ON THE PREDICTIVE UNCERTAINTY OF A DISTRIBUTED HYDROLOGIC
MODEL

A Dissertation
by
HUIDAE CHO

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2008

Major Subject: Civil Engineering



ON THE PREDICTIVE UNCERTAINTY OF A DISTRIBUTED HYDROLOGIC
MODEL

A Dissertation
by
HUIDAE CHO

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Francisco Olivera

Committee Members, Anthony T. Cahill
Seth D. Guikema
Raghavan Srinivasan

Head of Department, David V. Rosowsky

August 2008

Major Subject: Civil Engineering



il

ABSTRACT

On the Predictive Uncertainty of a Distributed Hydrologic Model. (August 2008)
Huidae Cho, B.S., Kyungpook National University;
M.S., Kyungpook National University

Chair of Advisory Committee: Dr. Francisco Olivera

We use models to simulate the real world mainly for prediction purposes. How-
ever, since any model is a simplification of reality, there remains a great deal of
uncertainty even after the calibration of model parameters. The model’s identifiabil-
ity of realistic model parameters becomes questionable when the watershed of interest
is small, and its time of concentration is shorter than the computational time step of
the model. To improve the discovery of more reliable and more realistic sets of model
parameters instead of mathematical solutions, a new algorithm is needed. This algo-
rithm should be able to identify mathematically inferior but more robust solutions as
well as to take samples uniformly from high-dimensional search spaces for the purpose
of uncertainty analysis.

Various watershed configurations were considered to test the Soil and Water As-
sessment Tool (SWAT) model’s identifiability of the realistic spatial distribution of
land use, soil type, and precipitation data. The spatial variability in small watersheds
did not significantly affect the hydrographs at the watershed outlet, and the SWAT
model was not able to identify more realistic sets of spatial data. A new population-
based heuristic called the Isolated Speciation-based Particle Swarm Optimization
(ISPSO) was developed to enhance the explorability and the uniformity of samples in
high-dimensional problems. The algorithm was tested on seven mathematical func-
tions and outperformed other similar algorithms in terms of computational cost, con-

sistency, and scalability. One of the test functions was the Griewank function, whose
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number of minima is not well defined although the function serves as the basis for
evaluating multi-modal optimization algorithms. Numerical and analytical methods
were proposed to count the exact number of minima of the Griewank function within
a hyperrectangle. The ISPSO algorithm was applied to the SWAT model to evaluate
the performance consistency of optimal solutions and perform uncertainty analysis
in the Generalized Likelihood Uncertainty Estimation (GLUE) framework without
assuming a statistical structure of modeling errors. The algorithm successfully found
hundreds of acceptable sets of model parameters, which were used to estimate their
prediction limits. The uncertainty bounds of this approach were comparable to those

of the typical GLUE approach.
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CHAPTER I

INTRODUCTION

The ever increasing capabilities of computers and software technologies have improved
the collection of spatial data and enabled the development of distributed hydrologic
models (Arnold et al., 1998; Mclntyre et al., 2005). However, taking into account
the distributed characteristics of the watershed does not necessarily improve model
performance and lead to the better prediction of water quantity and quality vari-
ables at ungauged basins due to increasing model complexity. A large number of
spatially distributed model parameters often cause the over-parameterization of the
model structure (Koh et al., 2004; McIntyre et al., 2005), which results in the “equi-
finality” problem (Beven, 1993) where many different model parameter sets perform
equally well. In addition, uncertainty associated with the measurement, the model
parameters, and the model output is adding more difficulties to the application of
distributed hydrologic models to ungauged basins.

We have to be very careful in choosing an appropriate model structure when
accounting for spatial variability, such as the distribution of land use, soil type, and
rainfall, in small watersheds where the time of concentration is shorter than the
computational time step of the model. The effect of the spatial variability can be
driven by the compatibility between the computational time step of the model and
the time of concentration of the watershed. When everything happens in one time
step of the model, the model may not be able to capture what is happening in the
watershed in each time step. The Soil and Water Assessment Tool (SWAT) (Neitsch

et al., 2002a) was used to investigate the effect of the spatial variability in small

This dissertation follows the style of Journal of Hydrology.



watersheds on the model output.

When the model is, at best, a simplification of reality, pursuing mathematically
the best solution does not necessarily mean searching for a unique optimal solution
Beven (2006a). There may exist even mathematically inferior solutions, often referred
to as local optima, that provide more realistic predictions. However, it is not straight-
forward to find local optima using global optimization algorithms (Brits et al., 2007).
This multi-modal nature of the model leads to the need for multi-modal optimization
algorithms. A population-based heuristic algorithm called the Isolated Speciation-
based Particle Swarm Optimization (ISPSO) was developed to find local optima in
complicated and high-dimensional problem spaces.

The Griewank function (Griewank, 1981) is one of the mathematical functions
used to test the new multi-modal optimization algorithm. The number of minima used
by Brits et al. (2007) was found to be incompatible with the number of minima ana-
lytically and numerically found in this study. To the best of the author’s knowledge,
the number of minima of the Griewank function has not been analytically derived in
the literature. To serve as the basis for evaluating algorithms designed to find local
optima as well as global optima, the number of minima of the Griewank function was
analytically derived by numerically restricting the domain space in hyperrectangles
meeting certain requirements.

The Generalized Likelihood Uncertainty Estimation (GLUE) framework (Beven
and Binley, 1992) has been widely used to assess the prediction uncertainty of the
model (Schulz et al., 1999; Jacquin and Shamseldin, 2007). However, the lack of
statistical assumptions for the error structure hinders the application of probabilis-
tic sampling techniques, such as Markov chain Monte Carlo methods or importance
samplings, to the GLUE framework. For this reason, random sampling is usually

employed in the GLUE framework to find acceptable models, but is computationally



expensive (Beven, 2006a). The ISPSO algorithm was applied to the GLUE frame-
work to reduce computational burden in uncertainty analysis, and the results for the
proposed approach were compared with those for the typical GLUE approach.

The objectives of this study are four-fold: (1) to assess the effect of the spatial
variability in small watersheds on the model output, (2) to develop an efficient multi-
modal optimization algorithm for finding multiple solutions in multi-modal problems,
(3) to analytically derive the number of minima of the Griewank function in numeri-
cally well-defined domain spaces, and (4) to apply the new multi-modal optimization
algorithm to uncertainty analysis in the GLUE framework. This dissertation is orga-
nized as follows: this chapter introduces the importance of the study, four stand-alone
chapters discuss the issues mentioned above, and the last chapter summarizes the

findings of the study and draws conclusions.



CHAPTER II

EFFECT OF SPATIAL VARIABILITY IN WATERSHEDS MODELED WITH
COMPUTATIONAL TIME STEPS LONGER THAN THEIR TIME OF
CONCENTRATION

2.1. Introduction

Many attempts have been made to assess the effect of the spatial variability of hydro-
logic systems on their response using models (Cotter et al., 2003; Kalin et al., 2003;
Chen and Mackay, 2004; Tripathi et al., 2006). The spatial variability of the data
used in models includes the spatial discretization of the system into subsystems, data
resolution, and the spatial distribution of hydrologic features and parameters. Much
has been written about the system discretization and the data resolution (Faures
et al., 1995; Bingner et al., 1997; Manguerra and Engel, 1998; FitzHugh and Mackay,
2000; Andréassian et al., 2001; Di Luzio et al., 2002; Muttiah and Wurbs, 2002; Cotter
et al., 2003; Chen and Mackay, 2004; Jha et al., 2004; Chaplot, 2005; Chaplot et al.,
2005; Haverkamp et al., 2005; Olivera et al., 2006); however, the effect of the spa-
tial distribution of hydrologic features and parameters is less well known. Although
distributed hydrologic models allow the use of spatially distributed information of a
watershed, the complexity of the models does not necessarily imply more preferable
results (Perrin et al., 2001). A distributed hydrologic model called the Soil and Water
Assessment Tool (SWAT) (Arnold et al., 1998) has been used in this chapter to assess
the effect of the spatial distribution on the model output.

SWAT was developed to assess the long-term impact of land use and land man-
agement changes on hydrologic responses. In SWAT, a watershed is subdivided into

subwatersheds, and unique combinations of land use and soil type in each subwater-



shed are referred to as hydrologic response units (HRUs). HRUs are not georefer-
enced for modeling purposes; that is, their location and spatial distribution within
the subwatershed is not taken into account. In fact, spatially disconnected identical
combinations of land use and soil type within a subwatershed constitute a single HRU.
In SWAT, one stream segment is defined for each subwatershed and is connected den-
dritically to up and down streams to construct the stream network. Subwatershed
size is affected by the threshold value used for stream initiation, which, in turn, affects
the stream network density. The stream network, which is the flow routing structure,
may play an important role in large watersheds; however, in small watersheds, in
which the time of concentration is likely to be shorter than the model computational
time step, the routing structure is not expected to be a factor in flow estimation be-
cause most raindrops travel through the stream network to the outlet within a single
time step.

Studies of the effect of the spatial discretization (i.e., subwatershed size) on flow
prediction have been conducted by several researchers. Mamillapalli et al. (1996)
found that finer discretization schemes and increased numbers of HRUs improved
the runoff flow estimation for a 4,297-km? watershed in Texas. However, they also
found that there is a threshold beyond which increased model complexity did not
lead to better model results, but the model became only computationally more ex-
pensive. Haverkamp et al. (2005) demonstrated that model efficiency, according to
the Nash-Sutcliffe coefficient (NS) (Nash and Sutcliffe, 1970), improves as more spa-
tial heterogeneity of a watershed is taken into account. They used an entropy function
to quantify the heterogeneity of the spatial input data and assumed that the model
efficiency is maximized when the entropy of the model parameters becomes equal
to that of the spatial modeling units, such as subwatersheds or HRUs. In contrast,

for a 21.3-km? watershed in northern Mississippi, Bingner et al. (1997) showed that



the prediction of annual runoff volumes was not greatly affected by the number and
the size of subwatersheds. They attributed these results to the aggregation effects
of subwatersheds and HRUs. Using a 47.3-km? watershed in Wisconsin, Chen and
Mackay (2004) also found that the level of watershed subdivision does not have a sig-
nificant influence on annual streamflows. They recommended defining the maximum
number of subwatersheds that the model interface allows and one HRU per subwa-
tershed. Mamillapalli (1997), cited in Manguerra and Engel (1998), found that, for
eight watersheds ranging in area from 2,000 km? to 5,000 km?, different discretiza-
tion schemes did not make a significant difference in flow estimation when there were
enough HRUs to represent the spatial variability of the watersheds. Manguerra and
Engel (1998) also evaluated the effect of discretization schemes on the estimation
of monthly streamflow for 3.28-km? and 113.38-km? watersheds in west central In-
diana and a 22.48-km? watershed in Mississippi, and showed that the adoption of
HRUs with no further spatial subdivision into subwatersheds was sufficient to take
into account the spatial variability of the watersheds. They suggested that a detailed
discretization method, such as subwatersheds or grid elements, should be applied only
when there are site-specific water impoundments or when there is the need for visu-
alizing distributed output. According to FitzHugh and Mackay (2000) and Jha et al.
(2004), subwatershed size does not significantly affect monthly and annual streamflow
prediction because overall precipitation abstractions are the same regardless of sub-
watershed size. For 2,000-km? and 18,000-km? watersheds in Towa, Jha et al. (2004)
found a slight increase in annual streamflow due to increasing transmission gains in
subsurface flow and a decrease in transmission losses with decreasing subwatershed
size. Olivera et al. (2006) found that simulated daily and monthly flows did not show
much difference whether parameter values were assigned to each HRUs based on its

hydrologic characteristics or averaged over the subwatersheds. They also noted that



longer times of concentration or shorter computational time steps could affect the
estimation of HRU parameters by calibration and, consequently, also flow estimation.

Research on the effect of the resolution of the spatial data (i.e., digital elevation
model or DEM, land use, and soil type) on model outputs has shown that model
predictions are affected by the aggregation of model parameters. Using six watersheds
in Texas ranging in area from 2,807 km? to 7,812 km?, and a 131-km? subwatershed,
Muttiah and Wurbs (2002) found that runoff flow was not sensitive to the resolution
of soil and precipitation data, except for one watershed where wet climate and high
soil variability were dominant. Di Luzio et al. (2005) showed that, for a 21.3-km?
watershed in Mississippi, coarser DEMs resulted in a lower simulated monthly runoff
volume due to the reduced accuracy of subwatershed delineation, coarser land use
data increased monthly runoff volumes, and coarser soil data decreased monthly runoff
volumes. They highlighted that the coarsest DEM data are not adequate for small
watersheds because of the inadequate delineation of drainage divides. The DEM
resolution has been found to have more impact on model outputs than the land use
and soil type data resolutions (Cotter et al., 2003); however, in small watersheds,
increasing the DEM resolution does not improve the estimation of mean monthly
flows because topography does not affect the estimation of rainfall abstractions by
SWAT (Chaplot, 2005).

For a 0.044-km? watershed, Faures et al. (1995) showed that decreasing the num-
ber of rain gauges resulted in much uncertainty in runoff prediction. Andréassian et al.
(2001) also observed a similar effect when modeling runoff in 71-km?, 1,120-km?, and
10,700-km? watersheds. However, for a 51-km? watershed in central Iowa and a 918-
km? watershed in central Texas, Chaplot et al. (2005) found that decreasing the rain
gauge concentration did not significantly affect the estimation of average monthly

runoff flow, which is in contradiction with the previous studies conducted by Faures



et al. (1995) and Andréassian et al. (2001). Chaplot et al. (2005) attributed this
absence of effect of rain gauge concentrations to the averaging effect caused by using
monthly model outputs.

In this chapter, the effect on simulated flow values of the spatial distribution
of land use, soil type, and precipitation was investigated for a given subwatershed
configuration (i.e., stream network). The hypothesis is that, in small watersheds, the
spatial variability of land use and soil type does not significantly affect model results
because the entire watershed drains within one computational time step, making the
location where each raindrop fell immaterial. Various watershed configurations in
terms of land use, soil type, and precipitation distribution were considered in this
chapter. The model parameters for each watershed configuration was independently
calibrated, and spatial, temporal, and spatio-temporal validations were performed to
compare model performances. The results of this experiment give insights on the
relevance of taking into account the spatial distribution of land use, soil type, and
precipitation when modeling small watersheds with a daily computational time step.
Section 2.2 describes how to create hypothetical watersheds and how to calibrate the
model parameters. Section 2.3 describes the data used in this study and discusses

results. Section 2.4 summarizes this chapter and draws conclusions.

2.2. Methodology

In SWAT, runoff from HRUs is calculated either with the Soil Conservation Service
(1972) curve number method or the Green and Ampt (1911) infiltration method, ag-
gregated per subwatershed, and routed through the stream network to the watershed
outlet using the variable storage routing method (Williams, 1969) or the Muskingum

routing method (Lawler, 1964). The stream network can be constructed from the



DEM of the study area or defined based on knowledge of the watershed. The Ar-
cView SWAT interface available in BASINS 3.1 (Di Luzio et al., 2002) was used to
develop the SWAT input files for the three watersheds used for this study.

In order to evaluate the effect of the spatial distribution of the model parameters
on the modeling results, alternative land use and soil type maps were created as
explained below. The National Land Cover Data (NLCD) (USGS, 2006b) was used
to create two alternative land use maps. These maps included a single land use map
and a randomly distributed land use map. The single land use map had the land use
category that was most frequent in the watershed; in the randomly distributed land
use map, the total area of each land use was kept, but the location of the cells of
each land use were shuffled at random within the watershed. Similarly, the State Soil
Geographic database (STATSGO) (USDA-NRCS, 2006) was used to create a single
soil type map and a random soil type map. Likewise, because there are multiple
rain gauges in the watershed, even with a single land use and soil type, different
amounts of runoff are generated in different subwatersheds. To address the effect of
the spatial variability of the precipitation, additional models with a single rain gauge
were developed for comparison purposes. The single rain gauges were selected based
on their proximity to the centroids of the watersheds.

The calibration of the model parameters was performed with the Shuffled Com-
plex Evolution (SCE-UA) algorithm (Duan et al., 1993). The SCE-UA algorithm is
widely used in hydrology because it is a robust and efficient global search optimiza-
tion algorithm (Eckhardt and Arnold, 2001; Muttil and Liong, 2004). In calibration,
the spatially distributed parameter values were changed according to a predefined

one-parameter rule in order to decrease the number of decision variables and keep the
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relative parameter values between spatial modeling units. The rule is

Prew = Po + Oé‘pb - pO‘ (21)

where pphew is the new parameter value, pg is the initial parameter value, py, is either
the upper or lower boundary of the parameter value, and « is a real number that varies
from —1.0 to 1.0 and is the decision variable evolved by the SCE-UA algorithm. The

value of py, is defined as

pb = 0.5py (1 +sgna) + 0.5p;(1 — sgn o) (2.2)

where p, and p; are the upper and lower boundaries of the parameter value, respec-
tively, and sgn« is 1 if « is positive and —1 otherwise. For streamflow calibration,
Neitsch et al. (2002b) recommend adjusting the 11 SWAT parameters listed in Table
1. In addition to these parameters, the groundwater delay time (GW_DELAY in the
SWAT documentation) and the deep aquifer percolation fraction (RCHRG_DP in the
SWAT documentation), which affect groundwater flow and baseflow, were adjusted;
that is, the calibration process had 13 decision variables. The objective function used

for calibration is the root mean squared error (RMSE):

RMSE =, | =) (Q; — Q:)° (2.3)

i=1
where @); and QZ are the observed and simulated streamflows at the " day, respec-
tively, and n is the number of days of the calibration period. Note that it is known
that the objective function of Eq. (2.3) tends to give more weight to high flows as
compared to low flows (Gan and Burges, 1990; Gan and Biftu, 1996; Eckhardt and
Arnold, 2001; van Griensven and Bauwens, 2001; Huisman et al., 2003) because errors

in high flows are usually greater in absolute value than errors in low flows.
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Table 1: List of the model parameters for streamflow calibration. The descriptions
were taken from Neitsch et al. (2002b).

Parameter Description Range

CN2 Initial NRCS runoff curve number for moisture con- 35-99
dition II

SOL_AWC Available water capacity of the soil layer (mm 0.0-1.0
HyO/mm soil)

ESCO Soil evaporation compensation factor 0.01-1.0

GWQMN Threshold depth of water in the shallow aquifer re- 0-5000
quired for return flow to occur (mm H,O)

GW_REVAP Groundwater revap coefficient 0.02-0.20

REVAPMN  Threshold depth of water in the shallow aquifer for 0-500
revap or percolation to the deep aquifer to occur
(mm H,0)

GW_DELAY Groundwater delay time (days) 0-200

RCHRG_DP  Deep aquifer percolation fraction 0.0-1.0

CH_K2 Effective hydraulic conductivity in main channel al- 0.025-250
luvium (mm/hr)

ALPHA_BF  Baseflow alpha factor (days) 0.0-1.0

OV_N Manning’s n value for overland flow 0.01-1.0
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After calibration, the models were validated at a different location within the
watershed for the calibration period (i.e., spatial validation), at the watershed outlet
for a different period (i.e., temporal validation), and at a different location within
the watershed and for a different period (i.e., spatio-temporal validation). These val-
idations assessed the applicability under different scenarios of the model parameters
obtained by calibration.

The Nash-Sutcliffe coefficient (NS) (Nash and Sutcliffe, 1970) is recommended
to assess the performance of hydrologic models (American Society of Civil Engineers,

1993) and defined as

~

NS=1-— Z?:I(Qz - Qz)2 (24)

> i (Qi — Qi)?

where @ is the mean value of the observed flows for the period for which records are

available. @ is referred to as the “no-model” because no hydrologic concept is used to
estimate it. Because the no-model in this study considered all the available historical
data, the same no-model was used to calculate the model efficiencies for calibration
and validation. Note that the NS coefficient just assesses how a hydrologic model
compares to the no-model, and the hydrologic model is expected to outperform the
no-model because, otherwise, there would be no justification for its use. In other
words, high coefficients do not necessarily imply a good match to the observed values,
but could indicate just poor performance of the no-model and vice versa.

Each of the 18 models of each watershed (i.e., each unique combination of land
use distribution, soil type distribution, and precipitation distribution) was calibrated
independently and, for evaluation purposes, their performance in validation was com-

pared with the performance of the other models.
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2.3. Application

2.3.1.  Study area and hydrologic data

The three watersheds shown in Figures 1 and 2 were selected for this study because
each had a U.S. Geological Survey (USGS) flow gauge at the outlet, another within
it, and a period of record of at least 12 years. The areas of the East Fork of the San
Jacinto River (08070200), Barton Creek (08155240), and Onion Creek (08159000)
watersheds are 1,005 km?, 227 km?, and 831 km?, respectively. A summary of the
land use and soil type areas according to the NLCD (USGS, 2006b) and STATSGO
(USDA-NRCS, 2006) data is presented in Tables 2 and 3, respectively. Forest is
dominant in the East Fork of the San Jacinto River watershed while both forest and
rangeland are major land uses in the Barton Creek and Onion Creek watersheds.
Sand is the dominant soil type in the East Fork of the San Jacinto River watershed,
silt and sand in the Barton Creek watershed, and clay and silt in the Onion Creek
watershed. Additionally, the Edwards aquifer’s recharge zone underlies across part of
the Onion Creek watershed in Hays and Travis counties, with flow gauges 08158700
and 08159000 located upstream and downstream of it, respectively. Likewise, because
gauge 08155240 is located upstream of Barton Springs, where a significant discharge
from the Edwards aquifer occurs, the Barton Creek watershed is not greatly affected
by the Edwards aquifer.

The aquifer’s outcrop area is known to be heavily fractured with major faults
(Khorzad, 2003; Lindgren et al., 2004). Therefore, the highly permeable soils in the
recharge zone were assigned a value of 950 mm/hr for hydraulic conductivity and
0.005 for specific yield as reported by Lindgren et al. (2004) for median values. The
other groundwater related parameters were determined in calibration.

The watersheds and subwatersheds were delineated using the 30-meter resolution
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Figure 1: East Fork of the San Jacinto River watershed.

Table 2: Land use distributions according to NLCD 1992.
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East Fork of the

Watershed , , Barton Creek Onion Creek
San Jacinto River

Urban 2% 6% 9%
Agriculture 1% 1% 3%
Pasture 19% 1% 4%
Forest 2% 51% 45%
Rangeland 4% 40% 38%
Water/Wetland 2% 1% 1%
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Figure 2: Barton Creek and Onion Creek watersheds.

Table 3: Soil type distributions according to STATSGO. First layer only.

Watershed Fast F(?rk of 1?he Barton Creek Onion Creek
San Jacinto River
Clay 16% 28% 36%
Silt 22% 37% 35%

Sand 62% 35% 29%
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National Elevation Dataset (NED) (USGS, 2006a) with a threshold area of 10 km? for
the Barton Creek watershed and 20 km? for the other two watersheds. The number
of subwatersheds delineated in the East Fork of the San Jacinto River, Barton Creek,
and Onion Creek watersheds was 20, 16, and 61, respectively. The significantly higher
number of subwatersheds in the Onion Creek watershed was caused by the addition
of outlet points at the aquifer’s boundary.

Daily precipitation and temperature data were obtained from the National Cli-
matic Data Center (NCDC) web site (NOAA-NCDC, 2006). Flow data were obtained
from the USGS National Water Information System (NWIS) web site (USGS, 2006c¢).
Rain and flow gauges are shown in Figures 1 and 2. Summaries of the precipitation
and streamflow data are presented in Tables 4 and 5, respectively. Multiple rain
gauges used in each watershed recorded similar amounts of annual rainfall in both
the calibration and validation periods. However, the correlation coefficients between
the single rain gauge and the other rain gauges are higher in the East Fork of the
San Jacinto River watershed than in the others. Although the amounts of annual
rainfall are similar, low correlation coefficients between the rain gauges in the Barton
Creek and Onion Creek watersheds imply that their patterns of rising and declining
of precipitation depths do not match well. This lack of match suggests that the pre-
cipitation fields in these two watersheds were non-uniform while, in the East Fork of
the San Jacinto River watershed, it was highly uniform. Therefore, the single gauge
models for the East Fork of the San Jacinto River watershed are expected to perform
as well as the multiple gauge models while this is not necessarily true for the Barton
Creek and Onion Creek models. Table 5 shows that the standard deviations of the
daily flows are more than three times greater than the mean values, which is caused
by a few number of extremely high flows.

The calibration period ranged from January 1, 1989 to December 31, 1994, and
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Table 4: Summary of annual rainfall data. Mean and standard deviation in mm/yr,
and Pearson’s correlation coefficients against the single rain gauge superscripted by

*

Watershed

NCDC gauge

Calibration period

Validation period

East Fork of the San

Jacinto River

411810
411870
414382
416280

1,506 / 228 / 0.74
1,396 / 195 / 1*

1,473 / 142 / 0.83
1,546 / 276 / 0.65

1,411 / 359 / 0.69
1,312 / 358 / 1*

1,272 / 196 / 0.73
1,237 / 520 / 0.69

Barton Creek and
Onion Creek

410428
412585

1,053 / 275 / 0.44
1,051 / 325 / 1*

933 / 241 / 0.31
1,033 / 345 / 1*

Onion Creek

413156
419815

1,038 / 259 / 0.54
1,089 / 318 / 0.85

979 / 395 / 0.50
1,015 / 478 / 0.79

Table 5: Summary of daily average streamflow. Mean and standard deviation in

m3/s.

Watershed USGS gauge  Calibration period Validation period

East Fork of the San 08070200 11.4 / 40.9 9.9 / 35.9

Jacinto River 08070000 10.2 / 40.4 8.4 /343

08155240 22/ 7.7 1.7/ 5.4

B k

arton Cree 08155200 1.9/ 6.3 1.3/ 4.3

: 08159000 3.4 /204 29/ 19.9

Onion Creck 08158700 2.1/ 6.4 1.9/ 6.2




18

the validation period from January 1, 1995 to December 31, 2000. In both cases, the
first two years of simulation were used for the initial stabilization of the models, and

only four years were used to evaluate the objective function.

2.8.2. Results and discussion

The NS coefficients for calibration and validation are presented in Tables on pages
18 to 23. In calibration, as shown in Table 6, in almost all cases, it was not easy
to identify any advantage in choosing one land use or soil type map over the others.
Likewise, the multiple rain gauge models performed slightly better than or as well as
their corresponding single rain gauge models, except for the case of Onion Creek with
random land use and original soil type.

Table 6: Nash-Sutcliffe coefficients in calibration. LO, LS, and LR stand for the land
use type of original, single, and random, respectively.

Multiple rain gauges Single rain gauges

Calibration Soil type Soil type

Original Single Random Original Single Random

East Fork of the LO 0.44 0.45 0.44 0.42 0.34 0.25
San Jacinto LS 0.43 0.50 0.46 0.37 0.42 0.41
River LR 0.39 0.37 0.39 0.39 0.37 0.35

LO 0.86 0.88 0.86 0.83 0.85 0.84
Barton Creek LS 0.83 0.88 0.88 0.79 0.85 0.85
LR 0.86 0.87 0.88 0.82 0.84 0.86

LO 0.92 0.91 0.91 0.92 0.91 0.87
Onion Creek LS 0.92 0.90 0.91 0.91 0.90 0.89
LR 0.91 0.91 0.90 0.92 0.90 0.88

The relatively low NS coefficients in the case of the East Fork of the San Jacinto
River compared to those of Barton Creek and Onion Creek can be explained by the

presence of a few extremely high flows that could not be accurately simulated by
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SWAT. There was a severe flood in the East Fork of the San Jacinto River watershed
during the calibration period that conveyed 1,320 m3/s at gauge 08070200 on October
19, 1994, which the model failed to predict. In order to assess the effect of this single
value on the calibration results, another set of calibrations were performed excluding
this unusually high value. While, in these new models, the sum of the square of
the residuals (SSR) significantly decreased, the NS coefficients were not considerably
affected because the SSR of the no-model also decreased. For example, for the model
with original land use, original soil type, and multiple rain gauges, the SSR of the
calibrated models with and without the 1,320 m?/s flow value were 1,362,433 m5/s?
and 384,465 m6/s?, respectively, while the SSR of the no-models with and without
the high flow value were 2,446,531 m®/s? and 731,300 m®/s?, respectively; leading to
NS coefficients of 0.44 and 0.47, respectively. That is, the presence of an unusually
high flow value and the inability of SWAT to predict it were barely reflected in the
NS coefficient.

The calibrated models of the Barton Creek and Onion Creek watersheds suc-
cessfully predicted high flows; however, their no-models did not, and their SSRs were
much greater than those of the calibrated models. Thus, a poor performance of the
no-model generated high NS coefficients for these two watersheds.

Table 7 shows the model performance in spatial validation. The East Fork of
the San Jacinto River models performed almost as well as in calibration; but the
Barton Creek and Onion Creek models did not although their NS coefficients are
within the range of acceptable values found in the literature (Hanratty and Stefan,
1998; King et al., 1999; Rosenthal and Hoffman, 1999; Spruill et al., 2000; Eckhardt
and Arnold, 2001; Weber et al., 2001; Fontaine et al., 2002; Neitsch et al., 2002c;
Eckhardt et al., 2003; Tripathi et al., 2003; Olivera et al., 2006). The reason for the

lower performance of the Barton Creek and Onion Creek models might be just the
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fact that performances in validation tend to be lower than in calibration or, for the
case of Onion Creek, the presence of the Edwards aquifer. For the Onion Creek case,
note that flow gauge 08158700 is located right upstream of the Edwards aquifer’s
recharge zone while flow gauge 08159000 lies on the aquifer’s artesian zone. The
high rate of groundwater recharge between the two gauges increases uncertainty in
the parameter estimates by calibration because less accurate runoff generation from
upstream can be compensated for by adjusting groundwater related parameters in
the Edwards aquifer.

Table 7: Nash-Sutcliffe coefficients in spatial validation. LO, LS, and LR stand for
the land use type of original, single, and random, respectively.

Multiple rain gauges Single rain gauges

Spatial validation Soil type Soil type

Original Single Random Original Single Random

East Fork of the LO 0.48 0.38 0.47 0.53 0.36 0.36
San Jacinto LS 0.47 0.49 0.44 0.47 0.48 0.45
River LR 0.48 0.35 0.46 0.47 0.56 0.49

LO 0.69 0.72 0.68 0.70 0.75 0.72
Barton Creek LS 0.65 0.73 0.73 0.67 0.74 0.74
LR 0.66 0.71 0.73 0.70 0.73 0.75

LO 0.72 0.76 0.58 0.52 0.55 0.38
Onion Creek LS 0.70 0.73 0.65 0.45 0.45 0.22
LR 0.57 0.70 0.43 0.54 0.34 0.46

In the East Fork of the San Jacinto River and Barton Creek models, the single
rain gauge models performed as well in spatial validation as the multiple rain gauge
models, but were clearly less accurate in the Onion Creek models. In the case of the
East Fork of the San Jacinto River, the similarity of the performances in both cases
is explained by the fact that the precipitation in the watershed is highly uniform, as

indicated by the similar amounts of rainfall and the high correlation between the rain
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gauge used in the single rain gauge models (i.e., 411870) and the other rain gauges in
the watershed (i.e., 411810, 414382, and 416280) (see Table 4). In the case of Barton
Creek, the similarity cannot be explained by uniformity of the precipitation field (see
Table 4), but by the fact that the rain gauge used in the single gauge models covers
83% of the watershed area when multiple rain gauges are used. In the case of Onion
Creek, the dissimilarity was caused by both non-uniformity of the precipitation field
and the fact that the rain gauge used in the single gauge models covers only 58% of
the watershed area when multiple rain gauges are used.

Table 8 presents the results of temporal validation. In this case, the multiple
rain gauge models of the East Fork of the San Jacinto River performed similar to
calibration, but the single rain gauge models performed worse than in calibration,
leading to lower NS coefficients. These lower NS coefficients were obtained despite
the fact that the precipitation correlation coefficients were somewhat high. In the case
of Barton Creek, rain gauge 412585, which was used in the single rain gauge models
and covered 83% of the watershed in the multiple rain gauge models, had three days
of the precipitation greater than 100 mm (i.e., June 11, 1997, January 7, 1998, and
October 18, 1998) that did not generate high flows at the corresponding flow gauges.
This mismatch between rainfall and flow caused the NS coefficients to drop below
0, implying that even the no-model performed better than the calibrated models.
However, if those three days (out of the 1,461 days of the validation period) are
excluded in the calculation of the NS coefficients, their values increase significantly.
For example, if the model with original land use, original soil type, and multiple
rain gauges is considered, the NS coefficient increases from —0.22 to 0.51, which is
lower than in calibration but within the range of NS coefficients documented in the
literature for SWAT models (Hanratty and Stefan, 1998; King et al., 1999; Rosenthal
and Hoffman, 1999; Spruill et al., 2000; Eckhardt and Arnold, 2001; Weber et al.,
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2001; Fontaine et al., 2002; Neitsch et al., 2002c; Eckhardt et al., 2003; Tripathi
et al., 2003; Olivera et al., 2006). In the case of Onion Creek, the situation was
similar to that in Barton Creek although the NS coefficients did not fall below 0. In
this case, rain gauge 412585 was used for the single gauge models and covered 58% of
the watershed area in the multiple gauge models. Again, the three days of unusually
high precipitation caused large errors which led to low NS coefficients. The models
with a single gauge had even lower NS coefficients because of the greater importance
of rain gauge 412585 on the overall definition of the precipitation field.

Table 8: Nash-Sutcliffe coefficients in temporal validation. LO, LS, and LR stand for
the land use type of original, single, and random, respectively.

Multiple rain gauges Single rain gauges

Temporal validation Soil type Soil type

Original Single Random Original Single Random

East Fork of the LO 0.43 0.58 0.50 0.26 0.37 0.25
San Jacinto LS 0.31 0.62 0.49 0.23 0.47 0.31

River LR 0.33 0.43 0.41 0.30 0.27 0.23
LO -0.22 -0.20 -0.22 -0.22 —-0.28 —0.01
Barton Creek LS -044 -020 -0.19 =039 -0.10 —-0.35

LR -028 -032 -0.15 —-022 —-0.10 —0.20

LO 0.27 0.31 0.31 0.03 0.07 0.04
Onion Creek LS 0.19 0.27 0.31 0.06 0.05 0.09
LR 0.21 0.24 0.29 0.12 0.01 0.11

As shown in Table 9, the East Fork of the San Jacinto River models show good
performance in spatio-temporal validation while the other two watershed models per-
form poorly. In the case of Onion Creek, the single rain gauge models performed even
better than the multiple rain gauge models. The reason for this bad performance of
the multiple gauge models is that, on October 18, 1998, the daily precipitations of 318

mm/day, 58 mm/day, and 37 mm/day were observed at the three rain gauges that
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are not used for the single rain gauge models, and of 169 mm/day at the gauge used
in the single rain gauge models. Because the recorded value of 318 mm/day affected
34% of the watershed area, significantly higher flows were generated by the multiple
rain gauge models, compared to those of the single rain gauge models. For original
land use and original soil type, the multiple rain gauge model estimated 306 m?3/s
on October 18, 1998 and the single rain gauge model 115 m?®/s while the observed
flow was 54 m®/s. This error causes lower NS coefficients for the multiple rain gauge
models than for the single rain gauge ones. When the 318 mm/day precipitation was
excluded from the Onion Creek model with original land use, original soil type, and
multiple rain gauges, its NS coefficient increased from —0.71 to 0.38.

Table 9: Nash-Sutcliffe coefficients in spatio-temporal validation. LO, LS, and LR
stand for the land use type of original, single, and random, respectively.

Multiple rain gauges Single rain gauges
Spatio-temporal validation Soil type Soil type
Original Single Random Original Single Random

East Fork of the LO 0.56 0.65 0.60 0.43 0.57 0.44
San Jacinto LS 0.44 0.71 0.57 0.41 0.65 0.52
River LR 0.49 0.58 0.52 0.49 0.48 0.52
LO -1.05 —-1.00 -1.04 —-054 —-0.61 —0.32
Barton Creek LS -137 =097 -095 —-0.65 —0.49 —0.69
LR -1.15 -125 -093 -053 —046 —0.58
LO -0.71 -048 —-047 -0.26 —0.28 —0.16
Onion Creek LS -0.75  —-0.78 —-0.02 —-043 —-049 —0.40
LR -121 -102 -1.09 -0.11 —-0.66 —0.01

Although the NS coefficient is a well-known and commonly used model perfor-
mance metric, the above results reveal limitations of the coefficient as a measure of
model performance. Additionally, because the performance of the no-model highly

depends on the characteristics of historical flow records, one should take great caution
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when comparing NS coefficients for different watersheds; that is, NS coefficients from
different models may be compared only if they have the same no-modal (i.e., same
watershed but with different parameter values).

Figure 3 shows plots of the daily-averaged flow at the watershed outlet versus
the daily-averaged runoff generated in the watershed, both in m?3/s. Points on the
1:1 line correspond to days in which the flow and the runoff are equal, implying that
there are no losses, and the draining time is less than one day. On the contrary, points
off the 1:1 line reflect losses or residence times in the watershed longer than one day.
For the East Fork of the San Jacinto River and Barton Creek models, almost all of
the points are found on the 1:1 line (see Figure 3a); for the Onion Creek models,
flows are lower than runoff because part of the runoff is lost to the Edwards aquifer’s

recharge zone before reaching the watershed outlet (see Figure 3b).
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Figure 3: Streamflow versus runoff for selected models out of the 54 calibrated models.
(a) The East Fork of the San Jacinto River model with original land use, original soil
type, and multiple rain gauges. (b) The Onion Creek model with single land use,
single soil type, and single rain gauge.

The Manning’s channel roughness coefficient (CH.N2 in the SWAT documen-
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tation) affects flow velocities and travel times (Hsu et al., 2006), and, consequently,
residence times in a watershed. To assess the effect of the Manning’s channel rough-
ness coefficient on watershed responses, the calibrated models were run with the
Manning’s coefficients of 0.001 and 0.01 to 0.10 at 0.01 intervals. It was observed
that the effect of the different Manning’s coefficient values on the hydrographs at the
watershed outlets was negligible because, in all cases, the time taken in flow routing
was shorter than one day. This impact of time resolution on the results of small
watershed models is conceptually similar to the buffering effect that reduces the im-
portance of daily rainfall variability by using monthly flow estimates (Chaplot et al.,
2005).

However, the most important observation is that, despite the expectation that
the original spatial distribution of land use and soil type would yield better predictions
in spatial validation, the random and lumped models performed overall as well as the
original ones. In other words, the location within the watershed of specific land use
and soil type areas did not significantly affect the performance of the models. The
reason for the consistency in the performance level, in spite of the change in land
use and soil type distribution, is caused by the fact that the entire watershed drains
within a single computational time step making it irrelevant to identify where runoff
was generated. However, it was noticed that multiple rain gauge models performed
better than single rain gauge models, both in temporal and spatial validation. In
fact, for the specific dataset used in this study, it was found that accounting for the
spatial variability of rainfall—as a means for estimating the precipitation volume more
accurately—was more important than accounting for the spatial variability of land
use and soil type. Although the three watersheds analyzed in this study presented
different hydrologic characteristics, generalization of these conclusions should be done

carefully.
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2.4. Summary and conclusions

This chapter discussed the impact of modifying the spatial distribution of land use,
soil type, and precipitation on estimated streamflows in watersheds with times of
concentration shorter than the model computational time step. The SWAT model
was used to estimate the hydrographs at the watershed outlets. Different represen-
tations of the spatial data resulted in comparable model performances, and even the
use of uniform land use and soil type maps was not noticeable. In general, spatially
distributed data help understand the characteristics of a watershed and provide dis-
tributed hydrologic models valuable information; however, when the watershed size is
small compared to the time step of the model, realistic representations of the spatial
data do not necessarily improve the model performance. When the model computa-
tional time step is long compared to the watershed time of concentration, the model
can only capture the lumped effect of the hydrologic processes at the watershed outlet.
Despite the diversity of the hydrologic characteristics of the watersheds analyzed in
this chapter, generalization of these conclusions presented here should be done care-
fully. In fact, watersheds in which a correlation between land use or soil type, and
precipitation distribution exists might require accounting for the spatial variability

for estimating more accurately the runoff volume.
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CHAPTER III

ENHANCED SPECIATION IN PARTICLE SWARM OPTIMIZATION FOR
MULTI-MODAL PROBLEMS

3.1. Introduction

Due to the complexity and the non-linear nature of real-world optimization prob-
lems, it is often not possible to analytically derive the derivative of the objective
function (Duan et al., 1994; Xiong and O’Connor, 2000; Sotiropoulos et al., 2002;
Zhang et al., 2004). The lack of analytical derivatives of the objective function forces
the use of direct search approaches, which only require function evaluations (Xiong
and O’Connor, 2000; Sotiropoulos et al., 2002; Brath et al., 2004; Zhang et al., 2004;
Wei and Zhao, 2005; Yang et al., 2005). However, even direct search algorithms, such
as the simplex method, can suffer from early convergence to local optima or slow
convergence (Trabia, 2004). In order to overcome these shortcomings, population-
based search algorithms have received much attention to improve the exploration of
the search space (Sotiropoulos et al., 2002).

Holland (1962) formalized the analogy between optimization problems and the
natural selection of organisms leading to evolutionary algorithms. Random searches
based on artificial genetic evolution are referred to as Genetic Algorithms (GAs)
(Guangi and Shouyi, 2003). In GAs, a generation of artificial organisms evolve
through genetic operators such as crossover, mutation, and random selection (Ch-
elouah and Siarry, 2003). Inspired by the social behavior of ant colonies, Dorigo
et al. (1996) introduced the Ant System (AS) metaheuristic, which is the predecessor
of the Ant Colony Optimization (ACO) algorithm. In ACQO’s basic algorithm (Dorigo

et al., 1996), artificial ants initially move randomly in the stratified search space to
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find solutions and lay down pheromone trails representing the probability of possible
solutions being the global optimum while other artificial ants probabilistically prefer
to follow pheromone deposits rather than walk randomly to find the shortest path
to solutions. Pheromone deposited on non-optimal routes tends to evaporate as the
number of artificial ants following the routes decreases to reduce the probability of the
routes being optimal. The collective behavior of these simple artificial ants eventually
finds the shortest path to the global optimum. Since ACO was originally developed
for combinatorial optimization, several attempts have been made to design continuous
pheromone models to solve continuous problems (Socha and Dorigo, 2006).

Another promising optimization method based on collective artificial intelligence
is Particle Swarm Optimization (PSO), introduced by Eberhart and Kennedy (1995)
and Kennedy and Eberhart (1995). PSO is a metaheuristic approach mimicking the
movement of birds in a flock sharing information with each other (Acan and Gunay,
2005). Individuals in the swarm represent parameter samples referred to as particles.
Each particle in the swarm keeps track of its own best solution achieved so far and
shares the information with topological neighbors to fly toward an optimal solution
(Brits et al., 2007). The challenge in high-dimensional problems has been to locate
the global optimum without trapping into local optima (Hendtlass, 2003). Different
topological neighbors have been studied to enhance the success rate of finding the
global optimum (Brits et al., 2007). These topologies include, among others, the gbest
(i.e., global best) method, the lbest (i.e., local best) method (Eberhart et al., 1996),
the von Neumann topology (Kennedy and Mendes, 2002), and the spatial topology
(Suganthan, 1999). However, there are usually more than one possible solution to real-
world problems (Hendtlass, 2003; Brits et al., 2007) (e.g., multi-objective problems
and multi-modal problems).

Multi-objective optimization seeks to find the non-inferior solutions referred to
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as the Pareto-optimal set (Gupta et al., 1998; Yapo et al., 1998; Madsen, 2003). In
the context of multi-objective optimization, one has to choose one or more trade-off
solutions from conflicting scenarios distributed along the Pareto-optimal front (Deb,
2004). However, because not all objective functions can be mathematically formulated
or considered in optimization, trade-off solutions can turn out to be not on the Pareto-
optimal front when additional objective functions are taken into account (Brill, 1979).
Even if the non-inferior solutions are chosen for decision making, there is a chance
that these solutions are not realistically or even mathematically the best (Brill, 1979;
Zechman and Ranjithan, 2003, 2007).

It is often useful to obtain “maximally different” sub-optimal alternative solutions
in order to gain insight to feasible solutions (Brill, 1979; Zechman and Ranjithan,
2007). In multi-modal problems, there may be more than one solution if global and
local optima are considered (Li, 2004). However, unlike in multi-objective problems,
there is no Pareto-optimal front because there is only one objective function in multi-
modal problems (Brits et al., 2007). However, strict criteria to determine whether
or not local optima were found cannot be well defined (Brits et al., 2007) because
the surface of the objective function is not known a priori, and local optima have
mathematically inferior fitness values compared to the global one.

PSO’s adaptive control of particles’ movement and of their topological neigh-
bors improves the exploration of the search space, which is a promising feature for
multi-modal problems (Li, 2004). Cluster analysis techniques have been employed
to enhance the exploration of the search space (among others, Kennedy, 2000; Li,
2004). Kennedy (2000) applied k-means algorithms to classify particles into groups,
which individually converge to their own optimum. However, the main pitfall of this
method is that the number of clusters must be specified in advance without knowing

how many optima actually exist (Li, 2004). The Species-based PSO (SPSO), which
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uses proximity-based grouping called “speciation,” was introduced by Li (2004) to
alleviate the shortcomings of k-mean classifications. Because the speciation radius is
used to classify the swarm population into subpopulations, referred to as “species,”
there is no need to pre-specify the number of clusters (Li, 2004). Likewise, NichePSO
(Brits et al., 2002) creates subswarms, each of which employs the Guaranteed Conver-
gence PSO (GCPSO) (van den Bergh and Engelbrecht, 2002) to ensure convergence
to different local optima. GCPSO adaptively updates the velocity of the best particle
based on its number of consecutive successes or failures to avoid premature con-
vergence (van den Bergh and Engelbrecht, 2002). Parsopoulos and Vrabatis (2001)
applied function stretching (Parsopoulos et al., 2001) to transform the objective func-
tion right after the swarm finds an optimum so that particles approaching already
found optima are assigned a low fitness value to prevent them from revisiting the
previous solutions. The transformation of original objective functions is known to
bring in new local optima (van den Bergh, 2002).

Diversity of particles is a measure to how well particles are distributed in the
search space, and it is necessary to maintain high diversity during the optimization
process in order to escape from local optima (Riget and Vesterstrgm, 2002; Mon-
son and Seppi, 2006) or find them dispersed in the search space. Unlike in pre-
vious implementations of PSOs, particles in the Spatial Extension PSO (SEPSO)
(Krink et al., 2002) have volumes, and there is a collision detection algorithm so that
particles do not overlap with each other, thus, avoiding clustering around local op-
tima. This method also prevents unnecessary function evaluations when particles are
close to each other (Monson and Seppi, 2006). The Attractive and Repulsive PSO
(ARPSO) (Riget and Vesterstrgm, 2002) artificially keeps diversity within the pre-
specified range through “attraction” and “repulsion.” ARPSO measures the diversity

of a swarm by the average distance of particles from the centroid of the swarm. Mon-
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son and Seppi (2006) extended SEPSO in the Contracting Radius, Increasing Bounce
SEPSO (CRIBS) to adaptively update the radius and distance of collision detection.

In this chapter, SPSO was extended not only to find multiple optima but also to
better explore the search space. Enhanced exploration will increase the probability
of finding more solutions, which is a preferable feature for multi-modal optimization.
Section 3.2 describes the particle’s movement in PSO and discusses the extensions to
SPSO introduced in this study. Sections 3.3 and 3.4 discuss the experimental setup

and results, respectively. Section 3.5 summarizes this chapter and draws conclusions.

3.2. Isolated Speciation-based PSO

In this study, SPSO was modified to enhance the discovery of sub-optimal yet poten-
tially attractive solutions. In addition, a non-random deterministic sampling strat-
egy was employed to increase the uniformity of particle samples. In the Isolated
Speciation-based PSO (ISPSO), possible solutions found by the swarm are called
“nests,” and finding them is referred to as “nesting.” The ISPSO algorithm is given

in Figure 4.

3.2.1. Particle’s movement

In PSO, each particle represents a parameter sample, and the swarm consists of a
population of particles. Particles in the swarm share their information with topo-
logical neighbors to move around the search space toward optimal solutions. In a
D-dimensional problem space, particle i’s current position and velocity are ¥; =
(i1, Tigy - -, xip) and U; = (vi1, Vo, - - -, Vip ), Tespectively. Particle i uses its own best
position p; (i.e., private best or pbest) and the global best position p, (i.e., gbest)

that the swarm has achieved so far to determine its velocity at the next time step.
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—

Define a problem: D, Zwin, Zmax; Umax, f(Z)
Initialize the ISPSO parameters: |S|, Tspecies) Tpreys Tnest
Initial population from the scrambled Sobol’ sequence
N « (): Storage for nests
repeat
Evaluate f(#;) and p; fori =1,...,|S].
Increase the ages of all particles by 1.
A « S sorted in the decreasing order of fitness
B « (): Species seeds
C « (: Particles participating in speciation
for all @ € A do {Proximity-based speciation}
found «+ FALSE
for all b € B do
if d(@,b) < Fepecies then
found « TRUE
C —Cu{ab}
Di — b: i indicates the unsorted index of 7; = a.
break
if found = FALSE then
B — BuU/{a}
p; < a: 1 indicates the unsorted index of ; = d.
Modified speciation according to Figure 5
Isolated speciation according to Figure 6
Update velocity v; for i = 1,...,|5].
for all 7 € N do {Turbulence of species seeds}
for all b € B do
if d(b,77) < 2 Tyes; then
Add a small turbulence to the velocity of b.
Check for convergence, and add solutions to NV if any.
Update position Z; for i = 1,...,|S|.
Fitness assimilation according to Eqs. (3.12) and (3.13).
Preemptive nesting
until The maximum number of iterations is reached.

Figure 4: ISPSO algorithm.
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The d" dimensional element of particle i’s velocity at time step ¢ + 1 is updated as

Via(t + 1) = via(t) + 171 (t) (Pig — Tia) + Vara(t)(Pg.a — Tia) (3.1)

where 1, and 1), are the cognitive and social coefficients, respectively, that are set
as control parameters prior to an optimization run, and 7 (¢) and ry(t) are random
numbers from the uniform distribution between 0 and 1. Different topological neigh-
bors use different p, definitions referred to as the local best p; (i.e., Ibest), which is
the best position obtained by an individual neighbor, not by the entire swarm.

Shi and Eberhart (1998) introduced the inertia weight w to stabilize particle

movement by modifying Eq. (3.1) as follows:

Via(t +1) = wvia(t) + V1r1(t) (Pia — Tia) + Yora(t) (Pg.a — Tia) (3.2)

where w is the inertia weight typically decreasing from 0.9 to 0.4 during optimization
(Eberhart and Shi, 2000). Clerc (1999), in turn, proposed the constriction factor x

to efficiently control particle velocities and extended Eq. (3.1) as

Via(t + 1) = x(via(t) + 1ri(t)(pia — ia) + Yora(t)(pga — Tia)) (3.3)

where y is defined as

(3.4)

2
A YT v

where ¥ = 11 + 15 and ¢ > 4. The constriction factor is known to outperform the
inertia weight in improving the stability of convergence by preventing the explosion
of particle velocities (Eberhart and Shi, 2000; Blackwell and Branke, 2006) and is
used in ISPSO.

The particle velocity is constrained between —uy,,, and v,.,. Particle ¢’s position
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at time step t + 1 is updated as

Ti(t+ 1) =2(t) + v;(t + 1) (3.5)
The pre-specified range [Zmin, Tmax) 18 used to restrict Z;(t + 1) to the feasible search
space.

3.2.2.  Sampling strategy for high diversity

In ISPSO, to ensure uniformity rather than randomness of the particle distribution
in the search space, swarm particles are initialized with low-discrepancy sequences or

quasi-random sequences instead of pseudo-random sequences (i.e., uniform distribu-

tion). The uniformity of the point set #1,...,%, € [ =[0,1)® is measured by the star
discrepancy:
N(A, X
Dy(x) = sup [ ) (36)
AeJ* n

where X = {7,...,@,}, J* is the set of subintervals of I of the form [[;_,[0,u;),
0 < u; <1, nis the number of points in X, N(A, X) is the number of points in
X belonging to an s-dimensional hyperrectangle A = []7_,[0,u;), and A;(A) is the
Lebesgue measure of the hyperrectangle A. The Lebesgue measure on A is defined
as As(A) = [[;_; u;. Since the discrepancy measures how much samples are deviated
from the spatial uniformity of the particle distribution, a low discrepancy value indi-
cates a high uniformity in the particle distribution. Galanti and Jung (1997) compared
three low-discrepancy sequences including the Sobol’ (Sobol’, 1967), Halton (Halton,
1960; Halton and Smith, 1964), and Faure (Faure, 1982) sequences. They concluded
that the Sobol” sequence is superior to the others in terms of speed and degradation

of low discrepancy in high-dimensional spaces (e.g., even in the 260" dimension).
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Antonov and Saleev’s (1979) improvement to the Sobol’ sequence is used in
ISPSO. Suppose p’(x) is a primitive polynomial of degree ¢ and of modulo 2 for the

4*® dimension as defined as
Pa)=2"+az" ' +- a7 +1 (3.7)

where ay,...,a, 1 arbitrarily take either 0 or 1. p’(z) is said to be primitive if the
order of p?(x) is 2 — 1. The order of the polynomial is the smallest integer e such
that 2¢ 4+ 1 can be divided by p’(x). For example, the order of f(z) = 2? +x + 1 is
3=22—1, and f(x) is primitive because (z? +z+ 1)(z +1) =2 + 22> + 2z + 1 =
34022402+ 1 = 23+ 1. However, g(z) = 22+ 1 has an order of 4 # 2% — 1 because
@+ D)+ l)=2+22+ax+1#2>+1but (2 +1)@@?+1) =2+ 222 +1=
'+ 022+ 1 = 2* + 1. Note that p?(z) is a polynomial of modulo 2. Different p’(z)’s
are used for different dimensions. Now, the g-term recurrence relation Mf is defined

as
M} =2a; M7, & 2%a;M] , @ - @27 \ag M} ®2M]_ ® M, (3.8)

where ¢ < i < w, and @ is the bitwise exclusive disjunction operator (XOR) defined
as follows: 000 =1®1=0and0®1=1®0=1. M/ fori=1,...,q is arbitrarily
determined such that MZ is an odd integer satisfying 0 < MZJ < 2%, A set of binary

fractions called the direction number is defined as
o] = Mj 27 (3.9)
where 1 < ¢ < w. The Sobol”’ number xZLH for 0 < n < 2% —1 is generated as follows:

xl =1l Ol (3.10)
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where 2, = 0, and ¢ is the rightmost zero bit of n. The maximum allowed number of
sequence generations for each dimension is 2¥ — 1. See Galanti and Jung (1997) for
more details including examples.

Owen (1998) and Faure and Tezuka (2002) successfully applied random scram-
bling schemes to the Sobol” sequence to increase uniformity. In ISPSO, particle gen-
eration is controlled by the Sobol’ sequence with both the Owen and Faure-Tezuka

scrambling techniques.

3.2.3.  Isolated speciation

SPSO groups particles in the swarm into species based on proximity. Proximity is

measured by the Euclidean distance d between particles ¢ and j as follows:

D
(T, 75) = \| > (Tia — 1ja)? (3.11)
d=1
where Z; and Z; are the positions of particles 7 and j, respectively, and D is the
problem dimension.

Speciation takes place at every iteration of the optimization process because the
movement of particles in the search space continuously changes the distance between
particles. The best particle in a species is referred to as the species seed and is consid-
ered the local best in the species (i.e., p; in Eq. (3.3)). When any species converges to
a certain point, particles belonging to the species would not move actively because the
species seed’s local and individual best positions (i.e., p, and p; in Eq. (3.3), respec-
tively) will be very close to each other. Because this stagnation can cause premature
nesting, in ISPSO, the memory of the current particle generation is used to refine

the local best of any newly created species seed at each iteration. When a species

is generated, the seed checks if there are particles with better fitness values than its
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own fitness within the species radius 7gpecies @s shown in Figure 5. This may happen
when there are superior particles within the region of the species being generated
that belong to the superior species. In this case, the local best of the new species
seed is set to the current position of the superior particle. Furthermore, the seed also
checks the individual best position of each particle in the swarm to see if any better
positions were explored in the past near the region of the species being generated.
If the seed found better positions than itself, the local best of the seed is set to the
best position found, and the seed and particles in the species may not stay around
the seed’s current position. In this way, speciation learns about the region of a new

species from the memories of all the particles in the swarm.

P Species members’ lbest
/ Species seed’s lbest

Species radius

Species region of
a superior seed

Figure 5: Modified speciation. The black dot indicates the seed of a new species being
generated, the gray dots are the members of the new species, and the “X” symbol is
either a member of an overlapping species or the private best (i.e., pbest) of a particle
in the current population that has a better fitness value than the new species seed.
Lbest denotes the local best of a particle.

Preliminary experiments in this study showed that SPSO requires more particles
compared to other PSOs in order to achieve convergence. Particles in SPSO need
to be close enough to form species while they have to create multiple species at the
same time for exploration. Otherwise, there can be isolated particles that do not

participate in any speciation. The threshold radius for speciation 7gpecies Deeds to be
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kept small to ensure finding the solutions that are close to each other. Since each
species seed represents a candidate nest, the species radius is critical for multi-modal
optimization. The question arises of how many particles are required to make sure
enough species are formed. If particles are too sparsely distributed, isolated particles
are not able to move when their initial velocities are set to 0. Even if initial velocities
are set to non-zero values, there is still a chance of generating isolated particles,
which only consume function evaluations at fixed positions without any contribution
to finding solutions. In order to overcome this shortcoming, as shown in Figure 6,
isolated particles form an additional species in ISPSO, and their ages (i.e., the number
of consecutive iterations during which a particle has participated in speciation) are
reset to one because their experiences should not be trusted as much as those of
the other particles. By incorporating this strategy, the swarm size is significantly

decreased to the same level as other PSOs.

Species radius

‘ 7ted speciation

Figure 6: Isolated speciation. The black dots are particles, the solid circles are their
speciation regions, and the particles in the dashed splines generate species.
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3.2.4. Fitness assimilation

SEPSO introduces the concept of particle volumes (Krink et al., 2002). The idea is
that a collision between volumetric particles helps prevent clustering which attracts
particles to a few sub-optimal solutions. ISPSO also adopts this concept through the
pre-specified radius ey, but a collision does not make particles bounce from each
other. Instead of bouncing, fitness assimilation or preying takes place between two
particles in contact. That is, the past experiences of the two particles are combined
to create a new particle. Each particle keeps three memories including its current
position, current velocity, and individual best position. The current position of the
new particle is based on the fitness values at the current positions of the two particles.
The position and velocity of the particle with the higher fitness are assigned to the new
particle. Similarly, the new particle’s individual best position is assigned the better
individual best position of the two original particles. The new particle replaces one
of the two original particles. If f denotes the objective function for minimization
problems, the formulation of new particle generation is as follows:
(@, 0;) if f(T) < f(T5),

(fnewa 77new) - (312)
(Z;,7;) otherwise;

e e < @),
Pnew = (313)
p; otherwise
where Thew, Unew, and Duew are the position, velocity, and individual best position
of the new particle, respectively, #; and #; are the particles’ original positions, ;
and 7; are the particles’ original velocities, and p; and p; are the particles’ original

individual best positions. To replace the remaining particle, one additional particle is

quasi-randomly generated using the scrambled Sobol’ sequence described previously.



40

This new particle fills a gap between previously quasi-randomly generated particles.

3.2.5.  Nesting criteria for global and local optima

Because there are no absolute stopping criteria when searching for local optima (Brits
et al., 2007), it is difficult to claim that a local optimum has been found. This lack
of stopping criteria also applies to searching for the global optimum when the fitness
value is not well defined. Ho et al. (2005) and Ho et al. (2006) introduced the age of
a particle to enhance the exploration of the search space. In ISPSO, the pre-specified
age threshold a is used to determine whether the experience of an old particle should
be trusted or not. If the age of any species seed exceeds the age threshold, and the
normalized geometric mean of its positions and the standard deviation of its fitness
values during the most recent 50% of lifetime are small enough, the seed is considered
a possible solution referred to as a nest.

The standard deviation of the fitness values of particle i from age [a;/2 + 0.5]
to a; is used for nesting. |-| and a; denote the flooring function and the current age
of particle 7, respectively. The threshold value for the standard deviation is called
es. However, a small standard deviation of the fitness value does not guarantee the
convergence of a particle when the particle hops around points with very similar
fitness values (e.g., a near-plateau region).

Liong and Muttil (2001) used the normalized geometric mean as the stopping
criterion for the Shuffled Complex Evolution (SCE-UA) algorithm developed by Duan
et al. (1992). In order to attain increased accuracy in nesting, ISPSO also uses the
normalized geometric mean defined as follows:

D . _ 1/D D n B
T, — T, 1 T, — T,
<| | — W ) = exp (5 E log ——*1 — ’]. > (3.14)

j=1 xmax,j - szin,j
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where z; is max{z}; | [a;/2+0.5] < k < a;}, ;; is min{z}; | [a;/2+0.5] <
k < a;}, and Tyax;j and Ty ; are the 5" dimensional upper and lower bounds of the
search space, respectively. xf ; denotes the 4" dimensional position of particle i at

age k. A small value of the normalized geometric mean implies that particle ¢ has

converged. The threshold value for the normalized geometric mean is called e,.

3.2.6.  Preemptive nesting

After having found a number of solutions, the swarm should avoid converging to
the existing nests to prevent unnecessary function evaluations at positions near the
known possible solutions. This is accomplished by substituting particles falling within
the nesting radius rye of the existing solutions with new quasi-random particles
generated from the scrambled Sobol’ sequence. As a side effect of this behavior, a
flat circular area is created that has the same objective function value as the solution
within the nesting area, causing some particles to cluster around the edge of the
region. In order to prevent convergence near the edge of this area, a “turbulence
region” surrounding the nesting area is defined so that any species seed moving into
this region is assigned a small random velocity, and individuals belonging to this

species may not be able to converge.

3.3. Experiments

ISPSO was tested on the five functions suggested by Beasley et al. (1993). These test

functions were modified to be suitable for minimization problems as follows:

F1(x) =1 — sin®(5mz), (3.15)
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F2(z) =1 —exp (—210g(2) : (m —_ 0'1) ) -sin®(5mz), (3.16)

F3(z) =1 —sin® (57 (z** - 0.05)) , (3.17)

F4(z) =1—exp (—210g(2) : (%_8—(;)408> ) -sin® (5 (z*/* — 0.05)) , (3.18)

F5(x1,m5) = (23 + 29 — 11)? + (2 + 23 — 7). (3.19)

Figure 7 shows the minima of the five functions. The search spaces are [0, 1] for F'1
to F'4 and [—6,6]? for F'5, the same search spaces used in Beasley et al. (1993). F1
has equally spaced minima at 0.1, 0.3, 0.5, 0.7, and 0.9; F'2 has almost equally spaced
minima at 0.100, 0.299, 0.499, 0.698, and 0.898; F'3 has minima at 0.080, 0.247, 0.451,
0.681, and 0.934; and F'4 has minima at 0.080, 0.246, 0.449, 0.679, and 0.930. F'1 and
F'3 have five global minima while /2 and F'4 have one global minimum and four local
minima. F'5 has four almost equal minima at (3.58, —1.86), (3.0, 2.0), (—2.815, 3.125),
and (—3.78, —3.28).

Additionally, two scalable massively multi-modal functions (i.e., the Rastrigin
and Griewank functions) were used to test the scalability of ISPSO. The Rastrigin

function is defined as
D
Z x; — 10 cos(2ma;) + 10] (3.20)
=1

and the Griewank function is defined as

(%) = 4#2:): ﬁcos (%) +1 (3.21)
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Figure 7: Continued.

where D is the dimension of the function. Figure 8 shows the surfaces of the two
functions. The search space was restricted to [—1.5,1.5]P for F'6 and [—14, 14]” for
F1.

Because it is difficult, if not impossible, to well define the fitness values of global
and local minima in real-world applications, optimization algorithms are not able to
use those fitness values in their stopping criterion. Although, in all test runs, ISPSO
was tested on mathematical functions with known minima and minima fitness values,
it was assumed that [SPSO did not know the fitness values of global and local minima;
that is, the algorithm was not supposed to know errors between the true solutions and
nests during optimization, and no threshold values for the errors were used to find
possible solutions. This makes the test more representative of real-world problems.
In this way, ISPSO was tested to see how well the algorithm managed to recognize
solutions without any information about them. For the purpose of comparisons with

other methods, ISPSO was given the number of global and local minima, and all
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Figure 8: Test functions for scalability test.

the runs were terminated immediately when the algorithm claimed that it had found
exactly the same number of solutions as given. In real applications, the algorithm

may have to be terminated at a maximum number of iterations because even the

number of solutions is not known a priori.

3.3.1.  Ezperimental setup for performance test

ISPSO has four control parameters for particle movement (|S|, rspeciess Tprey, and
Tnest) and three nesting parameters (a, €, and €,). The default swarm size was set to
|S| = 20, the default value used by Brits et al. (2007). The default species radius was

set 10 Tspecies = 0.1L, as suggested by Li (2004) for one-dimensional problems, where

L is the diagonal length of the search space, which is defined as

L= Z(Imax,i - xmin,i>2 (322)
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where Zpmax; and iy ; are the i*" dimensional upper and lower bounds of the search
space, respectively. The default nest radius was set to rpet = 0.01L, 1% of the
default species radius, and the default prey radius was set to 1.y = 0.0001L, 1%
of the default nest radius. Particle movement was controlled with the cognitive and
social coefficients, and the constriction factor as defined in Egs. (3.3) and (3.4). ¢, =
1y = 2.05 was used as recommended by Eberhart and Shi (2000) and Clerc and
Kennedy (2002), and ¥, was set to a small value of 0.1 - (Zax — Zmin) to test the
exploration capability of quasi-random sampling. Note that, by limiting the velocity
of particles, explorability is mainly controlled by preying and preemptive nesting.
Newly created particles are assigned a non-zero random velocity constrained to be
within the maximum initial velocity, |Umax 0|, to prevent early stagnation. In this test,
the maximum initial velocity of |Upax0| = 0.001L was used.

Four sets of experiments were performed, each of which tested the sensitivity of
the performance of ISPSO to each control parameter. One parameter was changed at
a time with the others fixed to the default values. Each test function was optimized
30 times with the given value of each parameter, and the statistics of these results
were reported.

The age parameter was set to a = 10 for all runs. In order to compare the
results of ISPSO with those of NichePSO and SPSO reported by Brits et al. (2007)
and Li (2004), respectively, ¢; was fixed to 1074, and €, was set to 107 according to
Liong and Muttil (2001). However, note that Brits et al. (2007) and Li (2004) used a
threshold value of 10~ to stop test runs by measuring the closeness of a particle to
the corresponding true minimum while ISPSO used €; and €, to measure how stable a
species seed is. The closeness of a solution found to the true minimum was separately
measured after optimization, as described below.

The criteria used to judge whether or not ISPSO has successfully found global
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and local optima must be carefully defined. The algorithm cannot discard previous
non-best solutions as it can for unimodal problems. In the current test, any solutions
falling outside of the pre-specified radius of the true solutions were regarded as failures.
The radii from the true solutions used in this study were 1%, 2%, 3%, 4%, and 5%
of the diagonal spanning of the search space defined in Eq. (3.22) (hereafter referred
to as the accuracy). Since one solution set is evaluated against the five accuracies
after optimization, if all the solutions satisfy a certain accuracy, those solutions also

satisfy the lower accuracies.

3.3.2.  Ezperimental setup for scalability test

The scalability test was performed with F'6 and F'7 which have an exponentially grow-
ing number of solutions with increasing dimensions. For each dimension of the func-
tions, 10 individual optimization runs were carried out, and their results were summa-
rized. The values of the control parameters were set to |S| = the number of solutions,
Tspecies = 0.1L, Tprey = 0.001L, and 76 = 0.05L while the same nesting criteria as in
the performance test was used as follows: a = 10, ¢; = 107*, and ¢, = 107®. Each
run was terminated immediately when the algorithm claimed to find all the solutions
or reached the maximum number of iterations, whichever happened first. The maxi-
mum number of iterations was set to 8,000 so that the maximum allowed number of
function evaluations was 8,000 times the number of solutions, the same criteria used
in Brits et al. (2007) except for the case of the 1-dimensional F'6 function, where
6,000 more function evaluations were allowed in this study to be consistent with the
other cases. The maximum number of function evaluations required to find all the
solutions of the 1-dimensional F'6 function was checked to see whether or not ISPSO

actually evaluated the function more than NichePSO did in Brits et al. (2007).
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3.4. Results and discussion

3.4.1.  Performance

The performance and the consistency of ISPSO, NichePSO, and SPSO are compared
in Table 10. The performance was measured with the number of function evaluations
required for convergence and the consistency with the success rate of finding all solu-
tions. The NichePSO and SPSO algorithms were not run again in this study. Instead,
the values reported by Brits et al. (2007) and Li (2004) were used for comparison. A
swarm size of 20 was used with ISPSO and NichePSO, and 50 with SPSO. ISPSO
was evaluated at 1% accuracy. Note that SPSO did not try to find local optima,
so the results of SPSO for F2 and F'4 were not comparable with those of the other
algorithms. The computational cost of [ISPSO was consistently lower than that of
SPSO for F'1, F'3, and F'5, and ISPSO was comparable with SPSO in terms of the
standard deviation of the computational cost. ISPSO succeeded to consistently find
all the solutions with fewer function evaluations on average than NichePSO except for
F5. For F1, F'3, and F'5, where all the solutions have nearly the same fitness value,
ISPSO showed more variability than NichePSO in the number of function evaluations.
For the other test functions, ISPSO outperformed NichePSO in terms of both per-
formance and consistency. Assuming that the number of function evaluations follows
the normal distribution, a t-test was carried out to statistically compare the results
of ISPSO and NichePSO on F'5. The one-tailed p-value of the t-test was 0.273, which
suggests that even though the average number of function evaluations required by
ISPSO is lower than for NichePSO, the performances of ISPSO and NichePSO are
not significantly different at a 95% confidence level. Overall, ISPSO shows improved
performance over SPSO and significant improvement over NichePSO. The sensitivity

of ISPSO performance to each control parameter is discussed below.
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Table 10: Comparison of ISPSO’s performance with those of NichePSO and SPSO. ¢
As reported by Brits et al. (2007). ® As reported by Li (2004) (rounded off). * Not
available because SPSO found only global optima.

Function Algorithm  Number of function evaluations  Success rate (%)
ISPSO 1,074 £ 285 100
F1 NichePSO* 2,372 £109 100
SPSO® 1,383 4+ 243 100
ISPSO 931 £ 218 100
F?2 NichePSO* 2,934 + 475 93
SPSO°® * *
ISPSO 1,038 £ 316 100
F3 NichePSO* 2,404 £195 100
SPSO® 1,248 £ 319 100
ISPSO 909 £+ 212 100
F4 NichePSO* 2,820 £ 517 93
SPSO® * *
ISPSO 2,203 + 426 100
b5 NichePSO* 2,151 + 200 100
SPSO® 3,155 £ 402 100
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a. Swarm size

Swarm size |S| was increased in increments of 5 from 5 to 100. ISPSO successfully
located all the global and local minima within 1% accuracy except for F'5 with a
swarm size 10. For F'5 with |S| = 10, the mean number of solutions within 1%
accuracy was 3.93 (98.25%), and all the solutions were located within 3% accuracy
(100%). The standard PSO 2007 C code (Clerc, 2007) suggests the following formula

for swarm size:

5] =10 + {2\/BJ . (3.23)

According to Eq. (3.23), a swarm size of 12 is recommended for global optimization
of two-dimensional problems, such as F'5. Using |S| = 15, ISPSO located all the
solutions of F'5 within 1% accuracy. This result shows that ISPSO does not require
large swarm sizes for multi-modal problems and does not depend highly on the number
of solutions. In comparison, NichePSO requires |S| > N? where N is the number of
solutions (Brits et al., 2007), and SPSO requires |S| = 50 to obtain similar results
(Li, 2004).

Figure 9a shows the mean number of function evaluations as a function of the
swarm size. As can be seen in Figure 9a, swarm size 5 requires higher number of
function evaluations than swarm size 10. At least two particles are required for non-
isolated speciation, but, usually, more than two individuals have to be involved to
actively explore the search space. For this reason, with a small number of parti-
cles, nesting takes place sequentially, and more iterations are needed to converge to
multiple solutions. With a large swarm, multiple species can be generated at each
iteration, which helps the swarm perform parallel searches. However, the function
has to be evaluated for each individual in the swarm at every iteration before any

nesting can take place. This behavior delays the evaluation of nesting criteria and,
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Figure 9: Computational cost versus different control parameters. Optimization runs
with success rate of 100% at each accuracy are reported as mean values of 30 test
runs.
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hence, leads to higher computational costs. The trade-off between the computational
costs of sequential and parallel searches is shown in Figure 9a. The swarm size of
10 corresponded to the lowest mean number of function evaluations for all functions.
This |S| value is nearly the same as calculated by Eq. (3.23) (i.e., |S| =12 for D =1
and D = 2), but it should be noted that Eq. (3.23) is used for global optimization,

and multi-modal optimization may require more particles.
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Figure 10: Error versus swarm size. Optimization runs with success rate of 100% at
1% accuracy are reported as mean values of 30 test runs.

Figure 10 plots the mean value of maximum errors over 30 runs against the
swarm size. Maximum error is the largest error value among those corresponding to
multiple solutions. As indicated in Figure 10, maximum error stabilizes at a swarm
size of 30 for F'1 to F'4 and 40 for F'5. This result shows that using more particles
yields more accurate answers. However, note that gain is not significant especially

when computational cost is taken into account.
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b. Species radius

Species radius was increased at 0.01L intervals from 0.01L to 0.20L. Too small of
species radius prevents the swarm from finding solutions because it decreases the
chance of non-isolated speciation to take place. Species radius greater than 0.02L
showed consistent performance. Although premature nesting was observed with F'5

at 1% accuracy as shown in Figure 11, all solutions were found within 2% accuracy.

80 100
| |
I
I
I
!

60
|

—— Fb5 at 1% accurary
- — F5at 2% accurary

Success rate (%)

20

T T T T T T T T T T
0.02 0.06 0.10 0.14 0.18

Species radius (L)

Figure 11: Success rate of finding all solutions versus species radius. Mean values of
30 test runs are reported.

Because speciation at each iteration takes place with a higher fitness value before
with lower ones, the swarm has difficulty to generate species near local minima with
relatively low fitness values when using small species radii. For functions having
almost equal minima, all the solutions have nearly the same probability of generating
species near them even with a small species radius, and this behavior significantly
reduces computational cost. Note that, for F'2 and F'4, which have one global and four
local minima, the success rates of repecies = 0.01L are 80.00% and 76.67%, respectively,

while the success rate of the same species radius for F'1, F3, and F5 is 100%.
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As shown in Figure 9b, species radii from 0.05L to 0.15L show low computational
cost for F'1 to F'4, and the number of function evaluations for F'5 starts stabilizing
around 7gpecies = 0.10L. For all of the test functions, species radii of 0.10L lead
to high efficiencies. 7Tspecies = 0.10L is approximately 50% of the shortest distance
between neighboring solutions for all the functions. These results suggests that it
is computationally efficient to use the species radius of 50% of the shortest distance
between solutions. However, note that, in real-world applications, the species radius
has to be pre-specified without knowing distances between solutions a priori, and
needs to be carefully defined because only the fittest solution is obtained among any

other local solutions within its species radius.

c. Prey radius

Since the prey radius is supposed to be a private region or volume of each particle,
it remains small compared to species radius. Prey radius was increased by 0.0001L
increments from 0.0001L to 0.002. As shown in Figure 9c, the greater the prey radius
of the swarm, the greater the number of function evaluations needed to find the same
number of solutions. The increasing uniformity of particle samples is achieved at the
expense of slow convergence because particles clustering around a possible solution
get scattered again. The smaller the prey radius, the faster the convergence while the
greater the prey radius, the more the quasi-random sampling takes place. Therefore,
the balance between fast convergence and sampling uniformity can be controlled by

the prey radius, but it needs to be kept small to make convergence happen.

d. Nest radius

Nest radius varied from 0.001L to 0.020L at 0.001L intervals. As shown in Figure 9d,

computational cost was not particularly sensitive to the nest radius. However, when
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the maximum particle velocity was increased to Zpnax — Tmin, the difference between
the numbers of function evaluations for r,e = 0.001L and r,e = 0.020L clearly
appeared. Because particles close to existing nests are replaced with new particles
sampled from the Sobol” sequence, the bigger the nest radius, the more likely indi-
viduals in the swarm are to escape from the regions of existing nests, and the more
uniformly the swarm explores the search space. This behavior increases the probabil-
ity of finding local solutions and, hence, reduces computational cost. Table 11 presents
the computational cost of two tests with different nest radii (i.e., rpest = 0.001L and
Tnest = 0.020L). Each test consists of 30 separate optimization runs with |S| = 20 and
Umax = Tmax — Lmin, and computational cost is in the format of a4b, where a and b are
the mean and standard deviation of the number of function evaluations, respectively.
Until finding three solutions, both nest radii showed similar performance, but, after
then, individuals in the swarm with the smaller nest radius tend to keep flying around
solutions already found, requiring considerably more function evaluations, because of
the low probability of escaping from existing nests. In general, a swarm with a small
nest radius requires more function evaluations to find the same number of solutions
than one with a bigger nest radius does. However, the nest radius needs to be kept

smaller than the species radius to ensure finding multiple solutions close to each other.

Table 11: Number of function evaluations for two test runs on F'5 with different nest
radii.

Solutions found Thest = 0.001L Tnest = 0.02L
1 1,163 + 287 1,283 4+ 378
2 1,477 4 282 1,680 4 323
3 1,968 4 405 2,038 4+ 481
4 4,017 + 2,164 2,026 + 881
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3.4.2.  Scalability

Table 12 shows the results of scalability test on F'6 and F'7. The algorithm consistently
found all the solutions for low-dimensional problems (i.e., the 1- and 2-dimensional
F6, and the 1-dimensional F'7). However, premature nesting was observed at 1% ac-
curacy when the number of solutions exponentially increased along with the problem
dimension. The percentages of the solutions found went up to 100 + 0% at 4% accu-
racy except for the 5-dimensional F'6. In 1 of the 10 experiments on F'6 with D = 5,
the algorithm failed to locate 2 solutions within the maximum number of function
evaluations at 5% accuracy (i.e., 99.18%). The number of function evaluations re-
quired to find all the solutions was approximately 20-NS? for F'6 and 7-NS? where NS
is the number of solutions. When the number of function evaluations is divided by
the maximum number of iterations (i.e., 8,000 in this study), the required swarm size
|S| = ¢-NS%is obtained, where ¢ is 2.5 x 1073 for F'6 and 8.75 x 10~* for F'7, and d is
2. This relationship between the swarm size and the number of solutions agrees well
with Brits et al. (2007). However, ISPSO requires only a faction of the swarm size of
NichePSO to obtain better results. For example, NichePSO used |S| = 4 - NS while
ISPSO used |S| = NS for the same test functions. Note that the maximum number
of actual function evaluations in the case of the 1-dimensional F'6 was 705 and, in
(Brits et al., 2007), the maximum allowed number of function evaluations in the same
case was 18,000; therefore, ISPSO did not consume more function evaluations than
NichePSO even if 6,000 more function evaluations were allowed in the test.

As shown in Table 13, a comparison between ISPSO and NichePSO suggests
that ISPSO consistently outperformed NichePSO in massively multi-modal problems
(e.g., the number of solutions of F'6 up to 243). Note that the results for F'7 (i.e., the

Griewank function) were not compared because the number of solutions analytically
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Table 12: Results of the scalability test on F'6 and F'7. Percentage of the solutions
found was evaluated at 1% accuracy, and the number of function evaluations of 10
experiments are reported regardless of their number of the solutions found.

Function Dimension Solutions

% solutions found

Number of function

evaluations
1 3 100+ 0 475 4+ 162
2 9 100+ 0 2,534 + 388
F6 3 27 99.26 +£ 1.56 16,160 £ 1,800
4 81 98.77 £ 1.01 112,809 4+ 17,575
5 243 98.07 £ 0.34 1,210,407 £ 392, 340
1 5 100+ 0 633 + 134
F7 2 31 98.06 £+ 2.26 11,455 £ 1,252
3 157 95.54 +£1.67 174,615 4+ 13,702

and numerically found in this study does not match that presented in Brits et al.

(2007).

Table 13: Comparison of the percentage of the solutions found of F'6 between ISPSO
and NichePSO. * As reported by Brits et al. (2007).

Dimension ISPSO (1% accuracy) NichePSO*
1 100 100
2 100 100
3 99.26 97.45
4 98.77 97.08
D 98.07 92.00

In the Griewank function, F'7(¥) is greater than or equal to the parabolic function

m ZD 22 because Hle Cos <%> € [—1,1]. One global minimum is located at 0,

J=1"7

and local minima exist near the tangent points where the Griewank function meets
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the parabolic function. The following conditions hold true at global and local minima:

A sin [ £ D A
F7(%) = T <\/E> : H Cos <x—\/]_> =0 fori=1,---,D (3.24)
A J

2000 Vi =1, j#i
11 z;
1=\ __ J -
F7i(a:)—m+;-jlzllcos<ﬁ>>0 fori=1,---,D (3.25)

where F7.(%) and F7/(Z) are the first and the second partial derivatives of the

Griewank function F'7(Z) with respect to x;, respectively. The tangential slope of

Ty

2000

a point (i.e., |[F'7;(Z)|) tends to increase along the line as the dimension i or |z;]

D

increases. Because Hj:1 i

cos <%> € [—1, 1], no points eventually satisfy Eq. (3.24)
when |z;| is greater than a certain threshold value. Although it is trivial to visually
count the number of minima of the Griewank function in up to 2-dimensional prob-
lems, it is not straightforward to analytically count the number of minima because
it is difficult to find the threshold value for |z;| due to high correlation between di-
mensions in high-dimensional problems. This issue is addressed in detail in Chapter
IV. In Brits et al. (2007), 5, 25, and 625 minima were found for the 1-; 2-, and
3-dimensional problems in the search space [—28, 28]”, respectively, while 9, 111, and
1,215 were found for the same cases in this study. This discrepancy in the number of
minima in the search space prevented a comparison of the percentage of the solutions
found. However, a visual inspection of the 1-dimensional search space confirmed that
the number of minima in [—28,28] is 9 as shown in Figure 12. I did not attempt
to reproduce the results from the NichePSO implementation of Brits et al. (2007)
due to uncertainty about the details of the implementation. I present the results for
the Griewank function F'7 from only ISPSO as another test of the scalability of the

algorithm. Additional work would be required to compare these results directly with

those from the NichePSO implementation of Brits et al. (2007).
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Figure 12: One-dimensional Griewank function in [—28,28]. Note that the number
of minima is 9.

3.5. Summary and conclusions

The Species-based PSO (SPSO) was modified for multi-modal problems by employing
“isolated speciation.” Particles left alone after proximity-based speciation form an
additional species called “the isolated species” to make themselves move around the
search space. This simple modification of SPSO guarantees more dynamic speciation
of particles and reduces swarm size required to locate all solutions. This behav-
ior helps reduce unnecessary function evaluations that do not contribute to finding
solutions. In addition, the exploration of the search space was improved through de-
terministic low-discrepancy sampling during optimization. This sampling takes place
through exclusion of particles from the small regions of known solutions and fitness
assimilation between particles in contact. The exclusive regions of already found solu-
tions also prevent unnecessary function evaluations near them and increase sampling
uniformity. This approach is called the Isolated Speciation-based PSO (ISPSO).

Widely used multi-modal functions were used to test the performance and the
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scalability of ISPSO. The results were compared with the reported works of SPSO
(Li, 2004) and NichePSO (Brits et al., 2007), and the comparison has shown that,
in most cases, ISPSO outperformed SPSO and NichePSO in terms of computational
cost, consistency, and scalability. However, ISPSO experienced increasing difficulty
with massively multi-model problems in locating all solutions at high accuracy; parti-
cles tended to converge prematurely, which is a common problem in PSOs (Lv et al.,
2006). This premature convergence needs to be addressed in future work. More re-
liable criteria for the detection of solutions may help in this regard. Computational
complexity required at each iteration needs to be improved. In Chapter V, a modifica-
tion of the ISPSO algorithm was applied to a high-dimensional distributed hydrologic

model to perform uncertainty analysis.
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CHAPTER IV

DERIVATION OF THE NUMBER OF MINIMA OF THE GRIEWANK
FUNCTION

4.1. Introduction

The Griewank function (Griewank, 1981) has been widely used to test the convergence
of optimization algorithms (Kennedy, 2000; Krink et al., 2002; Riget and Vesterstrgm,
2002; Xie et al., 2002; Brits et al., 2003; Locatelli, 2003; Khemka and Jacob, 2004;
He et al., 2004; Acan and Gunay, 2005; Monson and Seppi, 2005; Meissner et al.,
2006; Monson and Seppi, 2006; Brits et al., 2007; Wang et al., 2007) because it has
an exponentially growing number of minima with increasing dimensions (Locatelli,

2003; Brits et al., 2007). The function is defined as follows:

ful@) = ﬁgx?—gcos (%) +1 (4.1)

within [—600,600]" where n is the dimension of the function. The search space
is usually restricted to [—Zmax, Tmax]", Where Ty, > 0, and the global minimum
is located at # = 0 with a value of 0. The actual number of minima may not
be important when a global optimization is conducted. However, the number of
minima needs to be well defined to test any technique that searches for local optima.
Most studies vaguely mention the number of minima of the function (Locatelli, 2003;
Khemka and Jacob, 2004; He et al., 2004) and, to the best of the author’s knowledge,
no analytical derivation of the number of minima of the Griewank function has been
given in the literature. However, knowing the number of minima is critical if the
Griewank function is to serve as the basis for evaluating algorithms designed to find

local minima as well as global ones (i.e., multi-modal optimization). In some cases, the
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number of solutions given is inconsistent with analytical results. For example, Brits
et al. (2007) compared the ability of NichePSO, nbest PSO, lbest PSO, sequential
niching, and deterministic crowding based on the number of minima found through
numerical searches. However, further work with the ISPSO algorithm introduced
in Chapter III has found a different number of solutions than found by Brits et al.
(2007). In order to address this issue and provide a consistent basis for comparing
algorithms, this chapter analytically derives the number of minima of the Griewank
function. An approach is developed in three basic steps: (1) the search space is
restricted to a hyperrectangle, (2) it is shown that the hyperrectangle is the maximum
possible hyperrectangle within which the local minimum on the Griewank function
correspond to the tangent points on a simpler surface, and (3) an analytical approach
is developed for finding the number of tangent points on the simpler surface. This
approach yields an accurate count of the number of local minima of the Griewank
function within the defined hyperrectangle.

Section 4.2 elaborates on the characteristics of the function’s surface and the
high correlation between dimensions in problems of more than one dimension, and
redefines the problem of counting the number of minima to make it analytically
tractable. However, because of the complicated nature of the function’s surface and
the high degree of correlation between dimensions, the domain space needs to be
restricted to hyperrectangles found by the numerical method introduced in Section
4.2. Although the analytical method derived in Section 4.3 cannot be applied to
arbitrary domain spaces, it should be noted that the method does not miss any minima
within hyperrectangles satisfying certain conditions. As most optimization algorithms
are tested within fixed hyperrectangles, it remains practical to use hyperrectangles as

domain spaces for testing many optimization algorithms.
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4.2. Redefinition of the problem

If the partial derivative of a function has a simple form, the number of maxima and
minima of the function could be derivable by setting the derivative functions to 0.
However, the partial derivative of the Griewank function with respect to x; has a
fairly complex form as follows:

0fu(@) @ | SW (%> - Z;
o, 2000+ Vi jll_Licos W (4.2)

and it is difficult, if not impossible, to analytically solve this non-linear system in-

volving n variables. Global and local minima have to satisfy the following conditions:

A sin ( £& n A
fri(Z) = Sy <\ﬂ> H cos(x]>:0 fori=1,---,n (4.3)

2000 Vi Pl Vi
"o 1 1 " T .
fn,i(m):m+g'HCOS W >0 fori=1,---,n (4.4)
j=1

where f; ;(Z) and f) (%) are the first and second derivatives of f,(Z), respectively.
Note that 7 is an index for dimensions, not an imaginary number. Eq. (4.4) is required
to ensure that maxima are not taken into account. By rearranging Eq. (4.4), we obtain
H;L=1 coS (%) > —ﬁ. Because the region of non-positive values of H;L:1 oS (\x/—%)

satisfying Eqs. (4.3) and (4.4) (i.e., fo(Z) > 401%2?:1 27 + 1 at local minima) is
outside of the region of its positive values (i.e., fo(Z) < 155 >y a4 1 at local

minima), problem domains in this study are restricted such that

ﬁcos (%) > 0. (4.5)
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Since a value of 5= is small for low dimensions, not much portion of the function

2000

space is lost. Eq. (4.3) can be rewritten as an equality of two functions as follows:

sin <%) - _9260\({(;) f[ cos (%) ) (4.6)
s J7#4

where []}_, ;. cos < > # 0 because [[_, cos (xj>

Because f,,(Z) meets the surface of 15 > iy a5 at the global minimum and near

local minima, we will find the tangent points of f,,(Z) by finding the tangent points of

the simpler surface —— 4000 S 2% and deriving the relationship between these two sets

j=1T;
of tangent points. Further references to tangent points in this chapter are defined
as tangent points on the surface ﬁ 2?21 1’? unless otherwise noted. As shown in

Figure 13, local minima and tangent points lie on different projected surfaces because

»i(T)) at a tangent point is not 0 except at

the slope of the tangent plane (i.e.,
# = 0. Since we only want to know the number of minima, their exact coordinates
are not of direct interest. In this chapter, the number of minima is indirectly derived
by counting the number of tangent points associated with them. Because the tangent
point associated with the global minimum is the global minimum itself, this method
also takes into account the global minimum. Therefore, problem domains have to be

carefully defined so that there always exists one minimum corresponding to one tan-

gent point. As i or z; increases, f! ()

2000

eventually, points satisfying Eq. (4.3) disappear, which makes global optimization eas-
ier (Locatelli, 2003). Because there are correlations between independent variables in
problems of more than one dimension, it is hard to say whether or not there are local
minima satisfying 0 < H?:1 cos (\%) < 1, by looking at f, ,(Z) surfaces separately.
It is necessary to know the maximum extent of each x; beyond which there are no

local minima associated with tangent points. For n = 1, it is trivial to check the
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maximum extent of z; because all the points lie on f ,(z1). For n > 2, some type of
numerical analysis is required to find the corners of a hyperrectangle (i.e., a domain
space) where a local minimum with the flattest slope possible is located. Beyond the
edges of the hyperrectangle defined by the corners, there could be tangent points not
associated with local minima. In the following sections, the simplest case of n =1 is
explained, and a numerical method to find the maximum domain space for n > 2 is

introduced.

f(x)

Xi

Figure 13: One-dimensional schematic showing difference between a local minimum
M and its corresponding tangent point T'. x; is greater than 0. The solid and dashed
lines represent the Griewank function f,(Z) with different z; (1 < j <n, j # i) sets,
and the dotted line represents ﬁ Z?Zl x?

4.2.1.  One-dimensional case

Figure 14 shows where the last two local minima exist in the one-dimensional Griewank
function space. Note that, while tangent points are evenly distributed at every 2,
local minima are not, and each tangent point has its own corresponding local min-

imum. If the boundary of a domain space is located between a tangent point and
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its corresponding local minimum, the number of tangent points is not the same as
the number of local minima. For this reason, a problem domain U is defined for the
moment such that U = (0, 27k) where £k € N. The maximum value of k, kpay, is
defined such that the largest local minimum associated with a tangent point is lo-

cated between (27 (kmax — 1), 2mkmax). Figure 14 clearly shows that kyay for n =1 is

|0

%J = 95, and a domain space defined by k£ > 95 is extended to beyond the domain

of the function definition (i.e., 27 x 96 > 600). Therefore, the number of local minima

in the domain space U = (0, 27k) is k where 1 < k < kpax.

1.0

0.5

0.0
|

-0.5
|

Figure 14: Last two local minima in a one-dimensional problem. The black dots are
tangent points, and the “X” symbols are local minima.

For the sake of generality, a method of finding k; may (i.€., kmax for the i axis)
in an arbitrary one-dimensional domain space (i.e., n = 1) defined by the i*" axis
of high-dimensional problems as shown in Figure 15 is introduced. It is obvious
that local minima exist between (277\/51@ — %ﬂﬂ, 27r\/5ki), where k; € N, because
[T5—, jzicos <%> = 1in Eq. (4.6) (" n = 1), and Eq. (4.5) is satisfied only within
this region. The first local minimum can be found in (%7?\/5, 2mv/i), if any. Using

the periodicity of the sine curve, the second local minimum can be also found in
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(%7‘(‘\/;, 2m+/i) by shifting the straight line defined by the right-hand side of Eq. (4.6).

The k;™ local minimum, #% = (z% ... z%), is obtained by solving the following

shifted version of Eq. (4.6):

_(a B 2!/ 4 2mi(k; — 1) - :Ef -
sin ( \/E) =— 5000 [ H oS (\ﬁ)] (4.7)

=1, j#i

where 2" = z! and /" = 2% —27\/i(k;—1). For one-dimensional problems, Eq. (4.7)
is further simplified by setting n = 1 and H?=1, 41 COS (%) = 1. There are no local
minima at o} = 37/ if the straight line in the right-hand side of Eq. (4.7) meets the

2

sine curve at (%7? 7,sin (%7?\/2)) as follows:

_gm+§gééa—1) Lﬁ o (%)r:_l (4.8)

=1, j#i

where @ € R such that k;max = [, and |-] is the maximum integer less than or

equal to a given number (i.e., the flooring function). By solving Eq. (4.8), we get

ki max = o] = {1000 . H?zl jo4i COS (%) + lJ. However, since the Griewank function

) 4
is defined within [—600,600]", 27v/ik; max must be less than or equal to Zpayx = 600.

In summary, k; max is obtained by

x 1000 z; 1
ki max = Min = — . cos | —% | + =~ 4.9
’ < L“/EJ { m jllléz’ <\/3> 4J > )

and, given a one-dimensional domain space (O,QW\/Ek:,-) where 1 < k; < Ej max, ki is

the number of local minima.

4.2.2.  Multi-dimensional case

In problems of more than one dimension, because the position of a local minimum in
one axis is highly correlated with those in the other axes, it is not trivial to analytically

solve Eq. (4.7) for all dimensions. The values of cos (%) and kjmax fori =1,--- n
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1.0

0.5

-1.0

Figure 15: Two local minima in a one-dimensional problem defined by the i*® axis of
high-dimensional problems. Not scaled for explanations.

can be numerically estimated as described in Figure 16. The subroutine defined in
Figure 17 is used to solve Eq. (4.7) for each dimension at a time. Because the range
1k

of z}

. 3 . . . . ; .
is (EW\/Z, 2mv/i) and, given an estimated value of H;L:L#i cos (%), there is
only one solution to Eq. (4.7), if any, within this range, any optimization algorithm
can estimate 2/*. However, /" found in this way may not be the correct one because
the correlation between dimensions is not taken into account when solving Eq. (4.7).
The estimated value of x;k is used to evaluate H;‘Z:l, 41 COS (3—3]»), which is iteratively
plugged into Eq. (4.7) to estimate the next value of x;k

Once k;max is estimated, a problem domain needs to be well defined. Define a
problem domain by U = (0, Z;max), Where 0 < Z; max < 27r\/€ki7max, such that 2; max
does not have to be 2rv/ik; where 1 < k; < ki max. When H?:L#i cos (%) is greater

than 0, a local minimum is found in the following range:

1
T; € (27?\/5]@ — EW\/Z, QW\/Zki) (4.10)
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Require:
Require:

Require:

Require:

n > 1 {Problem dimension}
¢; {Training threshold for f ;(Z, ...)}

€. {Training threshold for cos (f—ﬁ)}

iterpmax {Maximum number of iterations for cos (%)}

Tmax < 600 {Initial domain}

Cout <

I {n-tuple output vector}

repeat
for:=1,--- ,ndo
Goe=1 {n-tuple training vector}

for iter = 1, | itery,, do

ki,max

x; = get}:i(c}r, i) in Figure 17

xT.
Cirji = COS | ==

if iter > 1 and |¢y; — Cprev| < €. then
break

Cprev <~ Ctr,i

for j=1,--- ,n,j#1do

etxi(Cir,j
Cir,j <= COS <—g \%“])>

Cout,i <= Ctry

if | fT/L,’L (fki,max>

<eVi=1,---,n then

break

wmax

<& Tpax — 2T

until 2., <0
return ¢,

Figure 16: Pseudo code to estimate cos ( ‘) fore=1,---

Sk
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Require: n > 1 {Problem dimension}
Require: z,,,x > 0 {Problem domain}
Require: ¢, {Input: cos <%) values}
Require: i {Input: the current training dimension}
Require: All other variables are local ones.
fori/ =1,---,ndo

xT.
cos (7’,) < Cin g

calculate k; . according to Eq. (4.9)

estimate z/"™> by solving Eq. (4.7)
xfi’ma" = $§ki’m‘"‘" + 27T\/E(/{ii7max - 1)

return x,;

Figure 17: Pseudo code for the getxi subroutine.

because cos (%) is greater than 0, satisfying Eq. (4.5), and Eq. (4.6) can hold true
only in this range. Likewise, when H;;l, j4i COS (%) is less than 0, a local minimum

is found in the following range:
xr; € (QW\/;ki - gﬂ'\/g, om\ik; — W\/;) ) (4.11)

Z; max Needs to avoid these ranges because, otherwise, it is possible that local minima
found in the above ranges cannot be associated with the tangent points at z; =
27r\/§k‘i + ﬂ\/;, which means that the analytical method introduced in this chapter

cannot be applied. Therefore, the allowable ranges of ; nax are as follows:
[ 3
omVik; — 27\, 2m\Vik; — §7r\/%] (4.12)

or

-27r\/5k:i — Vi, 2n\ik; — %ﬂ\/;} : (4.13)

The initial condition for #; max, Eq. (4.12), and Eq. (4.13) can be interpreted as

0 < Zimax < 27Vik; max (4.14)
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and

ZTjmax € X = {xl

x; is a multiple of g\/; Y \‘ﬂx—\l/_J is an even integer} . (4.15)
Vi
2

In case where x; max does not satisfy Eq. (4.15) because integer values for x; max are

usually preferred, we need to make sure that there are no local minima in

(|22 541 o

where 0 < @ pax < 27T\/gki7max and Z; max ¢ X. This test can be done indirectly by

checking whether or not the distance in the i*" axis between Timax and the closest
tangent point whose coordinate is greater than z; max is greater than the possibly
largest distance between them. Define the closest tangent point whose coordinate is

greater than x; as

ti(x;) = {%A 5%. (4.17)

The largest distance between local minima and their corresponding tangent points

can be obtained by calculating ti(:ﬂfi’ma") - xfi’ma" because t;(zF) is the tangent point

associated with z*

77

and the distance between them also increases as x; increases. If

. ki max k; max
ti(%i max) — Timax 18 greater than ¢;(z;"™) — ;"™

;7 there must be one local minimum

N (Z; max, ti(Timax)) along the i*" axis, which means that there are no local minima
in the range defined by Eq. (4.16).

When z; ax satisfies all the requirements described above, a domain space can
be extended to U = [—Z; max, Timax] ¥ € [1,n] because the negative domain space of
(—%imax, 0) is symmetrical to (0, Z; max), and the analytical method derived in the

following section takes into account both regions implicitly.
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4.3. Derivation of the number of minima

The following theorems are used throughout this section:

Theorem 4.3.1 Ifz € R, |z| = [%] + |£ + 5| where |z] is the mazimum integer

less than or equal to = (i.e., the flooring function of x ).

Proof Let © = i + r such that ¢ = |z| and 0 < r < 1. If i = 25 where j € N, the

following equalities hold:

x 2] +r o _
2l = = —| = 4.18
zJ 2 J 2J J (4.18)
z 1 —l— 1
42| = =7 4.1
BRI e A R
because 0 < £ < % and 1 < I+ 1 < 1. From Egs. (4.18) and (4.19), the following

holds for even |z|’s

z z 1
- |Z S| =2 =i, 4.2
2] LQJ * {2 * 2J S (4.20)
If : =25 + 1 where j € N, the following equalities hold:
x 2j+1+r | .

k) R e A NI e —+ | = 4.21
bJ { > J {‘7+2+2J J (4.21)

r 1 2j+1+r 1 T ,
SR I [Vt LAV 3 [ P 1J: 1 4.22
{2+2J { 2 +2J LJ+2+ I (4.22)

becaus%ﬁ + < land 0 < §<%

From Egs. (4.21) and (4.22), the following
holds for odd |z|’s

2] = 5|+ g + %J =2 +1=1i. (4.23)

Therefore, from Egs. (4.20) and (4.23), [z] = |£] + |2+ 1], as required. |

Theorem 4.3.2 If z € R, [z] = [£] + [£ — 3| where [z] is the minimum integer

greater than or equal to x (i.e., the ceiling function of x).
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Proof Let © =i — r such that i = [z] and 0 < r < 1. If i = 25 where j € N, the

following equalities hold:

T 27 —r . .
2= =|j—=| = 4.24
M [ 2 w {‘7 21 J (4.24)
z 1 27—1r 1 A | .
[2 2} 2 2} [ 2 2} J (4.25)
because 0 < £ < £ and 1 < £+ 1 < 1. From Eqs. (4.24) and (4.25), the following

holds for even [z]’s:

x r 1 .
I_ZL“-I = ’75—‘ + ’75 - 5—‘ = 2] = 1. (426)
If i =25+ 1 where j € N, the following equalities hold:

x 2 +1—r o 17
[J [ 2 w L 2+2w I (4.27)

x 1 27+1—r 1 T ,
5-al= |2 e =l 5= 2
because —3 < 2 — 1 < 0and 0 < % < 5. From Egs. (4.27) and (4.28), the following

x z 1 , .
[2] = [_-‘ + {5 — 5—‘ =27+1=1. (4.29)
Therefore, from Egs. (4.26) and (4.29), [z] = [£] + [£ — 1], as required. |

In the previous section, the problem was redefined so that counting the number
of tangent points is the same as counting the number of minima. The cosine function

is defined between [—1, 1] and, thus, the range of the function (i.e., part of Eq. (4.1))

jljlcos (%) (4.30)

is also restricted to [—1,1]. Consequently, 1 — []7_, cos (%) has values between

[0,2] and Eq. (4.1) between [m D0 1T o0 Doyt T3 2] . Therefore, any tangent
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points of Eq. (4.1) lies on the surface of 7355 > iy o3 when Eq. (4.30) is 1,
The absolute value of cos <%) is 1 when x; is a multiple of m/i. How many
1’s of ‘cos (%)‘ exist depends on the range of ; Or [%; min, Timax|. The number of

m/ik’s within this range, where k € N, is calculated as

N = hr\‘ﬂ - h;ﬂ +1. (4.31)

The number of z;’s satisfying cos (%) =1 is calculated as

N+ _ xi,maxJ . ’in,min—‘ + 1 4.39
! {QW\/; 27?\/5 ( )

and the number of z;’s satisfying cos <%> = —1 is derived as

N~ = N, — Nt = | Zomax _J - [ imin ——‘ 4.33
, po |G ] - | B (4.33)

according to Theorems 4.3.1 and 4.3.2. Now, the number of maxima and minima can

be expressed as

M, =[N (4.34)

Counting the number of the n-tuples in the set

o { (o) om () e

is a combinatorial problem where combinations take place without repetitions. It is

f[ cos (%) - 1} (4.35)

Jj=1

obvious that any element, cos (%), of an n-tuple belonging to the set A,, must have
a value of —1 or 1 because, otherwise, the absolute value of Eq. (4.30) cannot be 1.
Because Eq. (4.30) should be 1, an even number of elements in the n-tuple have a

value of —1, and the other elements have a value of 1. Therefore, the number of the
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n-tuples in the set A,, can be expressed as
T

) = S — 4.36
(5) =2 s 439

j=0 J

N3
N3

where (27;) is the binomial coefficient. Encode an n-tuple in A,, as
(a'17 ag, - - aan) (437)

where a; is either 1 or —1. If 1 and —1 are substituted with the + and — symbols,
respectively, n-tuples in A,, can be represented as (+, +, -+, +), (—, —, +, -= -, +),
(=, +, = +, -+, +) (i.e., one n-tuple of ({) and two examples of (}), respectively),
and so on. Note that there are an even number of the — symbols, and the others are
all +’s. The numbers of z; values satisfying a; = + and a; = — are N;" and N, ,
respectively.

Counting all the possible vector z’s generating the n-tuples in the set A, can
be done recursively in terms of n. The simplest form is S; = N;~ for n = 1 where
S, is the number of minima for dimension n. For n = 2, there are S; minima
when as is fixed to + because S7; number of x;’s satisfying H;L;ll a; = + also satisfy
(H;:ll aj) an, = [[joya; = +. If ay is fixed to —, H;:ll a; must be —, and the
number of a; satisfying this condition is M; — S; (i.e., the number of maxima for
n = 1). Therefore, Sy = Sy - NJf + (M; — S1) - N5 . Generalizing this recursive form,

the following equations are obtained:

Sy = Ni if n=1, (4.38)

Sn = Sn—l . N;_ + (Mn—l — Sn—l) N ifn>1 (439)

n
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for [—%imin, Timax] Vi € [1,n]. Now, Egs. (4.38) and (4.39) can be expanded as

follows:
o L1, max N L1, min . .
Sl_{ o J { o ]+1 if n=1, (4.40)
x x
Sn _ Sn— nmax | n,min 1
! Lsz W i )

\‘xj,ma'xJ _ ’ij7mi].m—‘ + 1) _ Sn—l] (441)
T] ™/ ]

for [—2; min, Timax] Vi € [1,n].

4.4. Results and discussion

Figure 18 and Table 14 present the maximum estimated number of local minima,

ki,max

ki max, and the largest local minimum z, on the i axis. They define hyperrect-
angles within which Eqgs. (4.40) and (4.41) can be applied. Outside these regions,
the analytical method introduced in this chapter cannot be used to count the num-
ber of minima. Figure 18 shows k; nax for different dimensions. From n = 43, the
numerical algorithm in Figure 16 experienced difficulties in finding k; max, and no
plots were drawn. This result might be caused by reducing the search space by 27
in all dimensions. However, as shown in Table 15, because the number of minima

7, max

within only a small fraction of the hyperrectangles defined by mf is so high even

for n = 4 (e.g., 77,647 minima in [—45,45]*, a subspace of [—xfi’"‘a", xflax] Vi € [1,4]
for n = 4), it would be practically enough to define domain spaces for up to n = 40.
Table 14 shows k;max and xfi’m"“‘ estimated for up to four-dimensional problems.

Note that k; max for the same ¢ varies with n because of correlation between dimen-

sions. When defining a domain space by U = [—%; max, Timax] Vi € [1,n], we need
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to make sure 0 < Zjmax < ti(zF"™). This condition satisfies Eq. (4.14) because

ti(xf“max) = 27V/ikimax for all the cases in Table 14. Also, @; . has to satisfy

Eq. (4.15) or Eq. (4.16).

50 100
| |
=i =
>

|
>
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|

|
S33333333
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oooo

Ki.max
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|

Figure 18: k; max versus ¢ for different problem dimensions.

As a set of examples, domain spaces U = [—Zpax, Tmax]" Were evaluated for
1 <n <4 where xy., € {14,28,45}. Note that, for the sake of simplicity, the domain
spaces were chosen such that @; max = Tmax Vi € [1,n]. For 2. = 14, Eq. (4.15) holds
true when ¢ = 1,2, or 4. The closest tangent point whose coordinate is greater than
T3max = 14 is 3(14), and the distance along the 3" axis between 3 .y and 3(14) is
t5(14) — 14 = 2.32. This distance is greater than f5(z5>">) — 25> = 1.24 for n = 3
as shown in Table 14. This means that the local minimum associated with #3(23 max)
exists in (23 max, t3(Z3max)), NOt in the range defined by Eq. (4.16) for xgmax = 14.
For Zpyax = 28, Eq. (4.15) holds true when ¢ = 2,3, or 4. A visual inspection of the
x1 axis and a numerical analysis show that there are no local minima in the range
defined by Eq. (4.16) for @1 max = 28. For xp., = 45, Eq. (4.15) holds true when

1 < i < 4. Because Tya € {14,28,45} satisfies the boundary conditions specified
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Table 14: Maximum estimated number of local minima and largest local minimum
in each dimension. k;max is the maximum estimated number of local minima on the
ith axis within z; € (0,600), xfi’m‘“ is the largest local minimum on the " axis,

i,max

ti(xfi”"a") is its corresponding tangent point, and ti(xfi’ma") — is the largest

distance on the i axis between them.

" P e 2 L@ () g
1 1 95 596.60 596.90 0.30
1 94 590.28 590.62 0.34
2 66 585.82 586.46 0.64
3 1 88 552.45 552.92 0.47
2 62 550.04 550.92 0.88
3 o1 5H3.78 555.02 1.24
4 1 67 420.63 420.97 0.34
2 A7 416.98 417.63 0.65
3 38 412.61 413.55 0.94
4 33 413.47 414.69 1.22

by Egs. (4.15) and (4.16), we can safely use Eqgs. (4.40) and (4.41) to calculate the
number of minima of the Griewank function. Table 15 shows the numbers of minima

for the three different search spaces for up to four dimensions.

Table 15: Numbers of minima for [—14, 14]", [-28,28]", and [—45, 45]".

n [—14, 14] [—28, 28]" [—45, 45]"
1 5 9 15

2 31 111 305

3 157 1,215 5,177

4 787 10,989 77,647

4.5. Summary and conclusions

It is difficult to analytically solve the derivative of the Griewank function and directly

count the number of minima because of the complicated nature of the function’s sur-



79

face and the high degree of correlation between dimensions. The problem of counting
the number of minima was redefined as counting the number of tangent points lying
on the parabolic plane, which is part of the function. A numerical method was devel-
oped to find hyperrectangles that this approach can be applied to, and the number
of minima of the function was analytically derived within these domain spaces based
on the recursive functional form proposed in this chapter. The maximum extents of
hyperrectangles for up to four dimensions were estimated, and the numbers of minima
for three different search spaces were provided as a reference.

The numerical and analytical methods introduced in this chapter can be used
to determine the exact number of minima within the domain space defined by a
hyperrectangle satisfying certain conditions. The number of minima derived in this

chapter can serve as a sound basis for evaluating multi-modal optimization algorithms.
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CHAPTER V

APPLICATION OF MULTI-MODAL OPTIMIZATION TO GENERALIZED
LIKELIHOOD UNCERTAINTY ESTIMATION

5.1. Introduction

Draper and Box (1987) stated “Remember that all models are wrong; the practical
question is how wrong do they have to be to not be useful.” For models to be
useful, they have to be optimized in some way through parameter estimation, which
typically requires calibration and validation (Thiemann et al., 2001). Uncertainty in
the parameter estimates should be reduced by calibration to meaningfully estimate
unobserved variables under hypothetical conditions (Koh et al., 2004). During the
past two decades, many efforts have been devoted to developing automatic calibration
methods to find optimal solutions (Thiemann et al., 2001). Due to the complexity
of the objective function surface for distributed hydrologic models, classical gradient-
descent-based algorithms are often trapped in local optima (Duan et al., 1992). The
inability of the classical search algorithms to find the global optimum has led to
the need for global optimization algorithms (Duan et al., 1992). Population-based
algorithms were developed to avoid trapping into local optima and reliably locate
the best parameter set. Among others, these include restarting gradient methods at
random locations, simulated annealing (Kirkpatrick et al., 1983), genetic algorithms
(Holland, 1962), and the Shuffled Complex Evolution (SCE-UA) algorithm (Duan
et al., 1993). However, since there is no single measure to assess different aspects of the
disagreement between the observed and simulated values, multiple objective functions
have been employed to take advantages of various characteristics of different measures

for the model performance (Gupta et al., 1998; Yapo et al., 1998). When one objective
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function cannot be improved without compromising the others, the parameter set
is called Pareto optimal (Yapo et al., 1998). However, there is no guarantee that
models performing well in calibration will perform equally well in validation and
prediction (Hassan, 2004). A single best parameter set or even multiple Pareto-
optimal parameter sets are not necessarily good approximations of the real system
because they tend to be greatly influenced by calibration data and assumptions made
in calibration (Stephenson and Freeze, 1974; Beven, 2006a). Since fixed parameter sets
do not account for the time-variant nature of reality, there remains much uncertainty
in estimated parameters even after calibration (Thiemann et al., 2001; Devonec and
Barros, 2002; Hong et al., 2005).

Recently, much attention has been paid to uncertainty estimation techniques.
Among others, the Generalized Likelihood Uncertainty Estimation (GLUE) frame-
work (Beven and Binley, 1992) has been widely used in environmental modeling (e.g.,
Beven and Binley, 1992; Freer et al., 1996; Aronica et al., 1998; Beven et al., 2000;
Beven and Freer, 2001; Makowski et al., 2002; Muleta and Nicklow, 2005; Zheng and
Keller, 2007) because of the few assumptions required and its ease of implementation
(Schulz et al., 1999; Jacquin and Shamseldin, 2007). In the GLUE framework, a
subjectively chosen likelihood measure is used to assess the model performance and
weight the model output (Beven and Binley, 1992). The likelihood measure is also
used to estimate the posterior likelihood measure distributions of the model parame-
ters by updating their prior likelihood measure distributions (Beven and Binley, 1992;
Beven and Freer, 2001). The likelihood measure is not limited to formal likelihood
functions used in classical Bayesian inference, but rather is the degree of subjective
belief about how well the model reproduces the observed data (Jacquin and Sham-
seldin, 2007). The subjectivity of GLUE has been often criticized in the literature

(Gupta et al., 2003; Montanari, 2005; Mantovan and Todini, 2006), and formal Bayes-
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ian inference techniques, such as Bayesian Recursive Estimation (BaRE) (Thiemann
et al., 2001) and Bayesian Total Error Analysis (BaTEA) (Kavetski et al., 2003),
have been introduced to estimate statistically meaningful prediction limits. However,
these prediction limits may be inappropriate for non-ideal cases such as the follow-
ings: (1) no correct model structure exists, (2) the statistical characteristics of the
model errors are not known a priori, and (3) various sources of uncertainty cannot
be incorporated into a single formal likelihood function. In fact, Beven et al. (2007)
show that wrong statistical assumptions for the error structure can cause biases in the
parameter estimates and the prediction limits. For further discussion on the GLUE
framework, refer to Thiemann et al. (2001), Beven and Young (2003), Gupta et al.
(2003), Beven (2006b), Mantovan and Todini (2006), Andréassian et al. (2007), Beven
et al. (2007), Hall et al. (2007), and Todini and Mantovan (2007).

One of the main disadvantages of the GLUE framework is that sufficient pa-
rameter samples are required to properly characterize the likelihood measure surface
(Beven, 2006a). However, it is difficult to know in advance how many samples are
needed to find enough parameter sets that well represent the real system (Beven,
2006a). Complex models generally require a long run time, and their high dimen-
sionality also hinders the efficient application of the GLUE framework to uncertainty
analysis. Because sampling strategies employed for the GLUE framework usually
take parameter samples randomly from the search space (Beven and Binley, 1992),
it is likely that many samples are taken from the regions of low likelihood measures.
In addition, it is not guaranteed even after extensive sampling that there exists an
identifiable unique solution in the samples, which means that one cannot expect to
find a unique optimal solution like in traditional model optimization. The reason
for the lack of a unique solution is a different approach to model calibration. The

GLUE framework is based on the “equifinality” thesis, which does not accept the
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concept of a unique solution, while traditional calibration methods pursue the best
parameter set usually without accounting for the uncertainty in the predicted val-
ues (Beven and Binley, 1992; Beven and Freer, 2001; Beven, 2006a). Beven (2006a)
suggests that there may be more than one acceptable model because of errors in the
model structure and the measurement. Therefore, by design, the GLUE framework
does not attempt to search for optimal solutions, and they are unlikely to be found in
random samples. Sampling techniques, such as Markov chain Monte Carlo methods
and importance sampling, are used to take samples from desired probability distribu-
tions in probabilistic Bayesian approaches. However, because the GLUE framework
is not based on the assumption of statistical models for the error structure, these
sampling techniques cannot be well incorporated into the framework. For this rea-
son, the GLUE framework uses random sampling techniques and is computationally
expensive to perform (Beven, 2006a).

The fundamental idea behind this study is that, by combining a multi-modal op-
timization algorithm and a uniform sampling technique, it would be possible within
the GLUE framework, without statistical assumptions for the error structure, to find
optimal solutions as well as to avoid sampling unnecessary parameter sets that per-
form poorly in terms of a subjective likelihood measure. The purpose of this study
is not to evaluate the GLUE framework, but to incorporate a non-random sampling
technique into the GLUE framework to reduce the computational burden required for
the uncertainty analysis of costly distributed hydrologic models. This study investi-
gates the feasibility of the application of a multi-modal optimization algorithm called
the Isolated Speciation-based Particle Swarm Optimization (ISPSO) (see Chapter I1I
for more details) to the uncertainty analysis of the Soil and Water Assessment Tool
(SWAT) (Arnold et al., 1998) model output within the GLUE framework. To the best

of the author’s knowledge, no studies have been done to improve the computational ef-
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ficiency of the GLUE framework by employing a multi-modal optimization algorithm.
The proposed approach is expected to save much time required for uncertainty anal-
ysis because a run of the SWAT model is computationally very expensive. In this
study, the prediction limits obtained by the proposed approach were compared with
those of the GLUE approach with random sampling, and their sensitivities to different
sample sizes were assessed. Section 5.2 briefly introduces the GLUE framework and
the ISPSO algorithm, and describes how parameter samples taken in optimization
are used to estimate prediction limits. Section 5.3 describes the likelihood measure
used in this study and the SWAT model used to estimate streamflows and sediment
discharges; provides data descriptions for a case study; and discusses results. Section

5.4 summarizes this chapter and draws conclusions.

5.2. Methodology

5.2.1.  Generalized Likelihood Uncertainty Estimation

In the Generalized Likelihood Uncertainty Estimation (GLUE) framework (Beven and
Binley, 1992), the term “model” includes the model parameters as well as the model
structures (Beven, 2006a), and models are classified as either “behavioral” or “non-
behavioral.” When models are able to reproduce observed values to an acceptable
level, they are classified as behavioral; otherwise, they are classified as non-behavioral.
The criterion used to determine whether a model is behavioral or non-behavioral is
its likelihood measure. If the model’s likelihood measure is greater than a threshold
value, the model is behavioral; otherwise, the model is non-behavioral.

Given a model structure, the GLUE framework updates the prior likelihood
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measure of a set of the model parameters using the following equation:

Lposterior(‘g) — L(9|§7yéLprior<0) (51)

where Lpior(6) and Lyposterior(?) denote the prior and posterior likelihood measures
of the model parameter set 6, respectively, L(0|¢,y) is the likelihood measure of the
model parameter set 6 given the model input £ and the observed data y correspond-
ing to the model output, and C' is a normalizing constant such that the sum of
Lposterior(#)’s of all the parameter samples equals 1. Note that any goodness-of-fit
measure can be used as the likelihood measure in the GLUE framework when its
value varies from 0 to 1, and the perfect model is assigned a value of 1. That is, the
likelihood measure is the modeler’s degree of subjective belief about how much the
model output is consistent with the observed data based on the objective function.
Because the likelihood measure and the threshold value for behavioral models are
subjectively chosen by the modeler, GLUE requires that those definitions should be
made explicit so that those subjective choices and the results obtained using them can
be examined and discussed more explicitly. The likelihood measure and the threshold
value for behavioral models used in this study are defined later in Subsection 5.3.2.

The prediction quantiles of the behavioral models that simulate a value less than
or equal to z at time ¢ are evaluated as follows (Beven and Freer, 2001):

P(Zt < Zt) = Z {Lposterior(‘gi)

i=1

Ziy < zt} (5.2)

where ZAM is the simulated value of Z at time t by the i*" behavioral model 6;, and
n is the number of the behavioral models. The prediction limits of the behavioral
models at time ¢ are calculated as follows: (1) weight the simulated value at time ¢ of

each behavioral model using its posterior likelihood measure, (2) sort the simulated
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values of the behavioral models in ascending order, (3) accumulate the weights of
the sorted simulated values in ascending order, and (4) define the lower and upper
limits of the simulated values using the prediction quantiles. The prediction limits
estimated in this way are referred to as “the GLUE uncertainty bounds” (Jacquin
and Shamseldin, 2007; Zheng and Keller, 2007).

The GLUE uncertainty bounds are estimated from two percentiles of the weighted
model outputs simulated by the behavioral models and do not have any probabilis-
tic basis when a goodness-of-fit measure is used as the likelihood measure (Beven,
2006a; Montanari, 2007). The GLUE uncertainty bounds require the assumption
that “the behavioural models in calibration will also be behavioural in prediction”
(Beven, 2006a) and are also subjective because normalized subjective likelihood mea-
sures are used to weight the model outputs (Mclntyre, 2004). This subjectivity in the
GLUE uncertainty bounds is the main criticism often raised in the literature (Gupta
et al., 2003; Montanari, 2005). Montanari (2005) discussed the subjective choices
allowed in GLUE by examining several different likelihood measures and concluded
that the GLUE uncertainty bounds are highly dependent on subjective choices such
as the likelihood measure and the threshold value for behavioral models. The GLUE
uncertainty bounds reflect the modeler’s belief about what would be the ranges of
the unobserved variables that the behavioral models are able to simulate with accept-
able likelihood measures assessed in calibration. That is, when a behavioral model
simulates observed data in calibration to a certain level of acceptability, the model is
believed to simulate unobserved variables in prediction to the same level of accept-
ability. In this way, the unobserved variables simulated by the behavioral models are
weighted according to their relative levels of acceptability (i.e., posterior likelihood
measures), and certain percentiles of the simulated variables are determined as the

GLUE uncertainty bounds. This rather crude interpretation of the GLUE uncer-
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tainty bounds is due to the equifinality thesis arguing that there may be more than
one acceptable model because of our imperfect knowledge about the system.

When we have the correct model structure, know the boundary conditions and
the statistical characteristics of the model errors caused by uncertainty in the param-
eter estimates, and ignore measurement errors and parameter sampling errors, the
prediction limits obtained by assuming a statistical error model (i.e., the probabilis-
tic prediction limits) may provide statistically correct interpretations (Beven, 2006b).
However, because models inevitably have structural errors in the equifinality thesis,
and they actually do, it is questionable whether the probabilistic prediction limits will
enclose unobserved variables with a given frequency when uncertainty in the model
structure and the measurement is not taken into account explicitly.

That being said, the GLUE uncertainty bounds do not try to enclose a certain
proportion of unobserved variables, but try to estimate certain percentiles of the
weighted simulations that the behavioral models in the past would produce under
hypothetical conditions (Beven, 2006a). This interpretation does not link the GLUE
uncertainty bounds to a certain frequency with which unobserved variables will be
found within the uncertainty bounds and gives the impression that the GLUE uncer-
tainty bounds have nothing to do with future predictions. Rather than that, in the
author’s viewpoint, the GLUE uncertainty bounds represent the possible bounds of
the simulated variables in prediction satisfying a certain level of subjective accept-
ability. Therefore, the GLUE uncertainty bounds highly depend on the likelihood
measure and the threshold value for the behavioral models, which both reflect the
modeler’s perception about how well the model reproduces the data and how appro-
priately the likelihood measure evaluates the model performance. This is why the
likelihood measure and the threshold value for the behavioral models should be made

explicit for further discussion about the results.
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5.2.2.  Isolated Speciation-based Particle Swarm Optimization

A population-based heuristic algorithm called the Isolated Speciation-based Particle
Swarm Optimization (ISPSO) (see Chapter III for more details) searches for global
and local optima (i.e., multi-modal optimization), and tries to fill gaps between exist-
ing samples as uniformly as possible when it is allowed. In ISPSO, parameter samples
at each iteration are referred to as particles, which are collectively called the swarm
and move around in the search space toward preferable solutions. Deterministic uni-
form sampling increases the chance of discovering the regions of preferable solutions.
A brief description of how ISPSO works is as follows: (1) particles form groups called
species based on their fitness values and spatial proximity (i.e., speciation), (2) they
are allowed to move in the search space with a pre-specified maximum velocity, (3) as
iterations progress, their ages also increase, (4) once they are isolated from speciation,
their ages are reset to 1, (5) old particles are assigned a high degree of trust, (6) old
particles that converge to a certain point are considered solutions, and (7) steps 1
to 6 are repeated until stopping criteria are met. In this study, ISPSO was modified
to adaptively update the maximum velocity according to particles’ ages; this modi-
fication helps find optimal solutions in high-dimensional problems by stabilizing old
particles” movements. The ISPSO algorithm uses a low-discrepancy sequence called
the Sobol” sequence (Sobol’, 1967) with the Owen (Owen, 1998) and Faure-Tezuka
(Faure and Tezuka, 2002) scrambling schemes to uniformly generate samples, and has
been implemented in the R language (R Development Core Team, 2006); a collection
of R packages called Rmetrics (Wiirtz, 2004) was used to generate the scrambled

Sobol’ sequence.
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5.2.8.  Application of ISPSO to GLUE

In a real-number continuous problem space, a finite number of unevenly distributed
parameter samples taken in global optimization may not well characterize the search
space because most of the samples cluster around the global optimum. As a re-
sult, global optimization could miss many acceptable samples near local optima in
high-dimensional search spaces. Compared to global optimization, multi-modal opti-
mization searches for multiple local optima, and samples are likely to be taken from
the vicinity of the local optima which are possibly equally acceptable in terms of the
model performance. This feature of multi-modal optimization is better suited for the
equifinality thesis than global optimization because the equifinality thesis also pur-
sues multiple behavioral models. However, simply taking many samples around local
optima could underestimate the value of less likely parameter sets in uncertainty anal-
ysis because those samples are not the direct interest of multi-modal optimization.
ISPSO is a multi-modal optimization algorithm which finds local optima yet takes
samples uniformly under certain conditions. Uniform samples contribute to the eval-
uation of inferior regions of the model parameters and help avoid the underestimation
of less likely parameter sets.

In this study, the observed data are divided into three periods: a calibration
period, a rejection period, and a verification period. The calibration period is used
to take parameter samples from the search space by running one calibration run
with ISPSO. The parameter samples that have a likelihood measure greater than a
threshold value are referred to as behavioral models after calibration. The rejection
period is used to reject part of the behavioral models after calibration when their
likelihood measures are not greater than the threshold value. These rejected models

fail to show consistent performance over the two different simulation periods. To test
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the robustness of models in terms of model performance, the calibration and rejection
periods should have quite different characteristics of the observed variables. If the
two periods are similar, rejection may rarely reject models because most of them will
perform equally well in both periods. The behavioral models after calibration that
survived rejection are referred to as behavioral models after rejection. The behavioral
models after rejection are used to estimate their GLUE uncertainty bounds of the
variables in the verification period. Because the parameter samples taken by ISPSO
are not randomly distributed, the approach introduced in this study is referred to as
“the ISPSO-GLUE approach” as contrast to “the GLUE approach,” whereby random
samples are taken, and the GLUE uncertainty bounds obtained by this approach are
referred to as “the ISPSO-GLUE uncertainty bounds.” Note that the only difference
between the two approaches is sampling techniques.

Because the optimal parameter sets in the objective function (i.e., goodness-of-fit
measure) surface should have an optimal likelihood measure, the objective function
used in optimization or the likelihood measure in the GLUE framework needs to be
carefully defined to be correctly mapped to each other. For example, in minimization
problems, a parameter sample with the lowest objective function value must have
the highest likelihood measure. If the two surfaces are not properly mapped to each
other, a calibration run with ISPSO cannot find parameter samples with a high
likelihood measure. It should be also noted that the objective function is one-side
bounded (e.g., [0,00) in minimization problems) while the likelihood measure is two-
side bounded (i.e., [0, 1]). Because the goodness-of-fit of the worst model cannot be
well defined, optimization algorithms cannot use two-side bounded objective functions
in calibration. Therefore, the likelihood measure surface should be a subspace of
a transformed objective function surface (e.g., a truncated goodness-of-fit surface)

because the infinite space of the objective function value cannot be directly mapped
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to the finite space of the likelihood measure. For this reason, the objective function
cannot be just the reciprocal of the likelihood measure.

Because the particles in ISPSO explore the search space comprehensively, the
parameter samples generated in calibration cluster around global and local optima
yet fill regions of low likelihood measures. These parameter samples are used to
estimate the cumulative likelihood measure distributions of the model parameters
after calibration. Some of them are rejected in rejection, and the models that survived
rejection are used to estimate the cumulative likelihood measure distributions of the
model parameters after rejection. The behavioral models after rejection are used to
weight their simulated values and predict the ISPSO-GLUE uncertainty bounds in
the verification period.

The behavioral models that perform consistently well in both calibration and
rejection are evaluated with the verification data. At each time step, the simulated
variables from all the behavioral models are ranked, and their corresponding likeli-
hood measures are accumulated to estimate the cumulative likelihood measure dis-
tributions of the simulated variables. The lower and upper 2.5% percentiles of the
cumulative likelihood measure distribution are discarded to build the 95% ISPSO-
GLUE uncertainty bounds. Because the ISPSO-GLUE uncertainty bounds are as-
sessed at each time step, no single parameter set is used to estimate either the upper
or lower bound over the whole verification period. Note that, because the GLUE
framework allows subjective likelihood measures instead of probabilistic likelihood
functions, the ISPSO-GLUE uncertainty bounds are not probabilistic prediction lim-
its, but the prediction limits of the behavioral models conditioned on the subjective
likelihood measure and the threshold value used to identify the behavioral models.
Because the GLUE uncertainty bounds are estimated from the cumulative likelihood

measure distribution of the model output, it is not desirable to take too many samples
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with a low likelihood measure (Jacquin and Shamseldin, 2007). If the frequency of
model outputs with a low likelihood measure is so high that the cumulative likeli-
hood measure distribution is significantly affected by these samples, it is unlikely to
highlight enough model outputs with a high likelihood measure (Jacquin and Sham-
seldin, 2007). Because most of parameter sets are sampled by ISPSO in the vicinity
of global and local optima, the high frequency of samples with a high likelihood mea-
sure will prevent giving too much weight to less likely model outputs. As a side
effect, this approach will give much weight to highly likely model outputs compared
to the GLUE approach, and the ISPSO-GLUE uncertainty bounds are expected to
be narrower than the GLUE uncertainty bounds. In this study, a similar analysis was

performed with random sampling of the same sample size to compare the results for

the ISPSO-GLUE approach with those for the GLUE approach.

5.2.4. Fvaluation of optimal models

Since ISPSO is able to find mathematically optimal model parameter sets (i.e., local
optima or optimal models in the GLUE terminology) while exploring the search space,
these models can be used for prediction without considering uncertainty in the context
of traditional optimization. Optimal models are evaluated to see if fixed sets of the
model parameters can be used to simulate different periods with different observed
data. The purpose of this evaluation is to see if the model parameters are time-
invariant as might be assumed by the model structure and if there exists a single set

of the model parameters that can describes the watershed of interest.
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5.3. Application

5.3.1.  Study area and data descriptions

The Big Sandy Creek watershed shown in Figure 19 was used in this study. The
area of the watershed is 598 km?. A U.S. Geological Survey (USGS) gauge station
is located at the outlet of the watershed. Daily streamflow and sediment discharge
data are available from USGS (2006¢) and USGS (2007), respectively, and were col-
lected from October 1, 1984 to September 30, 1986. Weather data, including pre-
cipitation depths and temperatures, were obtained from NOAA-NCDC (2006) from
October 1, 1983 to September 30, 1986 (i.e., one more year in addition to the same
period for the daily streamflow and sediment discharge data). The National Elevation
Dataset (NED) USGS (2006a) was used for watershed delineation, and the National
Land Cover Dataset (NLCD) USGS (2006b) and the State Soil Geographic Database
(STATSGO) (USDA-NRCS, 2006) were used to create HRUs. The watershed delin-
eation was performed such that the generated stream network approximately matched
the U.S. Environmental Protection Agency’s Reach File 1 (RF1) data (USEPA, 2007).
The land use distribution is urban 1.0%, agriculture 2.9%, forest 54.7%, rangeland
34.4%, and water/wetland 7.0%; the soil type distribution of the first layer of the
STATSGO data is clay 9.1%, silt 19.6%, and sand 71.3%.

The two years of streamflow, sediment discharge, and weather data from October
1, 1984 to September 30, 1986 were divided into three periods: a calibration period
from October 1, 1984 to May 31, 1985; a rejection period from June 1, 1985 to
January 31, 1986; and a verification period from February 1, 1986 to September
30, 1986. Note that each simulation period is eight-month long due to the lack of
daily sediment discharge data for the study area. Because SWAT requires an initial

stabilization period to ensure that the output is not affected by the assumed initial
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Figure 19: Big Sandy Creek watershed.

condition (Olivera et al., 2006), a one-year initial stabilization period was appended in
front of each eight-month simulation period; the output for these stabilization periods

was not used for model evaluation.

5.8.2.  Calibration of the model parameters

The Soil and Water Assessment Tool (SWAT) is a long-term hydrologic model capable
of simulating streamflows and sediment discharges on a daily basis (Arnold et al.,
1998). SWAT subdivides a watershed into a number of subwatersheds, each of which
has a main channel and tributary channels. Main channels are dendritically connected
to each other. Each subwatershed consists of unique combinations of land use and
soil type referred to as hydrologic response units (HRUs). Runoff and suspended
sediment generated from the HRUs are routed through the stream network to the

watershed outlet.
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The Natural Resources Conservation Service (NRCS) curve number method (Soil
Conservation Service, 1972) was used to calculate the runoff volume, and the vari-
able storage routing method (Williams, 1969) was used to route streamflow. Sedi-
ment discharge generated with the Modified Universal Soil Loss Equation (MUSLE)
(Williams, 1995) was routed using a simplified version of the Bagnold stream power
equation (Bagnold, 1977). The model parameters listed in Table 16 were adjusted
in calibration. There are three levels of the model parameters in SWAT as fol-
lows: the watershed-level parameters have one parameter value for the watershed,
the subwatershed-level parameters per subwatershed, and the HRU-level parameters
per HRU. In order to reduce the number of the model parameters to calibrate and keep
the relative relationship between spatially distributed parameter values, the following

one-parameter rule was employed to modify the parameter values:

Pnew = Po + &[py, — pol (5.3)

where phew is the new parameter value, pg is the initial parameter value, py, is either
the upper or lower boundary of the parameter value, and « is a real number ranging

from —1.0 to 1.0 and corresponds to one parameter. p, was defined as
b = 0.5py (1 +sgna) + 0.5p;(1 — sgn «) (5.4)

where p, and p, are the upper and lower boundary values of the parameter, respec-
tively. For the Manning’s n values for the tributary and main channels (CH_N(1)
and CH_N(2), respectively, in the SWAT documentation), one « variable was used to
keep the relative relationship between the tributary and main channels; the same rule
was applied to the effective hydraulic conductivities in the tributary and main chan-
nel alluviums (CH_K(1) and CH_K(2), respectively, in the SWAT documentation).

Therefore, there are 19 model parameters but 17 « variables (i.e., 17 dimensions).
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Non-informative prior likelihood measure distributions (i.e., uniform distributions for
Lyvior(0) over a € [—1,1], where 6 is a set of ppey values) were used for all the o
variables.

The objective function for streamflow was defined as the sum of the squares of

the residuals (SSR):
fo = Z (Qi - Qz>2 (5.5)

i=1
where @); and QZ are the observed and simulated streamflows at the i day, respec-

tively, and n is the number of simulation days. Similarly, the objective function for

sediment discharge was defined as

n

Is = Z (Si - 31)2 (5.6)

i=1
where S; and S; are the observed and simulated sediment discharges at the i'" day,
respectively. Eqgs. (5.5) and (5.6) were normalized and aggregated into a single global
optimization criterion (GOC) according to the Euclidean distance to the perfect model
at the origin:

2y 1/2

[ fo r+ [ fs
S (@i Q) S (8- 8)°

where @ is the mean observed streamflow, and S is the mean observed sediment

GOC =

(5.7)

discharge. The calibration of the model parameters was performed using GOC as the
objective function.

Because, in this study, an optimization run is performed to take preferable param-
eter samples (i.e., behavioral models) which are then used for the GLUE uncertainty
analysis, optimal models found by optimization must have an optimal likelihood mea-
sure. Therefore, the likelihood measure of the model parameters, L(0|£,y), needs to

be carefully defined to reflect well the objective function surface (i.e., the GOC func-
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Table 16: List of the model parameters for calibration of streamflow and sediment
discharge. The descriptions were taken from Neitsch et al. (2002b).

Parameter Description Range

CN2 Initial NRCS runoff curve number for moisture con- 35-99
dition II

SOL_AWC Available water capacity of the soil layer (mm 0.0-1.0
Hy0/mm soil)

ESCO Soil evaporation compensation factor 0.01-1.0

GWQMN Threshold depth of water in the shallow aquifer re- 0-5000
quired for return flow to occur (mm H,O)

GW_REVAP Groundwater revap coefficient 0.02-0.2

REVAPMN  Threshold depth of water in the shallow aquifer for 0-500
revap or percolation to the deep aquifer to occur
(mm H,0)

OV_N Manning’s n value for overland flow 0.01-1.0

CH_N(1) Manning’s n value for the tributary channels 0.01-0.5

CH_N(2) Manning’s n value for the main channel 0.01-0.5

CH_K(1) Effective hydraulic conductivity in tributary channel 0.025-250
alluvium (mm/hr)

CH_K(2) Effective hydraulic conductivity in main channel al- 0.025-250
luvium (mm/hr)

ALPHA BF  Baseflow alpha factor (days) 0.0-1.0

USLE_P USLE equation support practice factor 0.25-1.0

APM Peak rate adjustment factor for sediment routing in  1.0-2.0
the tributary channels

PRF Peak rate adjustment factor for sediment routing in  1.0-2.0
the main channel

SPCON Linear parameter for calculating the maximum 0.0001-0.01
amount of sediment that can be reentrained during
channel sediment routing

SPEXP Exponent parameter for calculating sediment reen- 1.0-2.0
trained in channel sediment routing

CH_COV Channel cover factor 0.0-1.0

CH_EROD Channel erodibility factor 0.0-1.0
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tion surface). The Nash-Sutcliffe coefficient (NS) (Nash and Sutcliffe, 1970) has been

widely used to evaluate hydrologic models (Moriasi et al., 2007) and is defined as
N2
Z?:l (Xi B Xi)
n —\ 2
Zi:l (Xi B X)

where X; and X; represent the observed and simulated values of the variable of interest

NS=1- (5.8)

at the i'" time step, respectively, and X is the mean observed value of the variable.
X is referred to as the “no-model” because this value is calculated without using any

hydrologic concepts. Eq. (5.7) can be rewritten using the NS coefficient as follows:

1/2

GOC = [(1 — NSg)” + (1 — NSg)?] (5.9)

where NSy and NSg are the NS coefficients for streamflow and sediment discharge,
respectively. When both NS coefficients are 0, GOC becomes v/2 which is defined as
non-behavioral in this study; when they are both 1, GOC becomes 0 which indicates
the perfect model. This characteristic was used to define the likelihood measure as
follows:

GoC ) . (5.10)

L(0)¢,y) = max <1 VA 0

Note that GOC is the distance from the origin (i.e., the perfect model) to a point
measuring the model performance in the normalized objective function space (i.e.,
the normalized fo-fs space), and a set of the model parameters is rejected as non-
behavioral if the distance is greater than or equal to V2. Because the likelihood
measure is a shifted and scaled-down version of GOC, optimal models found in the
normalized fo-fs space have an optimal likelihood measure. Likelihood measures
greater than 0 do not imply that the NS coefficients for streamflow and sediment
discharge are both greater than 0. Because the NS coefficient has limitations in

reliably evaluating the model performance due to its high sensitivity to the no-model
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as described in Chapter 11, a model is still considered behavioral when GOC is less
than /2 even if one of the NS coefficients is less than 0. Note that the likelihood
measure defined in this study is not a probabilistic measure of how closely a model
agrees with actual data, but the author’s degree of subjective belief about how good
the model is according to the likelihood measure defined in Eq. (5.10). The author
expects that a model is usable or behavioral when either NSy or NSg is greater than
0, and the other NS coefficient is not too bad such that the likelihood measure is
greater than 0 (i.e., the threshold value for behavioral models in this study).

The calibration period was used for an optimization run with ISPSO to take
preferable samples from the search space. Because of the high-dimensional and multi-
modal nature of the SWAT model, the number of particles (i.e., swarm size) in ISPSO
was set to 46, 28 more particles than the recommended swarm size for 17-dimensional
single-modal problems (i.e., 10 + LQ\/T?J = 18). The number of iterations was set to
1,000 due to the limitation of computational resources. Therefore, a total SWAT runs
of 46,000 were performed in calibration, and the 46,000 sets of the model parameters
are referred to as samples in the ISPSO-GLUE approach.

The likelihood measure defined in Eq. (5.10) was used to perform uncertainty
analysis using the GLUE approach. Random sampling was performed to take 46,000
samples (i.e., the same sample size as in the ISPSO-GLUE approach) from the search
space; the random samples were used to estimate the GLUE uncertainty bounds and
compare them with the ISPSO-GLUE uncertainty bounds. The following section

discusses the results of the ISPSO-GLUE approach unless otherwise noted.

5.3.83.  Results and discussion

After calibration, one local solution was found, and one best solution was determined.

However, the best solution found in calibration is not the global optimum because
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particles in the swarm did not converge to that point. The NS coefficients of the
best and local solutions are shown in Table 17; the two solutions did not perform
consistently well in the different simulation periods. One reason could be that the
calibration period is too short for an optimization algorithm to calibrate the model
parameters properly. Another reason may be that the SWAT model did not simulate
one year of four seasonal processes in each simulation period. Because one simulation
period partly overlaps with part of the other simulation periods in terms of seasons,
the three periods show different characteristics of streamflow and sediment discharge.
For this reason, optimal solutions in one period may not be able to perform well
in the other periods. However, these results show that the model parameters are
very sensitive to simulation periods, and, hence, they cannot be assumed to be time-

mvariant.

Table 17: Nash-Sutcliffe coefficients for the optimal solutions found in calibration.

Calibration period Rejection period Verification period
Parameter set
NSq NSy NSq NSy NSqo NSy
Best solution 0.52 0.54 —1.23 —3.96 0.70 —1.07
Local solution 0.48 0.50 —1.38 —5.83 0.67 —2.48

If we are interested only in streamflow and treat the rejection and verification
periods as validation and prediction periods, respectively, the two parameter sets may
look reasonably good after calibration. However, we may not want to trust these pa-
rameter sets anymore after validation and would not use them for prediction, where
they actually performed even better than in calibration. If the rejection and verifica-
tion periods are treated as prediction and validation periods, respectively, we may be
satisfied with the performances of the solutions because of the high NS coefficients

in validation, but will fail to reliably predict unobserved streamflows in prediction.
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These two scenarios clearly show the weakness of pursuing a single optimal parame-
ter set without accounting for uncertainty. This property of optimal solutions can be
seen in Figure 20 which shows the relationship between NS coefficients for the differ-
ent simulation periods. Better calibrated models did not necessarily provide better
performances in rejection, and mathematically inferior models performed more con-
sistently, with a lower performance, than superior models especially in the prediction
of streamflow. Note that the two clouds of circles and dots overlap near the region
of NSg from 0 to 0.2, which suggests that those samples are more robust in terms of

performance consistency.
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Figure 20: Scatterplots of Nash-Sutcliffe coefficients. The circles and the dots indicate
NS coefficients for rejection and verification, respectively.

After calibration, 9,622 model parameter sets out of 46,000 had a likelihood mea-
sure greater than 0 and were considered behavioral models after calibration. Among
the 9,622 behavioral models after calibration, 499 models had a likelihood measure
greater than 0 after rejection and were used for verification. This study does not

assume statistical characteristics of the model errors such as normal or log-normal
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distributions. The normal quantile-quantile (Q-Q) plots in Figures 21a and 21b show
that the assumption of normal distributions for the model errors is not appropriate, at
least, for this study. As shown in Figures 21c¢ and 21d, the log transformation of the
model errors may justify the assumption of log-normal distributions for the model
errors. However, the applicability of this assumption may be also limited because
error variances are not constant. Of course, there may be other statistical models ap-
propriate for this case study; however, since the main goal of this study is to reduce
the computational burden of the GLUE framework which is not based on statistical
assumptions, no further investigation was performed about the selection of statistical
error models.

The « coordinates for the curve number and the USLE practice factor (CN2 and
USLE_P in the SWAT documentation, respectively) of the best and local solutions
found in calibration are (0.545, 0.279) and (0.532, 0.085), respectively. Figure 22
shows the cumulative marginal likelihood measure distributions of the o values for
the curve number and the USLE practice factor. Non-informative prior likelihood
measure distributions (i.e., uniform distributions) were updated after the calibration
data became available. The posterior likelihood measure distributions after calibra-
tion were further updated with the rejection data. The cumulative marginal likelihood
measure distribution of the a value for the curve number was significantly shifted to
the left after the rejection data became available as shown in Figure 22a. This shift
implies that the most likely « value (i.e., the point with the steepest slope in the
cumulative distribution plot) for the curve number after calibration (e.g., approxi-
mately 0.5-0.6) is not the most likely after rejection. Among others listed in Table
16, the SWAT parameters such as ESCO, GWQMN, ALPHA _BF, PRF, SPCON, and
CH_COV show a similar behavior. In contrast, for the other parameters such as the

USLE practice factor, the marginal likelihood measure distribution was not sensitive
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there are 499 behavioral models after rejection, each figure shows 499 independent

Q-Q plots.



104

to the data used for calibration and rejection, and their most likely values did not
change significantly over calibration and rejection. The difference in the sensitivities
of different model parameters to the observed data implies that, for this particular
dataset, a single parameter set cannot represent the watershed over different periods.

Using the GLUE approach, 1,115 models were classified as behavioral among
46,000 random samples when the calibration data became available, and 105 models
survived rejection. These two sets of the behavioral models were used to build the
cumulative likelihood measure distributions of the « values for the curve number and
the USLE practice factor shown in Figures 22c¢ and 22d. As shown in Figures 22a
and 22c, the GLUE approach does not give as much weight to the most likely a value
for the curve number (e.g., approximately 0.5-0.6) as the ISPSO-GLUE approach
does because the random samples in the GLUE approach do not cluster around local
optima. For the USLE practice factor, the cumulative likelihood measure distribution
obtained using the GLUE approach (Figure 22d) did not change significantly from
the uniform distribution, which implies that the random samples could not identify
local optima. In contrast, the ISPSO-GLUE approach found many behavioral models
close to local optima (e.g., approximately 0.1-0.5) and updated the prior cumulative
distribution significantly to obtain an S-shaped posterior cumulative distribution as
shown in Figure 22b. After rejection, the GLUE approach further updated the poste-
rior cumulative distribution and identified the highly likely region around 0.15-0.30;
however, the cumulative distribution after rejection is not as smooth as that obtained
using the ISPSO-GLUE approach due to the lack of samples.

Figures 23 and 24 show the 95% uncertainty bounds in the verification period
of the behavioral models obtained using the ISPSO-GLUE approach and the GLUE
approach. Note that the 95% uncertainty bounds obtained using the two different

approaches are qualitatively comparable when all of the 46,000 samples are taken into
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account except that the ISPSO-GLUE uncertainty bounds are slightly narrower than
the GLUE uncertainty bounds. As shown in Figure 25, the ISPSO-GLUE approach
underestimates the prediction uncertainty compared to the GLUE approach. This
difference is due to the high frequency of highly likely parameter sets in the ISPSO-
GLUE approach compared to the GLUE approach. Because of this difference, the
I[SPSO-GLUE uncertainty bounds miss a number of the peak observed values that
the GLUE uncertainty bounds do not. The ISPSO-GLUE uncertainty bounds en-
close 74% and 85% of the observed values for streamflow and sediment discharge,
respectively, while the GLUE uncertainty bounds enclose 85% and 92% of them, re-
spectively. These properties of the uncertainty bounds also show that the model
errors of the behavioral models are not log-normally distributed, and their variances
are not constant over time, which reinforces the discussion made about Figures 21c
and 21d.

Since the SWAT model is computationally expensive, available computational
resources are often very limited and, in many cases, one cannot run the model a large
enough number of times until the uncertainty bounds are stabilized. The envelopes
for the lower and upper limits of the uncertainty bounds in Figures 23 and 24 show
how sensitive the uncertainty bounds are to the sample size. The 46,000 samples
from each approach were numbered from the first sample to the last one; samples 1
to 1,000k VkE = 1,--- ,46 were used to build uncertainty bounds if there were more
than one behavioral model after rejection. For example, in the GLUE approach,
first 1,000 samples included only one behavioral model after rejection and could not
build uncertainty bounds; first 2,000 samples included three behavioral models after
rejection and were used to estimate uncertainty bounds. This test simulates the
two approaches with 46 different sample sizes; the much narrower gray regions in

Figures 23a and 24a compared to Figures 23b and 24b show that the convergence
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(b) Streamflow using the GLUE approach.

Figure 23: 95% ISPSO-GLUE uncertainty bounds and 95% GLUE uncertainty

bounds

of streamflow in the verification period. The gray regions denote the en-

velopes for the lower and upper limits of the uncertainty bounds estimated using
the sample size of 1,000 to 46,000 at 1,000 intervals; the uncertainty bounds were
not evaluated for samples including only one behavioral model. Each of the gray
regions encompasses 46 and 45 upper or lower limits of the uncertainty bounds for
the ISPSO-GLUE approach and the GLUE approach, respectively.
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Figure 24: 95% ISPSO-GLUE uncertainty bounds and 95% GLUE uncertainty
bounds of sediment discharge in the verification period. The gray regions denote
the envelopes for the lower and upper limits of the uncertainty bounds estimated
using the sample size of 1,000 to 46,000 at 1,000 intervals; the uncertainty bounds
were not evaluated for samples including only one behavioral model. Each of the gray

regions encompasses 46 and 45 upper or lower limits of the uncertainty bounds for
the ISPSO-GLUE approach and the GLUE approach, respectively.
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rate of the ISPSO-GLUE uncertainty bounds is much faster than that of the GLUE
uncertainty bounds. In fact, the ISPSO-GLUE uncertainty bounds of 2,000 samples
are close enough to those of 46,000 samples while the GLUE uncertainty bounds of
up to 14,000 samples are not yet stabilized. The white regions surrounded by the
lower and upper envelopes are “the guaranteed uncertainty range” when an arbitrary
number of samples from 1,000 to 46,000 are taken. The guaranteed uncertainty
range of the GLUE approach is too narrow to locate any observed values within it
while that of the ISPSO-GLUE approach is similar to its uncertainty bounds and
encloses 52% and 60% of the observed values for streamflow and sediment discharge,
respectively. Figure 26 shows how the likelihood measure of the median estimates
of the uncertainty bounds changes with different sample sizes. The ISPSO-GLUE
approach consistently outperformed the GLUE approach regardless of the sample
size. The average likelihood measure is 0.53 for the ISPSO-GLUE approach and 0.44
for the GLUE approach. On average, the likelihood measure was improved by 20%
by using the ISPSO-GLUE approach. Moreover, the ISPSO-GLUE approach shows
a quicker convergence to the final state compared to the GLUE approach. These
results imply that choosing an appropriate sample size is more critical for the GLUE
approach, and the better exploration of the search space is needed for the ISPSO-
GLUE approach to widen the uncertainty bounds by taking less likely yet behavioral
parameter sets.

The failure of capturing the observed variables within the uncertainty bounds
over the whole verification period suggests the followings: (1) the rejection period is
so much different from the calibration period that good models barely survive rejec-
tion that, otherwise, would provide good prediction in verification, (2) 46,000 sam-
ples may not be enough to well characterize the likelihood measure surface, (3) the

one-parameter (a) rule to update spatially distributed parameter values may be in-
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Figure 26: Likelihood measure of median predictions versus sample size. Note that,
with a sample size of 1,000, the GLUE approach found only one behavioral model,

and no median predictions were available.

appropriate to properly take into account the spatial variability of the data, (4) there
might be errors in the observed data or the model structure that prevent providing
consistent prediction over the verification period, and (5) it could be the subjective
likelihood measure used in this study or the GLUE approach itself.

The first argument may be valid; however, as already discussed, in real predic-
tion, we never know whether or not the prediction period is similar enough to the
calibration period for which the model parameters are calibrated. For this reason,
the behavioral models need to be tested with much different datasets; rejection does
this role in this study.

The second argument is probably right because, even after random sampling of
46,000 sets of the model parameters, only 105 behavioral models could be used to
build the uncertainty bounds in the case of the GLUE approach. We know that taking

more samples is always not enough when it comes to characterizing the likelihood
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measure surface in such high-dimensional problems (e.g., 17-dimensional problem
in this study); however, we cannot ignore the time taken to perform this type of
uncertainty analysis. It takes around 16 days (i.e., 384 hours) to run the SWAT
model of the Big Sandy Creek watershed 46,000 times with random sampling using R
2.5.1 (R Development Core Team, 2006) on a Dell(R) Optiplex(TM) GX620 computer
(Pentium(R) D CPU 2.80 GHz with 3 GB of RAM) operated by MS-Windows(TM)
XP. Figure 27 shows the relationship between the number of behavioral models after
rejection and the sample size; the two curves show almost the linear relationship
between the two variables although it is not ensured that the curves will be still
linear even after a huge amount of sampling. Using the GLUE approach, to obtain
the same number of behavioral models as in the ISPSO-GLUE approach, it will take
approximately 76 days (i.e., 499/105 x 16 days) assuming that the linear relationship
in Figure 27 will be still valid until then. However, it does not seem practical to
spend over two months for just one uncertainty analysis. Even worse is that, if the
number of subwatersheds significantly increases from only five as in this study, the
time requirement will become even more demanding. Of course, parallel computing
or supercomputing may help a lot in this regard at the expense of financial resources.
The current trend of the development of powerful computational devices and facilities
is promising for the GLUE framework as anticipated by Beven (2006a).

As for the third argument, the a function defined in Eq. (5.3) may not be ap-
propriate for the SWAT model to take into account the spatial variability of the
data; however, the spatial variability in the Big Sandy Creek watershed may not be
an important factor in uncertainty analysis as Chapter II shows that, in watersheds
whose time of concentration is shorter than the computational time step of the SWAT
model, the model output is not sensitive to the spatial variability of land use, soil

type, and precipitation data. This phenomenon is because everything happens within
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Figure 27: Number of behavioral models after rejection versus sample size.

the watershed in a single time step, and the model is not able to simulate such details
within one computational time step. Because the area of the Big Sandy Creek water-
shed is 598 km?, which is smaller than two of the three study areas used in Chapter 11
(e.g., 831-km? and 1,005-km? watersheds in Texas), it is unlikely that the uncertainty
of the model output is significantly affected by how spatially distributed parameter
values are updated.

There might be the measurement error or the model structural error. As for the
measurement error, accumulated rainfall was measured every day at 07:00 and 08:00 at
gauges 414020 and 419836, respectively, while daily observed values of streamflow and
sediment discharge were processed appropriately after measurement. This mismatch
in the time of observation may lead to poor model performances; however, because
over 70% of the observed values are enclosed by the uncertainty bounds, this may not
be the sole problem, at least, in this study. Another possibility might be that, due
to the model structural error, not many sets of the model parameters could produce

good predictions describing well the observed values of both streamflow and sediment
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discharge over the whole verification period and the uncertainty bounds missed a
number of the observed values.

Lastly, the likelihood measure used in this study that evaluates simulated stream-
flows and sediment discharges at the same time may be too rigorous to find an enough
number of behavioral models, and using less strict likelihood measures may help widen
the uncertainty bounds to enclose all the observed values. The results of this study
may be revealing the weakness of the GLUE approach; however, as evidenced earlier,
a simple statistical assumption about the model errors could not be well justified for
this study, which undermines the basis of the probabilistic Bayesian framework and
suggests that careful consideration should be given to the selection of statistical error
models.

The model structure cannot be perfect inherently, and it is not possible to find
a single optimal solution that provides consistent predictions with different obser-
vations. Similarly, even multiple behavioral models may not be able to guarantee
consistent predictions. These results suggest the followings: (1) we cannot com-
pletely rely on a single set of the model parameters even if it was well calibrated
and (2) in order to better ensure consistent predictions, even sub-optimal regions of
the search space need to be investigated. The ultimate goal of the model calibration
is not to match observed data, but to predict unobserved variables. In this per-
spective, it is essential to avoid over-trusting few mathematically optimal solutions
and evaluate the usefulness of sub-optimal ones to find out the strengths and the
weaknesses of the model structure. This process, of course, may require a significant
number of model runs, which usually leads to a high computational burden. Further,
in high-dimensional problems, sub-optimal regions of the search space may not be
concentrated near only the global optimum, and better strategies are needed than

global optimization algorithms to search for multiple behavioral models as well as to
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avoid sampling from the inferior regions of low likelihood measures to significantly
reduce model runs. To this end, a multi-model optimization algorithm called ISPSO
was employed not only to find optimal solutions in a high-dimensional search space,
but also to perform uncertainty analysis in the GLUE framework.

The ISPSO-GLUE uncertainty bounds inherently underestimate the prediction
uncertainty compared to the GLUE uncertainty bounds because the ISPSO-GLUE
approach gives much weight to highly likely models compared to the GLUE approach;
however, the two uncertainty bounds were not significantly different. Given the simi-
lar results, the convergence rate of the uncertainty bounds is an important factor for
uncertainty analysis especially when the model run is computationally very expensive.
The ISPSO-GLUE uncertainty bounds were not significantly sensitive to the sample
size, and their convergence to the uncertainty bounds of a higher sample size (i.e.,
46,000 in this study) was much faster than that of the GLUE uncertainty bounds.
This fast convergence of the uncertainty bounds may be a promising feature of the
ISPSO-GLUE approach when uncertainty analysis is performed for costly distributed

hydrologic models.

5.4. Summary and conclusions

This chapter discussed the feasibility of the application of a multi-modal optimiza-
tion algorithm called ISPSO to uncertainty analysis within the GLUE framework.
The SWAT model was used to estimate daily streamflows and sediment discharges
at the watershed outlet, and one multi-modal optimization run was performed. Two
mathematically optimal solutions did not show consistent model performances over
different simulation periods, and even inferior models provided more consistent per-

formances. The time-variant nature of a model parameter was discussed by building
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the cumulative marginal likelihood measure distribution of the model parameter. Be-
cause any model is a combination of different model parameters, no single model can
be time-invariant and thus be the only good realization of the real system. Samples
taken in optimization were used to estimate the prediction limits of the behavioral
models called “the ISPSO-GLUE uncertainty bounds.” The typical GLUE approach
was also performed with random sampling of the same sample size to obtain “the
GLUE uncertainty bounds.” The two uncertainty bounds were qualitatively compa-
rable except that the ISPSO-GLUE uncertainty bounds slightly underestimated the
prediction uncertainty compared to the GLUE uncertainty bounds and thus missed
a number of the observed values; however, the convergence rate of the ISPSO-GLUE
uncertainty bounds was much faster than that of the GLUE uncertainty bounds. This
feature of the proposed approach allows us to obtain the uncertainty bounds much
faster at the expense of missing a number of the observed values especially when a
model run is computationally very expensive.

Unlike random sampling techniques usually employed for the GLUE approach,
ISPSO not only takes samples uniformly, when it is allowed, but also tries to find
optimal solutions. This unique feature of ISPSO increases the chance of discover-
ing behavioral models widely spread in high-dimensional search spaces and provides
a number of uniform samples for the purpose of uncertainty analysis. In addition,
optimal solutions found by the algorithm can be used to suggest sets of the model
parameters instead of several hundred behavioral models for the purpose of quick pre-
diction. However, the time-variant nature of some model parameters suggests that
great care should be taken when prediction is made using mathematically optimal so-
lutions, and the model structure might need to be refined so that it only parameterizes

time-invariant or data-insensitive characteristics of the system. A comparison between

the ISPSO-GLUE approach and the GLUE approach suggests that the ISPSO-GLUE
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approach may be a good alternative to the computationally more expensive GLUE

approach.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

Chapter II discussed the effect of the spatial distribution of land use, soil type, and
rainfall on estimated streamflows in watersheds with times of concentration shorter
than the computational time step of the SWAT model. The model was not able to
identify differences in substantially different configurations of the spatial data, and
even the use of uniform land use and soil type maps was not noticeable. When the
watershed is small compared to the computational time step of the model, the model
is not necessarily able to identify realistic representations of the spatial data and pro-
vide better model performances with them. However, spatially distributed data help
understand the characteristics of the watershed and provide distributed hydrologic
models valuable information. A special care should be taken in generalization of the
results in this chapter because watersheds where high correlations exist between land
use, soil type, and rainfall data might require accounting for the spatial variability to
estimate more accurate runoff volumes.

In Chapter III, a population-based multi-modal optimization algorithm called
the Isolated Speciation-based Particle Swarm Optimization (ISPSO) was developed.
Parameter samples are referred to as particles in particle swarm optimization, and
they form species in ISPSO based on Euclidean proximity. Isolated particles left alone
after the proximity-based speciation form an additional species called “the isolated
species” to make themselves move around the search space. A deterministic low-
discrepancy sampling technique called the Sobol’ sequence was employed to enhance
the diversity of particles. Seven mathematical functions were used to test the perfor-
mance and the scalability of ISPSO, and the results were compared with the reported

results of SPSO (Li, 2004) and NichePSO (Brits et al., 2007). ISPSO outperformed
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SPSO and NichePSO in terms of computational cost, consistency, and scalability.
The premature convergence of particles and computational complexity required at
each iteration need to be improved in the future work.

In Chapter IV, the number of minima of the Griewank function, one of the test
functions used in Chapter 111, was analytically derived. It is difficult to directly count
the number of minima because of the complicated nature of the function’s surface
and high correlations between dimensions. By redefining the problem of counting the
number of minima as counting the number of tangent points lying on the parabolic
plane, which is part of the function, it was possible to analytically count the number
of minima. A numerical method was developed to find hyperrectangles in which
the analytical derivation of the number of minima of the function is valid. The
maximum extents of the hyperrectangles for up to four dimensions were estimated,
and a reference table was provided for the numbers of minima for three different
search spaces.

In Chapter V, ISPSO was applied to the GLUE framework to estimate the pre-
diction uncertainty of the SWAT model; the proposed approach is referred to as “the
ISPSO-GLUE approach” contrast to “the GLUE approach,” which typically requires
extensive random sampling. Optimal solutions found by ISPSO were evaluated to
test whether or not a single optimal model could represent the watershed over dif-
ferent simulation periods. The optimal solutions were sensitive to the data used in
optimization because of the time-variant nature of some model parameters; no single
parameter set was able to show consistent model performance. Uncertainty analy-
sis for streamflow and sediment discharge was performed by running one multi-modal
optimization run, rejecting some of the “behavioral models” after calibration, and ap-
plying the behavioral models that survived rejection to verification. The uncertainty

bounds obtained by this approach are referred to as “the ISPSO-GLUE uncertainty
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bounds” while those obtained by the GLUE approach are referred to as “the GLUE
uncertainty bounds.” Random sampling of the same sample size as in the ISPSO-
GLUE approach was performed to estimate the GLUE uncertainty bounds and com-
pare them with those for the proposed approach. The ISPSO-GLUE uncertainty
bounds slightly underestimated the prediction uncertainty compared to the GLUE
uncertainty bounds; however, the convergence rate of the ISPSO-GLUE uncertainty
bounds were much faster than that of the GLUE uncertainty bounds. The application
of the ISPSO algorithm to the GLUE framework significantly reduces computational
burden required to find many behavioral models in high-dimensional problems be-
cause the diversity of particles in ISPSO enhances the discovery of behavioral models
compared to random samplings. This feature is promising especially when uncer-
tainty analysis is performed for costly distributed hydrologic models. However, the
bias of behavioral models found by ISPSO needs to be further investigated

There is a great deal of uncertainty in environmental modeling and especially
in high-dimensional distributed hydrologic models. This dissertation addressed the
issues of the uncertainty associated with the spatial variability of the data and the
identification of the model parameters. The multi-modal optimization algorithm and
the uncertainty analysis framework proposed in this dissertation will help reduce the

predictive uncertainty.
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APPENDIX A

DIRECTORY STRUCTURE OF THE OPTICAL DISC

The following list describes the directory structure of the optical disc accompa-

nying with this dissertation:

e /libsce contains the C implementation of the Shuffled Complex Evolution (SCE-
UA) algorithm used for the calibration performed in Chapter II (see Appendix

B for more details);

e /spatial variability contains the calibrated and validated models used for the

analysis performed in Chapter II (see Appendix C for more details);

e /ispso contains the R implementation of ISPSO used in Chapter IIT and a sample

script (see Appendix D for more details);

e /griewank contains the R code used to count the number of minima of the

Griewank function in Chapter IV (see Appendix E for more details);

e /prediction_uncertainty contains the sample models used for the uncertainty

analysis performed in Chapter V (see Appendix F for more details).
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APPENDIX B

LIBSCE

B.1. Introduction

The libsce library is a C program developed by Huidae Cho for his doctoral research
and provides a framework for the Shuffled Complex Evolution algorithm developed
at the University of Arizona (SCE-UA) (Duan et al., 1993). Using this library, re-
searchers can develop their own calibration tool for a specific model. The original
SCE-UA program was written in Fortran 90. The main goals of libsce are two-fold:
(1) to develop a completely independent library so that the user does not need to
modify the optimization source code in the library or the model to be linked with the
library and (2) to allow multiple parameter values for each parameter in the SCE-UA
algorithm in order to calibrate distributed hydrologic models.

Section B briefly describes how libsce works, Section B explains how to install
the library, and Section B introduces two sample calibration tools developed using

libsce.

B.2. How it works

The model to be linked with libsce should be called explicitly by the calibration tool,
and its input files also need to be rewritten. Figure 28 shows the protocol used for
communication among three parts: the calibration tool, libsce, and the model. The
calibration tool behaves as the interface between libsce and the user. It provides a

file to configure various control parameters for optimization and model information.
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It also receives requests from the library, runs the model, and performs the post-

processing of the model output files such as extracting required data, calculating

errors, and saving them to files for reference.

Calibration tool

e configuration

e updating model input
e post-processing

libsce

e sampling points
e optimization

Model
e running model

Process

A

B
C
D

Optimization parameters, Current points
Request for model run, Evolved points
Input file update, Model run

Output

Figure 28: Protocol among calibration tool, libsce, and model.

Given optimization specifications and model information, the library takes sam-

ples and evolves them using the SCE-UA algorithm while sending requests for model

runs to the calibration tool. This procedure is the core of the library, and the user

does not need to modify its source code at all by its design. The model part is simply

the model itself. Whenever it is executed, input files are updated by the calibration

tool, and its output is analyzed by user-specified post-processors.

As shown in Figure 29, libsce has three data structures (struct in the C lan-

guage). The sce structure has all the parameters required by the SCE-UA algorithm.

These parameters include the number of consecutive offsprings generated by each

sub-complex, the number of points in a complex, etc. The lower and upper bounds of

the model parameters and the variables of the parameter function are stored in the
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parameter structure. The most complicated part is the model structure because it is
the actual interface between the model and libsce. It has pointers to the user-defined
functions that read and update the model input files, run the model, and calculate
model errors. Provided the function pointers, the sce_method routine is able to access
the model through these pointers. For full description of these structures, see Tables
18, 19, and 20. Note that the actual names of these structures have an underbar “.”

prefix to allow the user to define variables such as sce, param, and model instead of

inventing other names.

sce: SCE-UA structure
en
®p
e p_min SCE-UA routine
em sce_method(model, sce)
®q
e alpha . .
e bota . call main routine
oD *, SCE-UA configuration
o A \‘\
e xloops S~
e sloops
e cratio |
® xgeomean :model information
par_cfg: parameter structure| | model: model structure
e lbound e run_model
e ubound e get_error
e la e update_point
e ua e update_num_par_val
N e get_num_par_val
] N ‘.\ e e get_par_index
parameter specification "7~ ¢ Jogger

e id

e num_par

e par_name

e par_cfg

e par

e num_par_val

o safe_exit

Figure 29: libsce data structures.
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The calibration tool is a separate program from the model, which means that it
should know about the model parameters before running the model. To provide model
information to the calibration tool, four members of the model structure are used:
num_par, par_name, par_cfg, par, and num_par_val. The parameter specifications are
not that simple for distributed hydrologic models. For spatially distributed hydrologic
models, there are usually more than one value per parameter because each spatial unit
has its own value. It means that one parameter in the model does not necessarily have
one number in the optimization algorithm because only one value cannot represent
all the units that are spatially distributed. For example, 10 subwatersheds have 10
different curve numbers even if they all represent one parameter called the curve
number. To support models like this, the concept of the parameter dimension is
introduced. In the previous example, the curve number has a dimension of 10 because
there are 10 subwatersheds with different curve numbers. However, even if the model
is a distributed model, it can have parameters having only one value such as the
watershed area. That is, different parameters can have different dimensions. There
are three functions related to this feature: update_num_par_val, get_num_par_val, and
get_par_index. One point in the library stores a set of parameter values for one model
run. One point has Y | dim; parameter values where n is the number of parameters,
and dim; is the dimension of the parameter ¢. To store all these values, the array D
is used, and these values are partitioned into p complexes and saved in the array A.

In general, the calibration tool requires a large number of model runs regardless
of its algorithm, which means that optimization takes much time to find a good
solution. However, in some cases, the user may want to stop the process even if it
is still running when he or she is already satisfied with current results or computing
resource is limited. If the process quits without caution, precious information can be

lost because the last input files are not always the best estimates so far. Further, the
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Table 18: SCE-UA data structure: struct _sce.

Member Description

n Number of parameters

p Number of complexes

p_min Minimum number of complexes required in the population

m Number of points in a complex

q Number of points in a sub-complex

alpha Number of consecutive offspring generated by each sub-
complex

beta Number of evolution steps taken by each complex

D All points are stored in this array

A D is divided into p complexes and saved in this array

xloops Maximum number of loops

sloops Number of shuffling loops in which the change in criterion
value is expected

cratio Ratio by which the criterion value must change in the given
number of shuffling loops (xloops)

xXgeomean Maximum geometric mean of all parameter spaces to deter-

mine if the population has converged sufficiently
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calibration tool cannot save all input files created in every generation of optimization

due to the limitation of data storage. For this reason, the user cannot expect that the

best input files are stored somewhere while the program is running. To get around

this problem, the safe_exit function is introduced that traps all termination requests

and saves the best solution to files.

Table 19: Model data structure: struct _model.

Member Description
run_model Function pointer to run the model
get_error Function pointer to calculate errors

update_point
update_num_par_val

get_num_par_val
get_par_index

logger

id

num_par
par_name
par_cfg

par
num_par_val
safe_exit

Function pointer to compute new point values and update
input files

Function pointer to update the array of the number of pa-
rameter values

Function pointer to get the dimension of a parameter
Function pointer to return which parameter is used in the
given index of a point

Function pointer to write to a file process information
Identification number used to print what is being optimized
Number of parameters

Array of parameter names

Pointer to _par_cfg struct

Array of parameters to be optimized

Array of the number of parameter values

Function pointer to save the best estimates before sudden
user interruption

The logger function is also provided for the purpose of debugging. It would

be helpful for the user to debug the calibration tool or even to correct optimization

specifications while running the program. It is impossible that the user sits in front

of the computer all the time and waits for long optimization processes to finish. The

calibration tool will generate a log file to save information about each step of the
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progress so that the user can easily diagnose what is going on when some things go

wrong.
Table 20: Parameter data structure: struct _par_cfg.
Member Description
Ibound Lower bound of the parameter
ubound Upper bound of the parameter
la Lower bound of the parameter function variable
ua Upper bound of the parameter function variable

There are eight functions that the user has to provide (run_model, get_error, up-
date_point, update num_par_val, get_num _par_val, get_par_index, logger, and safe_exit)
and six custom functions (main, read_config, read_files, update_par, get_value, and
calibrate). The flow of function calls is presented in Figure 30. The get_par_index
function is reserved for future use, and the logger and safe_exit functions are executed

by the ANSI C signal handlers when requested by the user.

B.3. Installation

Libsce is written in the C language, so the reader is supposed to be familiar with C
programming. The library was tested with the GNU C compiler and the GNU make
utility, so other compilers might not compile the sources. The library is designed
mainly for UNIX-like operating systems to facilitate fast optimization on supercom-
puters. However, it is also built on Cygwin, a UNIX emulator on MS-Windows.
The steps to install the library are as follows: (1) uncompress /libsce/libsce.tgz:
gzip -dc libsce.tgz | tar -xvf -, (2) compile the library: cd libsce && make,

and (3) copy libsce.a and sce.h to an appropriate directory.



main is the
point

entry

v
read config reads a
configuration file

v
read files reads initial
input files

v
calibrate makes the
list of parameters to be
optimized and calls the
sce_method function

v

[\ the

get_num_par _val

returns  the  num-
ber of  parameter
values according to

model.num _par_val

1

get_value computes
new parameter values

sce_method

update_num _par_val
calculates and saves
dimensions  of
parameter values into
model.num_par_val

update_point finds
the starting index of
parameter  using
model.num_par_val
and calls update_par

!
update_par calls
get_value and rewrites
input files

!
run_model runs
the model and post-
processor

!
get_error calculates

the objective function

SCE-UA algorithm

Figure 30: Flowchart for function calls in calibration.
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B.4. Sample calibration tools

Two sample calibration tools are included: sce4tmod (an SCE-UA calibration tool
for a TOPMODEL version, TMOD9502) and scedswat (an SCE-UA calibration tool
for SWAT 2000). The compressed files for the two calibration tools are scedtmod.tgz
and scedswat.tgz, respectively, in the /libsce directory.

The steps to build the executable file for either scedtmod or scedswat are as
follows: (1) compile and install the libsce library, (2) uncompress /libsce/scedswat.tgz:
gzip -dc scedswat.tgz | tar -xvf -, and (3) compile the calibration tool: cd

scedswat && make.
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APPENDIX C

CALIBRATED AND VALIDATED MODELS USED FOR THE ANALYSIS IN
CHAPTER II

The calibrations in Chapter II were performed using an automatic calibration
program called scedswat introduced in Appendix B. The contents of the /spa-

tial _variability directory are as follows:
e models contains the SWAT models used for the analysis in Chapter II;

e observed_flows.tgz contains the observed daily streamflow data for the six USGS

gauges shown in Figures 1 and 2 for two periods (i.e., calibration and validation);

e simulated_flows.tgz contains the simulated daily streamflows at the watershed

outlets and the simulated daily runoff flows from the land surfaces.

The naming convention for the compressed files in the models directory is MU-
PLS.tgz. where M is “u” (uncalibrated), “c” (calibrated), or “v” (validated); U is
08070200 (the East Fork of the San Jacinto River watershed), 08155240 (the Barton
Creek watershed), and 08159000 (the Onion Creek watershed); P is “0o” (multiple

[19)]

rain gauges) or “s” (single rain gauges); L is “0” (original land use), “d” (single land

(8%}

use), or “r” (random land use); Sis “0” (original soil type), “d” (single soil type),
or “r” (random soil type); and .tgz is the file extension for gzipped tar files. For
example, the file v08159000sdr.tgz contains the model of the Onion Creek watershed
with a single rain gauge, a single land use, and a random land use. To uncompress

gzipped tar files, execute the following command: gzip -dc v08159000sdr.tgz |

tar -xvf -.
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The naming convention for the text files in the observed flows.tgz file is MU.txt
where M and U follow the same rules as above.

The simulated_flows.tgz file contains three types of simulated flow data: the
simulated streamflows obtained from the models in the models directory, the runoff
flows obtained from the same directory, and the simulated streamflows obtained by
varying the Manning’s channel roughness coefficient (CH_N2 in the SWAT docu-
mentation). The simulated streamflows extracted from the models in the models
directory follow the same naming convention as the model itself (i.e., MUPLS.txt).
The simulated runoff flows append the “wyld_” prefix to their corresponding model
names. The simulated streamflows calculated by varying the Manning’s channel
roughness coefficient append the “.ch.n2={ CH_N2}” suffix to the model names where
{CH_N2} is a value of the Manning’s channel roughness coefficient; for example, the
file c08159000sro.ch_n2=0.010.txt contains the simulated streamflows of the c08159000-
sro model with a CH_N2 value of 0.010.
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APPENDIX D

ISPSO.R

D.1. Introduction

ISPSO.R is an R implementation of the Isolated Speciation-based Particle Swarm Op-
timization (ISPSO) introduced in Chapter I1I. Since the R language (R Development
Core Team, 2006) is an open-source counterpart of the S-PLUS statistics package
(Insightful Corp., 2001), pre-compiled binary distributions for Linux, MacOS X, and
MS-Windows are freely available from its website http://www.r-project.org.

Section D explains how to install R and ISPSO.R, and Section D documents how

to run the program.

D.2. Installation

Installation steps for R are as follows: (1) download the base R system from the
Comprehensive R Archive Network (CRAN) listed under the download section of R’s
website and (2) uncompress the downloaded file if necessary, and run the executable
file.

ISPSO.R requires several R packages: a package collection called Rmetrics (Wiirtz,
2004) and plotrix (Lemon et al., 2007). Because R automatically detects interde-
pendency between packages and installs required packages, several packages in the
Rmetrics package collection can be installed by installing a package called fOptions,
which ISPSO.R directly calls. The steps to install f{Options and plotrix are as follows:
(1) execute R and (2) use the install.packages function to install the two packages:

install.packages(c("fOptions", "plotrix")).
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Sample files are provided with ISPSO.R: uncompress /ispso/ispso.tgz: gzip -dc
ispso.tgz | tar -xvf -. There are three files in the compressed file: ispso.R de-
fines the pso function that implements the ISPSO algorithm, funcs.R provides test

functions, and test.R is a sample file that executes the pso function for test.

D.3. How to run

The pso function takes a list as its input, the members of which include debugging pa-
rameters and the ISPSO control parameters. The debugging parameters are explained
in detail in the test.R file and, in this section, only the ISPSO control parameters
are shown in Table 21. This function returns a list as its output, the members of
which are shown in Table 22. The pso function is called as shown in Figure 31. After

creating an R script file, execute the file from R: source("test.R").
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Table 21: ISPSO control parameters.

Parameter Data type Description

mycontrib Constant array ISPSO

pso Constant string “spso”

vupdate Constant string “constriction”

cl Real Constriction coefficient ¢4 in Eq. (3.3)
c2 Real Constriction coefficient 15 in Eq. (3.3)
w Real Constriction coefficient x in Eq. (3.3)
S Integer Swarm size |5

vmax Array of real numbers Maximum velocities ax

vmax0 Real Maximum initial velocity |Umax ol
maxiter Integer Number of the maximum iterations
xeps Real Nesting criterion ¢,

feps Real Nesting criterion e

age Integer Nesting criterion, particle’s age a
rspecies Real Species radius 7species

rprey Real Prey radius rpyey

rnest Real Nest radius 7pest

f Function Problem to solve

D Integer Problem dimension

Xmin Array of real numbers Lower bounds of the problem domain
Xmax Array of real numbers Upper bounds of the problem domain
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# Include ispso.R.
source("ispso.R")

# Define test functions.
source ("funcs.R")

s <= list()

# Stop after all the solutions are found.
s$.stop_after_solutions <- -1

B i T s s s
# Do not touch the following variables.

s$mycontrib <- ISPSO

s$pso <- "spso"

s$vupdate <- "constriction"
HAHHHHBHHAHH AR B H R H R RRH B H B H AR

# Constriction coefficients

s$cl <- 2 05

s$c2 <- 2.05

s$w <- 2/abs(2-s$ci-s$c2- sqrt ((s$cl+s$c2) "2-4x(s$cl+s$c2)))

# Problem to solve
s$f <- 5
s$D <- 2

# Domain space
s$xmin <- rep(-6, s$D)
s$xmax <- rep(6, s$D)

# Velocities
s$vmax <- (s$xmax-sPxmin)*0.1
s$vmax0 <- sqrt(sum((s$xmax-s$xmin) ~2))*0.001

# Radii
s$rspecies <- sqrt(sum((s$xmax-s$xmin)~2))*0.1

s$rprey <- sqrt(sum((s$xmax-s$xmin) ~2))*0.0001
s$rnest <- sqrt(sum((s$xmax-s$xmin) ~2))*0.01

# Nesting criteria
s$xeps <- 0.001
s$feps <- 0.0001
s$age <- 10

# Swarm size
s$S <- 10 + floor(2xsqrt(s$D))

# Number of maximum iterations
s$maxiter <- 2000

# Call the pso function.
ret <- pso(s)

Figure 31: How to call the pso function.
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Table 22: ISPSO return variables.

Parameter Data type Description

iter Integer Number of iterations

evals Integer Number of function evaluations

nest Matrix Solutions found. Columns x1, x2, - -+, xD: the coor-
dinates of the solution; column f: the objective func-
tion value; column v: the particle’s velocity; column
age: the particle’s age; column evals: the number of
function evaluations required to find this solution

pop Matrix All parameter samples. Columns x1, x2, ---, xD:

the coordinates of the sample; column f: the objec-
tive function value; column v: the particle’s velocity;
column age: the particle’s age
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APPENDIX E

R CODE USED TO COUNT THE NUMBER OF MINIMA OF THE GRIEWANK
FUNCTION

E.1. Introduction

This appendix introduces the set of R script files used to count the number of minima
of the Griewank function as explained in Chapter IV. The following section describes

how to install and run these R scripts.

E.2. How to run

These R script files require the R base system introduced in Appendix D. After the
installation of R, uncompress /griewank/griewank.tgz: gzip -dc griewank.tgz |
tar -xvf -.

There are four R script files: (1) funcs.R defines the Griewank function and the
function that counts the number of minima given a domain space, (2) find_xmax.R
tries to find a hyperrectangle that the method introduced in Chapter IV can be
applied to, (3) check xmax.R plots the cosine and sine curves of the boundaries of
the hyperrectangle, and (4) doit.R calls find_xmax.R and check xmax.R to find ap-
propriate hyperrectangles for up to 50 dimensional problems. There is no need to
modify the source code of any script file, and running doit.R from R is enough:

source("doit.R").
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APPENDIX F

SAMPLE MODELS USED FOR THE ANALYSIS IN CHAPTER V

The contents of the /prediction_uncertainty directory are as follows:

observed.tgz contains the observed daily streamflow and sediment discharge

data for three periods (i.e., calibration, rejection, and verification);

c08019500.11.tgz contains the coordinates, the objective function values, and
the likelihood measures of 46,000 samples used for the ISPSO-GLUE approach

in Chapter V;

simulated.11c.tgz contains the simulated daily streamflow and sediment dis-

charge data of the 46,000 samples above;

r08019500.11.tgz contains the coordinates, the objective function values, and the
likelihood measures of 9,622 behavioral models after calibration in the rejection

period for the ISPSO-GLUE approach in Chapter V;

simulated.11r.tgz contains the simulated daily streamflow and sediment dis-

charge data of the 9,622 samples above;

v08019500.11.tgz contains the coordinates, the objective function values, and
the likelihood measures of 499 behavioral models after rejection in the verifica-

tion period for the ISPSO-GLUE approach in Chapter V;

simulated.11v.tgz contains the simulated daily streamflow and sediment dis-

charge data of the 499 samples above;
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e c08019500.glue.tgz contains the coordinates, the objective function values, and
the likelihood measures of 46,000 samples used for the GLUE approach in Chap-

ter V;

e simulated.gluec.tgz contains the simulated daily streamflow and sediment dis-

charge data of the 46,000 samples above;

e r08019500.glue.tgz contains the coordinates, the objective function values, and

the likelihood measures of 1,115 behavioral models after random sampling for

the GLUE approach in Chapter V;

e simulated.gluer.tgz contains the simulated daily streamflow and sediment dis-

charge data of the 1,115 samples above;

e v08019500.glue.tgz contains the coordinates, the objective function values, and
the likelihood measures of 105 behavioral models after rejection for the GLUE

approach in Chapter V;

e simulated.gluev.tgz contains the simulated daily streamflow and sediment dis-

charge data of the 105 samples above.

The naming convention for the files in observed.tgz is V_M08019500.txt where
Vis “flow” (daily streamflow) or “sed” (daily sediment discharge); and M is “c” (the
calibration period), “r” (the rejection period), or “v” (the verification period). The
text files in simulated.*.tgz have the same rule except that the _N suffix is appended
where N is a 5-digit sample number with left-padding 0’s.

The M08019500.*.tgz files, where M is the same as above, contains SWAT input
files where the current 19 parameter values are obtained from the last sample of each

simulation period, alpha.txt (the 17 o values of samples), and f.txt (1—-NSp, 1 —NSg,
GOC, and L(0|¢,y) of the samples as defined in Chapter V).
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