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ABSTRACT 

Modeling the Effect of Land Cover/Land Use Change on Estuarine Environmental 

Flows. 

(May 2008) 

Debabrata Sahoo, B.S., College of Agriculture and Technology; 

M.S, University of Arkansas 

Chair of Advisory Committee: Dr. Patricia Smith 
 
 

Environmental flows are important to maintain the ecological integrity of the estuary. In 

a watershed, it is influenced by land use land cover (LULC) change, climate variability, 

and water regulations. San Antonio, Texas, the 8th largest city in the US, is likely to 

affect environmental flows to the San Antonio Bay/Guadalupe Estuary, due to rapid 

urbanization.  

 

Time series analysis was conducted at several stream gauging stations to assess trends in 

hydrologic variables. A bootstrapping method was employed to estimate the critical 

value for global significance. Results suggested a greater number of trends are observed 

than are expected to occur by chance. Stream gauging stations present in lower half of 

the watershed experienced increasing trend, whereas upper half experienced decreasing 

trends. A similar spatial pattern was not observed for rainfall. Winter season observed 

maximum number of trends.  

 



 iv 

Wavelet analysis on hydrologic variables, suggested presence of multi-scale temporal 

variability; dominant frequencies in 10 to 15 year scale was observed in some of the 

hydrologic variables, with a decadal cycle. Dominant frequencies were also observed in 

17 to 23 year scale with repeatability in 20 to 30 years. It is therefore important to 

understand various ecological processes that are dominant in this scale and quantify 

possible linkages among them.  

 

Genetic algorithm (GA) was used for calibration of the Hydrologic Simulation Program 

in FORTRAN (HSPF) model. Although, GA is computationally demanding, it is better 

than manual calibration. Parameter values obtained for the calibrated model had physical 

representation and were well within the ranges suggested in the literature.  

 

Information from LANDSAT images for the years 1987, 1999, and 2003 were 

introduced to HSPF to quantify the impact of LULC change on environmental flows. 

Modeling studies indicated, with increase in impervious surface, peak flows increased 

over the years. Wavelet analysis pointed, that urbanization also impacted storage. 

Modeling studies quantified, on average about 50% of variability in freshwater inflows 

could be attributed to variation in precipitation, and approximately 10% of variation in 

freshwater inflows could be attributed to LULC change. 

 

This study will help ecologist, engineers, scientist, and politicians in policy making 

pertinent to water resources management.   
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CHAPTER I 

GENERAL INTRODUCTION 

 

1.1 Overview 

 

The study of environmental inflows is a developing science that encompasses the 

interactions of hydrology, biology, biogeochemistry, economics, physical processes, 

hydraulics, geomorphology, water quality, and water quantity (NRC, 2005). Evaluating 

environmental flow needs focuses on balancing ecosystem flow requirements with 

human use. This science attempts to answer the very eco-political question, “How much 

water should be available in a lotic/lentic ecosystem to meet both the ecosystem and 

human demand?”. Instream flow programs rely on science, and take the legal, social, 

and political processes into account. It is challenging to combine science and policy of 

environmental flows into a lucid program (NRC, 2005). 

 

The world and the U.S, in particular, are struggling with the issues of providing 

adequate environmental flows in times of high demand (both human and ecosystem) and 

low supply. The State of Texas is no exception. The differences in hydrologic regimes  
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across the state of Texas have important implications on instream flow science (NRC, 

2000). With a variety of streams, rivers and ecosystems, a growing urban population, 

placing substantial pressure on water supplies, and periodic water shortage, Texas faces 

environmental flow challenges. Texas Senate Bill 2 (2001) has instructed three state 

agencies, the Texas Water Development Board (TWDB), the Texas Parks and Wildlife 

Department (TPWD), and the Texas Commission on Environmental Quality (TCEQ), to 

develop a state program for instream flows and freshwater inflows to support a “sound 

ecological environment” in rivers and estuaries by 2010. Freshwater inflow study in 

Texas can provide a framework to evaluate flow allocation in similar aquatic systems.   

 

Estuaries are the connecting link between terrestrial and marine ecosystems, and provide 

a critical coastal habitat that is essential ecologically and economically to the world 

economy (Alongi, 1998; Kennish, 2001). Important species such as finfish and shellfish 

depend on estuaries for their survival and contribute more than 90% of the total fisheries 

activity in the Gulf of Mexico (Kennish, 2000). Estuarine and coastal marine fisheries 

return more than $23.0 billion annually to the US economy (Kennish, 2000). In 

addition, estuaries support multi-billion dollar commercial and recreational activities 

such as tourism, shipping, marine biotechnology, mineral exploration, and employment 

to millions of people world wide. The State of Texas has approximately 367 miles of 

coastline and in recent years, coastal industries (tourism, fisheries, etc.) contributed $5.4 

billion to the state economy (http://www.window.state.tx.us). Therefore, it is important 

to maintain the productivity and ecological integrity of estuarine ecosystems. 
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The productivity of estuarine systems depends on the timing and magnitude of 

freshwater inflow along with the associated nutrients such as nitrogen (N) and 

phosphorus (P), metals, and organic matter from the terrestrial environment (TWDB, 

1994). Freshwater inflows are essential to ecological processes including dilution of salt 

water creating a unique environment and habitats for several species, regulation of bay 

water temperature, and for marine bio-geochemical cycles. Variations in freshwater 

inflows can alter the ecology of the estuarine environment and potentially hamper 

productivity. The San Antonio Bay estuarine system is located on the Texas Gulf Coast. 

This bay provides opportunity for tourism; particularly tourism related to the Whooping 

Crane. The Whooping Crane, a bird listed on the Endangered Species List (TPWD, 

1998) migrates to this estuary during the winter (October to April) because it provides a 

unique habitat.  In recent years there has been a decrease in number of Whooping Crane 

coming to this area, which has been attributed to reduction in number of blue crabs 

(TPWD, 1998). Reduction in blue crab population has been attributed to reduction in 

freshwater inflows (TPWD, 1998). 

 

Hydrology is potentially the most critical element of instream flow studies. It is 

considered the "master variable" because the biology, physical processes, water quantity 

and quality components directly relate to it (Poff et al., 1997). Hydrology is used to 

assess hydraulic functions, water quality factors, channel maintenance, riparian forming 

processes, and physical habitat for target aquatic species. The Hydrologic flow regime 

takes into account seasonality and periodicity of various types of flows (e.g., subsistence 

flows, base flows, high flow pulses, and overbank flows). Hydrologic assessment helps 
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to understand and quantify the magnitude, frequency, timing, and duration of various 

types of flows. It also helps to understand the degree to which the natural flow regime 

has been altered due to reasons such as water management, land use change, and climate 

variability.  

 

Freshwater inflows along with their associated nutrient and metal delivery are 

influenced by the land use/land cover (LULC) and water management practices in the 

contributing watershed, particularly in watersheds that are experiencing rapid human 

induced disturbances such as urbanization. The San Antonio River Watershed is a semi-

arid to subtropical region experiencing rapid human population growth. Urbanization is 

significantly impacting various ecological services through land fragmentation and 

changes in land cover. While scientific studies have clearly stated that once dominant 

savanna grasses are disappearing and being replaced by woody plants in this region 

(Archer et al., 2001), the consequences of those changes on the regional water budget 

have not been studied explicitly (Asner et al., 2003). 

 

Previous studies (TWDB, 1998; TPWD, 1998) have determined methods for 

quantifying coastal freshwater inflows in Texas using computer optimization and 

hydrodynamic modeling. The modeling quantifies theoretical estimates of minimum and 

maximum freshwater inflows, MinQ and MaxQ respectively, and maximum fisheries 

harvest inflow MaxH, for each estuary on the Texas Gulf Coast. TPWD (1998) 

empirically evaluated fisheries survey data from the TPWD Coastal Fisheries Resource 

Monitoring Database. The agency has made recommendations for the flow requirements 
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for the entire Guadalupe Estuary, which receives flows from both the San Antonio and 

Guadalupe River Watersheds. The MinQ flow recommended was 1271 million m3/year 

and the MaxQ flow was 1591 million m3/year (TPWD, 1998). Optimal flow that 

produced MaxH within the range of inflows between MinQ and MaxQ was estimated to 

be 1418 million m3/year. Past study (particularly historical flow analysis) on freshwater 

inflows to Texas bays and estuaries (Longley, 1994) suggested that the largest fraction 

of freshwater inflows to the Guadalupe Estuary comes from gaged portions of the 

Guadalupe River Basin. The guaged area of Guadalupe River Basin contributed 

approximately 58% (1653 million m3/year) of the total freshwater inflows to the estuary. 

Guaged portions of the San Antonio River contributed about 23% (656 million m3/year) 

of total freshwater inflows. None of the studies modeled the effect of land use change on 

the environmental flow availability. Past studies have not assessed seasonal flows which 

may be more important than yearly/monthly flows (Longley, 1994). Seasonal flows are 

important because many ecological processes depend on seasonal signatures. Seasonal 

flows are also important because most of the water resources demand depend on 

seasons; for example, human water consumption increases during summer. 

 

Although, the San Antonio River contributes only 20-30 % of freshwater inflows to the 

Guadalupe Estuary (Longley, 1994), it is hypothesized that urban development will 

significantly alter the flow (both timing and magnitude) regime by effecting processes 

such as reservoir operations, return flows, ground water usage, base flow, and peak 

flows. Urban development refers primarily to an increase in population and 

impermeable surfaces. 
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The primary purpose of this research was to quantify the regional hydrologic budget 

response (freshwater inflow and urban water demands) to change in LULC in the 

rangeland ecosystem of the San Antonio River Watershed.  

 

1.2 Background 

 

The present study area, San Antonio River Basin, covers approximately 10, 826 km2. 

The river runs approximately 405 river km through four different counties. Major 

tributaries to this river are Leon Creek, Salado Creek, Cibolo Creek, and Medina Creek. 

About 60% of the area in this watershed is dominated by pasture/rangeland, followed by 

forest, and urban impervious surfaces. Population in this river basin has increased in the 

last 30 years, primarily due to the growth of the City of San Antonio. The city of San 

Antonio, is the 8th largest city in the U.S. San Antonio is currently experiencing rapid 

urbanization as a result of increasing population. Population in this area has grown at an 

average of 1.8 % per year (U.S. Census Bureau, 2005). It is predicted that population in 

the San Antonio Metropolitan Area would be approximately 2.2 million people by 2020 

(Texas State Data Center, 2005; Nivin and Perez, 2006).  This urbanization is mainly 

concentrated in Bexar, and Medina Counties (Peschel, 2004). Historically, the City of 

San Antonio has primarily depended on the Edwards Aquifer as its sole source to meet 

its growing water needs (McCarl et al., 1999; San Antonio Water Systems, 2006). With 

the increasing demand of water for domestic and industrial purposes for this city, the 

watershed is struggling to provide enough water to the Guadalupe Estuary systems. 

Previous study (Longley, 1994) suggested a need of about 656 million m3/year of total 
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freshwater inflow from this watershed to the Guadalupe Estuary. The amount of 

impervious surface has also increased. An increase in impervious surface could possibly 

have altered the timing and magnitude of freshwater inflows to the estuary.  

 

1.2.1 Trend Analysis of Streamflow 

 

Statistical analysis of environmental flow can help to evaluate changes due to climate 

and/or LULC (urbanization in this case) in the watershed.  Studying the detection of 

trends in hydroclimatic variables in a river basin is important because it provides 

information regarding any changes in basin management. Detection of past trends, 

changes, and variability in environmental flows and precipitation pattern is important 

for understanding of potential future changes resulting from anthropogenic activities or 

climate variability on environmental flows.    

 

1.2.2 Wavelet Analysis of Streamflow Variations 

 

Researchers seeking to quantify the amount and timing of freshwater inflows typically 

use computer models to simulate the system of interest and/or statistical analysis of 

daily, seasonal and annual flow patterns. Statistical tests based on time intervals are 

used to characterize cyclic phenomena by calculating the means, and variances. Spectral 

analysis, particularly wavelet analysis (Daubechies, 1992; Farge 1992; Liu, 1994; White 

et al., 2005; Kumar and Foufoula-Georgiou, 1997), provides an alternative methodology 

to traditional time series analysis, where variations in environmental flow can be 
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analyzed without pre-assigning time frames. Wavelets can be used to localize 

simultaneous modulations in the scale (inverse of frequency and analogous to period) 

and amplitude of freshwater flow, an approach that is not possible with traditional 

analysis. Wavelet analysis requires no a priori assumption about the timing and length 

of important processes and provides an easily interpreted image of the amplitude of 

cycles at all scales and at all times.    

  

Wavelet analysis provides a unique methodology to evaluate cyclic changes in the time 

series. It helps in establishing the relationship between these cyclic changes and 

ecological characteristics of the system in question. For example, if six month cycles 

were required for a particular river ecological restoration goal that depends on water 

availability, wavelets would be an ideal assessment tool to evaluate how water resources 

should be planned to allocate water that will meet the ecological need during the six 

month period. Therefore, wavelet techniques can be utilized to understand the cyclic 

nature of the events that are important for sound ecological management.  

 

Wavelets have been used in several hydrologic studies, including detection of changes 

in streamflow variance (Cahill, 2002), simulation of streamflow (Bayazit and Aksoy, 

2001), identification of climate impact on stream flow (Bradshaw and McIntosh, 1994), 

and differentiating between natural and anthropogenic influences on streamflow 

(Nakken, 1999). Studies have not yet been conducted to characterize the effect of 

urbanization on freshwater inflows using a wavelet technique.     
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1.2.3 Monitoring Urban Land Use/Land Cover Change by Remote Sensing on a 

Regional Scale 

 

Remotely sensed data from satellites is a reliable source for land use classification and 

land cover change analysis. It is a useful tool for ecological analysis as well. 

Availability of satellite data at less cost and increasing computational power has made 

the application more practical for studying larger areas. Also, availability of remotely 

sensed data with high temporal and spatial resolution, has allowed analysis methods to 

become more suitable for application over large areas (Tanaka and Sugimura, 2001). 

The LANDSAT program is one of the longest running satellite data acquisition 

programs in the United States. Remotely sensed data has been used to obtain 

information about vegetation, ice and snow, soils, and geomorphology (Allen et al., 

1997). Various studies have demonstrated the potential of remote sensing technology 

application for analysis of urban/suburban environment with focus on land cover/land 

use, socioeconomic information, and transportation infrastructure (Acevedo et al., 1996; 

White, 1998; Donnay et al., 2001). Studies related to urban mapping have used urban 

impervious surfaces as one of the indicators to quantify the extent of urbanization. 

Various techniques used to quantify impervious surfaces are multiple regression, 

spectral unmixing (Flanagan and Civco, 2001), artificial neural networks (Flanagan and 

Civco, 2001), classification trees (Smith et al., 2003), and integration of remotely sensed 

data with GIS (Brivio et al., 2002). In general, mapping of urban areas by remote 

sensing is rather a complex process due to the heterogeneity in the urban environment. 

Complexity increases due to the presence of built up structures (such as buildings, 
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transportation nets etc.), several types of vegetation cover (such as parks, gardens, 

agricultural areas), bare soil zones, and water bodies.  

 

1.2.4 Effects of Land Use on Land Surface Hydrologic Processes on a Basin Scale 

  

LULC change can significantly alter hydrology on the local, regional, continental and 

global scales. Although, the human impacts and disturbances on the global hydrologic 

cycle, and the potential consequences of this on climate are still in debate (Sala and 

Paruelo, 1997), studies suggest that land use can bring atmospheric changes (Stohlgren 

et al., 1998), streamflow variability (Waylen and Poveda, 2002) and modification in the 

dynamics of tree populations (Stohlgren et al., 1998).  With increasing urban growth, 

ongoing LULC change can alter the amount of flow through changes in storm flow, 

evapotranspiration, and groundwater storage (Bhaduri et al., 2001). One of the most 

important land cover type characteristics of urban environments is impervious surface 

developed through anthropogenic activities. Impenetrable surfaces, such as rooftops, 

roads, and parking lots, have been identified as key environmental indicators of urban 

land use, water quality and water quantity. Impervious surfaces also increase the 

frequency and intensity of downstream runoff and decrease water quality. While there 

have been studies assessing the effects of climate change and landuse change on 

streamflow (Legesse et al., 2003; Waylen and Poveda, 2002), previous studies did not 

explicitly examine the hydrologic influence of land use conversion due to urbanization 

and its effect on freshwater inflow. The role of land surface hydrologic processes 

(including soil moisture and groundwater) on nutrient and metal distribution and 
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transport is one of the least understood aspects at local, regional, continental, and global 

scales. Variation in hydrology resulting from LULC change can cause variability in 

freshwater inflows along with the instream nutrients and metals that determine the 

productivity of an estuary. Spatial and temporal variability in catchment characteristics 

makes it difficult, at best, to generalize nutrient flux by hydrologic systems at the 

regional scale. Therefore, better methods are needed for making accurate estimates of 

freshwater inflows over regional, local, catchment, and continental scales. 

 

1.2.5 Modeling Environmental Flows to an Estuary 

 

Several countries have taken different approaches to model environmental flows to their 

respective estuaries (Pierson et al., 2002; Adams et al., 2002; TWDB 1994; TPWD 

1998). Past studies have used historical stream flow data (e.g., the 7-day 10 year 

minimum flow, or 7Q10) to set the lower bounds for estuarine inflow (Alber and Flory, 

2002). Studies in Australia, in some cases have used flow-duration based 

recommendation (Pierson et al., 2002). In the State of Texas, agencies such as TWDB, 

and TPWD have used optimization techniques and hydrodynamic modeling to quantify 

coastal freshwater inflows requirement.  

 

Several agencies such as USGS, San Antonio Water Systems (SAWS), and San Antonio 

River Authority (SARA) working in San Antonio River Watershed are involved in 

modeling this watershed, especially the upper portion of the river basin, and streams in 

Bexar County. These agencies are using Hydrologic Simulation Program in Fortran 



 

 

12 

(HSPF) (Bicknell et al., 1997) as the hydrologic model (personal communication, with 

Steven Raabe, SARA, and Dr. Y. C. Su, PBS&J). HSPF is preferred by these agencies 

(SARA, 2003) to other hydrologic models because it simulates hydrology more 

accurately in these urban dominated systems (SARA, 2003). HSPF is a comprehensive, 

conceptual, continuous watershed simulation model designed to simulate all the water 

quantity and water quality processes that occur in a watershed, including sediment 

transport and movement of contaminants. Although it is usually classified as a lumped 

model, it can reproduce spatial variability by dividing the basin in hydrologically 

homogeneous land segments and simulating runoff for each land segment 

independently, using different meteorologic input data and watershed parameters. The 

model includes fitted parameters as well as parameters that can be measured in the 

watershed (www.usgs.gov). 

 

1.2.6 Parameter Estimation in Model Calibration 

 

Parameter estimation is an important stage of model calibration (Sorooshian and Gupta, 

1995). Parameter estimation follows the decision of which parameters of the simulation 

model to calibrate. Manual calibration and automatic calibration are two types of 

parameter estimation approaches. Although manual calibration is widely used, often it is 

time consuming, and the success of model calibration depends on the experience of the 

modeler and his/her knowledge of the study watershed, along with model assumptions 

and its algorithms. Automatic calibration is fast, less subjective, and it makes an 

extensive search of the existing parameter possibilities. It is highly likely that results 
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would be better than that which could be manually obtained. Senarath et al. (2000) and 

Eckhardt and Arnold (2001) have implemented automatic calibration for distributed 

models. Both studies have used Shuffled Complex Evolution search algorithms (Duan et 

al., 1992). None of these studies has used automatic calibration for HSPF using a 

genetic algorithm (GA).  

 

Genetic algorithm (GA) is a kind of search method widely used by researchers for 

optimization problems (Ines and Droogers, 2002; Srivastava et al., 2002; Liong et al., 

1996), including those in hydrologic models. GA is a search algorithm and also an 

evolutionary algorithm mathematically represented, that mimic the processes of natural 

selection and evolution (Goldberg, 1989; Carrol, 1997; Reeves, 1993).  

 

In GA, the parameters that control the outcome of the optimization are mathematically 

termed as decision variables. Combinations of decision variables form a population. 

Each individual in the population is a “chromosome”. Chromosomes are composed of 

bits termed as “genes”, which are the decision variables. Therefore, each chromosome 

contains all possible information of the decision variables pertinent to the problem 

domain, i.e. a single chromosome is one possible combination of values for all the 

parameters used in the calibration.  

 

Most of the earlier studies, on use of GA in optimization, has addressed land use 

planning (Stewart et al., 2004), water management practices (Ines and Honda, 2005), 

best management practices (Srivastava et al., 2002) and automatic calibration of 
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distributed watershed models (Muleta and Nicklow, 2005). Past studies have not 

addressed parameter optimization in HSPF for surface water quantity.  

 

1.3 Study Objectives 

 

The objectives of the research were: 

1. Examine increasing/or decreasing trends on hydrologic variables in a rapidly 

urbanizing semi-arid coastal river basin.   

2. Characterize freshwater inflows to estuary and environmental flows at various 

stream gauging stations in a rapidly urbanizing semi-arid watershed using 

wavelet analysis.  

3. Implement a GA based parameter estimation on calibration of HSPF. 

4. Study the effect of land use and land cover change in San Antonio River Basin 

on freshwater inflows to the gulf coast estuary. 
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CHAPTER II 

HYDROLOGIC TREND DETECTION IN A RAPIDLY URBANIZING 

SEMI-ARID COASTAL RIVER BASIN 

 

2.1 Overview  

 

The productivity of estuarine systems depends on the quantity and quality of freshwater 

inflow which in turn depends on landuse/land cover and water management in the 

contributing watershed. This study examines the presence of trends in seasonal 

environmental flows in the San Antonio River Basin. Trend analysis can provide 

important information on short or long term changes to the hydrologic variable in 

question. This study used daily streamflow obtained from nine USGS gauging stations 

that had at least 15 years continuous data. Baseflow was separated from stormflow using 

a baseflow separation filter program on total streamflow. Pre-whitening was used to 

remove serial correlation from the hydrologic variables’ time series. A bootstrapping 

method was used to determine the critical value for the percentage of stations expected 

to show a trend by chance. In addition, streamflow data, obtained from the most 

downstream USGS gauging station having the longest continuous record on the San 

Antonio River was used to examine trends in freshwater inflows contributed by the 

entire watershed to the Guadalupe Estuary. Analysis was also conducted on seasonal 

precipitation data, obtained from various weather stations spread across the watershed, 

using similar technique described above. Bootstrapping results suggested, 2 stations as 

critical value for global significant for most hydrologic variables. Whereas, 
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bootstrapping on rainfall data suggested, 1 station as critical value for global significant. 

Overall results suggested winter season observed increasing trends in most of the 

hydrologic and rainfall variables. While a distinct spatial pattern was observed in 

seasonal flow, no similar pattern was observed in rainfall. Flow gauging stations in 

upper portion of the watershed experienced decreasing trend, whereas stations in the 

lower portion experienced increasing trend. Presence of decreasing trend in baseflow in 

upper portion of the watershed (close to the urban area) could be attributed to increase 

in impervious surface over the years. Analysis also suggested increase in runoff in the 

river basin, which could be pointed to increase in impervious surface.  

 

2.2  Introduction 

  

Water in aquatic systems supports a variety of requirements, including ecosystem and 

anthropogenic needs. Present water rights and projected demands have sometimes 

resulted in a conflict between the use of rivers as water and energy sources, and their 

conservation as integrated ecosystems (Tharme, 2003; Caissie and El-Jabi, 2003). The 

amount of water needed to maintain stream habitat on a year round basis is termed in-

stream flow need (Cooperrider et al., 1986), and the amount of water needed to maintain 

a healthy estuarine ecosystem is termed freshwater inflow (NRC, 2000). Both terms fall 

broadly under “environmental flows”. Evaluating environmental inflow needs focuses 

on balancing ecosystem flow requirements with human use.  The world and the U.S, in 

particular, are struggling with issues of providing adequate environmental flows in times 

of high demand (both human and ecosystem) and low supply. The State of Texas is no 
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exception (Longley, 1994). With a combination of a variety of aquatic ecosystems, a 

growing urban population and periodic water shortages, Texas faces environmental flow 

challenges. In 2001, Texas Senate Bill 2, instructed three state agencies, the Texas 

Water Development Board (TWDB), the Texas Parks and Wildlife Department 

(TPWD), and the Texas Commission on Environmental Quality (TCEQ), to develop a 

state program of environmental flows to support a “sound ecological environment” on 

rivers and estuaries by 2010. 

 

Estuaries are the connecting link between terrestrial and marine ecosystems, and provide 

a critical coastal habitat that is essential ecologically and economically to the world 

economy (Kennish, 2001); therefore, it is important to maintain their productivity and 

ecological integrity. The productivity of these systems depends on the timing and 

magnitude of freshwater inflow along with the associated delivery of nutrients such as 

nitrogen (N) and phosphorous (P), metals, and organic matter from the terrestrial 

environment. Variations in freshwater inflows can alter the ecology of the estuarine 

environment, potentially hampering productivity. Freshwater inflow, nutrient, and metal 

delivery are influenced by the land use/land cover and water management practices in 

the contributing watershed, particularly in watersheds that are experiencing rapid human 

induced disturbances. Changes in long-term environmental flows can be caused by 

climate variability, such as changes in precipitation pattern, land cover/land use change 

(LCLUC), and water management strategies. In large basins, prominent factors such as 

LCLUC and precipitation pattern change most likely alter the timing and volume of 

long term discharge (Costa et al., 2003).  
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Streamflow is composed of storm flow and baseflow. Storm flow is intermittent flow 

supported by surface runoff from discreet rainfall events. Baseflow is continuously 

sustained flow supported by either groundwater discharge to the stream or spring flows 

or return flows from the WWTPs.  Baseflow is the major source of streamflow during 

dry periods; whereas storm flow is the major portion of streamflow immediately 

following rainfall (depending on the soil moisture content). Trends in stream flow in 

several river basins have been studied extensively to study the effects of climate change, 

vegetation cover and green house warming (Lins and Slack, 1999; Peterson et al., 2002; 

Costa el al., 2003). Lins and Slack (1999) while evaluating trends for 395 stream 

gauging stations in the Conterminous United States suggested that the U. S is getting 

wetter but less extreme. Peterson et al, (2002) suggested that average annual discharge 

from the largest Eurasian rivers to the Arctic Ocean increased by 7% from 1936 to 1999. 

The discharge had a correlation with changes in North Atlantic Oscillation (NAO), and 

global mean surface air temperature. Costa et al, (2003) while investigating 50 years 

long time series of discharge and precipitation data for Tocantis River concluded that 

changes in vegetation cover had altered the hydrologic response of the study region. 

Little study has been conducted to assess the impact of human activities such as 

urbanization on environmental flows (Copeland et al., 1996). 

 

Land development in the U.S is proceeding at a rate greater than population growth 

(Heimlich and Anderson, 2001). From an ecological perspective, land development is 

one of the most disturbing processes, dramatically altering the natural energy and 
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material cycles (Pielke et al., 1999). In a study of the effect of urbanization on 

ecological services in the City of San Antonio Kreuter et al. (2001) found the net effect 

of urbanization on local ecosystems to be neutral. However, Cummins (2000) illustrated 

a clear impact of urbanization on the riparian areas around local streams, which play a 

vital role in nutrient cycling, maintaining water quality of streamflows  and influence 

the timing and magnitude of nutrient transport (Chaubey et al., 2007). 

 

Previous studies have investigated the presence of trends in annual or monthly 

streamflow (Coulibaly and Burn, 2005; Zhang et al., 2001; Douglas et al., 2000; Yue et 

al., 2001; Burn and Elnur, 2002) but did not assess seasonal flows which may be more 

important to estuary ecosystem needs (Longley, 1994). For example, the Whooping 

Crane, a bird listed on the Endangered Species List (TPWD, 1998) migrates to the 

Guadalupe Estuary during the winter (October to April) because it provides a unique 

habitat for nesting and for the blue crab, a major component of the bird’s diet. In recent 

years there has been a decrease in the blue crab population, which has been attributed in 

part to reduced freshwater inflows (TPWD, 1998) which in turn has led to a decreased 

number of Whooping Crane.   

 

Statistical analysis of environmental flow can help to evaluate changes resulting from 

climate variability and/or LCLUC in the watershed. Detection of past trends, changes, 

and variability in hydroclimatic variables is important for understanding the potential 

impact future change  resulting from anthropogenic activities such as urbanization and 

agriculture, can have on environmental flows (Hurrell, 1995; Leggese et al., 2003; Lins 
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and Michaels, 1994; Lettenmair et al., 1994; Lins and Slack, 1999; Zhang et al., 2001; 

Zhang and Schilling, 2006). Lins and Michaels (1994), analyzed streamflow in the U.S 

and suggested increased stream flow had a correlation with greenhouse gas. Lettenmair 

et al, (1994) analyzed spatial pattern of trends in average temperature, precipitation, 

streamflow and average daily temperature in the continental U. S. Their study indicated 

strong spatial and seasonal pattern in trend results. Increasing trend in annual 

temperature was observed in many stations in North and West. Whereas decreasing 

trend was observed for same variable in South and East. Lins and Slack (1999) 

evaluated trends in 395 stream gauging stations in the Conterminous United States  and 

suggested that the U. S is getting wetter but less extreme. Zhang et al, (2001) presented 

a study that analyzed trends from the past 30-50 years for 11 hydroclimatic variables 

obtained from Canadian Reference Hydrometric Basin Network database. In general, 

southern part of Canada experienced decreasing trend in mean stream flow during this 

period. Zhang and Schilling (2006) investigated flow in Mississippi River Basin using 

data from 1940-2000. Their study showed increasing baseflow in the river was due to 

land use change and associated agricultural activities. While study in agricultural 

dominated watershed has indicated change in agricultural practices influenced 

environmental flows, little information is available in urban dominated watershed.    

 

The overall objectives of this research are:  

• Investigate the presence of trends at several stream gauging stations in several 

seasonal flow variables in the rapidly urbanizing semi-arid San Antonio River 

Basin.  
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• Investigate the effect of spatial correlation of the significance of the trends 

found. 

• Investigate the presence of trends in freshwater inflows contributed by the San 

Antonio River to the Guadalupe Estuary. 

• Determine the role that variability in precipitation may plan in watershed scale 

trends in streamflow.  

 

 2.3 Study Area  

 

The 10, 826 km2 San Antonio River Basin extends from the headwaters of the Medina 

River to the point at which the San Antonio River joins with the Guadalupe River before 

emptying into the Guadalupe Estuary (Figure II-1). The San Antonio River begins just 

below Olmos Dam and runs 405 river km through four counties. In addition, the 

watershed drains some portion of eight additional counties. Northwest of the City of San 

Antonio, the terrain slopes to the Edwards Plateau and to the southeast it slopes toward 

the Gulf Coastal Plains.  Soils are blackland clay and silty loam on the plains and thin 

limestone soils on the Edwards Plateau. About 60% of the area in this watershed is 

dominated by pasture/rangeland (Figure II-1), 24% by forest, and 14% by urban  
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impervious surfaces. In a study of freshwater inflow needs of Texas bays and estuaries 

Longley (1994) estimated an annual volume of 656 million m3 of total freshwater was 

needed from the San Antonio River to maintain the health of the Guadalupe Estuary.  

 

Population in this river basin has increased in the last 30 years primarily due to the 

growth of the City of San Antonio, the 8th largest city in the U.S. (Figure II-2). San 

Antonio is currently experiencing rapid urbanization as a result of a population that has 

grown at an average of 1.8 % per year (U.S. Census Bureau, 2005). It is predicted that 

the population in the San Antonio Metropolitan Area will be approximately 2.2 million 

people by 2020 (Texas State Data Center, 2005; Nivin and Perez, 2006). This growth is 

mainly concentrated in Bexar, and Medina Counties (Peschel, 2004). Historically, the 

city of San Antonio has primarily depended on the Edwards Aquifer as its sole source to 

meet its growing water needs (McCarl et al., 1999; San Antonio Water Systems, 2006). 

As demand has increased, treated wastewater in this river basin has either been recycled 

or discharged to streams for downstream environmental flows (San Antonio Water 

System, 2006; San Antonio River Authority, 2006). In recent years with the increase in 

population, a number of new WWTP have been brought on-line in this watershed 

(Figure II-1). However, data is limited on the quantity of water being discharged to the 

San Antonio River from these WWTP. 
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Figure II-1: San Antonio River Watershed with USGS gauging stations, NCDC weather 
stations, and WWTP.    
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Figure II-2: Population trend since 1940 for the City of San Antonio and Bexar County, 
in which  San Antonio is located (Texas State Data Center, 2005).  
 

2.4 Methodology  

 

A stepwise approach was used in the detection of trends in the time series representing 

several hydrologic variables on a seasonal time scale.  Those steps can be summarized 

as: 

1. Select hydrologic variables that adequately assess the state of environmental 

flows in the San Antonio River.   

2. Select streamflow gauging stations in the San Antonio River Watershed to be 

investigated.  The primary criterion for selection of representative gauging 

stations was the length of record of continuous streamflow data.  

3. Determine the presence of trends in all hydrologic variables using the Mann-

Kendall non-parametric test. 

4. Determine the significance of detected trends employing a permutation method 
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following Burns and Elnur (2002).  

5. Determine trends in seasonal hydrologic variables representing freshwater 

inflows from the San Antonio River Watershed to the Guadalupe Estuary.  This 

was done using the most downstream gauging station that maintained the longest 

continuous record of streamflow in the San Antonio River. 

6. Characterize the variability in precipitation across the watershed and determine 

precipitation effect on regional streamflow trends. 

 

2.4.1 Selection of Hydrologic Variables 

 

The selection of hydrologic variables was based on the ability of the variable to indicate 

either change due to climate variability and/or LCLUC. A large number of variables 

were chosen because it is believed that different hydrologic variables will be affected in 

different ways by both climate variability and LCLUC.  Previous studies (Zhang et al., 

2001; Zhang and Schilling, 2006; Coulibaly and Burn, 2005) analyzed primarily annual 

and monthly flow. Coulibaly and Burn (2005) looked at the distribution of the flows and 

separated them into seasonal flows. This study took a similar approach to Coulibaly and 

Burn (2005) to differentiate seasonal flows. Average daily data (total streamflow, 

baseflow, and storm flow) for all the investigated variables were aggregated into three 

seasons, winter (December 1 to March 31), spring/summer (April 1 to July 31) and fall 

(August 1 to November 30). A total of 24 hydrologic variables were analyzed; for each 

of the three seasons, total, maximum and minimum streamflow, total maximum and 

minimum baseflow and total and maximum storm flow were determined.   
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Streamflow was proportioned into baseflow and storm flow using a baseflow separation 

program (Arnold and Allen, 1999) that has been used successfully in several other 

studies (Arnold et al., 1995; Lim et al., 2005; Eckhardt, 2005). Baseflow and storm flow 

were considered separately because it is hypothesized baseflow and storm flow will be 

affected differently by changes in land use land cover and climate variability.  

 

The baseflow separation program is a digital filter (Nathan and McMahon, 1990; Lyne 

and Holick, 1979; Arnold and Allen, 1999; Mau and Winter, 1997) that separates 

baseflow from total stream flow based on high and low frequency. High frequency 

waves can be associated with the direct runoff and low frequency waves can be 

associated with the base flow (Arnold and Allen, 1999; Eckhardt, 2005). This technique 

is objective and reproducible (Arnold and Allen, 1999). The filtered surface runoff 

(quick response) at time t, qt is calculated as:  

)](*)1[(
2

1
11 −− −++= tttt QQqq ββ                                          (1) 

 

where t is one day, Q is the original streamflow (m3), and β is the filter parameter. β in 

this study was set at 0.925 as determined by Arnold et al., (1995), where the authors 

suggested this value of β gave realistic results when compared to manual separation. 

Baseflow (m3), bt, is calculated with the equation: 

                                  ttt qQb −=                                         (2) 
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2.4.2 Selection of Gauging Stations 

 

Data for the initial trend analysis was obtained from USGS gauging stations 

(www.usgs.gov) throughout the San Antonio River Watershed. Locations of the gauging 

stations are shown in figure II-1.  The primary criterion for including a gauging station 

in the analysis was the length of continuous record of daily streamflow available. A 

minimum continuous record of 15 years of daily streamflow was required for a gauge to 

be included in the analysis. The end result was nine gauging with 15 or more years of 

data (Table II-1).   

 

Table II-1: Duration of flow used in analysis for San Antonio River watershed USGS 
gauging stations.  
 

 

 

 

 

 

       

       Symbols can be used to locate stations on Figure II-1. 

 

 

 

 

Station ID Flow duration data Symbols 

08188500 1940-2003 X
 

08183500 1941-2003 G  

08186000 1941-2003 $

?
 

08181800 1963-2003 ?  

08178565 1987-2003 #
 

08181480 1985-2003 
!  

08178800 1961-2003 >  

08178700 1961-2003 F  

08178880 1983-2003 	  
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2.4.3 Trend Analysis 

  

The Mann-Kendall non-parametric test (Mann, 1945; Kendall, 1975; Haan, 2002) was 

used for trend analysis on all hydrologic time series. This test has been widely used to 

test trends in hydrology and climatology (Lettenmaier et al., 1994; Zhang et al., 2000; 

Burn and Elnur, 2002). The test computes the slope of the line formed by plotting the 

hydroclimatic variables per time, but only considers the sign not the magnitude of the 

slope. The Mann-Kendall test statistic is calculated from the sum of the signs of the 

slopes. Each value in the time series X(t’) for t’ = t +1, t + 2, …., N  (number of 

observations in the time series) is compared to X(t) and assigned a score z(k) given by: 

 z(k) = 1  if X(t) > X(t’);                      

 z(k) = 0 if X(t) = X(t’); (3) 

 z(k) = -1          if X(t) < X(t’); 

  

 For k from 1 to N(N-1)/2 the sum of the slopes is given by:  

 ∑
−

=

=
2/)1(

1

)(
NN

K

kzS  (4) 

 

The Mann-Kendall test statistic, Uc, for N ≥ 10 is calculated as: 

  )(/)( SVmSU c +=   (5) 

 

where m = 1 if S < 0 and m = -1 if S > 0 and V(S) is given by:  

  )]52)(1([*)18/1()( +−= NNNSV   (6) 
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The hypothesis of no trend is rejected if 2/1 α−> zU c  where z is from the standard 

normal distribution, and α is level of significance. In this study a significance level of α 

= 0.2 was chosen based on past studies (Zhang et al., 2001; Yue and Wang, 2002). 

There might be some measurement uncertainty in the stream flow data. Therefore, the 

significance level was lowered to 0.2. 

 

2.4.4 Significance of Trend 

  

Determining the significance of the trend tests permits the calculation of the percentage 

of tests that are expected to show a trend at the given significance level by chance. The 

significance of trend results was determined by the method described by Burn and Elnur 

(2002). As a first step, the correlation structure of the data had to be considered 

including both serial correlation in the time series, and cross correlation between the 

stations. 

 

Serial correlation in data structure could increase the number of false positive outcomes 

in the Mann-Kendall test (Burn and Elnur, 2002). It is therefore important to remove the 

serial correlation prior to calculating the significance of the trend. One method to 

remove serial correlation is pre-whitening. The method used here calculates the serial 

correlation in the time series and removes the correlation if the calculated serial 

correlation is significant at the 5% significance level (Burn and Elnur, 2002). This 

significance level was selected because it was necessary to have more confidence on the 

serial correlation in data series. The Box-Ljung statistic was used to determine if the 
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serial correlation is significantly different from zero (Yue and Wang, 2002; SPSS 14.0, 

2007). If the serial correlation was significantly different from zero, then the serial 

correlation was removed from the time series by (Burn and Elnur, 2002):  

                                         ttt ryyyp −= +1                                                            (7) 

 

where ypt is the pre-whitened series value for time interval t, yt the original time series 

value for time interval t, and r is the estimated serial correlation. 

  

The effect of cross correlation in the data structure increases the expected number of 

trends detected under a hypothesis of no trend in the time series. A bootstrapping (or 

resampling) method was used to determine the critical value for the percentage of 

stations that are expected to show a trend by chance following Burn and Elnur (2002). 

Briefly, the bootstrapping method was: 

1. A year was randomly selected from the period of analysis. 

2. Data for each station that had a value for the selected year were added to a new  

or “resampled” data set. 

3. Steps (1) and (2) are repeated until the number of station-station years in the    

resampled dataset was equal to the number of station-years in the original 

dataset.  

4. The Mann-Kendall nonparametric test was applied to each station in the 

resampled dataset and the percentage of results that are significant to the αl% or 

local significance level was determined.  
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5. Steps 1 through 4 were repeated 500 times.   The result was a distribution of the 

percentage of results that were significant at αl % level. From this distribution, 

the value that exceeded the αg% or global significance level was selected as the 

critical value, pcrit.  

 

Results in the trend analysis where the percentage of stations having a significant trend 

were larger than pcrit were considered significant at the αg% global significance level. In 

this study both αl and αg were set at 20%, in order to be consistent for local significant 

and global significant trend. There might be some measurement uncertainty in the 

stream flow data. Therefore, the significance level was considered at 20%. 

    

2.4.5 Freshwater Inflow Analysis 

 

The streamflow record from USGS gauge 08188500 was used in a separate trend 

analysis. This gauge is considered particularly important because it can be used as an 

indicator for the volume of freshwater flow contributed by the San Antonio River 

Watershed to the Guadalupe Estuary.   This station also had the longest continuous flow 

record beginning in 1940.   

 

Baseflow and storm flow were filtered and data were aggregated as previously 

described. The Mann-Kendall nonparametric trend test was conducted on the original 

data without removing serial correlation from the data set. Yue et al. (2001) compared 

the results of trend analyses using Mann-Kendall trend analysis with and without 
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removing serial correlation (using pre-whitening) in the time series (Yue et al., 2001). 

They found a significant difference between the trends in the original data and pre-

whitened data suggesting a change in the data structure with pre-whitening.  Therefore, 

trend tests on this gauging station were done without removing serial correlation in the 

data. 

 

2.4.6 Rainfall  Characterization 

 

In addition to environmental flow variables, precipitation data was also analyzed for 

presence of possible trends. Precipitation data was obtained for various weather stations 

located in the watershed (Figure II-1). Data was obtained from www.ncdc.noaa.gov for 

these stations (Table II-2) (NCDC, 2006). Daily precipitation data was then aggregated 

to total seasonal rainfall, corresponding to seasonal environmental flows. Analysis of 

rainfall will help in investigating possible connection of precipitation variability and 

seasonal environmental flows. Similar statistical techniques for trend analysis and 

significance of trend as described above were also employed to seasonal rainfall data.    

 

2.5 Results and Discussion 

  

Table II-3 shows the serial correlations for all hydrologic variables and all seasons of 

analysis. Of the 216 time series analyzed, 213 had significant serial correlation which 

was removed prior to performing the Mann-Kendall test. As an example, Figure II-3 

shows the cumulative distribution of the percentage of stations that showed a significant 
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trend for a local significance of αl = 20% level for total winter streamflow. The pcrit 

value was found for a global significance of αg = 20% level to be 2. Table II-4 shows 

the pcrit values for all hydrologic variables and all seasons of analysis. Trend results 

including the number of stations that had trends that were significant at the local 

significance level, the number of stations with an increasing trend, the number of 

stations with a decreasing trend, and the percentage of stations with a significant trend at 

the global significance level are also shown in Table II-4. The greatest percentages of 

significant trends at all stations were in minimum streamflow and minimum baseflow in 

all three seasons, with at least 55% of stations showing significant trends. Significant 

trends were observed in all hydrologic variables in the winter season. The number of 

increasing trends was nearly twice the number of decreasing trends, 37 and 19, 

respectively, across all hydrologic variables and seasons. 

 

Table II-2: Duration of rainfall used in analysis for San Antonio River watershed NCDC 
weather stations.  
 

 

 

 

 

 

 

NCDC Station ID Rainfall duration data 

413201 1947-2003 

415742 1967-1999 

417836 1947-2003 

417945 1947-2003 

413618 1940-2003 
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Table II-3: Serial correlation of all hydrologic variables for all the stations and all the seasons.  
 Total Seasonal Flow  08188500 08183500 08186000 08181800 08178565 08181480 08178800 08178700 08178880 

 Winter 0.198 0.198 0.275 0.164 0.344 0.399 0.310 0.275 0.205 

 Spring/Summer -0.017 -0.043 0.014 -0.080 0.236 -0.187 0.121 -0.082 -0.162 

 Fall -0.008 -0.019 -0.038 0.000 0.029 -0.304 -0.080 -0.113 -0.121 

Minimum Seasonal Flow           

 Winter 0.293 0.282 0.421 0.309 0.264 0.104 0.448 -0.080 -0.068 

 Spring/Summer 0.184 0.197 0.164 0.166 0.155 0.037 0.304 0.052 -0.253 

 Fall 0.322 0.336 0.290 0.302 0.047 0.017 0.484 0.000 0.030 

Maximum Seasonal Flow           

 Winter 0.157 0.194 0.105 0.173 0.381 0.388 0.168 0.077 0.074 

 Spring/Summer -0.068 -0.146 0.044 -0.107 -0.135 -0.231 0.015 -0.107 -0.216 

 Fall -0.077 -0.111 -0.130 -0.135 -0.253 -0.221 -0.105 -0.085 -0.201 

Total Seasonal 
Baseflow 

          

 Winter 0.182 0.322 0.252 0.136 0.322 0.331 0.379 0.392 0.087 

 Spring/Summer 0.014 0.270 0.000 -0.042 0.270 -0.164 0.151 -0.115 -0.126 

 Fall 0.132 0.031 0.074 0.093 0.031 -0.313 0.000 -0.119 -0.051 

Minimum Seasonal Baseflow           

 Winter 0.286 0.272 0.411 0.285 0.250 0.128 0.381 -0.083 -0.057 

 Spring/Summer 0.184 0.187 0.168 0.144 0.165 0.023 0.393 0.057 -0.246 

 Fall 0.251 0.253 0.294 0.244 0.049 0.397 0.464 0.082 0.000 

Maximum Seasonal Baseflow           

 Winter 0.104 0.091 -0.004 0.183 0.068 0.259 -0.033 -0.105 0.204 

 Spring/Summer -0.083 -0.135 -0.080 -0.137 -0.019 -0.210 -0.048 -0.132 -0.194 

 Fall -0.081 -0.129 -0.119 -0.151 -0.107 -0.224 -0.104 -0.101 -0.079 

Total Seasonal Runoff           

 Winter 0.272 0.239 0.236 0.207 0.314 0.375 0.391 0.272 0.237 

 Spring/Summer -0.069 -.0112 0.010 -0.131 0.171 -0.199 0.092 -0.078 -0.195 

 Fall -0.092 -0.116 -0.080 -0.089 0.053 -0.294 -0.098 -0.105 -0.203 

Maximum Seasonal Runoff           

 Winter 0.110 0.154 0.086 0.126 0.357 0.389 0.154 0.071 0.049 

 Spring/Summer -0.050 -0.148 0.054 -0.101 -0.137 -0.235 0.005 -0.104 -0.219 

 Fall -0.075 -0.108 -0.129 -0.134 -0.249 -0.221 -0.105 -0.085 -0.209 
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Figure II-3: Cumulative frequency distribution showing number of significant trends.  
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Table II-4:  Trend test results for 9 USGS gauging stations in the San Antonio River 
watershed for the 1940-2003 period.  

 

Variable Season 
No. of 

Stations 

Global 

Critical 

Value 

Pcrit 

No. of 

Stations 

with 

Significant 

Trend 

(Local) 

No. of 

Decreasing 

Trends 

No. of 

Increasing 

Trends 

% 

Significant 

Trend 

(Global) 

Total  Winter 9 2 3 0 3 0.33 

Streamflow 
Spring/Sum
mer 

9 2 1 0 0 0.00 

 Fall 9 2 2 0 0 0.00 

Minimum  Winter 9 2 5 1 4 0.55 

Streamflow 
Spring/Sum
mer 

9 2 5 2 3 0.55 

 Fall 9 2 6 3 3 0.66 

Maximum  Winter 9 2 4 2 2 0.44 

Streamflow 
Spring/Sum
mer 

9 2 1 0 0 0.00 

 Fall 9 2 0 0 0 0.00 

Total Winter 9 2 4 0 4 0.44 

Baseflow 
Spring/Sum
mer 

9 2 2 0 0 0.00 

 Fall 9 2 4 0 4 0.44 

Minimum Winter 9 2 5 1 4 0.55 

Baseflow 
Spring/Sum
mer 

9 1 5 2 3 0.55 

 Fall 9 2 5 2 3 0.55 

Maximum Winter 9 2 3 2 1 0.33 

Baseflow 
Spring/Sum
mer 

9 2 1 0 0 0.00 

 Fall 9 2 2 0 0 0.00 

Total  Winter 9 2 3 1 2 0.33 

Runoff 
Spring/Sum
mer 

9 2 1 0 0 0.00 

 Fall 9 1 1 0 0 0.00 

Maximum Winter 9 2 4 3 1 0.44 

Runoff 
Spring/Sum
mer 

9 2 1 0 0 0.00 

 Fall 9 2 0 0 0 0.00 

 

 

The Mann-Kendall test statistics for all hydrologic variables during each season is 

presented by station number in Table II-5. Stations are arranged from the most upstream 

gauging station (08178880) to the most downstream station (08188500). The number of 

hydrologic variables having a globally significant trend increases for all seasons as you 

progress from the top of the watershed to the outlet. In general stations in the upper half 
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of the watershed (i.e. above 08181800) show a decreasing trend in variables with 

significant trends.  The upper half of the San Antonio Watershed has experienced the 

greatest urban growth in the watershed over the last 60 years.  All stations in the lower 

half of the watershed have increasing trends over all seasons in the hydrologic variables 

with significant trends. USGS gauges 08183500, 08188500 and 08186000 have the 

greatest number of significant trends across all variables in all seasons at 12, 11 and 10 

trends each. The strongest overall positive (increasing) trends were at station 08186000 

for minimum streamflow and minimum baseflow for all three seasons.  The strongest 

negative (decreasing) trends were at station 08178700 for total and minimum baseflow 

in the spring/summer and fall seasons only. Figures II-4 and II-5 depict the spatial 

distribution across the watershed in trends of minimum streamflow and minimum 

baseflow in the fall season. This same general pattern holds for winter and 

spring/summer for these two variables. Generally, increase in impervious surface 

increases runoff and reduces baseflow. Therefore, presence of decreasing trend in 

baseflow at some stations upstream of 08181800 could be attributed to increase in 

impervious surface in the area. On the contrary, station 08178565 which is upstream of 

station 08181800 observed an increasing trend for Fall total baseflow and Winter 

minimum baseflow. This station is very close to urban settlement in the City of San 

Antonio. One possible reason for increasing trend for these variables could be attributed 

to WWTP discharges.   
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Table II-5:  Mann-Kendall test statistics by station for trends in seasonal hydrologic 

variables that were significant at both the local and global significance levels (αl = αg 
= 0.2). 

 

Station Number Hydrologic Variable Winter 

Spring/ 

Summer 

Fall 

     

08178880 Maximum Runoff -2.25 NT* NT 

     

08178700 Minimum Streamflow NT -4.19 -3.03 

 Minimum Baseflow NT -4.17 -2.66 

     

08178800 Minimum Streamflow -2.37 NT -1.70 

 Minimum Baseflow -2.13 NT -1.65 

 Maximum Baseflow -2.30 NT NT 

     

08178565 Minimum Streamflow 1.71 NT NT 

 Maximum Streamflow -1.71 NT NT 

 Total Baseflow NT NT 1.98 

 Minimum Baseflow 1.80 NT NT 

 Maximum Runoff -2.25 NT NT 

     

08181480 Minimum Streamflow NT -2.99 -2.00 

 Maximum Streamflow -2.53 NT NT 

 Minimum Baseflow NT -2.91 NT 

 Maximum Baseflow -2.91 NT NT 

 Total Runoff -2.46 NT NT 

 Maximum Runoff -2.53 NT NT 

     

08181800 Total Baseflow -2.13 NT NT 

     

08183500 Total Streamflow 4.34 NT NT 

 Minimum Streamflow 3.96 2.32 2.99 

 Maximum Streamflow 2.86 NT NT 

 Total Baseflow 4.90 NT 3.46 

 Minimum Baseflow 4.12 2.46 2.77 

 Maximum Baseflow 1.60 NT NT 

 Maximum Runoff 1.88 NT NT 

     

08186000 Total Streamflow 2.41 NT NT 

 Minimum Streamflow 5.09 2.44 2.22 

 Total Baseflow 4.12 NT 2.10 

 Minimum Baseflow 5.10 2.60 2.37 

 Total Runoff 2.16 NT NT 

     

08188500 Total Streamflow 3.55 NT NT 

 Minimum Streamflow 4.31 2.10 2.40 

 Maximum Streamflow 1.74 NT NT 

 Total Baseflow 4.35 NT 2.88 

 Minimum Baseflow 4.22 2.04 2.25 

 Total Runoff 1.86 NT NT 

 

* Indicates no trend at the global significance level. 
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Figure II-4: Spatial distribution of USGS gauging stations showing increasing, 
decreasing and no trend for minimum stream flow for fall season.  
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Figure II-5: Spatial distribution of USGS gauging stations showing increasing, 
decreasing and no trend for minimum base flow for fall season.  
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Table II-6 presents summary statistics over the length of record (1940-2003) for station 

(08188500).  As stated earlier, a separate trend analysis was done at this station 

because it can be used as an indicator for the amount of freshwater inflow reaching the 

Guadalupe Estuary.  Figures II-6 through II-8 graphically depict the time series for 

average seasonal values of winter total, maximum and minimum values of the 

hydrologic variable, respectively. The greatest average streamflow, baseflow and 

runoff all occur in the spring/summer season at this gauge. Not surprisingly, minimum 

average streamflow is equal to minimum average baseflow across all seasons. A 

significant linear relationship (R2 = 0.90, p < 0.05) was observed between total 

streamflow and total baseflow for all the seasons. Baseflow is the largest part of 

streamflow in this river basin in all seasons; however, spring/summer runoff is a 

substantial portion of total streamflow at 40 %. It is evident from Figures II-6 through 

II-8 that the trends in streamflow are highly dependent on trends in baseflow. 
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Table II-6: Summary statistics for the hydrologic variables analyzed from the  
flow at USGS gauging station 08188500. 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable 
Mean 

(million m3) 

Std. Deviation 

(million m3) 

Maximum 

(million m3) 

Minimum 

(million m3) 

Total streamflow     
     Winter 183.81 160.26 1148.32 34.51 
     Spring/Summer 288.84 296.15 1425.62 26.54 
     Fall 235.46 237.12 1053.08 27.56 

Minimum streamflow     
     Winter 0.62 0.32 1.89 0.12 
     Spring/Summer 0.51 0.43 2.54 0.005 
     Fall 0.47 0.34 1.78 0.03 

Maximum streamflow     
     Winter 62.41 12.19 62.41 0.41 
     Spring/Summer 149.99 22.76 149.99 1.63 
     Fall 292.72 40.90 292.72 1.44 

Total baseflow     
     Winter 139.54 103.23 743.58 32.56 
     Spring/Summer 174.02 175.45 920.69 14.09 
     Fall 138.78 116.72 604.15 20.57 

Minimum baseflow     
     Winter 0.62 0.32 1.89 0.12 
     Spring/Summer 0.51 0.43 2.54 0.005 
     Fall 0.46 0.34 1.78 0.03 

Maximum baseflow     
     Winter 4.99 5.83 30.83 0.07 
     Spring/Summer 6.50 8.26 46.23 0.49 
     Fall 5.23 7.73 47.60 0.35 

Total runoff     
     Winter 44.27 69.13 404.73 1.83 
     Spring/Summer 114.82 130.99 639.65 3.60 
     Fall 96.67 134.98 681.59 6.91 

Maximum runoff     
     Winter 7.96 10.37 51.44 0.28 
     Spring/Summer 15.52 18.86 127.01 0.47 
     Fall 18.19 37.68 273.99 0.83 
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Figure II-6: Total seasonal flow, baseflow, and runoff for Winter Season at the most 
downstream USGS gauging station 08188500 1940 to 2003. 
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Figure II-7: Maximum seasonal flow, baseflow, and runoff for Winter Season at the 
most downstream USGS gauging station 08188500, 1940 to 2003. 
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Figure II-8: Minimum seasonal flow, baseflow, and runoff for Winter Season at the 
most downstream USGS gauging station 08188500, 1940 to 2003. 
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Serial correlation of the rainfall data at all the stations in all the seasons is shown in 

Table II-7. Of the 15 rainfall time series analyzed, 12 had significant serial 

correlation. Serial correlation was removed from these variables prior to performing 

Mann-Kendall test. In this analysis, the pcrit value was found for a global significance 

of αg = 20% level to be 1 (Table II-8). The greatest percentages of significant trends 

at all stations were in total rainfall in winter season, with at least 33% of stations 

showing significant trend. No significant trend was observed in total rainfall for the 

spring/summer and fall seasons. Winter rainfall observed only increasing trend, and 

no decreasing trends.  

 

The Mann-Kendall test statistics for all rainfall variables at each station during each 

season is shown in Table II-9. Stations are arranged from headwaters to downstream 

direction. No particular spatial pattern is observed in rainfall, as it is observed in other 

hydrologic variables.  

 

Analysis of rainfall data from the last weather station NCDC COOPID 413618, that is 

close to the last USGS gauging station 08188500 suggested, out of the 64 year time 

series, not quite half of the years (29, 30 and 27 for winter, spring/summer and fall, 

respectively) experienced greater than average seasonal rainfall (Figure II-9).  

 

Similarly, analysis of maximum seasonal rainfall showed no presence of either an 

increasing or decreasing trend (Figure II-10). Mann-Kendall test statistic values for 

winter, spring/summer, and fall were 1.27, 0.24, and 0.25 respectively. Average 
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maximum rainfall for winter, spring/summer, and fall were approximately 47, 76, and 

80 mm, respectively.  Again, less than half of the years in the 64 year time series (27, 

22 and 24 for winter, spring/summer and fall, respectively) experienced greater than 

average maximum rainfall.   

 

More numbers of increasing trends were found in winter flows as well as in winter 

rainfall. Therefore, it could be conclusively said that winter flows were influenced by 

rainfall.  

 

A comparison between total streamflow, baseflow and stormflow at USGS gauge 

08188500 that resulted from similar high, medium and low rainfall events recorded at 

NCDC gauge 413618 in the 1950s and 1990s was done for all three seasons (Table II-

10). Analysis suggested total flow from 1990s rainfall events increased substantially 

from 1950s rainfall events. In general, storm flow as well as baseflow in 1990s events 

increased substantially in all the high, medium, and low category events over similar 

1950s events.  In all rainfall depth-season combinations except high rainfall-winter, 

there was an increase in the contribution of baseflow to total streamflow.  Therefore, 

the increase in seasonal total flow was primarily due to increase in seasonal total 

baseflow at this portion of the watershed. Comparison of 64 years of averaged total 

streamflow, averaged baseflow, and averaged runoff suggested that baseflow 

contributed about 80% of total streamflow in winter flows; 64% in spring/summer 

flows and 66% in fall flows. 
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Table II-7: Serial correlation of rainfall data for all the stations and all the seasons. 
 

 

 
 
 
 
 
 
 
Table II-8: Trend test results for 5 NCDC weather stations in the San Antonio River 
watershed. 
 
 
 

 
 
 
 
 
 
 
Table II-9: Mann-Kendall test statistics by station for trends in seasonal hydrologic 

variables that were significant at both the local and global significance levels (αl = αg 
= 0.2). 
 
 

 

 

 

 

 

 

 

 

Total Rainfall  413201 415742 417836 417945 413618 

 Winter 0.000 -0.213 0.118 0.215 0.000 

 Spring/Summer 0.109 0.072 -0.187 0.111 0.147 

 Fall 0.013 -0.230 0.000 -0.150 0.148 

Variable Season 
No. of 

Stations 

Global 

Critical 

Value 

Pcrit 

No. of Stations 

with 

Significant 

Trend (Local) 

No. of 

Decreasing 

Trends 

No. of 

Increasing 

Trends 

% 

Significa

nt Trend 

(Global) 

Total  Winter 5 1 3 0 3 0.33 

Rainfall 
Spring/Sum
mer 

5 1 0 0 0 0.00 

 Fall 5 1 0 0 0 0.00 

Station Number Winter 

Spring/ 

Summer 

Fall 

    

415742 1.83 NT NT 

417945 1.67 NT NT 

413201 NT NT NT 

417836 2.13 NT NT 

413618 NT NT NT 
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Figure II-9:  Trend in total rainfall at NCDC gauge 413618 for winter, spring/summer 
and fall seasons. 
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Figure II-10: Trend in maximum rainfall at NCDC gauge 413618 for winter, 
spring/summer and fall seasons. 
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Similar, analysis was also conducted at USGS gauge 08178800 with rainfall recorded 

at NCDC gauge 417945 (Table II-11). This USGS gauging station is very close to the 

urban area in the City of San Antonio. The NCDC weather station is also located very 

close to the gauging station. In this case analysis was performed from 1960s and 1990s 

event. Overall analysis suggested total flow increased substantially in 1990s than 

1960s, particularly in high rainfall events category. In general, comparison of 42 years 

of averaged total streamflow, averaged baseflow, and averaged runoff suggested that 

baseflow contributed about 59% of total streamflow in winter flows, 45% in 

spring/summer flows and 44 % in fall flows. Therefore, runoff contributed more to 

average total flow during spring/summer and fall seasons. Overall, whereas runoff 

contribution to the total flow in the upper portion of the watershed is more, baseflow 

contribution to total flow is more in the lower portion of the watershed.   

 

 

 

 

 

 

 

 

 

 



 

 

52 

Table II-10: Comparision of total stream flow, base flow, and runoff obtained from 
similar rainfall events in 1950s and 1990s, at USGS gauging station 08188500 and 
NCDC weather station 413618. 

  
Rainfall 

(mm) 

Total Flow 

(Million 

m3) 

Base Flow 

(Million 

m3) 

Runoff 

(Million 

m3) 

% 

Baseflow 

% 

Runoff 

Seasonal 

Required 

Total 

Flow 

(Million 

m3) 

Dec-

Mar 
       

 

High         

 1958 478 409 206 203 50.37 49.63 187 

 1991 468 502 217 285 43.23 56.77 187 

Medium         

 1952 200 57 46 11 80.70 19.30 187 

 1995 223 136 118 18 86.76 13.24 187 

Low         

 1950 58 62 54 8 87.10 12.90 187 

 1996 47 80 75 5 93.75 6.25 187 

Apr-Jul         

High         

 1957 461 581 276 305 47.50 52.50 250 

 1992 464 1315 920 395 69.96 30.04 250 

Medium         

 1952 408 85 49 36 57.65 42.35 250 

 2000 395 141 100 41 70.92 29.08 250 

Low         

 1956 168 26 14 12 53.85 46.15 250 

 2001 171 184 139 45 75.54 24.46 250 

Aug-

Nov 
       

 

High         

 1957 474 291 125 166 42.96 57.04 217 

 1997 464 113 92 21 81.42 18.58 217 

Medium         

 1955 262 41 25 16 60.98 39.02 217 

 2000 259 280 145 135 51.79 48.21 217 

Low         

 1954 135 27 20 7 74.07 25.93 217 

 1990 125 112 91 21 81.25 18.75 217 
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Table II-11: Comparision of total stream flow, base flow, and runoff obtained from 
similar rainfall events in 1950s and 1990s, at USGS gauging station 08178800 and 
NCDC weather station 417945. 

  
Rainfall 

(mm) 

Total Flow 

(Million m3) 

Base Flow 

(Million m3) 

Runoff 

(Million m3) 
% Baseflow 

% 

Runoff 

Dec-

Mar 
       

High        

 1963 251 5 3 2 60 40 

 1998 249 15 7 8 47 53 

Medi

um 
       

 1967 107 4 3 1 75 25 

 1999 102 6 3 3 50 50 

Low        

 1961 81 8 6 2 75 25 

 1995 77 4 3 1 75 25 

Apr-

Jul 
       

High        

 1961 391 10 5 5 50 50 

 1991 373 19 8 11 42 58 

Medi

um 
       

 1968 226 10 6 4 60 40 

 1999 225 8 3 5 37 63 

Low        

 1963 102 3 2 1 67 33 

 1996 65 2 1 1 50 50 

Aug-

Nov 
       

High        

 1967 501 10 4 6 40 60 

 1994 489 17 5 12 30 70 

Medi

um 
       

 1968 233 7 5 2 71 29 

 1996 245 5 2 3 40 60 

Low        

 1963 143 4 2 2 50 50 

 1991 142 3 2 1 67 33 
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2.6 Conclusions 

 

Results from this study suggested, more number of increasing trends in hydrologic 

variables were observed in winter season. The number of hydrologic variables having 

global significant trend, increased from the headwaters to outlet of the watershed. 

Generally, gauging stations in upper half of the watershed showed a decreasing trend; 

whereas, stations in the lower half of the watershed showed an increasing trend.  

Presence of decreasing trend in baseflow at some upstream stations (upstream of 

08181800) could be attributed to increase in impervious surface in the surrounding 

area. Increase in impervious surface could result in less infiltration, thereby decreasing 

amount of baseflow reaching the gauging station. One station USGS 08178565, which 

is also upstream of 08181800, observed increase in flow that could possibly be 

attributed to WWTP discharges. Separate analysis of the most downstream gauging 

station data suggested baseflow to be the largest part of stream flow in the river basin. 

One of the important things to note here was total flow increased substantially in 1990s 

than in 1950s and 1960s. 

 

Where trend analysis of hydrologic variables observed a spatial pattern, trend analysis 

of rainfall observed no particular spatial pattern. No negative trends were observed in 

rainfall. Trends were only observed in winter rainfall. It is important to note that more 

number of increasing trends in stream flow variables was observed in winter season, as 

well.   
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Conclusion from this study is relevant for assessment of land use land cover change 

(urbanization in particular) impact on freshwater inflows to estuary, especially in semi-

arid watershed that drains to the gulf coast of USA. This study will help water 

resources managers for obtaining appropriate water management strategies to maintain 

proper aquatic ecosystem health, along with meeting water demand of increasing 

population. Proper understanding of total seasonal flow, minimum seasonal total flow, 

total seasonal baseflow, and minimum seasonal baseflow will help understanding the 

delivery mechanism of sediment, nutrients and metal to downstream aquatic 

ecosystems, especially in urban dominated ecosystems. Adequate knowledge of such 

processes will help managers and policy makers to take appropriate land management 

strategies to meet estuarine ecosystem water demand across various seasons.               
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CHAPTER III 

CHARACTERIZATION OF ENVIRONMENTAL FLOWS IN A RAPIDLY 

URBANIZING SEMI-ARID WATERSHED USING WAVELET ANALYSIS 

 

3.1 Overview  

 

Environmental flows to rivers and estuaries are important because several ecological 

processes depend on it. It is therefore important to maintain the productivity of such 

systems. The productivity of these systems depends on the quantity and quality of 

freshwater inflow. Characterization of such flows is needed to do basin scale river 

management. Continuous wavelet techniques are one of the ways to visualize scale and 

time in frequency domain of the observed signals. This technique can help in 

understanding the geophysical signals and help in linking to estuarine ecological 

processes. Stream flow data were obtained from three USGS gauging stations located in 

the San Antonio River Basin. Obtained daily average flow data were aggregated to 

seasonal data. Three seasons were considered for analysis; Dec-Mar (Winter), Apr-Jul 

(Spring-Summer), and Aug-Nov (Fall). Wavelet analysis suggested presence of multi-

scale temporal variability in the data series. It also suggested presence of dominant 

frequencies in 10-15 years scale in the hydrologic variables such as total seasonal flow, 

and total seasonal baseflow, at all gauging stations, with the cycle occurring in every 10-

15 years, as well. Dominant frequencies were also observed in 17-23 years period in most 
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of the hydrologic variables such as minimum seasonal total flow and minimum seasonal 

baseflow, and were bi-decadal (20-30 years cycle) in cycle. Higher frequencies, in couple 

of hydroclimatic variables did show a shift in scale; location of frequencies changed when 

1940s flow data was compared with 1990s flow data. Especially, this was prominent in 

some seasonal base flows. Understanding of environmental flows in wavelet domain can 

help us understanding various estuarine ecological processes occurring in similar scale; 

further, helping us providing a better management of River Basin.            

    

3.2 Introduction 

 
Environmental flows in aquatic ecosystems are vital to all life (Tharme, 2003). In 

ecosystems such as estuaries, environmental flows serve not only ecological purposes 

such as proper salinity gradient, but economic purposes as well (e.g. maintaining fish 

habitats) (Kennish, 2001). Evaluating environmental flow needs focuses on balancing 

ecosystem flow requirements with human use. Water managers worldwide are struggling 

with the issue of providing adequate environmental flows in times of high demand and 

low supply. The State of Texas, with a variety of water sources (e.g., lakes, rivers, 

aquifers) and ecosystems (e.g., coastal, rangeland) a growing urban population placing 

substantial pressure on water supplies, and periodic water shortages, is no exception 

(Longley, 1994). In the year 2001, Texas Senate Bill 2 instructed three state agencies, the 

Texas Water Development Board, the Texas Parks and Wildlife Department and the 
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Texas Commission on Environmental Quality to develop a state program of instream 

flows to support a “sound ecological environment” on rivers by 2010. 

  

The productivity of estuarine systems depends on the timing, magnitude, and frequency 

of freshwater inflow along with the flow associated sediments, nutrients, metals, and 

organic matter from the terrestrial environment. Changes in the long-term freshwater 

inflows can be caused by climate variability (e.g. change in precipitation pattern), 

changes in land use and land cover, and water management (e.g. return flows from waste 

water treatment plants, water diversion, and upstream lakes and reservoirs (Costa et al., 

2003).  

 

Analysis of freshwater flows in various river basins around the world has been 

extensively studied to assess various ecological processes such as climate change, snow 

melting processes, and global warming (Lins and Slack, 1999; Peterson et al., 2002). 

These studies have used wavelet techniques to characterize some of these above 

mentioned processes. Also, wavelet technique has been used to understand the effect of 

dam removal on ecological processes (White et al., 2005). However, fewer studies have 

been conducted to assess environmental flows in rivers and freshwater inflows to estuary 

using wavelet techniques in rapidly growing semi-arid urban river basin (Copeland et al., 

1996; Nakken, 1999; Smith et al., 1998).    
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Historically, characterization of geophysical time series such as freshwater inflow has 

been conducted by classical statistical techniques such as by comparing mean, and 

variance. These methods assign a fixed time interval for the duration of analysis and 

observe the pattern such as cyclic events, within that time window. However, wavelet 

analysis (Daubechies, 1992; Farge 1992; Liu, 1994; Kumar and Foufoula-Georgiou, 

1997; Torrence and Compo, 1998) provides a different perspective for analyzing time 

series. This method does not require fixing the time window. It allows the user to observe 

simultaneously the available frequencies and location of the frequencies in the time series 

i.e. it simultaneously shows the modulation in scale and amplitude of the signal (e.g. 

freshwater). Results obtained from wavelet analysis could possibly show the alteration in 

the time series of important processes due to factors such as urbanization, climate change, 

and dam construction. Therefore, wavelet analysis provides a unique method to evaluate 

cyclic changes of the ecological processes in question and allows the user to understand 

possible linkage with other ecological phenomena.   

 

Wavelets have been used in several hydrologic and climatic studies. Researchers have 

used this technique to understand inter-annual and inter-decadal variability in 

hydroclimatic signals (Bradshaw and McIntosh, 1994; Daubechies, 1992; Farge 1992; 

Liu, 1994;). For example wavelet analysis of southern Quebec stream flow in Canada 

suggested presence of dominating features in 2-3 years time scale that had possible 

linkage to local climatic pattern (Anctil and Coulibaly, 2004). Wavelet analysis on 

hydrologic regime of Amazon during 1903-1998, suggested presence of inter-annual and 
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inter-decadal oscillations (Labat et al., 2004). Studies have also used wavelets in 

detecting changes in stream flow variance (Cahill, 2002), stream flow simulations 

(Bayazit and Aksoy, 2001), and detecting natural and anthropogenic influences on stream 

flow. Nakken 1999, in a study utilized wavelet techniques to analyze time series data of 

rainfall-runoff process that occurred during 1911-1996 in Began River basin, Australia. 

That study suggested, climate forcing dominated catchment response in short time scales, 

usually about 27-32 months. Wavelet techniques have also been employed to group 

various regions that are geographically separated but have similar wavelet signatures 

based on stream flow (Saco and Kumar, 2000). In Texas the high variability at the smaller 

scales arises from the flash-flood type of flows characteristic of semiarid regions. The 

rivers in Southern Plains (Nueces, San Antonio, Guadalupe, and Colorado) are 

characterized by the presence of high variability at the smaller scales (Lins, 1997). This 

small scale variability (6 days to 1 month time scale) is generated by the intense rainfall 

events that can occur at any time of the year with some prevalence in spring and summer.        

 

Most of the earlier studies have investigated annual stream flow, and monthly flow (Saco 

and Kumar, 2000; Lins, 1997). Past studies did not assess scale and frequency of seasonal 

flows which may be more important for ecological management of the estuary and river 

management (Labat et al., 2004; Bayazit and Aksoy, 2001). Therefore, the overall 

objective of this study is to characterize various seasonal freshwater inflows variables 

(such as seasonal total flow, seasonal baseflow, maximum seasonal total flow, maximum 

seasonal baseflow, minimum seasonal total flow, minimum seasonal baseflow) at the 



 

 

61 

most downstream gauging station of San Antonio River,  and stream flows at various 

segments of the River. The technique was used to evaluate if there was any similarities 

between these geophysical variables at all the stations. Further, this method investigated 

the changes in frequencies and scales at different stream gauging stations.  

 

3.3 Study Site Description 

  

3.3.1 Physiography 

 

The San Antonio River Basin (Figure III-1) covers 10, 826 km2 from the headwaters of 

the Medina River to the point at which the San Antonio River joins with the Guadalupe 

River before emptying into the Gulf of Mexico. The San Antonio River runs 390 river 

kilometers through four counties: Bexar, Wilson, Karnes, and Goliad Counties. However, 

the watershed drains through some portion of 8 counties: Kerr, Kendall, Comal, 

Guadalupe, Dewitt, Victoria, Refugio, and Medina Counties. Major tributaries to the San 

Antonio River are Leon Creek, Salado Creek, Cibolo Creek, and Medina Creek.  This 

study area is located between latitude 29.91° N and 28.51° N and longitude 99.57° W and 

97.01° W. Average elevation of the basin area is about 229 meters. Lowest elevation is 2 

meters, and highest elevation in the study area is about 710 meters. Average slope of the 

basin is 1.38 degrees.    
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Figure III-1: San Antonio River watershed with gauging stations, weather stations, and 
various counties in the watershed. 

 

 



 

 

63 

Northwest of the city, the terrain slopes to the Edwards Plateau and to the southeast it 

slopes downward to the Gulf Coastal Plains. Soils are blackland clay and silty loam on 

the Plains and thin limestone soils on the Edwards Plateau.  

 

San Antonio-Guadalupe estuary is an important estuary in the Gulf of Mexico region. It 

provides a critical coastal habitat that is essential ecologically and economically. 

Important species such as bluecrabs depend on this estuary for their survival. It provides 

significant economic backbone to the region by providing environment for fisheries, 

tourism, shipping, and marine biotechnology. It is also a critical habitat for Whopping 

Crane, which is a migratory bird and an endangered species. This bird migrates from 

Canada to this estuary during winter. Texas Water Development Board (TWDB) has 

made recommendations for the flow requirements for the entire Guadalupe Estuary/San 

Antonio Bay, which receives flows from both the San Antonio and Guadalupe River 

Watersheds. The minimum flow recommended was 1271 million m3/year and the 

maximum flow was 1591 million m3/year (TPWD, 1998). Past studies (particularly 

historical flow analysis) on freshwater inflows to Texas bays and estuaries (Longley, 

1994) suggested that the largest fraction of freshwater inflows to the Guadalupe Estuary 

comes from gaged portions of the Guadalupe River Basin. These areas contribute 

approximately 58% (1653 million m3/year) of the total freshwater inflows to the estuary; 

57 % came from gaged portions of the Guadalupe River alone. Gaged portion of the San 

Antonio River contributed about 23 % (656 million m3/year) of total freshwater inflows. 

No study separated the contributions of the individual watersheds (San Antonio and 
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Guadalupe River) or modeled the effect of land use change on the environmental flow 

availability. Past study also did not assess seasonal flows which may be more important 

than yearly/monthly flows (Longley, 1994). 

 

The City of San Antonio is located in the south-central portion of Texas and in Bexar 

County.  As the 8th largest city in the U.S., San Antonio is currently experiencing rapid 

urbanization and population growth on average of 1.8 % per year (U.S. Census Bureau, 

2005).  This population growth is increasingly impacting rural areas by accelerating land 

subdivision and reducing the average size of land parcels (Conner and James, 1996). It is 

predicted population around the city of San Antonio by 2020 will be approximately 

2,172,950 (counties include Bexar, Comal, Guadalupe, Wilson, Atascosa, Bandera, 

Kendall, and Medina) (Texas State Data Center, 2005; Nivin and Perez, 2006).  

 

3.3.2 Land Use Change 

 

This watershed is experiencing rapid human growth. There has been a decline in 

rangeland and forest in this watershed. Analysis of LANDSAT imageries of the entire 

watershed for the years 1987, 1999 and 2003 suggested an increase in impervious surface 

from 6% in 1987 to 14% in 2003. Bexar County experienced maximum increase in 

impervious surface. In watershed scale, forest area decreased from 3545 square kms in 

1987 to 2525 square kms in 2003.    
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3.4 Data 

  

3.4.1 Hydrological Data and Rainfall Data 

 

Daily average stream flow data was obtained for USGS 08183500 and USGS 08186000 

(Figure III-1) present at the midway of the river from USGS website, for environmental 

flow analysis in river. Also, daily stream flow data was obtained for USGS 08188500 

(Figure III-1), the most downstream gauging station in the San Antonio River, from 

USGS website, for freshwater inflow analysis to the estuary. The present study 

characterized the San Antonio River flow regime (seasonal flows in particular) using 64 

years (1940 – 2003) from all the three stations. A digital filter technique (Nathan and 

McMahon, 1990; Lyne and Holick, 1979; Arnold and Allen, 1999; Mau and Winter, 

1997) was used in this study to separate baseflow from total stream flow. This technique 

is objective and reproducible (Arnold and Allen, 1999). The equation of this filter is 

given in equation 1 and 2. 

 

The present study characterized the San Antonio River flow regime (seasonal flows in 

particular) using 64 years (1940 – 2003) of data. Data from daily average flow, and daily 

base flow were aggregated into three distinct seasonal periods (Dec-Mar, Apr-Jul, and 

Aug-Nov), for each year. Additionally, precipitation data was also analyzed using data 

obtained from National Climatic Data Center (NCDC) for the site NCDC COOPID 
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413618, very close to the most downstream gauging station (Figure III-1). This 

precipitation data was used for assessing the rainfall variation during the study period.  

 

 

3.5  Methodology 

 

Continuous wavelet transforms (CWT) was conducted on the flow data obtained for 

various gauging stations spatially located in the watershed. Data from 1940 to 2003 was 

used for gauging stations USGS 08188500 (the most downstream gauging station in the 

river), 08186000, and 08183500. These two gauging stations were located midway of the 

main stem Analysis was conducted on seasonal total flow, seasonal baseflow, seasonal 

runoff, maximum seasonal total flow, maximum seasonal baseflow, maximum seasonal 

runoff, minimum seasonal total flow, minimum seasonal baseflow. Analysis was also 

conducted on rainfall data. Wavelet toolbox in MATLAB was used for the present 

analysis. Each time series was analyzed using a Morlet wavelet function. The wavelet 

power spectrum was given by (WPS) (White et al., 2005). 

                                  ee
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where ω0 is the non-dimensional wave number and η is a time parameter (non-

dimensional, also could represent other metrics such as distance). 

 

The convolution shown in equation 8 can be accomplished at all N based on a discrete 

Fourier transform calculated as: 
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where ω is the angular frequency and 
∧

ψ (sω) is the Fourier transform of ψ (t/s) in the  

 
continuous limit.  
 
 
Wavelet analysis of the hydrologic stream flow data helped in understanding the cyclic 

changes and patterns present in the time series. It will help in linking these cyclic changes 

to the river basin water management to obtain the required estuarine ecological health.   

 
 

3.6 Results and Discussions 

 

3.6.1 Total Seasonal Flow  

 

Analysis of total seasonal environmental flows at USGS gauging station number 

08186000 suggested, maximum flows observed for Dec-Mar (winter season) was about 

244 million cubic meters in 1992; for Apr-Jul (spring/summer season) was about 275 

million cubic meters in 2002; and for Aug-Nov (fall season) was about 273 million cubic 

meters in 1998. Similarly, minimum flow was observed for Dec-Mar was 4 million cubic 

meters in 1954; for Apr-Jul was about 1 million cubic meters in 1971; and for Aug-Nov 

was about 3 million cubic meters in 1954.  
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Similarly, total seasonal environmental flow at USGS gauging station number 08183500 

suggested, maximum flows observed for Dec-Mar was about 796 million cubic meters in 

1992; for Apr-Jul was about 997 million cubic meters in 1987; and for Aug-Nov was 

about 627 million cubic meters in 1973. Likewise, minimum flows observed for Dec-Mar 

was about 27 million cubic meters in 1954; for Apr-Jul was about 19 million cubic meters 

in 1956; and for Aug-Nov was about 20 million cubic meters in 1954. 

 

Total seasonal freshwater inflow at USGS gauging station number 08188500, the most 

downstream stream gauging station, suggested, maximum flow observed for Dec-Mar 

was about 1148 million cubic meters in 1992 (Figure III-2); for Apr-Jul was about 1425 

million cubic meters in 1987; for Aug-Nov was about 1053 million cubic meters in 1967. 

Likewise, minimum flow observed for Dec-Mar was about 34 million cubic meters in 

1954; for Apr-Jul was about 26 million cubic meters in 1956; and for Aug-Nov was about 

27 million cubic meters in 1954.  

 

Morlet continuous wavelet transformations were performed over the signals obtained for 

total seasonal flow. Multi scale temporal variability was observed in the signals. In 

general, analysis of total seasonal flow at all the three gauging stations showed presence 

of dominating features in flows for Apr-Jul at USGS 08186000; Dec-Mar, Apr-Jul, and 

Aug-Nov at USGS 08183500; Dec-Mar, and Apr-Jul at USGS 08188500, the most 

downstream station. Higher frequencies were observed in 10-15 years period (Figures III-

3, 4, and 5) repeated every 10-15 years, suggesting presence of some cyclic phenomena. 



 

 

69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

200

400

600

800

1000

1200

19
40

19
44

19
48

195
2

19
56

19
60

19
64

19
68

19
72

19
76

19
80

19
84

19
88

199
2

19
96

20
00

Year

F
lo

w
 (

in
 m

il
li

o
n

 m
3
)

0

100

200

300

400

500

600

19
40

19
44

19
48

19
52

19
56

19
60

19
64

19
68

19
72

19
76

19
80

19
84

19
88

19
92

19
96

20
00

Year

R
a
in

fa
ll

 (
in

 m
m

)

Total Flow (Dec-Mar)

Total Baseflow (Dec-Mar)

Total Runoff (Dec-Mar)

Total Rainfall (Dec-Mar)

0

200

400

600

800

1000

1200

1400

19
40

19
44

19
48

19
52

195
6

19
60

19
64

196
8

19
72

19
76

19
80

19
84

198
8

19
92

19
96

20
00

Year

F
lo

w
 (

in
 m

il
li

o
n

 m
3
)

0

100

200

300

400

500

600

700

800

19
40

19
44

19
48

19
52

19
56

19
60

19
64

19
68

19
72

19
76

19
80

19
84

19
88

19
92

19
96

20
00

Year

R
a
in

fa
ll

 (
in

 m
m

)

Total Flow (Apr-Jul)

Total Baseflow (Apr-Jul)

Total Runoff (Apr-Jul)

Total Rainfall (Apr-Jul)

0

200

400

600

800

1000

1200

19
40

19
44

194
8

19
52

19
56

19
60

19
64

19
68

19
72

19
76

198
0

19
84

19
88

19
92

199
6

20
00

Year

F
lo

w
 (

in
 m

il
li

o
n

 m
3
)

0

100

200

300

400

500

600

700

800

900

1000

19
40

19
44

19
48

19
52

19
56

19
60

19
64

19
68

19
72

19
76

19
80

19
84

19
88

19
92

19
96

20
00

Year

R
a

in
fa

ll
 (

in
 m

m
)

Total Flow (Aug-Nov)

Total Baseflow (Aug-Nov)

Total Runoff (Aug-Nov)

Total Rainfall (Aug-Nov)

Figure III-2: Total seasonal environmental flow, total baseflow, total runoff, and total 
rainfall magnitudes from 1940-2003 as monitored in USGS gauging station 08188500 
and NCDC 413618 station. 
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Dominating features were also observed in 17-23 years period in all of the seasonal flows, 

at all the gauging stations. These signals were repeated in 20-30 years cycle. We observed 

similar higher frequencies in the time series around 16 years, as observed by Labat et al., 

2004.  

 

3.6.2 Total Seasonal Baseflow 

 

Analysis of total seasonal baseflows at USGS gauging station number 08186000 

suggested, maximum flows observed for Dec-Mar was about 112 million cubic meters in 

1992; for Apr-Jul was about 106 million cubic meters in 2002; and for Aug-Nov was 

about 83 million cubic meters in 1973. Similarly, minimum flow was observed for Dec-

Mar was 3 million cubic meters in 1954; for Apr-Jul was about 1 million cubic meters in 

1971; and for Aug-Nov was about 2 million cubic meters in 1954.  

 

Total seasonal baseflow data at USGS gauging station number 08183500 suggested, 

maximum flows observed for Dec-Mar was about 538 million cubic meters in 1992; for 

Apr-Jul was about 647 million cubic meters in 1992; and for Aug-Nov was about 420 

million cubic meters in 1973. Likewise, minimum seasonal baseflows observed for Dec-

Mar was about 22 million cubic meters in 1954; for Apr-Jul was about 11 million cubic 

meters in 1956; and for Aug-Nov was about 15 million cubic meters in 1954. 
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Similarly, analysis of total seasonal freshwater inflow at USGS gauging station number 

08188500, the most downstream stream gauging station, suggested, maximum seasonal 

baseflow flow observed for Dec-Mar was about 743 million cubic meters in 1992 (Figure 

III-2); for Apr-Jul was about 920 million cubic meters in 1992; for Aug-Nov was about 

604 million cubic meters in 1973. Likewise, minimum seasonal baseflow observed for 

Dec-Mar was about 32 million cubic meters in 1954; for Apr-Jul was about 14 million 

cubic meters in 1956; and for Aug-Nov was about 20 million cubic meters in 1954.  

  

Morlet wavelet analysis on the signals indicated presence of multi scale temporal 

variability in the data series. In general, analysis of total seasonal base flow at all the three 

gauging stations suggested presence of dominating features in flows for Apr-Jul at USGS 

0818600; Dec-Mar, Apr-Jul, and Aug-Nov at USGS 08183500; Dec-Mar, Apr-Jul, and 

Aug-Nov at USGS 08188500, the most downstream station. Higher frequencies were 

observed in 10-15 years period (Figures III-6, 7, and 8) repeated every 10-15 years, 

suggesting presence of some cyclic phenomena. Dominating features were also observed 

in 17-23 years period in all of the seasonal flows, at all the gauging stations.   
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Figure III-3: Scale and period of total seasonal flow for (from top to bottom) Dec-Mar, 
Apr-Jul, and Aug-Nov obtained from USGS 08186000 gauging data. 
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Figure III-4: Scale and period of total seasonal flow for (from top to bottom) Dec-Mar, 
Apr-Jul, and Aug-Nov obtained from USGS 08183500 gauging data. 
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Figure III-5: Scale and period of total seasonal flow for (from top to bottom) Dec-Mar, 
Apr-Jul, and Aug-Nov obtained from USGS 08188500 gauging data. 
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Figure III-6: Scale and period of total seasonal base flow for (from top to bottom) Dec-
Mar, Apr-Jul, and Aug-Nov obtained from USGS 08186000 gauging data. 
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Figure III-7: Scale and period of total seasonal base flow for (from top to bottom) Dec-
Mar, Apr-Jul, and Aug-Nov obtained from USGS 08183500 gauging data. 
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Figure III-8: Scale and period of total seasonal base flow for (from top to bottom) Dec-
Mar, Apr-Jul, and Aug-Nov obtained from USGS 08188500 gauging data. 
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These signals were repeated in 20-30 years cycle. We observed similar higher frequencies 

in the time series around 16 years, as observed by Labat et al., 2004.  

 

3.6.3 Minimum Seasonal Total Flow 

 

Analysis of minimum seasonal total flows at USGS gauging station number 08186000 

indicated, maximum flows observed for Dec-Mar was about 0.17 million cubic meters in 

2003; for Apr-Jul was about 0.19 million cubic meters in 2003; and for Aug-Nov was 

about 0.17 million cubic meters in 2003 as well.  

 

Minimum seasonal total flow data at USGS gauging station number 08183500 suggested, 

maximum flows observed for Dec-Mar was about 1.69 million cubic meters in 1992; for 

Apr-Jul was about 2.24 million cubic meters in 1992; and for Aug-Nov was about 1.40 

million cubic meters in 1973.  

 

Similarly investigation of minimum seasonal total inflow at USGS gauging station 

number 08188500, the most downstream stream gauging station, suggested, maximum of 

minimum seasonal total flow observed for Dec-Mar was about 2.0 million cubic meters in 

1992; for Apr-Jul was about 2.54 million cubic meters in 1992; for Aug-Nov was about 

1.78 million cubic meters in 1973. Likewise, minimum of minimum seasonal total flows 

observed for Dec-Mar was about 0.12 million cubic meters in 1956; for Apr-Jul was 
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about 0.005 million cubic meters in 1956; and for Aug-Nov was about 20 million cubic 

meters in 1956.  

 

Wavelet analysis on the signals indicated presence of multi scale temporal variability in 

the data series. In general, analysis of minimum seasonal total flows at all the three 

gauging stations suggested presence of dominating features in flows for Dec-Mar, Apr-

Jul and Aug-Nov at USGS 0818600; Dec-Mar, Apr-Jul, and Aug-Nov at USGS 

08183500; Dec-Mar, Apr-Jul, and Aug-Nov at USGS 08188500, the most downstream 

station. Higher frequencies were observed in 10-15 years period (Figures III-9, 10, and 

11) repeated every 10-15 years, suggesting presence of some cyclic phenomena. 

Dominating features were also observed in 17-23 years period in all of the seasonal flows, 

at all the gauging stations. These signals were repeated in 20-30 years cycle. There is 

some shifting of higher frequencies at lower scales after 1980 for several variables 

(Figures III-9, 10, and 11).  

 

3.6.4 Minimum Seasonal Baseflow 

 

Analysis of minimum seasonal baseflow revealed similar information as of minimum 

seasonal total flow. Baseflow is a part of total flow.  
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Figure III-9: Scale and period of minimum seasonal total flow for (from top to bottom) 
Dec-Mar, Apr-Jul, and Aug-Nov obtained from USGS 08186000 gauging data. 
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Figure III-10: Scale and period of minimum seasonal total flow for (from top to bottom) 
Dec-Mar, Apr-Jul, and Aug-Nov obtained from USGS 08183500 gauging data. 
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Figure III-11: Scale and period of minimum seasonal total flow for (from top to bottom) 
Dec-Mar, Apr-Jul, and Aug-Nov obtained from USGS 08188500 gauging data. 
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3.6.5 Maximum Seasonal Total Flow  

 

Analysis of maximum seasonal total flows at USGS gauging station number 08186000 

indicated, maximum flows observed for Dec-Mar was about 48 million cubic meters in 

1991; for Apr-Jul was about 50 million cubic meters in 1942; and for Aug-Nov was about 

108 million cubic meters in 1998 as well.  

 

Maximum seasonal total flow data at USGS gauging station number 08183500 suggested, 

maximum flows observed for Dec-Mar was about 44 million cubic meters in 1991; for 

Apr-Jul was about 130 million cubic meters in 2002; and for Aug-Nov was about 114 

million cubic meters in 1998.  

 

Further analysis of maximum seasonal total inflow at USGS gauging station number 

08188500, the most downstream stream gauging station, suggested, maximum of 

maximum seasonal total flow observed for Dec-Mar was about 62 million cubic meters in 

1991; for Apr-Jul was about 149 million cubic meters in 2002; for Aug-Nov was about 

292 million cubic meters in 1967. Likewise, minimum of maximum seasonal total flows 

observed for Dec-Mar was about 0.41 million cubic meters in 1954; for Apr-Jul was 

about 1.63 million cubic meters in 1963; and for Aug-Nov was about 1.44 million cubic 

meters in 1999.  
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Wavelet analysis on the signals suggested presence of multi scale temporal variability in 

the data series. In general, analysis of maximum seasonal total flows at all the three 

gauging stations suggested presence of dominating features in flows for Apr-Jul at USGS 

0818600; Apr-Jul at USGS 08183500. In the above variables, higher frequencies were 

observed in 10-15 years period (Figures III-12, 13, and 14) repeated every 10-15 years, 

suggesting presence of some cyclic phenomena. Dominating features were also observed 

in 17-23 years period in all of the seasonal flows, at all the gauging stations. These 

signals were repeated in 20-30 years cycle.  

 

3.6.6 Maximum Seasonal Baseflow 

 

Analysis of maximum seasonal base flows at USGS gauging station number 08186000 

suggested, maximum flows observed for Dec-Mar was about 24 million cubic meters in 

1958; for Apr-Jul was about 12 million cubic meters in 2002; and for Aug-Nov was about 

14 million cubic meters in 1998 as well.  

 

Analysis of maximum seasonal base flows at USGS gauging station number 08183500 

suggested, maximum flows observed for Dec-Mar was about 16 million cubic meters in 

1986; for Apr-Jul was about 38 million cubic meters in 2002; and for Aug-Nov was about 

19 million cubic meters in 1998.  
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Figure III-12: Scale and period of maximum seasonal total flow for (from top to bottom) 
Dec-Mar, Apr-Jul, and Aug-Nov obtained from USGS 08186000 gauging data. 
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Figure III-13: Scale and period of maximum seasonal total flow for (from top to bottom) 
Dec-Mar, Apr-Jul, and Aug-Nov obtained from USGS 08183500 gauging data. 
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Figure III-14: Scale and period of maximum seasonal total flow for (from top to bottom) 
Dec-Mar, Apr-Jul, and Aug-Nov obtained from USGS 08188500 gauging data. 
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Analysis of maximum seasonal base flows at USGS gauging station number 08188500, 

the most downstream stream gauging station, suggested, maximum of maximum seasonal 

base flow observed for Dec-Mar was about 31 million cubic meters in 1958; for Apr-Jul 

was about 46 million cubic meters in 2002; for Aug-Nov was about 48 million cubic 

meters in 1967. Likewise, minimum of maximum seasonal base flows observed for Dec-

Mar was about 0.07 million cubic meters in 1954; for Apr-Jul was about 0.49 million 

cubic meters in 1967; and for Aug-Nov was about 0.35 million cubic meters in 1954.  

 

Wavelet analysis on the signals suggested presence of multi scale temporal variability in 

the data series. In general, analysis of maximum seasonal base flows at all the three 

gauging stations suggested presence of dominating features in flows for Apr-Jul at USGS 

0818600; Apr-Jul at USGS 08188500. In the above variables, higher frequencies were 

observed in 10-15 years period (Figures III-15, 16, and 17) repeated every 10-15 years, 

suggesting presence of some cyclic phenomena. Dominating features were also observed 

in 17-23 years period in all of the seasonal flows, at all the gauging stations. These 

signals were repeated in 20-30 years cycle. Some higher frequencies were also observed 

in non repetitive cycle in Dec-Mar flows for all the three stations; however they suggested 

presence of multi scale temporal variability.  
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Figure III-15: Scale and period of maximum seasonal baseflow for (from top to bottom) 
Dec-Mar, Apr-Jul, and Aug-Nov obtained from USGS 08186000 gauging data. 
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Figure III-16: Scale and period of maximum seasonal baseflow for (from top to bottom) 
Dec-Mar, Apr-Jul, and Aug-Nov obtained from USGS 08183500 gauging data. 
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Figure III-17: Scale and period of maximum seasonal baseflow for (from top to bottom) 
Dec-Mar, Apr-Jul, and Aug-Nov obtained from USGS 08188500 gauging data. 
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3.7 Conclusion 

 

Results obtained from this study suggested presence of dominant features at a larger scale 

of 17-23 years in most of the environmental flow, with 20-30 years bi-decadal 

oscillations. Larger scales beyond 16 years in hydroclimatic variables have been reported 

in past studies (Coulibay and Burn, 2005). Dominant features were also observed in 10-

15 years period in most of hydrologic variables, at all the three sites, with repetitive cycle 

in decadal scale.  

 

Use of continuous wavelet techniques on hydrologic variables particularly environmental 

flows can help in understanding various ecological processes in rivers and estuaries at 

different scales. This technique will allow us to understand the cyclic phenomena that 

correspond to the oscillations of the environmental flow signals. Specific ecological 

processes exist in the San Antonio Guadalupe Estuary region in which this approach 

would be a useful component for ecological analysis or experiment. It will be interesting 

to see the existence of ecological variables in larger scale of 17-23 years (as dominant in 

most of the hydroclimatic variables) versus the variables in smaller scales of 1-5 yrs. 

Since, this study suggest the presence of cyclic events of larger frequencies in 20-30 

years, it will be interesting to observe the ecological cycles at this scale as well. More 

importantly, river basin management can be performed likewise.  
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CHAPTER IV 

PARAMETER ESTIMATION FOR CALIBRATION AND VALIDATION OF HSPF 

USING AN EVOLUTIONARY ALGORITHM AND INVERSE MODELING 

 

4.1 Overview 

 

Parameter estimation is an essential process in the calibration and validation of   

hydrologic models. This study explores the possibility of using a genetic algorithm (GA) 

to estimate the parameters for the Hydrologic Simulation Program in FORTRAN (HSPF) 

a model frequently used in hydrology and water quality modeling. The estimated 

parameters will be used to calibrate a model to optimize freshwater inflows from the San 

Antonio River Watershed to the San Antonio-Guadalupe estuary along the Gulf Coast of 

Texas. GA is a search algorithm based on natural selection and the mechanics of genetic 

evolution in pursuit of the ideas of adaptation and its use is a relatively new methodology 

for estimating the parameters in hydrologic models. GA is robust and has been proven 

theoretically and empirically to find the optimal or near optimal solution. A GA is used to 

search through combinations of parameters to achieve the set that is “best” in terms of 

satisfying an objective function. The objective function was formulated to minimize the 

mean absolute error between corresponding simulated and observed freshwater inflows. 

The calibration process was achieved through the following steps:  (1) HSPF parameters 

are coded as “genes” in the chromosomes.  (2) The population of the chromosomes is 
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initialized.  (3) The fitness of each chromosome is evaluated by using the decoded 

parameter values as inputs to HSPF.  (4) The RMSE between the observed and simulated 

streamflow is calculated. (5) Chromosomes undergo a selection process where the fittest 

“survive” and the weakest “die”. (6) Surviving chromosomes undergo reproduction by the 

process of crossover.  (7) The generated offspring are subjected to mutation.  (8)  The 

process repeats from step 3 until the optimum solution is achieved. The parameters coded 

as genes for calibration were the lower zone nominal storage, soil infiltration capacity 

index, ground water recession coefficient, upper zone nominal storage, fraction of ground 

water inflow to deep recharge, lower zone ET parameter, and interflow inflow parameter. 

Simulated results were compared using three indices, Nash-Sutcliffe coefficient, mean 

absolute error, and root means square error. The simulated results were also compared in 

wavelet domain to assess the scale and localization of the signals. Obtained parameter 

values were well within the range cited in literature. Overall Nash-Sutcliffe coefficients in 

all the simulations were over 0.5, suggesting the simulated flows to be in good agreement 

with observed flows. This study suggested GA can be coupled with HSPF for model 

calibration. However, it is computationally intensive. The present method is useful 

because one can automate the calibration processes and overcome numerous simulation 

processes such as in HSPEXP.    
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4.2 Introduction 

 

Hydrologic Simulation Program in FORTRAN (HSPF) is a watershed scale hydrologic 

model used extensively by researchers and water resources professionals in modeling 

watershed processes (Im et al., 2004) and investigating water resources problems. HSPF 

is a continuous, lumped parameter model software that simulates hydrologic and 

associated water quality processes on pervious and impervious land surfaces, in streams, 

and in reservoirs (Bicknell et al., 1996). The model has three modules: pervious land 

(PERLND), impervious land (IMPLND), and reaches (RCHES). Each of these modules 

requires several parameters to simulate hydrology and water quality.  

 

Before these models can be used for simulating real world scenarios, they must be 

calibrated for conditions in the watershed of interest. Since hydrology drives other 

watershed processes such as water quality, model calibration is an important step. Model 

calibration is a parameter optimization process, which has traditionally been conducted by 

trial-and-error methods, in a wide range of parameter search space. The trial-and-error 

method can further be refined by performing sensitivity analysis of the parameters that 

control the model objective functions e.g., stream flow, water quality. In this process, the 

user adjusts the parameter, starting with the most sensitive parameter and proceeding to 

the next sensitive parameter, until the simulated output adequately reflects observed data 

for an objective function of interest. 
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Calibrating multiple parameters simultaneously from the parameter search space (rather 

than looking at one parameter at a time) may be achieved by using several optimization 

techniques (Nicklow, 2000). Optimization processes are search processes, where the 

algorithm searches for the best parameters for the desired outcome. In HSPF, calibration 

is usually accomplished using the HSPF-Expert System (HSPExp) (Lumb et al., 1994). 

This system allows users to edit the *uci file (which is the input file for HSPF, and has all 

the information that a model needs to run HSPF, plot the results and compare with 

observed values. Error statistics are computed and suggestions are made on which 

parameters to change to improve calibration. HSPExp uses over 35 rules and 80 

conditions for calibration. The rules are divided into four phases-- annual volumes, low 

flows, storm flows, and seasonal flows. Artificial Intelligence (AI) is used to get an 

estimate of initial values for model parameters.  This again is a sort of trial-and-error 

method, where the modeler spends lot of time in repeating simulations; however, it 

provides valuable advice to improve the calibration.  

 

In addition to AI, there are several optimization algorithms including direct search, 

simulated annealing, dynamic programming, greedy algorithm, genetic algorithm, and 

scattered search, to address parameter search in a large space (Srivastava et al., 2002). A 

Genetic algorithm (GA) is one such method widely used by researchers for optimization 

problems (Holland, 1975; Ines and Droogers, 2002; Srivastava et al., 2002; Liong et al., 

1996), including those in hydrologic models. GA is a search algorithm and also an 
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evolutionary algorithm mathematically represented, that mimic the processes of natural 

selection and evolution (Goldberg, 1989; Carrol, 1997; Reeves, 1993).  

 

In GA, the parameters that control the outcome of the optimization are mathematically 

termed as decision variables. Combinations of decision variables form a population. Each 

individual in the population is a “chromosome”. Chromosomes are composed of bits 

termed as “genes”, which are the decision variables. Therefore, each chromosome 

contains all possible information of the decision variables pertinent to the problem 

domain, i.e. a single chromosome is one possible combination fo values for all the 

parameters used in the calibration. Traditionally in GA applications, the genes are the 

values of the parameters (decision variables) that are expressed in binary code (0s and 1s) 

(Ines and Droogers, 2002; Goldberg, 1989); however other encodings are also possible.  

 

As an example of a binary GA application, let us consider the HSPF parameter Ground 

Water Recession Coefficient (AGWRC) which has a range of 0.85 to 0.99. AGWRC 

would first be discretized into finite lengths based on the accuracy required in the 

optimization, 0.01 for example. Once the number of binary bits is designed in a 

chromosome, it can be converted to decimal value with base 10. Then the decimal value 

can be used to get the original value (between max and min values) of the binary string. 

The above description is for one parameter. For several parameters that control the 

output, each parameter is coded in binary and then combined to form a single 

chromosome that has the information about the decision variables.  
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GAs are robust and can thoroughly and efficiently scan the search space for the optimal 

solution of the combinatorial problem. They can quickly detect the area of optimal 

solution or near optimal space. Sometime it takes several iterations for a GA to find an 

optimal solution, which depends on the objective function framed for the problem. The 

objective function determines the “fitness” of the chromosome. The fitness function 

serves as an environment for the existence of the population in each generation. The fitter 

individuals that survived the test of the environment tend to reproduce and produce 

offspring that are expected to express better genetic traits in the next generation. Each 

chromosome is evaluated for fitness (as described by the fitness function). Depending on 

the fitness, different individuals are “mated” to produce progenies for the next generation 

(Goldberg, 1989). Mating is a process where either of a pair of individuals brought 

together for breeding. For example in case of parameters, the chromosomes (decision 

variables) are brought together to exchange information between them. During mating it 

is assumed that, fitter individuals have higher probability of producing more and better 

offsprings. GAs undergo various biological processes such as crossover, mutation, and 

elitism.  

 

Crossover is a biological process in which there is exchange of genetic material from both 

the parents. It improves the genetic traits in future generations; therefore, it adds variety 

to the pool. GAs mimic these biological process as well. Since, crossover provides better 

genetic trait in each successive generation, it helps the algorithm to search near optimal 

solution space, with each successive generation. For example in case of parameters, 
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values of the parameters between the individuals (chromosomes) are randomly exchanged 

during crossover. Crossovers are of two types: single point crossover, and uniform 

crossover. In single-point crossover the position of the chromosome is randomly selected 

at some point in the chromosome length, whereas in uniform crossover individual bits in 

the string are compared between two parents. The bits are exchanged with 50% fixed 

probability.  

 

In addition to crossover, GAs mimics the biological process of mutation. Mutation 

introduces diversity, by randomly infusing new genetic materials into the population. For 

example in case of parameters, values of the parameters are randomly altered in the 

chromosome, i.e. random alteration of parameters infuses new genetic material. There are 

two basic mutation approaches: jump mutation and creep mutation. In jump mutation 

each bit in the string is allowed to mutate based on some probability, where as creep 

mutation explores the immediate vicinity of the current population in the solution space. 

Elitism is another feature where the fittest individual from the population is transferred to 

the next generation.  

 

Crossover and mutation are controlled by their probability value. Crossover and mutation 

happens only when the random number is less than or equal to probability of crossover, 

or to probability of mutation, respectively. If this does not happen then the parent enters 

into the next generation. The biological processes of selection, crossover, and mutation 

are repeated for several generations until the best possible solution is achieved. 



 

 

100 

 

Below is a brief description on the complete processes of GA. In this process the fittest 

individual (string) survives by randomly exchanging information and arriving at the 

solution (Goldberg, 1989; Holland, 1975; Ines and Honda, 2005). The parameters are 

coded as a set of binary sub-strings to form a chromosome; further forming population. A 

binary GA was implemented for the present study. The bits (0s and 1s) arrangement in 

the chromosome is a possible combination for a possible solution of the problem (Figure 

IV-1) domain.    

 

The required number of binary bits for the parameter is given by: 
 

                                          
δ

minmax2
XXL −

=                                                                   (10) 

 

              and                     
2ln

ln)ln( minmax δ−−
=

XX
L                                                       (11) 

 
where Xmax is maximum value of the parameter (e.g., 0.99); Xmin is the minimum value 

of the parameter (e.g., 0.85); δ is accuracy (e.g., 0.01); and L is the length of the binary 

string. By calculation, value of L was determined, say 7. The number of discrete 

possibilities for the parameter X will be then be 128 (= 27 = 2L). Now describing the 

above method in an example: say a binary representation for X = 0100110 (since L = 7) is 

randomly obtained.  The decimal value of X with base 10 then, is:   

 

 38  0  2  4  0  0  32  0  0x2  1x2  1x2  0x2  0x2  1x2  0x2  0100110 0123456 =++++++=++++++=
                                                                                                                                           
                                                                                                                                         (12)   
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min L

XX
BXX                                                          (14)  

 
where X is the value of the string; Xmin is lower bound of X; Xmax is upper bound of X; 

B is the decimal value of the binary string of X with base 10; and L is the length of the 

binary string.  

 

The processes of calibration starts with an initial population (called chromosomes). The 

generated population is then subjected to evaluation based on the fitness function. After 

this, they undergo a process called selection to form a mating pool. The fitter population 

survives and the weaker dies. The survivors play a vital role in generating new offsprings 

for the next generation. The selected individuals (chromosomes) randomly unite and 

exchange hidden information (genetic information) through crossover to produce 

offspring. In order to randomly induce new genetic materials in the next generation, the 

new set of chromosome undergoes mutation.  
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                                                                  Chromosome 
 
0101001001   1101111110   1100010110   000000001   100010010   000011000   
0010010   1010001   0000110   001010111   0001011101   0010110010   1110101101     
 

Figure IV-1: A binary representation of chromosome in GA for optimal parameter 
estimation in hydrologic calibration. 

 

 

 

 

 

 

 

 

 

 

 

Most of the earlier studies on use of GA in optimization has addressed land use planning 

(Stewart et al., 2004), water management practices (Ines and Honda, 2005), best 



 

 

103 

management practices (Srivastava et al., 2002) and automatic calibration of distributed 

watershed models (Muleta and Nicklow, 2005). Past studies have not addressed 

parameter optimization in HSPF for surface water quantity. Therefore, the overall 

objective of this study is to assess the plausibility of using GA for automatic calibration 

of HSPF. 

 

The present study has used modified-µGA (Carroll, 1997) for present problem domain. It 

is different than the µGA in a sense that it introduces creep mutation to randomly alter the 

sub-strings of a chromosome. Higher restarting criterion is set to increase the rate of 

population restart. During restart, the elite chromosome is preserved and the rest of the 

population is randomly generated (Ines and Honda, 2005; Ines and Droogers, 2002; and 

Carroll, 1997). This study used a binary tournament selection with shuffling. In this 

method, the position of the chromosomes in the population is randomly shuffled. Like 

chromosome at position A is shuffled with those at position B and vice versa. By 

definition, binary tournament proceeds by selecting two chromosomes from the shuffled 

population. The two selected chromosomes compete for a position in the mating pool 

according to their fitness. The chromosome with higher fitness value is selected and it 

joins the mating pool. The present study used creep mutation. It is a kind of mutation that 

occurs at the real space (base 10). The binary sub-strings are mutated between their 

minimum and maximum values. This is different than jump mutation because lesser 

perturbation is introduced to the micro-population. 
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4.3 Methodology  

 

4.3.1 Study Area 

 

The San Antonio River Basin encompasses 10,826 km2 (Figure IV-2) from the 

headwaters of the Medina River to the point at which the San Antonio River joins with 

the Guadalupe River before emptying into the Gulf of Mexico, approximately 390 river 

km (Figure IV-2). This study area is located between latitude 29.91° N and 28.51° N and 

longitude 99.57° W and 97.01° W. The watershed drains through some portion of 8 

counties: Kerr, Kendall, Comal, Guadalupe, Dewitt, Victoria, Refugio, and Medina 

Counties (Figure IV-2). Major tributaries to the San Antonio River are Leon Creek, 

Salado Creek, Cibolo Creek, and Medina Creek. Population in this river basin has 

increased in the last 30 years primarily due to the growth of the City of San Antonio. It is 

predicted that the population around the city of San Antonio by 2020 will be 

approximately 2.2 million (Texas State Data Center, 2005; Nivin and Perez, 2006). To the 

northwest of the city, the terrain slopes to the Edwards Plateau and to the southeast it 

slopes to the Gulf Coastal Plains. Average slope of this watershed is about 1.38 degrees. 

Soils are blackland clay and silty loam on the Plains and thin limestone soils on the 

Edwards Plateau. Analysis of 2003 processed LANDSAT imageries (Figure IV-2)  



 

 

105 

 

Figure IV-2: San Antonio River watershed with 2003 land use, gauging stations, weather 
stations, and various counties in the watershed. 
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suggested approximately 60% of the watershed is dominated by pasture/rangeland, 

followed by 24% forest, 14% urban impervious/bare, and 2% water. Historically, this 

region has experienced an average annual rainfall of about 890 mm. Edwards Aquifer 

which is a karst system, is the sole source of water supply to the City of San Antonio 

(both industrial and domestic uses) and near by areas. This aquifer crosses the watershed 

about half way from the headwaters of the river.     

 

4.3.2 Model Description 

 

BASINS was developed by the U.S. EPA’s Office of Water to support environmental and 

ecological studies (USEPA, 2001). BASINS is interfaced through an ARCVIEW 

framework (USEPA, 2001). It is composed of databases (e.g., databases for soil, weather 

stations, and point sources), assessment tools such as PLOAD (pollutant load), an in-

stream water quality model such as QUAL2E, a watershed delineation tool, and several 

watershed scale models such as HSPF and SWAT. BASINS software is used to pre-

process the data required to run the respective model. It converts the input data into a 

format that is required by the watershed model.  

 

In HSPF, modules are divided into pervious land (PERLND), impervious land 

(IMPLND), and reaches (RCHRES). Each land segment is considered a lumped 

catchment. However, spatial variability can be mimicked by dividing the river basin into 

many hydrologically homogeneous land segments. Runoff is simulated from each land 
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segment independently, using meteorological input and watershed parameters. Simulation 

is based on an hourly time step. The simulation is based on mass balance approach (Paul 

et al., 2004). In the IMPLND module, water is partitioned as overland flow, evaporation, 

or surface detention storage. In the PERLND module, precipitation in form of water is 

divided into direct runoff, direct evaporation, surface storage followed by evaporation, 

surface storage followed by interflow, and infiltration to the subsurface area. The 

subsurface is divided into upper zone, lower zone and deep groundwater zone 

compartments. Water received by the subsurface zone is either stored, evaporated or 

flows to the subsequent lower zone. Water in groundwater zone is assumed to be lost 

from the system.  

 

Based on literature, various parameters control water balance (hydrology) in HSPF 

(Moore et al., 1988; Laroche et al., 1996, Im et al., 2004; USEPA 2000) (Table IV-1). 

The parameters are lower zone nominal storage (LZSN), soil infiltration capacity index 

(INFILT), ground water recession coefficient (AGWRC), upper zone nominal storage 

(UZSN), fraction of ground water inflow to deep recharge (DEEPFR), lower zone ET 

parameter (LZETP), and interflow inflow parameter (INTFW). LZSN is related to 

precipitation pattern and soil characteristics in the area; INFILT is the parameter that 

effectively controls the overall separation of the available moisture from precipitation 

(after interception) into surface, subsurface flow and storage, and it is primarily a function 

of soil characteristics where the value are related to SCS hydrologic soil groups; 

AGWRC, is the ratio of current groundwater discharge to that from 24 hours earlier;  
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Table IV-1: Various model parameter that control water quantity in HSPF, their length in 
the chromosome, and accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters 

 

Description 

Length (L) of 

the Parameter 

Accuracy 

(δ) 

LZSN Lower Zone Nominal Storage (in) 10 0.01 

INFILT Soil Infiltration Capacity Index (in/hr) 9 0.001 

AGWRC Ground Water Recession Coefficient (per day) 7 0.001 

DEEPFR Fraction of Ground Water Inflow to Deep Recharge 9 0.001 

UZSN Upper Zone Nominal Storage (in) 10 0.001 

INTFW Interflow Inflow Parameter 10 0.01 

LZETP Lower Zone ET Parameter 10 0.001 
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UZSN is related to land surface characteristics, topography, and LZSN; DEEPFR is the 

fraction of infiltrating water which is lost to deep aquifers; LZETP is the index to lower 

zone evapotranspiration; INTFW is the coefficient that determines the amount of water 

which enters the ground from surface detention storage and becomes interflow. 

 

4.3.3 Data Description 

 

The San Antonio River watershed is located within the Hydrologic Cataloging 

Boundaries (HUC) 12100301, 12100302, 12100303, and 12100304. Soils data from the 

STATSGO soils database and topography data to create a digital elevation model (DEM) 

for above mentioned HUC were obtained from EPA’s BASINS web site (USEPA, 2001). 

Reach Network file Version 3 a comprehensive set of digital spatial data that contains 

information about surface water features such as lakes, ponds, streams, rivers, and wells 

was also obtained from BASINS. Recent land use land cover data (2003) sets were 

processed using ENVI and imported to BASINS. LANDSAT imageries were obtained 

from US Geological Survey. ENVI 4.2 was used to processes the images and ARCGIS 

was used for geospatial analysis.    

 

San Antonio watershed was subdivided into 44 hydrologically connected sub-watersheds 

using the DEMs and the Automatic Watershed Delineation tool available with BASINS 

3.0. Factors like land use, slope, soil, and climate were considered during watershed 

delineation. Too many sub-watersheds in HSPF allow too many operations, thereby 
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increases computing time. Also HSPF can only handle about 200 operations. Too many 

sub-watersheds provide opportunity for too many operations; resulting malfunctioning of 

the model. Therefore, selecting 44 sub-watersheds was the optimal solution. Four weather 

stations National Climatic Data Center (NCDC) COOPID 418845, 417945, 417836, and 

413618 were selected to represent weather data for HSPF simulation. Weather stations 

were selected on the basis of availability of long term hourly data (hourly precipitation, 

and daily evapotranspiration) (Figure IV-2) from 1996-2005. The necessary 

meteorological data to run HSPF is stored in watershed data management (WDM) file. 

For the present study HSPF needed hourly precipitation and hourly potential evapo-

transpiration. These two weather variables control water quantity. WDMUtil tool was 

used to arrange the data in model readable format (USEPA, 2001). It is software that 

helps user in importing data in the required format, using several available scripts. The 

Thiessen polygon method was used to distribute rainfall across the watershed (Figure IV-

3). Daily evapo-transpiration was disaggregated into hourly evapotranspiration using 

WDMUtil tool.  

 

Historical daily mean stream flow data for USGS gauging station 08188500 was obtained 

from the USGS web site (USGS, 2006) for the simulation period (2000-2005). This 

station is the outlet of the San Antonio Watershed. This stream flow data was used in 

model calibration and validation.  
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Figure IV-3: San Antonio River watershed with weather stations and the sub-basins 
associated with the weather stations. 
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4.3.4 Operation of Genetic Algorithms 

 

The present study loosely coupled HSPF and GA (Figure IV-4). Seven different 

parameters were coded in binary form and the population was initialized. The binary 

values were decoded to real values in the next step, in order to provide input values to 

HSPF. HSPF performed simulation and the simulation result was evaluated using the 

fitness function. If the optimum value for the parameter was not reached, then genetic 

operators conducted their functions. The loop continued until the optimal parameters were 

obtained.  

 

4.3.5 Model Calibration Using GA  

 

Seven parameters were identified as having the most influence on predicting water 

quantity in HSPF, LZSN, INFILT, AGWRC, UZSN, DEEPFR, LZETP, and INTFW 

(Table IV-1) (Im et al., 2004; Engelmann et al., 2002; Paul et al., 2004). The ranges for 

each parameter for the San Antonio River watershed are given in table IV-1. These 

parameters were coded to form chromosomes. The length (L) of each parameter with 

accuracy (δ) was determined using equation 2. Table IV-1 shows the value of L and δ for 

each parameter. The total length of the chromosome was 117. Ten individuals were crated 

in each generation. Two thousand generations were used for parameter estimation (Ines 

and Honda, 2005). The total simulation time was approximately one million seconds.  
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                                                                     Yes 

 

 

Figure IV-4: A figure showing GA linked with HSPF (Modified from Ines and Droogers, 
2002). 
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The model simulations were executed for daily average flow (cms) from 01/01/2000 to 

12/31/2004. The model calibration period was limited to the daily average flow from 

01/01/2002 to 12/31/2004. The first two years of simulation were used for “Warming up”. 

The simulated values were matched to the observed values in a method know as inverse 

modeling (Ines and Droogers, 2002). The mean absolute error (MAE) and Nash-Sutcliffe 

model efficiency (E) were used as the objective functions in GA-HSPF. MAE is given by  

                                            
n

SO

MAE

n

i

ii∑ −

=

)(

                                                         (15) 

 
 

where Oi is observed daily flow for the ith day; Si is the simulated daily flows for the ith 

day and n is the total number of days. The closer MAE is to zero, the better is simulation 

results (Weglarczyk, 1998; Legates and McCabe, 1999).  

 

Nash-Sutcliffe model efficiency (E) (Nash and Sutcliffe, 1970 is a dimensionless 

indicator that is widely used in model verification. A positive value of E exhibits an 

acceptable fit between the observed and simulated values and therefore the model can be 

considered to be a better predictor of the system (Paul et al., 2004). E value above 0.5 is 

considered good agreement between Oi and Si, as documented in literature (Santhi et al., 

2001). E is calculated as:  
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where, the parameters are described above, and O’ is the mean of observed daily flow.  

 

The calibrated model output (simulated daily flow) was also compared with observed 

flow in wavelet domain (Kumar and Foufoula-Georgiou, 1997, Torrence and Compo, 

1998). For this purpose Morlet Wavelet was selected (Anctil and Coulibaly, 2004). 

Analysis of signals, such as flow in wavelet domain helps in identifying dormant 

frequencies in the time series and the location of such frequencies (present in scale) 

(Sahoo and Smith, 2007).  

 

4.3.6 Model Validation 

 

Model was validated to assess if the parameters value represent watershed conditions. 

Validation of the model was conducted by using observed daily stream flow data for the 

years 2001 and 2005. Indices such as mean absolute error and Nash-Sutcliffe coefficient 

was used for model validation.  
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4.4 Results and Discussions       

 

Hydrologic calibration was reached after 2000 generations. However, after only 250 

generations the fitness no longer increased indicating optimal parameters had been found 

(Figure IV-5). The optimal parameters values were then obtained. Initial, final and 

literature values for the seven parameters are shown in Table IV-2. The GA generated 

parameter values are in line with literature and possible parameter values outlined in EPA 

BASINS Technical Note 6. In the present study DEEPFR value obtained from HSPF-GA 

linked model is 0.7. This value is not within the parameter values described in EPA 

BASINS Technical Note 6. However, Paul et al., 2004 has used 0.7 (DEEPFR value) in 

similar studies in the same region. It was expected to have a higher DEEPFR value 

because of presence of Edwards Aquifer, a karst system (presence of limestone) that 

crosses in the middle part of the region. The parameter DEEPFR, is the fraction of 

infiltrating water which is lost to deep aquifers. Presence of such karst system in the 

region tends to loose water to deep aquifers.     

 

The calibration results suggested that GA was able to simulate daily flow. Visual 

observation and comparison of observed and simulated flow (Figure IV-6) suggested that 

GA-HSPF was able to simulate most of the flows; however, it was not able to match the 

high flow events perfectly. This could possibly be attributed to the spatial variability of 

rainfall that the weather stations used for this study, were unable to capture. The model  
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Figure IV-5: Graph showing generations versus best fitness that suggest model 
improvement over time. 
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Table IV-2: Various parameter values obtained from GA-HSPF, and their comparison with literature. 

 

Parameters 

 

Description 
Initial 

Value 

Final 

Value 

Moore 

et al. 

(1988) 

Chew 

et al. 

(1991) 

Laroche 

et al. 

(1996) 

Engelmann 

et al. 

(2002) 

Im  

et al.  

(2004) 

LZSN 
Lower Zone Nominal Storage  

(in) 
6.5-6.0 14.0-14.9 4.9 5.0 14.2 5.0 4.3-5.8 

INFILT 
Soil Infiltration Capacity Index  

(in/hr) 
0.16 0.49-0.50 0.004-0.02 0.05-0.17 0.23 0.04 0.047-0.075 

AGWRC 
Ground Water Recession Coefficient 

(per day) 
0.98 0.85-0.98 0.98 0.98 0.99 0.99 0.88-0.91 

UZSN 
Upper Zone Nominal Storage  

(in) 
1.12 2.0 0.2 0.01-0.06 0.76 0.7 0.35-1.0 

DEEPFR 
Fraction of Ground Water Inflow to 

Deep Recharge 
0.1 0.7 - - - 0.18 0.05-0.45 

LZETP Lower Zone ET Parameter 0.1 0.8 0.3-0.55 0.2-0.6 0-0.8 0.42 0.2-0.7 

INTFW Interflow Inflow Parameter 0.75 1.0 1.0 0.75-1 9.83 0.5 1-1.7 
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Figure IV-6: From top to bottom: Average observed daily and average simulated daily 
flow; average observed monthly and average simulated monthly flow; average observed 
seasonal and average simulated seasonal flow; average observed yearly and average 
simulated year. 
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was calibrated for daily flow; however, average monthly flow, average seasonal flow, 

and average yearly flow was used to verify the accuracy of the model.  

 

Three indices were used to verify the results of the simulation. The model efficiency (E), 

MAE and RMSE for average daily observed flow and average daily simulated flow was 

found to be 0.52, 25.81 m3/s, and 82.19 m3/s, respectively. E, MAE, and RMSE for 

average monthly observed and average daily simulated flow for the calibration period 

was found to be 0.92, 17.73 m3/s, and 34.03 m3/s, respectively (Figure IV-6). Similarly, 

E, MAE, and RMSE for average seasonal observed flow and average seasonal simulated 

flow was found to be 0.72, 12.44 m3/s, and 17.40 m3/s, respectively (Figure IV-6). 

Likewise estimated E, MAE, and RMSE for average yearly observed and average yearly 

simulated was found to be 0.72, 9.72 m3/s, and 11.54 m3/s, respectively (Figure IV-6). 

Since, overall E in all the cases (daily flow, monthly flow, seasonal flow, and yearly 

flow) was above 0.5, the simulated flows are considered to be in good agreement with 

observed stream flow (Santhi et al., 2001; Paul et al., 2004). In all these cases (average 

monthly, average seasonally, and average yearly) of flows, GA was not able to simulate 

the high flows. The possible reason could be attributed to climatic forcings that were not 

accounted for, by the model.  

 

The daily simulated flow (2002-2004) was compared with daily observed flow (2002-

2004) in wavelet domain (Figure IV-7). Results suggested that similar frequencies were 

present in lower scale (1-53 days). Highest frequencies were present in all the scales in  
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Figure IV-7: From top to bottom: Observed daily flow and simulated daily flow (2002-
2004) in wavelet domain. 
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both simulated and observed flow. Highest frequencies were also present in 183-235 

days scale in both the observed and simulated flows. Thus, wavelet analysis suggested 

that the model can provide reasonable information about the flow frequencies and 

location of the flow frequencies in the time series. Detail analysis of coefficients in all 

the scales present in both observed and simulated signals (flows) will further strengthen 

the model.   

    

The calibrated model was validated for the year 2001 and 2005. All 12 months were 

used for 2001 validation year; however, only 11 months (January through November) 

were used for validation in 2005. The required data such as hourly precipitation, and 

hourly evapotranspiration was only available until November 2005, for the weather 

stations used in this study. Results were validated by simulating daily flows for the two 

years. Further, average monthly flows were also estimated for the two years. E, MAE, 

and RMSE for observed and simulated daily flow for the year 2001 was found to be 

0.58, 20.73 m3/s, and 50.91 m3/s, respectively (Figure IV-8). Similarly, E, MAE, and 

RMSE for observed and simulated monthly flow for the year 2001 was found to be 0.71, 

15.30 m3/s, and 22.95 m3/s, respectively (Figure IV-8). E, MAE, and RMSE for 

observed and simulated daily flow for the year 2005 was found to be 0.61, 6.17 m3/s, 

and 11.51 m3/s, respectively (Figure IV-9). Similarly, E, MAE, and RMSE for observed 

and simulated monthly flow for the year 2005 was found to be 0.90, 3.57 m3/s, and 4.66 

m3/s, respectively (Figure IV-9). Four weather stations were used for the current study, 

since the weather data required by the model was not available at any other stations; this  
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Figure  IV-8: From top to bottom: Average observed daily and average simulated daily 
flow; average observed monthly and average simulated monthly flow for the validation 
year 2001, at the watershed outlet. 
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Figure IV-9: From top to bottom: Average observed daily and average simulated daily 
flow; average observed monthly and average simulated monthly flow for the validation 
year 2005, at the watershed outlet. 
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might have contributed significantly to the differences between the simulated stream 

flow and the observed flow.        

 

The daily simulated flow (2001) was compared with daily observed flow (2001) in 

wavelet domain (Figure IV-10) and also to 2005 (Figure IV-11). Results suggested that 

similar frequencies were present in lower scale (1-22 days). Highest frequencies were 

present in all the scales in both simulated and observed flow at about 250 day. 

Comparison of daily flow and simulated flow for the year 2005 in wavelet domain 

revealed similar coloration at all scale. Similar frequencies were observed in lower scale 

(1-15 days). Detail analysis of coefficients in all the scales present in both observed and 

simulated signals (flows) will further strengthen the model.   

 

4.5 Conclusion 

 

Earlier study (Paul et al., 2004) have used HSPEXP for calibration, where the model is 

run several times to get appropriate parameter values. However, in this research the 

optimal parameters were obtained from the search space, thus reducing the tedious 

processes of time consuming simulation. The present study is computationally intensive, 

since GA uses a wide search space. However, this is efficient because it automated the 

whole calibration process. GA has been successfully implemented in various 

optimization problems. In the present problem, GA effectively searched the parameter 

values for hydrologic calibration. The parameter values were well within the values  
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Figure IV-10: From top to bottom: Observed daily flow and simulated daily flow (2001) 
in wavelet domain. 
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Figure IV-11: From top to bottom: Observed daily flow and simulated daily flow (2005) 
in wavelet domain. 
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reported in literature and BASINS TECHNICAL Note 6. GA coupled with HSPF was 

not able to simulate some of the peak flows. We attributed this, to lack of adequate 

weather stations in the watershed; for which the entire spatial variability in climatic 

forcings were not captured. Further, improvement in algorithm is needed to see the 

efficacy when GA is coupled with HSPEXP.  
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CHAPTER V 

MODELING THE EFFECTS OF LAND COVER/LAND USE CHANGE AND 

PRECIPITATION VARIABILITY ON FRESHWATER INFLOWS 

 

5.1 Overview 

 

Adequate environmental flows are needed to maintain the ecological integrity of the 

estuaries. The environmental flows from a watershed are influenced by changes in land 

use/land cover, variability in precipitation, and water regulations. San Antonio, TX, the 

8th largest city in the US, is likely to affect environmental flows to the San Antonio 

Bay/Guadalupe Estuary, in the San Antonio River basin. Rapid urbanization has changed 

the land use and land cover in this river basin. The present study used satellite remote 

sensing techniques to assess the effect that this change has in the regional hydrology. 

LANDSAT satellite data for the years 1987, 1994, and 2003 were used in an 

unsupervised ISODATA classification to quantify changes in land use/land cover. In 

order to quantify the effect of land use/land cover change on environmental flow (flow 

volume in  the San Antonio river in particular), the model was calibrated using the 

remotely sensed data from 2003; and then, only land use/land cover data for the year 

1999, and 1987 were changed in subsequent simulations. After assessing the impact of 

LULC change, original weather data such as hourly precipitation and evapotranspiration 

for the respective year was introduced to the model to assess the impact of precipitation 

variability on freshwater inflows. Simulation result suggested that increase in impervious 
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surface altered the hydrograph by increasing the peak flows. Wavelet analysis of the 

time series suggested that increase in impervious surface (LULC change) altered the 

location of lower frequencies. LULC change also altered the low flow events in the time 

series. A significant variation in rainfall amount was observed between 2003 and 1999. 

Rainfall also influenced the hydrograph by altering the position of the hydrograph. With 

less rainfall, less water drained to the estuary. The predicted daily time series for flow 

was then aggregated for monthly flow analysis. Present study will help water resources 

managers and regulators assess the effect that urbanization potentially has on 

environmental flows.  

 

5.2 Introduction 

 

Freshwater inflows are the environmental flows that are required for estuarine health 

and maintenance. Estuaries are the connecting link between terrestrial and marine 

ecosystems, and provide a critical coastal habitat that is essential ecologically and 

economically to the world economy (Alongi, 1998; Kennish, 2001). Important species 

such as finfish and shellfish depend on estuaries for their survival and contribute more 

than 90% of the total fisheries activity in the Gulf of Mexico (Kennish, 2000). Estuarine 

and coastal marine fisheries return more than $23.0 billion annually to the US economy 

(Kennish, 2000). The State of Texas has approximately 590 km of coastline and in late 

1990s, coastal industries contributed $ 5.4 billion to the Texas economy (Kennish, 

2000).  
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Hydrology is the most critical element of in stream flow studies. It is used to assess 

hydraulic function, water quality, channel maintenance and riparian forming processes, 

and physical habitat for target aquatic species. A flow regime encompasses the 

seasonality and periodicity of flows. Hydrologic/hydraulic technical evaluations have as 

their aim understanding and quantifying the magnitude, frequency, timing and duration 

of these flows, the degree to which the natural flow regime has been altered, and impacts 

of land and water use on the flow regime.  

 

The productivity of estuarine systems depends on the timing and magnitude of 

freshwater inflow along with the associated nutrients, metals, and organic matter 

delivered from the terrestrial environment (TWDB, 1994). Freshwater inflows are 

essential to ecological processes including dilution of salt water creating a unique 

habitat for several species, regulation of bay water temperature, and marine bio-

geochemical cycles. Variations in freshwater inflows can alter the ecology of the 

estuarine environment and potentially hamper productivity. Freshwater inflows are 

influenced by the land cover/land use (LCLU), climate variability and water 

management practices in the contributing watershed, particularly in watersheds that are 

experiencing rapid human induced disturbances.   

  

LCLU change (LCLUC) can alter hydrology at the local, regional, continental and 

global scales. With increasing urban growth, LCLUC can modify the amount of flow 

through changes in infiltration, storm flow, evapotranspiration, and groundwater storage 
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(Bhaduri et al., 2001). Impervious surface is one of the important land cover 

characteristics in urban area, which is developed by human activity. Impervious surfaces 

increase the frequency and intensity of downstream water quantity and quality (Legesse 

et al., 2003; Waylen and Poveda, 2002).   

 

The amount of precipitation also plays a pivotal role in freshwater availability to 

estuaries. Analysis of environmental flows in several river basins has been studied to 

relate it to precipitation variability. Increase in discharge in conterminous U.S, suggested 

that the U.S is getting wetter, but less extreme.  (Lins and Slack, 1999; Peterson et al., 

2002; Costa et al., 2003; Copeland et al., 1996).  

 

Remotely sensed data from satellite imagery provides a source of reliable data for land 

use classification and land cover change analysis. It has proven to be one of the most 

flexible and useful tools in ecological analysis. Increased availability and low-cost 

satellite imaging technology has made its use most practical for studying large areas. 

The NASA’s LANDSAT (NRC, 1995) program is one of the longest running satellite 

data acquisition programs in the United States.  Several studies have demonstrated the 

potential of remote sensing methods as a source of information specifically useful for 

analysis of the urban/suburban environment with focus on land cover/land use, 

socioeconomic information, and transportation infrastructure (Donnay et al., 2001; 

White, 1998). The authors used indices such as surface model to quantify the urban 

environment using remote sensing imageries and GIS technologies. Only a few studies 
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have focused their remote sensing analysis on application in urban land use change 

models (Acevedo et al., 1996; Flanagan and Civco, 2001; Brivio et al., 2002). Studies 

related to urban mapping have used urban impervious surfaces using ground-measured 

and remotely sensed data to quantify the extent of urbanization. (Donnaay et al., 2001; 

Smith et al., 2003)  Availability of remotely sensed data with high temporal and spatial 

resolution, has allowed analysis methods to become more objective and suitable for 

application over large areas using temporally consistent datasets (Tanaka and Sugimura, 

2001).  

 

Although, the human impacts and disturbances on the global hydrologic cycle, and the 

potential consequences of this on climate are still in debate (Sala and Paruelo, 1997), 

studies suggest that land use can cause atmospheric changes (Stohlgren et al., 1998), 

streamflow variability (Waylen and Poveda, 2002) and modification in the dynamics of 

tree populations (Stohlgren et al., 1998).  One of the most important land cover type 

characteristics of urban environments is impervious surface developed through 

anthropogenic activities. Impenetrable surfaces, such as rooftops, roads, and parking 

lots, have been identified as key environmental indicators of urban land use, water 

quality and water quantity. Impervious surfaces also increase the frequency and intensity 

of downstream runoff and decrease water quality. While there have been studies 

assessing the effects of climate change and land-use change on streamflow (Legesse et 

al., 2003), previous studies did not explicitly examine the hydrologic influence of land 

use conversion due to urbanization and its effect on freshwater inflow.  
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Previous studies (TWDB, 1998; TPWD, 1998) have determined methods for quantifying 

coastal freshwater inflows using computer optimization and hydrodynamic modeling as 

the predictive technique. The modeling quantifies theoretical estimates of minimum and 

maximum freshwater inflows and maximum fisheries harvest inflow for each estuary on 

the Texas Gulf Coast. TPWD (1998) made recommendations for the flow requirements 

for the Guadalupe Estuary which receives flows from both the San Antonio and 

Guadalupe River Watersheds. The minimum and maximum flows recommended were 

1270 and 1590 million m3/year, respectively. Maximum fisheries harvest inflow was 

estimated to be 1418 million m3/year. Historical flow analysis of freshwater inflows to 

Texas bays and estuaries (Longley, 1994) suggests that the largest fraction of freshwater 

inflows to the Guadalupe Estuary comes from gauged portions of the Guadalupe River 

Basin, approximately 58% of the total freshwater inflows. Gaged portion of the San 

Antonio River contributed about 23 % (656 million m3/year) of total freshwater inflows. 

None of the studies separated the contributions of the individual watersheds (San 

Antonio and Guadalupe River) or modeled the effect of land use change on the 

environmental flow availability. Past studies also did not assess seasonal flows which 

may be more important than yearly/monthly flows (Longley, 1994).  

 

Although, the San Antonio River contributes only 20-30 % of freshwater inflows to the 

Guadalupe Estuary  (Longley, 1994), it is hypothesized that urban development will 

significantly alter the flow (both timing and magnitude) regime by effecting processes 

such as reservoir operations, return flows, ground water usage, base flow, and peak 
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flows. Time series analysis of flow in the San Antonio Basin suggested an increasing 

trend in most of the variables in the lower portion of the basin; however flows in the 

upper portion of the basin experienced a decreasing trend. Remotely sensed data coupled 

with a hydrologic model can be used to assess the impact of LULC on freshwater 

inflows.  Hydrologic Simulation Program in FORTRAN (HSPF) is one of the watershed 

scale hydrologic models that are used extensively by researchers and water resources 

professionals in modeling watershed processes (Im et al., 2004; Wicklein and Schiffer, 

2002; Brun and Band, 2000) and investigating water resources problems. HSPF was 

used to simulate hydrology and water quality impacts in a small urbanizing watershed 

(Im et al., 2004); results suggested runoff volume and peak rate increased with increase 

in urban area. HSPF has also been used to examine relationships between stormflow and 

baseflow as a function of percentage of impervious cover (Brun and Band, 2000).  

 

The primary purpose of this study is to quantify the regional hydrologic budget 

response to change in LULC in the San Antonio River Watershed.  

 

5.3 Methodology 

 

LULC and precipitation effects on freshwater inflows were assessed using land cover 

land use classifications derived from satellite imagery coupled with a watershed scale 

hydrologic model. Steps in the analysis were:  
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1. Land use classifications were derived from LANDSAT satellite images using a 

ISODATA classification approach for three time periods, 1987, 1999, and 2003.  

2. An HSPF model of the San Antonio River Watershed was calibrated using a 

genetic algorithm approach from 2002 to 2004 and validated against observations 

from 2001 and 2005. (see chapter IV).  

3. Land use classifications from 1987 and 1999 were used to simulate hydrology 

using the calibrated model from step two for the period 2003. 

4. Model simulated average daily flow was aggregated to estimate average monthly 

flow. Statistical analysis (t test) was conducted on the average monthly flows for 

the simulation years 1987, 1999, and 2003, to assess if the flows are statistically 

different. 

5. Behavior of streamflow in the frequency domain was assessed using a Morlet 

Wavelet technique. 

6. The effect of precipitation variability on water quantity was assessed by varying 

weather data while holding landuse constant in the HSPF model. 

 

5.3.1 Study Area 

  

The San Antonio River Basin encompasses 10,826 km2 from the headwaters of the 

Medina River to the point at which the San Antonio River joins with the Guadalupe 

River before emptying into the Gulf of Mexico (Figure V-1).  The San Antonio River 

begins just below Olmos Dam and runs 406 river km through four counties: Bexar, 
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Wilson, Karnes, and Goliad Counties.  To the northwest of the city, the terrain slopes to 

the Edwards Plateau and to the southeast it slopes downward to the Gulf Coastal Plains. 

Soils are blackland clay and silty loam on the Plains and thin limestone soils on the 

Edwards Plateau.  Population in this river basin has increased in the last 30 years 

primarily due to the growth of the City of San Antonio. It is predicted that the population 

around the city of San Antonio by 2020 will be approximately 2,172,950 (Texas State 

Data Center 2005; Nivin and Perez, 2006). 

 

5.3.2 Land Cover Land Use Assessment 

 

LANDSAT series data (5 TM and 7 ETM) were used for land cover and land use 

assessment.  Images were obtained either from the USGS LANDSAT Image 

Distribution Center or from www.texasview.org, a remote sensing consortium for the 

State of Texas.  Four paths and three rows combined to form four path/row 

combinations: 2640, 2739, 2740, and 2839 to cover the entire watershed area.  Images 

were obtained for 3 years; 1987, 1999, and 2003 (Table V-1).  Images from these years 

were selected based on data availability, adequate temporal spacing to detect significant 

change between time periods and cost vs. utility of images.  Other factors considered 

while selecting images included relatively cloud free images to avoid misclassification; 

images from the latter part of the acquisition year to have proper picture of the entire 

watershed.  Two images were acquired from 1985 and 1986 because of the difficulty of 
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obtaining cloud free images in 1987. This should not affect the results because the 

images covered relatively small portions of the watershed.  

  

Environment for Visualizing Images 4.3 (ENVI 4.3) was used to processes the images. 

Images were projected in UTM zone 14 projection systems. A resampling technique, the 

nearest neighbor method (Jensen, 2005; Duda et al., 2001) was used to correct the image 

and project it with 30 m spatial resolution where needed. To assess the accuracy of the 

resampled file a 2003 geo-referenced Texas Department of Transportation (TXDOT) file 

was used.  

 

An ISODATA unsupervised classification technique was used to classify the images. 

Approximately 20 different classes were initially used for classification (Jensen, 2005) 

for each image, with a maximum number of iterations set at 20, and a 5% threshold 

change.  Processing took approximately 30 minutes per image.  After 20 different classes 

were obtained, the pixels were reclassified into 4 different classes: water, forest, 

pasture/rangeland/urban pervious, and urban impervious/bare. Classifications were based 

on the similar hydrologic responses (i.e. similar infiltration capacity) of the land use 

classes.  In addition, these categories usually have similar spectral signatures. Digital 

Orthophoto Quarter Quadrangle (DOQQs) were used to assign the value to the pixel of 

the processed imageries. DOQQs were obtained from Texas Natural Resources 

Information System (TNRIS). 
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Figure V-1: San Antonio River watershed indicating USGS gauging station and NCDC 
weather stations used in the analysis. 
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Table V-1: LANDSAT series images used for the LULC change analysis in the San 
Antonio River Watershed. 

 
Year Path/Row Acquisition Date  Satellite 

1987 2640 10-17-1986 Landsat 5 TM 
 2739 09-25-1987  
 2740 09-25-1987  
 2839 09-26-1986  
    

1999 2640 10-05-1999 Landsat 7 ETM 
 2739 10-20-1999  
 2740 10-20-1999  
 2839 12-14-1999  

    
2003 2640 11-15-2003 Landsat 7 ETM 

 2739 11-04-2003  
 2740 11-15-2003  
 2839 11-15-2003  

 

 

Accuracy assessment is an important step in image processing, providing essential 

information about how closely image classification matches the true land classes. 

DOQQs, and transportation network data were used for this purpose. About 100 

different points were selected from the processed images for the respective classes. 

Accuracy assessment in ENVI was conducted by getting the confusion matrix (Jensen, 

2005). Overall accuracy was approximately 80%, which was acceptable (Jensen, 2005). 

 

The processed image was imported to an ARCVIEW GIS environment.  The percentage 

of the area contributed by each land cover type, forest, for example, was estimated by 

multiplying the pixel size (30m x 30m) by the number of pixels assigned to that 

particular land cover classification and dividing it by the total watershed area. LULC 

change from one time period to another was then estimated from changes in these 
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percentages. Extent of urbanization in each county was assessed by overlying county 

layer on LULC layer using ArcGIS.   

  

5.3.3 Model Description 

 

HSPF is a continuous, lumped parameter hydrologic model (USEPA, 2001). This model 

can be used to simulate a wide range of hydrologic and water quality processes that 

occur in a watershed, including sediment transport and movement of contaminants.  In 

HSPF, modules are divided into pervious land (PERLND), impervious land (IMPLND), 

and reaches (RCHRES). Each land segment is considered as a lumped catchment. 

However, it can mimic spatial variability by dividing the river basin into many 

hydrologically homogeneous land segments. It simulates runoff from each land segment 

independently, using different assigned meteorological input data and watershed 

parameters. Simulation in this software is based on an hourly time step. The simulation 

in HSPF is based on mass balance approach (Paul et al., 2004).  In the IMPLND module, 

precipitation is partitioned as overland flow, evaporation, or surface detention storage.  

In the PERLND module, precipitation is divided into direct runoff, direct evaporation, 

surface storage followed by evaporation, surface storage followed by interflow, and 

infiltration to the subsurface area. The model divides the subsurface compartment into 

upper zone, lower zone and deep groundwater zone. Any amount of water that is 

received by subsurface zone is either stored, evaporates or flows to the subsequent lower 

zone. Water in groundwater zone is assumed to be lost from the system.  
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Since HSPF considers only two classifications, PERLND and IMPLND, the LULC 

classifications were lumped to PERLND and IMPLND values. Impervious and bare 

surface values derived from LANDSAT information were assigned to IMPLND; forest 

and rangeland were assigned to PERLND. This information was derived for each of the 

years 1987, 1999, and 2003.  

 

The necessary meteorological data to run HSPF is stored in a watershed data 

management (WDM) file. For this study HSPF needed hourly precipitation and hourly 

potential evapotranspiration. These two weather variables control water quantity. A 

WDMUtil program was used to import the data in the required format, using several 

available scripts.  

 

5.3.4 Data Description 

 

The San Antonio River watershed is located within the Hydrologic Cataloging 

Boundaries (HUC) 12100301, 12100302, 12100303, and 12100304.  Data layers 

including STATSGO soils data, Reach Network Version 3, and the Digital Elevation 

Model (DEM) for HUC 12100301 were obtained from EPA’s BASINS web site 

(USEPA, 2003).  Reach Network file Version 3 is a comprehensive set of digital spatial 

data that contains information about surface water features such as lakes, ponds, streams, 

rivers, and wells.  
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The San Antonio River Watershed was subdivided into 44 hydrologically connected sub-

watersheds using the DEMs and the Automatic Watershed Delineation tool available 

with BASINS 3.0.  Four weather stations, NCDC COOPID 418845, 417945, 417836, 

and 413618, were used to obtain weather data for HSPF simulations. Weather stations 

were selected on the basis of availability of long term hourly data (hourly precipitation 

and daily evapotranspiration). Available data was downloaded from NCDC website. A 

Thiessen polygon method was used using ArcInfo to determine the representative 

weather station for each sub-basin. Daily evapotranspiration was disaggregated into 

hourly evapotranspiration using the WDMUtil tool. Precipitation data and modeled 

evapotranspiration values for the year 1999 and 2003 were analyzed to assess variability. 

Pair wise comparison (student t-test) between the years was conducted on this purpose. 

 

Historical daily mean stream flow data for USGS gauge station 08188500 was obtained 

from the USGS for the simulation period. This station is located at the outlet of the San 

Antonio River Watershed, the point at which the HSPF model was calibrated and 

validated.  

 

5.3.5 Calibration and Validation 

 

Hydrologic calibration in HSPF was conducted using a genetic algorithm (GA) approach 

as described in Chapter IV.  Three years, 2002, 2003, and 2004, of daily average stream 

flow data from USGS gauging station 08188500 were used for calibration.  The 2003 
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land use dataset was used for calibration. Model validation was conducted using 2001 

and 2005 stream flow data. Mean Absolute Error (MAE), and Nash-Sutcliffe coefficient 

was used for model calibration and validation (See chapter IV).  

 

5.3.6 Scenario Analysis 

 

In order to quantify what percentage of flow is affected by LULC change and what 

percentage of flow is affected by rainfall variability, 10 different scenarios were 

conducted (Table V-2). Variations in freshwater inflows were estimated by:   

 

                                         
a

ba

Q

QQ
ChangeLULC

−
=                                                     (17) 

 
Where Qa is the flow obtained from base scenario (Table V-2) and Qb is the flow 

obtained from final scenario. For example, to assess the variability of flow due to LULC 

change, in the first simulation (Table V-2), base scenario was flow obtained by using 

LULC of 2003 and rainfall of 2003; and final scenario used was LULC of 1999 and 

rainfall of 2003. The results were obtained in percentage by multiplying 100. Similar 

equation (equation 2) was also used to estimate flow variability due to rainfall variation.  
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5.4 Results and Discussion 

 

Analysis of land use land cover from LANDSAT series imageries suggested an increase 

in urban impervious/bare surface in the watershed from 1987 to 2003 (Figure V-2, 

Figure V-3, and Figure V-4). The increase in impervious surface has a direct relationship 

with urbanization (Dow and Dewalle, 2000). Increase in impervious surface was clearly 

marked in Bexar County. This County has been experiencing heavy urbanization. The 

percentage of impervious surface in the whole watershed went from 6% in 1987 to 14% 

in 2003 (Figure V-2, Figure V-3, Figure V-4, and Figure V-5); and, in Bexar County the 

percentage increased from approximately 9% to 21 % (Figure V-5). The increase in 

urban growth was partially matched by a decrease in forested area over several years. 

Forested area decreased from approximately 3548 square kms in 1987 to about 2525 

square kms in 2003 over the entire San Antonio River watershed. In Bexar County 

forested area decreased from approximately 1010 square kms in 1987 to 700 square kms 

in 2003 (Figure V-5). GIS analysis suggested urban growth has occurred in the counties 

adjacent to Bexar County as well. Comal, Guadalupe, and Medina counties have 

experienced rapid urban growth due to the expansion of the City of San Antonio. Part of 

Comal, Guadalupe, and Medina is covered by San Antonio River Watershed. Partly 

change in these counties might be affecting freshwater inflows to the estuary.  

 

 



 

 

147 

Table V- 2: Scenarios used for various simulation to separate precipitation variability 
from LULC change effect on freshwater inflows. 

 
Scenarios LULC change effect 

1 2003 LULC 2003 Rainfall 
2 1999 LULC 2003 Rainfall 
3 1987 LULC 2003 Rainfall 
   

4 2003 LULC 1999 Rainfall 
5 1999 LULC 1999 Rainfall 
6 1987 LULC 1999 Rainfall 
   

Precipitation variation effect 

7 2003 LULC 2003 Rainfall 
8 2003 LULC 1999 Rainfall 
   

9 1999 LULC 1999 Rainfall 
10 1999 LULC 2003 Rainfall 
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Figure V-2: San Antonio River watershed with 1987 land use land cover dataset, 
focusing Bexar County. 
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Figure V-3: San Antonio River watershed with 1999 land use land cover dataset, 
focusing Bexar County. 
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Figure V-4: San Antonio River watershed with 2003 land use land cover dataset, 
focusing Bexar County. 
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Figure V-5: Percentage change in land use from 1987 to 2003, in watershed scale (top), 
and in Bexar County (bottom), obtained from remote sensing and GIS analysis. 
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Analysis of hydro-climatic variables such as precipitation for the period 1999 and 2003 

(Figure V-6) suggested a significant difference (p < 0.1) in daily rainfall between the two 

years. The watershed experienced about 482 mm of rainfall in 1999, where as it 

experienced about 686 mm of rainfall in 2003. In both the years May through September 

experienced more than two-thirds of total annual rainfall. Significant variation in rainfall 

was not observed within weather stations. Earlier studies have suggested rainfall to be 

similar in a regional or watershed scale (Bloschl et al., 2007). Similarly, statistical 

analysis of potential evapotranspiration suggested significant difference (p < 0.1) 

between 1999 and 2003 (Figure V-7). The watershed experienced about 1092 mm of 

potential evapotranspiration in 1999 and about 991 inches in 2003. Like rainfall May 

through September experienced more than two-thirds of total potential 

evapotranspiration.  

 

Model simulation results indicated an increase in peak flows from 1987 to 1999 to 2003 

(Figure V-8). Increase in peak flows could be attributed to increase in impervious 

surfaces, and decrease in forest (Figure V-5). Increase in impervious surface reduces 

infiltration, and there by increases runoff (Cheng and Wang, 2002), and alters overall 

water balance. Most of the studies (Bloschl et al., 2007; Im et al., 2004) suggested land 

use land cover change affects in local scale. However, our investigation suggested 

LULC might have an affect in basin scale, particularly in San Antonio River Basin. This 

river basin is experiencing LULC change, where urbanization is the most dominant 

LULC type change.  
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Figure V-6: Daily total rainfall for the watershed, estimated by thiessen polygon method 
for the year 1999, and 2003. 
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Figure V-7: Estimated daily total potential evapotranspiration for the watershed for the 
year 1999, and 2003. 
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Figure V-8: Average daily flow (top) and average monthly flow (below) after 

changing the land use for 1999, and 1987. 
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Average monthly flow was calculated from the simulations for the years 1987, 1999, and 

2003. Statistical analysis was conducted on the estimated monthly flows between each 

year. Results implied, average monthly flow increased significantly (p < 0.1) in most of 

the months from 1987 to 1999 to 2003. Significant difference was not marked for some 

of the months such as April, and November, while comparing average monthly flows for 

the years 2003 and 1999. Similarly, significant difference was not observed for the 

month of November, while comparing average monthly flows for the years 2003, and 

1987. Flows in months such as May and December (Figure V-8) were also compared for 

the simulation period. These months were selected because they experienced less flow 

based on simulation results (Figure V-8). Investigation results suggested a statistical 

difference between May and December flows. Average monthly flows in May decreased 

from 6.28 cms in 1987 to 6.17 cms in 1999, further to 6.11 cms in 2003 (Figure V-8). 

Similarly, average monthly flows in December decreased from 13.13 cms in 1987 to 

12.99 in 1999, further to 12.96 cms in 2003. Decrease in low flows over the simulation 

years (1987, 1999, and 2003) could be attributed to increase in impervious surfaces. Low 

flows reflect base flow. Increase in impervious surface reduces infiltration; thereby, 

influencing baseflow.  

 

Morlet wavelet was used for wavelet analysis of the time series generated from LULC 

change for the year 1987, 1999, and 2003 (Figure V-9). Wavelet analysis is conducted to 

assess changes in frequency and scale of the flows. Analysis suggested, land use land 

cover alters the frequencies and location of the frequencies. Lower frequencies present in 
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1987 simulation in 2 to 32 days scale between 100-250 days has been somewhat 

replaced by higher frequencies in 1999, and 2003 simulations. This suggested the system 

was behaving flashier with increase in impervious surface over the years; meaning, there 

is increase in peak and dip flows. Also, analysis showed changes in lower frequencies in 

64 days period. Lower frequencies at this period were observed in 1999 and 2003 

simulations, suggesting more storage of water in the system in 1987 than other two 

years. This means, for same amount of rainfall in all the three years, rapid peaks and 

recession were observed in 1999 and 2003 than 1987. 

 

Once the effect of LULC change was quantified by changing just the actual LULC 

datasets of 1999 and 1987 in 2003 model simulation, actual weather data sets of 1999 

were introduced in the 1999 LULC scenario. The simulation resulted in quantifying 

variations in freshwater inflows that is due to precipitation variability. Simulation results 

(Table V-2) were compared, in order to estimate the percentage of variations in 

freshwater inflows, which could either be attributed to LULC change or precipitation 

variability. Variations in freshwater inflows due to LULC change was estimated by 

Figure V-10, and Figure V-11. 

 

Approximately 8% of the environmental flow was attributed to LULC change, when 

scenario 1 and scenario 2 was taken into consideration (Figure V-10). About 12 % of the 

environmental flow was attributed to LULC change, when the scenario 2 and scenario 3 
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was taken into consideration (Figure V-10). The peak flows shifted from lower 

magnitudes in 1987 LULC to higher magnitudes in 2003 LULC (Figure V-10).  

 

In all the cases rainfall was same, which means increase in peak flows could possibly be 

attributed to increase in impervious surface over the years (Figure V-5). Similarly, 

scenarios 4, 5, and 6 (Table V-2) were also considered to assess only the importance of 

LULC change on environmental flows (Figure V-11). Approximately 8% of the 

environmental flow was attributed to LULC change, when scenario 4 and scenario 5 was 

taken into consideration; and about 12% of the environmental flow was attributed to 

LULC change, when the scenarios 5 and 6 were taken into consideration.  

 

Scenarios 7, 8 and 9, 10 (Figure V-12 and Figure V-13) were used to assess the 

importance of climate variability on environmental flows to estuary. Equation similar to 

equation 2 was used to assess this variability. Analysis of scenario 7 and scenario 8 

suggested a variation of 36% in freshwater inflows due to precipitation pattern change; 

where as scenarios 9 and 10 suggested a variation of 63% in freshwater inflows that 

possibly could be attributed to precipitation variability. Visual interpretation of flow data 

(Figure V-12 and Figure V-13) for the LULC 2003 and 1999 suggested shift in flow 

pattern. This shift is due to variation in rainfall. The present study was limited by the 

unavailability and unsuitability of weather data for the year 1987. 
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Figure V-9: Morlet wavelet analysis for various land use change; (from top to bottom) 
simulations results for LULC 1987, 1999, and 2003. 
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Figure V-10: Simulation results with a common 2003 rainfall dataset and respective 
LULC datasets of the years. Average daily flow (top) and average monthly flow 
(bottom) for both the years. 
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Figure V-11: Simulation results with a common 1999 rainfall dataset and respective 
LULC datasets of the years. Average daily flow (top) and average monthly flow 
(bottom) for both the years. 
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Figure V-12: Simulation results with a common 2003 LULC dataset and original 
hydroclimatic data for the year 1999 and 2003. Average daily flow (top) and average 
monthly flow (bottom) for both the years. 
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Figure V-13: Simulation results with a common 1999 LULC dataset and original 
hydroclimatic data for the year 1999 and 2003. Average daily flow (top) and average 
monthly flow (bottom) for both the years. 
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5.5 Conclusions 

  

The present investigation suggested LULC change in the San Antonio River Basin can 

affect freshwater inflows to estuary. It can alter the hydrograph, by shifting the peak 

flows for a particular rainfall pattern. Peak flows usually increased with increase in 

impervious surfaces. Although studies suggested LULC change is a local phenomena, 

and can affect local processes; results based on simulation suggested that increase in 

impervious surface can also affect low flows such as baseflow. The results from this 

study suggested LULC change can also affect in larger scale, such as watershed/basin 

scale. Wavelet analysis suggested that changes in LULC can bring changes in scale and 

frequencies of freshwater inflows. Analysis suggested location of low frequencies 

changed due to LULC change. This study confirmed that rainfall pattern has a potential 

influence on the pattern of delivery of freshwater to the estuaries.  
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CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

 
The objective of this research was to assess the impact of land cover land use change on 

environmental flows to estuary in San Antonio River watershed. Time series analysis 

was conducted on various seasonal flows obtained from number of gauging stations 

located in the watershed; more importantly the last gauging station in the river. Wavelet 

analysis was conducted on seasonal flows to assess the presence of dominant frequencies 

and location of such frequencies. In order to quantify the impact of land cover land use 

change, HSPF model calibration was conducted using genetic algorithms. Land cover 

land use data sets for the years 1987, 1999, and 2003 were used for assessing its impact 

on environmental flows to estuary.  

 

Time series analysis suggested that a greater number of trends in seasonal hydrologic 

variables in the watershed are observed than are expected to occur by chance. Analysis of 

bootstrapping results suggested about half of the hydrologic variables were significant at 

global. Results suggested most of the hydrologic variables for winter season showed 

significant trend. Results indicated presence of Station USGS 8188500 in most of the 

variable that is significant at global; particularly the winter flows. All the trends for this 

station were noted positive. Analysis suggested runoff has increased in this river basin. 

Although, this study suggested there is an increasing trend (particularly winter) in 

freshwater inflows, it is important to know if this increase is affecting salinity in the 
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estuary. Further investigation in freshwater inflow areas should consider the possibility of 

extra dilution in estuary.  

 

Wavelet analysis suggested presence of dominant frequencies in 10-15 years scale in 

some of the hydrologic variables, with a decadal cycle. Dominant frequencies were also 

observed in 17-23 years of scale with repeatability in 20-30 years. Time series 

construction studies suggested presence of multi-scale temporal variability in the data. It 

is therefore important to understand various ecological processes that are dominant in 

this scale and quantify possible linkages among them. Quantifying various ecological 

processes dominant in this scale will help in designing water management strategies. 

 

Calibration for the year 2003 was performed by Genetic algorithm coupled HSPF model. 

Genetic algorithm was successfully implemented in this study. Although, GA is 

computationally demanding, it is better than manual calibration. Parameters values had 

physical representation and were well within the ranges as suggested in literature.  

 

LANDSAT imageries for the year 1987, 1999, and 2003 were used to quantify the 

impact of land use land cover change impact on environmental flows to estuary. Land 

use information was introduced to HSPF. Modeling studies suggested, although land use 

land cover change has a local impact, it can also impact in basin scale. With increase in 

impervious surface, peak flows increased over the years. Urbanization also impacted 

storage as suggested by wavelet analysis because impervious surfaces reduced 
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infiltration that is important for storage. This study also analyzed additional importance 

of precipitation variability. On average about 50% of variability in freshwater inflows 

could be attributed to variation in precipitation, and approximately 10% of variation in 

freshwater inflows could be attributed to land use and land cover change. 

 

Future research will explore flows to all the estuaries in the U.S. Bootstrapping will be 

conducted on all the stations. The results will suggest if there is an increasing or 

decreasing trend in flows to the estuaries. Also, further investigations will suggest how 

these trends are related to climate or anthropogenic activities. Anthropogenic activities 

such as land use land cover change will be monitored by LANDSAT series data.  

 

Similarly, wavelet analysis will be conducted on all the flows obtained from gauging 

station present in the coastal areas. Separation of geographical region will be based on 

similar signatures that will be obtained from wavelet analysis. This will help to 

regionalize estuarine flows, which will help in management of these systems.  

 

GA calibration technique will be used in several watersheds differing by size, 

geography, physiographic etc. to test the robustness of this method, and to test its 

physical representation. This will be tested in several watersheds that have already been 

modeled. Further research is also needed to couple GA-HSPF-PEST, to increase the 

accuracy of the model. 
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Ultimately, this research will further be strengthened by coupling watershed scale model 

like HSPF with estuarine model like EFDC. This will help in understanding the impact 

of watershed management, water resources planning etc. on estuarine systems.     
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