSE  defined by prediction error sum of squares ( )PRESS  

has advantage that it does not provide overly optimistic behavior of the model [36]. The 

PRESS  and %RMSE  statistics can be computed as 

2 2
( )

1 1

ˆ( )
k k

i i i
i i

PRESS y yπ
= =

= = −∑ ∑  (37)
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∑
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In addition to the above discussed statistics, residual plots can be efficiently used to 

validate the accuracy of the model. 

Coefficient of determination and %RMSE  can be used as the global statistics to 

validate the overall accuracy of the model. But in addition to overall accuracy, it is 

necessary to test whether linear relationship exists between response and design 

variables. This is usually tested using 0F  statistics that depend on sum of square of 

regression coefficients and error and degrees of freedom for the model and can be 

obtained as [35] 

0
/

/ ( )
R

E

SS nF
SS k l

=
−

 (39)

If the 0F  statistic is greater than desired value, it signifies the linear relationship between 

response and decision variables. 

3.1.4 Model Selection 

One of challenge in multiple regression analysis is to select important variables to be 

used in the model. In the quadratic polynomial, for n  variables there are 

( 1)( 2) / 2l n n= + +  variables and there is the always the possibility that some of the 

variables may not contribute significantly to the change in response. These variables can 

be removed from the developed response model without affecting the accuracy of 
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predicted response. Sometimes the presence of unwanted variables can also increase the 

error in the model. Therefore it is necessary to select a model that includes all the 

important variables.  

In the research, backward elimination process is used for model selection. In 

backward elimination, model development starts with all the parameters i.e. l . The 

model with l  parameters will have certain 2
adjR . Since the 2

adjR  only increases with 

addition of significant variable, the elimination of significant variable from the model 

will cause significant reduction in the value of 2
adjR . In multiple linear regression, 0t  is 

used to determine the significance of individual regression coefficient in the model and 

can be obtained as [35] 

0 2

ˆi

ii

t
C

η

ς
=  (40)

where, 2ς  is the estimate of the variance in the error term in the model and is computed 

as 2 / ( )ESS k lς = −  and iiC  is the variance of  the i th coefficient obtained from 

covariance matrix 1( ' )−=C z z . Once the model with l  parameters is developed and 0t  

statistics is obtained, elimination process is started wherein the variable with 0t  statistics 

closest to 0 is removed and the reduced model is checked for 2
adjR . This process is 

continued till there is a significant decrease in the value of 2
adjR . Final model will be 

one of best fitted model and can be validated for different tests as already discussed. 
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3.2 Modeling the Pavement Fragilities  

Typically in performance based design, the performance is modeled in terms of 

fragilities. Advantage of expressing performance in terms of fragilities is that the 

fragilities can be easily defined for different performance requirements. For instance, 

fragilities can be developed for performance measures like fatigue cracking, rutting, 

thermal cracking and other performance measures. Even within each performance 

measure, the fragilities can be developed for different performance indices like for 

instance, the fragilities for 10% and 45% cracking in fatigue. Developed fragilities then 

can be used as performance measures for different loading conditions like high traffic 

demand, low traffic demand, loading due to snow, etc. One of the most important uses of 

fragilities is that the fragilities expressed in terms of decision variables can be efficiently 

used in optimization formulations.  

The fragility in the simple words can be defined as the conditional probability of 

failure given the level of demand and can be expressed as 

[ ]/ ( ) 0 /F D DP P g N= ≤x  (41) 

where, the form [ ]( ) 0 / DP g N≤x  is the conditional probability of event ( ) 0g ≤x  given 

the values of DN . From the definition of conditional probabilities, the fragilities can be 

obtained by evaluating the limit state function for the deterministic demand. The 

uncertainty in the event ( ) 0g ≤x  for given DN  arises from the inherent randomness in 

the capacity variables in x . Once the fragility is obtained, it can be used to compute 



41 
 

failure probability of the system by accounting for uncertainties in the demand as 

follows 

[ ] [ ]
0

( ) 0 /F D D DP P g N P N dN
∞

= ≤∫ x  (42) 

where, [ ( ) 0 / ]DP g N≤x  is the fragility for given performance measure and [ ]DP N  is the 

distribution for the demand or hazard function. However, the fragilities are functions of 

decision variables (layer thickness, layer modulus of elasticity) in the sense that stronger 

the pavement lesser is the failure probability and vice versa. To express fragilities in 

terms of decision variables, in the research, a parametric regression model is developed 

for defining a closed-from function for fragilities.  

3.2.1 Parametric Regression Modeling 

Parametric modeling for failure probabilities is already a popular area in the field of 

lifetime data analysis [37]. The basic concept in parametric modeling for failure 

probabilities is to fit an appropriate model using the available failure data. The most 

common models used for parametric modeling are lognormal, extreme-type I, Weibull 

and logistic distribution models. Parametric modeling involves simply determining the 

distribution parameters that best fits the available failure data. However, the relation 

between decision variables and fragilities is of interest. The effect of decision variables 

can be incorporated in parametric model by specifying a relationship between 

distribution parameters and decision variables. Generally, for modeling the fragilities, 

use of two parameter lognormal distribution is very common [38] and parametric model 

for lognormal distribution can be expressed as 
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log( ) ( )( , ) D
D

NF N ψ
ξ

⎡ ⎤−
= Φ ⎢ ⎥

⎣ ⎦

xx
 

(43) 

where, ψ  and ξ  are the lognormal distribution parameters i.e. mean and standard 

deviation respectively, Φ  is the standard normal cumulative distribution function. In the 

above equation, the mean of lognormal distribution is made a function of decision 

variables in x . A linear specification is assumed between distribution parameter and 

decision variables and can be expressed as 

( )ψ =x c'x (44) 

where, c  is the vector of regression parameters to be estimated. Estimation of regression 

parameters falls in the category of non-linear regression and can be estimated efficiently 

using maximum likelihood estimation technique. 

3.2.2 Maximum Likelihood Estimation (MLE) 

The basic behind MLE is to determine the parameters that maximize the likelihood of 

the available observations. For the fragilities obtained using MCS technique, the limit 

state function is evaluated using binary numbers i.e. 1 for the failure event 0g ≤ and 0 

otherwise and the likelihood function can be expressed as [38]  

1
( , ) ( , ) 1 ( , )i i

i i

M e e

D i D i
i i

L F N F Nξ
−

=

⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦∏c x x
 

(45) 

where, ( )F ⋅  is the fragility curve, M  is the total number of pavement sections 

simulated, 
iDN  is the demand to which pavement i  is subjected, 1ie =  or 0  depends on 

the state of limit state. The likelihood function defined in Eq. 45 is maximized to obtain 

parameter estimates and can be computed easily using standard optimization algorithms. 
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Once the parameters are estimated using MLE, the next step is to validate the developed 

model for its accuracy.  

3.2.3 Model Validation 

The parametric regression model is developed with the assumption of linear 

specification between model parameter ψ  and decision variables in x . Therefore it is 

necessary to validate the developed model for its accuracy and assumptions. In the 

research, primarily the different kinds of plots are used to verify the model. To check the 

accuracy of the developed model, the actual probabilities are plotted against the 

predicted probabilities. If all the points in the plot are scattered over 1:1 line, then the 

model is validated for accuracy. Next the residual plots against predicted probabilities 

and decision variables can be used to validate the model. Any trend is residual plot 

indicates that some transformation or higher order term might be needed in the model 

else it signifies that the included parameters are significant. In addition to the plots, 

mean absolute percentage error MAPE  can be used to validate the accuracy of the 

model. MAPE  can be obtained as  

1

1 k
actual predicted

i actual

P P
MAPE

k P=

−
= ∑

 
(46) 

3.2.4 Model Selection 

In maximum likelihood estimation technique, each estimated regression parameters will 

be characterized by the corresponding standard deviation. Best fit model will have 

standard deviation of all the estimated regression parameters low as compared to their 

mean value i.e. coefficient of variation will be very low. Also, while specifying the 
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relationship between distribution parameter and decision variables, there is always the 

possibility that some of the variables might not contribute to the model. Therefore it is 

necessary to remove the variables that are not significant in the model. In the research, 

backward elimination is used for the model selection process. In backward elimination, 

selection process starts with developing a model with all the possible variables in the 

linear specification. The regression parameters for the model are estimated by 

maximizing the likelihood function. The process of elimination is started with the 

variable corresponding to regression parameter with highest coefficient of variation. As 

the removed variable is assumed to be insignificant in the model, elimination of the same 

will not significantly affect the maximum value of likelihood function of the reduced 

model. The process of elimination is continued till there is a significant decrease in the 

maximum likelihood function value. The model in the step previous to significant 

decrease in the maximum likelihood value can be chosen as the best possible 

combination of decision variables. 

3.3 Numerical Example 

To illustrate the proposed methodology, fatigue cracking failure for flexible pavement is 

considered. Typical three-layer flexible pavement system is considered for numerical 

study. For fatigue cracking, maximum tensile strain at the bottom of the asphalt layer 

controls the allowable number of repetitions and the response model is developed for the 

critical tensile strain. To account for the effects of rehabilitation actions, it is assumed 

that an overlay will be constructed at the time of rehabilitation actions and the system 
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will behave as four layered system. After rehabilitation actions, tensile strain at the 

bottom of overlay is considered critical and another response model is developed to 

account for the pavement responses after rehabilitation actions. Using developed 

response models, the fragilities are computed for the pavement system before and after 

rehabilitation actions. Once the fragilities are obtained, the reliability estimates are 

estimated by accounting for uncertainties in the demand variables.  

Table 1 lists all the decision variables x  that enter into the model. Based on 

physical and geometrical constrains, all the random variables are assumed to follow a 

Lognormal distribution. For developing the response model, decision variables are 

normalized to obtain dimensionless decision variables so that the developed response 

model can be used irrespective of the measuring units. Table 2 shows the typical upper 

and lower limits that are used to normalize the decision variables.  

 

Table 2: Typical upper and lower limits values considered for modeling pavement response model 

Variable Description Symbol Unit Lower 
Limit 

Upper 
Limit 

Overlay thickness 1h Inches 2.5 5.0 
Overlay modulus 1E Psi 300,000 600,000 
Asphalt layer thickness 2h  Inches 5.0 9.5 

Asphalt layer modulus 2E  Psi 300,000 600,000 
Base layer thickness 3h  Inches 9.5 14 
Base layer modulus 3E  Psi 10,000 30,000 
Subgrade modulus 4E  Psi 5,000 15,000 
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3.3.1 Pavement Response Model for Critical Tensile Strain 

The set of observations for critical tensile strain at the bottom of asphalt layer before 

rehabilitation actions and at the bottom of overlay after rehabilitation actions are 

obtained from analytical pavement response model. Table 3 shows the final response 

models along with the statistical validation of the developed models. All the statistics 

show that the developed response models are able to describe the actual responses 

obtained from the analytical model. Residual plots are shown in Figure 10 and it is seen 

that the assumption of constant variance for residuals is validated and there is no trend in 

the residuals. 

 

Table 3: Results for developed response models for critical tensile strain 

Description Model Model Validation 
Statistics 

Before 
rehabilitati
on actions 

2 2 3
2 2 5 2

2 2 3
5

2 2 2 3 2 3
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on actions 

5
1 1 2 2

5 2 5
3 2 1 1

5
2 1 3 2 3 2

0.0008 0.0003 0.0002 5.095 0.0038

5.299 0.0037 3.503 0.0015

0.0009 3.163 0.0001
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− −
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Figure 10: Residual plots for developed response model 

 

3.3.2 Fragility Model for Fatigue Cracking Failure 

The response surface model for tensile strains before and after rehabilitation actions in 

conjunction with MCS is used to simulate the failure data for fatigue cracking. The 

parameters c  and ξ  are estimated using MLE. Once the model is developed, it is 

validated for accuracy and made assumptions.  

3.3.2.1 Before Rehabilitation Actions (Three-layer System) 

Figure 11 shows the model selection process with maximum likelihood function value 

computed at each step of the backward elimination. In the Figure 11, it is seen that the 
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step 6 is chosen as the final model. The linear specification for the model in step 6 is of 

the form 

2
0 1 2 2 2 3 3 4 2c c h c E c E c hψ = + × + × + × − ×  (47)

 

 

Figure 11: Model selection process for modeling fatigue fragilities for pavement system before 
rehabilitation actions 

 

Parameters are estimated using MLE and Table 4 gives the details about parameter 

estimates along with parameter standard deviations and corresponding correlation 

matrix. Figure 12 shows the plots used for model validation. All the plots in Figure 12 

validate the developed model for accuracy and made assumptions. The mean absolute 

percentage error for the developed model is 5.36%MAPE =  which is very low and 

further validates the model.  
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Table 4: Details about parameter estimates obtained from fragility modeling for pavement system before 
rehabilitation actions 

Symbol Mean Std. 
Dev. 

Correlation Matrix 

0c  1c  2c  3c  4c  ξ

0c  6.47 0.99 1.00 -0.96 -0.22 -0.05 0.93 -0.11 

1c  12.74 2.68 -0.96 1.00 0.00 -0.11 -0.99 0.05 

2c  1.87 0.26 -0.22 0.00 1.00 0.07 0.02 0.15 

3c  1.02 0.19 -0.05 -0.11 0.07 1.00 0.14 0.11 

4c  -5.05 1.78 0.93 -0.99 0.02 0.14 1.00 -0.03 

ξ  0.67 0.05 -0.11 0.05 0.15 0.11 -0.03 1.00 

 

 

Figure 12: Plots used for validating fatigue cracking parametric regression model for pavement system 
before rehabilitation actions 
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3.3.2.2 After Rehabilitation Actions (Four-layer System) 

Similarly for the pavement system after rehabilitation actions, the linear specification of 

the final model obtained through selection process is 

0 1 1 2 1 3 2 4 2 5 3
2 2 2

6 1 7 1 8 2 9 1 1 10 1 2

11 1 2 12 1 2 13 1 2 14 2 2

15 2 3 16 2 3

c c h c E c h c E c E

c h c E c E c h E c h h
c h E c E h c E E c h E
c h E c E E

ψ = + × + × + × + × + ×

+ × + × + × + × × + × ×
+ × × + × × + × × + × ×

+ × × + × ×

 (48)

Table 5 gives the details about parameter estimates along with parameter standard 

deviations and corresponding correlation matrix. Figure 13 shows the plots used for 

model validation. All the plots in Figure 13 validate the developed model for accuracy 

and made assumptions. The mean absolute percentage error for the developed model is 

9.36%MAPE =  which is low and further validates the model. 

3.3.3 Pavement Performance 

Using the developed response surface model and parametric regression model for 

fragilities, the reliability estimates were obtained for fatigue cracking failure by solving 

the integral in the Eq. 42. The reliability estimates obtained from response model and 

fragilities are compared to the reliability estimates obtained by simulating analytical 

pavement response model. Figure 14 shows the reliability estimates for the flexible 

pavement system before as well as after rehabilitation actions. In the Figure 14, the 

rehabilitation actions are carried in the year 6 and an overlay is constructed at the time of 

rehabilitation actions. It is observed that the developed response surface and fragility 

models can be used efficiently to predict the performance before as well as after 

rehabilitation actions. 



 

 

51 

Table 5: Details about parameter estimates obtained from fragility modeling for four-layer system 

Sym- 
bol 

Mean Std. 
Dev. 

Correlation Matrix 

0c  1c  2c  3c  4c  5c  6c  7c  8c  9c  10c  11c  12c  13c  14c  15c  16c  ξ  

0c  9.02 0.0018 1.00 -0.71 -0.30 0.69 -0.64 0.00 0.04 0.48 0.27 -0.53 0.48 -0.51 -0.56 -0.60 -0.68 -0.42 -0.53 0.52 

1c  1.71 0.0031 -0.71 1.00 0.12 -0.86 0.53 0.00 -0.15 -0.81 -0.04 0.82 -0.50 0.59 0.70 0.69 0.72 0.56 0.78 -0.83 

2c  -1.57 0.0027 -0.30 0.12 1.00 -0.34 0.55 0.00 -0.38 -0.15 -0.18 0.42 -0.61 0.57 0.49 0.47 0.44 -0.39 0.35 -0.06 

3c  0.19 0.0029 0.69 -0.86 -0.34 1.00 -0.71 0.00 0.02 0.92 0.01 -0.95 0.79 -0.85 -0.92 -0.90 -0.88 -0.50 -0.94 0.92 

4c  47.84 0.0059 -0.64 0.53 0.55 -0.71 1.00 0.00 0.20 -0.71 -0.60 0.62 -0.90 0.91 0.83 0.90 0.91 0.33 0.68 -0.62 

5c  0.88 4.4E-14 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

6c  1.13 0.0022 0.04 -0.15 -0.38 0.02 0.20 0.00 1.00 -0.15 -0.19 -0.17 -0.21 0.06 -0.05 0.06 0.04 0.46 -0.15 -0.11 

7c  1.14 0.0068 0.48 -0.81 -0.15 0.92 -0.71 0.00 -0.15 1.00 0.15 -0.90 0.79 -0.85 -0.90 -0.89 -0.84 -0.57 -0.91 0.94 

8c  -39.82 0.0017 0.27 -0.04 -0.18 0.01 -0.60 0.00 -0.19 0.15 1.00 0.09 0.30 -0.31 -0.23 -0.29 -0.32 -0.14 -0.05 0.04 

9c  1.92 0.0064 -0.53 0.82 0.42 -0.95 0.62 0.00 -0.17 -0.90 0.09 1.00 -0.78 0.83 0.92 0.86 0.80 0.29 0.94 -0.85 

10c  0.44 0.0047 0.48 -0.50 -0.61 0.79 -0.90 0.00 -0.21 0.79 0.30 -0.78 1.00 -0.95 -0.89 -0.91 -0.84 -0.27 -0.75 0.68 

11c  -18.32 0.0058 -0.51 0.59 0.57 -0.85 0.91 0.00 0.06 -0.85 -0.31 0.83 -0.95 1.00 0.96 0.98 0.94 0.26 0.88 -0.75 

12c  0.22 0.0055 -0.56 0.70 0.49 -0.92 0.83 0.00 -0.05 -0.90 -0.23 0.92 -0.89 0.96 1.00 0.97 0.92 0.31 0.96 -0.83 

13c  -11.73 0.0037 -0.60 0.69 0.47 -0.90 0.90 0.00 0.06 -0.89 -0.29 0.86 -0.91 0.98 0.97 1.00 0.98 0.38 0.91 -0.83 

14c  2.83 0.0039 -0.68 0.72 0.44 -0.88 0.91 0.00 0.04 -0.84 -0.32 0.80 -0.84 0.94 0.92 0.98 1.00 0.39 0.88 -0.80 

15c  -0.64 0.0017 -0.42 0.56 -0.39 -0.50 0.33 0.00 0.46 -0.57 -0.14 0.29 -0.27 0.26 0.31 0.38 0.39 1.00 0.34 -0.67 

16c  -1.24 0.0040 -0.53 0.78 0.35 -0.94 0.68 0.00 -0.15 -0.91 -0.05 0.94 -0.75 0.88 0.96 0.91 0.88 0.34 1.00 -0.89 

ξ  0.61 0.0015 0.52 -0.83 -0.06 0.92 -0.62 0.00 -0.11 0.94 0.04 -0.85 0.68 -0.75 -0.83 -0.83 -0.80 -0.67 -0.89 1.00 
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Figure 13: Plots used for validating fatigue cracking parametric regression model for pavement system 
after rehabilitation actions 
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Figure 14: Fatigue cracking reliability estimates obtained using developed response surface model and 
parametric regression model for fragilities 
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The research presents a reliability model that is able to account for the effects of 

rehabilitation actions on the reliability of flexible pavements. A mechanistic-empirical 

approach is used to define limit state functions based on the pavement responses before 

and after the application of rehabilitation actions. Conventionally, the limit state function 

is evaluated using MCS technique. However, the MCS technique typically requires a 
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thousands of times. In the research, an alternative approach of response surface 

methodology is explored for obtaining reliability estimates. Typically, in reliability 

analysis, fragilities are used to express the performance of the system. In the research, 

the parametric regression model is developed to express the fragilities in terms of 

decision variables.  

Statistical validation of pavement response model shows that the developed 

response models are good fit to the responses obtained from analytical model and can be 

used efficiently for predicting pavement responses. Similarly the statistical validation of 

parametric regression model shows the accuracy of the developed model. The reliability 

estimates obtained using developed response surface models and parametric regression 

models describe the behavior of new and rehabilitated flexible pavement systems. The 

developed models can be effectively implemented in all the applications that require the 

estimation of the performance of flexible pavement systems before and/or after 

rehabilitation actions. Most importantly, the advantage of a closed-form function of 

fragility is its suitability for implementation in optimization models. 
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CHAPTER IV 

RELIABILITY-BASED OPTIMIZATION FOR FLEXIBLE 

PAVEMENTS 

As discussed, the probabilistic optimization technique that can account for uncertainties 

in pavement performance is essential. One of the probabilistic optimization techniques is 

reliability-based optimization (RBO). The RBO can be efficiently used in balancing the 

needs between safety in performance and economy in design. In RBO, pavement 

reliability which is the probability that pavement will perform its intended function 

under a given set of conditions over a specified period of time is used as a performance 

measure One of the most important advantage of using reliability as a performance 

measure is that the reliability models can take into account pavement characteristics and 

utilization patterns in the specification of propensity functions. 

Typically, RBO is a type of probabilistic optimization technique that accounts for 

uncertainties in the performance of the structure. The performance is measured in terms 

of probability of failure, FP  or reliability, Rel  of the structure. In RBO, the cost function 

can be considered deterministic or probabilistic based on the needs of design strategies. 

The obtained performance measures and cost function can be formulated in optimization 

problem as an objective function or a constraint based on decision policies to be 

implemented.  



 
    56  
 

     

4.1 Decision Policies in Reliability-based Optimization 

One of the main advantages of RBO is that it balances the needs between safety against 

performance and economy in design. The decision policies in RBO that balances the 

need for flexible pavements can formulated as: 

1. Minimize rehabilitation cost by keeping reliability within desired limits 

2. Maximize reliability by constraining the budget for rehabilitation actions 

3. Trade-off between minimizing cost and maximizing reliability 

Decision policy# 1 is best suited in the situations when the desired performance 

requirements are known and there is no constraint on budget for rehabilitation actions. 

With the knowledge of desired performance, only option is to find minimum cost that 

can keep the performance within desired limits. Whereas, decision policy# 2 is suited for 

the situation when there is constraint on budget for the application of rehabilitation 

actions. In such situations, the quantity of interest will be the maximum reliability that 

can be obtained within the budget constraints. However, generally there is always a 

conflict between cost and performance and trade-off between two is preferred as a 

possible solution. In such situation decision policy# 3 is preferred, wherein a trade-off 

decision strategy that can minimize cost and maximize performance is possible. 

4.1.1 Problem Formulation 

Based on the decision polices, the optimization problem formulation for each decision 

policy will be different. If ( )RC x  is the rehabilitation cost that is the function of decision 

variables, the optimization problem for decision policy# 1 can be formulated as 
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min ( )
. . Rel( ) Relt

l u
i i i

RC
s t

x x x

≥

≤ ≤

x
x

 
(49) 

where, Relt  is the target reliability, l  and u  are the lower and upper limits of the 

decision variables respectively. The formulation in Eq. 49 can be used to minimize the 

rehabilitation cost by constraining the reliability within desired limit. Though the cost is 

minimized in the above formulation, the optimization search will have tendency to find 

the solution with active performance constraint i.e. estimated Rel  will be equal or very 

close to Relt .  

Decision policy# 2 can be used in the situations where budget is constrained and 

performance is to be maximized. Optimization problem for such situation can be 

formulated as 

max Rel( )
. . RC( ) RCB

l u
i i i

s t

x x x

≤

≤ ≤

x
x

 
(50) 

where, BRC  is the budget constraint on rehabilitation actions. The formulation in the Eq. 

50 can be used to obtain decision parameters that maximize the reliability of flexible 

pavement keeping the cost for rehabilitation actions within the budget. The trade-off 

between reliability and cost can be taken care by optimizing both the objective functions 

in Eq. 49 and 50 and the problem can be formulated as 

min ( ) & max Rel( )
. . l u

i i i

RC
s t x x x≤ ≤

x x

 
(51) 

Reliability-based optimization formulations are complex and require a robust 

optimization technique that can provide a global optimal solution. Traditional 
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optimization techniques which include gradient projection algorithms are robust in 

finding a single local optimal solution. However, complex domain like in RBO can have 

more than one optimal solutions and therefore more robust technique is required that can 

find a near-global solution. In the research, Genetic Algorithm (GA) is used because of 

its efficiency in finding a near-global solution. The GA performs a global and 

probabilistic search thus increasing the likelihood of obtaining a near-global solution.  

4.2 Genetic Algorithm (GA) 

A GA is a stochastic optimization tool that is based on mechanics of natural evolution 

and genetics. [39]. In GA, the search algorithm reproduces and creates new population 

of chromosomes at each generation and competes for survival to stay in the next 

generation. Beginning with randomly generated population of chromosomes from the 

solution space, the process of evolution and survival is controlled by operators such as 

selection, crossover, and mutation. 

 As already discussed, the selection operator is based on the mechanics of natural 

selection and survival. At every generation, the population that shows the improvement 

in fitness of the objective function has better chance to survive and reproduce. Common 

methods used for the selection process are tournament selection, proportionate selection, 

and ranking selection [40]. The survived population of chromosomes is termed as parent 

solution. During each generation, total population of chromosomes is maintained same 

and to fill the space created by eliminated chromosomes, a crossover operator merges 

two parent solutions to generate offspring. On the other hand, a mutation operator 
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randomly modifies the parent or offspring solutions and helps in speeding up the 

convergence towards global optima. Typically, the chromosomes in population are 

encoded in the form of bit strings using binary integers 0 and 1. Figure 15 shows the 

representation of chromosomes in binary form and process of crossover and mutation 

that are typically used in GA. 

 
Figure 15: Binary coding of chromosomes, crossover and mutation process in GA 

 

In GA, the process is initiated by randomly encoding a solution. Once a solution 

is encoded in the form of bit string, the selection operator identifies the parent solutions 

that improve fitness of objective function and survive for the next generation. After 

identifying the parent solutions, the crossover and mutation operators are used to 
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reproduce offspring from parent solutions as shown in Figure 15. The process is 

continued through continuous improvement in fitness of objective function until a global 

or near-global solution is reached.  

4.3 Multi Objective Genetic Algorithm (MOGA) 

The optimization problem formulation in Eq. 51 involves two objective functions and 

the Multi Objective Genetic Algorithm (MOGA) is required for evaluating such 

formulations. The MOGA primarily involves finding a set of solutions each of which 

satisfies the objectives and are non-dominant with respect to each other [41]. For 

minimization problem, the feasible solution *x  is said to be non-dominant if there exists 

no feasible solution x  such that [42] 

( ) ( *) {1,2,.....}o of f for all o≤ ∈x x
 

(52) 

( ) ( *) {1,2,.....}o of f for atleast one o< ∈x x
 

(53) 

where, of  is the objective function, o  represents the set of number of objective 

functions. The optimal solution that satisfies the conditions in Eq. 52 and 53 is termed as 

Pareto optimal. The set of all non-dominant solutions that satisfies objectives is termed 

as Pareto optimal solution set and the corresponding set of objective values is termed as 

Pareto front. 

 The Pareto optimal set is determined in MOGA using the ranking approach in 

conjunction with GA operators [41]. In ranking approach, the population of 

chromosomes is ranked based on the dominance criteria and are assigned a fitness value 

based on the rank in population. For instance, if all the objectives are minimized, lower 
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rank corresponds to better solution. The process of ranking is continued till all the 

chromosomes in the population are categorized into different ranks. Once the entire 

population is ranked, tournament selection is performed to identify the chromosomes 

with lowest rank. Crossover and mutation is performed over the identified chromosomes 

to create new population for next generation. The process is continued till the 

convergence is obtained. 

4.4 Numerical Example 

Typical three-layer flexible pavement system is considered for numerical study. To 

account for the effects of rehabilitation actions, it is assumed that an overlay will be 

constructed at the time of rehabilitation actions and the system will behave as four-

layered system. To illustrate the proposed models, fatigue cracking failure for flexible 

pavement is considered. For fatigue cracking, maximum tensile strain at the bottom of 

the asphalt layer controls the allowable number of repetitions before rehabilitation 

actions, whereas, after rehabilitation actions, tensile strain at the bottom of overlay is 

considered critical. The critical strains are computed using theory of linear elasticity. 

Once the critical strains are computed, limit state function is evaluated using Monte 

Carlo simulation to obtain fragility data before and after rehabilitation actions. Using the 

obtained fragility data, the parametric regression model that expresses fragilities in terms 

of decision variable is developed. Then the reliability estimates that are required in 

optimization formulations can be estimated by solving the integral shown in Eq. 42. 
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Though the developed fragilities are functions of all the variables in x , to 

simplify the understanding and since fatigue cracking is considered, only the overlay 

thickness, 1h  is considered as a decision variable in x . The study can be easily extended 

to include other decision variables in x . It is assumed that the initial design is fixed and 

optimal decision policies for only rehabilitation actions are determined. Deterioration of 

asphalt modulus is accounted while determining the performance after rehabilitation 

actions. Typical lower and upper limits of 1h  that used to normalize the quantity are 2.5 

inches and 5.0 inches respectively. The formulations in Eq. 49 and 50 are evaluated 

using GA and Eq. 51 using MOGA for determining the near-global optimum solution. 

The objective function for rehabilitation cost considered for the study is 

1100( )
(1 )t

xRC
i
×

=
+

x  (54)

where, 1x  is the normalized quantity of the overlay thickness 1h , i  is the interest rate at 

which the cost is discounted to present value, t  is the time at which rehabilitation actions 

are applied. 

4.4.1 Minimizing Rehabilitation Cost 

For minimizing the rehabilitation costs, the formulation in Eq. 49 is evaluated using GA. 

The target reliability tRel  is considered to be 75% and it is assumed that rehabilitation 

actions are planned in such a manner that the estimated reliability is always greater than 

the target reliability. Figure 16 shows the result of decision policy where the application 
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of rehabilitation actions is delayed till the estimated reliability before rehabilitation 

actions reaches the target reliability.  

 

Figure 16: Optimization results for minimizing cost where rehabilitation actions are delayed till the 
estimated reliability reaches the target reliability 

 

In the Figure 16, the optimal solution shown by solid line corresponds to optimal 
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though increasing thickness beyond optimal value improves reliability, the rehabilitation 
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deterioration of asphalt layer thus making the system weak and thereby requiring 

stronger overlay to satisfy the desired performance over the design life. There is always 

the possibility that the early application rehabilitation actions when deterioration of 

asphalt layer is comparatively less can further reduce the rehabilitation costs. Therefore 

it is necessary to determine the value of early application of rehabilitation actions. Figure 

17 shows the optimal rehabilitation costs for early application of rehabilitation actions 

between years 1 to 10. It is observed in the Figure 17 that the early application of 

rehabilitation actions reduces the cost thereby adding the value. Also it is seen that the 

interest rate i  also plays a significant role while making decision policies.  

 

Figure 17: Optimization results for minimizing cost when rehabilitation actions are applied in different 
years 
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4.4.2 Maximizing the Reliability 

To maximize the reliability, the formulation in Eq. 50 is evaluated using GA. To validate 

the optimization formulations, the results from cost minimization are used to obtain 

optimal actions while maximizing the reliability. For instance, the minimum 

rehabilitation cost at the year 10 is used as budget constraint. At the design life, the 

maximum reliability obtained by constraining rehabilitation budget is 0.75 which is 

same as the target reliability for the cost minimization problem. The optimum overlay 

thickness for both the cases is 3.73 inches. This validates both the formulations and any 

formulation can be used based on the requirements. Further, to determine the value of 

early application of rehabilitation actions, the maximum reliability is evaluated for the 

rehabilitation actions applied from years 1 to 10. Figure 18 shows the optimal reliability 

for early application of rehabilitation actions between years 1 to 10. The budget for 

rehabilitation actions is constrained to 70 units. It is observed in the Figure 18 that the 

early application of rehabilitation actions maximizes the reliability thereby adding the 

value. Both the formulations i.e. maximizing reliability and minimizing cost indicates 

that early application of rehabilitation actions can be more beneficial and there is an 

optimal time that can optimize the overall design strategy.  
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Figure 18: Optimization results for maximizing reliability when rehabilitation actions are applied in 
different years 
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Pareto front seems reasonable and can be used while making decision policies that 

require trade-off between cost and performance. 

 

Figure 19: Pareto front obtained from numerical study 
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rehabilitation actions. Fatigue cracking failure criteria for flexible pavement is 

considered. To express pavement fragilities in terms of decision variables, a parametric 

regression model with two parameter lognormal distribution CDF is used. The GA and 

MOGA are used to evaluate optimization formulations. Three rehabilitation decision 

policies for flexible pavements are discussed. A numerical example is presented to 

illustrate the developed optimization formulations.  

The results from numerical study for optimization shows that the cost 

minimization and reliability maximization formulations are efficiently used in 

determining optimal rehabilitation policies. It is also seen that there can be added value 

for providing rehabilitation actions early rather than waiting until failure. Also the effect 

of interest rate that discounts cost to present value is significant. Pareto optimal solution 

obtained from MOGA shows that as the reliability increases the rehabilitation cost 

increases and vice versa. This behavior seems reasonable and obtained Pareto solutions 

can be efficiently used to obtain trade-off between cost and performance and avoid 

possible conflict between two decision policies. 
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CHAPTER V 

CONCLUSIONS 

The research presents a reliability model that is able to account for the effects of 

rehabilitation actions on the reliability of flexible pavements. A mechanistic-empirical 

approach is used to define limit state functions based on the pavement responses (tensile 

and compressive strains) before and after the application of rehabilitation actions. Two 

failure criteria are considered (fatigue cracking and rutting). A numerical example is 

presented to illustrate the developed model, and sensitivity and importance measures are 

computed for the parameters and the random variables included in the limit state 

functions. The results obtained from the numerical study describe the behavior of new 

and rehabilitated flexible pavement systems.  

The sensitivity measures suggest that the reliability of flexible pavements before 

as well as after rehabilitation actions can effectively be improved by providing asphalt 

layer as thick as possible in the initial design, improving the stiffness for subgrade and 

reducing the error in predicting the asphalt modulus at the time of rehabilitation actions. 

The importance measures suggest that the asphalt layer modulus at the time of 

rehabilitation actions represent the principal uncertainty for the performance after 

rehabilitation actions. The results from the sensitivity analysis and importance measures 

can be used as directive device to plan optimal decision policies. The application of 

mechanistic-empirical approach and inclusion of correlations has added flexibility to the 

model. 
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Conventionally, the limit state function is evaluated using MCS technique. 

However, the MCS technique typically requires a relatively large number of simulations 

in order to obtain sufficiently accurate estimates of failure probabilities and it becomes 

impractical to simulate the pavement response black-box model thousands of times. In 

the research, an alternative approach of Response Surface Methodology is explored for 

obtaining reliability estimates. Statistical validation of pavement response model shows 

that the developed response models are good fit to the responses obtained from 

analytical model and can be efficiently used for predicting pavement responses. In 

reliability analysis, often fragilities are used to express the performance of the system. In 

the research, the parametric regression model is developed to express the fragilities in 

terms of decision variables. Maximum likelihood estimation technique is used to obtain 

parameter estimates. The statistical validation of parametric regression model developed 

in numerical study shows the accuracy of the developed model.  

The developed performance models for flexible pavements that accounts for 

rehabilitation actions are further explored for their applications in determining optimal 

rehabilitation policies. To account for the uncertainties in performance and maintain a 

balance between performance and cost, the reliability-based optimization technique is 

used in the research. For reliability-based optimization, three decision policies are 

defined along with the optimization problem formulation for each policy. Because of its 

efficiency in obtaining a near-global solution, the genetic algorithm is used to evaluate 

the optimization formulations. For two objective functions, MOGA is used to obtain 

Pareto optimal solution set that provides a trade-off between cost and reliability. Using 
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the developed parametric regression models for fragilities, a numerical study is 

presented to illustrate the developed optimization formulations.  

The results from numerical study for optimization shows that the cost 

minimization and reliability maximization formulations are efficiently used in 

determining optimal rehabilitation policies. It is also seen that there can be added value 

for providing rehabilitation actions early rather than waiting until failure. Also the effect 

of interest rate that discounts cost to present value is significant. Pareto optimal solution 

obtained from MOGA shows that as the reliability increases the rehabilitation cost 

increases and vice versa. This behavior seems reasonable and obtained Pareto solutions 

can be efficiently used to obtain trade-off between cost and performance and avoid 

possible conflict between two decision policies.  

The developed pavement reliability model in conjunction with response surface 

methodology and parametric regression modeling for fragilities can be effectively 

implemented in all the applications that require the estimation of the performance of 

flexible pavement systems before and/or after rehabilitation actions. Expressing 

fragilities in terms of decision variables has added flexibility in using them as 

performance measures in optimization models. Developed performance model that 

accounts for rehabilitation actions are efficiently used in optimizing the rehabilitation 

policies for flexible pavements. Different formulations for optimization problem provide 

flexibility in making decision policies and obtaining optimal trade-off between the 

pavement performance and cost.  
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APPENDIX 

Responses in the layered system can be evaluated based on linear elastic theory by 

assuming a stress function, φ  for each layer that satisfies the 4th differential equation 

shown in Eq. 9. Solution to the 4th order differential equation will comprise of four 

constants of integration that can be determined from the boundary and continuity 

conditions. In the Figure 1, considering /r Hθ =  and /z Hε = , the stress function 

satisfying Eq. 9 can be obtained as [21] 

( ) ( ) ( ) ( ) ( )1 1

3
0

2
i i i im m m m

i i i i

H Y m
Ae B e C m e D m e

m
ε ε ε ε ε ε ε εθ

φ ε ε− −− − − − − − − −⎡ ⎤= − + −⎣ ⎦  (A.1) 

where H  is the distance from the surface to the upper boundary of the lowest layer as 

shown in the Figure 1, 0Y  is a Bessel function of the first kind and order 0, m  is a 

parameter, , , ,A B C D  are constants to be determined from the boundary and continuity 

conditions, i  corresponds to the number of the layer at which the stress function is 

evaluated. Substituting Eq. A.1 in the Eq. 10, 11, and 12 gives 
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where, 1Y  is the Bessel function of the first kind and order one, superscript '  for the 

stresses indicates that stresses are computed for the load of 0 ( )mY mθ− . Actual stresses, 

σ  due to load, q  over a circular area of radius, a  can be obtained from the following 

transformation 

1
0

' ( )q Y m dm
m
σσ τ τ

∞

= ∫  (A.5) 

where, /a Hτ = .  

Above system of equations can be solved by assigning values to m  from 0 to 

some large positive number until the stresses in Eq. A.2, A.3. A.4 converges. For each 

value of m , constant of integrations can be determined from the boundary and continuity 

conditions. These constant of integrations can be used in Eq. A.2, A.3. A.4 to compute 

stresses ( 'σ ) due to load 0 ( )mY mθ− . Finally, using these stresses, Eq. A.5 can be solved 

numerically to obtain actual stresses. 
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