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ABSTRACT 

Telomere-Associated Proteins in Arabidopsis thaliana. 

(May 2008) 

Yulia V. Surovtseva, B.S., Novosibirsk State University, Russia 

Chair of Advisory Committee:   Dr. Dorothy E. Shippen 

 

Telomeres comprise the physical ends of chromosomes.  Essential functions of 

telomeres include protecting the terminus from being recognized as a DNA double-

strand break and facilitating the complete replication of the physical end of the DNA.  

Telomere functions are mediated by a large array of telomere-associated proteins.  

Mutations in telomere-related genes cause immediate telomere dysfunction, activation 

of DNA damage response, and accumulation of end-to-end chromosome fusions.  In 

addition, changes in telomere complex composition may affect the ability of the 

telomerase enzyme to maintain telomeres in vivo.   

Here, we describe the characterization of telomere-associated proteins in the 

flowering plant, Arabidopsis thaliana.  Using a bioinformatics approach, we identified 

twelve proteins with sequence similarity to vertebrate duplex telomere DNA binding 

proteins TRF1 and TRF2.  We showed that, like their vertebrate counterparts, some of 

the Arabidopsis TRFL (TRF-LIKE) proteins can homodimerize and bind telomeric DNA 

in vitro, indicating that Arabidopsis encodes a large family of double-strand telomeric 

DNA binding proteins.  We have also characterized three Arabidopsis POT1 proteins 

whose homologs in yeast and vertebrates associate with the single-stranded portion of 

telomeric DNA.  Unexpectedly, we found that unlike POT1 protein in other organisms, 

Arabidopsis AtPOT1a protein associates with telomeres only in the S phase of the cell 
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cycle and is a physical component of the active telomerase RNP complex, providing 

positive telomere length regulation.  Our data implicated AtPOT1b, another Arabidopsis 

POT1 protein, in chromosome end protection.  Finally, we showed that Arabidopsis 

thaliana has evolved a third POT1 protein, AtPOT1c, which contributes to both telomere 

length regulation and telomerase activity, and maintenance of the structure of the 

chromosome terminus.  Thus, Arabidopsis has evolved a set of POT1 proteins that 

make distinct and novel contributions to telomere biology.   

Finally, we describe the identification and characterization of a novel 

Arabidopsis protein CIT1 (Critical for Integrity of Telomeres 1), and show that CIT1 

deficiency leads to an immediate and profound telomere dysfunction and chromosome 

end deprotection.  Altogether, these data provide new insight into plant telomere-

associated factors and significantly improve our understanding of the overall 

architecture and evolution of telomeric complex in Arabidopsis. 

 

 



  

 

v

DEDICATION 

 

To my family members, for their love and for being so supportive and unreasonably 

proud of me. 

To my husband, who knows me better than anybody else.  Thank you for your never-

ending love and support. 

To my son, who screams with delight when I come back home from work, and who 

loves me without any questions asked. 

 

I could not have done this without all of you. 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

vi

ACKNOWLEDGEMENTS 

 

Most importantly, I would like to thank my committee chair, Dr. Dorothy Shippen.  She 

has taught me not only how to conduct good research experiments, but also how to 

think and see a general picture.  Dr. Shippen has become a role model for me over 

these years.  Her advice and guidance have impacted both my research career and my 

life outside the lab. 

I would like to thank my committee, Dr. David Peterson, Dr. Thomas McKnight, 

and Dr. Patricia LiWang, for their thoughtful advice and help throughout my graduate 

career.  I would also like to thank Dr. Gregory Reinhart for agreeing to join my 

committee for the final exam. 

I am very grateful to Tom McKnight who always had excellent ideas and whose 

expertise has helped a lot with the design and interpretation of my experiments.  I am 

also very grateful to Dr. Geoffrey Kapler for his sincere interest in my work and for all 

his suggestions and ideas.  I would also like to thank Dr. Allan Pepper for his advice 

and help on map-based cloning.   

I would like to thank Dr. Zemfira Karamysheva and Dr. Eugene Shakirov.  They 

both helped me tremendously when I first joined the lab, and taught me to be a good 

scientist.  Special thanks go to Dr. Eugene Shakirov.  We have collaborated on the 

AtPOT1a and AtPOT1b projects.  We are the first co-authors on both MCB and EMBO 

papers reprinted in Chapters III and IV.  These papers would have been impossible to 

publish without Dr. Shakirov.  I also thank Andrew Nelson for his enthusiasm for the 

AtPOT1c project and for the development of quantitative TRAP assay. 



  

 

vii

I would also like to thank all the co-authors on papers reprinted in Chapters II, III 

and IV.  For Chapter II, Zemfira Karamysheva is thanked for the identification of twelve 

TRFL genes in Arabidopsis and for the characterization of the myb-extension domain.  

Laurent Vespa and Eugene Shakirov are thanked for cloning of some of the TRFL 

genes.  For Chapter III, Eugene Shakirov is thanked for making constructs and for his 

work on telomere analysis in POT1a and POT1b mutants.  Nathan Osbun is also 

thanked for all his help.  For Chapter IV, Eugene Shakirov is thanked for the genetic 

characterization of pot1 mutants, Laurent Vespa is thanked for help with chromatin 

immunoprecipitation, and Xiangyu Song is thanked for her work with pot1 callus. 

I thank all the rotation students and undergraduate students who have helped 

me a lot over these years.  Special thanks go to Yixiao Liu for her help on the AtPOT1c 

project, and to Xin Tao and Kara Boltz for their hard work on the CIT1 project.   

I was very fortunate to work in the Department of Biochemistry and Biophysics.  

I am very grateful to Juanita, Pat, Tillie, and Sherry, who are always there for us and 

who made my life easier on so many occasions.  I am also grateful to BGA for their 

guidance and help.  Their help is extremely valuable for international students who 

know nothing about life in the US. 

Finally, I am in deep gratitude to all the members of the Shippen lab.  They have 

become a family for me in College Station.  I am especially grateful to Matt Watson, 

who was always able to find time to answer my questions and help me.  Special thanks 

are also owed to Michelle Heacock and Kalpana Kannan, who have suffered and 

laughed through graduate school with me.  Dr. Laurent Vespa, Dr. Rachel Idol, Xiangyu 

Song and Dr. Jon Lamb are also thanked for making my graduate school an enjoyable 

and successful experience. 



  

 

viii

TABLE OF CONTENTS 

 

 

ABSTRACT .............................................................................................................

DEDICATION ..........................................................................................................

ACKNOWLEDGEMENTS........................................................................................

TABLE OF CONTENTS ..........................................................................................

LIST OF FIGURES ..................................................................................................

LIST OF TABLES ....................................................................................................

CHAPTER ...............................................................................................................

Page

iii

v

vi

viii

xi

xiv

I   INTRODUCTION ........................................................................................... 1

Telomeres ..............................................................................................
G-overhangs ..........................................................................................
T-loops...................................................................................................
Telomerase ............................................................................................
Telomere length homeostasis................................................................
Telomere-binding proteins .....................................................................
The capping function of telomeres.........................................................
Role of DNA damage response proteins at telomeres...........................
Epigenetic regulation of telomere function.............................................
Plant telomeres ......................................................................................
Arabidopsis as a model for telomere biology .........................................
Arabidopsis telomerase .........................................................................
Composition of Arabidopsis telomeres ..................................................
Overview................................................................................................

2
3
6
8

14
18
29
32
33
35
36
37
38
38

II A C-TERMINAL MYB-EXTENSION DOMAIN DEFINES A NOVEL 
FAMILY OF DOUBLE-STRAND TELOMERIC DNA BINDING PROTEIN 
IN Arabidopsis ............................................................................................. 41

 
Summary................................................................................................ 41



  

 

ix

CHAPTER 

Introduction ............................................................................................
Materials and methods...........................................................................
Results ...................................................................................................
Discussion..............................................................................................

Page

42
45
47
60

III THE Arabidopsis POT1 AND POT2 PROTEINS FUNCTION IN 
TELOMERE LENGTH HOMEOSTASIS AND CHROMOSOME END 
PROTECTION ............................................................................................. 66

 
Summary................................................................................................
Introduction ............................................................................................
Materials and methods...........................................................................
Results ...................................................................................................
Discussion..............................................................................................

66
67
70
71
87

IV Arabidopsis POT1 ASSOCIATES WITH THE TELOMERASE RNP AND 
IS REQUIRED FOR TELOMERE MAINTENANCE..................................... 92

 
Summary................................................................................................
Introduction ............................................................................................
Materials and methods...........................................................................
Results ...................................................................................................
Discussion..............................................................................................

92
93
96

101
121

V IDENTIFICATION AND CHARACTERIZATION OF THE THIRD 
Arabidopsis POT1 PROTEIN, AtPOT1c ...................................................... 124

 
Summary................................................................................................
Introduction ............................................................................................
Materials and methods...........................................................................
Results ...................................................................................................
Discussion..............................................................................................

124
124
129
131
142

VI IDENTIFICATION AND CHARACTERIZATION OF A NOVEL 
Arabidopsis PROTEIN CRITICAL FOR THE INTEGRITY OF 
TELOMERES............................................................................................... 147



  

 

x

CHAPTER 

Summary................................................................................................
Introduction ............................................................................................
Materials and methods...........................................................................
Results ...................................................................................................
Discussion..............................................................................................

Page

147
148
153
156
169

VII CONCLUSIONS AND FUTURE DIRECTIONS............................................ 174

Characterization of Arabidopsis ds telomeric DNA binding proteins......
Characterization of Arabidopsis ss telomeric DNA binding proteins......
Identification and characterization of CIT1.............................................
Conclusions ...........................................................................................

175
177
188
198

REFERENCES ........................................................................................................

VITA.........................................................................................................................

199

233

 



  

 

xi

LIST OF FIGURES 

 

 

Figure 1.  Telomeres – the ends of linear chromosomes. .......................................

Figure 2.  Telomere replication................................................................................

Figure 3.  Telomeres form a t-loop. .........................................................................

Figure 4.  The mechanism of telomere extension by vertebrate telomerase...........

Figure 5.  Multiple activities contribute to telomere length homeostasis. ................

Figure 6.  Telomere composition in different organisms..........................................

Figure 7.  Telomere uncapping................................................................................

Figure 8.  Identification of two TRFL gene families in Arabidopsis. .........................

Figure 9.  Sequence alignment and domain structure of TRFL family 1 
members. ...............................................................................................

 
Figure 10.  Expression of TRFL genes in Arabidopsis. ...........................................

Figure 11.  Dimerization of TRFL proteins in vitro. ..................................................

Figure 12.  DNA binding properties of Arabidopsis TRFL proteins..........................

Figure 13.  Analysis of the Myb-ext domain in telomeric DNA binding....................

Figure 14.  Two Pot genes in Arabidopsis. ..............................................................

Figure 15.  Over-expression of full-length AtPot1 and AtPot2 or the P1∆C and 
P2∆N derivatives in Arabidopsis does not alter telomere length. ..........

 
Figure 16.  Over-expression of P1∆N leads to telomere shortening. ......................

Figure 17.  Morphological defects and telomere shortening in mutants over-
expressing P2∆C. ..................................................................................

 
Figure 18.  TRAP assays of wild type and mutant Arabidopsis. ..............................

Figure 19.  Cytogenetic defects in mutants over-expressing P2∆C. .......................

Page

4

5

7

11

15

19

30

48

51

53

55

57

59

73

76

78

80

81

84



  

 

xii

 

Figure 20.  Telomere fusion PCR analysis of P2∆C and tert mutants.....................

Figure 21.  Analysis of T-DNA insertions in the AtPOT1 gene. ...............................

Figure 22.  Telomere phenotypes in AtPOT1-deficient Arabidopsis........................

Figure 23.  Complementation analysis of pot1-1 and pot1-1 ku70 mutants. ...........

Figure 24.  Parent-progeny analysis reveals the same rate of telomere 
shortening in pot1-1, pot1-2 and tert mutants. .......................................

 
Figure 25.  AtPOT1 functions in the telomerase pathway. ......................................

Figure 26.  AtPOT1 is required for telomerase-mediated telomere elongation in 
the absence of KU70. ............................................................................

 
Figure 27.  AtPOT1 interacts with the telomerase RNP. .........................................

Figure 28.  Characterization of telomeres and telomerase in Arabidopsis 
suspension culture. ................................................................................

 
Figure 29.  AtPOT1 does not bind telomeric DNA in vitro. ......................................

Figure 30.  AtPOT1 is associated with telomeric chromatin in S-phase. .................

Figure 31.  AtPOT1c undergoes alternative splicing. ..............................................

Figure 32.  AtPOT1c does not bind telomeric DNA in vitro. ....................................

Figure 33.  AtPOT1c over-expression results in deregulation of telomere length. ..

Figure 34.  AtPOT1c is required for normal telomerase activity in vitro, and 
works in concert with telomerase to maintain telomeres in vivo. ...........

 
Figure 35.  AtPOT1c over-expression alters telomere architecture but does not 

lead to genome instability. .....................................................................
 
Figure 36.  Telomere length deregulation in CIT1-deficient Arabidopsis.................

Figure 37.  cit1 mutants display telomere length deregulation on individual 
chromosome arms despite wild type levels of telomerase activity in 
vitro. .......................................................................................................

 
Figure 38.  cit1-1 mutants display elevated telomere recombination and G-

overhang lengthening. ...........................................................................
 

Page

86

102

103

107

109

111

113

115

116

119

120

132

134

136

139

141

157

159

162



  

 

xiii

 

Figure 39.  Telomere fusions in cit1-1 mutants. ......................................................

Figure 40.  Morphological defects in cit1 mutants. ..................................................

Figure 41.  Telomere dysfunction does not result from global epigenetic 
perturbations. .........................................................................................

 
Figure 42.  Model for POT1 proteins functions in Arabidopsis. ...............................

Figure 43.  Model for CIT1 function. ........................................................................

Figure 44.  Stem cell dysfunction does not affect telomere length homeostasis. ....

Page

164

167

168

189

192

196

 



  

 

xiv

LIST OF TABLES 

 

 

Table 1.  DNA binding properties and protein interactions of TRFL proteins. .........

Table 2.  Frequency of chromosome fusions in AtPot1 and AtPot2 mutants. .........

Table 3.  Incidence of anaphase bridges in pot1-1 mutants....................................

Page

49

83

105

 

 



  

 

1

CHAPTER I 

 

INTRODUCTION 

 

In the 1920s, Herman Muller realized that the ends of the chromosomes have 

properties distinct from the rest of the chromosome.  Working with X-ray mutagenized 

Drosophila, he noticed that flies with deletions or inversions at the chromosome 

terminus could never be recovered.  He concluded that something must seal the end of 

the chromosome.  He coined the term telomere (“end part” in Greek) for the 

chromosome terminus (Muller, 1938).   

In 1930s, cytogeneticist Barbara McClintock was working with maize mutants 

that contained chromosomes bearing two centromeres.  Such dicentric chromosomes 

can be pulled apart in anaphase, eventually resulting in chromosome breakage.  The 

broken ends can be repaired by the cell by fusion to another broken end, thus creating 

a dicentric chromosome again.  The process is then repeated.  Barbara McClintock 

called this process the breakage-fusion-bridge (BFB) cycle.  Interestingly, while BFB 

cycles were readily observed in the endosperm, it never occurred during the 

development of the embryo.  She called this phenomenon “chromosome healing”, 

because the chromosomes had become stabilized (McClintock, 1939; McClintock, 

1941). 

_________ 

This dissertation follows the style and format of EMBO Journal. 
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Starting nearly 70 years ago by these two biologists, the telomere field has been 

greatly expanded.  The chromosome healing activity that McClintock first discovered 

was shown to be telomerase.  It has been experimentally proven that telomeres are 

essential for chromosome end protection and for maintaining genome integrity.  Linear 

ends of chromosomes need to be protected from various deleterious activities such as 

degradation by nucleases, recognition as a DNA break by DNA damage repair 

machinery, and inappropriate recombination.  Telomeres achieve this by forming a 

protective nucleoprotein cap at the chromosome terminus. 

 

Telomeres 

Telomeres are the physical ends of linear eukaryotic chromosomes.  Telomeric DNA is 

usually composed of long arrays of simple G-rich repeats.  The first telomere 

composition was identified by direct sequencing in Tetrahymena, where chromosomes 

end in tandem copies of TTGGG repeats (Blackburn and Gall, 1978).  In vertebrates, 

telomeres consist of TTAGGG repeats (Moyzis et al., 1988), while in Arabidopsis and 

most other plants this telomere repeat contains ine additional thymine (TTTAGGG) 

(Burr et al., 1992; Higashiyama et al., 1995; Kilian et al., 1995; Richards and Ausubel, 

1988).  Although chromosomes end with telomere repeats in most organisms with linear 

genomes, there are a few examples of alternative strategies for chromosome end 

maintenance.  For example, poxvirus chromosomes end in a hairpin structure (reviewed 

in Kobryn and Chaconas, 2001).  In eukaryotes, Drosophila chromosome ends are 

represented and maintained by retrotransposons.  Occasionally, the new 

retrotransposon is added to the very end of the chromosome to solve the end 

replication problem (se below) (Biessmann et al., 1992).   
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G-overhangs 

While bulk telomeric DNA is double-stranded (ds), the G-rich strand runs in the 5’ to 3’ 

direction relative to the terminus and ends in a short single-stranded (ss) 3’ overhang 

(G-overhang) (Figure 1).  The first evidence for the presence of G-overhangs came 

from the ciliates Oxytricha nova and Euplotes crassus.  When the telomeric DNA from 

these organisms was sequenced, the 3’ terminal sequence appeared to be 

complementary to the 5’ terminal sequence, but was 16 nucleotides longer (Klobutcher 

et al., 1981).  Later, ss TG1-3 tails were found in Sacharomyces cerevisiae by non-

denaturing in-gel Southern hybridization (Wellinger et al., 1993).  G-overhangs have 

now been detected in other model systems, including humans (Makarov et al., 1997) 

and plants (Riha et al., 2000; Riha and Shippen, 2003a). 

The length of the G-overhang varies among different species.  For example, in 

vertebrates the G-overhang is ~250 nt (Makarov et al., 1997), while in wild type 

Arabidopsis G-overhangs are ~20 nt long (Riha et al., 2000).  The exact mechanism of 

G-overhang generation is unclear.  During lagging strand synthesis, G-overhangs are 

naturally produced when the most 3’ RNA primer is removed (Figure 2).  Therefore, a ss 

overhang corresponding to the size of the primer (or longer, if the primer was not 

positioned at the very end of DNA strand) is expected.  In contrast, the leading strand 

replication machinery produces a blunt end (Figure 2).  Therefore, another mechanism 

for G-overhang generation must exist to make the terminus symmetrical (Makarov et al., 

1997; Wellinger et al., 1996; Wright et al., 1997).  It is currently thought that the G-

overhangs are formed through a combination of telomerase action (see below) and a 

nucleolytic resection of the C-strand (Chai et al., 2006; Jacob et al., 2003; Larrivee et 

al., 2004).  Interestingly, it has recently been reported that in addition to G-overhangs,  
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Figure 1.  Telomeres – the ends of linear chromosomes.  Telomeric DNA consists of ds and ss 

portions.  The G-rich strand (red) ends in a 3’ G-overhang.  The C-rich strand is shown in blue. 
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Figure 2.  Telomere replication.  The replication fork contains a leading (blue) and lagging 

(orange) strand.  Lagging strand synthesis is primed by RNA oligonucleotides (wavy black lane).  

Following RNA primer removal, the 3’ end G-overhangs are formed on the telomere replicated 

by the lagging strand machinery.  In contrast, leading strand replication machinery produces a 

blunt end. 
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C. elegans possess telomeric C-overhangs (Raices et al., in press).  Moreover, the G- 

and C-overhangs are bound by different ss telomere binding proteins.  The relevance of 

similar structures in other organisms remains to be determined.  The G-overhang is an 

important structural and functional feature of the chromosome.  Although the exact role 

of telomeric G-overhangs in cell viability is unknown, exposure of the G-overhang has 

been implicated in senescence in human cells (Li et al., 2003; Stewart et al., 2003).  G-

overhangs are also essential for telomere replication in vivo and to protect telomeres 

from end-to-end chromosome fusions (Zhu et al., 2003). 

 

T-loops 

G-overhangs are also essential for the formation of a t-loop at the chromosome end.  

Using a telomeric DNA model, Jack Griffith observed lariat-like molecules in vitro by 

electron microscopy (Griffith et al., 1999).  Psoralen cross-linking of the DNA strands 

was required to preserve the lariat structures.  Moreover, the presence of the G-

overhang was necessary for loop formation in vitro.  Altogether, these data imply that 

loop formation includes invasion of the G-overhang into duplex DNA (Griffith et al., 

1999).  In the current model, the G-overhang folds back and invades the duplex region 

of the telomere, creating a displacement loop (D-loop) consisting of ss G-rich repeats 

(Figure 3). The resulting complex secondary structure of the telomere is called a t-loop 

(Cesare et al., 2003; Griffith et al., 1999; Munoz-Jordan et al., 2001).  T-loops have 

been observed in vitro in many eukaryotes, including plants (Cesare et al., 2003; de 

Lange, 2004).  Interestingly, t-loops have not been found in budding yeast.  Since 

budding yeast telomere repeats are highly irregular, the limited base-pairing between  
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Figure 3.  Telomeres form a t-loop.  In the t-loop structure, the G-overhang invades into the 

duplex telomeric DNA, sequestering the chromosome end.  T-loops unfold in S phase, allowing 

telomere replication by telomerase. 
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the G-overhang and a C-rich strand of duplex DNA may preclude t-loop formation in S. 

cerevisiae (Tomaska et al., 2004).  The precise function of the t-loop in vivo is not 

known, but it appears to play an important role in chromosome end protection by 

sequestering the G-overhang and the telomeres from deleterious activities (reviewed in 

Wei and Price, 2003).  Notably, although S. cerevisiae telomeres do not form a t-loop, a 

fold-back structure is thought to be formed at the chromosome end (de Bruin et al., 

2001; Grunstein, 1997), demonstrating the importance of having higher order structure 

at the chromosome terminus.  During S-phase, the t-loop is proposed to unfold, making 

telomeres accessible for telomere repeat addition by telomerase (Lebel and Wellinger, 

2005) (Figure 3). 

 

Telomerase 

In the early 1970s, Alexey Olovnikov and James Watson independently predicted that 

chromosome ends cannot be replicated completely (Olovnikov, 1971; Watson, 1972).  

The removal of the very 3’ RNA primer during lagging strand synthesis would result in 

the progressive shortening of the chromosome terminus with each cell division (Figure 

2).  This phenomenon was named the end replication problem.  Olovnikov hypothesized 

that this problem would ultimately lead to the cellular senescence (Olovnikov, 1971).  

Therefore, a mechanism must exist to overcome the end replication problem in dividing 

cells.   

In 1980’s, Jack Szostack and Elizabeth Blackburn initiated a series of 

experiments in yeast using a linear plasmid that contained Tetrahymena telomere 

sequence at both ends.  Remarkably, this linear plasmid could be maintained in S. 

cerevisiae, suggesting that Tetrahymena telomeric DNA could function as a telomere in 
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yeast (Szostak and Blackburn, 1982).  Upon propagation, yeast telomere sequences 

were added onto the ends of Tetrahymena telomeric DNA repeats (Shampay et al., 

1984), indicating that the cells possess a terminal transferase-like activity capable of 

maintaining telomeres in vivo.  This activity was subsequently shown to be RNaseA 

sensitive, implying that the enzyme was a ribonucleoprotein (Greider and Blackburn, 

1985; Greider and Blackburn, 1987).  Purification of the activity followed by RNA cloning 

and sequencing confirmed this prediction and showed that the RNA subunit of the 

enzyme contained a template sequence complementary to the telomere repeat (Greider 

and Blackburn, 1989).  Altogether, these data demonstrated that the telomere terminal 

transferase is a reverse transcriptase containing its own RNA template which directs the 

addition of telomeric repeats onto chromosome ends in vivo.  This enzyme is now 

known as telomerase. 

Telomerase biogenesis, structure and function has been studied extensively in 

many different model organisms (reviewed in Autexier and Lue, 2006; Collins, 2006).  

The essential core components of telomerase include an integral telomerase RNA 

(TER) and a catalytic telomerase reverse transcriptase (TERT) protein component. 

TER is transcribed by RNA polymerase II in yeast and vertebrates and by RNA 

polymerase III in ciliated protozoa.  The size of TER varies widely, ranging from 148 

nucleotides in ciliates, to 400-600 nt in vertebrates and to ~1300 nt in yeast (Feng et al., 

1995; Greider and Blackburn, 1989; Singer and Gottschling, 1994).  The primary 

sequence of TER is also highly divergent in different species (reviewed in Chen and 

Greider, 2004), making bioinformatics approach for identification of telomerase RNA 

impractical.  However, the secondary structure has some common elements in ciliates, 

yeast and vertebrates (reviewed in Theimer and Feigon, 2006).  One conserved feature 
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of TER is a species-specific ss template region corresponding to ~1.5 telomere repeats 

complementary to the G-rich telomere strand.  In humans, the TER template region 

contains 11 nt (5’ CUAACCCUAAC) complementary to the human telomere repeat 

sequence (5’ TTAGGG) (Feng et al., 1995).   

The catalytic subunit, TERT, was initially identified in budding yeast in a genetic 

screen for EST (Ever Shorter Telomere) mutants (Lendvay et al., 1996), and 

subsequently in the ciliate Euplotes aediculatus by peptide sequencing of a purified 

telomerase fraction (Lingner et al., 1997).  Sequence conservation allowed identification 

of TERT homologs in a wide variety of other model organisms.  TERT proteins harbor a 

central RT-like domain containing seven universally conserved RT motifs (1, 2, A, B’, C, 

D, E).  In addition, TERT also possess a large N-terminal extension (NTE, ~400 amino 

acids) and a small C-terminal extension (CTE, ~150-200 amino acids), both of which 

are required for proper enzyme function (reviewed in Autexier and Lue, 2006). 

Telomerase is capable of extending telomeres using the TER as a template and 

the G-overhang in the chromosome terminus as a primer.  Extension of telomeric DNA 

involves several steps (Figure 4).  During the first step, the telomerase holoenzyme 

binds to the ss G-rich telomeric DNA.  The 3’ end of the G-overhang forms Watson-

Crick base-pairs with the template sequence.  In the second step, nucleotides are 

added to the 3’ end of the G-overhang in a template-directed manner.  The extension 

occurs through reverse transcription by TERT and continues until the end of the 

template is reached.  In the third step, the RNP translocates, resulting in the 

repositioning of primer 3’ end back at the beginning of the RNA template for another 

round of nucleotide addition (Autexier and Lue, 2006). 
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Figure 4.  The mechanism of telomere extension by vertebrate telomerase.  (A)  Binding of the 

telomerase RNP to the G-overhang.  Watson-Crick base pairs are formed between the TER 

template sequence and the 3’ terminus of the G-overhang.  (B)  Extension of the G-overhang.  

Six nucleotides that are added are shown in red.  (C)  Translocation of telomerase.  The RNA 

template is repositioned for the next round of synthesis.  TERT is shown as a blue oval; wavy 

black line represents TER. 
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Even though TERT and TER expressed in vitro are sufficient to reconstitute 

enzyme activity (Autexier and Greider, 1994; Weinrich et al., 1997), the telomerase 

holoenzyme contains additional components that are needed for its function in vivo.  

Multiple proteins required for telomerase holoenzyme biogenesis and stability have 

been identified (reviewed in Collins, 2006; Harrington, 2003).  For example, in 

mammals, the H/ACA box of the TER is bound by dyskerin (Dragon et al., 2000; 

Mitchell et al., 1999).  Mutations in the H/ACA box destabilize TER, leading to telomere 

shortening (Dragon et al., 2000; Lukowiak et al., 2001; Mitchell et al., 1999).  The 

examples of telomerase-associated proteins interacting with TERT include 14-3-3 

protein required for telomerase nuclear localization and chaperons p23 and hsp90 

required for efficient telomerase assembly (Forsythe et al., 2001; Holt et al., 1999; 

Seimiya et al., 2000).  Other telomerase-associated components are required for 

telomerase action at the chromosome terminus, likely mediating the recruitment and/or 

activation of the enzyme at the telomere.  In yeast, these additional components include 

Est1p and Est3p (Lendvay et al., 1996; Lundblad and Szostak, 1989).  Both of these 

proteins are required for telomere extension by telomerase in vivo.  While the precise 

role of Est3p is not known, Est1p is necessary for recruitment of telomerase to the 

telomere end.  This function is achieved through direct interaction of Est1p with Cdc13p, 

a protein that binds G-overhang (Evans and Lundblad, 1999).  In addition, it was 

recently suggested that Est1p can modulate telomerase activity in vivo, but the 

mechanism is not known (Evans and Lundblad, 2002; Taggart et al., 2002).  Est1 

sequence homologs were identified in other organisms, including humans, where one of 

them (hEst1A) associates with telomerase in vivo and causes telomere length 

alterations and chromosome fusions when over-expressed (Reichenbach et al., 2003; 
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Snow et al., 2003).  Although there are two putative Est1 orthologs in Arabidopsis, 

neither is important for telomere biology (Riha et al., unpublished). 

In most organisms, telomerase activity is restricted to highly proliferative tissues 

and is low in somatic cells (Wright et al., 1996).  Telomeres in somatic cells therefore 

shorten with each cell division, which eventually leads to telomere dysfunction, cell 

cycle arrest and cell death (Harley et al., 1990).  Telomere length and the rate of 

telomere shortening therefore determines a Hayflick limit, or the maximal number of 

times the cell can divide (Hayflick and Moorhead, 1961).  In mammals, the inactivation 

of telomerase in somatic cells and the resulting telomere shortening has been proposed 

to act as a biological clock, preventing cells from becoming immortalized and therefore 

preventing cancer formation (Cech, 2004).   

In highly proliferative tissues, telomeres are replicated by telomerase.  Extension 

of the 3’ end of the G-overhang by telomerase is followed by fill-in synthesis of the C-

strand by conventional replication machinery.  Even when telomerase is active in the 

cell, it does not act at each telomere every time the cell divides.  In fact, studies from 

different model organisms demonstrated that while short telomeres are preferentially 

elongated by the enzyme, telomerase does not extend long telomeres.  This was 

originally shown in mice (Hemann et al., 2001), and later confirmed in plants (Shakirov 

and Shippen, 2004).  In these organisms, crosses between individuals with long and 

short telomeres result in a preferential elongation of short telomeres.  In yeast, an assay 

that allows analysis of the single telomere elongation confirmed the preference of 

telomerase for short telomeres (Teixeira et al., 2004).  It was proposed that telomeres 

switch between telomerase-extendable and non-extendable states, allowing 

establishment of telomere length homeostasis (Teixeira et al., 2004).  
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Telomere length homeostasis 

Although telomere length varies dramatically between different species, a species-

specific length set point is set and maintained within a strict range.  For example, yeast 

telomeres are short (~300 bp), while in humans telomeres range from 10 to 15 kb in 

length (reviewed in Lebel and Wellinger, 2005).  Arabidopsis telomeres are 2-5 kb long 

(Richards and Ausubel, 1988), whereas in tobacco telomeres reach 150 kb (Fajkus et 

al., 1995).  Telomere length homeostasis is achieved through a competition between 

multiple forces that shorten and lengthen telomeres (Figure 5A).  Critically short 

telomeres can no longer provide the protective cap for the chromosome terminus, which 

leads to the initiation of DNA damage checkpoint and cell cycle arrest (reviewed in Riha 

et al., 2006).  Grossly elongated telomeres are not tolerated by the cell either.  For 

example, in K. lactis, mutations in TER resulting in the dramatic elongation of telomeres 

impair cell growth (McEachern and Blackburn, 1995).  Therefore, it is of critical 

importance to maintain the equilibrium of telomere shortening and lengthening in vivo. 

 

Telomere shortening 

As described above, telomeres inevitably shorten with each cell division due to the end 

replication problem.  In addition, at least in mammals, telomeres are also thought to be 

subjected to a nuclease attack routinely (reviewed in Verdun and Karlseder, 2007).  

This was proposed since the rate of telomere shortening in dividing cells is actually 

greater than the rate expected solely from the end replication problem (Counter et al., 

1992; Harley et al., 1990; Levy et al., 1992).   
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Figure 5.  Multiple activities contribute to telomere length homeostasis.  (A)  Forces that shorten 

and lengthen telomeres.  While extension by telomerase and ALT are the major forces 

contributing to telomere lengthening, telomeres shorten due to the end replication problem and 

through TRD.  (B)  Schematic of TRD.  The t-loop can undergo branch migration (green arrow) 

resulting in the formation of a Holliday junction.  Resolution of this structure (black arrows) 

results in a shortened telomere and an extrachromosomal telomeric circle (ECTC).  (C)  

Schematic of ALT.  Telomere elongation in the absence of telomerase via rolling circle 

amplification is shown. 
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Another mechanism recently shown to result in a single-step catastrophic loss of 

telomeric sequences is telomere rapid deletion (TRD).  First described in yeast (Kyrion 

et al., 1992; Li and Lustig, 1996), this mechanism has also been recently observed in 

Arabidopsis (Watson and Shippen, 2007).  TRD shortens elongated telomeres to a wild-

type size (or a size of most of the telomeres in the cell).  TRD is a recombination-based 

process that in yeast is dependent on Rad52 (essential recombination protein) and 

Mre11/Rad50/XRS2 complex (an important regulator of homologous recombination) 

(Bucholc et al., 2001).  Current models propose that TRD is a result of branch migration 

in the t-loop structure, followed by Holliday junction resolution and t-loop cleavage 

(Figure 5B) (reviewed in Lustig, 2003).  The products of TRD are a shortened telomere 

and an extra-chromosomal telomeric circle (ECTC).  In plants, TRD was shown to 

function at grossly elongated telomeres as well as telomeres within the wild type size 

range, with the frequency of TRD decreasing as telomeres shorten (Watson and 

Shippen, 2007).  Importantly, ECTCs, the expected byproduct of TRD, have been found 

in plants undergoing TRD, suggesting that the TRD mechanism in plants is similar to 

that of yeast (Zellinger et al., 2007).  In human cells, one of the mutant alleles of 

mammalian duplex telomeric DNA binding protein TRF2 induces generation of 

dramatically shortened telomeres and t-loop-sized telomeric circles (Wang et al., 2004).  

Remarkably, ECTCs were also detected in wild type human cells (Wang et al., 2004).  

Thus, TRD is an evolutionary conserved mechanism contributing to telomere length 

homeostasis. 
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Telomerase-independent telomere lengthening 

Activities that extend telomeres have also been identified.  Telomerase-mediated 

extension of the G-overhang followed by the C-strand synthesis by conventional 

replication machinery is the major mechanism to maintain telomeres in dividing cells.  

However, telomerase-independent alternative telomere lengthening (ALT) pathways for 

telomere maintenance have been described.  In budding yeast, loss of telomerase 

activity leads to a gradual loss of telomeric DNA, which eventually results in genome 

instability and cell death.  However, survivors arise frequently, and in these cells 

telomere tracts are maintained by homologous recombination-based pathways 

(Lundblad and Blackburn, 1993; Teng and Zakian, 1999).  Type I survivors utilize a 

Rad51-dependent mechanism to amplify repetitive subtelomeric regions.  Type II 

survivors rely on Rad50-dependent recombination between telomeres.  In the latter 

case, telomeres use another chromosome end as a template for extension (reviewed in 

Lundblad, 2002).  Rolling circle amplification of ECTC is thought to be another 

mechanism for type II recombination and for telomerase-independent telomere length 

maintenance (reviewed in de Lange, 2004). 

In human cells, ALT is an efficient way to maintain telomeres in the absence of 

telomerase.  Notably, while ~90% of cancer cells re-activate the telomerase enzyme, 

the rest utilize ALT to escape telomere dysfunction (reviewed in Bryan et al., 1997; 

Henson et al., 2002; Muntoni and Reddel, 2005).  Telomeres in ALT cells are extremely 

long and heterogeneous.  Although the exact mechanism of ALT in human cells is 

unknown, it is thought to include elongation of telomeres through homologous 

recombination with another telomere, t-loop mediated extension, and rolling circle 

amplification (reviewed in Henson et al., 2002) (Figure 5C).  Notably, ECTCs were 
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detected by 2D gel electrophoresis and by FISH in human ALT cells (Cesare and 

Griffith, 2004; Hande et al., 2001; Ogino et al., 1998; Regev et al., 1998).  These data 

suggest that ALT and TRD might be mechanistically linked through ECTCs, predicted 

intermediates for both of these processes.  Interestingly, work on the essential telomere 

capping protein STN1 in K. lactis demonstrated that ALT can occur even in the 

presence of active telomerase (Iyer et al., 2005).  This report implicated STN1 in the 

regulation of both ALT and TRD at telomeres, validating the notion that TRD and ALT 

could act together to maintain telomere length balance. 

 

Telomere-binding proteins 

Telomeres are nucleoprotein complexes.  Specific non-nucleosomal proteins bind both 

double-stranded and single-stranded regions of telomeric DNA, and additional proteins 

associate with the chromosome terminus via protein-protein interactions (Figure 6).   

Telomere-binding proteins can be categorized into two classes based on their 

affinity for either duplex or single-stranded telomeric DNA.  The best studied ss 

telomeric DNA binding proteins include the telomere end binding protein (TEBP) from 

the ciliate O. nova (Gottschling and Zakian, 1986; Price and Cech, 1987), Cdc13 protein 

from S. cerevisiae (Garvik et al., 1995; Lendvay et al., 1996), and the recently identified 

Protection Of Telomeres (Pot) proteins from S. pombe and humans (SpPot1 and hPot1, 

respectively) (Baumann and Cech, 2001).  Even though sequence similarity is limited 

between these proteins, they all share a conserved structural domain termed the 

oligosacharide/ oligonucleotide binding-fold (OB-fold).  The OB-fold consists of a five-

stranded β barrel and is found in many single-strand nucleic acid binding proteins 

(Theobald et al., 2003).  In vitro, all of these proteins display specificity for the telomeric  
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Figure 6.  Telomere composition in different organisms.  Telomere proteins include ds telomeric DNA 

binding proteins and their associated factors (shown in shades of green) and ss telomeric DNA binding 

proteins  and their associated factors (shown in shades of blue).  Proteins that bind duplex telomeric DNA 

have not been identified in ciliates yet (gray ovals).  In mammals, six core telomere proteins form a 

protective structure called shelterin. 
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G-rich strand (Baumann and Cech, 2001a; Lei et al., 2002).  Double-strand telomeric 

DNA binding proteins include Taz1 in fission yeast (Cooper et al., 1997a), Rap1 in 

budding yeast (Shore and Nasmyth, 1987), and TRF1 and TRF2 in vertebrates (Bilaud 

et al., 1997; Broccoli et al., 1997; Chong et al., 1995).  These proteins associate with 

DNA via a Myb-like helix-turn-helix DNA binding motif (Bilaud et al., 1996; Broccoli et 

al., 1997; Konig et al., 1998; Nishikawa et al., 1998; Nishikawa et al., 2001).  Rap1 

possess two Myb motifs.  Taz1, TRF1 and TRF2 proteins encode a single Myb domain, 

however, these proteins homodimerise and this interaction is required for binding to 

telomeric DNA (Cooper et al., 1997; Evans and Lundblad, 2000; Fairall et al., 2001; 

Shore and Nasmyth, 1987).  A specific telobox sequence within the Myb domain is 

conserved in yeast and vertebrates and is thought to be used for telomeric DNA 

recognition (Bilaud et al., 1996). 

One of the major functions of telomere-associated proteins is telomere length 

regulation.  As described above, telomere length is strictly regulated.  Telomerase 

action and recombinational mechanisms are the main forces contributing to telomere 

length changes in vivo.  Telomere proteins control both of these activities to maintaine 

telomere length in a wild type species-specific range.  It is currently believed that the 

control of telomere length is achieved via counting of ds telomeric DNA binding 

proteins.  In this model, longer telomeres contain more binding sites for telomere 

proteins, resulting in negative regulation of telomerase and telomere shortening.  This 

negative feedback mechanism was first discovered in yeast (Marcand et al., 1997) and 

later found in many other model systems (reviewed in Smogorzewska and de Lange, 

2004).  It is thought that the information on the length of telomeres is transduced from 

duplex telomeric DNA to the telomere terminus where telomerase acts by G-overhang 
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binding proteins (Loayza and de Lange, 2003). Ss telomeric DNA binding proteins 

appear to directly regulate telomerase by affecting its recruitment and/or activation at 

the chromosome end (reviewed in Wei and Price, 2003).   

In addition to telomere length regulation, telomere-associated proteins are 

essential for chromosome end protection.  As described above, ends of chromosomes 

need to be protected from deleterious nuclease activities, inappropriate recombination, 

and activation of DNA damage machinery.  Protection is achieved by a large array of 

both double-strand and single-strand telomeric DNA binding proteins.  Perturbations in 

the protein composition or telomere shortening to the level where necessary binding 

sites for telomeric proteins are lost leads to telomere dysfunction and to the loss of the 

protective cap at the chromosome terminus (reviewed in de Lange, 2002; de Lange, 

2005).  The composition of telomeres in different model organisms is described below 

(Figure 6). 

 

Telomere protein composition in ciliates 

Although the ds telomeric DNA binding proteins have not been yet identified in ciliates, 

the G-overhang binding protein from O. nova was the founding member of this class of 

proteins (Gottschling and Zakian, 1986; Price and Cech, 1987) (Figure 6).  The O. nova 

telomere binding protein (TEBP) is composed of two protein subunits, α and β (Hicke et 

al., 1990).  The α subunit binds ssDNA via two N-terminal OB-folds and interacts with 

the OB-fold of the β subunit via a C-terminal OB-fold (Fang and Cech, 1993; Gray et al., 

1991; Peersen et al., 2002).  In the presence of telomeric ss DNA, a very stable α-β-

ssDNA complex is formed (Fang and Cech, 1993).  Although no genetic studies are 

possible in this organism, biochemical studies and crystal structure data for the TEBP 
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bound to the ssDNA suggest that TEBP tightly binds the extreme 3’ terminus of the O. 

nova G-overhang, thus forming a protective cap at the chromosome end (Horvath et al., 

1998). 

 

Telomere protein composition in budding yeast 

Duplex telomeric DNA in budding yeast is bound by Rap1 (repressor/activator protein 1) 

(Figure 6).  Rap1 was first identified as a transcriptional regulator (Huet et al., 1985; 

Shore and Nasmyth, 1987), and later shown to associate with telomeric DNA (Conrad 

et al., 1990).  Analysis of temperature-sensitive rap1 alleles and over-expression 

mutants demonstrated that Rap1 is involved in both telomere length regulation and 

chromosome end protection in S. cerevisiae (Conrad et al., 1990; Lustig et al., 1990).  

Rap1 negatively regulates telomere length by recruitment of Rif1 and Rif2 (Rap1-

interacting factors 1 and 2) proteins to telomeres (Hardy et al., 1992; Wotton and Shore, 

1997) (Figure 6).  Deletion of either Rif1 or Rif2 results in slight telomere elongation, 

while double mutants display dramatic elongation of telomeric DNA.  Elegant studies 

from David Shore’s laboratory demonstrated that an increase in the number of 

Rap1proteins results in shorter telomeres (Marcand et al., 1997).  The extent of the 

telomere shortening was proportional to the number of Rap1 molecules, suggesting that 

Rap1, Rif1 and Rif2 negatively regulate telomere length in cis. 

The G-overhang in S. cerevisiae telomeres is bound by Cdc13p (Garvik et al., 

1995; Lendvay et al., 1996; Nugent et al., 1996) (Figure 6).  Cdc13p is a multifunctional 

protein essential for proper telomere function and cell viability.  Cdc13p plays several 

important roles at telomeres via dynamic interactions with distinct protein complexes 

(reviewed in Lustig, 2001).  Cdc13p positively regulates telomere length by direct 
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recruitment of the telomerase to the chromosome end.  This is achieved through an 

interaction of Cdc13p with the Ets1p component of yeast telomerase.  Mutant alleles of 

Cdc13p that abolish the interaction with Est1p lead to an ever shorter telomeres 

phenotype similar to the telomerase deficiency, despite the presence of biochemically 

active telomerase (Chandra et al., 2001; Evans and Lundblad, 1999; Pennock et al., 

2001).  Cdc13p alleles resulting in telomere lengthening have also been recovered, 

suggesting that this protein has a separate role in the negative regulation of telomere 

length (Chandra et al., 2001; Grandin et al., 2000).  Cdc13p also coordinates G-strand 

and C-strand synthesis by interaction with the catalytic subunit of DNA pol α (Qi and 

Zakian, 2000).  It is now thought that Cdc13p regulates telomere length by first 

recruiting telomerase to the chromosome terminus and subsequently by limiting 

telomerase action, thus allowing the C-strand replication (Chandra et al., 2001). 

In addition to telomere length maintenance, Cdc13p is essential for chromosome 

end protection.  Temperature-sensitive cdc13 mutants display extensive degradation of 

the C-strand and cell cycle arrest (Garvik et al., 1995).  The essential telomere capping 

function of Cdc13p is likely to be mediated through interactions with the Stn1p 

(suppressor of cdc thirteen) and Ten1p (telomeric pathways in association with Stn1 

number 1) proteins (figure 6).  Stn1 was identified in a screen for cdc13 suppressors 

(Grandin et al., 1997), while Ten1 was subsequently found in the screen for stn1 

suppressors (Grandin et al., 2001).  As in cdc13 mutants, stn1 and ten1 mutations 

result in C-strand resection, accumulation of ss G-rich telomeric DNA, and cell cycle 

arrest (Grandin et al., 2001; Grandin et al., 1997).  Cdc13, Stn1 and Ten1 proteins 

physically interact with each other, forming a heterotrimeric complex that provides 

chromosome end protection.  Moreover, like Cdc13 (Mitton-Fry et al., 2002), both Stn1 
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and Ten1 proteins harbor an OB-fold and are capable of binding to ss telomeric DNA in 

vitro (Gao et al., 2007).  Thus, it is proposed that Cdc13-Stn1-Ten1 complex acts as an 

RPA-like complex that is specific for single-strand telomeric DNA (Gao et al., 2007).   

 

Telomere protein composition in fission yeast 

In S. pombe, Taz1 binds to double-strand telomeric DNA (Figure 6) (Cooper et al., 

1997).  Like Rap1 from S. cerevisiae, S. pombe Taz1 negatively regulates telomere 

length; taz1 mutants display extremely elongated telomeres (Cooper et al., 1997).  In 

addition, Taz1 is implicated in chromosome end protection.  Loss of Taz1 leads to C 

strand degradation and increased homologous recombination at telomeres (Cooper et 

al., 1997; Ferreira and Cooper, 2001; Miller and Cooper, 2003).  Rap1 and Rif1 

homologs have also been identified in S. pombe (Figure 6) (Kanoh and Ishikawa, 2001), 

but in contrast to S. cerevisiae Rap1, fission yeast Rap1 does not bind telomeric DNA 

directly.  Instead, both Rap1 and Rif1 are recruited to telomeres through interactions 

with Taz1.  S. pombe Rap1 and Rif1 negatively regulate telomere length, likely via the 

protein counting mechanism (Kanoh and Ishikawa, 2001; Miller et al., 2005).  It is not 

known whether the functional homolog of Rif2 exists in fission yeast. 

A single-strand telomeric DNA binding protein has only recently been identified 

in S. pombe (Figure 6).  Peter Bauman and Tom Cech found spPot1 (Protection of 

telomeres) based on very limited sequence similarity to TEBP from ciliates (Baumann 

and Cech, 2001).  Genetic studies demonstrated that S. pombe Pot1 is essential for 

chromosome end protection.  Knockouts display immediate loss of telomeric and 

subtelomeric DNA, chromosome mis-segregation, and profound genome instability.  

Although the null mutation is lethal, survivors that circularized all their chromosomes 
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arise upon Pot1 loss (Baumann and Cech, 2001).  In addition to chromosome end 

protection, it is possible that S. pombe Pot1 regulates telomerase access to telomeres 

like other G-overhang binding proteins.  However, this function may be hidden by the 

extreme telomere uncapping and end deprotection phenotypes observed in pot1- fission 

yeast.  Consistent with this prediction, recent studies implicate S. pombe Pot1 in 

negative regulation of telomere length: reduction of telomere-bound SpPot1 results in 

dramatic telomere lengthening. However, upon further reduction, loss of telomeric DNA 

and chromosome fusions are observed, suggesting that cells must carefully regulate the 

amount of telomere-bound Pot1 (Bunch et al., 2005). 

Stn1 and Ten1 homologs have recently been identified in S. pombe (Figure 6).  

SpStn1 was discovered in a search for OB-fold containing proteins in the fission yeast 

genome sequence, while SpTen1 was found in a BLAST search using scTen1 

sequence as the query (Martin et al., 2007).  Both of these proteins co-localize with 

Pot1 at telomeres.  Genetic analysis demonstrates that both SpStn1 and SpTen1 are 

essential for chromosome end protection.  Like POT1 deficiency, loss of Stn1 or Ten1 

results in extensive degradation of telomeric and subtelomeric DNA and genome 

instability.  As with deletion of POT1, some yeast cells survive by circularizing their 

chromosomes (Martin et al., 2007).  Thus, although the details of deprotection 

phenotypes differ between S. cerevisiae and S. pombe stn1 and ten1 mutants, this 

complex appears to be evolutionary conserved. 

 

Telomere protein composition in mammals 

In mammals, there are six core proteins that associate with telomeres to form 

the protective complex called shelterin (reviewed in de Lange, 2005).  Shelterin 
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components are defined as proteins present at the telomeres throughout the cell cycle 

that function exclusively at telomeres in contrast to non-shelterin proteins that may 

transiently associate with telomeres and which primarily function off the telomeres.  

Shelterin subunits include the double-strand telomeric binding proteins TRF1 and TRF2, 

the single-strand telomeric DNA binding protein Pot1, and three bridging proteins, 

TPP1, TIN2 and RAP1, that associate with telomeres via protein-protein interactions 

(Figure 6). 

TRF1 was isolated from HeLa cells based on its in vitro binding to ds TTAGGG 

repeat (Chong et al., 1995).  TRF1 negatively regulates telomere length: over-

expression of TRF1 results in progressive telomere shortening, while a dominant 

negative allele of TRF1 displaces endogenous TRF1 from telomeres and leads to 

telomere elongation (van Steensel and de Lange, 1997).  TRF2 was identified based on 

sequence similarity to TRF1, but it plays a different role at telomeres (Bilaud et al., 

1997; Broccoli et al., 1997).  The primary function of TRF2 is chromosome end 

protection and maintaining of the protective cap on the chromosome terminus.  TRF2 

knockouts are lethal.  Therefore, most work with TRF2 has been performed using a 

dominant-negative TRF2 allele that displaces the wild type protein from telomeres.  

Loss of telomere-bound TRF2 causes immediate degradation of the G-overhang and 

end end-to-end chromosome fusions (van Steensel et al., 1998).  In addition, TRF2 

protects telomeres from homologous recombination.  Over-expression of the dominant-

negative allele of TRF2 results in rapid telomere shortening and the accumulation of 

extrachromosomal telomeric circles (Wang et al., 2004). 

TIN2 and Rap1 were identified in a yeast-two-hybrid search for TRF1 and TRF2-

interacting proteins, respectively (Kim et al., 1999; Li et al., 2000) (Figure 6).  TIN2 was 
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later shown to bind to TRF2 as well, forming a link between two duplex DNA –binding 

proteins (Kim et al., 2004).  Like TRF1, TIN2 negatively regulates telomere length in a 

telomerase-dependent manner (Kim et al., 1999).  Moreover, like TRF2, TIN2 is 

required for telomere protection from DNA damage response initiation (Kim et al., 

2004).  Since RNAi-mediated depletion of TIN2 results in a decreased presence of 

TRF2 at the telomeres, the end protection function of TIN2 is thought to depend on its 

role in the stabilization of TRF2 complex at the chromosome terminus (Ye et al., 

2004a).  Mammalian Rap1 protein, similar to S. pombe Rap1, does not bind telomeric 

DNA directly (Figure 6).  However, the telomere function of Rap1 is evolutionary 

conserved: vertebrate Rap1 negatively regulates telomere length (Li et al., 2000; 

O'Connor et al., 2004).  

The G-overhang is bound by Pot1 in vertebrates (Figure 6).  As with S. pombe 

Pot1, human Pot1 was identified based on limited sequence similarity to TEBP α from 

ciliates (Baumann and Cech, 2001).  The crystal structure of human Pot1 reveals two 

OB-folds (Lei et al., 2004).  Interestingly, however, immunolocalization experiments 

demonstrate that Pot1 protein lacking the OB-fold still localizes to telomeres (Loayza 

and de Lange, 2003).  It was shown that hPot1 localizes to telomeres primarily through 

its interaction with the duplex telomeric DNA binding protein TRF1 (Loayza and de 

Lange, 2003).  hPot1 binds to TRF1 through an interaction with TPP1 (Liu et al., 2004; 

Ye et al., 2004b), and then binds to the G-overhang. 

The co-crystal structure of human Pot1 bound to its telomeric DNA substrate 

also revealed that two OB-folds in Pot1 protein make an extensive contact with the G-

overhang and bury the 3’ terminal guanine.  This configuration allows the 3’ terminus to 

be protected from deleterious activities and provides a means to regulate telomerase 
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access (Lei et al., 2004).  It was therefore speculated that like other G-overhang binding 

proteins, human Pot1 must be essential for chromosome end protection.  Indeed, RNAi-

mediated Pot1 deficiency in human cells results in a chromosome end deprotection 

phenotype characterized by a DNA damage response, end-to-end fusions, a decrease 

in the G-overhang signal, and cellular senescence or apoptosis (Churikov et al., 2006; 

Hockemeyer et al., 2005; Veldman et al., 2004; Yang et al., 2005).  Interestingly, mice 

encode two Pot1 related proteins, Pot1a and Pot1b, which display ~75% similarity and 

appear to be partially redundant for chromosome end protection (He et al., 2006; 

Hockemeyer et al., 2006; Wu et al., 2006).   

In addition to chromosome end protection, over-expression and dominant 

negative mutations of human Pot1 implicate this protein in both positive and negative 

regulation of telomere length (Armbruster et al., 2004; Colgin et al., 2003). Accordingly, 

data from the crystal structure of hPot1 and several in vitro experiments suggest that 

hPot1 can both recruit and negatively regulate access of telomerase (Kelleher et al., 

2005; Lei et al., 2004; Lei et al., 2005). 

POT1 functions are influenced by TPP1, another OB-fold containing shelterin 

component (Figure 6).  TPP1 was initially found as a POT1-interacting protein that 

recruits POT1 to the TIN2/TRF1 complex at telomeres and negatively regulates 

telomere length (Houghtaling et al., 2004; Liu et al., 2004; Ye et al., 2004b).  While 

POT1 was found based on its similarity to the TEBP α subunit, TPP1 was shown to 

harbor an OB fold that is structurally similar to the TEBP β subunit (Wang et al., 2007; 

Xin et al., 2007).  Disruption of POT1-TPP1 interaction resulted in a DNA damage 

response and telomere length changes (Xin et al., 2007).  Remarkably, TPP1 was 

found to associate with active telomerase, and the TPP1-POT1 complex was shown to 
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increase the activity and processivity of telomerase in vitro.  The TPP1-POT1 complex 

appears to both inhibit telomerase access to the telomere and increase telomerase 

activity during telomere extension (Wang et al., 2007; Xin et al., 2007). 

An extensive search for shelterin-associated factors by gel filtration and co-

immunoprecipitation failed to identify additional proteins (Liu et al., 2004; O'Connor et 

al., 2004; Ye et al., 2004a).  However, the possibility exists that some sub-stoichiometric 

shelterin components were missed by this biochemical approach.  In agreement with 

this, position-specific iterated BLAST (PSI-BLAST) search using the recently 

characterized S. pombe STN1 as a query identified a putative human STN1 homolog 

(Martin et al., 2007).  As for yeast STN1, this protein contains an N-terminal OB-fold.   

 

The capping function of telomeres 

Perturbations in the protein composition of telomeres often lead to telomere dysfunction 

and chromosome uncapping (reviewed in Ferreira et al., 2004).  One cause of telomere 

dysfunction is a replicative attrition of telomeric DNA in the absence of telomerase.  In 

this case, progressive telomere shortening ultimately triggers telomere dysfunction 

when the minimal functional telomere length is reached.  Telomere dysfunction can also 

be an immediate outcome of disruption of essential telomere proteins.  In this case, 

even long telomeres can become uncapped.   

At the molecular level, telomere dysfunction can have various outcomes 

(reviewed in de Lange, 2005) (Figure 7).  Since uncapped telomeres can no longer 

protect the chromosome terminus from being recognized by the DNA damage 

machinery, initiation of DNA damage checkpoints is usually an immediate result of 

telomere uncapping.  DNA damage response proteins accumulate at dysfunctional  
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Figure 7.  Telomere uncapping.  Loss of essential telomeric proteins or telomere shortening due 

to telomerase inactivation leads to telomere dysfunction.  DNA damage repair proteins 

accumulate at telomeres forming TIFs.  Chromosome ends are also subjected to nuclease 

attack, resulting in the loss of telomeric sequences.  Critically shortened telomeres are recruited 

into end-to-end fusions by NHEJ. 
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telomeres forming structures known as TIFs (telomere dysfunction-induced foci) (Takai 

et al., 2003).  Growth arrest is the likely response to DNA damage arising at uncapped 

telomeres.  Cells that escape the arrest are subjected to nuclease attack and undergo 

inappropriate repair with telomeres recruited into end-to-end chromosome fusions by 

nonhomologous end joining (NHEJ) (Figure 7).  Moreover, loss of some telomere-

associated proteins results in increased levels of recombination. 

How telomere-associated proteins mask telomeres from being recognized by 

DNA damage machinery is still unclear.  One model suggests that telomere-associated 

proteins physically form a protective cap at the chromosome terminus that blocks its 

ability to engage in repair activities.  The best-studied example of such telomere 

protection mechanism is provided by TEBPα/β heterodimer from ciliates.  The two 

subunits tenaciously associate with each other and with the single-stranded telomeric 

DNA, sequestering the G-overhang and protecting the chromosome termini from the 

digestion by Bal31 exonuclease (Gottschling and Zakian, 1986; Price and Cech, 1987).  

Similarly, the 3’ terminal guanine of the G-overhang is buried in the POT1 protein, likely 

rendering the chromosome terminus inaccessible for various harmful activities (Lei et 

al., 2004).   

In addition to an efficient capping by G-overhang binding proteins, the t-loop 

may make the chromosome terminus inaccessible to various harmful activities.  As 

described above, loss of telomere-bound TRF2 results in immediate telomere 

uncapping, loss of the G-overhang and telomere fusions (Broccoli et al., 1997), and 

these phenotypes may be caused by t-loop destabilization.  TRF2 binds at the junction 

of double-stranded and single-stranded DNA and can facilitate formation of t-loop like 
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structures in vitro (Fouche et al., 2006; Stansel et al., 2001).  Thus, the integrity of 

telomere-associated proteins is required for proper telomere structure and function. 

 

Role of DNA damage response proteins at telomeres 

Dysfunctional telomeres trigger a cellular response remarkably similar to the response 

to double-strand breaks.  Paradoxically, however, even functional telomeres require 

DNA damage response proteins for their maintenance.  The uncapping phenotype is 

observed not only when shelterin components are disturbed, but also when DNA 

damage response (DDR) proteins are inactivated (reviewed in Verdun and Karlseder, 

2007).  Notably, many DDR proteins localize to telomeres.  Examples include the DNA 

damage signaling kinases ATM and ATR, the double-strand break repair MRN repair 

complex, and KU, a key component of NHEJ (reviewed in Verdun and Karlseder, 2007).  

In yeast deletion of both ATM and ATR homologs lead to dramatic and progressive 

telomere loss and chromosome fusions (Chan et al., 2001).  In human cells, inactivation 

of the NBS1 component of the MRN complex or ATM results in accelerated telomere 

shortening and end-to-end fusions (Ranganathan et al., 2001; Vaziri et al., 1997).  Loss 

of KU70 in S. cerevisiae leads to C strand resection and hyper-recombination at 

telomeres (Fisher et al., 2004; Fisher and Zakian, 2005).  Altogether, these data 

indicate that DDR proteins play a central role in telomere maintenance and 

chromosome end capping.   

Recent data indicate that DDR proteins act at newly replicated telomeres, 

allowing them to assume a protective state.  It has been demonstrated that DNA 

damage response machinery is recruited to mammalian telomeres in late S/ early G2 of 

the cell cycle (Verdun et al., 2005; Verdun and Karlseder, 2006).  The current model 
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suggests that DNA damage machinery is required for exonucleolytic processing of the 

C-strand after telomere replication (Chai et al., 2006; Larrivee et al., 2004; Verdun and 

Karlseder, 2006).  C-strand processing is, in turn, obligatory for the formation of the t-

loop and thus the formation of the protective telomere state (Dionne and Wellinger, 

1996; Jacob et al., 2003; Jacob et al., 2001; Wellinger et al., 1992; Wellinger et al., 

1993).  It therefore appears that telomere processing by DDR proteins is an essential 

step for chromosome end protection. 

Although DDR proteins are important for telomere maintenance, they must be 

kept in check.  Interestingly, recent data suggest that TRF2 controls ATM, while POT1 

independently limits the ATR pathway at functional telomeres (Churikov and Price, 

2008; Denchi and de Lange, 2007; Guo et al., 2007).  It was suggested that TRF2 

blocks activation of ATM kinase via direct interaction with ATM (Denchi and de Lange, 

2007; Karlseder et al., 2004).  POT1 is thought to block the ATR signaling pathway by 

competing with RPA for G-overhang binding (Denchi and de Lange, 2007).  As a result, 

several independent mechanisms provide protection of fully capped telomeres from 

DNA damage response initiation. 

 

Epigenetic regulation of telomere function 

Increasing evidence indicates the importance of the telomeric and subtelomeric 

chromatin state for telomere function (reviewed in Blasco, 2007).  Both telomeric and 

subtelomeric regions in mammals contain nucleosomes (Makarov et al., 1993; 

Tommerup et al., 1994).  Telomeric chromatin has been studied extensively using the 

mouse model system (reviewed in Blasco, 2007).  Mammalian telomeres have 

properties characteristic of heterochromatin; heterochromatin epigenetic marks such as 
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trimethylation of lysine 9 at histone H3 (H3K9) and lysine 20 of histone H4 (H4K20) are 

found at telomeres (Garcia-Cao et al., 2004).  In addition, both H3 and H4 are 

hypoacetylated at mammalian telomeres (Benetti et al., 2007).  Although the telomeric 

DNA cannot be methylated due to lack of CpG sequences, DNA at subtelomeres is 

methylated (Gonzalo et al., 2006).  Both maintenance DNA methyltransferase DNMT1 

and de novo methyltransferases DNMT3a and DNMT3b are required for subtelomeric 

DNA methylation (Gonzalo et al., 2006).   

The relationship between epigenetic chromatin modifications and mammalian 

telomere maintenance has been investigated in some detail.  It was demonstrated that 

chromatin modifications affect telomere length homeostasis.  For example, decreased 

level of trimethylation of H3K9 at telomeres upon loss of SUV histone methyltransferase 

results in dramatic telomere elongation (Garcia-Cao et al., 2004).  Similarly, DNA 

methylation at subtelomeres negatively regulates telomere length; a decrease in DNA 

methylation leads to telomere elohgation (Gonzalo et al., 2006).  In addition, loss of 

subtelomeric DNA methylation results in increased levels of homologous recombination 

at telomeres (Gonzalo et al., 2006). 

Not only is telomere function influenced by chromatin status, but also the 

telomere length affects the epigenetic status of mammalian telomeres.  Progressive 

telomere shortening in telomerase-deficient mice results in epigenetic changes at 

telomeres.  While heterochromatin-specific histone modifications are decreased, an 

increase in H3 and H4 acetylation characteristic of active chromatin is observed (Benetti 

et al., 2007).  Therefore, while histone and DNA epigenetic modifications are critical for 

telomere integrity, telomere length affects the epigenetic status of telomeres.  Further 
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studies are needed to elucidate the exact relationship between chromatin-modifying 

activities and telomere-associated factors.  

 

Plant telomeres 

In most plant species, telomeric DNA consists of TTTAGGG repeats.  The exceptions 

include plants from the Asparagales clade, whose telomeres contain vertebrate-type 

TTAGGG repeats (Sykorova et al., 2006), and some of the Allium (for example, onion), 

where chromosome termini contain unknown sequences that do not hybridize with 

either vertebrate or plant type telomere repeats (Pich et al., 1996).  Telomere length in 

plants varies dramatically.  For example, telomeres in unicellular green alga Chlorella 

vulgaris are only 0.5 kb (Higashiyama et al., 1995), while tobacco telomeres are 150 kb 

in length (Fajkus et al., 1995). 

As demonstrated for Arabidopsis thaliana and Silene latifolia, plant telomeres 

harbor ss G-overhangs (Riha and Shippen, 2003a).  Interestingly, in S. latifolia G-

overhangs were found only on half of telomeres.  One explanation is that a portion of 

telomeres in this plant harbor G-overhangs shorter than the detection limit (Riha et al., 

2000).  Moreover, as in other eukaryotes, plant telomeres form t-loops: these structures 

were observed in tobacco and in garden pea (Cesare et al., 2003; de Lange, 2004).  

The telomere structure in plants is therefore very similar to the telomere structure in 

vertebrates.  Although different aspects of telomere biology have been investigated in 

different plant species, the most knowledge about plant telomeres comes from studies 

of telomere in the flowering plant Arabidopsis thaliana. 
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Arabidopsis as a model for telomere biology 

Several laboratories have been developing Arabidopsis as a model system to study 

telomere structure and function.  This work is facilitated by sequence analysis of the 

125 Mb Arabidopsis genome, and by the genetic tractability of this system, which allows 

one to study loss-of-function and over-expression mutations.  Large collections of T-

DNA insertion lines, activation-tagged lines and EMS-mutagenized lines as well as 

protocols for efficient transformation and transgenic studies are available for genetic 

studies.  Moreover, crosses between different mutants can be easily done, allowing for 

the generation of plants carrying mutations in several genes. 

With respect to telomere biology, the Arabidopsis model has advantages over 

other systems.  Telomeres are very short (only 2-5 kb) and therefore telomere length 

can be accurately measured by conventional agarose gel electrophoresis (Shakirov and 

Shippen, 2004).  Additionally, 8 out of 10 subtelomeric sequences in Arabidopsis are 

unique, making it possible to follow the fate of individual telomeres (Heacock et al., 

2004).  One extremely important feature of Arabidopsis is its remarkable tolerance to 

telomere dysfunction, which allows us to examine fundamental aspects of genome 

stability (Riha et al., 2001).  Many mutations in telomere-related proteins that are lethal 

in mammals are tolerated by plants.  The examples include ATM (Vespa et al., 2005), 

ATR (Culligan et al., 2004), MRE11(Bundock and Hooykaas, 2002) and RAD50 

(Gallego et al., 2001) proteins, whose Arabidopsis mutants are viable.  This greatly 

facilitates the investigation of the role of such proteins in telomere biology and genome 

stability.  The role of KU, a component of NHEJ repair pathway that binds and stabilizes 

the ends of ds breaks, has been extensively studied in Arabidopsis.  In plants, KU is 

required for telomeric C-strand protection from degradation (Riha and Shippen, 2003a).  
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In addition, KU is a negative regulator of telomerase: ku mutants display dramatic 

telomerase-dependent telomere elongation (Riha and Shippen, 2003a).  Finally, KU 

regulates homologous recombination and suppresses formation of ECTCs in 

Arabidopsis (Zellinger et al., 2007). 

 

Arabidopsis telomerase 

Arabidopsis TERT was identified based on its sequence similarity to human telomerase 

reverse transcriptase (Fitzgerald et al., 1999).  Although the identification of Arabidopsis 

TER has not been yet reported, our laboratory has recently found a putative telomerase 

RNA component through a biochemical purification of active telomerase complex (K. 

Kannan, C. Cifuentes-Rosias and D. Shippen, unpublished).  In addition to TERT and 

TER, dyskerin has been recently shown to associate with telomerase in Arabidopsis 

(Kannan et al., 2008). 

Similar to vertebrates, telomerase expression is tightly regulated and correlates 

with cell proliferation in Arabidopsis.  Telomerase is active in dividing tissues such as 

flowers, seedlings or cell cultures, and suppressed in leaves and stems (Fitzgerald et 

al., 1999).  Our laboratory previously examined the consequences of telomerase 

deficiency in plants (Fitzgerald et al., 1999; Riha et al., 2001). Mutants carrying a 

transfer DNA (T-DNA) insertion in TERT were identified and propagated for several 

generations.  Telomere length, G-overhang status and genome stability were monitored 

in each generation. Terminal restriction fragment analysis (TRF) showed that 

approximately 200-500 bp of telomeric DNA was lost each generation in tert plant 

mutants. When the shortest telomeres in the population reached ∼1 kb in the sixth 

generation (G6), anaphase bridges started to appear (Riha et al., 2001). Anaphase 
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bridges arise when end-to-end fusions of chromosomes produce dicentric molecules 

that cannot be efficiently segregated during mitosis. With successive generations, TERT 

mutants displayed worsening genome instability. In addition, cytogenetic damage 

correlated with defects in vegetative organs and reproductive tissues. G9 mutants were 

arrested in a terminal vegetative state (Riha et al., 2001).  

 

Composition of Arabidopsis telomeres 

Although telomeric DNA structure, telomerase function, and the role of several DNA 

damage repair proteins at Arabidopsis telomeres are fairly well characterized, almost 

nothing is known about the protein composition in Arabidopsis.  TRF1 or TRF2 

homologs have not yet been identified in plants.  Although several proteins have been 

shown to bind ds telomeric DNA in vitro, their contribution to telomere maintenance in 

vivo remains unclear (Chen et al., 2001; Hwang et al., 2001; Marian et al., 2003; 

Schrumpfova et al., 2004; Yu et al., 2000).  In addition, although two putative POT1 

proteins have been found based on their sequence similarity to the α subunit of the O. 

nova TEBP (Baumann and Cech, 2001), their role in telomere biology has not been 

investigated yet.  Finally, key components of the shelterin complex in mammals, RAP1, 

TPP1 or TIN2, can not be discerned in Arabidopsis genome, arguing that the sequence 

of these proteins highly diverged, or that Arabidopsis has evolved new proteins to 

maintain the integrity of telomeres. 

 

Overview 

In this dissertation, I explore Arabidopsis telomere-associated proteins.  In Chapter II, I 

describe the identification of putative Arabidopsis ds telomeric DNA binding proteins.  A 
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bioinformatics approach allowed us to identify twelve Myb-containing TRFL proteins in 

Arabidopsis that fall into two categories based on their sequence and their biochemical 

properties.  We found that TRFL family 1 possess a highly conserved Myb-extension 

domain absent from the TRFL family 2.  We also demonstrated that proteins from TRFL 

family 1 can bind ds telomeric DNA and form homo- and heterodimers in vitro.  Finally, 

we found that the Myb-extension is required for binding plant telomeric DNA in vitro 

(Karamysheva et al., 2004).   

In Chapters III, IV and V, I describe the characterization of Arabidopsis POT 

proteins.  It should be noted that In May 2007, the nomenclature of Arabidopsis POT1 

proteins changed (Surovtseva et al., 2007).  AtPOT1 was designated AtPOT1a, while 

AtPOT2 was designated AtPOT1b.  Therefore, while I refer to Arabidopsis POT1 

proteins as POT1a, POT1b and POT1c throughout the dissertation, in Chapters II-IV I 

refer to AtPOT1a as AtPOT1 and AtPOT1b as AtPOT2 (since papers reprinted at these 

chapters were published before May 2007). 

In Chapter III, I report the characterization of AtPOT1a and AtPOT1b dominant 

negative mutants.  In transgenic experiments, I show a role for AtPOT1a in telomere 

length regulation, and a role for AtPOT1b in chromosome end protection (Shakirov et 

al., 2005).   

In Chapter IV, I describe the consequences of a AtPOT1a null mutation.  

Genetic analysis of pot1a mutants demonstrated that AtPOT1a is a positive regulator of 

telomere length.  We also showed that AtPOT1a acts in the telomerase pathway for 

telomere maintenance.  Finally, and most unexpectedly, biochemical analysis 

demonstrated that AtPOT1a is a telomerase component that only transiently associates 

with Arabidopsis telomeres (Surovtseva et al., 2007).   
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In Chapter V, I investigate the role of AtPOT1c.  I describe the expression and 

alternative splicing of AtPOT1c.  I also demonstrate that over-expression of AtPOT1c 

leads to deregulation of telomere length.  Finally, I show that AtPOT1c works in concert 

with telomerase in telomere length regulation and defining the architecture of the 

chromosome terminus. 

In Chapter VI, I describe the identification and characterization of CIT1, a novel 

Arabidopsis protein essential for chromosome end protection.  I show that, consistent 

with an essential capping function, cit1 mutants display severe telomere dysfunction, 

loss of telomeric sequences, end-to-end fusions and genome instability.  I also 

demonstrate that CIT1 is conserved in plants and vertebrates, and discuss potential 

models for the role of this protein at telomeres. 

Finally, in Chapter VII, I discuss the contribution of our research into the 

understanding of telomere biology in plants and other eukaryotes.  I also present a 

model for the function of Arabidopsis telomere components, and propose future 

experiments that will provide new insights into Arabidopsis telomere structure and 

function. 
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CHAPTER II 

 
A C-TERMINAL MYB-EXTENSION DOMAIN DEFINES A NOVEL FAMILY OF 

DOUBLE-STRAND TELOMERIC DNA BINDING PROTEIN IN Arabidopsis* 

 

Summary  

Little is known about the protein composition of plant telomeres.  We queried the 

Arabidopsis thaliana genome database in search of genes with similarity to the human 

telomere proteins hTRF1 and hTRF2.  hTRF1/hTRF2 are distinguished by the presence 

of a single Myb-like domain in their C-terminus that is required for telomeric DNA 

binding in vitro.  Twelve Arabidopsis genes fitting this criterion, dubbed TRF-like 

(TRFL), fell into two distinct gene families.  Notably, TRFL family 1 possessed a highly 

conserved region C-terminal to the Myb domain called Myb-extension (Myb-ext) that is 

absent in TRFL family 2 and hTRF1/hTRF2.  Immunoprecipitation experiments revealed 

that recombinant proteins from TRFL family 1, but not those from family 2, formed 

homo- and heterodimers in vitro.  DNA binding studies with isolated C-terminal 

fragments from TRFL family 1 proteins, but not family 2, showed specific binding to 

double-stranded plant telomeric DNA in vitro.  Removal of the Myb-ext domain from 

TRFL1, a family 1 member, abolished DNA binding.   However, when the Myb-ext 

______ 

*Reprinted with permission from Karamysheva, Z. N., Surovtseva, Y.V., Vespa, L., 
Shakirov, E.V., and Shippen, D.E.  2004.  A C-terminal Myb extension domain defines a 
novel family of double-strand telomeric DNA-binding proteins in Arabidopsis.  The 
Journal of Biological Chemistry 279, 47799-47807.  Copyright 2004 © by The American 
Society for Biochemistry and Molecular Biology, Inc. 
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domain was introduced into the corresponding region in TRFL3, a family 2 member, 

telomeric DNA binding was observed.  Thus, Myb-ext is required for binding plant 

telomeric DNA and defines a novel class of proteins in Arabidopsis.  

 

Introduction 

Telomeres are the specialized nucleoprotein structures that comprise the natural ends 

of linear eukaryotic chromosomes and ensure their complete replication and stability 

(Blackburn, 1991; Zakian, 1996).  In most eukaryotes, telomeric DNA is composed of 

tandem arrays of simple G-rich repeat sequences terminating in single-strand 3’ 

overhang, which is maintained through the action of the telomerase reverse 

transcriptase (Blackburn, 1991).  Both the double- and single-strand region of the 

telomere are coated by non-histone proteins that provide protection for telomeric DNA 

and regulate telomerase access to the chromosome terminus.  Proteins that bind 

double-strand telomeric DNA are typified in vertebrates by TRF1 and TRF2, and in 

budding and fission yeast by Rap1 and Taz1, respectively (Bilaud et al., 1997; Broccoli 

et al., 1997; Chong et al., 1995; Cooper et al., 1997; De Rycker et al., 2003; Shore and 

Nasmyth, 1987).   

 Human TRF1 behaves as a negative regulator of telomere length; over-

expression results in telomere shortening, while a dominant negative allele induces 

telomere elongation (Smogorzewska et al., 2000; van Steensel and de Lange, 1997).  

hTRF1 mediates telomere length control through interactions with other telomere-

associated factors including tankyrase (Smith et al., 1998), TIN2 (Kim et al., 1999), 

PinX1 (Zhou and Lu, 2001), and Pot1 (Loayza and de Lange, 2003).  Although hTRF2 

contributes to telomere length regulation (Smogorzewska et al., 2000), its major 
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function is to conceal telomere ends from detection as double-strand breaks (Karlseder 

et al., 1999; van Steensel et al., 1998).  Inhibition of hTRF2 in cultured human cells 

results in loss of the 3’ overhang and formation of covalently fused telomeres (van 

Steensel et al., 1998).  In addition, compromised hTRF2 function culminates in cell 

cycle arrest and ATM/p53-mediated apoptosis (Karlseder et al., 1999).  

 The functional domains of vertebrate TRF1 and TRF2 have been studied in 

some detail (Rhodes et al., 2002).  The two proteins have similar molecular masses 

(50-60kD), and resemble each other in domain structure.  Although the N-terminus is 

highly acidic in hTRF1 and highly basic in hTRF2, both proteins harbor a centrally 

located flexible hinge region called the TRF homology (TRFH) domain that is required 

for homodimer formation and interactions with other telomere-associated proteins 

(Fairall et al., 2001).  The most strongly conserved feature is a Myb/homeodomain type 

helix-turn-helix DNA binding motif near the C-terminus (Bilaud et al., 1996; Broccoli et 

al., 1997; Konig et al., 1996; Nishikawa et al., 1998; Nishikawa et al., 2001).  The Myb 

domain is sufficient for specific binding to the telomeric DNA in vitro, but dimerization 

through the TRFH domain is required for TRF protein association with DNA in vivo 

(Fairall et al., 2001).  Biluad et al. (1996) noted a sequence within the Myb domain of 

hTRF1 and hTRF2, VDLKDKWRT, that is also conserved in yeast double strand 

telomere binding proteins and dubbed it the telobox consensus.  An NMR structure of 

the Myb motif from hTRF1 revealed specific contacts between amino acid residues 

within the telobox consensus and the human telomere repeat sequence TTAGGG 

(Nishikawa et al., 2001).  

Although the plant telomere repeat sequence, TTTAGGG, is closely related to 

that of humans, almost nothing is known about the protein composition of plant 
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telomeres.  Several proteins have been shown to bind double-stranded telomeric DNA 

in vitro (Chen et al., 2001; Hwang et al., 2001; Schrumpfova et al., 2004; Yang et al., 

2003; Yu et al., 2000; Zentgraf, 1995; Zentgraf et al., 2000).   From Arabidopsis these 

include several relatively small (~30kD) proteins with N-terminal Myb domains (Marian 

et al., 2003; Schrumpfova et al., 2004).  Two other telomeric DNA binding proteins, 

TRP1 and TBP1, more closely resemble vertebrate TRF1 and TRF2 in size (65kD and 

70kD, respectively) and in architecture as they harbor a single Myb domain in their C-

terminus.  TRP1 from Arabidopsis was identified in a yeast one-hybrid screen for 

proteins that bind double-strand telomeric DNA (Chen et al., 2001).  Like vertebrate 

TRF1 and TRF2, full-length TRP1 shows a strong in vitro preference for extended 

telomeric DNA tracts with a minimum binding site of five TTTAGGG repeats.  Another 

Arabidopsis gene that harbors a single Myb domain at its C-terminus is TBP1.  TBP1 

encodes a homolog of the rice RTBP1, which has been shown to specifically bind plant 

telomeric DNA in vitro (Hwang et al., 2001; Yu et al., 2000).   

 In this study we employed a BLAST search to identify Arabidopsis homologs of 

hTRF1 and hTRF2 using their Myb domains as the query.  Although Arabidopsis 

harbors more than 100 genes with Myb domains (Kranz et al., 1998), we found only 12 

with a single Myb domain in their C-terminus that contains the telobox consensus motif.  

We designated this group of genes TRF-like (TRFL).  Here we provide a molecular 

characterization of the TRFL proteins.  Our data reveal that the TRFL genes encode 

two distinct families of proteins that differ dramatically in their amino acid sequences, 

DNA binding properties and protein interactions.  Furthermore, we define a novel 

functional domain C-terminal to the Myb domain that is required for specific binding to 

duplex plant telomeric DNA.   
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Materials and methods 

Computer search for Myb-containing genes and phylogenetic analysis   

The Myb-domains of hTRF1, hTRF2, and Arabidopsis TRP1 were used in separate 

NCBI Blast searches to identify Arabidopsis thaliana genes predicted to encode 

proteins with a single Myb repeat at the C-terminus.  The telobox consensus motif was 

used as an additional criterion (Bilaud et al., 1996).  Twelve TRFL genes were 

identified.  Multiple protein alignments were conducted using Oxford Molecular Group’s 

sequence analysis software MacVector 7.0 (Accelrys, San Diego, CA).  A phylogenetic 

tree was constructed using the neighbor-joining method (Saitou and Nei, 1987) with 

bootstrap mode. 

  

Expression analysis, molecular cloning and production of recombinant proteins in vitro 

RT-PCR was performed for 35 cycles using SuperScript III reverse transcriptase 

(Sigma) to determine whether TRFL genes were expressed in different Arabidopsis 

tissues.  For most of the TRFL genes, primers flanked intron junctions, ruling out the 

possibility of genomic DNA contamination.  Full-length cDNAs were obtained by RT-

PCR using total RNA from flowers.  Sequence analysis of the cloned cDNAs verified the 

NCBI annotations.  For protein interaction studies, the full-length cDNAs of TRFL genes 

were subcloned into pET-28A and pCITE 4A.  For DNA binding studies, PCR was used 

to amplify either full-length coding regions or the Myb domains and adjacent C-terminal 

region using plasmids that contained full-length cDNAs.  Overlapping PCR (Ho et al., 

1989) was applied to create the fusion constructs.  A T7 phage promoter was 

introduced into all the constructs by PCR and the products were used as templates for 

in vitro transcription by T7 RNA polymerase (Stratagene).  Transcripts were translated 
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in either rabbit reticulocyte lysate (Promega) or a wheat germ translation system 

(Promega) in the presence or absence of 35S- methionine (Amersham).  An aliquot of 

the labeled protein was used to verify the expected apparent molecular weight of 

translated protein products by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

and autoradiography.   

 

Electrophoresis mobility shift assay (EMSA)  

Telomeric DNA probes and competitors were as follows: Arabidopsis 

AGCATGCAGC(TTTAGGG)8, AGCATGCAGC(TTTAGGG)6, 

AGCATGCAGC(TTTAGGG)4, AGCATGCAGC(TTTAGGG)2, Paramecium 

AGCATGCAGC(TTTGGG)8, human AGCATGCAGC(TTAGGG)8.  Double-strand DNA 

probes were obtained by annealing the corresponding complementary oligonucleotides.  

For gel shift assays, peptides consisting of the Myb domain and the remainder of the C-

terminus (see above) were tested for DNA binding activity.  Preparation of the probes 

and binding reactions were carried out as described previously (Hall and Milner, 1997).  

Protein-DNA complexes were loaded on a 4% PAGE in 0.5xTBE and subjected to 

electrophoresis for 4 h at 120 V.  Dried gels were exposed for autoradiography.    

 

Co-immunoprecipitation 

For each TRFL protein analyzed, two constructs were made: one with a T7 protein tag 

and one without.  35S- methionine labeled non-tagged proteins or T7 tagged unlabeled 

proteins were synthesized in a TNT-coupled rabbit reticulocyte lysate translation system 

following the manufacturer’s recommendations (Promega).  Translation of T7 tagged 

proteins was verified in the presence of 35S- methionine on a small aliquot from the 
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same master mix.  T7 tagged and untagged radiolabeled proteins were combined and 

subjected to immunoprecipitation using agarose beads (Novagen) containing T7 

monoclonal antibody as described (Bryan et al., 2000).  Precipitate and supernatant 

fractions were analyzed by SDS-PAGE and autoradiography. 

 

Results 

Identification and expression of TRFL genes in Arabidopsis 

We performed a BLAST search to identify TRF-like (TRFL) genes in Arabidopsis 

thaliana.  Three query sequences were employed consisting of the Myb domains from 

human TRF1 and TRF2 and from Arabidopsis TRP1.  Twelve genes were uncovered 

that encode proteins with a single Myb domain at their C-terminus (Figure 8, Table 1).  

As expected, the searches found TRP1 and TBP1 (Ho et al., 1989; Hwang et al., 2001), 

along with ten uncharacterized genes that were designated TRFL1-10.  With the hTRF1 

Myb domain as the query, the most closely related sequence was the Myb domain for 

TRFL6 (E-value=3e-05), while for hTRF2, the Myb domain of TRFL3 displayed the most 

similarity (E-value=3e-06). 

A conceptual protein alignment of the C-terminal Myb-containing region of TRFL 

proteins with the corresponding regions in hTRF1 and hTRF2 is shown in Figure 8.  The 

NMR structure of the Myb domain of hTRF1 bound to the human telomeric DNA repeat 

sequence reveals that the N-terminal arm of the first helix interacts with the TT 

sequence in the minor groove, while the third helix recognizes TAGGG in the major 

groove (Nishikawa et al., 2001).  The corresponding regions are well conserved among 

the Arabidopsis TRFL proteins and display extensive sequence similarity to  
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Figure 8.  Identification of two TRFL gene families in Arabidopsis.  (A)  Comparison of the C-terminal region 

of TRFL proteins with the corresponding region of hTRF1 and hTRF2.  Amino acid sequences were 

obtained by conceptual translation of corresponding cDNAs.  Sequences used for alignment include Myb 

domains and adjacent C-terminal region.  Identical residues are shown in dark gray and similar residues in 

light gray.  The likely positions of the three helices, which comprise the Myb domain of hTRF1, including the 

telobox consensus motif, are shown in boxes above the hTRF1 sequence.  Asterisks indicate amino acid 

residues in hTRF1 that make specific contacts with human telomeric repeat DNA in the NMR structure 

(Nishikawa et al., 2001).  Brackets denote TRFL family 1 and 2 members.  The Myb-ext domain in TRFL 

family 1 proteins is shown.  (B)  Phylogenetic analysis of TRFL proteins from Arabidopsis.  The tree was 

constructed by the neighbor-joining method after sequence alignment of the two TRFL protein families.  

The number at each node indicates the percentage of 10,000 bootstrap replicates for statistical support. 
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Table 1.  DNA binding properties and protein interactions of TRFL proteins 

Locus Accession 
number 

Telomere 
protein 

Regions 
expressed for 
DNA binding 

Min. telo 
repeats 
bound  

Homodimer 

At5g13820 
At5g59430 
At3g46590 
At1g07540 
At3g53790 
At3g12560 
At1g17460 
At1g15720 
At1g72650 
At1g06910 
At2g37025 
At5g03780 

NP_196886 
NP_200751 
NP_190243 
NP_172234 
NP_190947 
NP_187862 
NP_564025 
NP_173024 
NP_565045 
NP_683280 
NP_671929 
NP_195998 

TBP1 
TRP1 

TRFL1 
TRFL2 
TRFL4 
TRFL9 
TRFL3 
TRFL5 
TRFL6 
TRFL7 
TRFL8 

TRFL10 

ND 
ND 

449-553 
516-622 
311-400 
505-620 
483-605 

303-390; 334-390 
530-624 
331-390 
297-404 
344-420 

21  
42 
6 
6 
4 
4 

No binding 
No binding 
No binding 
No binding 
No binding 
No binding 

ND 
Yes 
Yes 
Yes 
Yes 
Yes 
No 
No 
No 
ND 
ND 
ND 

1Hwang et al., 2001  
2Chen et al., 2001   
Min. telo, minimum telomere 
ND=not determined. 
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hTRF1 and hTRF2 (Figure 8A).  The most highly conserved region within all of the 

TRFL proteins, VDLKDKWRT, lies within the telobox consensus.   

Phylogenetic analysis indicated the presence of two distinct TRFL gene families 

(Figure 8B).  TRFL family 1 includes TBP1, TRP1, TRFL1, TRFL2, TRFL4, and TRFL9, 

while TRFL family 2 contains TRFL3, TRFL5-8 and TRFL10.  The similarity within TRFL 

family 1 or family 2 members extends throughout their entire sequence, suggesting the 

DNA binding domains co-evolved with the remainder of the genes.  Phylogenetic 

analysis further suggests that all of the TRFL genes arose from duplication events 

(Figure 8B).  Four of the TRFL genes reside in regions of the Arabidopsis genome 

known to be duplicated.  These include TRP1 and TRFL1, which display 59% identity; 

70% similarity overall and reside on chromosomes 5 and 3, respectively, and TRFL3 

and TRFL6, which exhibit 52% identity; 62% similarity and are found in a duplicated 

region on chromosome 1.  Although TBP1 and TRFL9 are not located in a duplicated 

region, they display a remarkably high degree of similarity (54% identity; 66% similarity) 

and hence may have been derived from a recent gene duplication.  

Closer inspection of the predicted amino acid sequence for the TRFL proteins 

provided further evidence for distinct gene families.  In all of the TRFL family 1 proteins, 

the region of amino acid conservation in the Myb domain extends further into the C-

terminus, creating a Myb-extension (Myb-ext) domain (Figure 8A).  Interestingly, Myb-

ext was absent from TRFL family 2 and from hTRF1 and hTRF2, which terminate 

immediately adjacent to the Myb domain.  An additional region of substantial sequence 

conservation was detected in the central portion of TRFL family 1 members called the 

central domain (CD) (Figure 9A and B).  This region bears no significant similarity to the 
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Figure 9.  Sequence alignment and domain structure of TRFL family 1 members.  (A)  Alignment of full-

length TRFL family 1 proteins with hTRF1.  The CD, Myb and Myb-ext domains are indicated by an over-

line.  The TRFH domain in hTRF1 is denoted by a wide gray box under the hTRF1 sequence.  (B)  

Comparison of the domain structures of hTRF1 and TRF2 with TRP1 and TRFL9. 
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TRFH domain in vertebrate TRF1/TRF2 proteins and is also absent in TRFL family 2.  

Aside from TRFL3 and TRFL6, which clearly represent a recent gene duplication, the 

remaining members of TRFL family 2 display no obvious sequence similarity outside 

their Myb domains.  

RT-PCR analysis revealed that all of TRFL genes are expressed in Arabidopsis 

(Figure 10).  Transcripts for each of the TRFL genes could be detected in all of the 

organs we examined (Figure 10; data not shown).  Moreover, all of the genes were 

expressed at a relatively high level, with the exception of TRFL2 and TRFL4, which are 

both members of TRFL family 1.  While TRFL2 and TRFL4 were ubiquitously 

expressed, their transcripts were scarce and could only be observed by nested PCR 

(Figure 10).  Nevertheless, the constitutive expression of TRFL genes is consistent with 

a structural role in the telomere complex. 

 

Proteins in TRFL family 1 can form homo- and heterodimers    

Human TRF1 and TRF2 bind telomeric DNA as homodimers in vivo and in vitro (Bianchi 

et al., 1997; Fairall et al., 2001).  Therefore, we tested whether recombinant TRFL 

proteins could form homodimers in vitro using co-immunoprecipitation experiments.  For 

these studies, untagged 35S-methionine labeled TRFL proteins were subjected to 

immunoprecipitation in the presence of the corresponding unlabeled T7-tagged protein 

using a T7 antibody (Figure 11A and B).  Following immunoprecipitation, a homomeric 

interaction with tagged protein will allow a radiolabeled, but untagged protein to 

precipitate with the beads.  Control reactions performed in the absence of tagged 

proteins showed no interaction between the T7 antibody and untagged proteins (Figure 

11A and B, lane 2 in all panels).  However, specific homomeric protein interactions were  
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Figure 10.  Expression of TRFL genes in Arabidopsis.  RT-PCR analysis was performed on RNA isolated 

from the sources indicated.  All of the TRFL genes analyzed were found to be expressed in all of the organs 

examined.  Results from TRP1, TRFL 1, 3, 4 and 9 are shown as examples.  Transcripts from TRFL4 were 

detected only after nested PCR.   



  

 

54

detected for TRP1, TRFL1, TRFL2, TRFL4 and TRFL9 (Figure 11A, upper panels; 

Table 1).  All of these proteins are members of TRFL family 1.  In contrast, TRFL3, 

TRFL5 and TRFL6, members of TRFL family 2, did not exhibit the capacity for 

homodimerization in vitro (Figure 11A, lower panels; Table 1). 

Despite significant amino acid similarity in the TRFH domains of hTRF1 and 

hTRF2, steric hinderence prevents the formation of heterodimers (Fairall et al., 2001). 

To determine whether TRFL proteins have the capacity to heterodimerize in vitro 

additional co-immunoprecipitation experiments were performed with family 1 members 

TRP1, TRFL1 and TRFL9 (Figure 11B).  These data showed that TRP1 and TRFL1 can 

heterodimerize, as can TRP1 and TRFL9.  Interestingly, although TRP1 is closely 

related to TRFL1, it bears only limited sequence similarity to TRFL9 (38.2% identity, 

46.3% similarity).  Thus, it is conceivable that functionally distinct TRFL proteins directly 

interact in vivo. 

 

DNA binding properties of TRFL proteins 

We used electrophoretic mobility shift assays (EMSA) to ask whether TRFL proteins 

bind telomeric DNA in vitro.  Initially, several full-length recombinant proteins expressed 

in rabbit reticulocyte lysate were tested for DNA binding.  As expected from a previous 

study, full-length TRP1 bound a duplex telomeric DNA probe consisting of eight 

TTTAGGG repeats (AtTR8) and formed a discrete protein-DNA complex that migrated 

into the gel as well as complexes that stayed in the well (data not shown).  Assays with 

other full-length TRFL proteins, including TRFL4 (Figure 12A), produced complexes that 

failed to exit the well.   However, such complexes were sequence-specific (Figure 12A, 

left panel) and displayed length dependence in DNA binding (Figure 12A, right panel). 
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Figure 11.  Dimerization of TRFL proteins in vitro.  Co-immunoprecipitation experiments were conducted 

with full-length TRFL proteins expressed in rabbit reticulocyte lysate.  In each experiment, one protein was 

labeled with 35S-Met (asterisk) and the other was unlabeled, but contained a T7-tag.  Control reactions 

performed in the absence of T7-tagged proteins showed no non-specific binding of 35S-Met labeled protein 

to the beads.  Examples of co-immunoprecipitation assay results for homodimeric (A) and heterodimeric (B) 

interactions are shown. 
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To alleviate the concern of protein aggregation and to further analyze protein-DNA 

interactions, we tested whether the isolated Myb domains from TRFL proteins would 

bind telomeric DNA in EMSA.  Previous studies showed that the corresponding regions 

of hTRF1 and TRP1 and TBP1 were sufficient for specific interaction with duplex 

telomeric DNA in vitro (Chen et al., 2001; Hwang et al., 2001; Konig et al., 1998). We 

expressed the corresponding region of TRFL proteins (Myb domain and the adjacent C-

terminal region) in wheat germ extract, which we found yielded a higher amount of 

recombinant TRFL protein than rabbit reticulocyte lysate.  A summary of DNA binding 

results for the truncated TRFL proteins is shown in Table 1. 

All members of TRFL family 1 bound specifically to plant telomeric DNA (Table 

1; Figure 12A and B).  Surprisingly, the minimal number of repeats required for binding 

varied among the different proteins.  For example, TRFL1 449-553 required a minimum of 

six telomere repeats for optimal binding (Figure 12B, lane 6).  Although a weak 

interaction was detected with probes consisting of four telomere repeats (Figure 12B, 

lane 4), the complex appeared to be unstable as no discrete band was observed.  In 

contrast, binding assays with TRFL9505-620 yielded a more discrete DNA-protein complex 

with a probe containing four telomeric repeats (Figure 12C, lane 4; data not shown).  

Competition experiments revealed that the association of TRFL family 1 proteins with 

plant telomeric DNA is specific (Figure 12B, lanes 8-12 and Figure 12C, lanes 10-13; 

data not shown).  Competition was observed with probes consisting of double-stranded 

plant telomeric DNA, but not with non-specific duplex DNA or duplex DNA comprised of 

human or Paramecium telomeric repeats (Figure 12A-C; data not shown).  Assays with 

single-stranded telomeric DNA competitor also failed to compete with duplex plant 

telomeric DNA for binding (data not shown).  
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Figure 12.  DNA binding properties of Arabidopsis TRFL proteins.  EMSA was conducted with full-length 

TRFL4 expressed in rabbit reticulocyte lysate (A) or isolated C-terminal regions of TRFL1 and TRFL9 (B 

and C) expressed in wheat germ extract.  32P-labeled double-stranded DNA probes consisted of two 

(AtTR2), four (AtTR4), six (AtTR6) or eight (AtTR8) A. thaliana telomeric repeats.  EMSA controls with 

unprogrammed translation extract are shown in lane 1 of panel A, lanes 1, 3, 5 and 7 of panel B, and lanes 

1, 3, 5 and 7 of panel C.  Competition experiments were carried out with a 50X or 100X excess of unlabeled 

competitor DNA containing eight telomeric DNA repeats of A. thaliana (At), human (Hu), Paramecium (Pa) 

DNA, or a non-specific (NS) DNA sequence.  Arrows denote position of protein-DNA complexes. 
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Strikingly, no DNA binding was detected in EMSA with TRFL family 2 members 

using either full-length proteins or isolated Myb domains (plus the remaining C-

terminus) (Table 1; See Figure 13).  As for TRFL family 1 members, all of the 

recombinant proteins generated from TRFL family 2 genes expressed well in the wheat 

germ translation system and were soluble (data not shown).  Hence, the lack of 

telomeric DNA binding is likely to reflect inherent differences in the properties of the two 

TRFL families rather than protein misfolding.  We conclude that, in contrast to the 

situation with human TRF1 (Konig et al., 1998), the capacity to bind to duplex plant 

telomeric DNA in vitro is not conveyed solely by the presence of a C-terminal Myb 

domain, since all of the TRFL proteins we examined have this feature.   

 

The Myb-ext domain is necessary for telomeric DNA binding in vitro 

One intriguing difference between TRFL family 1 and 2 members is the presence of the 

Myb-ext domain in family 1 (Figure 8B).  To examine the contribution of this region in 

telomeric DNA binding, we performed EMSA on several truncated versions of TRFL1 

(Figure 13A).  TRFL1449-540 (construct C-2) contains the Myb domain and Myb-ext, but 

lacks the remainder of the C-terminus.  TRFL1449-509 (construct C-3) includes only the 

Myb domain.  EMSA showed that TRFL1449-540 formed a complex with telomeric DNA 

that resembled that of the TRFL1449-553 control (Figure 13B, lanes 2 and 3).  In contrast, 

no shifted complex was detected in the assay with TRFL1449-509 (Figure 13B, lane 4).  

One explanation for the inability of TRFL1449-509 to bind telomeric DNA is that the C-

terminus is required for proper protein folding.  To address this concern, we generated a 

construct in which the Myb domain of TRFL1 was fused directly to the C-terminus of 

TRFL3, a member of TRFL family 2 (Figure 13A; construct C-4).  No binding to  
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Figure 13.  Analysis of the Myb-ext domain in telomeric DNA binding.  (A)  Schematic representation of 

truncation and chimeric fusion constructs.  The Myb domain is highlighted in gray, the Myb-ext domain in 

black and the adjacent C-terminal region in white.  A summary of results from EMSA is shown on the right.  

(B)  EMSA reactions were performed with the constructs shown in panel A as described in Figure 12.  The 

probe was AtTR8.  Arrows denote the position of protein-DNA complexes. 
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telomeric DNA was detected with this construct (Figure 13B, lane 5).  Taken together, 

these data argue that the Myb-ext domain is required for binding to plant telomeric 

DNA.  

We next asked whether the Myb-ext domain was sufficient to confer telomeric 

DNA binding to a TRFL family 2 protein.  For this experiment, a chimeric protein was 

generated that consisted of the TRFL3 Myb domain fused to the TRFL1 Myb-ext and C-

terminal region  (Figure 13A, construct 6).  Strikingly, a DNA-protein complex was 

observed with this construct (Figure 13B, lane 7).  The capacity to bind telomeric DNA 

was not influenced by the residues C-terminal to the Myb-ext domain, as another 

chimeric construct (C-7) lacking this region also specifically bound telomeric DNA 

(Figure 13B, lanes 8-12).  This result not only indicates that the Myb-ext domain is 

required for binding to plant telomeric DNA, but it also demonstrates that when placed 

next to a Myb domain of a TRFL family 2 protein it is sufficient to convey telomeric DNA 

binding specificity.  

 

Discussion 

TRF-like proteins from Arabidopsis  

The integrity of the nucleoprotein complex known as the telomere cap is crucial for 

genome stability and for cell proliferation in eukaryotes.  Recent data indicate that 

plants display an extraordinary tolerance to telomere dysfunction, as well as distinct 

mechanisms of telomere length regulation (McKnight et al., 2002; McKnight and 

Shippen, 2004).  For example, mutations in the telomere-associated protein complex 

Ku70/80, which result in telomere shortening in yeast (Boulton and Jackson, 1996), lead 

to dramatic telomere elongation in Arabidopsis (Riha and Shippen, 2003a; Riha et al., 
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2002).  Unraveling these interesting evolutionary distinctions will require a greater 

understanding of telomere architecture in plants. 

In this study we used a genomic approach to search for Arabidopsis homologs 

of the vertebrate TRF1 and TRF2 genes.  The defining feature of this class of proteins 

is a single C-terminal domain reminiscent of the c-Myb DNA binding domain in 

oncoproteins (Fairall et al., 2001; Nishikawa et al., 2001).  Among Myb-containing 

proteins, TRF1 and TRF2 are unique in that their Myb domains harbor an additional 

telobox consensus motif, which contributes to the specific recognition of human 

telomeric DNA.  Therefore, we searched for genes harboring a single C-terminal Myb 

domain with a telobox consensus motif and identified 12 TRF-like genes. 

Since TRF1 and TRF2 are the only Myb-containing proteins known to bind 

directly to double-strand telomeric DNA in vertebrates, it was surprising to discover that 

Arabidopsis harbors so many TRFL genes.  At least four TRFL genes (TRP1/TRFL1 

and TRFL3/TRFL6) reside in regions of the Arabidopsis genome known to be 

duplicated.  Another pair, TBP1 and TRFL9, also appear to reflect a recent duplication.  

Evidence for functional redundancy was obtained when we examined T-DNA insertion 

lines that disrupted the coding region in seven of the twelve TRFL genes (TRP1, 

TRFL1, 2, 3, 4, 5, 8).  None of the single gene disruption mutants displayed defects in 

growth and development, nor showed perturbations in telomere length or genome 

stability (Vespa, Surovtseva, Karamysheva and Shippen, unpublished data).  These 

data argue that at least a subset of TRFL genes may have overlapping function.   

Nevertheless, the remarkable sequence divergence outside the DNA binding 

domain for many of the TRFL genes raises the distinct possibility of unique roles at 

telomeres or elsewhere in the Arabidopsis genome.  The telomeric DNA binding protein 
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Rap1 from budding yeast exhibits pleiotropic functions and is required for telomere 

maintenance as well as regulation of gene expression at internal sites in the genome 

(Pina et al., 2003).  Similarly, while the primary role of hTRF1 is associated with 

chromosome termini, TRF1 associates with interstitial blocks of telomeric DNA in some 

mammalian species (Krutilina et al., 2001).  Arabidopsis also contains short stretches of 

interstitial telomeric DNA (typically one to two TTTAGGG repeats), predominantly 

located in promoter regions (Regad et al., 1994) that function in the control of gene 

expression (Tremousaygue et al., 2003; Tremousaygue et al., 1999).  Thus, some 

TRFL proteins may act in transcriptional regulation in a manner similar to Rap1.  In this 

regard, it is noteworthy that TRFL family 1 members exhibit distinct minimal length 

requirements for telomeric DNA binding.  For efficient in vitro binding, the Myb domain 

of TBP1 requires only two telomeric repeats while TRP1, TRFL4 and TRFL9 require a 

minimum of four repeats, and TRFL1 and TRFL2 need six repeats (this study; Chen et 

al., 2001; Hwang et al., 2001).  These apparent distinctions in telomere sequence 

recognition could potentially impact in vivo function.  Proteins that bind efficiently to 

shorter stretches of telomeric DNA may preferentially act at promoters, while those that 

favor longer telomere tracts would have a higher probability of binding the long tracts of 

telomeric DNA associated with chromosome ends.  Preliminary localization experiments 

indicate that all of the TRFL proteins accumulate in the Arabidopsis nucleus (Vespa, 

Kato, Lam and Shippen, unpublished data), however more in-depth analysis will be 

required to determine which of these proteins associate specifically with chromosome 

ends in vivo.   

While all of the TRFL genes were identified on the basis of a C-terminal Myb-like 

domain, phylogenetic analysis and inspection of the deduced protein sequence 
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alignment indicates that they encode two distinct classes of proteins (Figure 8B).  In 

addition to the Myb domain, all of the proteins in family 1 possess two other highly 

conserved regions, a Myb-ext domain and another centrally located CD domain.  The 

CD domain was previously noted by Yaung and colleagues, who suggested that it might 

serve as a substrate for ubiquitination as it contains a region similar to the ubiquitin 

domain (Yang et al., 2003).  For vertebrate TRF1 and TRF2, the only conserved region 

outside the Myb-domain is the TRFH domain, which not only facilitates formation of 

homodimers, but also interacts with other telomere-associated factors such human 

Rap1 and Tin2 (Kim et al., 1999; Li and de Lange, 2003).  Homodimerization of hTRF1 

and hTRF2 is required for association with telomeric DNA in vivo, but these proteins 

cannot form heterodimers (Fairall et al., 2001).  In contrast, Arabidopsis TRFL family 1 

proteins form both homo- and heterodimers in vitro (Figure 11).  Whether the CD 

domain in TRFL family 1 proteins serves as an interaction interface analogous to the 

TRFH domain in hTRF1 and hTRF2 remains to be determined.  However, the capacity 

to form both homo-and heterodimers in vitro suggests that TRFL family 1 members 

could participate in complex structural and functional regulation in vivo.   

 

A novel domain is necessary for TRFL proteins to bind plant telomeric DNA 

One of the most striking differences among TRFL family 1 and family 2 proteins is the 

presence of a highly conserved Myb-ext domain in family 1.  Interestingly, the maize 

initiator-binding protein (IBP1) and the parsley BoxP-binding factor (BPF1) also harbor a 

Myb domain with an adjacent region with striking similarity to Myb-ext (Karamysheva 

and Shippen, unpublished data).  IBP1 is known to interact at the transcription start site 

of the Shrunken promoter containing a perfect telomeric repeat AGGGTTT (Lugert and 
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Werr, 1994), while BPF1 binds a series of GT-rich motifs (da Costa e Silva et al., 1993). 

Based on their similarity to the TRFL family 1 from Arabidopsis, we predict that these 

proteins may have the capacity to efficiently bind longer stretches of plant telomeric 

DNA.   

It is intriguing that the Myb domain of hTRF1 is sufficient for binding human 

telomeric repeat DNA in vitro, but this is not the case for TRFL proteins from 

Arabidopsis.  Our data demonstrate that this latter class of proteins requires a more 

extended domain for telomeric DNA interactions.  We found that Myb-ext is both 

necessary and sufficient to allow the Myb domains of TRFL proteins to bind double 

strand plant telomeric DNA.  Precisely how Myb-ext contributes to telomeric DNA 

binding is unclear.  One possibility is that it stabilizes the essential protein contacts 

between the Myb domain and telomeric DNA.   

In eukaryotes a Myb-like domain is a defining feature of double-strand telomeric 

DNA binding proteins.  The large number of such proteins in Arabidopsis confounds the 

identification of bona-fide telomere-associated factors.  Although the Myb domains of 

TRFL family 2 proteins display even greater sequence similarity to the corresponding 

region of hTRF1 and hTRF2 than TRFL family 1 proteins, TRFL family 2 proteins fail to 

bind plant telomeric DNA in vitro.  We cannot exclude the possibility that TRFL family 2 

proteins associate with telomeres in vivo through protein interactions in a manner 

similar to human Rap1.  Furthermore, it is evident that TRFL family 1 proteins are not 

the only factors capable of specific binding to double-strand plant telomeric DNA in 

vitro.  While the architecture of TRFL family 1 proteins closely resembles the known 

double-strand telomere binding proteins in higher eukaryotes, the SMH-like proteins 

from maize and Arabidopsis plant harbor a single Myb domain in their N-terminus, but 
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lack an associated Myb-ext domain, yet still bind telomeric DNA in vitro (Marian et al., 

2003; Schrumpfova et al., 2004).  Thus, TRFL family 1 and SMH-like proteins 

apparently represent two distinct classes of telomeric DNA binding proteins.  

Deciphering the functions and interactions of such proteins may provide new insight into 

the structure and complex regulation of the telomere cap. 
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CHAPTER III 

 

THE Arabidopsis POT1 AND POT2 PROTEINS FUNCTION IN TELOMERE 

LENGTH HOMEOSTASIS AND CHROMOSOME END PROTECTION* 

 

Summary 

Pot1 (Protection of telomeres 1) is a single-strand telomere binding protein that is 

essential for chromosome end protection and telomere length homeostasis.  

Arabidopsis encodes two Pot1-like proteins, dubbed AtPot1 and AtPot2.  Here we show 

that telomeres in transgenic plants expressing a truncated AtPot1 allele lacking the N-

terminal OB-fold (P1∆N) are 1 1.5kb shorter than in wild type, suggesting that AtPot1 

contributes to the positive regulation of telomere length control.  In contrast, telomere 

length is unperturbed in plants expressing the analogous region of AtPot2.  A strikingly 

different phenotype is observed in plants over-expressing the AtPot2 N-terminus 

(P2∆C), but not the corresponding region in AtPot1.  Although bulk telomeres in P2∆C 

mutants are 1–2kb shorter than in the wild-type, these plants resemble late generation 

telomerase-deficient mutants with severe growth defects, sterility and massive genome 

instability, including bridged chromosomes and aneuploidy.  The genome instability 

associated with P2∆C mutants implies that AtPot2 contributes to chromosome end 

______ 

*Reprinted with permission from Shakirov, E.V., Surovtseva, Y.V., Osbun, N., and 
Shippen, D.E.  2005.  The Arabidopsis Pot1 and Pot2 proteins function in telomere 
length homeostasis and chromosome end protection.  Molecular And Cellular Biology 
25, 7725-7733.  Copyright 2005 © by The American Society for Microbiology. 
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protection.  Thus, Arabidopsis has evolved two Pot genes that both function in telomere 

biology.  These findings provide unanticipated information about the evolution of single-

strand telomere binding proteins. 

 

Introduction 

Telomeres are the essential protein-DNA structures at the ends of linear eukaryotic 

chromosomes whose primary functions are to facilitate complete replication of the 

chromosome terminus and to sequester it from DNA repair machinery and 

exonucleolytic attack (Blackburn, 2001; Chan and Blackburn, 2002; de Lange, 2002).  

In most organisms, the DNA component of telomeres consists of tandem repeats of 

simple G-rich sequences that terminate in a single-strand 3’ extension.  The telomere 

can fold back on itself to form a t-loop, where the 3’ G-overhang invades the duplex 

region of the telomere to create a displaced loop (D-loop) consisting of single-stranded 

G-rich repeats (Griffith et al., 1999).  During S phase, the t-loop is thought to unfold, 

allowing telomerase access to the G-overhang for telomere length maintenance (Wei 

and Price, 2003).   

The G-overhang associates with single-strand specific proteins (Smogorzewska 

and de Lange, 2004; Wei and Price, 2003).  The first G-strand binding protein identified, 

telomere end binding protein (TEBP), was found in the hypotrichous ciliate Oxytricha 

nova.  TEBP is a heterodimer of α and β subunits that binds tenaciously to the 3’ 

terminus of the G-overhang (Price and Cech, 1987) via four 

oligonucleotide/oligosaccharide binding folds (OB folds) (Horvath et al., 1998).  The OB 

fold is a structurally conserved feature also associated with single-strand telomere 

binding proteins in fungi and vertebrates (Theobald and Wuttke, 2004).  The 
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Saccharomyces cerevisiae protein, Cdc13p, is the best characterized of this class of 

proteins (Evans and Lundblad, 2000; Smogorzewska and de Lange, 2004; Wei and 

Price, 2003).  A multifunctional protein, Cdc13p binds the single-strand G-overhang and 

provides telomere end protection, facilitates telomerase recruitment and repression, and 

coordinates telomeric G- and C-strand synthesis through interactions with lagging 

strand replication machinery (Wei and Price, 2003).   

A distant relative of TEBP called Pot1 was recently found in 

Schizosaccharomyces pombe (Baumann and Cech, 2001).  SpPot1 shares weak 

sequence similarity with TEBP at its N-terminus and, like Cdc13p, assumes an OB-fold 

that facilitates specific recognition of telomeric DNA (Lei et al., 2002; Lei et al., 2003).  

Deletion of SpPot1 leads to immediate and catastrophic loss of telomeric repeats and, 

to some extent, erosion of subtelomeric DNA.  SpPot1 mutants mis-segregate their 

chromosomes and ultimately fail to divide.  Cells that survive the loss of SpPot1 

undergo chromosome circularization (Baumann and Cech, 2001).  In a genetic screen 

for mitotic mutants, a sequence homologue of Pot1 was identified in Aspergillus 

nidulans (Pitt et al., 2004).  As with SpPot1 mutants, AnPot1 deficiency results in severe 

mitotic defects, as well as chromosome mis-segregation.  These data imply that Pot1 

from fungi is involved in chromosome end protection. 

Pot1 orthologs have also been identified in vertebrates (Baumann et al., 2002; 

Wei and Price, 2004) and are implicated in both telomere length regulation and 

chromosome end protection (Colgin et al., 2003; Loayza and de Lange, 2003; Veldman 

et al., 2004).  Both human and chicken Pot1 proteins localize to telomeres in vivo 

(Baumann et al., 2002; Wei and Price, 2004).  Although hPot1 binding is reduced in 

cells that have lost the G-overhang, hPot1 appears to associate with telomeres primarily 
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through interactions with proteins that bind along the length of the duplex (Loayza and 

de Lange, 2003).  The C-terminal domain of hPot1 interacts with the Pip1/PTOP protein 

linking hPot1 to the TRF1/TIN2 complex (Liu et al., 2004; Ye et al., 2004b).  In several 

studies, over-expression of full-length hPOT1 resulted in lengthened telomeres in some, 

but not all human tumor cell types, suggesting that Pot1 is a positive regulator of 

telomere length (Armbruster et al., 2004; Colgin et al., 2003; Liu et al., 2004). However, 

in another study over-expression of a dominant negative C-terminal fragment of hPot1 

led to extensive telomerase-dependent telomere lengthening (Loayza and de Lange, 

2003), implying that hPot1 serves as a negative regulator of telomere length. In support 

of this conclusion, RNAi-mediated knock down of hPot1 resulted in longer telomeres 

(Veldman et al., 2004; Yang et al., 2005; Ye et al., 2004b), and recent in vitro studies 

suggest that hPot1 negatively regulates telomerase activity (Kelleher et al., 2005). 

hPot1 has also been implicated in chromosome end protection (Veldman et al., 2004).  

Together, these data indicate that hPot1, like Cdc13p, is a multifunctional protein. 

Here we investigate the role of Pot proteins in Arabidopsis thaliana.  Arabidopsis 

has emerged as a powerful system for telomere biology (Riha and Shippen, 2003b).  A 

genetically tractable higher eukaryote, Arabidopsis harbors short telomere tracts (2-5 kb 

in the Columbia ecotype) (Shakirov and Shippen, 2004) and displays an unusually high 

tolerance to the genome instability that accompanies telomere dysfunction (Riha et al., 

2001).  Although relatively little is known about telomere-associated proteins in plants, 

Arabidopsis is distinguished from many other model organisms in that it harbors two 

Pot1-like genes (Baumann et al., 2002).  In this study we show that AtPot1 and AtPot2 

are ubiquitously expressed at a low level.  We also present data from transgenic plants 

establishing a function for both proteins in telomere length maintenance, and a role for 
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AtPot2 in chromosome end protection.  These findings argue that the known functions 

of single-strand telomere binding proteins have been segregated into two distinct 

polypeptides in Arabidopsis.  

 

Materials and methods 

Plant materials, construction of AtPot1 and AtPot2 mutant alleles and transformation 

Wild type Arabidopsis seeds were purchased from the Arabidopsis Biological Resource 

Center (Ohio State University, Columbus), cold-treated overnight at 4°C, then placed in 

the environmental growth chamber and grown under a 16/8-hr light/dark photoperiod at 

23°C.  To obtain constructs for over-expression, regions of AtPot1 and AtPot2 cDNAs 

corresponding to the full-length, ∆C (amino acids 1-175), and ∆N (amino acids 176-467 

for AtPot1 and 176-454 for AtPot2) polypeptides were amplified by PCR and then 

inserted into a binary vector pCBK05 (Riha et al., 2002) to allow expression from a 35S 

CaMV promoter.  The constructs were introduced into Agrobacterium tumefaciens strain 

GV3101.  Transformation of wild type plants was performed by the in planta method 

(Riha et al., 2002).  T1 primary transformants were selected on 0.5 BM medium 

supplemented with 20 mg/l of phosphinothricine (Crescent Chemical), genotyped and 

analyzed by RT-PCR for transgene expression. 

 

cDNA synthesis 

Total RNA was extracted from 0.1–0.5 g of plant tissue using Tri Reagent solution 

(Sigma). AtPot1 and AtPot2 cDNAs were synthesized from total leaf RNA using 

Superscript III reverse transcriptase (Gibco).  Primers complementary to the stop 

codons of each cDNA were incubated with 2 µg of total RNA in the supplied buffer at 



  

 

71

65°C for 5 min.  Reverse transcription was carried with 100U of Superscript III at 55°C 

for 50 min.  RNA was degraded with RNase H (USB).  The coding regions of AtPot1 and 

AtPot2 were then amplified with Turbo-Pfu polymerase (Stratagene).  PCR products 

were cloned and verified by sequencing. The sequences of AtPot1 and AtPot2 cDNA 

have been deposited into GenBank, accession numbers AY884593 and AY884594, 

respectively. 

 

TRF analysis, TRAP assays, cytogenetics and fusion PCR 

DNA from individual whole plants was extracted as described (Cocciolone and Cone, 

1993).  TRF analysis was performed with Tru1I (Fermentas) restriction enzyme and 32P 

5' end-labeled (T3AG3)4 oligonucleotide as a probe (Fitzgerald et al., 1999).  TRAP 

assays were performed on plant tissues as described in (Fitzgerald et al., 1996).  

Anaphase spreads were prepared from pistils and stained with DAPI as described  

(Riha et al., 2001).  Telomere fusion PCR was performed as previously described 

(Heacock et al., 2004). Briefly, DNA from mutant or wild-type plants was PCR-amplified 

using primers for unique subtelomeric sequences that were directed towards telomeres. 

PCR products were resolved on an agarose gel, transferred to a nitrocellulose 

membrane and hybridized with 32P 5’ end-labeled (T3AG3)4 oligonucleotide probe. 

 

Results 

Identification of two Pot genes in Arabidopsis 

Two genes encoding putative Pot1 orthologs from Arabidopsis thaliana were previously 

identified using the S. pombe Pot1 protein sequence (Baumann et al., 2002) as the 

query in a BLAST search of the Arabidopsis genome database.  Arabidopsis genes 
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At2g05210 and At5g06310 showed strong similarity with the N-terminal Telo_bind_N 

domain, pfam02307, (Marchler-Bauer and Bryant, 2004) of the Oxytricha nova TEBP α 

subunit and with the corresponding regions in S. pombe and human Pot1 proteins 

(Figure 14A).  The Arabidopsis genes were designated AtPot1 and AtPot2, respectively.  

RT-PCR analysis of mRNA from leaves, flowers, roots, stems and callus revealed that 

AtPot1 and AtPot2 mRNAs are ubiquitously expressed, although both transcripts are 

present in low amounts (Figure 14B).  This expression pattern differs from AtTERT 

mRNA, which is confined to proliferating tissues (Fitzgerald et al., 1996).  Human Pot1 

mRNA is alternatively spliced (Baumann et al., 2002) and recent RT-PCR analysis 

suggests that AtPot1 and AtPot2 are also subject to alternative splicing (Tani and 

Murata, 2005).  However, the variant splicing in Arabidopsis is not tissue-specific and all 

but one alternatively spliced forms of the AtPot1 and AtPot2 mRNAs are predicted to 

result in prematurely truncated proteins.  The functional relevance of these truncated 

isoforms is unclear. 

The N-termini of both AtPot1 and AtPot2 are predicted to assume two OB-folds 

(M. Lei, personal communication).  The OB-fold domains in AtPot1 and AtPot2 are 31% 

identical and 47% similar to each other (Figure 14C).  Outside this domain, the identity 

is 39% (55% similarity).  As expected, both Arabidopsis proteins are more closely 

related to the mammalian orthologs than to Pot1 proteins from fungi.  The N-terminus of 

AtPot1 is 17% identical and 33% similar to the corresponding region of hPot1, while the 

N-terminus of AtPot2 is 17% identical and 29% similar.  Outside of this region, the 

similarity is lower (Figure 14C).  Notably, both Arabidopsis genes encode proteins that 

are significantly smaller in size than their mammalian and fungal counterparts. 
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Figure 14.  Two Pot genes in Arabidopsis.  (A) Amino acid alignment of N-terminal portions of Pot1 

proteins. Hs, Homo sapiens; Gg, Gallus gallus (chicken), Xt, Xenopus tropicalis (accession NP_998876); 

At1, AtPot1; At2, AtPot2. Residues conserved in at least two sequences are highlighted in light gray.  

Residues conserved in at least four sequences are highlighted in dark gray.  Residues conserved in all five 

sequences are highlighted in pink. Consensus sequence is shown below alignment.  (B) RT-PCR of AtPot1 

(upper panel) and AtPot2 (lower panel) mRNAs in different Arabidopsis tissues. M, molecular weight 

markers; F, flowers; S, stems; RL, rosette leaves; CL, cauline leaves; R, roots; C, callus. (C) Sequence 

similarity between AtPot1 and AtPot2 proteins and human Pot1 protein.   
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Over-expression of AtPot1 and AtPot2 in transgenic Arabidopsis 

Pot1 proteins from vertebrates and fission yeast specifically bind telomeric DNA in vitro 

(Baumann and Cech, 2001; Loayza et al., 2004).  To determine whether AtPot1 and 

AtPot2 display affinity for the plant telomeric DNA sequence, we expressed 

recombinant forms of the Arabidopsis proteins in E. coli and in baculovirus.  Most of the 

protein was insoluble, despite the application of many different expression conditions; 

however, the small fraction of soluble AtPot1 and Atpot2 protein that could be obtained 

displayed specific, but very weak affinity for single-strand plant telomeric DNA (data not 

shown).  This observation suggests that AtPot1 and AtPot2 have the capacity to 

associate with telomeric DNA.  Unfortunately, the inability to obtain sufficient quantities 

of soluble recombinant protein has stymied further biochemical analysis.   

To investigate the function of AtPot1 and AtPot2, we employed a transgenic 

approach.  When this study was initiated, no T-DNA disruption lines were available for 

either gene in the annotated databases of several major Arabidopsis insertional  

mutagenesis facilities.  Moreover, our attempts to reduce AtPot1 and AtPot2 protein 

levels by RNAi were unsuccessful.  Therefore, we examined the consequences of over-

expressing full-length AtPot1, AtPot2 or C-terminal and N-terminal truncation 

derivatives.  This strategy has been previously employed to investigate the function of 

human Pot1 (Colgin et al., 2003; Loayza and de Lange, 2003). 

The C-terminal fragments of AtPot1 and AtPot2, dubbed P1∆N (residues 176-

467) and P2∆N (residues 176-454), respectively, roughly correspond to the hPot1∆OB 

construct (Loayza and de Lange, 2003).  The N-terminal AtPot1 and AtPot2 fragments, 

P1∆C and P2∆C (residues 1-175), span the remainder of the proteins and contain the 
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first OB-fold.  Previous studies indicate that the corresponding region in S. pombe Pot1 

is sufficient for telomeric DNA binding in vitro (Lei et al., 2002).   

To ensure robust expression in transgenic plants, the AtPot1 and AtPot2 

constructs were cloned downstream of the CaMV 35S promoter and were transformed 

into Arabidopsis.  Over-expression of transgene mRNA was verified in all the 

transformants by RT-PCR with N- and C-terminal primer pairs (see below and data not 

shown).  Ectopic expression of full-length AtPot1 or AtPot2 proteins yielded no defects 

in growth or development, and telomeres were indistinguishable from wild type controls 

as assayed by terminal restriction fragment (TRF) analysis (Figure 15A and B).  The 

modest variability in telomere length associated with over-expression of full-length 

AtPot1 and AtPot2 falls within the wild type range of 2-5kb for Arabidopsis plants of the 

Columbia ecotype (Shakirov and Shippen, 2004).  The longest telomeres in wild-type 

typically span 4.0-5.5 kb and the shortest 1.6-2.5 kb (Richards and Ausubel, 1988; 

Shakirov and Shippen, 2004).  The precise range is largely determined by the size of 

the telomere tract in the parent (Shakirov and Shippen, 2004).  Transgenic plants over-

expressing the AtPot1 N-terminus (P1∆C) or the AtPot2 C-terminus (P2∆N) also 

appeared wild type and showed no telomere perturbations when subjected to TRF 

analysis (Figure 15C and D).  Although the mRNAs for these constructs were highly 

expressed in transgenic plants, we could not verify that this was true for the 

corresponding polypeptides.  Therefore, the lack of a phenotype in transgenic lines 

expressing full-length AtPot1, AtPot2, P1∆C or P2∆N may reflect poor expression of 

these proteins. Alternatively, over-expression of these constructs may simply have no 

detrimental consequences for Arabidopsis. 
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Figure 15.  Over-expression of full-length AtPot1 and AtPot2 or the P1∆C and P2∆N derivatives in 

Arabidopsis does not alter telomere length.  TRF analysis was performed on DNA extracted from whole 

primary transformants (T1) shown by RT-PCR to express full-length AtPot1 (A), full-length AtPot2 (B), 

P1∆C (C) or P2∆N (D). Telomere length is 2-5 kb in wild-type (WT) Arabidopsis plants of Columbia ecotype 

(Shakirov and Shippen, 2004). 
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Plants over-expressing P1∆N and P2∆C, by contrast, displayed reproducible, 

aberrant phenotypes, and these plants were evaluated further.  All of the plants over-

expressing P1∆N (n = 14) (Figure 16A) were fertile and morphologically 

indistinguishable from wild type.  While TRF analysis revealed that many primary 

transformants (T1) had wild type telomere length (Figure 16B, lanes 2 and 4), a 

significant percentage (~21%) displayed telomeres that were 1-1.5kb shorter than wild 

type.  In such cases, the longest telomeres averaged 3.5 kb (Figure 16B, lanes 1 and 

3).   

Subsequent generations of self-pollinated mutants displayed either very limited 

(≤300 bp) or no additional telomere shortening (Figure 16C and data not shown), 

indicating that a new set point for telomere length was reached.  Interestingly, in a 

subset of second generation progeny (T2), telomeres occupied a much broader size 

range, suggesting that a fraction of telomeres had returned to the wild type length 

(Figure 16C, lanes 4, 5, 6 and 8), even though RT-PCR indicated that these plants 

continued to express the transgene mRNA (data not shown).  A somewhat similar 

unstable phenotype is associated with clonal human cell lines over-expressing full-

length hPot1 (Colgin et al., 2003).  The high degree of sibling-to-sibling variation in 

telomere length observed with P1∆N mutants in T2 is not seen in wild type Arabidopsis 

(Shakirov and Shippen, 2004), and implies that the loss of telomeric DNA is reversible.  

We conclude that AtPot1 contributes to telomere length homeostasis, and since 

telomere shortening was detected, our data suggest that AtPot1 is a positive regulator 

of telomere length.  
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Figure 16.  Over-expression of P1∆N leads to telomere shortening.  (A) Schematic diagram of the P1∆N 

transgene and the corresponding endogenous AtPot1 allele (left); RT-PCR results of P1∆N expression in 

transgenic plants 1-3 from panel B (right). Primers 1 and 2 are specific for the endogenous AtPot1 mRNA.  

After 40 cycles, AtPot1 mRNA is amplified in all plants equally well (lower panel, lanes 1-3 and WT).  

Primers 3 and 4 amplify both the P1∆N transgene and the endogenous AtPot1 allele.  After 20 PCR cycles, 

P1∆N mRNA is amplified only in the transgenic plants (upper panel, lanes 1-3), but not in the wild type 

plant, (upper panel, WT), confirming that the P1∆N transgene is over-expressed.  (B) and (C) TRF analysis 

of P1∆N mutants.  (B) Examples of P1∆N primary transformants (T1) displaying wild type telomere lengths 

(lanes 2 and 4), or shortened telomeres (lanes 1 and 3) are shown.  (C) Analysis of the second generation 

(T2) progeny from transformants #1 (lanes 1-5) and #3 (lanes 6-9) from panel B.  For most T2 plants, no 

additional telomere shortening was observed (lanes 1-3, 7 and 9), but in some siblings telomere tracts were 

extended to resemble wild type (lanes 4 and 5, 6 and 8).   
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Over-expression of P2∆C results in severe morphological defects and telomere 

dysfunction 

As with P1∆N mutants, the majority of P2∆C transformants (n = 52) (Figure 17A) were 

normal in appearance.  However, a substantial fraction (~10%) showed distinct 

morphological defects at two-three weeks of age (Figure 17B and C).  Such plants 

exhibited a “terminal” morphological phenotype similar to that of late generation (G7-9) 

telomerase-deficient plants (Riha et al., 2001), with delayed growth (Figure 17B) and 

flowering time, and abnormally small rosette leaves that were wrinkled and curled-down 

(Figure 17C).  Although numerous small siliques formed, they were sterile and 

produced no seeds (data not shown).  Several attempts to make reciprocal crosses of 

the mutants to wild type failed, consistent with severe anomalies in both male and 

female reproductive systems.   

Over-expression of P2∆C also resulted in an altered telomere phenotype in 

plants that displayed morphological defects.  TRF analysis of such mutants revealed 

telomeres that were significantly shorter than in wild type, with some transformants 

losing between 1 and 2 kb of telomeric sequence in a single generation (Figure 17D, 

lanes 1, 3, and 5).  As with P1∆N, not all primary P2∆C transformants had shortened 

telomeres (Figure 17D, lanes 2, 4 and 6); however, this phenotype was reproducible 

and exclusively associated with mutants that displayed morphological defects and 

sterility.  The telomere shortening associated with P2∆C and P1∆N over-expression is 

not due to inactivation of telomerase. TRAP assays revealed that telomerase is 

biochemically active in both mutants (Figure 18).  Furthermore, relative to first 

generation telomerase mutants, which lose 200-500bp of telomeric DNA (Riha et al., 

2001a), depletion of telomeric DNA in P2∆C and P1∆N transgenic plants is greater by  
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Figure 17.  Morphological defects and telomere shortening in mutants over-expressing P2∆C.  (A) 

Schematic of the P2∆C transgene and the corresponding endogenous AtPot2 allele (left); RT-PCR analysis 

of P2∆C expression in transgenic plants 1-4 from panel D (right).  RT-PCR reactions were conducted as 

described in Figure 16.  (B) and (C) Growth and developmental defects in P2∆C mutants.  (B) At 2-3 weeks 

of age, growth of several independent transgenic mutants (M) was delayed relative to wild type (WT).  (C)  

Such mutants displayed severe defects in leaf development.  (D) TRF analysis of P2∆C transformants.  

Primary transformants (T1) with a wild type appearance displayed wild type telomere length (lanes 2, 4 and 

6), whereas plants that exhibited morphological defects had shortened telomeres (lanes 1, 3 and 5).
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Figure 18.  TRAP assays of wild type and mutant Arabidopsis.  Extracts from cauliflower inflorescence and 

wild type Arabidopsis flowers serve as positive controls and wild type Arabidopsis leaves as a negative 

control for telomerase activity.  P2∆C and P1∆N mutants have wild-type levels of telomerase activity in 

vitro. 
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2-3 fold and 1.5 fold, respectively (Figures 16 and 17).  Thus, the telomeres in both 

mutants appear to suffer additional replication defects or are exposed to nuclease 

attack.   

In Arabidopsis the severe morphological abnormalities associated with 

dysfunctional telomeres are accompanied by genome instability (Riha et al., 2001).  

Therefore, transgenic plants were subjected to cytogenetic analysis of mitotic cells in 

the pistil.  No cytogenetic defects were observed in plants over-expressing full-length 

AtPot1, full-length AtPot2, P1∆C, P2∆N or P1∆N (Table 2 and data not shown), 

consistent with their wild type appearance.  Cytogenetic analysis was also performed on 

three of the P2∆C mutants with morphological defects that were capable of producing 

flowers (Figure 19).  In each case, we detected profound genome instability.  Up to 8% 

of all mitotic figures contained anaphase bridges (Figures 19B and C; Table 2), 

consistent with the formation of dicentric chromosomes as a result of end-to-end 

telomere fusions.  Remarkably, 50% of all anaphases with bridged chromosomes 

contained two or more fusions (Figure 19D and E), and in several cells a majority of the 

chromosomes appeared to be fused (Figure 19F).  In some instances, large DNA 

fragments, possibly entire chromosomes, lagged behind (Figure 19G).  Many mitotic 

cells displayed other defects, including unequal chromosome segregation that would 

result in aneuploidy in daughter cells (Figure 20H).  Similar mitotic abnormalities, 

including increased chromosome instability and segregation errors, are associated with 

A. nidulans Pot1 mutants (Pitt et al., 2004) and human cells with knocked-down hPot1 

expression (Veldman et al., 2004).   

To ask whether the cytological defects associated with P2∆C mutants involve 

dysfunctional telomeres, we performed telomere fusion PCR using primers directed  
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Table 2. Frequency of chromosome fusions in AtPot1 and AtPot2 mutants 

Number of anaphases Genotype Number of 

analyzed pistils with bridges total scored 

 

% bridges 

WT 4 0 291 0 

P1∆N 4 0 307 0 

P2∆C 

Plant 1 

Plant 2 

Plant 3 

 

2 

2 

1 

 

9 

11 

4 

 

122 

145 

51 

 

7.4 

7.6 

7.8 
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Figure 19.  Cytogenetic defects in mutants over-expressing P2∆C.  Cytogenetic analysis was performed on 

actively dividing mitotic tissues of pistils from wild type (A) or P2∆C mutants (B-H) using DAPI.  Anaphase 

bridges, lagging chromosomes and aneuploidy are evident in P2∆C mutants. 
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outward from the unique subtelomeric sequences found on Arabidopsis chromosomes 

(Heacock et al., 2004).  In this assay, PCR products are generated when telomeres 

form covalent associations (Figure 20A).  PCR reactions were performed with seven 

different primer combinations directed at subtelomeric sequences.  Primer binding sites 

ranged from 200bp (5R) to 950bp (3R) upsteam of the telomere repeats.  Strikingly, in 

contrast to PCR reactions with DNA from G7 tert mutants, which display a comparable 

number of anaphase bridges to the most severely affected P2∆C mutants (Heacock et 

al., 2004) (Figure 20B), only a few PCR products were generated from P2∆C DNA with 

a subset of primer combinations (Figure 20B).  The rare products that could be cloned 

from these reactions (i.e. 3L + 3R reaction) contained DNA derived from centromeric 

regions, which harbor a short stretch of telomeric DNA sequence.  This observation 

implies that anaphase bridges in P2∆C mutants do not involve intact telomeres.  We 

speculate that the failure to amplify chromosome fusion junctions using subtelomeric 

primers reflects extensive nucleolytic processing of telomeres prior to end joining.  

Chromosomal termini in S pombe pot1 mutants lose more than 5kb of DNA prior to 

circularization (Baumann and Cech, 2001).  If this occurs in Arabidopsis P2∆C mutants, 

the binding sites for the primers used in our assay would be absent. Alternatively, 

chromosomes in Arabidopsis P2∆C mutants could be held together by non-covalent 

interactions.  Taken together, our data argue that AtPot2 contributes to the protective 

cap on the chromosome terminus, and that loss of this function triggers telomere 

shortening, chromosome fusions and massive genome instability. 
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Figure 20.  Telomere fusion PCR analysis of P2∆C and tert mutants.  (A) Schematic diagram of telomere 

fusion PCR.  Primers specific to unique subtelomeric sequences (white, black and diagonally striped boxes) 

are directed towards telomeres and will only amplify a product if telomeres form covalent attachments with 

each other. (B) Primers specific for the right arm of chromosome 4 (4R) and left arm of chromosome 3 (3L), 

4R and 5L, 4R and 5R, 3L and 3R, 3L and 5R, 5R and 5L, and 1L and 2R were used in the assay to 

amplify chromosome fusion products from DNA extracted from tert, wild-type, P2∆C and P1∆N plants.   
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Discussion 

Single-strand telomere binding proteins are found in a diverse array of single-celled and 

multicellular eukaryotes.  Cdc13p from S. cerevisiae provides the best studied example.  

Its functions include essential contributions to telomere length homeostasis and 

chromosome end protection, roles that are mediated through a plethora of protein 

interactions at the telomere (Evans and Lundblad, 2000; Wei and Price, 2003).  Other 

proteins from this group include TEBP from Oxytricha nova and the Pot1 proteins from 

S. pombe, A. nidulans, chicken and humans.  Although it is not possible to explore the 

role of TEBP in vivo since Oxytricha is not a genetically tractable organism, TEBP’s 

exquisite specificity for the 3’OH on the G-overhang (Horvath et al., 1998) argues 

strongly for a function in telomere end protection.  Like TEBP, S. pombe Pot1 

specifically binds single-strand G-rich telomeric DNA, albeit not with a correspondingly 

strong preference for the 3’OH (Baumann and Cech, 2001; Lei et al., 2002).  Analysis of 

S. pombe and A. nidulans Pot1 deletion mutants have established a critical role for 

these proteins in chromosome end protection (Baumann and Cech, 2001; Pitt et al., 

2004). Moreover, recent data suggest that SpPot1 may also contribute to telomere 

length regulation (Trujillo et al., 2005), and in vivo studies show that it is capable of 

binding differentially to its telomeric DNA substrate in a manner that can expose or 

block the terminus from elongation by telomerase (Lei et al., 2004).  hPot1 has also 

been implicated in both telomere length regulation (Colgin et al., 2003; Loayza and de 

Lange, 2003) and chromosome end protection (Veldman et al., 2004).  Here, we 

establish that Arabidopsis harbors two Pot proteins that both contribute to telomere 

biology. 
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AtPot1 contributes to telomere length homeostasis 

Our data provide strong evidence that the AtPot1 protein plays a role in telomere length 

regulation.  First generation transgenic plants over-expressing the AtPot1 C-terminus 

(P1∆N) harbor telomeres that are up to 1.5 kb shorter than wild type.  In contrast to 

telomerase mutants, telomere length does not decline further in subsequent 

generations.  Instead, in several second generation transformants, many telomeres 

returned to wild type length, indicating that AtPot1 influences telomere length 

homeostasis.  Since the truncated AtPot1 polypeptide (P1∆N) lacks the OB fold-

containing N-terminus, its effect is unlikely to be mediated by direct DNA binding.  One 

possibility is that P1∆N dislodges AtPot1-interacting proteins involved in telomerase 

recruitment, thereby disturbing telomere length homeostasis and tipping the balance in 

favor of telomere shortening.  Alternatively, as has been shown for the human P1∆OB 

protein (Loayza and de Lange, 2003), this truncated Arabidopsis polypeptide may 

remain associated with telomeres via protein-protein interactions, directly influencing 

the telomere-counting mechanism proposed to regulate the length of the telomere tract 

(Marcand et al., 1997b; Smogorzewska et al., 2000b).  Although one can envision ways 

in which AtPot1 could act as a negative regulator of telomere homeostasis, the simplest 

explanation is that AtPot1 is a positive regulator of telomere length.  AtPot2 may also 

contribute to the positive regulation of telomere length, as P2∆C mutants display shorter 

telomeres.  However, our data suggest that AtPot1 may be specialized to serve this 

role. 

One surprising outcome of our study is that telomeres in plants over-expressing 

P1∆N suffer the opposite fate of telomeres in human cells that over-express the 

corresponding region of hPot1 (P1∆OB) (Colgin et al., 2003; Kelleher et al., 2005; Loayza 
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and de Lange, 2003).  Disparate behavior of telomere proteins is not without precedent.  

The yeast Rif1 protein regulates telomere length in wild type cells (Hardy et al., 1992), 

while human Rif1 is only present at dysfunctional telomeres (Silverman et al., 2004).  

Similarly, Ku deficiency in yeast leads to telomere shortening (Boulton and Jackson, 

1998; Gravel et al., 1998; Polotnianka et al., 1998), but in Arabidopsis culminates in 

significant telomere elongation (Gallego et al., 2003; Riha et al., 2002).  Most notably, 

no sequence homologues for hPot1 interacting factors Pip1/PTOP and TIN2 exist in the 

Arabidopsis and S. pombe genomes.  Thus, a different ensemble of Pot-associated 

proteins remains to be discovered in these organisms. 

 

AtPot2 functions in chromosome end protection 

Our data implicate AtPot2 in chromosome end protection.  A significant fraction of 

primary transformants over-expressing the AtPot2 N-terminus (P2∆C) resemble 

terminal generation telomerase-deficient mutants with severe morphological defects, 

sterility and a high incidence of anaphase bridges (Riha et al., 2001).  It is possible that 

P2∆C competes with the endogenous AtPot2 for telomeric DNA, dislodging AtPot2 

altogether or reducing the affinity of AtPot2-interacting factors involved in chromosome 

end protection.  A more definitive understanding of the mechanism of both AtPot1 and 

AtPot2 dominant-negative alleles will require localization of these proteins and their full-

length counterparts to telomeres in vivo.  

 The phenotype of P2∆C mutants is remarkably similar to loss-of-function pot1 

mutants in S. pombe (Baumann and Cech, 2001; Pitt et al., 2004).  Both mutants 

experience an immediate onset of cytogenetic defects including chromosome 

missegregation and chromosome fusion.  Both lose telomeric DNA.  However, unlike 
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the situation in the S. pombe deletion strain, where the entire telomere tract and several 

kilobases of subtelomeric DNA are lost within 10 cell generations (Baumann and Cech, 

2001), bulk telomeres decline by only 1-2 kb in Arabidopsis P2∆C mutants and do not 

reach the critically shortened threshold defined for Arabidopsis tert mutants (Heacock et 

al., 2004).  Interestingly, however, we failed to amplify chromosome fusion junctions 

containing telomeric DNA in P2∆C mutants.  One interpretation of these data is that the 

subset of chromosomes with dysfunctional telomeres that are targeted for end-joining 

reactions are first subjected to extensive exonucleolytic degradation.   

The relatively modest decline of bulk telomere length in P2∆C mutants may 

reflect a limited opportunity for nuclease action on Arabidopsis telomeres, as telomeres 

are confined to the nucleolus throughout most of the mitotic and meiotic cell cycles 

(Armstrong et al., 2001; Fransz et al., 2002).  Alternatively, the presence of endogenous 

AtPot1 and AtPot2 may offer partial protection to the chromosome terminus.  A third 

possibility is that AtPot2 exerts its capping function in concert with a TRF2-like protein.  

hPot1 associates with TRF2, a protein essential for chromosome end-protection in 

human cells (Ye et al., 2004a).  A number of TRF-like proteins have been described in 

Arabidopsis (Chen et al., 2001; Hwang et al., 2001; Karamysheva et al., 2004).  One or 

more of these could act in the same pathway with AtPot2 to facilitate chromosome 

capping. 

 

Evolution of Pot proteins 

The long delay in the identification of single-strand telomere binding proteins in 

multicellular eukaryotes is due to the rapid divergence of this class of proteins. 

Arabidopsis may not be unique in possessing more than one Pot1 gene.  Database 
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searches reveal the presence of two relatively similar Pot1 genes in mouse, and the 

ciliate Euplotes crassus genome encodes two highly divergent Pot1-like proteins (Wang 

et al., 1992).  Moreover, analysis of plant EST databases showed that several species 

harbor multiple Pot genes, which like the AtPot1 and AtPot2, exhibit marked sequence 

divergence (E. Shakirov and D. Shippen, unpublished data).  The striking sequence 

divergence of the Arabidopsis Pot1 and Pot2 genes, coupled with the genetic data 

presented here, argue that these proteins make distinct contributions to telomere 

biology.  Hence, further analysis of these proteins should provide useful insight into the 

functions and evolution of single-strand telomere binding proteins. 
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CHAPTER IV 
 

 
Arabidopsis POT1 ASSOCIATES WITH THE TELOMERASE RNP AND IS 

REQUIRED FOR TELOMERE MAINTENANCE* 

 

Summary 

POT1 is a single-copy gene in yeast and humans that encodes a single-strand telomere 

binding protein required for chromosome end protection and telomere length regulation.  

In contrast, Arabidopsis harbors multiple, divergent POT-like genes that bear signature 

N-terminal OB-fold motifs, but otherwise share limited sequence similarity.  Here we 

report that plants null for AtPOT1 show no telomere deprotection phenotype, but rather 

exhibit progressive loss of telomeric DNA.  Genetic analysis indicates that AtPOT1 acts 

in the same pathway as telomerase.  In vitro levels of telomerase activity in pot1 

mutants are significantly reduced and are more variable than wild type.  Consistent with 

this observation, AtPOT1 physically associates with active telomerase particles.  

Although low levels of AtPOT1 can be detected at telomeres in unsynchronized cells 

and in cells arrested in G2, AtPOT1 binding is significantly enhanced during S-phase 

when telomerase is thought to act at telomeres.  Our findings indicate that AtPOT1 is a 

novel accessory factor for telomerase required for positive telomere length regulation,  

 

______ 

*Reprinted by permission from Macmillan Publishers Ltd: EMBO J 26, 3653-3661, 
Surovtseva, Y.V., Shakirov, E.V., Vespa, L., Osbun, N., Song, X., and Shippen, D.E.  
2007.  Arabidopsis POT1 associates with the telomerase RNP and is required for 
telomere maintenance.  Copyright 2004. 
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and underscore the coordinate and extraordinarily rapid evolution of telomere proteins 

and the telomerase enzyme. 

 

Introduction 

Telomeres stabilize eukaryotic genomes by facilitating the complete replication of the 

chromosome terminus, and sequestering the ends from recognition by DNA damage 

checkpoint machinery that would otherwise lead to inappropriate engagement of 

recombination and DNA repair activities.  Telomeres typically consist of simple G-rich 

repeats that terminate in a single-strand 3’ extension, termed the G-overhang.  The G-

overhang serves as the substrate for the telomerase ribonucleoprotein (RNP) reverse 

transcriptase, which replenishes telomeric DNA.  How telomerase engages the 

telomere is unknown, but its activity is modulated in cis by cell cycle-regulated 

interactions with resident telomeric DNA binding proteins (reviewed in Collins, 2006). 

G-strand binding proteins play a crucial role in regulating telomerase access to 

telomeres, and in controlling other telomere-associated activities.  The best 

characterized of these is Cdc13p from budding yeast (Nugent et al., 1996).  Typical of 

this class of proteins, Cdc13p binds telomeric DNA via an oligonucleotide-

oligosaccharide binding fold (OB-fold) (Mitton-Fry et al., 2002).  Cdc13p is a 

multifunctional protein (reviewed in Lustig, 2001).  It dynamically interacts with other 

constituents of the chromosome terminus and contributes to positive and negative 

regulation of telomerase, coupling of leading and lagging strand DNA synthesis, and 

protection of the C-rich strand of the chromosome terminus against nucleolytic attack.   

In Schizosaccharomyces pombe and in higher eukaryotes the presumed 

ortholog of Cdc13p is POT1 (Protection of telomeres) (Baumann and Cech, 2001).  
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Although most organisms harbor only a single POT1 gene, ciliates, mouse and 

Arabidopsis possess at least two of these (Hockemeyer et al., 2006; Jacob et al., 2006; 

Shakirov et al., 2005; Wang et al., 1992; Wu et al., 2006).  POT1 binds telomeric DNA 

in vitro (Baumann and Cech, 2001), but its attachment to the chromosome terminus in 

vivo is mediated primarily through protein interactions in the shelterin complex (de 

Lange, 2005; Loayza and de Lange, 2003).  Recent studies indicate that POT1 function 

is conveyed through its association with TPP1, another OB-fold containing protein 

(Houghtaling et al., 2004; Liu et al., 2004; Wang et al., 2007; Xin et al., 2007; Ye et al., 

2004b).  

The co-crystal structure of human POT1 bound to its DNA substrate indicates 

that the 3’ terminal residues of the DNA are sequestered within the protein binding 

pocket, implying that hPOT1 functions to protect against nucleases and limit 

accessibility to telomerase (Lei et al., 2004).  Consistent with this prediction, hPOT1 

negatively regulates telomerase activity in vitro; this inhibition requires the DNA binding 

activity of hPOT1 (Kelleher et al., 2005; Lei et al., 2005).  In vitro studies suggest that 

hPOT1 could also promote telomerase action at the chromosome terminus.  Disruption 

of G-quartet structures by hPOT1 facilitates elongation by telomerase in vitro (Zaug et 

al., 2005).  Moreover, hPOT1 stimulates unwinding of telomeric DNA by WRN and BLM 

helicases (Opresko et al., 2005), and depending on the location of POT1 binding site, 

hPOT1 can improve telomerase activity and processivity in vitro (Lei et al., 2005).   

Genetic analysis of POT1 in fission yeast and vertebrates reveals a complex 

role for this protein in telomere length control.  Human cells with reduced levels of POT1 

display telomere elongation (Veldman et al., 2004; Yang et al., 2005; Ye et al., 2004b) 

as do mice conditionally null for POT1a (Wu et al., 2006).  Similarly, reduction of 
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telomere-bound POT1 in S. pombe results in dramatic telomere elongation (Bunch et 

al., 2005).  In contrast, over-expression studies implicate S. pombe and human POT1 in 

the positive regulation of telomere length (Armbruster et al., 2004; Bunch et al., 2005; 

Colgin et al., 2003; Liu et al., 2004).  Thus, like Cdc13p, POT1 may contribute to both 

positive and negative regulation of telomere length. 

POT1 is also necessary for chromosome end protection.  S. pombe pot1- 

mutants suffer immediate and catastrophic loss of telomeric repeats, erosion of 

subtelomeric DNA and chromosome mis-segregation (Baumann and Cech, 2001).  

Depletion of vertebrate POT1 leads to a DNA damage response at telomeres (Churikov 

et al., 2006; Hockemeyer et al., 2005), and in chicken cells results in a rapid G2 cell 

cycle arrest (Churikov et al., 2006).  Other studies of POT1 depleted mammalian cells 

reveal genome instability, senescence, and apoptosis (Veldman et al., 2004; Yang et 

al., 2005).  The mouse POT1a and POT1b genes appear to be partially redundant for 

chromosome end protection.  Although POT1b mutants are viable (Hockemeyer et al., 

2006), conditional knockout of POT1a results in embryonic lethality (Hockemeyer et al., 

2006; Wu et al., 2006).  Single POT1a or double POT1a POT1b mutants exhibit a 

strong telomere DNA damage response, low levels of telomere fusions and 

endoreduplication, along with proliferative arrest and senescence (Hockemeyer et al., 

2006).  A second study implicated POT1a and POT1b in repression of non-homologous 

end joining and homologous recombination at telomeres (He et al., 2006; Wu et al., 

2006).   

Arabidopsis encodes two POT-like proteins, AtPOT1 and AtPOT2 (Shakirov et 

al., 2005), and possibly a third, AtPOT3 (Surovtseva et al., in preparation).  In contrast 

to the mouse POT1a and POT1b proteins, which share 72% similarity (Hockemeyer et 
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al., 2006), the plant POT proteins are more divergent and display only 49% sequence 

similarity overall.  AtPOT2 is implicated in chromosome end protection as over-

expression of the N-terminal portion of the protein leads to severe growth and 

developmental defects, telomere shortening, and a high incidence of anaphase bridges 

and chromosome mis-segregation.  AtPOT1, by contrast, contributes to telomere length 

regulation. Over-expression of a C-terminal fragment of AtPOT1 lacking the OB-fold 

motifs results in modest telomere shortening, but plants are wild type in appearance 

and show no signs of genome instability (Shakirov et al., 2005).   

In this study, we examined the fate of Arabidopsis mutants null for AtPOT1.  We 

found no evidence that AtPOT1 contributes to chromosome end protection or genome 

stability.  Instead, AtPOT1 is required for positive regulation of telomere length: pot1 

mutants display progressive telomere shortening at the same rate as telomerase null 

plants.  Notably, in vitro telomerase activity levels are reduced in pot1 mutants, but not 

abolished.  Finally, we show that AtPOT1 physically associates with the telomerase 

RNP and is enriched at telomeres during S-phase.  Thus, AtPOT1 appears to be a 

novel telomerase accessory factor that promotes its activity in vitro and in vivo. 

 

Materials and methods 

Mutant lines  

The pot1-1 allele was identified in ALPHA population of T-DNA insertion lines at the 

University of Wisconsin Arabidopsis Knock-out facility.  The collection was screened 

using primers 5’-TTTGTACTGGCCTCTCCAAGGTTCACCAT-3’ and 5’-

CATTTTATAATAACGCTGCGGACATCTAC-3’ according to the protocol available at 

http://www.biotech.wisc.edu/Arabidopsis/Index2.asp.  The pot1-2 line was identified by 



  

 

97

screening a pooled genomic DNA collection (ABRC #CD10-A) from the D. Weigel T-

DNA lines using primers 5’-CGGGATCCCACCCAGAAGATACTAAGATG-3’ and 5’-

TTGACCATCATACTCATTGCTG-3’.  tert and ku70 mutants and plant growth 

conditions are as described (Riha et al., 2001; Riha et al., 2002).  All crosses were 

made between plants heterozygous for the desired mutations.  Double- and triple-

heterozygous F1 plants were identified by PCR genotyping and then self-propagated to 

F2 to obtain single-, double- and triple-homozygous mutants and their wild-type siblings.  

F2 plants (G1) were self-propagated for several generations.  Independent lines from at 

least two F2 plants were established and analyzed for each genotype. 

Complementation was performed as described in Figure 24.  Wild type and G3 

pot1-1 were used to establish callus.  Callus initiation and maintenance were performed 

as described (Watson et al., 2005) with slight modifications.  Seeds were germinated on 

0.5X Murashige and Scoog (MS) medium plates supplemented with 3% sucrose and 

2.8 g/liter phytagel.  Roots were harvested at three weeks, finely chopped, and placed 

on 1X MS medium plates supplemented with 2 mg/liter 2,4-D, 0.05 mg/liter kinetin, 3% 

sucrose and 2.8 g/liter phytagel (CIM). Callus was grown on CIM at 25oC in the dark 

and transferred to fresh medium every four weeks.  

 

RT-PCR analysis, telomere analysis, TRAP assays and cytogenetics 

Total RNA was extracted from plant tissue using Tri Reagent solution (Sigma).  Reverse 

transcription was performed using Superscript III reverse transcriptase (Invitrogen) as 

described (Shakirov et al., 2005).  To evaluate expression of the regions flanking the T-

DNA insertion in the pot1-1 allele, primer 1 (5’-

GGATCCATGGCGAAGAAGAGAGAGAGTCCCAAGCTCATCA-3’) and primer 2 (5’ 
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GCTCTAGACTTGATCTCTCTCAAGAAGGA-3’) were used.  To analyze the pot1-2 

allele, we used primer 1 and primer 3 (5’-TACCTCGAGCTAGATTAGGCTATCAGAGA-

3’).  DNA from individual whole plants was extracted as described (Cocciolone and 

Cone, 1993).  TRF analysis was performed using Tru1I (Fermentas, Hanover, MD) 

restriction enzyme and a 32P 5' end–labeled (T3AG3)4 oligonucleotide probe (Fitzgerald 

et al., 1999).  Subtelomeric TRF analysis was conducted using a 2R probe (Shakirov 

and Shippen, 2004) or a probe for 1L generated with 5’-ACGCTTGTCATCTCATCTCT-

3’ and 5’-CGGGATCTTTGGTGTTTCTC-3’.  Telomere fusion PCR and PETRA was 

performed as described (Heacock et al., 2004).  TRAP assays were conducted on plant 

tissues as in (Fitzgerald et al., 1996) using protein extracts prepared from a single wild 

type or pot1 inflorescence unless otherwise indicated.  Anaphase spreads were 

prepared from pistils and stained with DAPI (4',6'-diamidino-2-phenylindole) as 

discussed in (Riha et al., 2001). 

 

Antibodies, western blotting and immunoprecipitation 

The P1-R polyclonal antibody was raised in rabbits against full-length recombinant 

AtPOT1 protein expressed in E. coli (Covance).  The P1-P1 and P1-P2 peptide 

antibodes were raised in rabbits against the N’-CSDENRRHHQVLLTLEDST and N’- 

AAYPWQVEDFCSDENRRHHQVLLT peptides, respectively, and affinity purified 

(Covance).  Western blots were conducted with primary antibodies and peroxidase-

conjugated light chain-specific mouse anti-rabbit secondary antibodies (Jackson 

Immunoresearch).  For immunoprecipitation of endogenous proteins from suspension 

culture, protein extracts were prepared in buffer containing 50 mM Tris-HCl, pH7.4, 10 

mM NaCl, 10 mM MgCl2, 1 mM EDTA, 10% glycerol, 1 mM PMSF, 1 mM DTT, protease 
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inhibitors (Roche).  For immunoprecipitation of endogenous proteins from four-day-old 

seedlings, protein extracts were prepared according to (Fitzgerald et al., 1996).  

Extracts were diluted 1:5 in buffer W100 (20 mM TrisOAc, pH 7.5, 10% glycerol, 1 mM 

EDTA, 5 mM MgCl2, 200 mM NaCl, 100 mM KGlu, 1% NP40, 0.5 mM Na Deoxycholate, 

1 mM DTT), precleared with protein A agarose (Pierce) and subjected to 

immunoprecipitation with POT1 antibodies.  Following immunoprecipitation, the beads 

were washed three times with buffer W300 (same as buffer W100, but 300 mM KGlu) 

and two times with TMG buffer (10 mM TrisOAc, pH 8.0, 1 mM MgCl2, 10% glycerol, 1 

mM DTT) and used for TRAP assay.  In peptide competition experiments, 100X molar 

excess of the P1-P1 peptide or AtPOT2 peptide (N’-DDYKFLRIQDAFKALHLHVNC) 

was added during immunoprecipitation step.  For salt stability experiments, the NaCl 

concentration in the input was adjusted by addition of 5M NaCl to suspension culture 

extracts.  For immunoprecipitation of recombinant proteins, AtPOT1 and AtPOT2 were 

expressed in rabbit reticulocyte lysate (Promega) in the presence of 35S-methionine.  

Following immunoprecipitation, the signal was quantified using ImageQuant Software. 

Immunoprecipitation efficiency was calculated as a ratio of the immunoprecipitated 

signal versus input. 

 

Cell culture syncronization and FACS 

MM2d Arabidopsis cell suspension culture was maintained as described in (Menges 

and Murray, 2002).  For synchronization, the original protocol was employed with the 

following modifications.  100 ml of four-day-old culture was divided into five 20 ml 

aliquots, diluted 1:5 with fresh medium and then blocked in G1/early S phase for 21 h 

with 12 µg/ml of aphidicolin (A.G. Scientific).  Cells were filtered through Miracloth 
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(Calbiochem), washed twice with 500 ml of fresh media, and resuspended in 100 ml of 

fresh media.  Aliquots were taken at various time points for DNA content analysis and 

immediately frozen.  DNA content was analyzed by flow cytometry.  The cultured cells 

were chopped with a razor blade, resuspended in homogenization buffer, filtered 

through a 20 µm nylon mesh, treated with 10 µg/ml of RNase A, and stained with 50 

µg/ml of propidium iodide.  Samples were run on a Becton-Dickinson FACSCalibur at 

488 nm and analyzed using CellQuest (Becton-Dickinson) and ModFit LT (Verity) 

programs. 

 

Chromatin immunoprecipitation 

ChIP was performed essentially as described by (Leibfried et al., 2005) with some 

modifications.  The equivalent of 100 ml of four-day-old unsynchronized or 

synchronized cell suspension culture (~3 g of dry material) was fixed for 1 h in 1% 

formaldehyde followed by quenching for 10 min in 125 mM glycine.  After vacuum 

filtration through Miracloth, cells were resuspended and washed in 500 ml of PBS, and 

filtered again before storage at -80°C.  Cells were ground in liquid N2 and then ChIP 

was performed using P1-R or P1-P2 antibody in a 1:100 dilution.  The elution products 

were subjected to slot blot (Hybond N+, Amersham) and hybridized using a 

(TTTAGGG)4 telomeric probe.  Blots were stripped and rehybridized with a combination 

of radiolabeled 5S (5’-TTGCAGAATCCCGTGAACCATCGAGT-3’) and 18S rDNA (5’-

TGGAGCCTGCGGCTTAATTTGACTCA-3’) oligo-probes to monitor the specificity of 

immunoprecipitation.  For quantification, the fold enrichment was determined as a ratio 

of the hybridization signal obtained with the POT1 antibody versus the pre-immune sera 

control. rDNA sequences were used as a negative control.   
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Results 

Plants null for AtPOT1 do not exhibit genome instability 

To identify an Arabidopsis line null for AtPOT1, we screened T-DNA collections from the 

University of Wisconsin Arabidopsis Knock-out Facility.  Analysis of the ALPHA 

population uncovered a mutant with an insertion in the first intron of AtPOT1 (Figure 21 

and Figure 22A).  This line was designated pot1-1.  In the D. Weigel collection, we 

found a second AtPOT1 allele (pot1-2), bearing a T-DNA in the seventh exon (Figure 21 

and Figure 22A).  To determine if these insertions disrupt AtPOT1 gene expression, RT-

PCR was performed using primers flanking the insertion sites (Figure 21 and Figure 

22B).  No PCR products were generated in reactions with cDNA from the mutant plants 

(Figure 22B, lanes 2 and 4), confirming that expression of the full-length AtPOT1 mRNA 

was abolished in pot1-1 and pot1-2 mutants.  

To monitor AtPOT1 protein, antibodies were raised against two peptides 

corresponding to a segment in the C-terminus of AtPOT1 protein (P1-P1 and P1-P2) 

(Figure 22A) and against a full-length recombinant AtPOT1 protein (P1-R).  All three 

antibodies detected recombinant AtPOT1 by western blotting (data not shown), and 

each immunoprecipated the recombinant protein with ~2% IP efficiency (Figure 22C; 

data not shown).  Importantly, P1-P1 and P1-P2 detected a 55 kDa protein that 

corresponds to endogenous AtPOT1 protein in extracts from wild type seedlings and 

callus, but not from pot1-1 mutants (Figure 22D; data not shown).  We conclude that 

pot1-1 and likely pot1-2 (see below) are null for AtPOT1.   

In striking contrast to yeast and vertebrate cells deficient in POT1, Arabidopsis 

pot1 mutants appeared morphologically indistinguishable from wild type and showed no  
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Figure 21.  Analysis of T-DNA insertions in the AtPOT1 gene.  (A) Position of pot1-1 and pot1-2 insertions.  

Primers used for RT-PCR analysis are shown by arrowheads.  Dashed line represents the 5’ UTR.  (B) 

Sequence analysis of pot1-1 and pot1-2 T-DNA insertion sites.  For both mutants, the insertion sites are 

larger than 10 kb with two T-DNAs inserted in a head-to-head orientation, left borders facing outward.  

Lower case letters represent filler DNA, presumably added during T-DNA integration.  Italics denote a 

region of microhomology shared by both AtPot1 genomic sequence and the left border of T-DNA.  (C and 

D) RT-PCR analysis of the disrupted AtPOT1 gene in pot1-1 and pot1-2 mutants.  Although AtPOT1 

transcripts from a region upstream of the T-DNA can be amplified in wild type (WT) (C, lane 1) and pot1-1 

mutant (D, lane 2) samples, it encodes only a small (42 amino acid) polypeptide which is likely to be non-

functional.  For pot1-1, a 3’ end transcript is also detected (C, lane 4). Further analysis demonstrated that 

this transcript in pot1-1 retained intron 1 and portions of T-DNA, resulting in the generation of in-frame stop 

codons prior to exon 2 (data not shown).  No 3’ end AtPOT1 transcripts were detected in RT-PCR reactions 

with pot1-2 mutants (D, lane 4).  Although a 5’ transcript is generated in pot1-2, the phenotype of the 

mutant indicates that this is also a null allele (see text for details).  
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Figure 22.  Telomere phenotypes in AtPOT1-deficient Arabidopsis.  (A) Genomic map and coding region of 

the AtPOT1 locus.  The position of T-DNA insertions in the pot1-1 and pot1-2 alleles are shown.  The 

position of the peptide used to raise P1-P1 and P1-P2 antibodies is indicated.  (B) RT-PCR analysis of the 

AtPOT1 gene expression in pot1-1 and pot1-2 mutants. Primer pairs 1-2 and 1-3 (shown as arrowheads in 

panel A) were used to analyze gene expression.  (C) Immunoprecipitation of recombinant 35S-labeled 

AtPOT1 protein.  Immunoprecipitation efficiencies are indicated. (D) Detection of endogenous AtPOT1 

protein in wild type and pot1-1 callus.  Arrow indicates the 55 kDa endogenous AtPOT1 protein 

immunoprecipitated from wild type callus.  Asterisk indicates a nonspecific cross-reacting protein.  (E) TRF 

analysis of DNA from six siblings segregating from a heterozygous pot1-1 parent.  (F) TRF analysis of a 

pot1-2 mutant.  (G) Multi-generational TRF analysis of pot1-1.  DNA samples from two individual pot1-1 

plants from the second (G2), fourth (G4) and sixth (G6) generation of self-pollination were analyzed.  Blots 

shown in E, F and G were hybridized with a radiolabeled telomeric DNA probe.
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decrease in fertility or perturbation in growth and development for the six generations 

they were propagated.  Furthermore, chromosome ends were refractory to nuclease 

attack and non-homologous end-joining in the absence of AtPOT1.  No anaphase 

bridges were observed in first (G1) or second (G2) generations of pot1-1 mutants 

(Table 3; data not shown).  The more sensitive telomere fusion PCR assay (Heacock et 

al., 2004) also failed to detect an increased frequency in chromosome end-joining 

reactions in pot1-1 (data not shown).  Thus, AtPOT1 is dispensable for chromosome 

end protection in Arabidopsis. 

 

AtPOT1 is required for telomere length maintenance in vivo 

To examine telomere length in pot1 mutants, terminal restriction fragment (TRF) 

analysis was performed on plants segregated from self-pollination of a heterozygous 

pot1-1 parent.  As expected, telomeres in wild type siblings appeared as a 

homogeneous smear of products ranging from 1.6 to 4.5 kb (Figure 22E, lanes 1, 2).  

As for AtTERT (Fitzgerald et al., 1999b), AtPOT1 is not haploinsufficient for telomere 

maintenance in Arabidopsis; plants heterozygous for the T-DNA insertion exhibited a 

wild type telomere profile (Figure 22E, lanes 3 and 4).   

Strikingly, telomere tracts in pot1-1 were much shorter than in wild type and 

showed a more discrete banding pattern (Figure 22E, lanes 5 and 6).  To determine 

whether disruption of the AtPOT1 gene was responsible for the telomere phenotypes, 

TRF analysis was performed on pot1-2 mutants.  Telomeres were significantly shorter 

in pot1-2 than in wild type, or even pot1-1 (Figure 22F, lane 2).  Since the pot1-2 mutant 

was homozygous when we identified it, we suspect that this line had already been 

propagated at the Arabidopsis stock center for several generations in the absence of  
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Table 3.  Incidence of anaphase bridges in pot1-1 mutants. 

 
 

Genotype 
 

 
Phenotype* 

No. of 
anaphases 

scored 

 
With  

bridges 

 
Without 
bridges 

 
% 

Bridges 
 
WT                          
 

 
WT 

 
315 

 
0 

 
315 

 
0 

pot1-1                  G2 
 

WT 353 0 353 0 

pot1-1 tert            G2 
 

WT 314 0 314 0 

G2 II 322 64 258 20 pot1-1 ku70 
G3 

 
T 450 194 256 43 

G2 II 387 74 313 19 ku70 tert 
G3 T 442 180 262 41 

G2 II 340 58 282 17 pot1-1 ku70 
tert G3 T 434 155 279 36 
 
* The severity of morphological phenotypes was assayed as described (Riha et al., 
2001). T=terminal phenotype. 
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AtPOT1 prior to our analysis, leading to more substantial loss of telomeric DNA than in 

pot1-1.  Complementation experiments provided further verification that AtPOT1 

depletion caused telomere shortening.  Plants heterozygous for pot1-1 were 

transformed with the wild type AtPOT1 coding region under control of the constitutive 

CaMV 35S promoter.  In plants expressing the 35S::AtPOT1 transgene telomeres, 

particularly the shortest ones in the population, were returned to the wild type length 

(Figure 23A, lanes 2 and 3).  A second complementation experiment performed with 

pot1 ku70 double mutants confirmed that AtPOT1 is required for telomere maintenance 

(Figure 23B; see below).   

 

Telomeres in pot1 mutants shorten at the same rate as in tert mutants  

We followed the fate of telomeres in pot1 mutants for several generations and found 

that telomere length in pot1-1 decreased progressively with each generation (Figure 

22G).  The ever-shorter-telomere phenotype and sharp TRF banding profile were 

strikingly similar to the phenotype associated with tert mutants, which lose 200-500 bp 

of telomeric DNA per plant generation (Fitzgerald et al., 1999; Riha et al., 2001).  

To determine if the rate of telomere shortening in pot1-1 was the same as in tert, 

we used a parent-progeny analysis to measure the rate of bulk telomere loss.  DNA 

extracted from first generation (G1) parents (P) homozygous for the pot1-1 or pot1-2 

allele and their progeny (G2) was subjected to TRF analysis.  For pot1-1, bulk 

telomeres declined by approximately 200-500 bp, while for pot1-2, a loss of 

approximately 200 bp was observed (Figure 24A and B).  To obtain a more accurate 

estimate of the telomere shortening rate, individual telomeres were examined using 

subtelomeric TRF analysis (Shakirov and Shippen, 2004).  Using probes specific for the  
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Figure 23.  Complementation analysis of pot1-1 and pot1-1 ku70 mutants.  (A) Complementation of pot1-1 

mutants.  AtPOT1 was transformed into heterozygous pot1-1 plants.  Homozygous pot1-1 segregants 

containing the 35S::AtPOT1 transgene, as well as their untransformed wild type and pot1-1 siblings, were 

subjected to TRF analysis.  Similar to the situation in segregating WT plants (lane 1), homozygous pot1-1 

progeny carrying the 35S::AtPOT1 transgene showed no signs of telomere shortening (lanes 2-3), while the 

shortest telomeres in the untransformed homozygous pot1-1 siblings were significantly diminished relative 

to the shortest telomeres in wild type (lanes 4-5).  (B) Complementation of pot1-1 ku70 mutants.  AtPOT1 

was transformed into plants homozygous for pot1-1 and heterozygous for ku70.  Double homozygous pot1-

1 ku70 segregants containing the 35S::AtPOT1 transgene, as well as their untransformed pot1-1 ku70 

siblings, were subjected to TRF analysis.  While telomeres in untransformed homozygous pot1-1 ku70 

plants remained short and exhibited a very heterogeneous profile (lanes 2 and 3), significant telomere 

elongation was restored in homozygous pot1-1 ku70 seedlings carrying the 35S::AtPOT1 transgene (lane 

1).   
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South (right) arm of chromosome two (2R), or the North (left) arm of chromosome one 

(1L) (Figure 24C), only a single discrete band was detected in the parent and its 

progeny, likely reflecting the coordinate regulation of telomere length on homologous 

chromosomes throughout plant development (Shakirov and Shippen, 2004).  For both 

telomeres, the length decreased by approximately 200-300 bp relative to the parent 

(Figure 24C).   

To further examine the rate of telomere shortening in pot1 mutants, we 

performed primer extension telomere repeat amplification (PETRA) (Heacock et al., 

2004).  In this assay, telomeres are amplified in a PCR reaction using primers directed 

at the G-overhang and a unique subtelomeric sequence.  PETRA showed a decline of 

approximately 200 bp on the 2R and 5R telomeres in both pot1-1 and tert mutants 

(Figure 24D and E; data not shown).  The same degree of shortening occurred in pot1-2 

(data not shown). We conclude that disruption of AtPOT1 leads to a progressive loss of 

telomeric DNA that proceeds at the same rate as in tert mutants.   

Telomeres become critically shortened in G6 tert mutants giving rise to end-to-

end fusions and genome instability (Riha et al., 2001).  Because our pot1-1 mutants 

were derived from the WS ecotype, which naturally has longer telomeres than the 

Columbia ecotype (Shakirov and Shippen, 2004), from which the tert mutant was 

obtained, it is not surprising that G6 pot1-1 mutants do not yet show signs of genome 

instability.  Assuming a telomere shortening rate of 200 bp/plant generation, we expect 

two or three additional generations are required for some pot1-1 telomeres to become 

critically shortened (Heacock et al., 2004).   
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Figure 24.  Parent-progeny analysis reveals the same rate of telomere shortening in pot1-1, pot1-2 and tert 

mutants.  (A and B) TRF analysis of bulk telomeric DNA from pot1-1 and pot1-2 parents (P) and two 

progeny (1 and 2) using a telomeric probe.  (C) Subtelomeric TRF analysis of DNA from a pot1-1 parent 

and two progeny.  DNA blots were hybridized with a probe corresponding to unique subtelomeric regions 

on 2R and 1L chromosome arms.  The asterisk indicates a cross-hybridizing band.  (D) PETRA analysis of 

the 2R telomere in a pot1-1 parent and two progeny.  (E) PETRA analysis of the 2R and 5R telomeres in a 

parent homozygous for tert and heterozygous for pot1-1 (ttPp) and its tert (ttPP) (a) and pot1-1 tert (ttpp) 

(b) progeny.  The two PETRA bands detected in the 2R reaction may represent different size telomeres on 

homologous chromosomes or two populations of cells (Shakirov and Shippen, 2004).  A telomeric probe 

was used to detect PETRA products. 
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AtPOT1 and AtTERT act in the same genetic pathway 

To determine whether AtPOT1 and AtTERT act in the same genetic pathway, plants 

heterozygous for pot1-1 were crossed to plants heterozygous for tert.  Double 

heterozygous mutants from F1 were allowed to self-pollinate to generate F2 progeny.  

As shown in Figure 25A, telomeres of the same length and sharp banding profile were 

found in pot1-1 tert as in their tert and pot1-1 siblings.  PETRA and TRF parent-progeny 

analysis confirmed that telomeres in pot1-1 tert mutants shortened at the same rate as 

in either single mutant (Figures 24E and 25B).   

If AtPOT1 is required for telomerase function in vivo, its contribution should be 

especially obvious in a genetic background where telomerase generates ultra-long 

telomere tracts.  KU is a negative regulator of telomere length in Arabidopsis, and 

mutants deficient in KU70 or KU80 undergo telomerase-dependent expansion to more 

than twice the normal length in a single generation (Gallego et al., 2003; Riha et al., 

2002) (Figure 25C, lanes 3 and 4).  In contrast, ku70 tert double mutants display 

accelerated telomere shortening and a precocious onset of genome stability (Riha and 

Shippen, 2003a).  To further investigate the role of AtPOT1, we generated pot1 ku70 

mutants.  In contrast to their ku70 siblings, pot1 ku70 mutants failed to elongate their 

telomeres (Figure 25C, lanes 7 and 8), and exhibited a heterogeneous profile of TRF 

products similar to that seen in ku70 tert (Figure 26B, lane 3).  Notably, telomeres in 

pot1 ku70 mutants were significantly elongated when an exogenous copy of AtPOT1 

was introduced (Figure 23B), confirming that AtPOT1 is required for telomere 

elongation in the absence of KU.   

We also found that degree of telomere shortening was the same in pot1 ku70 

and ku70 tert double mutants as in triple pot1 ku70 tert mutants.  Parent-progeny  



  

 

111

 

Figure 25.  AtPOT1 functions in the telomerase pathway.  (A) TRF analysis of pot1-1 tert mutants.  Results 

for eight progeny (two for each genotype) that were segregated from a parent heterozygous for pot1-1 and 

tert are shown.  (B) TRF analysis of telomeres in pot1-1 tert parent (P) and its two progeny (1 and 2).  (C) 

TRF analysis of pot1-1 ku70 mutants.  Results for progeny segregated from a parent heterozygous for 

pot1-1 and ku70 are shown.  Two different progeny were analyzed for each genotype.  The blot was 

hybridized with a telomeric DNA probe. 
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analysis confirmed that plants from all three genotypes lost approximately the same 

amount of telomeric DNA from G1 (Figure 26B, lanes 3, 4 6) to G2 (Figure 26C).  All 

three mutants reached the terminal phenotype in G3.  The incidence of anaphase 

bridges in pot1 ku70, tert ku70 and pot1 ku70 tert mutants in G3 were the same (Table 

3).  These genetic data reinforce the notion that AtPOT1, like AtTERT, does not 

contribute to chromosome end protection.  We conclude that AtPOT1 acts in the same 

genetic pathway as telomerase and is specialized for telomere length maintenance in 

vivo. 

 

POT1 is a component of the telomerase RNP required for maximal activity in vitro 

We considered the possibility that AtPOT1 is required for telomerase enzyme activity.  

TRAP assays were performed in parallel with extracts from wild type and pot1 

seedlings.  As shown in Figure 27A (lanes 1, 3-5), robust telomerase activity was 

reproducibly detected in extracts from wild type plants and from suspension culture.  In 

contrast, telomerase levels were reduced and more variable in both pot1-1 and pot1-2 

mutants (Figure 27A, lanes 6-12).  Extract mixing experiments indicated that the 

reduction in enzyme activity was not due to the presence of a soluble PCR inhibitor 

(data not shown).  Interestingly, although the in vitro levels of telomerase activity varied 

among pot1 mutants, the progressive telomere shortening phenotype observed in vivo 

was extremely consistent among the dozens of pot1-1 and pot1-2 mutant plants we 

examined.   

Most TRAP reactions carried out with pot1 mutants showed reduced, but 

detectable levels of enzyme activity levels (Figure 27A, lanes 6-8 and 10-12).  Titration 

of such samples suggested that telomerase activity was decreased by approximately  
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Figure 26.  AtPOT1 is required for telomerase-mediated telomere elongation in the absence of KU70.  (A) 

Parent (G1) and two progeny (G2) TRF analysis of pot1-1 ku70 plants.  Telomeres in pot1-1 ku70 mutants 

decline at the same accelerated rate as in ku70 tert (Riha and Shippen, 2003a).  (B) TRF analysis of triple 

pot1-1 ku70 tert mutants and the three double mutant combinations segregating from a parent 

heterozygous for pot1-1, ku70 and tert alleles.  Telomere length is approximately the same in G1 for all 

three double mutants and the triple.  (C) TRF analysis of individual second generation (G2) pot1 ku70, ku70 

tert and pot1 ku70 tert progeny of G1 plants shown in panel B.  Telomere shortening is not accelerated in 

triple pot1 ku70 tert mutants relative to double pot1 ku70 or ku70 tert mutants.  All blots were hybridized 

with a telomeric DNA probe. 
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10-fold (Figure 27B, compare lanes 3 and 6).  A more detailed understanding of 

AtPOT1’s role in Arabidopsis telomerase biochemistry will require the development of a 

conventional (non-PCR based) primer extension assay to monitor the catalytic 

properties of the enzyme, a goal that has thus far proven elusive.  Nevertheless, our 

current data allow us to conclude that AtPOT1 promotes telomerase action in vitro, but 

is not absolutely essential for its biochemical activity. 

Next we looked for a physical interaction between AtPOT1 and the telomerase 

RNP.  We could not detect a direct association between recombinant AtPOT1 and 

TERT by co-immunoprecipitation or by yeast two-hybrid assay (Y. Surovtseva, M. Jasti 

and D. Shippen, unpublished data).  However, since TERT is the only Arabidopsis 

telomerase subunit isolated so far, AtPOT1 could contact another component of the 

RNP.  To test this idea, immunoprecipitations were performed with POT1 antibody on 

extracts from wild type seedlings and asynchronous Arabidopsis cell culture (Menges 

and Murray, 2002).  We confirmed that telomeres in this cell line fall within the wild type 

range (Figure 28A and B) and chromosome ends are protected against end-joining 

reactions (Figure 28C).  Moreover, a 55 kDa band corresponding to endogenous 

AtPOT1 was observed by western blotting following immunoprecipitation of cell culture 

extracts (Figure 28D).   

TRAP assays conducted on immunoprecipitates in the absence of antibody or 

with pre-immune serum did not generate PCR products (Figure 27C, lanes 2 and 3; 

Figure 27D, lanes 2 and 5).  However, telomerase activity could be immunoprecipitated 

from both seedlings and cell culture using all three of the POT1 antibodies (Figure 27C, 

lanes 4 and 5; Figure 27D, lane 3).  The specificity of the AtPOT1 interaction with 

telomerase was demonstrated in three ways.  First, immunoprecipitation of extracts  
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Figure 27.  AtPOT1 interacts with the telomerase RNP.  (A) TRAP assay results for wild type (WT), pot1-1 and pot1-2 

flowers.  (B) TRAP assay results for wild type and pot1-2 mutant flowers.  10X and 100X dilutions of protein extracts were 

used for TRAP as indicated.  +, positive control.  (C) TRAP assay following P1-P1 or P1-R AtPOT1 immunoprecipitation.  

(D) TRAP assays with P1-P2 immunoprecipitates from wild type and four-day-old pot1-2 seedlings extracts.  (E) TRAP 

assay results for P1-P1 antibody immunoprecipitates with no peptide added (-), 100X excess of P1-P1 peptide (P1), or 

100X excess of a nonspecific AtPOT2 peptide (P2).  (F) TRAP assays with eluates from P1-R immunoprecipitation in the 

presence of NaCl. (G) TRAP assays with P1-R immunoprecipitates from unsynchronized suspension culture (unsyn.) or 

S-phase and G2-phase synchronized cells. The relative amount of precipitated active telomerase is indicated.  

Immunoprecipitation with no antibody added ((-) IP) or with pre-immune serum (Preim. IP) was used as a negative control.
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Figure 28.  Characterization of telomeres and telomerase in Arabidopsis suspension culture.  (A) TRF 

analysis of DNA from Arabidopsis suspension culture cells and Arabidopsis plant tissue.  Telomeres in 

suspension culture display more heterogeneous profile, but bulk telomere length is similar to telomeres in 

plant tissue.  (B) Subtelomeric TRF analysis of DNA from suspension culture cells and plant tissue.  The 

blot was hybridized with a probe corresponding to a unique subtelomeric region on 1L chromosome arm.  

(C) Telomere fusion PCR analysis of Arabidopsis suspension culture.  Primers corresponding to 

subtelomeric regions on the 3L and 3R chromosome arms were used to amplify telomeric fusions.  DNA 

from G6 tert mutants was used as a positive control.  (D) Detection of endogenous AtPot1 in wild type 

plants and in Arabidopsis suspension culture.  AtPOT1 was immunoprecipitated using P1-R, and was 

detected by Western blot analysis using P1-P1 antibody.  Arrow indicates the 55 kDa endogenous AtPOT1 

protein.  Asterisk indicates a nonspecific cross-reacting protein.  (E) TRAP assay on protein extracts from 

unsynchronized suspension culture cells and cells synchronized in S and G2.  Telomerase activity levels 

are approximately the same in all samples. 
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from pot1 mutant seedlings failed to bring down telomerase activity (Figure 27D, lane 

6).  Second, addition of a 100-fold excess of the P1-P1 peptide to cell culture extracts 

during the immunoprecipitation with the P1-P1 antibody dramatically decreased the 

TRAP signal, while a nonspecific AtPOT2 peptide of a similar length failed to compete 

(Figure 27E, lanes 2 and 3).  Third, the AtPOT1 interaction with telomerase was stable 

in high salt; the association persisted in up to 400 mM NaCl (Figure 27F, lane 6).  Since 

telomerase activity is strongly inhibited in salt concentrations greater than 450 mM 

(Figure 27F, lane 7), the AtPOT1 interaction may be even more robust.   

To investigate whether AtPOT1 association with telomerase is cell cycle 

regulated, immunoprecipitation was performed on synchronized cell extracts (Menges 

and Murray, 2002).  The level of telomerase activity is approximately the same in 

unsynchronized cultured cells as in cells arrested in S or G2 (Figure 28E).  While POT1 

antibodies immunoprecipitated telomerase activity at all of the time points examined 

(Figure 27G, lane 3 in all panels), in three separate experiments TRAP products 

precipitated from S phase cell extracts were significantly increased relative to 

unsynchronized cells (avg = 4.5-fold).  Hence, AtPOT1 shows a dynamic interaction 

with the telomerase RNP.  

 

AtPOT1 dynamically associates with telomeres in vivo 

Mammalian and fission yeast POT1 bind telomeric DNA in vitro (Baumann and Cech, 

2001; Wu et al., 2006).  To investigate AtPOT1 interactions with telomeric DNA, gel-

shift experiments were performed.  AtPOT1 is extremely insoluble when expressed in E. 

coli, but soluble full length AtPOT1 or the N-terminal domain containing the OB-folds 

can be obtained from rabbit reticulocyte lysate (data not shown).  Under the same 
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conditions that the OB-fold containing amino terminus of mouse POT1a binds its 

cognate telomere sequence (Wu et al., 2006), AtPOT1 failed to bind Arabidopsis 

telomeric DNA (Figure 29).  Thus, under these in vitro assay conditions, AtPOT1 does 

not interact with telomeric DNA in the same manner as its mammalian counterpart. 

Human POT1 binds telomeres throughout the cell cycle, showing a transient 

decrease in binding late in G2 (Verdun et al., 2005).  To investigate AtPOT1 interaction 

with telomeres in vivo, chromatin immunoprecipitation (ChIP) was employed.  Since we 

failed to detect AtPOT1 binding to telomeres in chromatin preparations from plant cell 

extracts, ChIP assays were performed on suspension culture cells.  Slight (1.8-fold) 

enrichment of AtPOT1 at telomeres was observed in unsynchronized cells relative to 

the pre-immune sera control (Figure 30B and C).  Therefore, we asked whether AtPOT1 

localization at telomeres was regulated during the cell cycle.  Our synchronization 

protocol did not allow us to examine cells blocked in G1, however more than 75% of the 

unsynchronized cells are in this phase of the cell cycle (Figure 30A).  Using aphidicolin, 

we could enrich for cells in S phase and in G2.  In four separate experiments, AtPOT1 

interaction with telomeres significantly increased in S phase cells; the enhancement 

ranged from 3.4 to 7.1-fold (avg = 5.4-fold) over the pre-immune sera control (Figure 

30B and C).  As an additional control, we monitored the ratio of the rDNA signal 

immunoprecipitated by the POT1 antibody relative to the pre-immune control.  As 

expected, no significant enrichment in S phase was observed (Figure 30B and C).  The 

AtPOT1 association with telomeres decreased dramatically as cells transitioned into G2 

(down to 1.8-fold), indicating that AtPOT1 association with telomeres in S phase does 

not reflect an increased number of binding sites after telomere replication.  Furthermore,  
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Figure 29.  AtPOT1 does not bind telomeric DNA in vitro.  Oligonucleotides containing vertebrate Pot1 

minimal binding site (h) or two Arabidopsis telomeric repeats in all seven different permutations of the 

(TTTAGGG)2 (1-7) (Top panel) were {32P} 5’ end-labeled with a T4 polynucleotide kinase (Fermentas).  

AtPOT1 full length cDNA or a 5’ end fragment encoding predicted OB folds (AtPot1N) were cloned into 

pET28a vector (Novagen).  Corresponding proteins were translated using coupled rabbit reticulocyte lysate 

expression system (Promega).  EMSA experiments were performed as described (Baumann and Cech, 

2001; Wu et al., 2006) (Bottom panel).  Mouse Pot1aN protein binding to vertebrate telomeric sequence 

was monitored as a positive control (Wu et al. 2006).  Although mouse POT1aN protein bind the 

mammalian telomere sequence GGTTAGGGTTAG (arrow), no binding of AtPOT1 to any of the seven 

permutations of the Arabidopsis telomeric repeat sequence was observed.  Asterisks indicate non-specific 

bands.   
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Figure 30.  AtPOT1 is associated with telomeric chromatin in S-phase.  (A) FACS analysis of Arabidopsis 

suspension culture cells synchronized with aphidicolin.  Data are shown for unsynchronized (US) and 

synchronized cells at 0, 3, 6, and 9 hours after release from aphidicolin arrest.  (B) Example of ChIP 

analysis on synchronized suspension culture extracts using P1-P2 antibody or preimmune serum.  

Immunoprecipitated DNA was monitored on slot blot using a radiolabeled telomeric or rDNA probe.  (C) 

Quantitation of AtPOT1 association with telomeric DNA.  The average of results from four independent 

experiments is shown.  Solid black line indicates the ratio of the telomeric DNA signal obtained with the 

POT1 antibody relative to the pre-immune sera control.  As a negative control, the rDNA signal obtained 

with the POT1 antibody relative to the preimmune sera (gray dashed line) is shown.  (D) Western blot 

analysis of AtPOT1 protein.  Extracts from synchronized cells were precipitated with P1-P2 antibody, 

followed by P1-P2 western blot analysis.  Commassie stained inputs (right) are shown as loading controls. 
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AtPOT1 protein levels were unchanged during the cell cycle (Figure 30D), arguing that 

its interaction with telomeres is dynamic and peaks in S phase.   

 

Discussion 

Cdc13p and POT1 from yeast and vertebrates are multifunctional gatekeepers at the 

chromosome terminus, performing the crucial functions of distinguishing the ends from 

double-strand breaks, protecting against inappropriate recombination and nucleolytic 

attack, and controlling telomerase activity (Baumann, 2006; de Lange, 2005).  Here we 

demonstrate that AtPOT1 exhibits distinctly different interactions with telomeres.  Unlike 

human POT1, disruption of the AtPOT1 gene is not lethal and Arabidopsis pot1 mutants 

display no evidence of chromosome end deprotection.  Even in a ku70 tert background 

where Arabidopsis telomeres are severely compromised (Riha and Shippen, 2003a), 

the loss of AtPOT1 does not exacerbate telomere erosion or increase the frequency of 

chromosome end-joining.  While it is conceivable that AtPOT1 acts redundantly with 

another component of the telomere complex to protect the terminus, the dynamic 

interaction of AtPOT1 with telomeres is inconsistent with a primary role in this pathway.   

Further distinguishing AtPOT1 from the previously described POT1 proteins is 

the ever-shorter-telomere phenotype displayed by Arabidopsis null mutants.  Depletion 

of POT1 in mammals leads to telomere elongation (Veldman et al., 2004; Wu et al., 

2006; Yang et al., 2005; Ye et al., 2004b), implying a role in the negative regulation of 

telomere length.  Although it is possible that the mammalian POT1 contribution to 

positive telomere length regulation is obscured by the other more severe phenotypes 

associated with POT1 depletion (Churikov et al., 2006; Hockemeyer et al., 2006; Wu et 

al., 2006), our data argue that the AtPOT1 protein has evolved a pivotal and highly 
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specialized role in promoting telomerase action at telomeres by working in the context 

of the telomerase RNP.   

Four lines of genetic and biochemical evidence strongly implicate AtPOT1 in the 

telomerase pathway.  First, telomeres shorten at the same rate in tert and pot1 mutants, 

and depletion of telomere tracts is not accelerated in plants with a deficiency in both 

genes.  Second, AtPOT1 is required for the telomerase-dependent elongation of 

telomeres in ku70 mutants.  Third, in vitro telomerase activity levels are significantly 

reduced in pot1 mutants.  Fourth, enzymatically active telomerase is specifically 

immunoprecipitated with AtPOT1 antibodies.  

How AtPOT1 interacts with the telomerase RNP to facilitate telomere 

maintenance is unknown.  Transient transfection experiments in tobacco with GFP-

tagged AtPOT1 and TERT show that the two proteins co-localize in the nucleolus (N. 

Kato, E. Lam, E. Shakirov and D. Shippen, unpublished data), where telomerase RNP 

biogenesis occurs in both yeast and mammals (Etheridge et al., 2002; Teixeira et al., 

2002).  Intriguingly, we found that AtPOT1 association with enzymatically active 

telomerase is regulated in the cell cycle, increasing by an average of ~4.5 fold in S 

phase relative to unsynchronized cells (predominantly G1) and cells arrested in G2.  

Thus, AtPOT1 may stabilize an enzymatically active form of the RNP.  In support of this 

model, telomerase activity levels are more variable in the absence of AtPOT1.  

Although Arabidopsis shows no haploinsufficiency with respect to TERT (Fitzgerald et 

al., 1999b) or AtPOT1 (this study), the more compromised telomerase enzyme found in 

pot1 null mutants may be unable to solve the end replication problem.   

It is also possible that AtPOT1 functions to promote telomerase action on its 

telomeric DNA substrate.  Notably, the variability of in vitro telomerase activity levels in 
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pot1 mutants is incongruent with the highly consistent ever-shorter-telomere phenotype 

displayed by these plants.  By virtue of its two OB-folds, AtPOT1 is predicted to directly 

bind telomeric DNA.  However, under conditions where S. pombe and mammalian 

POT1 associate with telomeric DNA in vitro (Baumann and Cech, 2001; Wu et al., 

2006), AtPOT1 showed no binding.  While AtPOT1 may simply need different 

biochemical reaction conditions to associate with telomeric DNA, another more 

interesting possibility is that AtPOT1 requires a binding partner.  Recent studies reveal 

that the mammalian POT1 binding partner, TPP1, which cannot bind telomeric DNA on 

its own (Wang et al., 2007; Xin et al., 2007), not only greatly enhances the affinity of 

POT1 for telomeric DNA in vitro, but also stimulates telomerase activity and processivity 

(Wang et al., 2007).  Moreover, like AtPOT1, TPP1 can assume a canonical OB-fold 

(Wang et al., 2007; Xin et al., 2007) and physically interacts with the telomerase RNP 

(Xin et al., 2007).  Mice deficient in TPP1 show profound developmental defects and 

animals that survive to adulthood are infertile (Keegan et al., 2005).  Thus, TPP1 

contrasts with Arabidopsis POT1 in that it appears to possess additional functions 

besides stimulating telomerase activity (Xin et al., 2007).  Altogether our observations 

underscore the extraordinarily rapid evolution of the telomeric complex, and indicate 

that OB-fold bearing proteins, such as AtPOT1, are co-evolving with the telomerase 

RNP.  
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CHAPTER V 

 

IDENTIFICATION AND CHARACTERIZATION OF THE THIRD Arabidopsis 

POT1 PROTEIN, AtPOT1c 

 

Summary 

POT1 is a protein that in yeast and mammals binds ss telomeric DNA and plays an 

essential role in chromosome end protection and telomere length regulation.  While 

most organisms encode a single POT1, Arabidopsis possess two POT1 like genes, 

dubbed AtPOT1a and AtPOT1b.  Here, we describe identification and characterization 

of the third Arabidopsis POT1 gene, AtPOT1c.  We show that AtPOT1c reflects a very 

recent gene duplication of AtPOT1a that is specific for Arabidopsis thaliana.  We 

demonstrate that AtPOT1c is expressed in proliferative tissues and is subjected to 

alternative splicing.  Similar to AtPOT1a, AtPOT1c does not bind telomeric DNA in vitro 

despite the presence of the OB-fold.  Moreover, like AtPOT1a, transgenic analysis 

suggests that AtPOT1c acts in a telomerase pathway for telomere length maintenance, 

but unlike AtPOT1a, may act as a negative regulator of telomerase action in vivo.  

Furthermore, unlike AtPOT1a, AtPOT1c contributes to chromosome end protection and 

maintenance of the telomere architecture. Altogether, our data demonstrate that 

AtPOT1c is a novel protein that has evolved unique functions at Arabidopsis telomeres. 

 

Introduction 

The ends of linear chromosomes in eukaryotes are protected by telomeres, special 

nucleoprotein structures that preclude activation of DNA damage repair pathways and 
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exonucleolytic attack.  Telomere extension by telomerase also facilitates the complete 

replication of chromosome termini and thus is necessary to overcome the end 

replication problem in actively dividing cells.  Telomeres typically consist of simple G-

rich repeats.  While telomeric DNA is mostly double-stranded (ds), the G-rich strand 

running in the 5’ to 3’ direction toward the chromosome end forms a single-stranded 

(ss) protrusion termed G-overhang.  The G-overhang can fold back and invade the 

duplex region, forming t-loop, a complex secondary structure that sequesters 

chromosome ends from deleterious activities.  The G-overhang associates with ss 

telomere-specific proteins.  Genetic and biochemical analysis of G-overhang binding 

proteins from different organisms has revealed essential roles in chromosome end 

protection and in regulation of telomere length (reviewed in Wei and Price, 2003). 

The first telomere end binding protein (TEBP) was discovered in the ciliate 

Oxytricha nova, where a high abundance of telomeres allowed purification of DNA-

protein complexes through gel-filtration (Gottschling and Zakian, 1986; Price and Cech, 

1987).  The Sacharomyces cerevisiae G-overhang binding protein Cdc13 was initially 

identified from mutants causing Rad9-dependent cell cycle arrest (Garvik et al., 1995), 

and was subsequently found in a genetic screen for mutations that lead to an ever-

shorter-telomere (est) phenotype (Lendvay et al., 1996; Nugent et al., 1996).  The 

identification of ss telomere proteins from multicellular organisms lagged due to the low 

abundance of these proteins and to poor conservation of the primary sequence.  

However, the development of more advanced alignment tools allowed identification of 

the S. pombe and human POT1 proteins, the presumed orthologs of O. nova TEBP and 

S. cerevisiae Cdc13 (Baumann and Cech, 2001).  POT1 homologs have subsequently 

been found in other species, including plants.  Interestingly, while most eukaryotes 
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encode only a single G-overhang binding protein, there are few exceptions.  In O. nova, 

TEBP consists of two subunits, α and β, which form a heterodimer and display different 

interactions with the ss telomeric DNA (Fang and Cech, 1993; Gray et al., 1991; Hicke 

et al., 1990).  Similarly, in another ciliate protozoon Euplotes, there are two G-overhang 

binding proteins (TP and rTP) that are highly divergent in sequence and in function 

(Price, 1990; Skopp et al., 1996).  Mice also encode two POT1 proteins that share 72% 

similarity and appear to be partially redundant for telomere length regulation and 

chromosome end protection (He et al., 2006; Hockemeyer et al., 2006; Wu et al., 2006).   

Structural studies of G-overhang binding proteins demonstrate that despite very 

limited sequence similarity, these proteins share conserved oligosacharide/ 

oligonucleotide binding-fold (OB-fold).  The OB-fold is a five-stranded β barrel found in 

many single-strand nucleic acid binding proteins (Theobald et al., 2003).  In vitro all of 

them bind their corresponding single-strand telomeric DNA, displaying specificity for the 

G-rich strand mediated through this domain (Baumann and Cech, 2001; Lei et al., 

2002).  Since telomeres form a t-loop structure, it is thought that ss telomere proteins 

can bind both the G-overhang and the displaced G-rich single-stranded repeats at the 

base of the t-loop in vivo. 

G-overhang binding proteins are essential for chromosome end protection.  

Cdc13p is required to protect C-strand from nucleolytic degradation (Garvik et al., 1995) 

through its interaction with other OB-fold containing proteins, Stn1p and Ten1p.  

Mutations in Cdc13, Stn1 and Ten1 result in cell cycle arrest due to accumulation of 

long stretches of ss G-rich telomeric DNA (Grandin et al., 2001; Grandin et al., 1997).  

In S. pombe, deletion of POT1 leads to exonucleolytic degradation of telomeric as well 

as subtelomeric sequences, chromosome mis-segregation, and cell death (Baumann 
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and Cech, 2001).  Intriguingly, deletion of Stn1 and Ten1 in fission yeast also leads to a 

phenotype identical to POT1 deficiency (Martin et al., 2007), demonstrating that multiple 

proteins associate with the G-overhang to provide chromosome end protection. 

In vertebrates, genetic studies of chicken POT1 reveal the essential role of this 

protein in protecting the chromosome end from a DNA damage response (Churikov et 

al., 2006).  Similarly, knockdown of human POT1 results in accumulation of DNA 

damage response proteins at telomeres and cell cycle arrest (Hockemeyer et al., 2005; 

Veldman et al., 2004; Yang et al., 2005).  Mammalian POT1 controls the ATR-mediated 

DNA damage response pathway at telomeres (Churikov and Price, 2008; Churikov et 

al., 2006; Denchi and de Lange, 2007; Guo et al., 2007).  Since activation of ATR 

pathway requires binding of RPA to single-stranded DNA (Zou and Elledge, 2003), 

POT1 is thought to block ATR by competing with RPA for G-overhang binding (Denchi 

and de Lange, 2007).  Human POT1 has been also implicated in blocking end-to-end 

fusions and control of 5’ exonucleolytic processing of telomeres (Hockemeyer et al., 

2005; Veldman et al., 2004; Yang et al., 2005).  Mice POT1 orthologs similarly abrogate 

a DNA damage response at telomeres and are implicated in protecting the C strand 

from nuclease attack and blocking homologous recombination at telomeres (He et al., 

2006; Hockemeyer et al., 2006; Wu et al., 2006).   

Studies of ss telomere binding proteins from different organisms have 

uncovered a complex role for these proteins in telomere length regulation.  A role for 

Cdc13p in S. cerevisiae telomere maintenance is clear.  Cdc13 directly recruits 

telomerase to the chromosome terminus via an interaction with Est1, a telomerase 

holoenzyme component.  While mutations that abolish the Cdc13-Est1 interaction lead 

to an ever-shorter-telomere phenotype, Cdc13DBD-Est1 fusion protein rescues the 
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progressive telomere shortening phenotype of both cdc13 and est1 mutants (Chandra 

et al., 2001; Evans and Lundblad, 1999; Pennock et al., 2001).  Mutant Cdc13 alleles 

that result in telomere elongation have also been identified, suggesting that Cdc13 

plays a role in both positive and negative regulation of telomere length (Chandra et al., 

2001; Grandin et al., 2000).  Similarly, in vitro and in vivo studies of human POT1 have 

revealed a complex role of this protein in telomere length control and demonstrated that 

hPOT1 contributes to both positive and negative regulation (Kelleher et al., 2005; Lei et 

al., 2005; Veldman et al., 2004; Yang et al., 2005; Ye et al., 2004b).  Unlike Cdc13, the 

exact mechanism for telomere length regulation by hPOT1 is unknown.  It has been 

recently shown that mammalian POT1 exerts its function in collaboration with TPP1.  

TPP1 physically interacts with both POT1and active telomerase enzyme (Xin et al., 

2007).  Although TPP1 harbors a canonical OB-fold, it cannot bind telomeric DNA on its 

own (Wang et al., 2007; Xin et al., 2007).  Instead, the OB-fold in TPP1 is thought to 

mediate its association with telomerase in an interaction that is required for telomere 

length control (Xin et al., 2007).  It is therefore possible that TPP1 fulfils the role of Est1 

protein in mammals. 

We previously showed that Arabidopsis encodes two POT1-like proteins, 

AtPOT1a and AtPOT1b (Shakirov et al., 2005).  These proteins display only 49% 

overall sequence similarity.  Moreover, AtPOT1a and AtPOT1b play non-redundant 

roles at Arabidopsis telomeres (Shakirov et al., 2005).  AtPOT1a positively regulates 

telomere length through a physical interaction with telomerase RNP.  This protein stably 

associates with active telomerase enzyme, but dynamically associates with telomeres in 

a cell-cycle dependent manner (Surovtseva et al., 2007).  In contrast, AtPOT1b is 
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implicated in chromosome end protection, as dominant-negative AtPOT1b mutants 

display telomere degradation and end-to-end fusions (Shakirov et al., 2005).   

Here, we describe the identification and characterization of a third POT1 protein in 

Arabidopsis, AtPOT1c.  AtPOT1c is the result of very recent gene duplication of 

AtPOT1a.  We found that AtPOT1c is present only in Arabidopsis thaliana and not in 

other closely related plant species.  Despite its recent appearance, AtPOT1c has 

evolved functions distinct from AtPOT1a and AtPOT1b.  We show that over-expression 

of AtPOT1c leads to deregulation of telomere length at individual chromosome arms, a 

phenotype consistent with telomerase dysfunction in vivo.  We also show that AtPOT1c 

is involved in the maintenance of telomere architecture, as AtPOT1c over-expression 

leads to a dramatic reduction in G-overhang.  Notably, AtPOT1c exerts the end 

protection function in concert with telomerase: over-expression of AtPOT1c in the 

absence of telomerase leads to a further reduction in G-overhang length.  Finally, we 

show that telomeres remain refractory to end-to-end fusions despite a reduction in the 

G-overhang in AtPOT1c mutants.  Thus, AtPOT1c appears to be a novel protein that 

has evolved unique functions at Arabidopsis telomeres. 

 

Materials and methods 

Plant materials and plant transformation 

The tert mutants and plant growth conditions are as described (Riha et al., 2001; 

Shakirov et al., 2005).  Agrobacterium tumefaciens strain GV3101 was used for plant 

transformation.  Transformation was performed by the in planta method (Riha et al., 

2002).  T1 primary transformants were selected as described (Shakirov et al., 2005). 
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RNA extraction, RT-PCR, and molecular cloning 

RNA was extracted from ~0.1 g of plant tissue using Plant RNA Purification Reagent 

(Invitrogen).  cDNA was synthesized with Superscript III reverse transcriptase 

(Invitrogen).  AtPOT1c transcripts were obtained by PCR with POT1c_nested_fwd (5- 

CACTGTCTAATGACGTCAGGAT) and POT1c_nested_rev (5’-

CCTGAATGAATGACTCAGCTC) primers, followed by PCR with POT1c_cDNAF (5’-

ATGGCGAAGAAGAGAGACAGTC) and POT1c_nested_rev primers.  For sequencing, 

AtPOT1c transcripts were cloned into the pDrive vector (Quiagen).  For plant 

transformation, the AtPOT1c locus was amplified from genomic DNA using primers 5- 

CGGGATCCATGGCGAAGAAGAGAGACAGTC and 5’-

CGACTAGTTCACTTAGCCAGAATAGATGCTGG, and cloned into the pCBK05 

expression vector (Shakirov et al., 2005). 

 

Gel shift 

AtPOT1cS and AtPOT1cL were cloned into a pET28a expression vector (Novagen).  

Proteins were translated using rabbit reticulocyte lysate (Promega).  Gel-shifts were 

performed as described (Surovtseva et al., 2007; Wu et al., 2006). 

 

Telomere analysis, quantitative TRAP and DNA damage sensitivity assay 

Total plant DNA was extracted as described (Cocciolone and Cone, 1993).  TRF 

analysis was performed on Tru1I (Fermentas) digested DNA samples (Fitzgerald et al., 

1999).  PETRA and telomere fusion PCR were performed as described (Heacock et al., 

2004).  TRF, PETRA and fusion PCR blots were hybridized with a 32P 5’ end-labeled 

(T3AG3)4 probe.  Quantitative real-time TRAP was conducted on protein extracts 
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prepared from two to three influorescences as described (Kannan et al., 2008).  For 

DNA damage sensitivity assay, seedlings were incubated in methyl methanesulfonate 

(Aldrich) as discussed (Heacock et al., 2007). 

 

Results 

Identification of the third POT gene in Arabidopsis 

A BLAST search of the Arabidopsis thaliana genome database with the AtPOT1a 

sequence as a query unexpectedly identified a second gene (At2g04395) on 

chromosome 2 located ~450 kb upstream of the AtPOT1a transcribed in the opposite 

orientation (Figure 31A).  We termed this gene AtPOT1c.  Analysis of the AtPOT1c 

sequence revealed ~90% identity at the nucleotide level to the 5’ region of AtPOT1a.  

AtPOT1c was annotated as an expressed gene in the database, and this was confirmed 

by reverse transcription-PCR analysis.  The AtPOT1c transcript was not abundant, 

however, and could only be detected by nested PCR following reverse transcription.  In 

contrast to AtPOT1a and AtPOT1b, which are ubiquitously expressed, RT-PCR analysis 

of mRNA from different plant organs revealed AtPOT1c mRNA only in proliferative 

tissues, such as flowers and seedlings, but not in rosette leaves or stems.  Furthermore, 

two major bands were amplified in the PCR reaction, suggesting that AtPOT1c is 

subjected to alternative splicing (Figure 31B).  Cloning and sequencing of AtPOT1c 

transcripts confirmed this prediction and revealed two major isoforms of AtPOT1c, 

dubbed AtPOT1cL and AtPOT1cS.  These findings indicate that the transcription profile 

and presence of mRNA of AtPOT1c is distinct from AtPOT1a and AtPOT1b. 

The predicted translation products of both AtPOT1cL and AtPOT1cS encode a 

single OB-fold (D. Wuttke, personal communications), which display 39% identity (40%  
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Figure 31.  AtPOT1c undergoes alternative splicing.  (A)  Schematic of the Arabidopsis genome locus on 

chromosome 2 encoding AtPOT1a and AtPOT1c.  AtPOT1c is a product of a recent duplication of the 5’ 

end of AtPOT1a.  (B)  RT-PCR analysis of AtPOT1c expression in different plant tissues.  (C)  Schematic of 

AtPOT1cL and AtPOT1cS proteins.  Identity (ID) and similarity (SIM) to the OB-fold region of AtPOT1a is 

shown.   
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similarity) to each other.  Interestingly, while the OB-fold sequence in AtPOT1cS is 

similar to the first OB-fold in AtPOT1a, AtPOT1cL harbors an OB-fold which has 

sequence similarity to both OB folds of AtPOT1a (Figure 31C).  AtPOT1cS and 

AtPOT1cL show only 31% and 58% identity, respectively, to the corresponding region 

of AtPOT1a protein, indicating that alternative splicing of AtPOT1c may result in protein 

isoforms that are functionally distinct from each other and from AtPOT1a. 

To investigate AtPOT1c interactions with telomeric DNA in vitro, gel shift 

experiments were performed.  AtPOT1cS and AtPOT1cL proteins were expressed in 

rabbit reticulocyte lysate and incubated with a ss oligonucleotide corresponding to two 

Arabidopsis telomeric repeats.  Under conditions that allowed mouse POT1a binding to 

its cognate telomeric sequence (Wu et al., 2006) (Figure 32), we failed to detect 

AtPOT1c binding to any of the seven permutations of the Arabidopsis telomeric DNA 

repeat sequence (Figure 32).  We conclude that despite the presence of an OB-fold, 

neither of the AtPOT1c isoforms directly interacts with telomeric DNA under these in 

vitro conditions.  In this regard, AtPOT1c is similar to AtPOT1a and AtPOT1b, neither of 

which binds to telomeric DNA in vitro. 

 

Over-expression of AtPOT1c results in telomere length deregulation 

To study the function of AtPOT1c in vivo, we sought to identify a null mutant in this 

gene.  Unfortunately, there is no T-DNA disruption line available for AtPOT1c in any of 

the annotated T-DNA collections.  Moreover, a PCR screen of the DNA pools from D. 

Weigel and T. Jack collections failed to identify an AtPOT1c mutant (data not shown).  

Therefore, we undertook a transgenic approach to examine the function of AtPOT1c in 

vivo by over-expressing the wild type protein.  The genomic sequence of AtPOT1c was  
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Figure 32.  AtPOT1c does not bind telomeric DNA in vitro.  Oligonucleotides containing vertebrate POT1 

minimal binding site (h) or two Arabidopsis telomeric repeats in all seven different permutations of the 

(TTTAGGG)2 are shown on the top.  Gel-shift experiment results are shown in the bottom panel.  While 

mouse POT1a protein binds the vertebrate telomere sequence (arrow), no binding of AtPOT1cL or 

AtPOT1cS to any permutations of the Arabidopsis telomeric repeat sequence is observed.  Asterisks 

indicate non-specific bands. 
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cloned downstream of the strong cauliflower mosaic virus 35S promoter and 

transformed into wild type Arabidopsis.  Over-expression of AtPOT1c mRNA was 

verified by RT-PCR (Figure 33A).  Sequencing of the RT-PCR products confirmed that 

both AtPOT1cL and AtPOT1cS isoforms were expressed at a similar, high level in 

transgenic plants (data not shown). 

Plants over-expressing AtPOT1c did not display any growth or developmental 

defects and were completely fertile (data not shown).  To analyze bulk telomere length, 

terminal restriction fragment (TRF) analysis was performed on AtPOT1c primary 

transfromants.  In wild type Arabidopsis plants, bulk telomeres appear as a smear 

ranging from 2 to 5 kb (Shakirov and Shippen, 2004).  Since the level of AtPOT1c 

expression is likely to vary in different transgenic plants, several AtPOT1c transformants 

were subjected to TRF analysis.  Interestingly, while in most primary transformants 

telomeres fell into wild type range (Figure 33B, lanes 4,6 and 7), some plants displayed 

telomeres that were either shorter (Figure 33B, lane 3) or significantly longer (Figure 

33B, lane 5) than wild type.  These data indicate that bulk telomere length regulation is 

perturbed in AtPOT1c OE mutants.  We have previously shown that over-expression of 

the corresponding regions of AtPOT1a and AtPOT1b does not result in a similar TRF 

profile (Shakirov et al., 2005), suggesting that AtPOT1c plays a distinct role in telomere 

length regulation. 

To examine telomere tracts on individual chromosome arms, we used primer 

extension telomere repeat amplification (PETRA).  In this PCR assay, individual 

telomeres are amplified using a primer that anneals to the G-overhang and a primer that 

recognizes a unique sequence in the subtelomeric region of each chromosome arm 

(Heacock et al., 2004).  We have previously shown that the length of telomere tracts on  
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Figure 33.  AtPOT1c over-expression results in deregulation of telomere length.  (A)  RT-PCR analysis of 

AtPOT1c transcripts in wild type plants and plants over-expressing AtPOT1c.  (B)  TRF analysis of primary 

transformants over-expressing AtPOT1c.  (C)  Top panel, PETRA analysis of telomeres on seven individual 

chromosome arms in wild type and AtPOT1c over-expressing mutants.  Bottom panel, quantification of the 

number of PETRA bands.  (D)  PETRA analysis of plants over-expressing AtPOT1a OB-folds (AtPOT1aN) 

or AtPOT1b OB-folds (AtPOT1bN).  In panels B, C and D, blots were hybridized with the radiolabeled 

telomeric probe.  Molecular weight markers are indicated. 
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homologous chromosomes is tightly and coordinately regulated, giving rise to only one 

or two hybridization signals (Shakirov and Shippen, 2004).  In striking contrast, PETRA 

revealed multiple telomeric hybridization signals in DNA samples obtained from 

AtPOT1c OE mutants (Figure 33C).  Quantification of the number of hybridization bands 

for multiple chromosome arms in wild type (n=56) and AtPOT1c OE (n=49) plants 

demonstrated that on average 1.5 telomeric bands are generated for each chromosome 

arm in wild type plants.  In contrast, an average of three telomeric bands is detected in 

plants over-expressing AtPOT1c.  In addition to an increased number of PETRA 

signals, the PETRA profile consisted of much sharper bands than in wild type (Figure 

33C).  Therefore, over-expression of AtPOT1c results in deregulation of telomere length 

on individual chromosome ends.  To test whether this phenotype is specific to AtPOT1c 

over-expression, we performed PETRA on plants over-expressing the corresponding 

regions of AtPOT1a and AtPOT1b.  In contrast to AtPOT1c, PETRA generated diffuse, 

smeary telomeric bands similar to wild type for POT1a-N-terminal fragment over-

expression.  Interestingly, however, although the bands were more heterogeneous than 

for POT1c over-expression, over-expression of POT1b-N-terminal fragment generated 

a complex PETRA banding pattern for some chromosome arms (Figure 33D).  The 

significance of this observation for AtPOT1b function is unknown.  Nevertheless, these 

data argue strongly that AtPOT1c plays a different role at telomeres than AtPOT1a. 

 

AtPOT1c controls telomere length by working in the telomerase pathway 

In addition to an increased number of PETRA signals, the PETRA profile consisted of 

much sharper bands than in wild type (Figure 33C).  In Arabidopsis, telomerase is the 

major force contributing to the heterogeneity of individual telomere tracts (Riha et al., 
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2001).  As a consequence, when telomerase is inactivated, the diffuse PETRA signals 

obtained in wild type plants become much sharper, consistent with a reduction in length 

heterogeneity at telomeres on homologous chromosomes (Heacock et al., 2004; Riha 

et al., 2001).  Therefore, the sharpness of the bands in AtPOT1c over-expression 

mutants could result from telomerase dysfunction.  To examine telomerase activity 

levels in AtPOT1c over-expressing plants, quantitative real time TRAP (telomere repeat 

amplification protocol) was performed with extracts from wild type plants and several 

plants over-expressing AtPOT1c (Figure 34A).  Telomerase activity levels in plants 

over-expressing AtPOT1c were decreased by approximately two-fold relative to wild 

type, arguing that AtPOT1c is required for maximal telomerase activity.  

We next asked whether AtPOT1c acts in collaboration with telomerase for 

telomere maintenance in vivo.  AtPOT1c was over-expressed in telomerase-deficient 

(tert) mutants, and PETRA analysis was performed on primary transformants.  As a 

control, PETRA was performed on untransformed tert mutants.  As expected, a single 

sharp band was generated from each PETRA reaction when tert DNA was used (Figure 

34B, right panel).  Interestingly, the PETRA profile was the same in the tert mutants 

over-expressing AtPOT1c as in telomerase single mutants (Figure 34B, left panel), 

suggesting that AtPOT1c works in the telomerase pathway to maintain telomere tracts. 

 

Over-expression of AtPOT1c results in a decrease in the G-overhang signal. 

Since telomerase acts on the ss G-overhang, we examined the status of this structure 

in plants over-expressing AtPOT1c using in-gel hybridization.  Non-denatured genomic 

DNA was hybridized with a C-rich telomeric probe to evaluate the relative amount of ss 

G-rich telomeric DNA.  The G-overhang signal was decreased by ~5-fold in AtPOT1c  
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Figure 34.  AtPOT1c is required for normal telomerase activity in vitro, and works in concert with 

telomerase to maintain telomeres in vivo.  (A)  Results of real time TRAP on AtPOT1c over-expressing 

mutants.  Data for three primary transformants is shown.  Dashed line represents the threshold change in 

fluorescence.  Quantification of the telomerase activity levels in AtPOT1c over-expression mutants relative 

to wild type is shown on the right.  (B)  PETRA analysis of tert mutants over-expressing AtPOT3 (left panel) 

and single tert mutants (right panel).  Telomere length was measured on individual chromosome arms as 

indicated. 
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over-expression mutants compared to wild type (Figure 35A), arguing that AtPOT1c 

contributes to proper maintenance of telomere architecture.   

We next examined the contribution of telomerase in G-overhang length 

regulation in the context of AtPOT1c over-expression.  In-gel hybridization was 

performed on tert mutants over-expressing AtPOT1c.  Remarkably, the G-overhang 

signal was reduced by more than 30-fold (Figure 35A), which represents a further six-

fold decrease in the G-overhang signal relative to POT1c over-expression alone.  We 

conclude that AtPOT1c acts in concert with telomerase for G-overhang maintenance. 

 

Chromosome ends remain protected in plants over-expressing AtPOT1c 

The G-overhang is an essential feature of telomeres, as its loss leads to end-to-end 

chromosome fusions (Celli and de Lange, 2005).  Since G-overhang signals are ~5-fold 

reduced when AtPOT1c is over-expressed in wild type plants and barely detectable 

when AtPOT1c is over-expressed in tert mutants, we asked whether chromosome end 

were deprotected in these settings using telomere fusion PCR.  In this assay, PCR 

products are generated when telomeres are fused end-to-end (Heacock et al., 2004).  

As expected, a strong hybridization signal was generated with DNA samples from 

plants deficient in the essential telomere capping protein CIT1 (Y. Surovtseva and D. 

Shippen, unpublished).  In striking contrast, no telomere fusion PCR products were 

obtained when AtPOT1c was over-expressed in wild type plants or in tert mutants 

(Figure 35B).  Thus, perturbation in the G-overhang structure does not lead to genome 

instability associated with AtPOT1c over-expression.   

Although we failed to detect evidence for telomere fusions in AtPOT1c mutants, 

it is possible that telomeres in these plants elicit a DNA damage that does not  
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Figure 35.  AtPOT1c over-expression alters telomere architecture but does not lead to genome instability.  

(A)  Left panel, in-gel hybridization analysis of the G-overhang signal in wild type and POT1c over-

expressing mutants.  Native and denatured gels are shown.  Right panel, quantification of the G-overhang 

signal.  Ratio of the hybridization signal intensity relative to wild type is shown.  Wild type is set to one.  (B)  

Fusion PCR results for AtPOT1c over-expression in wild type.  Primers specific for subtelomeric regions on 

1L, 2R, 3L, 4R, 5L and 5R chromosome arms were used.  (C)  Fusion PCR results for AtPOT1c over-

expression in tert.  In panels B and C, cit1-1 DNA was used as a positive control.  All blots were hybridized 

with a radiolabeled telomeric probe.  
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result in end joining.  To test this hypothesis, we investigated the sensitivity of AtPOT1c 

over-expressing mutants to double-strand break inducing agent MMS.  Cells with 

dysfunctional telomeres are typically hypersensitive to DNA damage-inducing agents.  

Intriguingly, however, we failed to detect MMS hypersensitivity in plants over-expressing 

AtPOT1c in either wild type or tert backgrounds (data not shown).  These data argue 

that despite the altered architecture of the chromosome terminus, telomeres remain 

fully capped and functional in AtPOT1c over-expressing mutants. 

 

Discussion 

The key functions of telomeres are mediated by a large array of proteins that bind both 

ds and ss portions of telomeric DNA.  Single-strand telomeric DNA binding proteins are 

essential as they provide both telomere length regulation and chromosome end 

protection.  We previously showed that Arabidopsis encodes two highly diverged POT1 

paralogs that play distinct roles in telomere biology (Shakirov et al., 2005).  Here we 

describe the identification and characterization of a third Arabidopsis thaliana POT1 

protein, AtPOT1c.   

AtPOT1c reflects a very recent gene duplication of AtPOT1a.  It displays 92% 

identity to the 5’ region of AtPOT1a at the nucleotide level.  In silico searches through 

the available genome database of Arabidopsis lyrata failed to identify POT1c (A. Nelson 

and D. Shippen, unpublished).  Furthermore, PCR based approaches to identify POT1c 

in A. lyrata or other Brassicaceae species closely related to A. thaliana were 

unsuccessful (A. Nelson and D. Shippen, unpublished).  It is notable that A. lyrata 

diverged from A. thaliana only five million years ago.  By comparison, this evolutionary 
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distance in mammals is equivalent to the divergence between humans and chimps.  

Therefore, POT1c appears to be a very recent invention of Arabidopsis thaliana. 

Several lines of evidence indicate that despite its very recent emergence, 

AtPOT1c has evolved a novel function distinct from its ancestor AtPOT1a.  First, the 

expression profile of these two genes is different.  While AtPOT1a is ubiquitously 

expressed (Shakirov et al., 2005), AtPOT1c is transcribed only in proliferative tissues.  

Second, although both AtPOT1a and AtPOT1c mRNA are subjected to alternative 

splicing, AtPOT1a splice variants are ubiquitous and not tissue-specific (Tani and 

Murata, 2005).  In contrast, AtPOT1c shows an alternative splicing pattern that varies in 

different tissues and that is distinct from the splicing pattern observed in the 

corresponding region of AtPOT1a.  Although the importance of the two AtPOT1c 

isoforms is unclear, the differential expression and splicing might reflect a regulatory 

role.  Finally, consequences of AtPOT1c over-expression differ from over-expression of 

the corresponding region of AtPOT1a (Shakirov et al., 2005).  Altogether, these data 

indicate that AtPOT1c has evolved a function that is distinct from AtPOT1a. 

Our data implicate AtPOT1c in telomere length regulation.  In contrast to the 

PETRA profile generated with wild type plants, we observed a cluster of several sharp 

bands when the DNA from AtPOT1c over-expressing plants was examined.  A similar 

PETRA profile has recently been observed in plants bearing a mutation in dyskerin, a 

newly identified component of telomerase RNP (Kannan et al., 2008).  In these mutants, 

telomerase activity in vitro and in vivo is decreased, but not abolished, suggesting that 

the distinctive banding pattern produced by PETRA reflects a reduction in telomerase 

function.  As for dyskerin mutants, quantitative in vitro TRAP assay performed with 

AtPOT1c over-expression mutants revealed a decrease in telomerase activity relative to 
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wild type, arguing that the distinct PETRA profile observed in these two different genetic 

backgrounds reflects the relative level of telomerase activity in vivo. 

Genetic experiments support the conclusion that AtPOT1c acts in concert with 

telomerase.  Over-expression of AtPOT1c in tert mutants results in PETRA profile that 

is identical to that of single tert mutants, and is consistent with the complete loss of 

telomerase action on all chromosome ends. This finding is consistent with the 

interpretation that multiple PETRA signals generated for each chromosome end in 

AtPOT1c over-expressing plants reflect reduced telomerase activity.  Furthermore, as 

discussed below, perturbations of the G-overhang in AtPOT1c over-expressing plants is 

strongly exacerbated in mutants also deficient in TERT.   

The mechanism for AtPOT1c role in telomerase function remains unclear.  

Despite the presence of the OB-fold, AtPOT1c does not interact with telomeric DNA in 

vitro.  One possibility is that the OB-fold in AtPOT1c mediates its interaction with a 

telomere protein that contributes to telomerase recruitment to the chromosome 

terminus.  In this scenario, over-expression of AtPOT1c may result in titration of this 

factor from the terminus, thus decreasing telomerase action.  Alternatively, AtPOT1c 

may bind to one of the newly discovered telomerase RNAs in Arabidopsis, as has been 

shown for AtPOT1a (C. Cifuentes-Rojas and D. Shippen, unpublished).  Indeed, very 

recent data from our lab shows a direct interaction between AtPOT1c and the 

Arabidopsis TER1G7 RNA.  Thus, it is possible that AtPOT1c is a natural dominant 

negative regulator of telomerase, perhaps by competing with AtPOT1a for a binding site 

on TER.  In this scenario, over-expression of AtPOT1c would displace AtPOT1a, a 

positive regulator of telomerase, from the enzyme, leading to a reduction in the overall 

level of telomerase activity in vitro and in vivo.   
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Unexpectedly, in addition to a role for AtPOT1c in telomere length regulation, we 

found evidence that this protein is important for the proper architecture of the 

chromosome end.  In plants over-expressing AtPOT1c, the G-overhang signal is 

reduced by ~5-fold.  Telomeric G-overhangs are generated through a combination of 

telomerase action and exonucleolytic processing of the C strand (Chai et al., 2006; 

Jacob et al., 2003; Larrivee et al., 2004).  It is therefore possible that over-expression of 

AtPOT1c reduces ability of telomerase to extend G-overhangs, or alternatively reduces 

the ability of nuclease to process the C-strand.  In Arabidopsis, in-gel hybridization 

reveals no difference in G-overhang status in telomerase-deficient mutants relative to 

wild type (M. Heacock and D. Shippen, unpublished), suggesting that the C-strand 

processing is the major factor contributing to the length of ss telomeric DNA.  Thus, we 

favor the model that AtPOT1c controls susceptibility of the C-strand to nuclease attack.  

Interestingly, over-expression of the corresponding region of AtPOT1b results in 

chromosome end deprotection, and mutants display severe morphological defects and 

loss of terminal sequences (Shakirov et al., 2005).  Although the G-overhang status has 

not been analyzed in AtPOT1b mutants, these data argue that AtPOT1b and AtPOT1c 

play distinct roles in chromosome end protection. 

Although tert mutants do not display any change in the G-overhang signal, 

AtPOT1c over-expression in telomerase-deficient mutants resulted in a dramatic 

reduction (~30-fold) in the G-overhang signal relative to wild type and 6-fold reduction 

relative to that in wild type plants over-expressing AtPOT1c.  This observation implies 

that AtPOT1c collaborates with telomerase for G-overhang maintenance. It has been 

hypothesized in yeast and mammals that TERT itself may play a direct role in 

chromosome end protection (Blackburn, 2005; Hsu et al., 2007; Kim et al., 2003; Zhu et 
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al., 1999).  Thus, the combined dysfunction of AtPOT1c and TERT may abrogate C-

strand protection. Our data further imply AtPOT1c contacts an additional factor on the 

chromosome terminus that is involved in C-strand protection since over-expression of 

AtPOT1c in the telomerase background leads to a much greater loss of G-strand 

relative to tert mutant alone.  In this view, over-expression of POT1c results in the 

displacement of an essential capping protein from the chromosome terminus. 

Finally, despite the significant perturbations in the architecture of the chromosome 

terminus in plants over-expressing AtPOT1c, telomeres are resistant to end-to-end 

fusions.  Since G-overhangs are only  ~20 nucleotides in length in Arabidopsis (Riha et 

al., 2000), the 30-fold reduction of the signal intensity argues that G-overhangs at most 

of the telomeres are dramatically shortened or even lost when AtPOT1c is over-

expressed in tert background.  Despite this, plants are completely fertile at least in the 

first generation and display no morphological defects.  While it is possible that 

telomeres initiate DNA damage response in tert mutants over-expressing AtPOT1c, 

these plants do not show an increased sensitivity to DNA damaging agents, arguing 

that the telomere perturbations in this background do abolish the normal global DNA 

damage response.   
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CHAPTER VI 

 

IDENTIFICATION AND CHARACTERIZATION OF A NOVEL Arabidopsis 

PROTEIN CRITICAL FOR THE INTEGRITY OF TELOMERES 

 

Summary 

The protective telomere function is mediated by proteins that associate with either ds or 

ss telomeric DNA.  Although telomere composition has been examined in detail in yeast 

and in mammals, little is known about the proteins that protect plant telomeres.  Here, 

we describe identification and characterization of the novel factor essential from 

chromosome end protection in Arabidopsis termed Critical for the Integrity of Telomeres 

(CIT1). The CIT1 gene was identified by map-based cloning of a mutation that resulted 

in a severe telomere deprotection phenotype.  Analysis of two additional null alleles of 

CIT1 verified that CIT1 is required for chromosome end protection in Arabidopsis.  

Disruption of CIT1 leads to a severe telomere deprotection phenotype reminiscent of a 

deficiency in the ds or ss telomere capping proteins found in other organisms.  

Telomeres in cit1 mutants are subjected to massive nuclease attack, resulting in both 

extensive C-strand resection and loss of telomeric and subtelomeric sequences.  

Moreover loss of CIT1 leads to end-to-end chromosome fusions and profound genome 

instability.  Finally, CIT1 appears to protect telomeres from homologous recombination.  

Notably, orthologs of CIT1 are present in a wide variety of plants and high eukaryotes, 

indicating that CIT1 represents a novel component of the telomere cap. 
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Introduction 

One challenge faced by linear chromosomes is the need to protect their termini from 

being recognized as double strand-breaks, which can lead to deleterious nuclease 

activities and recruitment into inappropriate repair reactions.  Telomeres solve this 

problem by forming a protective cap on the chromosome end, which consists of an 

elaborate architecture and a suite of specific telomere proteins.  The formation of a t-

loop regulates the end protection (reviewed in de Lange, 2004).  Telomeric proteins that 

associate with either ds or ss telomeric DNA provide further protection for the 

chromosome terminus.  In mammals, the six core telomere associated proteins are 

termed shelterin (de Lange, 2005) and are comprised of the double-strand telomeric 

DNA binding proteins TRF1 and TRF2, the G-overhang binding protein POT1, and 

three proteins associated with telomeres via protein-protein interactions (TPP1, TIN2 

and RAP1).  Perturbations in individual shelterin components or telomere shortening 

due to telomerase deficiency lead to telomere dysfunction (reviewed in Ferreira et al., 

2004). 

There are two major classes of proteins that are required for chromosome end 

protection.  The first class is represented by proteins that bind ds telomeric DNA, 

including Taz1 in S. pombe and TRF2 in mammals (Broccoli et al., 1997; Cooper et al., 

1997).  Deletion of Taz1 leads to MRN-dependent elongation of the G-overhang, 

implicating Taz1 in the protection of the C strand from nucleolytic processing (Cooper et 

al., 1997; D'Amours and Jackson, 2002).  While no telomere fusions is observed in G2 

where homologous recombination (HR) is a prevalent double-strand break (DSB) repair 

mechanism , G1 arrest leads to NHEJ-mediated end-to-end fusions between long 

telomeres and cell death upon Taz1 loss (Ferreira and Cooper, 2001).  Taz1 is also 
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required to prevent telomere entanglement, accumulation of DNA DSBs, and 

checkpoint activation after telomere replication in the cold (Miller and Cooper, 2003). 

In mammals, the functional homolog of Taz1 is TRF2 (Broccoli et al., 1997).  

Telomere uncapping phenotype has been most extensively studied using TRF2∆B∆M 

dominant negative mutant allele that displaces the wild type TRF2 as well as portion of 

TRF2-associated shelterin components from telomeres (Loayza and de Lange, 2003; 

van Steensel et al., 1998).  Such inhibition of TRF2 results in recruitment of numerous 

DNA damage response factors to the chromosome terminus and formation of telomere 

dysfunction-induced foci (TIFs) (Takai et al., 2003).  The DNA damage checkpoint 

arising at telomeres ultimately triggers cell cycle arrest and cell death (van Steensel et 

al., 1998).  Since TRF2 can directly bind ATM kinase in vitro and in vivo, the current 

model proposes that TRF2 inhibits ATM signaling pathway by blocking activation of 

ATM at functional telomeres (Denchi and de Lange, 2007; Karlseder et al., 2004). 

Uncapped telomeres in TRF2∆B∆M mutant cells or in conditional TRF2 knockout 

mouse cells are subjected to ERCC1/XPF flap endonuclease dependent G-overhang 

cleavage and are immediately recruited into NHEJ-mediated fusions without prior 

degradation of telomeric repeats (van Steensel et al., 1998; Zhu et al., 2003).  TRF2 

facilitates formation of t-loop like structures in vitro (Fouche et al., 2006; Stansel et al., 

2001), and hence the t-loop destabilization and G-overhang exposure that occur with 

TRF2 inhibition are thought to be responsible for telomere fusions and genome 

instability that arise in these mutants. 

Analysis of a dominant negative TRF2 allele that lacks the N-terminal basic 

domain (TRF2∆B) demonstrated that in addition to protection from NHEJ, TRF2 is 

essential to prevent homologous recombination at telomeres.  Expression of TRF2∆B 
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results in dramatic recombination-dependent telomere shortening and accumulation of 

t-loop sized extrachromosomal telomeric circles (ECTCs) (Wang et al., 2004).  

Remarkably, telomere deletions upon TRF2 inhibition are dependent on XRCC3, a 

protein involved in Holiday junction resolution (Wang et al., 2004).  It is currently 

believed that the mechanism of t-loop cleavage in TRF2∆B cells is similar to TRD in 

yeast (Lustig, 2003), where branch migration of the displaced loop leads to the 

formation of Holliday junction, resolution of which produces a shortened telomere and 

an extra-chromosomal telomeric circle (ECTC).  Although homologous recombination is 

one of the best solutions for telomere length maintenance in the absence of telomerase, 

TRF2 appears to suppress it in normal cells (Wang et al., 2004).  Altogether, these data 

demonstrate an essential role of TRF2 in the protection of chromosome end from DNA 

damage response, G-overhang loss, NHEJ and inappropriate homologous 

recombination.   

A second major class of proteins involved in chromosome end protection are the 

ss telomeric DNA binding proteins that associate with the extreme terminus of the 

chromosome via an OB fold binding domain.  In budding yeast, this protein is Cdc13p.  

Cdc13p is required to protect C-strand from nucleolytic degradation (Garvik et al., 1995) 

through its interaction with Stn1p and Ten1p.  stn1 and ten1 mutants display 

accumulation of extremely long G-overhangs similar to cdc13-1 (Grandin et al., 2001; 

Grandin et al., 1997).  Like Cdc13p, Stn1p contains an OB-fold, and both Stn1p and 

Ten1p bind telomeric DNA in vitro (Gao et al., 2007).  Thus, it is proposed that Cdc13-

Stn1-Ten1 complex acts as an RPA-like complex that is specific for single-strand 

telomeric DNA (Gao et al., 2007).  Recent data indicate that STN1p and TEN1p can 
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provide telomere capping independent of Cdc13p (Larrivee and Wellinger, 2006; 

Petreaca et al., 2006; Zubko and Lydall, 2006). 

In fission yeast, the OB-fold bearing protein POT1 functions in chromosome end 

protection: SpPOT1 deletion results in immediate erosion of telomeric and subtelomeric 

DNA and chromosome mis-segregation (Baumann and Cech, 2001).  The surviving 

cells circularize all three chromosomes, thus achieving protection from further fusion 

reactions and genome instability (Baumann and Cech, 2001).  Intriguingly, Stn1 and 

Ten1 homologs have been recently identified in S. pombe, and both proteins are 

essential for chromosome end protection (Martin et al., 2007).  

Vertebrate POT1 also contributes to chromosome end protection.  RNAi-

mediated depletion of human POT1 activates a DNA damage response and triggers 

growth arrest (Churikov et al., 2006; He et al., 2006; Hockemeyer et al., 2006; Wu et al., 

2006).  Similarly, conditional knockout of chicken POT1 results in γH2AX accumulation 

at telomeres and cell cycle arrest (Churikov et al., 2006).  It is currently believed that 

while TRF2 protects telomeres from ATM signaling, POT1 independently controls 

initiation of the ATR-mediated DNA damage response pathway (Churikov and Price, 

2008; Churikov et al., 2006; Denchi and de Lange, 2007; Guo et al., 2007).  

Vertebrate POT1 is also implicated in the control of 5’ exonucleolytic processing 

of telomeres (Hockemeyer et al., 2005).  However, the role of vertebrate POT1 in 

protection of telomeres from end-to-end fusions is controversial.  While conditional 

knockout of chicken POT1 and RNAi-mediated depletion of human POT1 do not lead to 

telomere fusions (Churikov et al., 2006; Hockemeyer et al., 2005), some studies 

demonstrate end-to-end fusions and genome instability upon hPOT1 knockdown 

(Veldman et al., 2004; Yang et al., 2005). 
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Notably, mice encode two POT1 orthologs, which display ~75% similarity and 

appear to be partially redundant for chromosome end protection, with each contributing 

to abrogating a DNA damage response at telomeres.  Furthermore, although somewhat 

conflicting results were obtained in different studies, mouse POT1a and POT1b are also 

implicated in protecting the C strand from nuclease attack and blocking homologous 

recombination at telomeres (He et al., 2006; Hockemeyer et al., 2006; Wu et al., 2006). 

Due to extreme tolerance of plants to genome instability, the flowering plant 

Arabidopsis thaliana provides an attractive model system for studying of fundamental 

aspects of telomere capping (Riha et al., 2001).  However, essential components of the 

shelterin complex have not been thoroughly elucidated in plants.  In rice, deletion of the 

putative TRF2 homolog, RTBP1, results in telomere fusions and genome instability 

(Hong et al., 2007).  Similarly, knockdown of NgTRF1, a RTBP1 homolog in tobacco, 

leads to reduction of cell viability (Yang et al., 2004).  In contrast, the Arabidopsis 

homolog AtTBP1 appears to be dispensable for chromosome end protection and 

genome stability (Hwang et al., 2001; Karamysheva et al., 2004; Yu et al., 2000).  

Although several other Arabidopsis Myb-containing TRF-like proteins bind telomeric 

dsDNA in vitro, analysis of corresponding null mutants did not reveal chromosome end 

deprotection, likely due to genetic redundancy (reviewed in Zellinger and Riha, 2007).  

Arabidopsis encodes three POT1-like proteins.  Although dominant-negative and over-

expression studies implicate AtPOT1b and AtPOT1c in telomere capping (Shakirov et 

al., 2005; Chapters III and V), analysis of the null AtPOT1b mutant did not reveal any 

significant telomere deprotection defects, suggesting that this protein does not make a 

major contribution to chromosome end protection (Shakirov and Shippen, unpublished).  

Furthermore, AtPOT1a is a telomerase accessory factor that is dispensable for end 
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protection and is specialized for positive regulation of telomere length instead 

(Surovtseva et al., 2007).  Finally, while all three POT1-like proteins harbor an OB-fold, 

none of them binds single-stranded telomeric DNA in vitro under conditions in which 

mammalian and yeast POT1 bind (Surovtseva et al., 2007); Y. Surovtseva and D. 

Shippen, unpublished). 

Here we describe the identification and characterization of a novel chromosome 

capping protein in Arabidopsis thaliana critical for the integrity of telomeres (CIT1).  cit1 

mutants display a profound telomere deprotection phenotype characterized by telomere 

length deregulation, extreme nuclease digestion, end-to-end chromosome fusions, and 

increased recombination.  Intriguingly, CIT1 encodes a novel protein whose only 

distinguishing feature is a putative OB-fold.  Orthologs of CIT1 can be discerned in a 

wide variety of high eukaryotes, indicating that CIT1 represents a novel component of 

the telomere cap.   

 

Materials and methods 

Mutant lines, genotyping, DNA and RNA extraction, and RT-PCR 

The cit1-1 line was identified in the TILLING collection (Till et al., 2003).  For 

genotyping, a genomic region flanking the cit1-1 point mutation was amplified with 

CIT1_M2 fwd (5’-GTAATGCCCATCTCAAGTTTTG) and CIT1_M2_rev (5’-

CAGCACACGCATAGCACTATG) primers and sequenced with the CIT1_M2 rev primer.  

cit1-2 and cit1-3 lines were found in the SALK database (stock lines SALK_114032 and 

SALK_083165, respectively).  Genotyping was performed with T-DNA and gene-

specific primers.  The tert line was previously described (Riha et al., 2001).  A genetic 

cross was performed between plants heterozygous for tert and for cit1-1.  Plants were 
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grown under 16 hours light/ 8 hours dark conditions at 23oC.  DNA from plants was 

extracted as previously described (Cocciolone and Cone, 1993).  RNA samples were 

prepared using Plant RNA Purification Reagent (Invitrogen).  Reverse transcription was 

performed using 2 µg of RNA, as described (Shakirov et al., 2005).  AtCIT1 cDNA was 

amplified in the PCR reaction with primers CIT1_start_fwd (5’-

ATGGAGAACACCACAATTCTCAC) and CIT1_stop_rev (5’-

TCAGCTATTTAGCAAACCTTGGAG).  To evaluate expression of the region flanking 

the T-DNA insertion in the cit1-2 allele, primers 5’-GTCACGCTTTTGAGAGGTCTG and 

CIT1_M2_rev were used.  For the cit1-2 allele, primers CIT1_M2_fwd and 5’-

CACTTGAGGAACTTATCCTCTG were utilized.  

 

Map-based cloning 

Map-based cloning was performed essentially as described (Lukowitz et al., 2000).  

Briefly, a mutant line (Columbia (Col) ecotype) was out-crossed to wild type Arabidopsis 

Landsberg erecta (Ler) ecotype.  F1 plants were self-propagated to F2.  Pools of wild 

type and mutant plants were generated (~50 plants in each pool) for bulked segregant 

analysis.  CIW5 and CIW6 markers were identified as markers linked to the mutation.  

150 individual mutant plants were subsequently used to find recombinants in the 

genomic interval between CIW5 and CIW6.  The region containing the mutation was 

mapped by creating and analyzing new markers.  Primer sequences of mapping 

markers are available upon request. 
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TRF, PETRA, quantitative TRAP, and in-gel hybridization 

TRF was conducted as previously described (Fitzgerald et al., 1999).  Subtelomeric 

TRF analysis was performed using a 1L probe (Surovtseva et al., 2007), or 5R probe 

(Shakirov and Shippen, 2004).  For PETRA, 2 µg of DNA was used.  PETRA conditions 

are described in (Heacock et al., 2004).  Quantitative TRAP assay was performed as 

described (Kannan et al., 2008).  For in–gel hybridization, HaeIII- and HinfI-digested 

DNA was separated on a native agarose gel.  The dried gel was hybridized with a ss 

(C3TA3)3 32P 5’ end labeled oligonucleotide as discussed (Churikov et al., 2006).   

 

Telomere fusion PCR, cytogenetics, and FISH 

Telomere fusion PCR was performed as previously described (Heacock et al., 2004).  

PCR products were purified, cloned into pDrive vector (Quiagen), and sequenced.  For 

cytological analysis, spreads were prepared from pistils as described (Riha et al., 2001).  

Chromosomes were stained with DAPI (4’,6’-diamidino-2-phenylindole) for cytogenetic 

analysis or denatured and hybridized with the cocktail of subtelomeric probes for FISH. 

 

Telomeric circle assays 

For TCA and bubble trapping, DNA was digested with Alu1.  TCA was performed using 

50 µg of DNA as described in (Zellinger et al., 2007).  For the bubble trapping technique 

(Mesner et al., 2006), 100 µg of DNA was used.  Equal volumes of DNA and 1% low-

melt agarose were equilibrated at 45oC, mixed, and loaded on 0.6% agarose gel.  The 

gel was run at 20 V at 4oC for 16 hours.  DNA was then transferred to the nylon 

membrane and hybridized with a G-rich telomeric probe. 
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Methylation analysis of pericentromeric repeats 

The methylation status of 180-bp centromere repeats was analyzed as previously 

described (Vongs et al., 1993).  Genomic DNA was digested with HpaII and subjected 

to Southern blotting as discussed. 

 

Results 

Identification of a novel gene critical for integrity of telomeres 

As part of the characterization of AtPOTc, we screened a TILLING collection of EMS-

mutagenized Arabidopsis plants, and identified a line bearing a C to T mutation in the 

third intron of the AtPOT1c gene.  A fraction of these mutants showed a profound 

telomere uncapping phenotype (described below), but genetic analysis demonstrated 

that the phenotype did not segregate with the AtPOT1c genotype.  Therefore, we used 

map-based cloning to identify the gene responsible for telomere uncapping.  The 

mutation mapped to the ~2 mbp region between the markers NGA8 and CIW6 on 

chromosome 4.  Subsequent analysis of 150 mutants narrowed the region to ~30 kb.  

Since the AtPOT1c gene is found on chromosome 2, these data confirm that the 

telomere uncapping phenotype is unlinked to AtPOT1c. 

Sequence analysis of candidate genes within this region identified a single-

nucleotide G to A mutation in the At4g09680 gene (Figure 36A).  The gene was named 

CIT1 (Critical for Integrity of Telomeres 1), and the mutant line was designated cit1-1.  

Consistent with its essential role in chromosome end protection, CIT1 mRNA is 

expressed in all of the tissues examined, although at lower level in suspension culture 

cells (Figure 36B).  Sequence analysis of CIT1 cDNA revealed a large ORF with 16  
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Figure 36.  Telomere length deregulation in CIT1-deficient Arabidopsis.  (A)  Schematic of the AtCIT1 gene 

locus.  Rectangles represent exons; horizontal black lines are introns.  The positions of a point mutation 

(cit1-1) and T-DNA insertions (cit1-2 and cit1-3) are shown.  (B)  RT-PCR analysis of the AtCIT1 gene 

expression in different plant tissues.  F, flowers; CL, cauline leaves; RL, rosette leaves; SC, suspension 

culture.  (C)  RT-PCR analysis of AtCIT1 gene expression in cit1-2 and cit1-3 mutants.  Primers flanking the 

insertion were used in both cases.  (D)  TRF analysis of a cit1-1 mutant.  (E)  TRF analysis of a cit1-2 

mutant.  (F)  TRF analysis of a cit1-3 mutant.  In panels D, E and F, results for progeny segregated from a 

parent heterozygous for cit1 are shown.  Blots were hybridized with a radiolabeled telomeric DNA probe.  

Molecular weight markers are indicated. 
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exons that encodes an ~142 kDa protein.  In cit1-1 mutants, a G(1935)A mutation 

resides in the 9th exon and produces a stop codon.  From the SALK database, two 

additional CIT1 alleles bearing T-DNA insertions in the sixth exon or tenth intron were 

identified and designated cit1-2 and cit1-3, respectively (Figure 36A).  RT-PCR analysis 

revealed that no CIT1 full length mRNA is produced in cit1-2 or cit1-3 mutants, arguing 

that these plants are null for AtCIT1 (Figure 36C). 

Terminal restriction fragment (TRF) analysis was used to examine bulk telomere 

length in cit1 mutants derived from a self-pollinated heterozygous parent.  TRF analysis 

of multiple cit1-1 individuals revealed gross deregulation of telomere length in 

homozygous cit1-1 mutants relative to their heterozygous and wild type siblings (Figure 

36D).  Homozygous cit1-2 and cit1-3 mutants showed an aberrant telomere phenotype 

similar to cit1-1 (Figure 36E and F).  Altogether, these data indicate that At4g09680 

encodes Arabidopsis CIT1.   

 

cit1 mutants display severe defects in telomere architecture 

To determine how individual telomeres were affected by CIT1 depletion, subtelomeric 

TRF analysis was performed using probes directed at specific chromosome termini.  As 

expected (Shakirov and Shippen, 2004), a relatively sharp single band is detected for 

wild type telomeres.  In contrast, telomeres in cit1 mutants gave rise to an extremely 

heterogeneous hybridization signal that spanned ~ 1.5 kb (Figure 37A).  Individual 

telomere tracts were also examined by primer extension telomere repeat amplification 

(PETRA), a PCR based technique that monitors telomere length on individual 

chromosome ends (Heacock et al., 2004).  As with subtelomeric TRF, the PETRA  
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Figure 37.  cit1 mutants display telomere length deregulation on individual chromosome arms despite wild 

type levels of telomerase activity in vitro.  (A)  Subtelomeric TRF analysis of DNA from cit1-1 and cit1-2 

mutants.  DNA blots were hybridized with a probe corresponding to subtelomeric regions on the right arm of 

chromosome 5 (left panel) or the left arm of chromosome 1 (right panel).  (B)  PETRA analysis of DNA from 

cit1-1 mutants.  Results for telomeres on the left arm of chromosome arm and the right arm of chromosome 

2 are shown.  (C)  Results of real time TRAP on cit1-1 and cit1-2 mutants.  Left panel shows raw results.  

Dashed line represents the threshold change in fluorescence.  Quantification of the telomerase activity 

levels in cit1 mutants relative to wild type is shown on the right.  (D)  Siliques (seed pods) from plants 

heterozygous for tert (top), heterozygous for cit1-1 (middle), or double tert-/- cit1-1+/- mutants.  In contrast to 

uniform seed size observed in single mutants, double mutants displayed a reduced seed set and embryonic 

lethality. 
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products generated from cit1 mutants were broad smears, confirming that telomere 

length is grossly deregulated (Figure 37B). 

The unusual heterogeneity of telomere tracts in cit1 mutants could be caused by 

deregulation of telomerase.  However, quantitative TRAP demonstrated that in vitro 

telomerase activity is unchanged in cit1 mutants compared to wild type (Figure 37C).  

To investigate whether telomerase contributes to in vivo telomere length deregulation in 

cit1 mutants, plants heterozygous for cit1-1 were crossed to homozygous tert mutants 

(Riha et al., 2001).  Double heterozygous mutants were identified in F1 and allowed to 

self-pollinate to generate F2 progeny.  Unexpectedly, we failed to recover any tert cit1-1 

double mutants (0/96 plants). Examination of developing embryos in the siliques of tert-/- 

cit1-1+/- mutants indicated that the double deficiency of TERT and CIT1 is embryonic 

lethal (Figure 37D).  Thus, telomerase is required for the viability of cit1 mutants.   

To determine whether telomeres in cit1 mutants are subjected to increased 

recombination, we looked for the presence of extra-chromosomal telomeric circles 

(ECTC) using TCA (t circle amplification) analysis (Zellinger et al., 2007).  In this 

procedure, telomere sequences are amplified by phi29, a polymerase with strand 

displacement activity that generates high molecular weight ssDNA products from a 

circular template.  As a positive control, TCA was performed on DNA from ku70 mutants 

which have previously been shown to accumulate ECTCs (Zellinger et al., 2007).  A 

high molecular weight DNA band was detected in ku70 and cit1 DNA samples, but not 

in wild type (Figure 38A).  To verify the presence of ECTCs in cit1 mutants, we 

employed a bubble trapping technique (Mesner et al., 2006).  For this procedure, DNA 

is loaded on a agarose gel in a low-melt agarose plug and then subjected to 

hybridization with a telomeric probe.  Linear fragments enter the gel, but the circular 
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DNA does not (Mesner et al., 2006).  As anticipated, a telomeric signal was detected in 

the well with DNA from cit1 and ku70 mutants, but not with wild type (Figure 38B).  

These data confirm that ECTCs accumulate in the cit1 background and argue that loss 

of CIT1 results in elevated rates of homologous recombination at telomeres. 

Since PETRA requires the presence of a G-overhang, we can conclude that this 

structure is present at telomeres in cit1 mutants.  However, to more precisely monitor 

the status of the G-overhang, in-gel hybridization was employed (Figure 38C).  

Strikingly, the G-overhang signal was ~five times stronger in cit1 mutants than in wild 

type (5.9+/-2.5), indicating that telomere architecture is grossly perturbed in the 

absence of AtCIT1.  Although we currently can not rule out the possibility that the 

increased G-overhang signal is dependent on telomerase, we favor the model that CIT1 

protects the telomeric C-strand from nucleolytic degradation similar to S. cerevisiae 

Cdc13, Stn1 and Ten1 proteins (Garvik et al., 1995; Grandin et al., 2001; Grandin et al., 

1997).  

 

cit1 mutants display end-to-end chromosome fusions 

In Arabidopsis, telomeres below 1 kb in length are prone to end-to-end chromosome 

fusions (Heacock et al., 2007).  Since bulk telomere length analysis of cit1 mutants 

demonstrated that a substantial fraction of telomeres dropped below this critical length 

threshold, we looked for evidence of mitotic abnormalities.  Anaphase bridges were 

scored in four different individual cit1-1 mutants and in their wild type siblings.  As 

expected, there was no evidence of genome instability in wild type plants, but in all four 

cit1-1 mutants a high fraction of mitotic cells (up to 40%) displayed anaphase bridges 

(Figure 39A).  Many anaphases contained multiple bridged chromosomes as well as  
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Figure 38.  cit1-1 mutants display elevated telomere recombination and G-overhang lengthening.  (A)  TCA 

analysis of cit1-1 DNA.  Reactions were performed in the presence or absence of phi29 polymerase.  ku70 

DNA was used as a positive control.  The asterisk indicates an interstitial telomeric repeats signal.  (B)  

Bubble trapping results for cit1-1 and ku70 mutants.  (C)  G-overhang analysis using in-gel hybridization.  

Native and denatured gels are shown on the left.  Quantification of the cit1-1 signal relative to wild type (the 

average of results from six independent experiments) is shown on the right.  All blots were hybridized with a 

radiolabeled telomeric probe.  In A and B panels, the probe hybridizes to both circular and linear telomeric 

DNA products. 
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instances of unequal chromosome segregation.  Such profound genome instability is 

comparable to the ninth generation (G9) of telomerase mutants (Riha et al., 2001).   

The DNA composition of anaphase bridges was examined by fluorescence in 

situ hybridization (FISH).  A cocktail of eight different subtelomeric BACs was used for 

hybridization of mitotic cit1-1 cells.  Hybridization signals were detected at all anaphase 

bridges, suggesting that end-to-end fusions are prevalent (Figure 39B) and that the 

telomere dysfunction is the primary cause of genome instability in cit1 mutants.   

To examine the nucleotide sequence at the fusion junction, telomere fusion PCR 

was performed with subtelomeric primers directed at individual chromosome arms.  

Abundant fusion products were obtained with DNA extracted from cit1 homozygous 

plants, but not from heterozygous or wild type siblings (Figure 39C and data not 

shown).  To characterize the structure of fusion junctions, the fusion PCR products were 

cloned and sequenced.  Unexpectedly, among 17 clones analyzed, we failed to detect 

junctions involving direct fusion of telomere repeats.  Instead, telomere-subtelomere 

fusions (5%) and subtelo-subtelo fusions (95%) were recovered.  The fusions were 

characterized by extensive erosion of subtelomere sequences (752 bp average).  For 

comparison, in G9 telomerase mutants, telomere-subtelomere fusions are the most 

prevalent (78%), and the average erosion of subtelomeric DNA sequences is only 290 

bp (Heacock et al., 2004).  Altogether, these data suggest that chromosome ends are 

subjected to extensive exonucleolytic degradation prior to fusion in cit1 mutants. 

 

cit1 mutants display a fasciated phenotype consistent with epigenetic alterations 

In late generation telomerase mutants, loss of telomere integrity and the accompanying 

genome instability leads to morphological abnormalities (Riha et al., 2001).  Defects in  
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Figure 39.  Telomere fusions in cit1-1 mutants.  (A)  Cytogenetic analysis of cit1-1 mutants.  Top 

panel shows an analysis of DAPI-stained anaphase figures.  Bridges are detected in cit1-1 but 

not in wild type.  The frequency of anaphase bridges in four cit1-1 mutants is shown in the 

bottom panel.  The total number of scored anaphases and the percentage of anaphases 

containing bridges are shown.  (B)  FISH analysis of an anaphase bridge from cit1- 1 using 

probes for subtelomeric DNA sequences.  Hybridization signal is detected in the bridge.  (C)  

Telomere fusion PCR analysis of cit1-1 mutants.  Primers specific for 4R and 5R (left) or 4R and 

3L were used.
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both vegetative and reproductive organs first appear in G6 and worsen in successive 

generations.  Ultimately, tert mutants reach a terminal phenotype in G8-10, where they 

arrest in a dedifferentiated vegetative state without producing an influorecsence bolt, or 

with a short bolt bearing sterile flowers (Riha et al., 2001) (Figure 40A).  In contrast, cit1 

mutants displayed an immediate onset of severe morphological defects and were nearly 

completely sterile in the first generation.  Moreover, the phenotypical abnormalities 

associated with CIT1 deficiency are distinct from terminal generation tert mutants 

(Figure 40A).  Although most cit1 mutants produced an influorescence bolt, it was highly 

variable in size, ranging from very short to indistinguishable from wild type (Figure 40B, 

compare right and left bottom panels).  In addition, mutants exhibit grossly distorted 

phyllotaxy with an irregular branching pattern, fused flowers and siliques, and fasciated 

(thick and broad) main and lateral stems and siliques (Figure 40B).  The vegetative 

defects were accompanied by abnormalities in reproductive organs.  Flowers were often 

fused, anthers and ovules were undeveloped.  The germination efficiency of the few 

seeds that could be recovered was extremely low, making propagation to the next 

generation almost impossible.   

The fasciated phenotype is a characteristic feature of mutations that alter the 

epigenetic status of chromatin in Arabidopsis (Takeda et al., 2004).  Consistent with 

epimutations, the severity of phenotypical defects varied widely between different cit1 

mutants (Figure 40B) as well as between different branches of the same mutant plant 

(Figure 40C).  Therefore, we tested whether mutations in general chromatin-modifying 

proteins or DNA methylation factors would lead to a similar chromosome end 

deprotection phenotype.  Telomere fusion PCR and TRF analysis performed on several 

known Arabidopsis epigenetic mutants (Cao and Jacobsen, 2002; Kaya et al., 2001; 
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Takeda et al., 2004; Vaillant et al., 2006; Vongs et al., 1993) failed to reveal any signs 

of telomere dysfunction (Figure 41A and B).  We next asked the reciprocal question, 

whether inactivation of CIT1 leads to global epigenetic alterations.  While loss of DNA 

methylation is associated with ddm mutants (Vongs et al., 1993), this is not the case for 

cit1-1 mutants (Figure 41C).  Furthermore, loss of CIT1 does not lead to repression of 

silencing of transposable elements (data not shown).  These data argue that CIT1 

inactivation does not result in global epigenetic perturbations in the Arabidopsis 

genome.  However, further analysis will be needed to determine whether CIT1 plays a 

role in modulating chromatin structure at telomeric and subtelomeric regions.   

 

CIT1 is found in other plants and vertebrates 

TBLASTN analysis using the CIT1 protein sequence as a query revealed CIT1 

homologs in rice (E-value=4e-64) and grape (E-value=9e-60).  Searches against the 

EST databases identified CIT1 homologs in numerous other plant species, including 

Physcomitrella, the oldest living plant.  These findings suggest that CIT1 is conserved in 

the plant kingdom.  A putative CIT1 ortholog was also found in the chicken genome 

(GgCIT1) (E-value=0.94).  TBLASTN with GgCIT1 as the query uncovered putative 

homologs in numerous other vertebrates, including primates, rodents, birds, amphibians 

and fish.  Notably, we failed to detect a CIT1 homolog in yeast, C. elegans or in 

Drosophila melanogaster, suggesting that CIT1 is confined to vertebrates and plants.  

None of the putative CIT1 homologs encode a conserved functional domain that 

provides a possible clues for the mechanism of CIT1 action.  We therefore used the 3D-

PSSM program (Kelley et al., 2000) to predict a secondary structure of AtCIT1 protein.  

The analysis predicted the presence of the OB-fold in the middle portion of the protein  
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Figure 40.  Morphological defects in cit1 mutants.  (A)  Wild type, first generation cit1 and ninth generation 

tert plants at 3-4 weeks of age.  (B)  Fasciated stems and fused organs in cit1-1 mutants.  The level of 

phenotypical defects varies dramatically between different cit1-1 plants.  (C)  cit1-2 mutant.  The severity of 

defects varies between different branches of the plant.
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Figure 41.  Telomere dysfunction does not result from global epigenetic perturbations.  (A)  TRF analysis of 

mom1 and ddm1 epigenetic mutants.  (B)  Fusion PCR analysis.  No telomere fusions are observed in 

Arabidopsis mutants known to affect epigenetic regulation.  (C)  Analysis of centromere repeat methylation 

in cit1-1 and ddm1 mutants.  The methylation profile is similar in wild type and in cit1-1. 
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similar to telomere end binding protein TEBP, the protein implicated in chromosome 

end protection in O. nova (Gottschling and Zakian, 1986; Horvath et al., 1998; Price and 

Cech, 1987).  This observation suggests that CIT1 provides a capping function for 

Arabidopsis telomeres by direct interaction with telomeric DNA or a telomere-binding 

protein. 

 

Discussion 

A key property of telomeres is their ability to distinguish linear chromosome ends from 

double-strand breaks.  This function is mediated by telomere-associated proteins that 

form a protective cap at the chromosome terminus.  Although the overall organization of 

telomeres is highly conserved, the telomere complex is undergoing extraordinarily rapid 

evolution, which has resulted in extensive divergence in protein composition in different 

organisms.  Although several essential components of the telomere complex have been 

defined in yeast and mammals, identification of proteins needed for chromosome end 

protection in plants has lagged.  Key components of shelterin complex in mammals, 

TRF2, RAP1, TPP1 or TIN2, can not be discerned in Arabidopsis genome.  It is 

possible that rapid divergence of these proteins precluded recognition by available 

sequence alignment tools.  Alternatively, novel proteins may have evolved to provide 

chromosome end protection in plants. 

In this study, we uncovered a novel telomere capping protein CIT1 in 

Arabidopsis.  Disruption of CIT1 leads to a severe telomere deprotection phenotype 

reminiscent of a deficiency in the ds or ss telomere capping proteins found in other 

organisms.  Similar to S. cerevisiae Cdc13 and S. pombe POT1 inactivation (Baumann 

and Cech, 2001; Garvik et al., 1995), telomeres in cit1 mutants are subjected to 
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massive nuclease attack, resulting in both extensive C-strand resection and loss of 

telomeric and subtelomeric sequences.  FISH and fusion PCR analysis detect a strong 

bias for fusions involving subtelomeric regions of DNA.  Moreover, like S. pombe POT1 

deletion, loss of CIT1 leads to profound genome instability and end-to-end chromosome 

fusions (Baumann and Cech, 2001).  However, similar to TRF2 (Wang et al., 2004), 

AtCIT1 appears to protect telomeres from homologous recombination: loss of CIT1 

results in the accumulation of ECTCs, the hallmark of increased telomere 

recombination.  Altogether, these data demonstrate that AtCIT1 is essential for 

chromosome end protection in Arabidopsis. 

Unexpectedly, we found that telomerase is required for viability of cit1 mutants.  

It is possible that telomerase is able to rescue a fraction of the critically shortened 

telomeres in cit1 mutants by telomere elongation.  Alternatively, telomerase may play a 

more direct role in chromosome end protection as has been hypothesized in mammals 

(Blackburn, 2005; Hsu et al., 2007; Kim et al., 2003; Zhu et al., 1999).  Thus, the 

combined loss of CIT1 and telomerase may completely abrogate chromosome end 

protection. 

A key observation uncovered in this study is a fasciated phenotype displayed by 

cit1 mutants.  cit1 mutants display features consistent with altered chromatin in 

Arabidopsis (Kaya et al., 2001; Takeda et al., 2004).  Although we ruled out global 

epigenetic changes in cit1 mutants, it is possible that telomeric chromatin is specifically 

altered upon CIT1 loss.  This is intriguing since increasing evidence suggests the 

relationship between telomere chromatin state and telomere function (reviewed in 

Blasco, 2007).  While epigenetic DNA and histone modifications influence telomere 

length homeostasis, the epigenetic status of telomeric chromatin is also affected by 
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telomere length.  It is therefore conceivable that an abrupt reduction in telomere length 

leads to changes in telomeric chromatin in cit1 mutants.  Alternatively, CIT1 could be 

involved in the regulation of telomere-specific chromatin-modifying activities.  We favor 

the first model since disruption of the Arabidopsis STN1 homolog leads to 

morphological defects extremely similar to the defects in cit1 mutants (X. Song and D. 

Shippen, unpublished).  Thus, the change in epigenetic state of telomeric chromatin 

may be a common consequence of telomere uncapping.  In this regard, it is intriguing 

that decrease in subtelomeric DNA methylation results in increased levels of 

homologous recombination at mammalian telomeres (Gonzalo et al., 2006).  It will be 

interesting to see whether the change in DNA methylation correlates with elevated 

telomeric recombination observed in cit1 mutants. 

Remarkably, the morphological defects observed in terminal germination of 

telomerase mutants significantly differ from CIT1 or STN1 deficiency (Riha et al., 2001).  

Therefore, the gradual telomere uncapping associated with progressive erosion of 

telomeric DNA in plants lacking telomerase appears to be distinct from abrupt telomere 

uncapping observed upon deletion of essential telomeric proteins.  It has been argued 

that deprotected telomeres are recognized by DNA repair machinery in different ways 

depending on the context of telomere dysfunction.  While fusion of deprotected 

telomeres upon mouse TRF2 loss requires ligase 4 (Celli and de Lange, 2005), 

dysfunctional telomeres that arise in telomerase-deficient mice can activate additional 

ligase 4-independent DNA repair pathways (Maser et al., 2007).  Therefore, the mode 

of telomere deprotection may influence the molecular and physiological outcomes of 

telomere uncapping.  It is conceivable, for example, that gradual telomere shortening 
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allows the cell to adapt to the changing status of the telomeric chromatin, while 

immediate telomere uncapping does not provide an opportunity for such a response. 

It is unknown how CIT1 provides protection for the chromosome end.  One 

possibility is that CIT1 indirectly affects the chromosome end protection by regulating 

the stability and/or function of essential telomere protein.  For example, tankyrase 1 is a 

poly (ADP-ribose) polymerase that modifies TRF1 protein, thus decreasing its ability to 

bind telomeric DNA.  Since TRF1 is a negative regulator of telomere length in 

vertebrates, over-expression of tankyrase leads to increase in telomere length (Smith 

and de Lange, 2000).  Another more intriguing possibility is that CIT1 physically 

associates with telomeres and directly protects chromosome ends.  The presence of an 

OB-fold in the CIT1 protein is consistent with its direct interaction at the telomere.  In 

addition to three POT1-like Arabidopsis proteins and the STN1 protein, CIT1 appears to 

be yet another OB-fold containing protein required for proper telomere function.  

Several reports have suggested that in both fission yeast and budding yeast, telomeres 

are protected by multiple OB-fold containing complexes (Larrivee and Wellinger, 2006; 

Martin et al., 2007; Petreaca et al., 2006; Zubko and Lydall, 2006).  Thus, CIT1 may 

function in the context of other OB-fold proteins to achieve full protection of 

chromosome termini. 

It is also possible is that CIT1 is not a stable component of the telomere like 

TRF2 or POT1, but rather associates with telomeres in a cell-cycle dependent manner.  

It is now established that telomere structure and composition are highly dynamic and 

undergo significant changes during the cell cycle (Takata et al., 2004; Takata et al., 

2005; Verdun et al., 2005; Verdun and Karlseder, 2006).  During S phase, telomeres 

are thought to unfold their t-loops to assume an accessible state that allows extension 
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by telomerase and by conventional replication machinery.  This more open 

configuration will make telomeres more vulnerable to nucleolytic processing and/or 

recombination.  Indeed, telomeres are recognized and processed by DNA damage 

machinery in G2 of the cell cycle (Verdun et al., 2005; Verdun and Karlseder, 2006).  

The recruitment of DNA damage repair factors correlates with the decrease in telomere-

associated POT1 (Verdun et al., 2005).  Thus, transient association of CIT1 with 

telomeres in late S/early G2 could limit the DNA damage response, reduce C-strand 

resection, and allow telomeres to assume a protected state upon completion of 

telomere replication and processing.  Although vertebrate TRF2 was proposed as a 

putative candidate for this function (Verdun et al., 2005), this has not yet been tested 

experimentally. 

Whatever the precise mechanism for CIT1-mediated chromosome end 

protection, this protein is conserved among plants and has putative orthologs in 

vertebrates.  Genetic and biochemical searches for telomere-associated factors have 

thus far failed to identify CIT1 homologs in other organisms (Liu et al., 2004; O'Connor 

et al., 2004; Ye et al., 2004b).  One possibility is that CIT1 associates with the G-

overhang and it was overlooked due to its sub-stoichiometric amounts.  Another 

possibility, although not mutually exclusive, is that CIT1 association with telomeres is 

cell-cycle dependent (as discussed above).  Although more work will be required to 

decipher the exact mechanism of chromosome end protection by CIT1, our data argue 

that we have yet to identify all of the key components of the telomere complex. 
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CHAPTER VII 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

Since all known DNA polymerases require a primer to initiate DNA replication, loss of 

terminal sequences due to the removal of the primer is an inevitable outcome of the 

replication of linear genomes.  Although multiple solutions for the end replication 

problem exist, most of eukaryotes have evolved the telomere as a protective cap to 

overcome the end replication problem (reviewed in de Lange, 2004).  In most normal 

human cells, telomere sequences undergo progressive shortening with each cell 

division, which ultimately leads to telomere dysfunction, activation of DNA damage 

pathways, and cell death.  In contrast, germ line, stem cells and most cancer cells 

express the telomerase enzyme which can extend telomeres, thus providing an 

unlimited proliferation capacity to the cell.  Recent studies indicate that telomeres 

comprise a biological clock that influences cellular life span.  As a consequence, 

understanding the structure of telomeres and their maintenance by telomerase has 

been a major focus in medical research as it may impact how we treat aging and 

cancer-related diseases (reviewed in Shay and Wright, 2005). 

Although the composition of telomere proteins varies between different species, 

the overall architecture of the telomeric complex is evolutionarily conserved.  Therefore, 

different model systems have been used to investigate telomere structure and function.  

While each model system has its advantages and disadvantages, knowledge obtained 

from these systems lays the groundwork for understanding fundamental mechanisms of 

telomere biology.  In this dissertation, I described the characterization of telomere-
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associated proteins in Arabidopsis thaliana.  Here, I discuss the significance of these 

results and their importance in the telomere field. 

 

Characterization of Arabidopsis ds telomeric DNA binding proteins 

Identification of plant telomere-associated proteins has so far mostly relied on BLAST 

searches for sequence homologs of known telomere components from other species.  A 

common feature of ds telomeric DNA binding proteins is the presence of the conserved 

Myb-type DNA binding domain (Bilaud et al., 1996).  We therefore used a genomic 

approach to look for Myb-containing proteins in Arabidopsis.  In Chapter II, I described 

the identification and biochemical characterization of twelve TRFL proteins, which 

contain a C-terminal Myb-domain and fall into two categories based on their sequence 

and biochemical properties (Karamysheva et al., 2004).   

Despite the sequence similarity of TRFL proteins to vertebrate TRF1 and TRF2, 

and the ability of TRFL proteins from the family I to bind ds telomeric DNA in vitro, 

genetic analysis of single gene mutants failed to uncover a role for these proteins in 

telomere length regulation or in chromosome end protection (L. Vespa, R. Warrington 

and D. Shippen, unpublished).  We suspect that the TRFL genes are redundant and at 

least a subset of corresponding proteins has overlapping functions.  This is not 

surprising since the Arabidopsis genome has undergone several rounds of duplication, 

and many genes are present in more that one copy (Blanc and Wolfe, 2004).  It might 

therefore be necessary to obtain plant lines with a deficiency in multiple TRFL proteins.   

The papaya genome, which has recently been sequenced, is evolutionary close 

to Brassicaceae, the order to which Arabidopsis belongs.  Interestingly, papaya 

encodes only three TRFL genes which appear to be ancestors of TBP1, TRFL2 and 
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TRFL9 in Arabidopsis thaliana (E. Shakirov and D. Shippen, unpublished).  It is 

therefore possible that TBP1, TRFL2 and TRFL9 are the key TRF proteins in 

Arabidopsis.  A mutant that lacks all three of these genes is now being analyzed to test 

this hypothesis (R. Warrington and D. Shippen, unpublished). 

An alternative approach currently being pursued is the over-expression of 

dominant negative alleles of the TRFL proteins that displace the TRFL proteins from 

telomeres.  Since the Myb and Myb-extension are conserved in all TRFL proteins, this 

domain was chosen for the over-expression.  Preliminary data indicate that truncated 

proteins localize at telomeres and cause telomere shortening (R. Warrington, J. Lamb 

and D. Shippen, unpublished).  However, further work is needed.  Localization studies 

and telomeric FISH analysis, together with chromatin immunoprecipitation will also be 

required to decipher which of the TRFL proteins bind telomeres in vitro.  Since these 

proteins are the putative ds telomeric DNA binding proteins, they should be present at 

telomeres in the amounts sufficient for these types of experiments. 

Since our study of TRFL proteins was begun, a putative TRF1 homolog was 

identified in rice (RTBP1) and Arabidopsis (AtTBP1) by two other labs.  Disruption of 

RTBP1 leads to longer telomeres in the first generation, but the length new set point is 

stabilized in the subsequent generations (Hong et al., 2007).  In contrast, telomere 

lengthening is only observed in the third generation of tbp1 mutants in Arabidopsis 

(Hwang and Cho, 2007).  Rice TBP1 appears to contribute to chromosome end 

protection: mutants display end-to-end fusions and genome instability (Hong et al., 

2007).  In contrast, no signs of genome instability were observed upon TBP1 

inactivation in Arabidopsis (Hwang and Cho, 2007), arguing that this protein is 
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dispensable for chromosome end protection, or that it acts in concert with another 

telomere protein.   

In summary, despite the progress in the identification of plant ds telomeric DNA 

binding protein, Arabidopsis TRF1 and TRF2 homologs have not been yet found.  

Rather, it is likely that multiple proteins fulfill these roles in plants.  Identification of the 

ds telomere binding proteins proteins and their interaction partners will be necessary for 

complete understanding of the structure and function of plant telomeres. 

 

Characterization of Arabidopsis ss telomeric DNA binding proteins 

In Chapters III, IV and V, I described the characterization of three POT1-like proteins in 

Arabidopsis, AtPOT1a, AtPOT1b and AtPOT1c.  Although these proteins were identified 

based on their sequence similarity to POT1 protein from humans and fission yeast, our 

data suggest that Arabidopsis POT1 proteins have evolved distinct functions in 

telomere biology.   

 

Role of Arabidopsis POT1a 

Although the AtPOT1a gene was found in 2001 (Baumann and Cech, 2001), the null 

mutant was not discovered until 2006, blocking a thorough genetic analysis of the role 

of AtPOT1a protein in telomere biology for several years.  Therefore, we took an 

alternative method to investigate the function of AtPOT1a, using a transgenic approach 

to produce a dominant negative allele of AtPOT1a.  A portion of AtPOT1a that lacks 

DNA binding domain (P1∆N) was over-expressed in wild type plants.  Telomere 

shortening in first-generation transgenic plants implicated AtPOT1a in the regulation of 

telomere length homeostasis (Shakirov et al., 2005).  We hypothesized that P1∆N 
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dislodged endogenous AtPOT1a and its interacting proteins involved in telomerase 

action at telomeres, leading to telomere shortening.  These data indicated that AtPOT1a 

positively regulates telomere length in Arabidopsis (Shakirov et al., 2005).   

Somewhat surprisingly, in contrast to Arabidopsis P1a∆N, over-expression of 

the corresponding region of human POT1 {P1(∆OB)} results in the opposite phenotype, 

telomere lengthening (Kelleher et al., 2005; Loayza and de Lange, 2003).  A current 

model proposes that human POT1 localizes to telomeres primarily via interactions with 

ds telomeric DNA binding proteins.  These interactions are mediated by the C-terminus 

of hPOT1 (Liu et al., 2004; Ye et al., 2004b).  Subsequently, hPOT1 is loaded on the G-

overhang, where it binds ss telomeric DNA in an OB-fold dependent manner (Loayza 

and De Lange, 2003a).  Therefore, over-expression of the human POT1 mutant that 

lacks OB-fold still leads to the accumulation of the protein at telomeres, but the negative 

regulation of telomerase is abolished, leading to telomere lengthening.  Telomere 

shortening observed upon over-expression of the similar region of AtPOT1a indicated 

that Arabidopsis POT1a regulates telomere length through a different mechanism. 

Screening several Arabidopsis knockout collections allowed us to identify two 

mutant lines bearing T-DNA insertions in the AtPOT1a gene (Surovtseva et al., 2007).  

Consistent with the role of AtPOT1a in telomere length regulation, pot1a null mutants 

displayed ever-shorter-telomere phenotype that was remarkably similar to the 

telomerase deficiency (Surovtseva et al., 2007).  Therefore, we investigated the 

relationship between AtPOT1a and TERT.  Genetic analysis of single and double pot1a 

and tert mutant lines indicated that AtPOT1a works in the telomerase pathway.  To 

explore the mechanism of AtPOT1a’s role in telomerase regulation, we used a 

biochemical approach.  We first showed that telomerase activity is reduced ~13-fold in 
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pot1a mutants (Surovtseva et al., 2007; A. Nelson and D. Shippen, unpublished).  We 

also demonstrated that AtPOT1a is a physical component of telomerase RNP using co-

immunoprecipitation.  Furthermore, we showed that AtPOT1a is associated with 

telomeres in vivo only during S phase, when telomerase is known to act.  Thus, these 

findings indicate that AtPOT1a has evolved a novel function – to physically associate 

with the telomerase RNP and play an essential role in telomerase function in vitro and 

in vivo (Surovtseva et al., 2007).   

Evolution and function of AtPOT1a is one of the major areas of interest in our 

lab.  The genetic and biochemical analysis described in Chapters III and IV uncovered 

an unexpected mechanism of AtPOT1a-mediated telomere maintenance.  Arabidopsis 

POT1a was identified and named based on its sequence similarity to human and S. 

pombe POT1.  However, in contrast to human and S. pombe proteins that associate 

with single-strand telomeric DNA with high affinity (Baumann and Cech, 2001; Lei et al., 

2002), AtPOT1a does not bind telomeric DNA in vitro.  This finding is surprising since 

AtPOT1a encodes two OB-folds, the structural motifs commonly used for binding to ss 

DNA.  New data from our lab suggest that AtPOT1a interacts with Arabidopsis TER, the 

telomerase RNA subunit (C. Cifuentes-Rojas and D. Shippen, unpublished).  

Importantly, the N-terminus of AtPOT1a containing two OB-folds is sufficient for RNA 

binding.  Moreover, a point mutation in AtPOT1a that corresponds to an important DNA-

binding residue in human Pot1 abolishes binding of AtPOT1a to TER.  These exciting 

data argue that Arabidopsis POT1a associates with the telomerase RNP via an 

interaction with TER, and suggest that the OB folds in AtPOT1a have evolved to allow 

protein binding the telomerase RNA instead of telomere.   
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Xiangyu Song in our lab uncovered a plant line with a point mutation in AtPOT1a 

that gives rise to an ever-shorter-telomere phenotype, identical to the phenotype of 

pot1a null mutants.  This line was designated pot1a-3.  The mutation in pot1a-3 resides 

in the C-terminus of AtPOT1a and does not affect the OB-folds (X. Song and D. 

Shippen, unpublished).  This finding validates our studies with the dominant negative 

allele of AtPOT1a (Pt1∆N) and argues that the C-terminus of AtPOT1a protein is 

required for its role in the positive regulation of telomere length.  Remarkably, pot1a-3 

mutation does not affect TER binding (C. Cifuentes-Rojas and D. Shippen, 

unpublished).  It is possible that this mutation abolishes interaction of AtPOT1a with 

another protein important for telomerase recruitment to telomeres.  In S. cerevisiae, 

telomerase is recruited to telomeres via an interaction of Est1p component of 

telomerase RNP with Cdc13p, the POT1 ortholog in budding yeast (Evans and 

Lundblad, 1999).  Mutations that abolish Est1p-Cdc13p interactions result in ever-

shorter-telomere phenotype due to inability of telomerase to extend telomeres in vivo 

(Chandra et al., 2001; Pennock et al., 2001).  Similarly, the C-terminus of AtPOT1a 

might mediate the interaction with an Arabidopsis G-overhang binding protein, allowing 

telomerase recruitment and telomere elongation.  Intriguingly, in mammals, TPP1 

protein associates with the G-overhang binding protein POT1and physically interacts 

with active telomerase (Xin et al., 2007).  Similar to Arabidopsis POT1a, TPP1 harbors 

a canonical OB-fold but cannot bind telomeric DNA on its own (Wang et al., 2007; Xin et 

al., 2007).  Moreover, like AtPOT1a, TPP1 associates with the telomerase in an OB-

fold-dependent manner and is required for telomere length control (Xin et al., 2007).  

Interestingly, no TPP1 homolog has been identified in Arabidopsis genome.  It is 

therefore possible that AtPOT1a fulfils the role of TPP1 in Arabidopsis.  Altogether, 
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these data argue that telomerase action at the chromosome terminus is regulated by 

interactions of telomerase-associated proteins with the G-overhang binding proteins, 

and that this interaction is evolving rapidly.   

According to our model, AtPOT1a mediates telomerase recruitment to telomeres 

via an interaction with a G-overhang binding protein.  AtPOT1b is an attractive 

candidate for this role, as its sequence is similar to human G-overhang binding protein 

POT1 (15% identity, 28% similarity).  Moreover, AtPOT1b harbors two OB-folds at the 

N-terminus which are 13% identical and 29% similar to the corresponding region of 

human POT1.  Finally, co-imunoprecipitation end yeast-two-hybrid experiments 

demonstrated that AtPOT1a and AtPOT1b interact with each other.  However, AtPOT1b 

does not bind telomeric DNA in vitro, and genetic analysis of the null pot1b mutant 

argues against the role of this protein in telomerase recruitment (see below). 

Identification of the AtPOT1a binding partner that mediates telomerase 

recruitment to the G-overhang will be necessary to understand the mechanism of 

telomerase regulation in Arabidopsis.  A yeast-two-hybrid screen of the Arabidopsis 

cDNA library identified two putative POT1a-interacting factors (M. Jasti, X. Song and D. 

Shippen, unpublished).  Interestingly, one of these proteins encodes a putative RNA-

binding protein.  Telomere length analysis in the corresponding null mutants will be 

required to understand what role, if any, these proteins play in telomere biology.  

Additional approaches, such as immunoprecipitation with AtPOT1a antibody and mass-

spectrometry can also be used to identify AtPOT1a-interacting factors. 

Another unanswered question is why telomerase activity is affected by AtPOT1a 

in vitro.  Telomerase activity is decreased by approximately 10-fold in pot1 mutants 

compared to wild type (Surovtseva et al., 2007; A. Nelson and D. Shippen, 
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unpublished).  It is possible that AtPOT1 affects the processivity of repeat addition by 

telomerase.  A non-PCR based telomerase activity assay will be required to test this 

hypothesis, but such assay is currently unavailable for plants.  Another possibility is that 

AtPOT1a is involved in telomerase RNP assembly and/or stability.  Since AtPOT1a 

binds telomerase RNA, it is conceivable that this protein is required for TER stability.  It 

will therefore be interesting to check the levels of TER by reverse transcription- 

quantitative PCR in pot1 mutants. 

Establishing of the localization of AtPOT1a throughout the cell cycle may also 

help us to reveal the role of this protein in telomere biology.  Does it co-localize with 

TERT all the time?  Does it bind telomeres in a cell-cycle dependent manner?  Our 

ChIP data suggest that AtPOT1a is enriched at telomeres in S phase.  However, ChIP 

might not be sensitive enough to detect low levels of the protein at telomeres outside S 

phase.  Additional experiments such as immunolocalization combined with telomeric 

FISH might be informative. 

Altogether, our data demonstrate that in contrast to S. pombe and human POT 

proteins, AtPOT1a does not bind telomeric DNA, but rather associates with the 

telomerase RNP.  Moreover, in contrast to POT proteins from other organisms, 

AtPOT1a is dispensable for chromosome end protection, but it has evolved a 

specialized role in positive regulation of telomere length by working in the context of 

telomerase RNP.   

 

Role of Arabidopsis POT1b 

G-overhang binding proteins from yeast and vertebrates are essential for chromosome 

end protection.  Mutations in these proteins have outcomes characteristic of uncapped 
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and dysfunctional telomeres reviewed in (Wei and Price, 2003).  In contrast, our 

analysis of Arabidopsis pot1a mutants demonstrated that this protein is dispensable for 

telomere capping.  We therefore hypothesized that end protection in Arabidopsis is 

mediated by POT1b.  As for AtPOT1a, we initially employed a transgenic approach to 

examine the function of AtPOT1b, since a null mutant was not available at the time.  In 

Chapter III, I described the characterization of a AtPOT1b dominant negative mutant 

line over-expressing the DNA binding domain of AtPOT1b (P2∆C).  Plants over-

expressing P2∆C displayed severe morphological defects, sterility and a high incidence 

of anaphase bridges (Shakirov et al., 2005).  We therefore concluded that AtPOT1b is 

implicated in chromosome end protection in Arabidopsis. 

To further characterize the role of AtPOT1b in telomere biology, a plant line 

bearing a T-DNA insertion in the AtPOT1b gene was identified.  Unexpectedly, analysis 

of the null AtPOT1b mutant did not detect any major defects chromosome end 

protection.  Unlike dominant negative AtPOT1b mutants, plants null for AtPOT1b did not 

display any telomere length change or signs of genome instability (E. Shakirov and D. 

Shippen, unpublished).  We hypothesize that the function of AtPOT1b is redundant with 

another Arabidopsis telomere capping protein.  AtPOT1a is an unlikely candidate since 

double pot1a pot1b mutants display a pot1a-like phenotype without any signs of 

telomere uncapping (E. Shakirov and D. Shippen, unpublished).  It is possible that 

AtPOT1b exerts its capping function in cooperation with AtPOT1c.  Consistent with this 

hypothesis, over-expression of AtPOT1c results in chromosome end deprotection 

(Chapter V).  It is conceivable that over-expression of P2∆C dislodges both AtPOT1b 

and AtPOT1c, or somehow affects interacting proteins that are involved in end 

protection.  A more definitive understanding of the role of AtPOT1b in telomere biology 
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will require localization studies of this protein in wild type and P2∆C mutant 

backgrounds.  Despite several attempts, we failed to produce a reliable AtPOT1b 

antibody.  Therefore, expression of the tagged version of AtPOT1b driven by its native 

promoter in null mutants where the expression of the endogenous protein is inactivated 

will be necessary to study the localization of AtPOT1b. 

Complete inactivation of both AtPOT1b and AtPOT1c will be necessary to test 

whether these genes are redundant for chromosome end protection in Arabidopsis.  It is 

possible, however, that proteins other that POT1c associate with POT1b to provide 

chromosome end protection.  A fascinating candidate is AtCIT1 (as discussed below).  

Search for AtPOT1b-interacting proteins by yeast-two-hybrid or through in vivo pull 

down experiments should shed some light on AtPOT1b function. 

 

Role of Arabidopsis POT1c 

In Chapter V, I described identification and characterization of a third Arabidopsis POT1 

protein, AtPOT1c.  AtPOT1c appears to be a very recent gene duplication of AtPOT1a 

specific for Arabidopsis thaliana.  Analysis of plants over-expressing AtPOT1c 

demonstrated that like AtPOT1a, AtPOT1c works in telomerase pathway for telomere 

length regulation.  We have previously shown that AtPOT1a is essential for telomerase 

action in vivo; null pot1a mutants display phenotype indistinguishable from tert 

deficiency (Surovtseva et al., 2007).  In Chapter V, I showed that AtPOT1c over-

expression leads to deregulation of telomere length at individual chromosome arms and 

a two-fold decrease in telomerase activity in vitro.   

The exact relationship between AtPOT1a and AtPOT1c in telomere length 

regulation remains unclear.  Very recent data from our lab suggest that both AtPOT1a 
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and AtPOT1c bind to the newly identified Arabidopsis telomerase RNA, implying that 

OB-folds in both of these proteins have similar features allowing TER binding (C. 

Cifuentes-Rojas and D. Shippen, unpublished).  It is therefore conceivable that 

AtPOT1c may have evolved a negative role in regulating telomerase activity by 

competing with AtPOT1a for telomerase RNA association.  We hypothesize that 

AtPOT1c displaces AtPOT1a, a positive regulator of telomerase, from the enzyme, 

leading to a reduction in the overall level of telomerase activity in vitro and in vivo.  

Analysis of the AtPOT1c null mutant will be required to decipher the exact contribution 

of AtPOT1c in telomere length regulation. 

We have also shown that despite its recent emergence, AtPOT1c has evolved 

functions distinct from its ancestor AtPOT1a.  While AtPOT1a is dispensable for 

chromosome end protection, AtPOT1c is involved in defining G-overhang structure, 

likely through the control of the C-strand processing (as discussed in Chapter V).  Since 

reduction in the G-overhang signal was observed when AtPOT1c was over-expressed, 

we hypothesize that AtPOT1c over-expression results in the titration of the essential 

protective protein away from telomeres.  Interestingly, while G-overhangs are intact in 

single tert mutants, over-expression of AtPOT1c in tert mutants renders G-overhangs 

almost undetectable.  It therefore appears that Arabidopsis possess several partially 

redundant end-protection complexes, and telomerase itself appears to be one of them.  

One of the puzzling observations described in Chapter V is the genome stability 

of Arabidopsis despite the devastating perturbations of telomere architecture and 

extreme shortening of the G-overhang.  It has been previously shown that in mammals, 

accessibility of G-overhangs can trigger end-joining reactions (Zhu et al., 2003).  

Moreover, G-overhang exposure has been implicated in senescence in human cells (Li 
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et al., 2003).  Lack of end-to-end fusions or any signs of genome instability in AtPOT1c 

over-expressing mutants suggests that the effects of the G-overhang depletion may be 

different in plants.  It is possible that loss of G-overhang leads to DNA damage 

response at Arabidopsis telomeres.  Localization studies of DDR proteins will be 

necessary to test this hypothesis. 

Future experiments for understanding of the exact role of AtPOT1c in telomere 

biology will require an identification of the null mutant.  I have designed and cloned four 

different RNAi constructs targeting coding region and 5’ UTR of AtPOT1c.  

Characterization of putative AtPOT1c knockdown lines is currently underway.  A plant 

was identified where reduced levels of AtPOT1c transcript correlate with dramatic 

telomere shortening, likely through nuclease attack (A. Nelson and D. Shippen, 

unpublished).  Analysis of more AtPOT1c-depleted mutants will be required to confirm 

the role of AtPOT1c in chromosome end protection.  It is also important to focus on 

identification of proteins that interact with AtPOT1c.  In co-immunoprecipitation in vitro 

experiments, I failed to detect direct AtPOT1c interaction with AtPOT1a, AtPOT1b, 

KU70, KU80, and TERT, the known Arabidopsis telomere components (Y. Surovtseva 

and D. Shippen, unpublished).  Therefore, a yeast-two-hybrid screen or biochemical 

purification of AtPOT1c may be necessary to identify AtPOT1c interacting partners.  

Another unresolved question is the functional significance of altenative splicing for 

AtPOT1c.  In our experiments, a genomic copy of AtPOT1c was transformed into 

plants, allowing over-expression of both AtPOT1c isoforms.  It will be interesting to see 

if the consequences differ when only AtPOT1cS or AtPOT1cL is over-expressed.  

Finally, localization studies of AtPOT1c will be necessary to better understand the 

biology of this protein.  Does it predominantly co-localize with telomerase?  Is there a 
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telomere-bound portion of AtPOT1c?  Does AtPOT1c localization change in the cell 

cycle?  Altogether, these experiments will help understand the role of this novel unique 

protein at Arabidopsis telomeres. 

 

Evolution of plant POT1 proteins 

Arabidopsis is one of the few organisms that encode more than one POT1-like protein.  

Ciliated protozoa are also an exception (Wang et al., 1992).  In Euplotes crassus, there 

are two G-overhang binding proteins that are highly divergent in sequence and in 

function.  While the telomere protein (TP) tightly binds the 3’ terminus of the G-

overhang (Price, 1990) and is therefore thought to protect chromosome ends, the 

replication telomere protein (rTP) is only detected during DNA replication (Skopp et al., 

1996).  Mouse also encodes two POT1 proteins, POT1a and POT1b.  In contrast to 

Euplotes, mouse POT1a and POT1b share 72% similarity and appear to be partially 

redundant for telomere length regulation and chromosome end protection (He et al., 

2006; Hockemeyer et al., 2006; Wu et al., 2006). 

In Arabidopsis, the extraordinary sequence divergence of POT1 proteins implies 

that these proteins make distinct contributions in telomere biology.  This notion is 

confirmed by genetic data described in this dissertation.  It therefore appears that many 

of the known functions of ss telomeric DNA binding proteins have segregated between 

multiple POT1 proteins in Arabidopsis.  Interestingly, most of other plant species appear 

to possess only one POT1 gene (E. Shakirov, X. Song and D. Shippen, unpublished).  

Since the entire Arabidopsis genome has undergone several rounds of polyploidization 

(Blanc and Wolfe, 2004), we hypothesize that Arabidopsis acquired multiple POT genes 

via gene duplication.  Over time, accumulation of sequence mutations may result in the 
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loss of function of one of the duplicated genes, or in the separation of function 

(subfunctionalization) of each gene (Adams and Wendel, 2005).  Alternatively, one of 

the duplicated genes might acquire a new function (neofunctionalization).  It is possible 

that AtPOT1b and AtPOT1c represent a subfunctionalization, with both proteins 

contributing to different aspects of chromosome end protection.  In contrast, both 

AtPOT1a and AtPOT1c appear to represent neofunctionalization, with their OB-folds 

evolved to bind to telomerase RNA.  In this regard, it will be interesting to investigate 

how telomerase access to telomeres is mediated in other plant species that encode a 

single POT1 gene.  Altogether, our data indicate that POT genes in Arabidopsis have 

evolved distinct functions in telomere biology (Figure 42).  Thus, Arabidopsis is an 

important model system to study the role and the evolution of this class of telomeric 

proteins. 

 

Identification and characterization of CIT1 

In chapter VI, I described the identification and characterization of the CIT1 gene.  I 

found CIT1 through map-based cloning of a mutation which leads to a severe telomere 

deprotection phenotype.  I then demonstrated that CIT1 is conserved among higher 

plants and has putative orthologs in vertebrates.  The unique combination of telomere 

functions for the CIT1 protein that has not been ascribed to any known telomere-

associated factors argues that CIT1 is a novel and essential telomere cap component. 

Even though CIT1 homologs exist in numerous species, none of them encodes 

a conserved motif or has an annotated function that will provide a clue into the 

mechanism of CIT1 action.  However, secondary structure prediction by the 3D-PSSM 

program revealed a putative OB-fold in CIT1 protein.  To confirm this prediction, we  
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Figure 42.  Model for POT1 proteins functions in Arabidopsis.  None of the Arabidopsis POT1 proteins bind 

telomeric DNA directly.  AtPOT1a is a telomerase accessory factor necessary for telomere maintenance in 

vivo and in vitro (Chapter IV).  AtPOT1c acts in collaboration with telomerase for telomere length 

maintenance and in regulating telomerase activity (Chapter V).  AtPOT1c is also important for G-overhang 

maintenance and for the control of the C-strand resection by nucleases, possibly through an interaction with 

telomere-binding protein (Chapter V).  Both AtPOT1a and AtPOT1c interact with Arabidopsis TER (C. 

Cifuentes-Rojas and D. Shippen, unpublished).  AtPOT1b is implicated in chromosome end protection from 

end-to-end fusions and nuclease attack (Chapter III).  AtPOT1b role in chromosome end protection is likely 

redundant with AtPOT1c or some other telomere proteins (Chapter VII).   
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have begun a collaboration with Dr. Douglas Theobald, a computational biologist with 

an expertise in the identification of OB-fold motifs. 

The presence of an OB fold in CIT1 is consistent with the possibility that CIT1 

binds the G-overhang.  In vitro binding experiments will be important to test whether 

CIT1 directly binds ss telomeric DNA.  However, the large size of CIT1 (~142 kDa) 

makes its expression in E. coli or rabbit reticulocyte lysate technically challenging.  

Therefore, mapping of the CIT1 OB-fold will allow us to examine this domain for its 

putative interaction with telomeric DNA using in vitro gel shift assays with ss telomeric 

DNA oligo or with the oligonucleotide mimicking the junction between the ss and ds 

telomeric DNA. In addition, several mutants have been identified in our lab that give rise 

to either short or long telomeric G-overhangs (Riha and Shippen, 2003a).  Localization 

studies of CIT1 in these mutant backgrounds will be necessary to test the possibility 

that CIT1 binds telomeres in a G-overhang dependent manner.  

It is unclear why CIT1 protein has never been found in thorough extensive 

biochemical purifications of vertebrate telomere complexes (Liu et al., 2004; O'Connor 

et al., 2004; Ye et al., 2004a).  One possibility is that sub-stoichiometric amounts of 

CIT1 precluded its identification.  As discussed in Chapter VI, it is also possible that 

CIT1 does not localize to telomeres all the time, but rather dynamically associates 

telomeres in a cell-cycle dependent manner.  Both of these models can be tested in 

plants by chromatin immunoprecipitation and immunolocalization studies of CIT1 

protein.  We have already transformed cit1-1 heterozygous mutants with a construct 

that encodes CIT1 cDNA fused to a Strep-tag.  The same construct was transformed 

into Arabidopsis cell culture, which can be synchronized.  Immunolocalization of CIT1 in 
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these transformants combined with telomeric FISH in synchronized cells may provide 

new insight into the role of AtCIT1 in telomere biology.  

 

Model for AtCIT1 role at telomeres 

While these important localization experiments are underway, our current data allow us 

to propose a model for CIT1 function at telomere.  I favor the hypothesis that CIT1 is 

essential for telomere protection in late S/early G2 phases of cell cycle (Figure 43).  At 

this time, the t-loop is unfolded and telomeres assume an open and therefore less 

protected state to allow replication by telomerase and by conventional replication 

machinery.  It has recently been established that DNA damage repair proteins are 

recruited to the telomeres in lateS/early G2 (Verdun et al., 2005; Verdun and Karlseder, 

2006).  The current model suggests that DNA damage machinery is required for 

exonucleolytic processing of the C strand after telomere replication (Chai et al., 2006; 

Larrivee et al., 2004; Verdun and Karlseder, 2006).  C-strand processing is, in turn, 

obligatory for the formation of the t-loop and thus the formation of the protective 

telomere state (Dionne and Wellinger, 1996; Jacob et al., 2003; Jacob et al., 2001; 

Wellinger et al., 1992; Wellinger et al., 1993).  Although resection of the C strand by the 

DNA damage repair proteins is essential for proper telomere function, it has to be 

controlled.  Thus, I propose that CIT1 controls the extent of C strand processing.  

Consistent with this role, cit1 mutants display a gross increase in G-overhang signal, up 

to 10 times that of wild type.  Currently, I cannot rule out the possibility that the 

increased G-overhang signal upon CIT1 loss is dependent on telomerase.  However, 

since a role in C-strand protection from degradation has been ascribed to Cdc13p, 

Stn1p and Ten1p, the three critical OB-fold containing ss telomere proteins from  
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Figure 43.  Model for CIT1 function.  In S phase, the t-loops are unfolded to allow passage of replication 

fork and telomere replication by telomerase (a).  Following replication, C-strand processing by nucleases 

leads to a formation of the G-overhang.  CIT1 may control C-strand processing, preventing excessive 

nucleolytic degradation (b).  CIT1 could also stabilize the newly formed t-loop through an unknown 

mechanism (c).  In the absence of CIT1, uncontrolled C-strand degradation leads to an increase in the G-

overhang length.  Although t-loops are formed, they are unstable, resulting in t-loop cleavage through TRD.  

This in turn leads to accumulation of extrachromosomal telomeric circles (ECTCs) and formation of critically 

shortened telomeres.  Deprotected telomeres are then recruited into end-to-end fusions, and genome 

instability is initiated.
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budding yeast, I speculate that CIT1 has a similar C-strand protection function (Garvik 

et al., 1995; Grandin et al., 2001; Grandin et al., 1997; Nugent et al., 1996). 

Since at least a subset of telomeres in cit1 mutants possesses G-overhangs, the 

t-loop is apparently formed in the absence of CIT1.  However, identification of 

extrachromosomal telomeric circles (ECTC) in the cit1 background argues that the t-

loops are unstable and telomeres undergo recombination-based cleavage of the t-loop 

via TRD.  It is possible that TRD is increased in cit1 mutants due to long 

recombinogenic G-overhangs.  Alternatively, CIT1 might stabilize the t-loop via the 

recruitment of other essential telomere capping components.  A protein such as TRF2 is 

a putative candidate for this role, since it binds at the junction of ss and ds telomeric 

DNA and plays role in the formation and stabilization of the t-loop in vitro (Fouche et al., 

2006; Stansel et al., 2001). 

Finally, I speculate that the elevated TRD in cit1 mutants is responsible for the 

critically short telomeres in this background, which cannot form the t-loop and therefore 

cannot assume a protected state.  Nucleolytic processing of such deprotected 

chromosome ends will lead to the loss of telomeric and subtelomeric sequences, 

recruitment of dysfunctional telomeres into end-to-end fusions, formation of the dicentric 

chromosomes, and devastating genome instability characteristic of the CIT1 deficiency 

(Figure 43). 

 

A protective role for telomerase in cit1 mutants 

One unexpected finding uncovered in my study is the embryonic lethality of double tert 

cit1 mutants.  Two models are proposed to explain the synthetic lethality of these 

mutations.  One possibility is that telomerase is able to rescue at least a subset of 
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critically shortened telomeres in cit1 mutants by extending them.  Consistent with this 

model, it has been shown in plants and other systems that telomerase is preferentially 

recruited to the shortest telomeres in the cell (Hemann et al., 2001; Shakirov and 

Shippen, 2004; Teixeira et al., 2004).  Analysis of CIT1 loss in the ku70 mutant 

background may be required to test this hypothesis.  KU is a negative regulator of 

telomerase in Arabidopsis; ku70 mutants display extensive telomerase-dependent 

telomere elongation (Riha and Shippen, 2003a).  It is therefore possible that KU 

inhibition will rescue the cit1 phenotype due to an enhanced ability of telomerase to 

extend critically shortened telomeres.   

Alternatively, telomerase may be more directly involved in telomere capping.  A 

capping function for TERT has been proposed in both yeast and mammals based on 

the fact that the effect of inactivating telomerase on cell viability and can be uncoupled 

from the effect on telomere length maintenance reviewed in (Blackburn, 2005).  While 

some TERT alleles that cannot prevent telomere shortening extend cellular lifespan 

(Zhu et al., 1999), other alleles cause cell death without changes in bulk telomere length 

(Kim et al., 2003).  Therefore, the TERT subunit of telomerase may be involved in 

chromosome capping.  This may also be true in Arabidopsis.  If so, TERT may function 

independently from CIT1, and the dysfunction of both of these protective pathways may 

not be tolerated by the cell.  It should be possible to identify a TERT allele that results in 

inactivation of telomerase, but which does not abolish TERT protein accumulation.  

Combining this mutant with CIT1 deficiency may indicate whether TERT or the 

telomerase can protect chromosome ends.  The latter analysis will also be required to 

test whether the deregulation of telomere length and the lengthening of the G-overhang 

upon CIT1 loss are dependent on telomerase activity. 
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An unusual morphological phenotype in cit1 mutants 

As described in the Chapter VI, cit1 mutant plants display an unusual morphological 

phenotype termed the fasciated phenotype, which was first described in clavala mutants 

(Clark et al., 1993).  The fasciated phenotype appears to reflect defects in a complex 

signaling network required for proper meristem function.  Meristems are plant tissues 

containing stem cells (reviewed in Carles and Fletcher, 2003).  While stem cell identity 

is maintained by multiple loci, CLAVATA promotes cell differentiation and incorporation 

into organ primordial (Clark, 2001).  Loss of function clavata mutants display a fasciated 

phenotype similar to morphological defects in cit1 mutants (Figure 44) (Clark et al., 

1993; Kayes and Clark, 1998).  It is therefore possible that telomere defects can result 

in meristem defects, or that meristem defects can give rise to telomere defects.  It is, 

however, unclear which comes first and what the primary cause of morphological 

defects in such mutants is.  To test whether defects in meristem maintenance cause 

telomere deprotection in plants, TRF analysis and telomere fusion PCR was performed 

on different clavata mutants.  In all cases, telomeres fell into the wild type length range, 

and no evidence for end-to-end fusions was observed in clavala mutants (Figure 44).  

Thus, stem cell dysfunction does not indirectly affect telomere homeostasis.  

By contrast, telomere uncapping does give rise to defects in the meristem in 

Arabidopsis (Riha et al., 2001).  Late generation telomerase-deficient mutants display 

complex changes in shoot apical meristem (Riha et al., 2001).  Two models were 

proposed.  In the first model, genome instability associated with telomere dysfunction 

directly affects genes involved in meristem growth and stem cell maintenance (Laux 

and Mayer, 1998; Meyerowitz, 1997).  Alternatively, telomere dysfunction could lead to  
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Figure 44.  Stem cell dysfunction does not affect telomere length homeostasis.  (A)  Morphological defects 

in cit1-1 and clavata (clv) plants.  Both mutants display fasciation of the stem and fused floral organs.  (B)  

TRF analysis of clavata mutants.  (C)  Telomere fusion PCR analysis of clavata mutants.  Primers specific 

for 4R and 3L subtelomeric sequences were used.  cit1-1 DNA was used as a positive control.  Blots shown 

in panels B and C were hybridized with a radiolabeled telomeric probe.  The faint bands in panel C 

represent non-specific amplification of centromere regions and are sometimes observed in wild type DNA 

samples. 
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loss of intracellular communications and meristem integrity (Fletcher and Meyerowitz, 

2000).  Whatever the mechanism, our analysis of cit1 mutants confirm that telomere 

uncapping and accompanying genome instability cause defects in the stem cell 

population of Arabidopsis.  

 

Chromosome end protection in Arabidopsis 

Although the TRF2 homolog has not been yet found in plants, several proteins that 

contribute to telomere capping were found in Arabidopsis.  As discussed above, 

transgenic studies implicated AtPOT1b and AtPOT1c in chromosome end protection.  

CIT1 is another protein essential for proper telomere function.  In addition, a sequence 

homolog of STN1 protein has recently been found in Arabidopsis.  Like its yeast 

homolog, Arabidopsis STN1 is essential for chromosome end protection: null mutants 

display severe telomere deprotection phenotype that is remarkably similar to that 

observed upon CIT1 loss (X. Song and D. Shippen, unpublished).  Notably, all of the 

proteins implicated in protection of Arabidopsis telomeres encode an OB-fold.  Several 

questions remain unresolved.  Do these proteins interact with each other and how do 

they contribute to chromosome end protection?  Do they associate with telomeres 

dynamically?  Do they bind G-overhang directly, or do they use their OB-fold for protein-

protein interactions?  Do they function in a single pathway to provide chromosome end 

protection?  Biochemical analysis of interactions between these proteins, genetic 

analysis of double mutants, and molecular analysis of the cell cycle localization will be 

required to answer at least some of these questions. 
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Conclusions 

Using a combination of genetic, biochemical and molecular tools, my work has resulted 

in the identification and characterization of essential Arabidopsis telomere-associated 

proteins.  These studies have not only improved our understanding of plant telomere 

composition, but also provided new insights into the overall structure and evolution of 

the telomeric complex. 
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