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ABSTRACT

Models and Solution Approaches for Intermodal and Less-than-Truckload Network

Design with Load Consolidations. (December 2007)

Homarjun Agrahari, B.Tech., Indian Institute of Technology Bombay;

M.Tech., Indian Institute of Technology Bombay

Chair of Advisory Committee: Dr. Halit Üster

Logistics and supply chain problems arising in the context of intermodal trans-

portation and less-than-truckload (LTL) network design typically require commodities

to be consolidated and shipped via the most economical route to their destinations.

Traditionally, these problems have been modelled using network design or hub-and-

spoke approaches. In a network design problem, one is given the network and flow

requirements between the origin and destination pairs (commodities), and the objec-

tive is to route the flows over the network so as to minimize the sum of the fixed

charge incurred in using arcs and routing costs. However, there are possible bene-

fits, due to economies-of-scale in transportation, that are not addressed in standard

network design models. On the other hand, hub location problems are motivated by

potential economies-of-scale in transportation costs when loads are consolidated and

shipped together over a completely connected hub network. However, in a hub loca-

tion problem, the assignment of a node to a hub is independent of the commodities

originating at, or destined to, this node. Such an indiscriminate assignment may not

be suitable for all commodities originating at a particular node because of their dif-

ferent destinations. Problems arising in the area of LTL transportation, intermodal

transportation and package routing generally have characteristics such as economies-

of-scale in transportation costs in addition to the requirement of commodity-based

routing. Obviously, the existing network design and hub location-based models are
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not directly suitable for these applications. In this dissertation, we investigate the

development of models and solution algorithms for problems in the areas of LTL and

intermodal transportation as well as in the freight forwarders industry. We develop

models and solution methods to address strategic, tactical and operational level de-

cision issues and show computational results. This research provides new insights

into these application areas and new solution methods therein. The solution algo-

rithms developed here also contribute to the general area of discrete optimization,

particularly for problems with similar characteristics.
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I would like to thank Dr. Halit Üster for being my advisor through the devel-

opment of this dissertation and for giving me an opportunity to work as a research

assistant under his supervision. I also express my gratitude to him for helping me

personally and professionally, which made a difference in my stay in College Station.

I would also like to thank Dr. Sıla Çetinkaya, Dr. Ricardo Gutierrez-Osuna
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Dr. Üster for being the advisor of the chapter, Dr. Peters for taking keen interest in

our activities and for support through the department, Judy Meeks, Claudia Samford,

Michele Bork and Katherine Edwards for administrative help, Mark Henry, Mark

Hopcus and Dennis Allen for their prompt help in technical matters.

I am thankful to Texas A&M University for providing me unique learning expe-

rience and an exciting research environment. I am a proud Aggie of this esteemed



vii

university. I am also thankful to the department of Industrial and Systems Engineer-

ing for providing excellent computing and research facilities. I thank the department

for providing financial support during my first two years.

I wish to thank my family: my brothers Himasnhu and Chaxwesh, my sister

Nishiddha, my parents Gayatri Devi and Om Prakash without whose love and af-

fection I could’nt have accomplished so much. I am extremely proud of my parent

who have sacrificed their whole life in my upbringing. The values they instilled in me

are the foundations of my achievements. It is my sincere wish that I can make them

proud through services to humanity.

Finally, I can not thank my wife Vandana enough for supporting me in my

decision of pursuing Ph.D. although it meant a lot of sacrifice, hardship and patience

on her part. She has always been the source of my strength, courage and inspiration

in completing this work. I could not have done this without her support and courage.

I thank her for extending her unconditional love and for supporting this venture.



viii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . 3

I.1.1. Intermodal and LTL Transportation . . . . . . . . 3

I.1.2. Consolidation . . . . . . . . . . . . . . . . . . . . 4

I.1.3. Motivation and Scope of the Dissertation . . . . . 6

I.2. Auxiliary Network Representation . . . . . . . . . . . . . 8

I.3. Problem Description . . . . . . . . . . . . . . . . . . . . . 10

I.3.1. Strategic Network Design Problem (SNDP) . . . . 11

I.3.2. Tactical Network Design Problem (TNDP) . . . . 12

I.3.3. Operational Network Design Problem (ONDP) . . 12

I.3.4. An Example . . . . . . . . . . . . . . . . . . . . . 13

I.4. Experiment Data and Computational Study . . . . . . . 15

I.5. Organization of the Dissertation . . . . . . . . . . . . . . 17

II LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . 18

II.1. Hub Location . . . . . . . . . . . . . . . . . . . . . . . . 18

II.1.1. The Model . . . . . . . . . . . . . . . . . . . . . . 19

II.2. Fixed Charge Network Design . . . . . . . . . . . . . . . 23

II.2.1. The Models . . . . . . . . . . . . . . . . . . . . . 25

II.2.2. Solution Methods . . . . . . . . . . . . . . . . . . 28

II.3. Facility Location . . . . . . . . . . . . . . . . . . . . . . . 30

II.3.1. Uncapacitated Facility Location Problem . . . . . 32

II.3.2. Capacitated Facility Location Problem . . . . . . 33

II.4. Service Network Design . . . . . . . . . . . . . . . . . . . 37

II.5. Summary and Conclusions . . . . . . . . . . . . . . . . . 39

III OPERATIONAL NETWORK DESIGN PROBLEM . . . . . . . 42

III.1. The Model . . . . . . . . . . . . . . . . . . . . . . . . . . 43

III.2. Ingredients of the Heuristic Algorithms . . . . . . . . . . 48

III.2.1. Solution Representation and Objective Func-

tion Evaluation . . . . . . . . . . . . . . . . . . . 49

III.2.2. Construction Heuristics . . . . . . . . . . . . . . . 50

III.2.3. Components of Compound Neighborhoods . . . . 52



ix

CHAPTER Page

III.2.4. Generic Notation and Branching . . . . . . . . . . 56

III.3. Heuristic Approaches . . . . . . . . . . . . . . . . . . . . 58

III.3.1. Local Search with Deterministic Branching (LSDB) 58

III.3.2. Simulated Annealing with Biased Branching (SABB) 61

III.3.3. Tabu Search with Complete Branching (TSCB) . . 66

III.3.4. An Alternative Solution Representation and Search

Procedure . . . . . . . . . . . . . . . . . . . . . . 69

III.4. Computational Study . . . . . . . . . . . . . . . . . . . . 70

III.4.1. Experimental Setup . . . . . . . . . . . . . . . . . 72

III.4.2. Computational Results . . . . . . . . . . . . . . . 73

III.5. Summary and Conclusions . . . . . . . . . . . . . . . . . 83

IV TACTICAL NETWORK DESIGN PROBLEM . . . . . . . . . . 86

IV.1. The Model . . . . . . . . . . . . . . . . . . . . . . . . . . 88

IV.1.1. Relation to SSCFLP with Modular Capacity . . . 90

IV.2. Upper Bound Heuristic . . . . . . . . . . . . . . . . . . . 93

IV.2.1. Solution Representation and Objective Func-

tion Evaluation . . . . . . . . . . . . . . . . . . . 93

IV.2.2. Construction Heuristics . . . . . . . . . . . . . . . 96

IV.2.3. Components of Compound Neighborhoods . . . . 96

IV.2.4. Generic Notation and Branching . . . . . . . . . . 100

IV.2.5. Simulated Annealing with Biased

Branching (SABB) . . . . . . . . . . . . . . . . . . 101

IV.3. Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . 104

IV.3.1. Lagrangian Heuristic . . . . . . . . . . . . . . . . 110

IV.4. Computational Study . . . . . . . . . . . . . . . . . . . . 113

IV.4.1. Experimental Setup . . . . . . . . . . . . . . . . . 114

IV.4.2. Computational Results . . . . . . . . . . . . . . . 115

IV.5. Summary and Conclusions . . . . . . . . . . . . . . . . . 123

V STRATEGIC NETWORK DESIGN PROBLEM . . . . . . . . . 126

V.1. The Model . . . . . . . . . . . . . . . . . . . . . . . . . . 127

V.2. Benders Decomposition Based Solution Approach . . . . . 131

V.2.1. Benders Subproblem . . . . . . . . . . . . . . . . . 133

V.2.2. Benders Master Problem . . . . . . . . . . . . . . 136

V.2.3. Strong Benders Cut . . . . . . . . . . . . . . . . . 138

V.2.4. Benders Decomposition Framework . . . . . . . . 139

V.3. Computational Results . . . . . . . . . . . . . . . . . . . 140



x

CHAPTER Page

V.3.1. Experimental Setup . . . . . . . . . . . . . . . . . 141

V.3.2. Computational Results . . . . . . . . . . . . . . . 143

V.4. Summary and Conclusions . . . . . . . . . . . . . . . . . 151

VI CONCLUSIONS AND FUTURE DIRECTIONS . . . . . . . . . 155

VI.1. Contributions . . . . . . . . . . . . . . . . . . . . . . . . 160

VI.2. Foundation for Future Research . . . . . . . . . . . . . . 162

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176



xi

LIST OF TABLES

TABLE Page

1 Experimental Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . 73

2 Summary of Exact Solution Results (Dataset 0 solved with CPLEX) 74

3 Gaps from CPLEX LB and Runtime for PLSN and SLSN (Dataset 0) 76

4 Gaps from CPLEX LB and Runtime for PN and SN (Dataset 0) . . . 77

5 Percentage Gaps from CPLEX Upper Bound (Dataset 0) . . . . . . . 78

6 Comparison of Algorithms and Neighborhood Functions (Dataset 1) . 80

7 Summary of Comparisons (Dataset 1) . . . . . . . . . . . . . . . . . 82

8 Comparing LSDB, SABB and TSCB using the Neighborhood

Function PN (Datasets 2 and 3) . . . . . . . . . . . . . . . . . . . . . 83

9 TNDP Experimental Problem Sets . . . . . . . . . . . . . . . . . . . 114

10 Comparison Lagrangian Heuristic and CPLEX on Benchmark Dataset

0 (N = 30− 60) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

11 Comparison of Lagrangian Heuristic and CPLEX on Benchmark

Problems (N = 70− 100) . . . . . . . . . . . . . . . . . . . . . . . . 118

12 Lagrangian Heuristic Results for Dataset 1 (N = 125− 200) . . . . . 120

13 Lagrangian Heuristic Results for Dataset 2 (N = 400− 500) . . . . . 121

14 Lagrangian Heuristic Results for Dataset 3 (N = 800− 1000) . . . . 122

15 SNDP Experimental Problem Sets . . . . . . . . . . . . . . . . . . . 143

16 Benders Bounds for Benchmark Dataset 0 . . . . . . . . . . . . . . . 145

17 Benders Bounds for Larger Problem Instances N=500-1200 . . . . . . 147



xii

TABLE Page

18 Benders Bounds for Larger Problem Instances N=1300-2000 . . . . . 148

19 Benders Bounds for Larger Problem Instances N=3000 and 4000 . . 149

20 Benders Bounds for Data Similar to Parcel Company . . . . . . . . . 151



xiii

LIST OF FIGURES

FIGURE Page

1 Transportation’s Importance to GDP: 2000. Source: U. S. De-

partment of Transportation, Bureau of Transportation Statistics,

BTS-02-02 2002. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 U. S. Freight Shipments by Mode: 1998, Freight Shipment in

Value (L) and Tonnes (R). Source: U. S. Department of Trans-

portation, Federal Highway Administration, 2002 . . . . . . . . . . . 2

3 Required Commodity Flows on a Physical Network . . . . . . . . . . 14

4 An Example Routing in the Auxiliary Network . . . . . . . . . . . . 15

5 Hub Location Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Fixed Charge Network Design Problem . . . . . . . . . . . . . . . . . 23

7 Facility Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Components of Compound Neighborhoods . . . . . . . . . . . . . . . 53

9 Branching on a Solution S in ONDP . . . . . . . . . . . . . . . . . . 58

10 Components of Compound Neighborhoods . . . . . . . . . . . . . . . 97

11 Branching on a Solution S in TNDP . . . . . . . . . . . . . . . . . . 100

12 Biased Probability in Simulated Annealing . . . . . . . . . . . . . . . 103

13 Comparison of Lower Bounds . . . . . . . . . . . . . . . . . . . . . . 116

14 Comparison of Bounds: Lagrangian Heuristics Vs. Branch and Cut . 119

15 Banders Decomposition Based Algorithms: With and Without

Strong Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



1

CHAPTER I

INTRODUCTION

Freight transportation is the backbone of the economy. As shown in Figure 1, in 2000,

transportation related services contributed more than 10% of the national GDP of the

United States. Many industries own their transport operations which accounted for

an additional $142 billion to the economy. In the U.S., freight transportation methods

move a very large quantity of goods, e.g. in 1998, over 15 billion tons of goods worth

more than $9 trillion were moved (Caldwell and Sedor, 2002). The movement of bulk

goods such as grain, coal and ores, comprise a portion of the load; however, in the

recent years, the percentage of consumer goods has also increased.

Figure 1 Transportation’s Importance to GDP: 2000. Source: U. S. Department of

Transportation, Bureau of Transportation Statistics, BTS-02-02 2002.

Housing
24.2%

Health Care
14.6%

Food 
12.2% Transportation

10.8%

Education
7.0%

Recreation
6.9%

Others
24.3%

Freight transportation provides jobs to millions of people. In 2000, more than

10 million people were employed in transportation-related industries. Truck drivers

accounted for more than 70% of the total workforce employed in freight transportation

This dissertation follows the style and format of Operations Research.
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related jobs. Freight transportation supports economic growth by providing service

and adding value to the products transported.

The five basic forms of freight transportation are rail, highway, water, pipeline

and air. The relative importance of a mode can be measured by the volume and the

value of the freight transported by that mode. Figure 2 provides a summary of U.S.

freight shipment by mode in 1998. It is clear from this figure that trucks transport

the most freight by volume (71%) and by value (83%); in fact the volume and value

transported by truck is greater than all of the other modes together. Each mode has

its own characteristics that make it the mode of choice for a particular application.

For example, air transportation is expensive but quick, whereas transportation by ship

is slow but relatively inexpensive. Although all modes are necessary for maintaining

an efficient national transportation system, clearly, trucking is the most important

mode.

Figure 2 U. S. Freight Shipments by Mode: 1998, Freight Shipment in Value (L) and

Tonnes (R). Source: U. S. Department of Transportation, Federal Highway

Administration, 2002
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I.1. Background

Safe, reliable and efficient freight transportation is essential for sustained economic

growth. The savings derived from efficient logistics translate into increased invest-

ments in creating better infrastructure, manpower training, and the research and

development activity needed to adapt to remaining competitive in a changing global

market.

I.1.1. Intermodal and LTL Transportation

In intermodal transportation, two or more modes of transportation are used to move

freight from origin to destination. Generally, the load changes mode at an intermodal

terminal. It may involve multiple modes such as truck, ship, rail and air. The moti-

vation behind intermodal transportation is to exploit economies-of-scale inherent in

the modes involved, and thereby, offer the service at least total cost. For example,

TOFC (a term used in intermodal transportation that stands for trailer on a flat-

car), combines the flexibility of a truck for short distances where rail does not reach

with rail for longer distances. Efficient and safe intermodal transportation requires

specialized equipment for handling and an intermodal terminal for mode change.

Similarly, containerships are an intermodal type of transport that utilizes waterways

where the whole container or railcar is loaded onto a ship to exploit economy-of-scale

of waterways transport. Similarly air-truck is a common choice of intermodal trans-

portation mostly for applications that require faster service. In summary, intermodal

transportation results from exploiting the economies-of-scale of multiple mode, and

it provides a flexible option to the logistics planner (Bowersox et al., 2002).

In the trucking industry, two main types of services are available: truckload

(TL) and less-than-truckload (LTL). In TL transportation, a shipper hires a full



4

truck to ship a consignment from its origin to its destination. The shipper must pay

for the full truck capacity irrespective of the capacity utilized by the consignment.

The truck does not make stops enroute to load or unload additional loads. TL

transportation is relatively faster and more reliable because of no stops in between

origin and destination. In contrast, LTL is a service for shippers that need only a

small quantity of goods delivered. A LTL shipment is delivered with various other

shipments and is usually not delivered directly to a destination. The cost of less-than-

truckload shipments are less relatively, but since the shipment may make multiple

stops before reaching the final destination, delay may result.

Railroads carry 15% of US freight by value and 7% by volume. Railroads are

generally suitable for large tonnage over long distance. The main commodities trans-

ported by rail includes of ores, coal, automobiles, and farm equipment. In the early

nineteen seventies, railroads started to become a serious player in intermodal and

container traffic. From 1996 to 2006, the rail intermodal share has increased at a rate

of 55.5%. In today’s increasingly global economy, railroads are playing an important

role in the transportation structure as a intermodal transportation leader (Bowersox

et al., 2002).

In summary, intermodal and LTL transportation are most important modes for

freight transportation today and their importance can be realized by the quantity of

freight they carry each year, their contribution to economic wellbeing of the nation

in terms of employment, value addition to the goods, and employment creation.

I.1.2. Consolidation

In freight transportation, the transportation rates generally are specified per hun-

dredweight, and it is a general rule that the larger the shipment, the lower the cost

per hundredweight. Quantity discounts are present in many businesses because of
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better capacity utilization. In internodal and LTL transportation, it is often the case

that the individual load is not large enough to qualify for quantity discount published

in common carrier transportation rates (Bowersox et al., 1986; Ghiani et al., 2004).

Load consolidation or consolidated transportation is a practical tool for combining

loads to exploit the benefits of economies-of-scale and reducing total transportation

costs. The following three types of load consolidation are common.

1. Market Area Consolidation: This type of consolidation involves grouping loads

from customers based on their geographical location and it does not break the

natural flow by changing timing, etc. Variation in daily volume poses a problem

for such consolidation as there may not be enough load in the market area on

a particular day. This problem is overcome by either break-bulk or holding the

consolidation until the scheduled delivery. Another option is to pool delivery

from a third party logistics firm.

2. Scheduled Delivery: This strategy implies delivery on a fixed schedule in the an-

ticipation of desired load consolidation.Railroad are a good example for sched-

uled delivery.

3. Pooled Delivery: Participation in a pooled delivery typically means to utilize

service from a third party provider. This form of delivery is dependent upon

third party and the load may wait for long time while waiting for the the third

party, which may be long, but generally it is shorter than the wait without

pooling the delivery with third party.

We refer the reader to Bowersox et al. (2002) for detailed discussion on consoli-

dation.
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I.1.3. Motivation and Scope of the Dissertation

Due to multiple factors such as globalization, economic growth, and increased de-

mand, in recent years freight transportation has changed in many ways. In the light

of some facts presented above, we summarize the observations that motivated this

dissertation research topic.

1. Freight transportation has increased dramatically with population and economic

growth. Increase in the population has led to an increase in demand, and

globalization has contributed to greater interdependence of economies across

the globe (FWHA, 1998).

2. The average cost for freight has decreased from 16.1% of the GDP in 1984 to

10% of the GDP in 2000. This improvement in productivity can be attributed

to deregulation, investment in infrastructure, technology and the adoption of

more efficient strategic and operational practices. Higher productivity in freight

transportation means that industries are better able to compete in the global

economy (FHWA, 2006b).

3. Today, commitment to service and transit times is of unprecedented importance.

Customers demand more flexible, reliable and timely service. The penalty for

not meeting service quality levels is severe. Issues of reliability, timely service

and service quality are forcing a shift from hub-and-spoke to point-to-point

delivery.

4. Trucking and intermodal transportation together move more than 85% of the to-

tal US freight business. Trucking is the most popular mode accounting for about

78 to 79% of the load, whereas the railroad moves 8% of the nation’s freight bill.
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With the increased interdependence of economies, intermodal transportation is

projected to increase in the future (FWHA, 1998; FHWA, 2006a).

While the facts above show that transportation is important and intermodal and

LTL transportation industries are important for the economy, it also underlines the

immediate need of making the operations more cost efficient in order for the firms to

remain competitive in today’s global economy. In an increasingly competitive market

with shrinking margins, firms are getting increasingly interested in load consolida-

tion to reduce transportation costs. Consolidation, however, requires intermediate

handling and delays. Therefore, the challenge is to reduce costs by consolidation,

and at the same time, to maintain high service quality. In applications such as in-

termodal and LTL transportation, en-route handling, loading, unloading and sorting

may nullify the benefits of consolidation and economies-of-scale, and cause unneces-

sary delays. Therefore, LTL and intermodal transportation industry is shifting from

hub-and-spoke to point-to-point delivery system. Since this area is new, quantitative

models and solution methods are not abundant. As observed by Crainic and Kim

(2005), intermodal transportation is a young area and current models are compara-

tively new. The hub-and-spoke network models are not suitable for addressing the

need of dedicated models for network design problems in the context of intermodal

transportation and LTL transportation problems. The traditional models of LTL and

intermodal transportation use hub-and-spoke and network design type approaches.

These lack one or more of the following:

1. Commodity-based routing decisions.

2. Explicit consideration of economies of consolidation.

3. A special network structure with consolidation and deconsolidation centers.
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4. Single sourcing constraints that force the commodity to flow on a single path

in order to avoid unnecessary operational complexities and delays.

It has become important for freight transportation businesses to develop strategic

plans and achieve higher operational efficiency. This dissertation addresses strategic

and tactical as well as operational level problems to provide a complete solution.

In the next section we define the network in the context of intermodal trans-

portation and LTL transportation, followed by an auxiliary network that is an ab-

stract representation of the actual network and it helps visualize the operations that

we consider in our problems.

I.2. Auxiliary Network Representation

In intermodal and LTL network design, we are given a network with multi-commodity

flows where each commodity is defined by its unique pair of origin and destination

nodes and a known required flow amount. The system is operated in such a way

that the commodities are collected and consolidated into truckloads at consolidation

centers, a linehaul transfer takes place for the consolidated loads, which are decon-

solidated at deconsolidation centers and from there, the commodities are shipped

to their final destinations. Notice that operational characteristics are different than

hub location because the consolidation activity is based on the commodity and not

the physical nodes, and different than traditional network design because it consid-

ers consolidation explicitly and also restricts the flow to use maximum of three arcs

(collection,linehaul transfer, distribution).

Considering a general physical network (e.g., a road network), we observe that

the underlying graph of a multi-commodity flow network under the above described

operational activities (consolidation, linehaul and deconsolidation) can be conceptu-
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alized as three directed graphs concatenated with common node sets to form a 3-part

network where the parts correspond to the interactions within each activity. This

3-part network is an “auxiliary” network, and it provides an abstraction of the gen-

eral physical network for our problem. In order to build the auxiliary network, we

define the following sets: P = {p1, . . . , pN} is the set of required commodity flows.

F={fp1 , . . . , fpN
} and T ={tp1 , . . . , tpN

} represent the sets of nodes representing com-

modity origins and destinations, respectively. The sets J and K are the physical

nodes where the consolidation and deconsolidation activities take place, respectively.

To build the auxiliary network G = (V,A), we introduce three sets of arcs. AFJ ,

AJK and AKT are the sets of all arcs between F and J , J and K, and K and T ,

respectively. The length of an arc either corresponds to the shortest possible path

length represented by this arc on the physical network, or it is specified according

to possible shipment routes. Subsequently, we define three directed bipartite graphs

which we concatenate with overlapping common nodes to form the auxiliary network.

The first such graph is GC(F ∪J , AFJ); the second is GL(J ∪K, AJK); and the third

is GD(K ∪ T , AKT ). Thus, we have V = F ∪J ∪K ∪ T and A = AFJ ∪AJK ∪AKT .

Furthermore, the auxiliary network also includes the set of arcs (fpi
, tpi

), ∀ pi ∈ P ,

which represents possible direct shipments. Note that the nodes in the set F are not

necessarily distinct because one node may be origin of more than one commodities

therefore appearing more than once in the set F . Same holds true for the nodes

in set T . Since a node which is origin for a commodity may be the destination of

another commodity, it is easy to see that the sets F and T may overlap. Similarly,

since a node in physical network may be candidate for consolidation center as well as

deconsolidation center, the sets J and K may also overlap.

An important characteristic of operations in our problem is that, due to the

consideration of possible consolidation and deconsolidation locations on the physical
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network, sets J and K, when a commodity is assigned to a consolidation center, which

refers to a node on the physical network, that center and the commodity’s physical

origin node may coincide. The same situation applies for the destinations as well.

This property implies that commodities originating at the same physical node can

be consolidated at their source. Similarly, commodities destined to the same physical

node can be deconsolidated at their destination.

Another important characteristic is simple yet effective consideration of trans-

portation economies-of-scale realized through TL consolidations using capacitated

trucks. In addition, any fixed costs associated with TL shipments can also be easily

incorporated.

For the linehaul TL shipments between the regional centers, we assume that

the travel follows the shortest path on the physical network or that it is specified

according to possible shipment routes.

I.3. Problem Description

In intermodal and LTL transportation, a company must make the following types of

decisions.

1. Strategic decisions about capital investments such as buildings, facilities and

equipment for loading, unloading and sorting activities. Transportation capac-

ities must be acquired in the form of either owned, rented or a combination of

both.

2. Tactical capacity planning decisions regarding the allocation of trucks on links

and related equipment from either own or third party arrangement. Since the

cost of acquiring capacity on expedited basis is much more than the regular

price; therefore, appropriate capacity planning can help reduce the cost of emer-
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gency capacity acquisition. Other tactical decisions may include planning for

human resources.

3. Operational decisions such as truck-linehaul assignments and commodity-truck-

linehaul assignments as well as other operational constraints.

Obviously, the decision problems at the strategic, tactical and operational levels

are inter-related. Decisions made at the strategic level provide the resources/information

required at the tactical and operational level, and, similarly, decisions made at the

strategic and tactical levels affect operational level decisions.

We first define the problem on a general network and then create an auxiliary

network to develop a corresponding mathematical formulation for the problem. This

abstraction to an auxiliary network, as will become clear, facilitates the develop-

ment of models that explicitly capture economies-of-scale and commodity origin and

destination-based routing requirements. We provide formal descriptions of the prob-

lems that address these three decision levels below.

I.3.1. Strategic Network Design Problem (SNDP)

In SNDP, we have a network with multi-commodity flows where each commodity is

defined by its unique pair of origin and destination nodes and a known required flow

amount. The system is operated in such a way that the commodities are collected

and consolidated into truckloads at consolidation centers, and then a linehaul transfer

takes place for the consolidated loads, which are deconsolidated at deconsolidation

centers and from there, the commodities are shipped to their final destinations. In

order to design a network assuming such operation, several decisions must be made,

which include 1) the locations and capacities of the consolidation and deconsolidation

centers; 2) the linehaul transfer links and their capacities in terms of the number of
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truckload trips between the consolidation and deconsolidation centers, and 3) the

assignment of commodities to consolidation and deconsolidation centers and, in turn,

to transfer links. The costs in the system include collection costs, linehaul transfer

costs, distribution costs, and costs for locating consolidation and deconsolidation

centers. We assume that the capacity installments on linehaul transfer links and at

the consolidation and deconsolidation centers are set in fixed increments. On transfer

links, capacity can be installed with increments of truckload capacity and at centers,

with increments of some base capacity, both with their associated incremental costs.

I.3.2. Tactical Network Design Problem (TNDP)

In TNDP, we consider a network with multi-commodities as described in SNDP. The

decisions to be made are 1) the connections and capacities in terms of the number of

truckload trips between the consolidation and deconsolidation centers, and 2) the as-

signment of commodities to consolidation and deconsolidation centers and, in turn, to

transfer links. The costs in the system include collection costs, linehaul transfer costs

and distribution costs. We assume that capacity installments on linehaul transfer

links can be set in fixed increments of truckload capacity with associated increment

costs. Again, we assume that a commodity can follow only a single route from origin

to destination. Thus essentially, if we fix the center locations in SNDP and do not

consider capacity limitations on them, we obtain TNDP.

I.3.3. Operational Network Design Problem (ONDP)

In ONDP, we have a fleet of trucks in addition to the network and commodity flows.

The system is operated similarly to the one described previously, i.e. consolidation,

linehaul and distribution. Additionally, we allow direct shipments between origin and

destination nodes since this is preferred when the origin and destination nodes of a
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commodity are relatively close, and, thus, consolidation does not make economical

sense. The decisions to be made in ONDP include 1) the assignment of trucks to

linehaul transfer links 2) the assignment of commodities to a truckload shipment

established on transfer links 3) the identification of commodities that are to be shipped

directly.

I.3.4. An Example

For illustration purposes, consider a general physical network with 11 nodes of which

seven (nodes 2, 3, 5, 7, 8, 9 and 10) are candidate centers for consolidation and

deconsolidation depicted by shaded circles in Figure 3. The origins and destinations

of eight commodities are also shown on this network. An example flow of commodities

on the corresponding auxiliary graph is shown in Figure 4. In the context of SNDP,

this example implies that 1) out of the seven possible candidates for consolidation

and deconsolidation, four nodes (2, 5, 8 and 10) have been selected depicted by solid

circles (and capacities installed on them), and nodes 3, 7 and 9, shown by dashed

circles, are not selected; 2) connections and capacities in terms of truckload trips are

depicted by solid arrows 2-10 and 5-8; 3) commodities p1, p2, p6 and p7 are assigned

to collection and distribution centers 5 and 8, respectively, commodities p3, p4 and

p5 are assigned to collection and distribution centers 2 and 10, respectively (which,

in turn implies their assignment to links 2-10 and 5-8, respectively). In the context

of TNDP, this example solution implies capacities on links 2-10 and 5-8, and the

assignment of commodities to linehaul links 2-10 and 5-8 similarly to the method

described for SNDP. In the context of ONDP, the solution implies that commodities

p1, p2, p6 and p7 are shipped via LTL mode to the center at node 5 for consolidation

into a TL shipment that is transferred over a linehaul link to the center at node 8

for deconsolidation; from there, the individual commodities are shipped to their final
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Figure 3 Required Commodity Flows on a Physical Network
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destinations. Similarly, commodities p3, p4 and p5 are consolidated into a TL shipment

and transferred from the consolidation center at node 2 to the deconsolidation center

at node 10. Finally, commodity p8 is sent via direct shipment, which can be justified

by the short distance between fp8 and tp8 , as shown in Figure 3. Note that, in the

case of ONDP, it is assumed that the total commodity flow assigned for TL shipments

is less than the individual truck capacity whereas in case of TNDP and SNDP, we

are only concerned with aggregated capacities i.e., aggregate capacity on each link

should be more than the load assigned on that link. In the context of SNDP, the

shaded circles with dotted outline as shown in Figure 4 represent the candidates

centers for consolidation and deconsolidation, that were not located in the example

solution. ONDP and TNDP do not consider center location, therefore shaded circles

are relevant only in the context of SNDP.
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Figure 4 An Example Routing in the Auxiliary Network
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I.4. Experiment Data and Computational Study

Linehaul consolidated shipments occur more realistically between largely separated

geographical regions; for example, shipments between eastern and western regions of

the continental U.S. or between northern and southern parts of the eastern (or western

or central) U.S. To represent such transportation characteristics in our randomly

generated problem instances, we create two identical squares of size E separated

by a certain fixed distance A (square center-to-square center) horizontally. The left

square consists of only origin nodes and the right square consists of only destination

nodes. We generate an equal number NP of uniformly distributed point coordinates

in each of the squares representing the physical origin and destination nodes. Then,

we randomly select N distinct pairs of these physical origin and destination nodes to

determineN commodities. For each commodity i, we generate its required commodity
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flow wi units randomly using Uniform[0.2, 0.8]. We also select M distinct nodes from

each square to be designated as centers. We employ the Euclidean norm to calculate

the distances. The network generation approach described so far is similar to the

approach used in other LTL network design studies including Amiri and Pirkul (1997);

Balakrishnan and Graves (1989); Muriel and Munshi (2003).

Since the collection process from origin nodes to consolidation centers and the

distribution process from deconsolidation centers to final destinations involve smaller

loads, we consider the case where the shipment at these stages use the LTL (Less-

Than-Truckload) mode of transportation, and thus, the costs are based on the load

amount and the distance. Typically, a constant dollar value per unit per mile of

shipment is used to represent LTL type costs. Note that this also applies to direct

shipments. On the other hand, since consolidated larger loads (truckloads) are trans-

ferred between consolidation and deconsolidation centers, we consider the case where

the shipments at this intermediate stage utilize the TL (TruckLoad) mode, thus, in-

curring per mile full TL costs for this stage. In this case, a constant per mile dollar

value for dispatching a truck is used to calculate the total cost of a shipment between

two centers. In terms of cost parameters, we take LTL type costs, αf , αt and αft, as

1.0, 1.0 and 1.2 per unit per mile, respectively. Since TL type cost β depends upon

the capacity of the truck, to select the β, we use the criterion that a TL shipment be-

comes economical for loads that are equal to or more than 75% of the truck capacity,

i.e., β is given by 0.75× U × αft.

All of the computational studies were performed on a machine with Pentium

D 3.2 GHz CPU with 1.0 GB RAM. The algorithms were implemented using C++

utilizing STL (Standard Template Library) and Concert Technology when CPLEX

was used. Note that, although an attempt was made to write efficient code, the

purpose of comparing the developed algorithms with commercial grade CPLEX is to
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show the efficiency of the algorithms not the implementation. The author does not

claim the code is written as efficiently as commercial grade software, and therefore,

does not rule out the possibility that the performance of the implementation could

be improved to a certain extent.

I.5. Organization of the Dissertation

The dissertation is organized as follows. In Chapter II, we present a brief overview of

the relevant literature on hub location, network design, facility location and service

network design problems. In Chapter III, we develop a model and heuristic solu-

tion algorithms for ONDP, which is a multicommodity flow network design problem

with capacity installments. Chapter IV focuses on a tactical level problem TNDP,

which is a single source capacitated facility location problem with staircase capacities.

We present a model and algorithms for finding the lower and upper bounds for the

TNDP. The algorithmic framework developed in solving the ONDP in Chapter III

is utilized to develop a Lagrangian Heuristic solution method for finding the upper

bounds for TNDP. In Chapter V, we focus on the strategic network design problem,

which now also includes location and capacity decisions about the consolidation and

deconsolidation centers apart from the design of the transportation network. We de-

velop mathematical model and Benders decomposition-based solution for the SNDP.

Finally, in Chapter VI, we conclude with a brief summary of the research results and

a discussion of the potential impact of this dissertation in the future.
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CHAPTER II

LITERATURE REVIEW

Since our problem concerns the design of a distribution network and involves con-

solidation and deconsolidation activities, it naturally relates to the hub location lit-

erature. Since we are interested in routing commodities over a network, the general

area of network design is also relevant. Furthermore, due to the specific application

area, studies in logistics service network design and load planning are also within our

scope. Finally, since each linehaul link can also be considered as a facility, our prob-

lem is related to capacitated facility location problems. Below, we provide a rather

macroscopic literature review highlighting and discussing the content in each relevant

area.

II.1. Hub Location

Hub location problems are concerned with locating hubs and assigning the nodes of a

physical network to these hubs in such a way that the total cost of the fixed hub loca-

tions and transportation are minimized over the network. An example hub location

Figure 5 Hub Location Problem
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problem is shown in Figure 5. In Figure 5, small circles represent clients that need

to be assigned to hubs indicated by large circles. Notice that the subgraph induced

by the hubs is complete. Generally, the transportation cost for inter-hub transfer is

discounted (due to the economies-of-scale for inter-hub transfers) which provides the

motivation for locating hubs. “Hub” is a general term used to refer to location or

a point where a commodity or information from several sources gets consolidated to

go either to another hub or to its final destination. Common examples are hub and

spoke network in air transportation, LTL transportation, and telecommunications.

We refer the reader to Campbell (1994), Campbell et al. (2002) and O’Kelly and

Miller (1994) for exhaustive surveys of the hub location literature.

There are several variants of hub location problems, such as the single/multiple

allocation hub location problem, the capacitated or uncapacitated hub location prob-

lem, and the p-hub location problem. Also, there may, or may not, be a fixed charge

for locating the hubs. We refer the reader to O’Kelly and Miller (1994) who develop

a hub network classification system based on characteristics of service nodes, hubs

and arcs.

Different models are motivated by different applications, and below we present a

generic model for a capacitated single allocation hub location problem adapted from

Ernst and Krishnamoorthy (1999) with some notational changes.

II.1.1. The Model

We will use the notation given below to describe the mathematical formulation. Let

I = {1, . . . , n} be the set of nodes and H = {1, . . . ,m} be the set of candidate hub

locations in the network.

Decision Variables:
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zij 1 if a node i is allocated to the hub located at node j,0 o.w.

zkk 1 if a node k is selected as a hub, 0 o.w.

yikl total flow emanating from node i routed between hubs k and l.

Parameters:

wij flow between nodes i and j.

dij the distance between nodes i and j.

Oi

∑

j∈I wij

Di

∑

j∈I wji

fk fixed cost of locating hub at k.

bk capacity of hub k.

Objective and Constraints:

Min
∑

i∈I

∑

k∈H

dikzik(χOi + δDi) +
∑

i∈I

∑

k∈H

∑

l∈H

αdkly
i
kl +

∑

k∈H

fkzkk (2.1)

subject to

∑

k∈H

zik = 1 ∀ i ∈ I (2.2)

zik ≤ zkk ∀i ∈ I , k ∈ H (2.3)

∑

k∈H

yikl −
∑

l∈H

yikl = Oizik −
∑

j∈I

Wijzik ∀i ∈ I , k ∈ H (2.4)

∑

i∈I

Oizik ≤ bkzkk ∀k ∈ H (2.5)

zik ∈ {0, 1}
n ∀i ∈ I , k ∈ H (2.6)

yikl ≥ 0 ∀i ∈ I and k, l ∈ H (2.7)
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In the objective function given by expression (2.1), the first term represents the

total transportation cost for the collection and distribution operations and the second

and third terms represent the total transportation cost for the inter-hub transfers and

the fixed cost of locating the hubs, respectively. Constraint set (2.2) ensures that each

commodity is assigned to exactly one hub. Constraints set (2.3) ensures that a hub is

located if the node is assigned to itself, and constraint set (2.4) ensures flow conserva-

tion at the hubs and constraint set (2.5) implies capacity restriction. Constraint sets

(2.6) and (2.7) impose standard binary restrictions and non negativity restrictions

on decision variables z and y respectively. The parameters χ, δ, α represent the per

unit per mile cost of transportation for collection, distribution and inter-hub transfer.

Generally, the inter-hub costs are discounted, i.e. α < χ and α < δ. Depending

upon the application, there may be restriction on the maximum number of hubs a

commodity can visit before it reaches its destination. There are several alternate

formulations for various hub location problems and we refer the reader to Campbell

(1994) for details. We do not cover the p-Hub median problem in which the number

of hubs to be located is pre-specified. However, it can be included in the formulation

presented above.

Among the several hub location problems, uncapacitated and capacitated hub

location problems have received more attention from the research community and

are also relevant to our problem. Hub location problems are in general very difficult

to solve, significantly more difficult than the classical facility location problem. As

observed by Campbell (1994), even a 50 node and 5 hub problem can pose a significant

solution challenge. Further the capacitated models are significantly more challenging

than the uncapacitated ones. Although it is possible to obtain exact solutions to

small problems, researchers have turned to heuristics for the solution of large size

problems.
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Traditional hub location models assume a complete subgraph formed by arcs

between the hubs. According to Campbell et al. (2005a), this assumption imposes a

topological and cost structure that may not be desired or realistic in many settings

such as LTL network design. They propose a new model called the hub arc location

model to overcome the restrictions due to the assumptions. In the first part, they

introduce this new model, and examine four special cases in detail. In a companion

paper, Campbell et al. (2005b) provide an integer programming formulation for hub

arc problems and solution algorithms.

Our problems TNDP and ONDP, however, do not involve hub (or center) lo-

cation decisions. Further, in all three levels of problems ONDP, TNDP and SNDP-

we consider explicit commodity-based routing decisions, which is not the case in hub

location problems. More specifically, we are interested in assigning commodities to

consolidation and deconsolidation centers as opposed to hub location problems where

the assignment of a node to a hub implicitly determines the assignment of the com-

modities originating from, or destined to, a particular node to that hub. Third,

we explicitly consider capacity issues on transfer links by incorporating the assign-

ment of capacitated trucks to linehaul links and the assignment of commodities to

these trucks. Finally, in hub location models, the transportation costs between hubs

typically involve the use of discounted per unit per mile costs. In our case, we con-

sider consolidation into TL shipments and the associated costs explicitly. Therefore,

despite operational similarities, the problems considered in this dissertation have fun-

damental differences from the hub location problems, and these differences hinder the

efficient use of the modelling and solution approaches devised for these problems.
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II.2. Fixed Charge Network Design

Another area related to our problem falls under the general heading of multi-commodity

flow network design problems or freight transportation problems.

PSfrag replacements
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Figure 6 Fixed Charge Network Design Problem

In the general network design problem, given a set of nodes, a set of arcs between

nodes, and the flow required from origin to destination (as shown in Figure 6), the

problem is to design the network so as to route the flows at minimum cost. There are

many variations of this problem, such as directed or undirected and capacitated or

uncapacitated arcs. In the example shown in the Figure 6, commodity 1 is originating

at a node labelled as o1 and destined to node d1 and commodity 2 is originating at a

node labelled as o2 and destined to node d2. In the example solution, arcs shown by

solid bold lines suggest the designed network for routing the commodities.

Multi-commodity flow network design models, or freight transportation stud-

ies, generally began to appear in the 80’s, after the deregulation of transportation
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services in the United States when a severely competitive environment forced the

common-carriage companies to search for ways to improve the efficiency of their op-

erations. Early studies (Powell and Sheffi, 1983; Magnanti and Wong, 1984; Crainic

and Rousseau, 1986; Powell, 1986; Delorme et al., 1987; Lamar and Sheffi, 1987; Pow-

ell and Sheffi, 1989; Braklow et al., 1992) were mostly practical cases that provided

theoretical insight and an introduction to the general network design area, generally

in the context of freight transportation. We note that almost all of the studies in this

area are concentrated on problems related to the carrier’s perspective and heavily fo-

cused on the routing of the flow on a given system (network loading) (Crainic, 2000).

There are two mainstream equivalent formulations for network design/arc loading

models : arc-based and path-based. In the former, the decisions relate to which arcs

should be created and how the commodities should be assigned to these arcs. In most

of these studies, commodities can be bifurcated so that portions of the commodity

can follow different routes from origin to destination. In the latter, all of the possible

paths for the commodities are considered as decision variables. There are primarily

two classes of problems utilizing these formulations. Uncapacitated network design

models concern the routing of multi-commodity flows over general networks where

there are fixed charges associated with each arc (Ahuja et al., 1993; Balakrishnan

et al., 1989; Barnhart et al., 2000; Crainic, 2000; Crainic and Laporte, 1997; Eck-

stein and Sheffi, 1987; Farvolden and Powell, 1994; Lamar et al., 1990; Rardin and

Choe, 1979; Rardin, 1982). Concave arc cost models are considered in some stud-

ies (Amiri and Pirkul, 1997; Balakrishnan and Graves, 1989; Croxton et al., 2003b;

Minoux, 1989). Capacitated models, attracted the attention of researchers only re-

cently (Agarwal, 2002; Atamtürk, 2002a,b; Crainic et al., 2000; Magnanti et al., 1993,

1995). These works are usually motivated by telecommunication applications where

communication lines with different capacities must be considered in designing the
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networks. Recent reviews of general network design and the freight transportation

area can be found in (Crainic, 1999, 2000; Crainic and Laporte, 1997; Gendron et al.,

1998; Minoux, 2001); also see Dell’Amico et al. (1997) for an extensive bibliography.

We note that, with the exception of a few studies found in the network design liter-

ature (Crainic et al., 1990; Guelat et al., 1990), almost all of the other studies are

related to tactical planning or minimum cost flow problems.

II.2.1. The Models

The network design problem can be formally described as follows. In the general

network design problem, given a set of nodes, a set of arcs between nodes, and the

flow required from origin to destination, the problem is to design the network to route

the flows at minimum cost. We use the formulation provided in Crainic (1999). Given

a network G = (N ,A), where N is a set of nodes, and A a set of arcs and let P

be the set of commodities and let i, j be the node indices, p the product index, and

let (i, j) represent an arc between nodes i and j. There are two main variations of

formulations used to model the network design problem, arc-based and path-based

formulation. Rardin and Choe (1979) compared arc-based and path-based models

and they found out that in capacitated case, none of them has stronger formulation

than the other, however in uncapacitated case, arc-based formulation provides better

LP-relaxation. Below we describe both models.



26

Arc Based Formulation

Parameters:

fij fixed cost of using the arc i, j

cpij transportation cost per unit per mile for commodity p on arc (i, j)

uij capacity of arc (i, j)

dpi demand of product p at node i.

Decision Variables:

yij 1 if arc (i, j) is used, 0 otherwise,

xpij amount of flow of commodity p using arc (i, j)

Objective and Constraints:

Min
∑

(i,j)∈A

∑

p∈P

cpijx
p
ij +

∑

(i,j)∈A

fijyij (2.8)

subject to

∑

j∈N

xpij −
∑

j∈N

xpji = dpi ∀i ∈ N , p ∈ P . (2.9)

∑

i∈P

xpij ≤ uij yij ∀(i, j) ∈ A. (2.10)

yjk ∈ Z
+, and xpij ≥ 0 ∀p ∈ P , (i, j) ∈ A. (2.11)

Let wp be the total demand for the product p; then dpi is given by:

dpi =























wp if node i is the origin of commodity p,

−wp if node i is the destination of commodity p,

0 otherwise.
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In the objective function given by expression (2.8), the first term represents the total

flow cost and the second term represents the total fixed cost of opening fixed-charge

arcs. Constraint set (2.9) ensures that each commodity is shipped from its origin

to its destination. Constraint set (2.10) ensures that for each arc (j, k), the total

weight of the commodities assigned does not exceed the capacity installed on that

link. Constraint set (2.11) imposes an integrality restriction on decision variables y

and a nonnegativity restriction on decision variables x.

Path Based Formulation

The equivalent path based formulation can also be developed as follows.

Parameters:

Lp set of paths for commodity p,

hlp flow of commodities p on path l,

klp transportation cost of commodity p on path l given by
∑

(i,j)∈A c
p
ijδ

lp
ij ,

Decision Variables:

yij 1 if arc (i, j) is used, 0 otherwise,

δlpij 1, if arc (i,j) belongs to path l for commodity p, 0 otherwise

Then, the problem can be formulated as follows:

Min
∑

l∈L

∑

p∈P

kpl h
p
l +

∑

ij∈A

fijyij (2.12)
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subject to

∑

l∈Lp

hpl = wp ∀p ∈ P . (2.13)

∑

l∈L

∑

p∈P

hpl δ
lp
ij ≤ uij yij, ∀(i, j) ∈ A. (2.14)

yjk ∈ Z
+, ∀(i, j) ∈ A (2.15)

hpl ≥ 0, ∀p ∈ P , l ∈ Lp (2.16)

In the objective function given by expression (2.12), the first term represents the total

flow cost and the second term represents the total fixed cost of opening fixed-charge

arcs. Constraint set (2.13) ensures that each commodity is shipped from its origin to

its destination. Constraint set (2.14) ensures that, for each link (j, k), the total weight

of the commodities assigned does not exceed the capacity installed on that link. The

constraint sets (2.15) and (2.16) impose an integrality restriction on decision variable

y and a nonnegativity restriction on decision variables h, respectively.

II.2.2. Solution Methods

There are efficient procedures for solving the uncapacitated problem; the capacitated

case, however, poses algorithmic and solution challenges. The presence of capacities

makes the problem more difficult to solve, and sometimes even obtaining a feasible

solution is a significant challenge (Gendron et al., 1998). The research approaches

can be categorized into simplex based cutting plane methods, Lagrangian relaxation

, Benders decomposition, and heuristics.

Each approach has its own advantages and disadvantages. The simplex based

approaches can utilize the efficient codes that are now available for solving LPs and

hence provide good lower bounds. However, simplex based approaches do not exploit
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the special network structures that might be useful, and sometimes the LPs might

be highly degenerate (Bienstock and Günlük, 1996). Moreover as the LP becomes

large, memory becomes a bottleneck in solving real life problems. On the other

hand, Lagrangian approach exploits the problem structure and facilitates heuristic

design but sometimes it is very difficult to solve the lagrangian dual. Lemaréchal

(1989) and Rardin (1982) used dual ascent and sub-gradient optimization to solve

the resulting lagrangian dual. Their results are shown for only the uncapacitated

case, however an excellent comparison of the strengths of the various lagrangian

relaxations for capacitated problems is presented in Gendron et al. (1998) where

they also describe an efficient procedure based on resource-decomposition principles

for identifying feasible good quality solutions. Holmberg and Yuan (2000) obtained

good results by combining a lagrangian relaxation based heuristic with branch and

bound. Bienstock and Günlük (1996) and Magnanti et al. (1995) provide an insight

into the use of cutting plane algorithms for solving multi-commodity capacitated flow

problems. Recently Crainic et al. (2001) have shown the effectiveness of a combined

approach based on the Lagrangian relaxation method and bundle methods. They

suggest that such judicious combinations are desirable for adaptation into a parallel

computing environment.

The Benders decomposition method is based on the idea of decomposing the

problem in two subproblems namely a master problem and a subproblem, in which

the solution of the latter is utilized to generate a cut for the master problem which is

repeated until some predetermined termination condition is met. Benders decomposi-

tion has been successfully applied to many of these problems, and we refer the reader

to a review by Costa (2005). Finally, since we are considering large NP Hard prob-

lems, certainly heuristics are useful to solve comparatively large instances of these

problems (Gendron et al., 1998)
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Similarly to the network design problem, the commodity flows in our problem

are also routed via capacitated arcs. However, the problem at hand distinguishes

itself from the general network design problems in the sense that it considers the

consolidation and deconsolidation activities explicitly. In addition, the transportation

costs on the transfer links from the consolidation centers to deconsolidation centers

is not linear, but a step function of the quantity being transferred. In other words,

these transfer links can have multiple FTLs (Full Truck Loads) installed. Further, as

opposed to network design problems, our problem has a structure that requires use

of, at most, three arcs or direct shipments which is not the case in general network

design problems.

II.3. Facility Location

Industry and government are both faced with location decisions such as how many fa-

cilities to create, where to locate them, how large they should be, and what customers

to assign to which facility? Location decisions have an impact on the service quality

and the cost of service, which are two most important decisions for any industrial or

governmental entity. Some typical applications of location problems are warehouse

location, plant location, hospital /school/fire station location problems. Depending

upon the application, there are a number of traditionally studied problems. We refer

the reader to the well-known text books on the subject by Francis et al. (1992), Love

et al. (1988) and Daskin (1995).

A rich literature exists on a number of location problems, both continuous and

discrete. However, we will review only discrete location problems as they are relevant

to our problems. In all of the discrete facility location problems, the set of possible

facility locations on a network and the set of customers are given as shown in Figure
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Figure 7 Facility Location

Facility

Customer

7. Usually there are fixed costs associated with opening a facility and variable costs

associated with the use of the facility. Customer demands are to be satisfied from the

selected facilities. There are transportation costs associated with the transportation

of goods from facilities to the customers.

The simplest facility location problem is to select a set of locations from a set

of potential locations to set up facilities such that every client’s demand is satisfied

by one or more facilities. The problem is called as uncapacitated or capacitated

problem depending on whether facilities are assumed to have unlimited or limited

capacities. Below we review model formulation for these two cases. For notation, let

I = {1, . . . , n} be the set of potential facility locations, and J = {1, . . . ,m} be the

set of clients.
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II.3.1. Uncapacitated Facility Location Problem

In uncapacitated facility location problem (UFLP) there is no restriction on the num-

ber of clients a facility can serve. The following is a mixed integer programming (MIP)

formulation (Daskin, 1995).

Parameters:

cj cost of placing a facility at location j.

hij total cost of satisfying demand of client i from a facility at j.

Decision Variables:

xj 1 if a facility is placed at location j, 0 otherwise.

yij fraction of the demand of client i that is satisfied by facility at j

Objective and Constraints:

min
∑

j∈J

cjxj +
∑

i∈I

∑

j∈J

hijyij (2.17)

subject to

∑

j∈J

yij = 1 ∀i ∈ I (2.18)

yij ≤ xj ∀i ∈ I, j ∈ J (2.19)

x ∈ {0, 1}n , y ∈ R
mn
+ (2.20)

The first term in the objective function (2.17) represents the fixed cost of locating

the facilities, whereas the second term is total cost of serving the clients. Constraint

(2.18) ensures that every client’s demand is exactly met and constraint (2.19) ensures

that a client i is not served from a location j if a facility is not placed in that location
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(xj = 0).

The UFLP belongs to the class of NP-Hard problems. Several solution methods

including heuristic, implicit enumeration, and dual based have been investigated for

UFLP. UFLP is one of the most important classical location problems because it

appears as a subproblem or special case of other problems. A complete review of the

literature is beyond the scope of this work. Therefore, we refer the reader to Daskin

(1995) and Cornuejols et al. (1990) for discussion of the various solution approaches

for UFLP including ADD-DROP heuristic, Lagrangian and Dual based approach

(Erlenkotter, 1978).

II.3.2. Capacitated Facility Location Problem

A natural extension of the UFLP is obtained by considering capacity restrictions on

the facilities. The capacitated facility location problem (CFLP) involved selecting a

set of locations from a set of potential locations in order to set up facilities that

have a fixed capacity depending on where they are located. Every client has a fixed

demand that is satisfied by one or more facilities. The objective is to minimize facility

placement costs and client service costs, subject to location and capacity constraints.

The following is a mixed integer programming (MIP) formulation (Daskin, 1995).

Parameters:

uj capacity of a facility located at j.

bi total demand of client i.

cj cost of placing a facility at location j.

hij total cost of satisfying demand of client i from a facility at j.
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Decision Variables:

xj 1 if a facility is placed at location j, 0 otherwise.

yij fraction of the demand of client i that is satisfied by facility at j

Objective and Constraints:

min
∑

j∈J

cjxj +
∑

i∈I

∑

j∈J

hijyij (2.21)

subject to

∑

j∈J

yij = 1 ∀i ∈ I (2.22)

∑

i∈I

biyij ≤ ujxj ∀j ∈ J (2.23)

∑

j∈J

ujxj ≥
∑

i∈I

bi (2.24)

yij ≤ xj ∀i ∈ I, j ∈ I (2.25)

x ∈ {0, 1}n , y ∈ R
mn
+ (2.26)

In the formulation above, the first term in the objective function (2.21) repre-

sents the fixed cost of locating the facilities whereas the second term is the total cost

of serving the clients. Constraint (2.22) ensures that every client’s demand is exactly

met. Constraint (2.23) ensures that no client is served from a location j if a facility

is not placed in that location (xj = 0), and total service is only up to its capacity if a

facility is placed. Constraint (2.24) specifies that the total capacity should be at least

equal to total demand. It is called a surrogate constraint since it can be obtained

by summing constraint (2.23) over all facilities. Constraints (2.25) are disaggrega-

tion constraints; although redundant in the formulation, they may tighten certain
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relaxations.

CFLP belongs to the class of NP-Hard problems and is a well studied classical

facility location problem. Several methods including heuristics, Lagrangian relaxation

(Agar and Salhi, 1998), Branch and Bound (Akinc and Khumawala, 1977), Benders

decomposition (Davis and Ray, 1969; Wentges, 1996) and a combination of Benders

and Lagrangian based cross decomposition (Roy, 1986) have been suggested for the

solution of CFLP. Reviewing the complete literature is beyond the scope of this

dissertation; however we refer the reader to reviews by Beasley (1993), Magnanti and

Wong (1986) and Sridharan (1995).

CFLP can be extended in various ways to capture different business practices and

we present below the literature related to two extensions which are are relevant to our

problem. The first extension is known as Single Source Capacitated Facility Location

(SSCFLP) in which a customer is restricted to assignment to exactly one facility. In

another extension known as CFLP with modular capacity, for each potential facility

location, there is a finite and discrete set (modules) of allowable capacities, and the

objective is to choose the subset of facilities that satisfy the demand at minimum

cost. We will show later that our problem ONDP is related to SSCFLP and that

TNDP is related to SSCFLP with modular capacities. CFLP, where customers are

allowed to be serviced by multiple facilities, is related to our problem SNDP.

The SSCFLP belongs to the class of NP-Hard problems. This problem has got-

ten the attention of the research community because of its applicability to a number

of practical scenarios and because of the algorithmic challenges involved. For the SS-

CFLP, three solution approaches have been explored in the literature: Lagrangian re-

laxation (LR), exact methods, and heuristics. The Lagrangian relaxation approaches

differ from each other in terms of the sets of constraints that are relaxed, the asso-

ciated subproblem solution methods and methods of obtaining upper bounds. We
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refer to Barcelo and Casanovas (1984); Hindi and Pienkosz (1999); Holmberg et al.

(1999); Pirkul (1987) and Sridharan (1993) for LR approaches that relax the assign-

ment constraints, to (Klincewicz and Luss, 1986) for a LR approach that relaxes the

capacity constraint, and to (Agar and Salhi, 1998; Beasley, 1993) for LR approaches

that relax both the capacity and assignment constraints. Recently, Cortinhal and

Captivo (2003) suggest the use of tabu search in an LR framework to obtain fea-

sible solutions as upper bounds. However, obtaining and keeping the feasibility in

upper bounds calculations still appears to be a challenging issue. As reported in the

above literature summary, relatively small instances have been solved effectively. The

number of attempts to solve the SSCFLP using exact methods have been few which

is not surprising as the problem belongs to the class of NP-hard problems. Neebe

and Rao (1983) model the SSCFLP as a set partitioning problem and develop a col-

umn generation based branch-and-bound method. Holmberg et al. (1999) develop

a repeated matching and Lagrangian based branch-and-bound algorithm. Diaz and

Fernandez (2002) suggest a branch-and-price framework. Finally, in terms of heuris-

tic approaches, Ahuja et al. (2004) develop a very large scale neighborhood (VLSN)

search algorithm which is used in a multi-start framework with the initial solutions

generated by the LR approach given by Holmberg et al. (1999). Delmaire et al. (1999)

suggest a reactive greedy randomized adaptive search procedure coupled with a tabu

search approach. The computational studies reported in these studies span relatively

small sized problems, and particularly, as is generally the case in location problems,

consider instances in which the number of potential locations is significantly fewer

than the number of customers.
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II.4. Service Network Design

Service network design is important for the success of express shipment businesses.

Express shipment carriers must operate on a distribution network that enables them

to satisfy customer demand with pick-up and delivery times within tight time win-

dows at a minimum cost. Various forms of express shipment service network design

problem have been studied. Kuby and Gray (1993) develop a capacitated, single-

hub formulation for an express shipment problem for FedEx. Grünert and Sebastian

(2000) identify activities in postal and express shipment planning operations and

define corresponding optimization problems. Barnhart and Schneur (1996) present a

model for express shipment and suggest a column generation based solution approach.

Barnhart et al. (2002) develop a modelling framework for an express shipment deliv-

ery network design problem. They decompose the problem into a route generation

problem that is solved using a branch-and-price-and-cut approach and a shipment

movement problem that is solved with a branch-and-price approach and then suggest

an iterative approach to solve the overall problem. Armacost et al. (2002) develop a

composite variable formulation that provides stronger bounds, along with the flexibil-

ity to handle operational constraints, that make conventional formulation intractable.

Based on this approach, in Armacost et al. (2004), they develop a system to solve an

express shipment delivery network problem for UPS.

Load planning in service network design consists of determining how to route

small shipments over a network to minimize the transportation cost while maintaining

service levels (Powell and Sheffi, 1983). Powell (1986) formulates the LTL network

design problem as a fixed-charge network design problem where the levels of service

constraints are represented heuristically. He suggests a local improvement heuristic

for problems involving over 300 terminals. Powell and Sheffi (1989) combine and
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extend these studies to develop an interactive system for network design in the motor

carrier industry. Lamar and Sheffi (1987) develop a lower bound for this problem and

suggest a solution scheme using a link-inclusion heuristic in an implicit enumeration

framework. Lapierre et al. (2004) provide a model that addresses the case where there

is at most one center on the route of a commodity from its origin to its destination,

and they suggest tabu and variable neighborhood search approaches. We note that

these authors consider only a single stop for each commodity whereas in our study

we consider consolidation and associated truck capacity issues explicitly.

Leung et al. (1990) present a problem motivated by point-to-point delivery ap-

plications similar to ours. They present a mixed-integer non-linear formulation and

a solution heuristic that decomposes the problem into two smaller subproblems. The

first subproblem assigns the origin-destination pairs to the first and last centers on

their route so that the implied flows between the center pairs are determined given

these assignments and flow requirements, the second subproblem determines the min-

imum cost routing for center pairs. This is achieved in such a way that, for each

center pair, the flow follows a single path but may visit multiple other centers sub-

ject to processing costs, and the flow may be split to different trucks on each of the

paths it follows. Problems considered in this dissertation are motivated by exploiting

economies-of-scale via consolidation, at the same time, avoiding delays and processing

costs once the consolidation are formed. Therefore, at all three levels, we consider the

consolidation of commodities into truckloads (truckload-trip in TNDP and SNDP),

once formed, follows the shortest path, or some other preferred path, on its transfer

between centers without further processing. In comparison to their decomposition

based solution approach, our approach is different. In our case, we define the prob-

lem in three different levels of decision making; operational, tactical and strategic

levels, and consider only the decision variables that are relevant to the particular
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planning horizon. Defining problems based on planning horizon allows us to exploit

the problem structure and develop dedicated models and solution methods.

Relatively recent reviews in these areas appear in Crainic (1999, 2000) and in

Campbell (2005).

II.5. Summary and Conclusions

In this chapter we presented a review of literature relevant to the problems addressed

in this dissertation. The relevant literature can be classified in four categories, hub

location, network design, facility location and service network design. Since our

problem concerns the design of a distribution network and involves consolidation

and deconsolidation activities, the hub location literature is naturally relevant to us,

and since we are interested in routing commodities over a network, the general area

of network design is also relevant. Furthermore, since each linehaul link can also

be considered as a facility, and we consider center location decisions in TNDP, our

problems are also related to facility location problems. Finally, due to our specific

application area, studies in logistics service network design and load planning are also

within our scope.

Hub location problems are related to our problem because of operational similar-

ity as both are motivated by scale-economies derived from consolidation of loads. In

this chapter, we presented a problem description and a representative mathematical

model. We reviewed some of the solution methods and discussed the distinguishing

features of our problems that preclude application of the hub location models and

solution methods.

Since our problems involve routing the commodity flow on a network, we also

presented literature review related to multicommodity network design problem.We
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gave a formal description of the problem followed by arc-based and path-based for-

mulations. We discussed various solution methods for capacitated and uncapacitated

versions of the problems. Since our problem models consolidation related activities

explicitly, and has step function type cost for using transfer links, network design

models are not suitable for our problem.

Since, in SNDP we address location decision related to consolidation and decon-

solidation centers, and in ONDP and TNDP, the line-haul link can be considered as a

facility, facility location literature is relevant to us. We presented models for uncapac-

itated and capacitated facility location problems and discussed extensions of CFLP,

SSCFLP and SSCFLP with staircase capacity, that are related to our problem.

Furthermore, due to the specific application area, studies in logistics service net-

work design and load planning are also within our scope. We reviewed several papers

that focus on various applications in that area. Finally, since each transfer link can be

considered to be a facility and the commodity as a customer, therefore we presented

problem description, uncapacitated, capacitated and single source capacitated facility

location problems formulations and their solution algorithms.

In the light of the discussion of related literature, we observe that the traditional

models of LTL and intermodal transportation use hub-and-spoke and network design

type approaches which lack one or more of the following:

1. commodity based routing decisions.

2. explicit consideration of economies of consolidation.

3. a special network structure with consolidation and deconsolidation centers.

4. single sourcing constraints that forces the commodity to flow on a single path

in order to avoid unnecessary operational complexities and delays.
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In the following chapters, we will present dedicated models and solution algo-

rithms for the problems described in the previous chapter.
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CHAPTER III

OPERATIONAL NETWORK DESIGN PROBLEM

In ONDP, we are given a network with multi-commodity flows where each commodity

is defined by its unique pair of origin and destination nodes and a known required flow

amount. The system is operated in such a way that the commodities are collected

and consolidated into truckloads at consolidation centers, a linehaul transfer takes

place for the consolidated loads, which are deconsolidated at deconsolidation centers

and from there, the commodities are shipped to their final destinations. In addition

to the network and commodity flows, we are also given a fleet of trucks . Additionally,

we allow direct shipments between origin and destination nodes since this is preferred

when the origin and destination nodes of a commodity are relatively close, and, thus,

consolidation does not make economical sense. The decisions to be made in ONDP

include

1. the assignment of trucks to linehaul transfer links

2. the assignment of commodities to a truckload shipment established on transfer

links

3. the identification of commodities that are to be shipped directly

Such multi-commodity distribution network design problems appear frequently

in various logistical applications where there is a significant flow of entities such as

raw material, work-in-process, finished products, parcels/packages, information or

passengers.

Under these operational and configurational characteristics, our purpose is to

determine the linehaul links between the regional centers (consolidation and decon-

solidation centers), the number of trucks assigned to each linehaul link, and the
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routing and consolidation of commodities so that the total cost of transportation is

minimized. The total cost has four components: the costs of collection, distribution,

linehaul transfer from consolidation to deconsolidation centers, and direct shipments.

The remainder of this chapter is organized as follows. Next, in Section III.1, we

develop a binary integer program formulation for our problem. In Section III.2, we

describe the basic ingredients of the heuristic solution approaches in detail, including

our compound neighborhood functions. In Section III.3, we present three algorithmic

frameworks including local search, simulated annealing, and tabu search, where, in

each approach, we employ a solution neighborhood exploration strategy that relies

on branching based on solution representation characteristics. In Section III.4, we

present the results of our computational tests regarding the performance of the ap-

proaches and, in Section III.5, we provide a summary of our conclusions and future

research directions.

III.1. The Model

In order to develop a mathematical formulation of our distribution network design

problem by utilizing the auxiliary graph as described on page 8, we define the following

additional notation.
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Parameters:

wi the amount of flow for commodity pi

U capacity per full TL for long-haul transfers

β full TL transportation cost per mile between J and K

αf LTL transportation cost per unit per mile between F and J

αt LTL transportation cost per unit per mile between K and T

αft LTL transportation cost per unit per mile between F and T

dfij distance between fpi
and consolidation center j

dtki distance between deconsolidation center k and tpi

djk distance between centers j and k

dfti direct shipment distance for commodity pi

L set of linehaul trucks (TL shipments), l = 1, . . . , |L|

Decision Variables:

zijkl 1 if commodity pi is assigned to TL l ∈ L installed on linehaul link (j, k), 0 o.w.

yjkl 1 if TL shipment l is assigned to the linehaul link (j, k), 0 o.w.

si 1 if commodity pi is shipped directly from its origin to its destination , 0 o.w.

Then, the problem can be formulated as follows:

Objective and Constraints:

Min
∑

i∈P

∑

j∈J

∑

k∈K

∑

l∈L

wi (α
f dfij+α

t dtki) zijkl+
∑

j∈J

∑

k∈K

∑

l∈L

β djk yjkl+
∑

i∈P

αftwi d
ft
i si

(3.1)
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subject to

∑

j∈J

∑

k∈K

∑

l∈L

zijkl + si = 1 ∀ i ∈ P (3.2)

∑

i∈P

∑

j∈J

∑

k∈K

wi zijkl ≤ U
∑

j∈J

∑

k∈K

yjkl ∀ l ∈ L (3.3)

zijkl ≤ yjkl ∀ i ∈ P , j ∈ J , k ∈ K, l ∈ L (3.4)

∑

j∈J

∑

k∈K

yjkl ≤ 1 ∀ l ∈ L (3.5)

∑

j∈J

∑

k∈K

yjk(l+1) ≤
∑

j∈J

∑

k∈K

yjkl, l = 1, . . . , |L| − 1 (3.6)

zijkl, si, yjkl ∈ {0, 1} ∀ i ∈ P , j ∈ J , k ∈ K, l ∈ L (3.7)

In the objective function given by expression (3.1), the first term represents the

total transportation cost for collection and distribution operations in graphs GC(F ∪

J , AFJ) and GD(K ∪ T , AKT ), respectively; the second term represents the total

transportation cost for linehaul transfers using TL shipment in GL(J ∪ K, AJK);

and the third term represents the total transportation cost for commodities shipped

directly from their origins to their destinations. Constraint set (3.2) states that each

commodity is either included in a TL shipment or shipped directly. Constraint set

(3.3) ensures that the total weight of the commodities assigned to a TL shipment

does not exceed the capacity of a truck. We estimate the maximum size of the

set L as d
∑

i∈P wi/(0.75 U)e which is obtained by assuming that, on average, 75%

full TLs justify consolidated shipments. While this estimate is conservative, in our

numerical studies, we observe that the set L is never exhausted. Constraint set (3.4)

ensures that a commodity can be assigned to a TL shipment on a particular linehaul

transfer link only if this link has that TL installed on it. This constraint, although
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redundant since it is implied by the previous constraint, helps greatly in obtaining

better lower bounds when linear programming relaxation is used in a branch-and-cut

framework. Constraint set (3.5) ensures that each potential TL is assigned to, at

most, one linehaul transfer link. Constraint set (3.6) helps to reduce the symmetry in

allocating linehaul trucks to transfer links and constraint set (3.7) imposes standard

binary restrictions on the decision variables.

Notice the simple, yet effective consideration of transportation economies-of-scale

realized through TL consolidations using capacitated trucks. In addition, any fixed

costs associated with TL shipments can also be easily incorporated into the second

term of the objective function.

For the linehaul TL shipments between the regional centers, we assume that the

travel follows the shortest path on the physical network or that it is specified according

to possible shipment routes. For the latter case, which can provide more realistic

estimates of center-to-center (for consolidated linehaul) routes, one needs to observe

several operational considerations faced by the TL transportation industry. These

issues include, among others, driver turnover rates, empty dispatch mileage, and

additional circuitry caused by splitting direct routes into segments. A mathematical

model that incorporates these issues and an efficient solution procedure that addresses

network design for multi-zone dispatching in the TL industry is given in Üster and

Maheshwari (2007).

Our problem is also related to the single-source capacitated facility location prob-

lem (SSCFLP) where the latter is a special case of our problem. In SSCFLP, given

the potential facility locations with known capacities, the objective is to minimize the

total cost of location and transportation while satisfying customer demands in such a

way that each customer is assigned to a single facility. A solution to our problem con-

sists of some commodities being assigned to TL shipments on linehaul transfer links
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and the remaining commodities, if present, being shipped via direct shipments. One

can view a potential TL shipment on a transfer link as a capacitated facility and the

commodities as the customers. In order to model the direct shipments, we can create

a pair of dummy consolidation-deconsolidation centers for each commodity and define

the cost of assigning the commodity to its dummy center pair as equivalent to the

cost of direct shipment with zero collection and distribution costs (costs associated

with other commodities and the dummy link are simply taken as infinity). Then,

clearly, our problem generalizes SSCFLP. However, from the perspective of a typical

SSCFLP setting, our problem is too large for state-of-the-art methods to solve. For

example, let M be the number of centers and L be the number of potential TL ship-

ments. Recall that N is the number of commodities. Then, an equivalent SSCFLP

will have LM 2 + N potential facilities and N customers. In an instance with 500

commodities on a network with M = 6 and L = 20, the equivalent SSCFLP will have

20 × 36 + 500 = 1220 potential locations and 500 customers. Typically, SSCFLPs

that are much smaller in size are considered difficult in the literature Cortinhal and

Captivo (2003). Furthermore, an equivalent SSCFLP version of our problem has

a significantly higher number of potential locations than the number of customers

which is quite the opposite of a typical facility location problem where the number

of potential locations is very small when compared with the number of customers.

Therefore, even a small instance of our problem is actually prohibitively large for

state-of-the-art methods to solve efficiently.

Büdenbender et al. (2000) consider a related problem, the direct flight network

design problem, that arises in the area of mail transportation. Given the freight

requirements between origins and destinations, where a pair is a commodity, the

objective is to determine the routing of commodities through airports (centers) in such

a way that the total transportation cost is minimized. Again, direct shipments are
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not allowed. The authors present a hybrid tabu search/branch-and-bound algorithm.

As opposed our problem, they assume that the flow requirement of a commodity

can be split on different routes during transportation. Thus, the resulting model is

posed as a capacitated facility location problem with multi-sourcing that involves

side constraints to address limitations in the number of flights between airport pairs

and the number of possible take-offs and landings at the airports. Although we do

not consider similar side constraints, again, they can be incorporated into our model

and solution approaches via preprocessing and feasibility checks on the neighborhood

solutions.

We use the formulation (3.1)-(3.7) to find optimal solutions to small problem

instances by using CPLEX 9.0 which employs branch-and-cut methodology with sev-

eral cut options, preprocessing and upper bound heuristics. For relatively smaller

instances, the formulation can be solved to optimality efficiently; however, the com-

putational time and memory requirements become quite prohibitive for large problem

instances. Since our interest is in solving large instances, in this chapter we provide

three heuristic solution approaches that exploit the problem structure to efficiently

obtain good solutions.

III.2. Ingredients of the Heuristic Algorithms

In this section, we first describe the solution representation and objective function

evaluation method which is frequently used during the heuristic solution process.

Later, we provide two alternative construction heuristic approaches which are em-

ployed to generate initial feasible solutions as inputs to the solution improvement

(heuristic search) algorithms. Also in this section, we present the details of our com-

pound neighborhood functions which are important ingredients of the three heuristic
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search algorithms to be described later.

III.2.1. Solution Representation and Objective Function Evaluation

We observe that, in any feasible solution to our problem, the set of commodities

is partitioned into disjoint and mutually exclusive subsets. One of these subsets

includes commodities shipped directly from their origins to their destinations. We

denote this subset by D. On the other hand, each of the other subsets corresponds

to commodities that are included in the same TL shipment l, i.e., these commodities

are consolidated together into the same TL shipment. To represent each subset of

commodities forming a TL shipment, we use the notation Cl. Also, we denote the

set of all such subsets by C. Note that, for feasibility, we ensure that the total weight

of the commodities in a TL shipment does not exceed the truck capacity. Then, the

pair (C,D) represents a feasible solution to our problem. Henceforth, for notational

simplicity, we represent a solution (C,D) by S.

In order to calculate the goodness of a given solution S, we need to calculate the

total transportation cost it implies. For each TL shipment l, we need to determine

the transfer link (j, k), where j ∈ J and k ∈ K, that the commodities in Cl use. For

each Cl, we simply pick the link (j, k) that provides the lowest collection-transfer-

distribution cost (first two terms in the objective function) via total enumeration

over the |J | × |K| transfer links. On the other hand, the cost associated with the

commodities in D can be calculated directly, providing the value of the last term in

the objective function. Then, the objective function value associated with S is the

sum of the costs associated with the commodity subsets it involves.
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III.2.2. Construction Heuristics

Based on our solution representation described above, the construction of an initial

feasible solution clearly consists of partitioning commodities into (i) TL shipments

and (ii) the set of commodities shipped directly. There are a number of possible

ways to obtain such partitions. Here, we describe two initial solution construction

methods that are partially greedy in nature. Both methods incorporate randomness

in order to support a multi-start framework for improvement heuristics. We also note

that in both of these methods we generate purely TL shipments, since the direct

shipment criterion for commodities is highly subjective at this stage. Later, in the

improvement heuristics, the direct shipment set D is populated and modified during

the search procedure.

In the first construction method, we randomly pick commodities to form the

TL shipments, one TL shipment at a time, without exceeding truck capacity. The

procedure stops when all the commodities are assigned. Then, the transfer link

selection for each TL shipment and the associated cost evaluation is performed in

a greedy fashion as described above. This procedure, which we refer to as C-RC()

(since it Randomly picks Commodities), is given in Display 1.
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Display 1 Construction Procedure C-RC()

1: Initialize: D = ∅, C = ∅;

2: while P 6= ∅ do

3: Ctemp = ∅, v = 0

4: while v ≤ U do

5: Randomly pick a commodity i ∈ P

6: if (wi ≤ U − v) then

7: Ctemp = Ctemp ∪ {i}

8: v = v + wi

9: P = P \ {i}

10: end if

11: end while

12: C = C ∪ Ctemp

13: end while

14: Return S = (C,D)

In the second method, we randomly select linehaul transfer links, one link (j, k)

at a time, and assign commodities to a TL shipment installed on the selected link.

After selecting a transfer link (j, k), we assign commodities in a greedy fashion based

on their proximity, as measured by the associated collection and distribution costs, to

the link. Random transfer link selection is repeated until each commodity is assigned

to a TL shipment. We allow a link (j, k) to be selected more than once since a

transfer link can have multiple TL shipments on it. Display 2 includes the details of

this procedure, which we call C-RL() (since it Randomly picks Links).
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Display 2 Construction Procedure C-RL()

1: Initialize: D = ∅, C = ∅

2: while P 6= ∅ do

3: Randomly pick a link (j, k), j ∈ J , k ∈ K

4: Ctemp = ∅

5: Calculate γi = wi (α
f dfij + αt dtik), ∀ i ∈ P

6: Sort commodities in their increasing γi values

7: Include first κ commodities such that
∑κ

i=1 wi ≤ U into Ctemp

8: P = P \ Ctemp

9: C = C ∪ Ctemp

10: end while

11: Return S = (C,D)

III.2.3. Components of Compound Neighborhoods

In any given solution S, we identify three key attributes including the consolidation

level defined as the number of TL shipments |C|, the composition of the set D, and

the composition of TL shipments Cl ∈ C. Given a solution, a neighborhood function

modifies these key attributes in order to generate neighboring solutions in a heuristic

search framework. Since the neighborhood functions that we develop for this purpose

utilize simple operations in various combinations for modifying the key attributes, we

call them compound neighborhood functions. There are two essential components of

a compound neighborhood function: the Level-Change (LC) and the Content-Change

(CC). The LC component perturbs the consolidation level |C| in a solution S, and the

CC component modifies the contents of TL shipments Cl ∈ C and the direct shipment

set D. We define a compound neighbor of a given solution S as a solution obtained

by first applying an operation in the LC component followed by a combination of



53

operations in the CC component. In the latter, a specific combination is called a CC

method. These components and their operations are outlined in the Figure 8.

Figure 8 Components of Compound Neighborhoods

Move
  MCC
  MCD
  MDC

Exchange
  XCC
  XDC
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PSfrag replacements
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The LC component is comprised of two operations which are abbreviated as

LC-P() and LC-M(). Given a solution S, LC-P(S) gives a new solution with a

consolidation level |C|+1 whereas LC-M(S) gives a new solution with a consolidation

level |C| − 1. In operation LC-P(), the consolidation level is increased by one TL

shipment by bringing commodities from D, or from other consolidated shipments,

into C via consolidating them to form a new TL shipment. While trying to increase

the number of TL shipments |C|, one of the following cases can occur:

Case 1: If D is empty, then, to form a new consolidated shipment, we pick a pair

of commodities from two separate TL consolidations where each has at least

three commodities. We randomly select commodities from their current consol-

idations and form a new TL shipment with these two commodities and update

S.

Case 2: If the total demand of the commodities in set D is less than the truck capac-

ity U , then we send all the commodities in D by a consolidated TL shipment,

set D as an empty set and update S.

Case 3: If total demand of commodities shipped via direct shipments currently is

greater than U , we pick commodities randomly from D in order to form a
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new TL shipment C without exceeding the truck capacity. We revise set D

accordingly and add the newly formed C into set C.

In operation LC-M(), we reduce the consolidation level of a solution by one TL by

disaggregating one of the TL shipments and sending its content via direct shipments.

We disaggregate the TL shipment for which the increase in the objective function

value of the resulting solution is minimum.

The CC component modifies the composition of sets D and Cl ∈ C using local

search with five simple neighborhood functions listed in two groups in Figure 8. The

first group, Move, includes three move operations which correspond to i) moving a

commodity from the set D to a set Ci (MDC), ii) moving a commodity from some

Ci to set D (MCD), and iii) moving a commodity from a set Ci to a set Cj (MCC)

where i 6= j. The second group, Exchange, includes two pair-exchange operations

which correspond to i) exchanging a pair of commodities between the set D and a set

Ci (XCD) and ii) exchanging a pair of commodities between a set Ci and another set

Cj (XCC) where i 6= j. These five simple neighborhood functions can be combined in

several ways to prescribe different CC methods that generate a feasible (with respect

to capacity constraints) neighboring solution of a given solution provided by the LC

operation. Four such methods that, in turn, define four neighborhood functions can

be classified under parallel type (CC-PN and CC-PLSN) and serial type (CC-SN and

CC-SLSN) neighborhoods as described below.

Parallel Neighborhood (CC-PN): The parallel type method initially finds the

first improving solution of a given solution using each of the five simple neigh-

borhood functions separately (hence, the name parallel). Then, it picks the best

one in terms of the objective function value as the neighboring solution.

Parallel Local Search Neighborhood (CC-PLSN): This method is similar to
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the previous one. However, we apply a complete local search routine starting

with the given solution using each one of the five simple neighborhood functions

separately. An iteration of each such complete search routine is terminated as

soon as an improvement is obtained, and the complete routine is terminated

when no improving solution is found. This way, we again obtain five separate

solutions associated with the given solution, and we pick the best one as the

neighboring solution.

Serial Neighborhood (CC-SN): This first serial type method utilizes the five sim-

ple neighborhoods as does the CC-PN, but in a sequential manner rather than

a parallel manner. In particular, the first improving solution in a simple neigh-

borhood provides the initial solution for the next simple neighborhood. Observe

that there are several sequences of the five simple neighborhoods that can be

employed. We differentiate two specific sequences: one follows the LC-P() op-

eration and the other follows the LC-M() operation. In the former, we denote

the associated CC method as CC-SN-P, and starting with a given solution, we

use the sequence MDC→XCD→XCC→MCC→MCD→XCC. In the latter, we

employ the sequence XDC→MDC→MCD→MCC→XCD, and we denote the

corresponding CC method by CC-SN-M. The neighboring solution is given by

the solution obtained after the final operation, i.e., after XCC when CC-SN-P

is used and XCD when CC-SN-M is used.

Serial Local Search Neighborhood (CC-SLSN): Analogous to the relationship

between the parallel type methods, this method is similar to the CC-SN. In the

CC-SLSN, instead of finding the first improving solution, we conduct a complete

local search with each simple neighborhood function in sequence. Similarly to

the CC-SN method, we have CC-SLSN-P which follows a LC-P() operation and
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CC-SLSN-M which follows a LC-M() operation. We employ the same sequences

specified above for CC-SN-P and CC-SN-M in the CC methods CC-SLSN-P and

CC-SLSN-M, respectively. For example, in the CC-SLSN-P, given a solution

obtained by the LC-P() operation, we first apply a complete local search using

the MDC neighborhood, and we accept the first improving solution at each

iteration and continue the iterations until no improving solution is found. The

solution thus obtained is then used as the initial solution for a complete local

search employing the XCD neighborhood, and so on. The final solution obtained

after the local search with the XCC neighborhood is taken as the neighboring

solution of the starting solution which was provided by the operation LC-P().

A few remarks regarding the above neighborhood functions are in order. First, for

both of the serial type neighborhoods, there are several possible sequences. We de-

termined the above mentioned sequences after careful analysis of many possibilities

which explore the solution space more intensely after their respective level-change

component specifics. Thus, these sequences are determined after extensive empirical

testing. Second, the use of the LC and CC components in this fashion facilitates the

incorporation of two desired characteristics of any heuristic search procedure. The LC

component promotes diversification during the search of the feasible solution space.

On the other hand, the methods of the CC component provide the opportunity for

intensification in a solution subspace via the combined use of simple neighborhood

functions.

III.2.4. Generic Notation and Branching

We define the generic notation that we use in describing the heuristic algorithms as

follows. Without any specific reference, the function ConstructionHeuristic() refers
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to obtaining an initial solution which can be performed by applying either procedure

C-RC() or C-RL(). For a CC component, we generically use CC-P() to refer to a solu-

tion obtained by local search with CC-PN, CC-PLSN, CC-SN-P, and CC-SLSN-P

neighborhood functions. We also use CC-M() to represent a solution obtained by

local search with CC-PN, CC-PLSN, CC-SN-M, and CC-SLSN-M neighborhood

functions. In these local search procedures, we again take the first improving solu-

tion at each iteration. Recall that, although it is immaterial in parallel type content

change methods, in serial type methods, the CC methods depend on the LC method

used. Thus, we make the distinction with the suffix to indicate whether a specific CC

method follows a LC-P() or LC-M() accordingly. For example, in a heuristic search

procedure, LC-M(S) gives the solution obtained after the LC-M() operation is applied

to a solution S. If we employ a neighborhood function based on the PN method of

content change, both CC-M(S) and CC-P(S) give the solution obtained after the lo-

cal search with the CC-PN neighborhood function applied to S. On the other hand, if

we employ a neighborhood function based on the SN method, then CC-M(S) refers to

the solution obtained after applying a local search with the CC-SN-M neighborhood

to a solution S.

We define a branching on a node representing a current solution S as shown in

Figure 9. The left child of a node S, denoted by SL, is a solution obtained by LC-M()

followed by CC-M() and the right child of a node S, denoted by SR, represents a

solution obtained by LC-P() followed by CC-P(). Similarly, we obtain the solutions

SLL and SRR as depicted in Figure 9.
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Figure 9 Branching on a Solution S in ONDP
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III.3. Heuristic Approaches

Our discussion in the previous section includes four distinct compound neighborhood

functions which have the LC component with two operations as their common compo-

nent and differ in terms of their CC component where we have four possible methods

of combining simple neighborhood functions as outlined above. In this section, we de-

scribe three improvement heuristics, including local search, simulated annealing and

tabu search procedures. Since each of the three heuristics can employ any one of the

four compound neighborhood functions, we have a total of twelve solution procedures

(excluding the options of construction heuristics).

III.3.1. Local Search with Deterministic Branching (LSDB)

In our local search with deterministic branching, given in Display 3, we start with an

initial solution Sb obtained via a function ConstructionHeuristic(), which can be either

C-RC() or C-RL(), and visit the solutions (nodes) SR, SRR, SL, and SLL successively
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until an improving solution over the best solution, S b, is obtained. This search,

called BranchSearch(S), is given in Display 4. As soon as an improving solution is

found, we assign the corresponding solution as the new S b, designate it as the root

node in our branching (Figure 9), and call the BranchSearch(S b). This recursive

process is continued until none of the four nodes of the branching associated with

the current best solution provides an improvement. Since our construction heuristics

are randomized, we also incorporate a multi-start aspect to LSDB as indicated in

Display 3. The final solution Sf is simply the best solution obtained from all of the

starts of the procedure.

Display 3 LSDB Algorithm

1: initialize Z(Sf ) =∞, start=0, MAXSTART=15

2: while start < MAXSTART do

3: Sc = ConstructionHeuristic(), Sb = Sc

4: Sb = BranchSearch(Sb)

5: if Z(Sb) < Z(Sf ) then

6: Sf = Sb

7: end if

8: start ++

9: end while

10: RETURN Z(Sf ) and Sf
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Display 4 BranchSearch(S) Function

1: if Z(SR) < Z(S) then

2: S = SR

3: BranchSearch(S)

4: else if Z(SRR) < Z(S) then

5: S = SRR

6: BranchSearch(S)

7: else if Z(SL) < Z(S) then

8: S = SL

9: BranchSearch(S)

10: else if Z(SLL) < Z(S) then

11: S = SLL

12: BranchSearch(S)

13: end if

14: RETURN S

We note that, since tree based search explores only improving nodes, it may

terminate at a local minimum. Furthermore, since the actions of perturbation com-

ponents LC-P() and LC-M() are capable of cancelling the actions of one another if

allowed to do so, the tree based search can potentially lead to cycling. However, a

careful study of the procedures reveals that steps can be taken to prevent cycling.

Note that if two solutions (C1,D1) and (C2,D2) have |C1| same as |C2|, then they are

each other’s neighbors in the sense that it is possible to obtain one from the other

by sequences of moves and pair-exchanges. On the other hand, if two solution have

different numbers of consolidated truckloads then its impossible to obtain one from

the other by sequences of moves and pair-exchanges. It implies that the solutions
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SL, SR, SLL and SRR can never be same as the solution at node S. Since procedures

LC-P() and LC-M() are capable of producing solution with modified consolidation

levels and they cancel the effect of one another, the only possibility of cycling arises

when the solution SLR or SRL can possibly be same as the solution S.

One of the ways to avoid cycling of the solution S = (C,D) at a given node is

to record the set D and make sure that set D
′

in the solution SRL or SLR is different

than the original set D. Comparison of two sets of commodities shipped directly is

appropriate because it is computationally less expensive to check if D1 ≡ D2 than

comparing the sets C1 and C2. We can also compare the objective function values of the

two solutions (C1,D1) and (C2,D2) instead of comparing the sets D and D
′

as a check

for cycling. Since, in our implementation we already have the objective function value

for every new solution, we do not need to recompute objective functions values and

hence we use the comparison of objective function values to detect the cycling instead

of comparison of the D sets. Once we have detected cycling, we generate another

neighborhood solution with procedure MCC and continue the tree search. Since, the

tree search solution quality depends upon the initial solution, we implemented tree

search with multiple initial solutions.

III.3.2. Simulated Annealing with Biased Branching (SABB)

The probabilistic acceptance of non-improving solutions (uphill moves) during a local

search heuristic is the main feature of the simulated annealing (SA). Due to this

property, a neighborhood search procedure employing SA may accept solutions that

a typical local search procedure does not, and, thus, it provides the opportunity to

reach a better local optimum. The SA framework is relatively easy to implement,

and it has been an effective meta-heuristic for solving combinatorial optimization

problems. For a detailed discussion of its features, we refer the reader to Aarts et al.
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(1997); Sait and Youssef (1999).

In our simulated annealing algorithm, we again utilize the branching on the so-

lutions obtained during the search. However, in this case, instead of making the

selection in a deterministic way as in the LSDB, we suggest a probabilistic branch-

ing strategy that introduces bias into the search in such a way that the iterates

tend to move to the region of the solution space that is more likely to include good

solutions. Thus, we abbreviate this method as Simulated Annealing with Biased

Branching (SABB). In general, the SABB algorithm is an iterative procedure where

in each iteration, an inner loop, given by the Metropolis procedure, is performed. the

Metropolis (loop) itself is an iterative procedure that relies on certain overall algo-

rithmic parameters specified as the so-called cooling schedule. In Metropolis, we first

generate a new solution (Sn) using solution obtained via branching and evaluate its

goodness (objective function value). This solution generation, given in lines 6-11 in

Display 5, uses a biased branching strategy and it is particularly specific in our case

as described in detail below. If Sn improves upon the best solution (Sb) to date, we

update the best and current (Sc) solutions and start a new iteration of Metropolis.

On the other hand, if Sn is non-improving, we accept it as the current solution with

a probability e−∆/T where ∆ is the absolute difference between the current and new

solution and T is an algorithm parameter known as temperature. This mechanism

provides an opportunity for accepting the uphill moves mentioned above. The pa-

rameter T is usually high for initial Metropolis runs so the acceptance probabilities

are high and diversification in the search is promoted. After each Metropolis run,

the temperature is decreased before the next one starts, thus providing an overall

decreasing sequence of temperatures, usually in a geometric fashion. This is achieved

using a factor γ (typically a value less than and close to one), i.e., T is updated as γ T.

Each Metropolis procedure is executed at a fixed temperature for a certain number
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of iterations M which is another algorithm parameter. Similar to T, we also update

the parameter M after each Metropolis run using another factor φ, i.e., M is updated

with φ M; however, in this case, we choose a factor value that is greater than one. A

cooling schedule set with these general characteristics promotes intensification in the

search as the overall algorithm proceeds while encouraging diversification to reach

regions with good solutions in the initial stages. The overall SABB Algorithm is

terminated when the required number of iterations in a Metropolis loop exceeds a

preset algorithm parameter value MAX M. The complete SABB algorithm is given in

Display 5. Note that the algorithm parameter values specified in the initialization

step in Display 5 are obtained after some fine-tuning and used in our computational

tests presented in Section III.4.

Of particular interest, in lines 6-11 of SABB procedure given in Display 5, we

consider branching (see Figure 9) at each iteration of the Metropolis to generate

a random solution. For this purpose, we incorporate a probabilistic node selection

strategy. Specifically, a key feature of our compound neighborhood function is the

branching which introduces two initial and two subsequent directions to modify the

consolidation level |C| of a solution mainly using the operations LC-M() and LC-P().

The change in consolidation level can be seen as a neighborhood search direction.

Knowing that the search direction plays an important role in determining the effec-

tiveness of the simulated annealing procedure, we develop a branching strategy that

dynamically determines search direction based on current consolidation level. In par-

ticular, we assume that, due to the economies-of-scale present in the cost structure,

the optimal solution is more likely to have a consolidation level close to the consol-

idation level under perfect consolidation. Thus, the strategy exploits this problem

structure to guide the search direction based on the consolidation level in the current

solution. In order to describe this biased branching strategy, we first make some
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observations regarding solution characteristics. Let Q be the minimum number of

trucks required to satisfy the shipment requirement under perfect consolidation with

no direct shipments. The quantity Q can easily be calculated as dW (P)/ue where

W (P) =
∑

i∈P wi. A solution S with no direct shipments, i.e., the case where the

value of |D| is equal to zero, implies a value of |C| that is less than N/2, i.e., the

maximum number of possible TL shipments, N/2. This corresponds to a solution

in which |D| is equal to zero and exactly two commodities are sent in each of N/2

consolidated TL shipments. We can safely assume that a TL shipment does not

include a single commodity since the direct shipment of this commodity would be

more cost effective. On the other hand, a solution having no consolidations, i.e., |C|

is equal to zero, implies that all of the N commodities are shipped directly, i.e., |D|

is equal to N . In summary, |D| can be any number between 0 and N whereas |C|

can vary anywhere between 0 and N/2. We observe that the variation in values of

|C| between the range 0 to N/2 may facilitate exploration of the solution space via

multiple search directions. Allowing a neighborhood search over all possible values of

|D| and |C| is, however, practically infeasible. Thus, we concentrate on the value of

|C| and its relation to Q.



65

Display 5 SABB Algorithm

1: initialize M=15, MAX M=55,

T=500, γ = 0.9, φ = 1.2

2: Sc = ConstructionHeuristic(), Sb = Sc

3: while M ≤ MAX M do

4: Set M′ = M

5: repeat {Metropolis Loop}

6: Calculate r = |C|/(|C|+ dW (P)/ue)

7: if r > rand[0,1] then

8: Sn = argmin{Z(S) : ScL, S
c
LL}

9: else

10: Sn = argmin{Z(S) : ScR, S
c
RR}

11: end if

12: 4 = Z(Sn)− Z(Sc)

13: if ∆ < 0 then

14: Sc = Sn

15: if Z(Sc) < Z(Sb) then

16: Sb = Sc

17: end if

18: else

19: if rand[0,1] < e−∆/T then

20: Sc = Sn

21: end if

22: end if

23: M′ = M′ - 1

24: until M′ = 0

25: T = γ T; M = bφ Mc

26: end while

27: RETURN Z(Sb) and Sb
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As mentioned above, for a current solution, the biased branching strategy favors

a direction that brings the |C| in a neighboring solution closer to Q. In order to

implement this strategy, we define a ratio r as |C|/(|C| + Q) which is a measure of

closeness of |C| to Q. An r value that is greater than 0.5 implies that the value

of |C| is more than Q, and, thus, in branching, we assign a higher probability to

branching to LC-M() initiated neighborhoods. Otherwise, when r is less than 0.5, a

higher probability is assigned to branching to neighborhoods employing LC-P(). In

either case, we pick the better of the two solutions (in terms of objective value) on

the branched side (see Figure 9). We implement this branching strategy in lines 6-11

of the SABB Algorithm given in Display 5.

III.3.3. Tabu Search with Complete Branching (TSCB)

Tabu search is another meta-heuristic framework where uphill moves are allowed

during the search procedure for the purpose of escaping from local optima and, thus,

exploring a larger solution space. This inevitably presents the possibility of re-visiting

a solution that has been considered in previous iterations, which is called cycling. The

tabu mechanism is designed to prevent cycling by storing some characteristic of the

already visited solutions so that the same characteristic of a new solution can be

compared against it to see if the new solution can be accepted. Details of several

features of tabu search can be found in Glover and Laguna (1997) and Sait and

Youssef (1999).

It is important to note that the solution representation of the problem at hand

and the neighborhood function employed are intimately related to the design of the

tabu mechanism. While designing the tabu mechanism, we again have to identify

certain algorithmic parameters. First and foremost, we need to determine what at-

tribute of an already visited solution will be used while forming and modifying a
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tabu list. We represent the tabu list as a set and call it the TabuSet. Given our

solution representation, which uses the subsets of commodities and the compound

nature of the neighborhood functions, we observe that it is difficult to determine a

simple solution attribute that is effectively linked to changes in a solution in terms

of the operations performed to obtain its neighboring solutions. In this case, one

alternative is to store a complete solution when visited (i.e., the solution S with the

sets C and D). However, it becomes immediately clear that this approach is espe-

cially costly in terms of the number of computations required to store the data in the

TabuSet and to verify the tabu status of a candidate solution. Incidentally, our initial

numerical tests quickly illustrated the computational inefficiency of defining a tabu

status based on solution representation and neighborhood function. Thus, we choose

to identify the tabu status of a visited solution using a function value that can be

calculated given the contents of its C and D sets. One may define several functional

forms that can take a solution S and generate a real-valued number that represents

this solution. For this purpose, instead of identifying such a new function, we simply

employ the objective function of our problem. Using the objective function value as

the tabu attribute has several advantages in our case. First, the TabuSet is simply

a collection of real numbers, which can be efficiently searched to see if it contains

a given value while checking the tabu status of a new solution. Secondly, since a

long TabuSet can be kept without much computational burden, it is possible to not

limit tabu tenure, i.e., the number of iterations a solution stays in TabuSet. This

is helpful in the sense that, since we are employing a relatively large neighborhood

due to compounding effects, it is possible to re-visit a solution long after its first

encounter. A large TabuSet handles this situation efficiently by facilitating a long-

term tabu memory. Furthermore, an aspiration criterion is not needed due to the

nature of the TabuSet. Finally, we note that using a solution representation-based
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tabu attribute leads to prohibiting visitation of a region of the solution space that is

implied by a specific tabu move (multiple solutions are usually forbidden by the same

tabu attribute). On the other hand, using an objective function-based tabu criterion

prohibits re-visiting individual solutions (that are likely to be represented by their

unique objective function values). Thus, by using compound neighborhood functions,

significant diversification characteristics are still instilled in the search.

In our tabu search algorithm, given in Display 6, we begin with an initial so-

lution obtained from a construction heuristic. The TabuSet is initialized with the

objective value of this solution. At each iteration of the algorithm, we generate a list

of candidate solutions, CandidateSet, using the neighborhood function employed and

the branching structure given in Figure 4. Specifically, recall that (section III.2.3) a

number of neighborhood solutions are visited while using the simple neighborhoods

in a compound setting, i.e., the CC component which may correspond to using CC-

PN, CC-PLSN, CC-SN or CC-SLSN. Furthermore, during the local search with these

compound neighborhoods (section III.2.4), CC-P() and CC-M(), several intermediate

improving solutions are visited to obtain the node solutions in Figure 4. We include

all of the visited solutions that provide an improvement in any iteration of these local

search routines into the CandidateSet in a tabu search iteration. Since at each iter-

ation of tabu search, we consider all four nodal solutions of the branching structure,

we call our overall procedure a Tabu Search with Complete Branching (TSCB).

Once the CandidateSet is formed, the solution with the minimum objective func-

tion value becomes the current solution if its objective value is not in the TabuSet.

Furthermore, if that solution also improves the best solution, the best solution is up-

dated. If the best solution (with the minimum objective value) in the CandidateSet

cannot be taken as the current solution, then it is removed from the CandidateSet,

and the next best solution is considered to be the current solution. Each time a new
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solution is accepted as the current solution, we insert its objective function value into

the TabuSet. At the end of each iteration, if the best solution available is updated,

we reset the counter nic to zero; otherwise, it is increased by one. The purpose

of nic is to keep track of the number of successive iterations in which the current

best solution is not improved. We use nic along with the counter iter to set the

stopping rule of the tabu search algorithm where the corresponding upper limits are

MAXINC and MAXITER, respectively. Note that the parameter values are specified as

N and 0.35 MAXITER for MAXITER and MAXINC, respectively, in the initialization step

of Display 6. These values were obtained after some fine-tuning and used in our

computational tests presented in Section III.4.

III.3.4. An Alternative Solution Representation and Search Procedure

As described in Section III.2.1, a solution may be represented as partitioning of the

commodity set given by S. One of the characteristics of such a representation is

the ease by which the objective function value can be calculated. Alternatively,

we could also represent a solution by direct and TL shipments installed on transfer

links. Recalling the relationship between our problem and SSCFLP, this method

of solution representation is directly analogous to specifying a solution in a facility

location problem by fixing only the locations but not the customer assignments to

these locations. Thus, the fixed TL shipments on the transfer links do not provide

information about how the commodities are assigned to them. In order to evaluate

the objective function value, each commodity must either be assigned to one of the

TL shipments or sent by a direct shipment. This assignment problem is clearly the

Generalized Assignment Problem (GAP) which is an NP-Hard problem that needs

to be solved whenever the goodness of a neighborhood solution is evaluated in a

heuristic solution procedure. Instead of solving GAP to optimality, one may employ
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some simple heuristic to find a sub-optimal solution and keep the computation time

short. This approach may be inefficient because of poor solution quality. If this

alternative solution representation is employed, a neighborhood function similar to

the PN neighborhood function can be defined as a compounding of three simple

neighborhood functions. In such an analogous framework, for the level-change stage,

we can use “drop” (similar to LC-M) and “add” (similar to LC-P) neighborhoods

which correspond to removing an existing TL shipment from a transfer link and adding

a TL shipment on a transfer link, respectively. For the content-change stage, we can

use an “exchange” (similar to CC-PN) neighborhood which adds a TL shipment to

a transfer link and removes an existing TL shipment that is on some other transfer

link. We implemented such an approach in our LSDB framework for small problem

instances; however, the results were not encouraging when compared to the use of

solution representation and a search procedure using partitioning of commodities.

Thus, in the following section, we provide our extensive computational results for the

latter approaches which are described in previous sections.

III.4. Computational Study

The objective of our computational study is to evaluate the performance of the combi-

nations of our proposed compound neighborhood functions and heuristic methods on

the basis of solution quality and time. We have four compound neighborhood func-

tions differing mainly in terms of their CC components; thus, we abbreviate them

using the notation PN, SN, PLSN and SLSN in general. Since we consider three

heuristic approaches, namely LSDB, SABB and TSCB, using these neighborhood

functions,
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Display 6 TSCB Algorithm

1: initialize iter=0, MAXITER =N ,

nic=0, MAXNIC = 0.35 MAXITER

2: Sc = ConstructionHeuristic(), Sb = Sc

3: TabuSet = {Z(Sc)}

4: while iter < MAXITER and nic < MAXNIC do

5: CandidateSet = ∅

6: Find ScL, S
c
LL, S

c
R, S

c
RR and form the

CandidateSet

7: Flag = 0

8: repeat

9: Sp = argmin{Z(S) : S ∈ CandidateSet}

10: if Z(Sp) /∈ TabuSet then

11: Sc = Sp;

12: Flag = 1

13: else

14: CandidateSet = CandidateSet\{Sp}

15: end if

16: until Flag =1 or CandidateSet=∅

17: if Z(Sc) < Z(Sb) then

18: Sb = Sc, nic=0

19: else

20: nic ++

21: end if

22: TabuSet = TabuSet ∪{Z(S c)}

23: iter ++

24: end while

25: RETURN Z(Sb) and Sb
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we have a total of twelve approaches for solving our problem. For relatively

small-size benchmark test instances, we compare heuristic solutions with solutions

obtained using the branch-and-cut approach as implemented in CPLEX 9.0 with

default settings including cut generations. On the other hand, for relatively larger

test instances, we compare our approaches against each other.

III.4.1. Experimental Setup

In order to test the efficiency of the proposed solution approaches, we conduct com-

putational experiments using randomly generated problem instances. The process of

generating test instances is given in page 15. We observe that CPLEX presents limita-

tions on the problem size that can be considered since the size of the branch-and-cut

tree increases to levels that prohibit the use of memory for its storage. Thus, the

size of the instances in the benchmark data set (Dataset 0) is determined accordingly

in order to obtain some results for comparison purposes. Furthermore, in all of the

experimental data sets we generate, we try to capture the main characteristics of the

realistic problem instances as outlined below.

The rest of the input data is given in Table 1 which includes four data sets. In all

of the data sets, A is set to 100, and the data sets differ from each other in terms of E,

NP , N ,M and U . For each value of N ,M and U , we randomly generate 10 instances.

For simplicity, we choose |J | = |K| = M , which implies M 2 possible directed links

for TL shipments. Dataset 0 includes 240 small instances where CPLEX provides

some benchmark results in the form of either an exact solution or upper and lower

bounds upon termination with a runtime limit of 2 hours. Datasets 1 through 3 have

comparatively larger numbers of commodities and tighter truck capacities as given in

Table 1. The instances in Dataset 1 are solvable using only the LSDB, SABB, and

TSCB approaches based on all four neighborhood functions PN, PLSN, SN and SLSN.
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We use this data set to compare the effectiveness of all of the 12 approaches mentioned

above. Datasets 2 and 3 represent even larger problems and they are solved using

LSDB, SABB and TSCB with the neighborhood function PN, only, since, based on

our observations with Dataset 1, this neighborhood function appears to be the most

effective in terms of runtime with only a small compromise in solution quality.

Table 1 Experimental Data Sets
Datasets E NP N M U No of Instances Remarks

Dataset 0 15 15 25, 30, . . . , 60 4, 6, 8 8 240

CPLEX

LSDB, SABB, TSCB

PN, PLSN, SN, SLSN

Dataset 1 15 15 100, 110, . . . , 150 4 4, 6, 8 180
LSDB, SABB, TSCB

PN, PLSN, SN, SLSN

Dataset 2 25 25 300, 330, . . . , 450 4 4, 6, 8 180
LSDB, SABB, TSCB

PN

Dataset 3 35 30 500, 550, . . . , 750 4 4, 6, 8 180
LSDB, SABB, TSCB

PN

III.4.2. Computational Results

As described in Section III.2.2, we have two methods, C-RC() and C-RL(), for con-

structing initial feasible solutions. We performed tests to compare the relative per-

formance of these methods and determined that, on average, C-RC() provides initial

solutions with better quality. Furthermore, we tested these construction methods

with each of the three heuristic approaches (LSDB, SABB and TSCB), and we ob-

tained better results with the LSDB when the initial solutions were obtained by using

C-RC() and with SABB and TSCB when initialized with C-RL(). Therefore, when

generating initial solutions for all of the numerical tests described below, we employ

C-RC() with LSDB and C-RL() with SABB and TSCB.

For exact solutions of the benchmark instances (Dataset 0), summarized in Table

2, we employ a stopping criteria of 2 hours time limit for CPLEX. Upon termination,

we record the runtime, the best lower bound (ZLB) and the best upper bound (ZUB),
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and calculate the percentage optimality gap as 100× (ZUB − ZLB)/ZLB. In Table 2,

for each value of N and M , we present the average and maximum optimality gaps

as well as the solution times over 10 instances. These results clearly illustrate the

computational difficulties even with small sized problems.

Table 2 Summary of Exact Solution Results (Dataset 0 solved with CPLEX)

N

M = 4 M = 6 M = 8

% Gap Time (Sec.) % Gap Time (Sec.) % Gap Time (Sec.)

Ave Max Ave Max Ave Max Ave Max Ave Max Ave Max

25 0.01 0.01 30.1 251.0 0.54 5.31 732.1 7201.0 1.29 12.82 778.0 7201.0

30 0.01 0.01 4.5 15.0 0.01 0.01 73.9 221.0 0.01 0.01 185.2 589.0

35 2.80 6.13 5837.9 7204.0 3.40 7.48 6024.1 7201.0 3.13 9.90 5791.3 7200.0

40 5.12 11.50 5550.6 7201.0 5.51 11.74 6136.9 7201.0 8.40 13.06 7069.2 7200.0

45 1.79 9.60 3696.3 7204.0 2.41 7.45 5882.1 7200.0 2.07 8.64 5901.8 7200.0

50 2.43 6.99 6607.6 7205.0 2.97 8.65 6907.7 7200.0 3.23 10.46 6579.3 7200.0

55 5.32 7.84 6608.5 7201.0 6.28 12.32 7200.0 7200.0 7.66 11.74 7200.3 7203.0

60 4.51 9.08 7200.2 7201.0 5.39 11.25 7200.0 7200.0 6.61 11.39 7200.3 7202.0

Ave 2.75 6.39 4442.0 3.31 8.03 5019.6 4.05 9.75 5088.2

Tables 3 and 4 gives percentage gaps between the best lower bounds obtained with

CPLEX and the heuristic approaches with varying neighborhood functions. Table

3 and 4 have total four subtables embedded, one for each compound neighborhood

function, PN, PLSN, SN and SLSN. We use average and maximum percentage gap

and average runtime for comparison. A percentage gap is calculated as 100×(Zheur−

ZLB)/ZLB where Zheur is the objective function value of the appropriate heuristic

solution. For example, considering the use of the PN neighborhood with M = 4,

LSDB, SABB and TSCB provide solutions with overall average gaps of 3.53%, 3.66%

and 3.86%, respectively, whereas the corresponding average gap for CPLEX is 2.75%.

The maximum gaps for these metaheuristics are 7.35%, 7.50% and 7.93%, respectively,

while the corresponding maximum gap for CPLEX is 6.39%. A similar trend is

observed in the case of M = 6 and M = 8; thus, the quality of the solutions obtained

by our algorithms is comparable to to those obtained using CPLEX. The solution
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quality obtained by our algorithms utilizing the PLSN, SN and SLSN neighborhood

functions also confirms that LSDB, SABB and TSCB provide good quality solutions.

Given the uncompromising solution quality of our approaches, it is clear that the

main advantage of the new algorithms is their effectiveness in terms of solution time.

The runtime for all of the heuristic methods is significantly less than the runtime

with CPLEX. For example, the overall average runtime with M = 4 is 4442.0 seconds

for CPLEX and 1.61, 5.20, and 0.86 seconds when the neighborhood function PN is

employed with LSDB, SABB, and TSCB, respectively. The solution times with the

neighborhood functions PLSN, SN, and SLSN are also significantly lower than the

CPLEX solution times; however, they are longer than those obtained when PN is

employed. We note that this is an expected outcome since these latter neighborhood

functions spend more time with local search routines while generating neighboring

solutions.

Since CPLEX upper bounds and our heuristic approaches both provide feasi-

ble solutions, we also examine the percentage gaps between these solutions. These

results are reported in Table 5. In this case, a percentage gap is calculated as

100× (Zheur−ZUB)/ZUB. It is easily observed that, in the majority of cases spanning

all of the heuristic approaches and neighborhood functions, the average gaps are less

than 1.0%, including several instances in which the heuristic approaches find better

feasible solutions as indicated by the negative percentage gap values.
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Table 3 Gaps from CPLEX LB and Runtime for PLSN and SLSN (Dataset 0)

N

Ave % Gap Max % Gap Ave Time (Sec)

LSDB SABB TSCB LSDB SABB TSCB LSDB SABB TSCB

PLSN

M = 4

25 0.28 0.80 0.75 0.90 1.59 1.30 1.20 4.00 0.00

30 0.20 0.46 0.56 0.75 1.17 0.85 2.30 2.70 0.00

35 3.25 3.96 3.63 6.50 6.65 6.93 6.60 7.70 1.50

40 5.62 5.93 5.66 11.41 11.39 11.22 11.70 14.20 2.40

45 2.18 2.46 2.56 9.85 11.01 11.01 13.30 24.80 3.50

50 2.87 3.43 3.10 6.69 6.89 7.05 20.50 25.70 4.40

55 5.75 6.07 5.89 8.14 8.06 8.53 42.10 63.70 11.70

60 4.97 5.26 5.17 9.55 9.38 9.31 40.00 55.80 12.50

Ave. 3.14 3.55 3.42 6.72 7.02 7.02 17.21 24.83 4.50

M = 6

25 0.91 1.38 0.93 6.44 6.72 5.53 1.80 4.90 0.00

30 0.12 0.43 0.44 0.45 0.82 0.82 4.10 3.50 0.40

35 3.69 4.56 4.06 8.18 7.91 8.44 8.90 14.70 2.20

40 6.06 6.49 6.41 12.45 12.09 13.09 17.70 26.40 4.50

45 2.89 3.25 3.31 8.22 8.19 8.92 20.20 34.30 3.30

50 3.36 3.93 3.86 8.51 8.65 9.05 23.80 33.30 5.90

55 6.49 6.89 6.69 11.01 10.95 11.48 46.40 59.00 22.40

60 5.84 5.97 6.03 10.93 11.78 11.84 58.80 73.80 16.00

Ave. 3.67 4.11 3.96 8.27 8.39 8.65 22.71 31.24 6.84

M = 8

25 1.63 2.01 1.56 13.02 12.98 13.34 3.70 7.50 0.20

30 0.24 0.48 0.48 0.64 0.86 0.80 5.50 13.90 0.70

35 3.35 4.40 3.74 9.97 10.12 9.92 14.00 20.90 3.60

40 8.50 8.92 8.63 13.01 12.96 12.95 22.80 23.80 5.30

45 2.41 2.79 2.89 9.08 9.27 9.52 24.40 46.60 4.40

50 3.16 3.77 3.47 8.66 8.89 9.12 46.60 72.10 10.30

55 6.82 7.12 7.06 10.54 10.42 10.64 69.80 96.00 31.30

60 6.16 6.36 6.30 9.69 9.35 10.35 89.90 152.10 35.50

Ave. 4.03 4.48 4.26 9.33 9.36 9.58 34.59 54.11 11.41

SLSN

M = 4

25 0.52 0.69 0.64 1.08 1.59 1.30 1.70 8.20 0.00

30 0.28 0.43 0.40 0.75 1.17 0.85 2.50 13.10 0.00

35 3.47 3.47 3.82 6.56 6.65 6.93 10.00 22.10 1.10

40 5.74 5.37 6.03 11.48 11.39 11.22 18.80 56.30 1.60

45 2.39 2.37 2.50 10.74 11.01 11.01 16.50 47.60 1.70

50 2.88 2.90 3.33 6.74 6.89 7.05 42.30 75.70 4.20

55 5.86 5.55 6.09 8.18 8.06 8.53 64.20 123.50 9.40

60 5.10 4.90 5.06 9.68 9.38 9.31 64.40 106.40 7.40

Ave. 3.28 3.21 3.48 6.90 7.02 7.02 27.55 56.61 3.18

M = 6

25 1.11 1.13 1.03 5.53 6.72 5.53 4.20 10.00 0.10

30 0.13 0.28 0.45 0.33 0.82 0.82 4.40 17.60 0.00

35 3.99 3.75 4.22 8.48 7.91 8.44 15.60 36.30 1.70

40 6.25 5.98 6.28 12.67 12.09 13.09 26.10 70.70 3.10

45 3.09 2.82 3.22 8.34 8.19 8.92 22.60 67.60 1.30

50 3.47 3.24 3.51 8.69 8.65 9.05 48.80 88.10 5.70

55 6.53 6.36 6.73 10.80 10.95 11.48 70.60 117.30 13.10

60 5.88 5.74 6.17 10.87 11.78 11.84 79.80 138.60 9.30

Ave 3.81 3.67 3.95 8.21 8.39 8.65 34.01 68.28 4.29

M = 8

25 1.70 1.79 1.68 13.15 12.98 13.34 4.70 14.10 0.10

30 0.15 0.28 0.30 0.55 0.86 0.80 4.70 17.60 0.10

35 3.49 3.43 3.58 10.07 10.12 9.92 32.30 75.30 2.80

40 8.85 8.45 8.61 13.03 12.96 12.95 33.80 84.80 3.50

45 2.81 2.43 2.78 9.50 9.27 9.52 40.70 113.00 2.70

50 3.33 3.19 3.61 8.91 8.89 9.12 114.30 196.80 8.90

55 6.93 6.65 7.03 10.43 10.42 10.64 118.00 192.90 20.50

60 6.34 5.90 6.36 10.53 9.35 10.35 123.60 200.00 12.70

Ave 4.20 4.01 4.25 9.52 9.36 9.58 59.01 111.81 6.41



77

Table 4 Gaps from CPLEX LB and Runtime for PN and SN (Dataset 0)

N

Ave % Gap Max % Gap Ave Time (Sec)

LSDB SABB TSCB LSDB SABB TSCB LSDB SABB TSCB

PN

M = 4

25 0.54 0.91 1.10 0.99 1.91 1.80 0.00 1.20 0.00

30 0.27 0.56 0.55 0.75 1.08 1.17 0.10 1.80 0.00

35 3.63 4.06 4.31 7.02 7.94 9.07 2.20 1.80 0.30

40 6.01 6.03 6.18 12.06 11.52 11.49 0.90 2.60 0.60

45 2.88 2.62 2.71 10.81 11.01 11.01 0.50 7.30 0.40

50 3.31 3.52 3.99 7.41 7.77 8.50 2.80 5.10 0.60

55 6.13 6.29 6.58 9.05 8.63 9.91 3.90 9.80 2.90

60 5.46 5.30 5.46 10.74 10.11 10.53 2.44 12.00 2.10

Ave 3.53 3.66 3.86 7.35 7.50 7.93 1.61 5.20 0.86

M = 6

25 1.14 3.99 1.69 5.53 14.47 6.98 0.00 1.80 0.00

30 0.12 0.50 0.34 0.23 0.96 0.77 0.10 1.50 0.00

35 4.10 4.62 4.77 8.34 8.66 9.01 2.60 2.40 0.40

40 6.75 6.34 7.17 13.01 13.32 13.04 1.10 6.90 1.30

45 3.57 3.17 3.38 8.60 8.30 8.34 0.70 5.90 0.40

50 3.98 3.98 4.38 8.68 8.64 9.16 3.10 5.90 1.50

55 6.88 6.80 7.25 11.40 11.19 12.22 4.50 9.50 4.30

60 6.44 6.28 6.40 11.61 11.57 11.79 3.00 13.70 2.60

Ave 4.12 4.46 4.42 8.42 9.64 8.91 1.89 5.95 1.31

M = 8

25 1.73 1.96 2.04 13.15 13.34 13.26 0.20 2.50 0.00

30 0.24 0.60 0.60 0.85 1.38 1.16 0.60 4.50 0.10

35 3.79 4.36 4.45 10.64 10.73 10.18 4.50 3.20 0.90

40 9.04 9.24 9.37 13.24 13.30 14.65 1.60 5.70 1.60

45 3.25 3.00 2.99 9.58 9.78 9.61 1.00 10.10 1.00

50 4.07 3.81 4.44 9.46 9.19 9.84 3.80 9.40 3.30

55 7.40 7.33 8.15 11.33 12.13 13.52 5.80 13.30 5.30

60 6.89 6.39 7.06 10.65 10.14 15.45 3.60 19.90 4.40

Ave 4.55 4.59 4.89 9.86 10.00 10.96 2.64 8.58 2.08

SN

M = 4

25 0.36 0.73 0.40 1.13 1.38 1.62 1.00 2.40 0.00

30 0.26 0.81 0.48 0.75 2.33 0.99 0.70 1.40 0.00

35 3.44 3.54 3.56 6.74 6.62 6.80 4.50 18.70 1.20

40 5.57 5.50 5.74 11.48 11.45 11.38 6.10 17.50 1.50

45 2.32 2.57 2.74 10.19 11.01 11.01 4.00 13.00 0.60

50 2.94 2.97 3.18 6.87 7.28 7.21 13.20 32.10 4.70

55 5.80 5.72 5.91 8.09 8.49 8.70 16.40 47.70 8.50

60 4.94 5.13 5.30 9.43 9.27 10.40 12.30 29.00 4.80

Ave 3.20 3.37 3.41 6.84 7.23 7.26 7.28 20.23 2.66

M = 6

25 0.94 1.34 0.62 6.14 6.72 6.52 1.70 8.20 0.00

30 0.19 0.38 0.47 0.59 0.98 1.21 0.90 3.10 0.00

35 3.86 3.85 4.06 8.62 8.22 8.33 5.80 19.70 1.90

40 6.06 6.04 6.42 12.37 12.50 12.42 8.10 33.30 2.80

45 2.95 3.07 3.42 8.56 8.19 8.93 5.10 13.80 1.20

50 3.41 3.53 3.52 8.63 8.60 8.25 12.80 29.50 5.90

55 6.50 6.43 6.58 11.06 10.66 11.04 17.00 42.40 6.60

60 5.77 5.90 6.15 10.99 11.48 11.45 15.10 22.70 4.20

Ave 3.71 3.82 3.91 8.37 8.42 8.52 8.31 21.59 2.83

M = 8

25 1.57 1.93 1.04 12.98 13.70 13.70 2.80 7.70 0.10

30 0.21 0.47 0.70 0.59 0.82 1.45 1.00 5.80 0.00

35 3.45 3.56 3.67 10.01 9.91 10.35 9.90 44.70 2.70

40 8.61 8.63 8.70 13.01 12.84 13.22 10.10 26.70 2.70

45 2.48 2.76 2.91 9.02 9.82 9.01 6.60 13.90 2.10

50 3.13 3.48 3.42 9.01 8.98 8.63 26.10 150.90 14.60

55 6.88 6.82 7.07 10.74 10.60 10.70 27.50 70.90 12.40

60 6.15 6.25 6.09 9.96 9.69 9.57 22.20 53.10 13.70

Ave 4.06 4.24 4.20 9.41 9.54 9.58 13.28 46.71 6.04
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Table 5 Percentage Gaps from CPLEX Upper Bound (Dataset 0)

N

Ave. % Gap Max % Gap Ave. % Gap Max % Gap

LSDB SABB TSCB LSDB SABB TSCB LSDB SABB TSCB LSDB SABB TSCB

PN PLSN

M = 4

25 0.53 0.90 1.10 0.99 1.90 1.80 0.28 0.79 0.74 0.90 1.35 1.61

30 0.27 0.56 0.54 0.74 1.08 1.16 0.20 0.45 0.56 0.74 1.16 1.16

35 0.81 1.23 1.47 1.81 2.98 3.77 0.44 1.13 0.82 0.72 2.59 1.60

40 0.86 0.87 1.03 1.69 1.83 1.87 0.48 0.79 0.52 0.92 1.47 1.49

45 1.07 0.81 0.91 1.67 1.39 1.28 0.38 0.66 0.76 0.80 1.37 1.48

50 0.87 1.08 1.53 1.69 2.81 3.03 0.43 0.98 0.66 1.00 1.73 1.77

55 0.78 0.93 1.20 1.57 1.96 2.30 0.41 0.71 0.55 0.98 1.82 1.14

60 0.91 0.76 0.92 1.77 1.53 1.90 0.45 0.72 0.64 1.19 1.57 1.59

Ave 0.76 0.89 1.09 1.49 1.94 2.14 0.38 0.78 0.65 0.91 1.63 1.48

M = 6

25 0.60 3.45 1.15 1.41 14.46 3.20 0.36 0.84 0.39 1.07 2.21 1.21

30 0.12 0.49 0.33 0.22 0.95 0.76 0.11 0.43 0.44 0.44 1.48 0.82

35 0.68 1.19 1.34 1.73 2.37 2.23 0.28 1.13 0.65 0.66 2.36 2.59

40 1.19 0.80 1.61 1.94 2.22 3.23 0.54 0.94 0.86 1.24 1.96 1.45

45 1.13 0.74 0.95 1.50 1.61 1.77 0.47 0.82 0.88 0.76 2.07 1.53

50 0.99 0.98 1.38 2.37 1.79 3.40 0.38 0.93 0.87 0.72 2.08 2.24

55 0.59 0.50 0.92 1.44 1.33 1.80 0.21 0.59 0.40 1.00 1.40 1.49

60 0.99 0.86 0.96 1.36 1.53 2.03 0.43 0.54 0.61 0.88 1.44 1.67

Ave 0.79 1.13 1.08 1.49 3.28 2.30 0.35 0.78 0.64 0.85 1.87 1.62

M = 8

25 0.44 0.66 0.74 0.92 1.38 1.45 0.34 0.72 0.27 1.00 1.24 0.71

30 0.24 0.60 0.60 0.84 1.37 1.15 0.23 0.47 0.48 0.64 0.90 1.44

35 0.65 1.21 1.30 1.55 3.05 2.48 0.22 1.25 0.61 0.74 2.52 2.23

40 0.61 0.80 0.92 1.14 1.83 2.84 0.10 0.50 0.22 0.61 1.39 0.89

45 1.16 0.91 0.91 1.90 2.10 2.02 0.33 0.70 0.80 0.63 1.66 1.82

50 0.84 0.59 1.21 2.03 1.97 2.83 -0.04 0.56 0.26 0.81 2.74 1.23

55 -0.22 -0.29 0.48 1.38 1.06 4.50 -0.76 -0.49 -0.54 0.24 0.40 0.46

60 0.27 -0.20 0.40 1.24 1.26 4.36 -0.41 -0.24 -0.29 0.96 0.38 1.20

Ave 0.50 0.54 0.82 1.38 1.75 2.70 0.00 0.43 0.23 0.70 1.41 1.25

SN SLSN

M = 4

25 0.35 0.72 0.39 1.13 1.37 1.61 0.52 0.69 0.63 1.08 1.59 1.30

30 0.25 0.81 0.47 0.74 2.33 0.98 0.28 0.42 0.39 0.74 1.16 0.84

35 0.62 0.72 0.74 1.55 1.28 1.16 0.66 0.65 0.99 1.19 1.22 1.82

40 0.44 0.37 0.60 0.87 0.87 1.66 0.61 0.24 0.88 1.23 0.75 1.95

45 0.53 0.77 0.94 0.95 1.28 1.49 0.59 0.57 0.70 1.06 1.38 1.28

50 0.51 0.53 0.74 1.13 0.93 1.77 0.44 0.47 0.89 0.99 1.78 1.85

55 0.46 0.38 0.56 1.25 1.27 1.46 0.51 0.22 0.73 1.00 0.75 1.31

60 0.42 0.60 0.76 0.82 1.53 1.32 0.56 0.37 0.53 1.81 1.10 1.19

Ave 0.45 0.61 0.65 1.06 1.36 1.43 0.52 0.45 0.72 1.14 1.22 1.44

M = 6

25 0.40 0.80 0.35 0.78 1.50 1.29 0.57 0.59 0.49 1.26 1.65 1.31

30 0.18 0.37 0.46 0.58 0.97 1.20 0.12 0.28 0.45 0.32 0.82 0.82

35 0.45 0.44 0.64 1.07 1.10 1.52 0.58 0.35 0.80 1.41 0.97 1.44

40 0.53 0.52 0.89 1.00 1.18 2.34 0.72 0.47 0.74 1.96 0.98 2.23

45 0.52 0.64 0.98 1.06 1.74 1.70 0.67 0.40 0.79 1.66 1.00 1.50

50 0.43 0.55 0.54 0.76 1.46 1.46 0.49 0.27 0.53 1.20 0.59 1.19

55 0.23 0.16 0.31 0.75 1.19 1.05 0.26 0.09 0.44 0.87 0.88 1.08

60 0.36 0.49 0.73 0.85 1.26 1.57 0.47 0.34 0.74 1.52 0.68 1.96

Ave 0.39 0.50 0.61 0.86 1.30 1.52 0.48 0.35 0.62 1.28 0.95 1.44

M = 8

25 0.28 0.63 0.34 0.61 2.28 1.61 0.40 0.49 0.39 1.04 1.11 0.61

30 0.20 0.47 0.70 0.58 0.81 1.44 0.15 0.27 0.29 0.54 0.85 0.79

35 0.32 0.43 0.53 1.11 1.11 1.16 0.37 0.30 0.45 1.45 1.08 1.44

40 0.21 0.23 0.30 0.99 0.84 1.37 0.44 0.06 0.21 1.12 0.59 1.00

45 0.40 0.68 0.83 0.97 1.54 2.38 0.73 0.35 0.70 2.05 0.71 1.73

50 -0.07 0.27 0.21 0.75 1.67 1.17 0.13 -0.01 0.40 1.39 1.17 1.39

55 -0.71 -0.76 -0.54 0.74 0.86 0.34 -0.66 -0.92 -0.57 1.44 0.13 0.29

60 -0.43 -0.33 -0.48 0.60 0.68 1.07 -0.25 -0.66 -0.23 1.01 0.85 1.16

Ave 0.03 0.20 0.24 0.79 1.22 1.32 0.16 -0.01 0.21 1.26 0.81 1.05
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Based on the results in Tables 3, 4 and 5, we conclude that the performance in

solution quality with all four neighborhood functions PN, SN, SLSN and PLSN are

comparable in terms of average and maximum percentage gaps for all three heuristics.

The solution quality with the latter three neighborhood functions, in general, appears

to be on the better side as indicated by the lower percentage gaps in Tables 3, 4 and 5.

On the other hand, in terms of solution runtime, regardless of the heuristic approach,

use of the neighborhood function PN causes algorithms to perform much faster than

the use of SN, SLSN, and PLSN.

Next, we solve the problem instances in Dataset 1 using the LSDB, SABB and

TSCB algorithms, each with PN, PLSN, SN and SLSN neighborhood functions, i.e.,

each problem instance is solved by 12 different combinations of four compound neigh-

borhoods (PN, PLSN, SN and SLSN) and three heuristic algorithms (LSDB, SABB

and TSCB). In Table 6, in the columns under the heading No of Times Best, we re-

port the number of instances a specific algorithm-neighborhood function combination

finds the best solution.

For example, out of 10 instances for problem class with N = 110 and U = 4,

LSDB implemented with the PN neighborhood function finds the best solution in

one instance. In the second group of three columns for the methods, we provide the

average of the percentage gaps from the best obtained solution (out of twelve solu-

tions) over all 10 instances of a problem class. Obviously, lower percentages indicate

better performance of a method-neighborhood function combination in providing a

good quality solution.
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Table 6 Comparison of Algorithms and Neighborhood Functions (Dataset 1)
N

No. of Times Best Ave % Gap Ave Time (Sec.)

LSDB SABB TSCB LSDB SABB TSCB LSDB SABB TSCB

U = 4

PN

100 0 0 0 0.81 0.63 0.62 32.40 40.30 19.20

110 1 0 0 1.33 0.52 0.62 51.60 48.30 20.60

120 0 1 0 1.15 0.46 0.66 49.40 59.50 22.10

130 1 0 0 1.63 0.62 0.70 65.80 73.60 48.50

140 0 0 0 1.44 0.48 0.57 62.20 84.40 54.80

150 0 0 0 1.08 0.45 0.46 96.50 96.90 62.30

PLSN

100 0 1 1 0.43 0.40 0.26 264.40 249.10 167.40

110 0 0 0 0.45 0.47 0.32 392.80 309.90 377.20

120 1 1 0 0.36 0.48 0.38 480.90 448.40 364.60

130 0 1 2 0.57 0.61 0.33 601.70 555.40 660.90

140 0 0 1 0.62 0.49 0.21 738.30 622.50 635.40

150 0 0 2 0.47 0.45 0.16 976.80 881.00 1245.70

SN

100 1 1 1 0.46 0.37 0.41 79.50 95.30 53.90

110 0 3 1 0.32 0.13 0.26 124.70 182.80 109.60

120 1 1 0 0.31 0.28 0.35 133.50 168.50 96.50

130 0 1 0 0.52 0.29 0.37 197.50 237.70 204.10

140 0 0 1 0.48 0.29 0.36 204.90 273.20 180.50

150 0 2 2 0.42 0.18 0.21 261.70 334.70 369.80

SLSN

100 2 3 0 0.38 0.14 0.43 126.30 191.00 81.20

110 0 4 1 0.43 0.10 0.33 195.50 421.60 238.80

120 1 3 1 0.30 0.17 0.34 214.30 348.50 126.80

130 1 2 2 0.50 0.28 0.27 302.80 499.10 284.10

140 2 4 2 0.46 0.09 0.42 359.50 493.70 389.40

150 0 4 0 0.43 0.13 0.26 459.90 816.40 513.30

U = 6

PN

100 7 0 0 0.32 1.33 1.48 32.40 38.80 12.30

110 1 0 0 1.37 0.79 1.13 51.60 52.00 21.90

120 2 1 0 1.09 0.55 0.78 49.40 46.00 32.30

130 3 0 0 1.50 0.88 1.12 65.80 65.10 32.90

140 2 0 0 0.79 0.57 0.65 62.20 74.70 48.30

150 2 0 0 0.91 0.68 0.81 96.50 106.30 67.50

PLSN

100 2 0 0 0.92 1.12 1.03 525.30 509.00 219.90

110 0 0 1 0.49 0.62 0.28 654.40 402.40 377.90

120 1 1 0 0.29 0.57 0.61 817.30 705.70 273.60

130 2 1 0 0.61 0.93 0.84 1180.80 900.90 515.00

140 2 0 1 0.41 0.56 0.22 1364.20 829.90 821.30

150 0 0 0 0.58 0.71 0.47 1860.00 1517.00 961.90

SN

100 0 0 1 1.03 0.80 0.99 69.30 135.80 73.40

110 0 8 0 0.40 0.12 0.36 136.40 307.10 157.20

120 0 1 0 0.28 0.34 0.50 128.40 219.30 127.90

130 2 1 0 0.59 0.69 0.78 169.10 238.10 233.10

140 0 2 0 0.35 0.30 0.40 184.60 334.20 175.50

150 1 3 2 0.48 0.40 0.41 264.40 520.40 347.30

SLSN

100 0 0 0 1.00 0.86 1.02 119.60 240.20 95.40

110 0 0 0 0.50 0.25 0.51 215.30 556.00 201.50

120 1 3 0 0.26 0.29 0.34 207.30 445.80 173.30

130 1 1 0 0.61 0.50 0.75 293.80 561.40 253.80

140 2 1 0 0.34 0.27 0.33 331.90 707.30 505.20

150 0 1 1 0.53 0.47 0.47 478.60 1147.00 524.10

U = 8

PN

100 0 0 0 0.47 0.64 0.96 40.60 37.10 22.30

110 0 0 0 0.35 0.51 0.65 41.80 53.50 17.10

120 1 0 0 0.41 0.79 0.73 55.00 53.70 45.10

130 0 0 0 0.38 0.77 0.91 111.30 67.80 51.70

140 1 0 0 0.57 0.58 0.64 73.80 83.80 50.50

150 0 0 0 0.49 0.73 0.81 115.60 95.50 86.50

PLSN

100 1 0 0 0.36 0.69 0.34 299.20 200.50 225.20

110 0 0 1 0.32 0.52 0.26 419.00 739.00 390.20

120 0 1 0 0.38 0.51 0.53 571.50 871.10 663.80

130 1 0 3 0.25 0.78 0.42 703.20 671.10 519.60

140 1 1 1 0.33 0.50 0.30 912.40 996.00 1119.50

150 1 0 0 0.31 0.58 0.35 1080.10 1002.00 1111.20

SN

100 1 2 2 0.29 0.22 0.28 88.00 197.50 67.90

110 5 3 0 0.21 0.19 0.48 82.20 206.40 142.50

120 1 1 2 0.37 0.30 0.27 119.20 250.50 160.70

130 1 3 2 0.23 0.26 0.47 207.90 513.20 204.10

140 0 1 1 0.33 0.37 0.29 178.60 310.20 287.60

150 0 3 4 0.27 0.12 0.14 278.40 558.10 507.50

SLSN

100 0 4 0 0.36 0.14 0.43 156.60 307.30 114.00

110 0 0 1 0.29 0.22 0.24 142.70 502.50 158.50

120 1 2 1 0.38 0.37 0.40 198.30 463.10 189.20

130 0 0 0 0.40 0.34 0.49 340.30 805.50 395.30

140 2 2 0 0.28 0.26 0.35 358.90 782.80 459.60

150 0 2 0 0.24 0.14 0.27 505.40 1158.50 648.40
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Finally, in the last portion of Table 6, we report the average solution times over

10 instances of each problem class. A compact summary of the results in Table 6

is presented in Table 7 in which we report the percentages of the number of times

an algorithm-neighborhood function combination provides the best solution. For ex-

ample, for the case where U = 4, the LSDB with PN neighborhood gives the best

solution in 2 instances (1 instance for N = 110 and 1 instance for N = 130) out

of 60 instances (10 instances for each of six problem classes). Thus, the associated

percentage in the third column of Table 7 is 3.33%. In the last six columns of Ta-

ble 7, we present the averages (over six problem classes where the N values vary) of

corresponding entries in Table 6. The results in these tables show that the neighbor-

hood function PLSN, regardless of the heuristic algorithm it is used with, generates

the least desirable solutions since the solution times are always the highest and the

solution quality does not appear significantly better compared to other neighborhood

functions. In most cases, the solution quality is slightly worse than the solution qual-

ities obtained via the use of the SN and SLSN neighborhoods, and we obtain better

solution time performance with these latter neighborhoods. Furthermore, we observe

that, when the PN neighborhood function is employed, the solution times are signif-

icantly better with each of the three heuristic algorithms and, at the same time, the

solution qualities are at easily acceptable levels as illustrated by the majority of the

results where the average percentage gaps are below 1.0%. On the other hand, from

the heuristic algorithms perspective, SABB appears to perform the best most of the

time as it finds the best solutions most of the time, and, thus, provides lower average

percentage gaps. Especially, the combination of SABB and the neighborhood func-

tions SN or SLSN perform exceptionally well in terms of solution quality as measured

by the number of times they provide the best solution, but not in terms of solution

times as noted above.
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Table 7 Summary of Comparisons (Dataset 1)
% No. of Times Best Ave % Gap Ave Time (Sec.)

LSDB SABB TSCB LSDB SABB TSCB LSDB SABB TSCB

U = 4

PN 3.33 1.67 0.00 1.24 0.53 0.61 59.65 67.17 37.92

PLSN 1.67 5.00 10.00 0.48 0.48 0.28 575.82 511.05 575.20

SN 3.33 13.33 8.33 0.42 0.26 0.33 166.97 215.37 169.07

SLSN 10.00 33.33 10.00 0.42 0.15 0.34 276.38 461.72 272.27

U = 6

PN 28.33 1.67 0.00 1.00 0.80 0.99 59.65 63.82 35.87

PLSN 11.67 3.33 3.33 0.55 0.75 0.57 1067.00 810.82 528.27

SN 5.00 25.00 5.00 0.52 0.44 0.57 158.70 292.48 185.73

SLSN 6.67 10.00 1.67 0.54 0.44 0.57 274.42 609.62 292.22

U = 8

PN 3.33 0.00 0.00 0.45 0.67 0.79 73.02 65.23 45.53

PLSN 6.67 3.33 8.33 0.33 0.60 0.36 664.23 746.62 671.58

SN 13.33 21.67 18.33 0.28 0.24 0.32 159.05 339.32 228.38

SLSN 5.00 16.67 3.33 0.33 0.25 0.36 283.70 669.95 327.50

Since, based on the Dataset 1 results, we observe that the adoption of our pro-

posed compound neighborhood functions lead to faster algorithms without serious

compromise in solution quality, in the last stage of our numerical study, we concen-

trate on comparing only the heuristic algorithms while employing the neighborhood

function PN in each one. For this purpose of comparing LSDB, SABB, and TSCB,

we consider the even larger problem instances provided by Datasets 2 and 3. The

results are summarized in Table 8. In this table, we observe that the TSCB performs

best in terms of solution quality (average percentage gaps) with the largest instances

given by Dataset 3. We also observe that the TSCB and SABB algorithms present

very similar performance when Dataset 2 is used.

In Dataset 3, SABB does not perform as well as TSCB; however, its performance

is also very satisfactory as it provides less than a 0.5% gap on average from the best

available solution. Furthermore, solution times with SABB are highly favorable for

large instances in Dataset 3 when compared to the solution times with LSDB and

TSCB. Thus, for practical problems of large size, it appears that the SABB algorithm,

implemented by employing the neighborhood function PN, is a promising approach

both in terms of solution quality and solution time.
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Table 8 Comparing LSDB, SABB and TSCB using the Neighborhood Function PN

(Datasets 2 and 3)
No. of Times Best Ave % Gap Ave Time (Sec.)

N LSDB SABB TSCB LSDB SABB TSCB LSDB SABB TSCB

Dataset 2

U = 4

300 0 9 1 0.96 0.02 0.23 538.00 772.50 497.70

330 0 6 4 1.03 0.10 0.09 664.27 818.91 593.18

360 0 6 4 1.14 0.12 0.15 875.20 1025.20 829.20

390 0 5 5 0.90 0.10 0.09 867.70 1110.70 1285.70

420 0 6 4 0.87 0.10 0.08 1233.60 1287.10 1494.50

450 0 5 5 1.09 0.14 0.09 1668.70 2236.00 2079.20

Ave. 0.00 6.17 3.83 1.00 0.10 0.12 974.58 1208.40 1129.91

U = 6

300 2 6 2 0.51 0.16 0.39 643.80 693.30 444.70

330 3 3 4 0.49 0.18 0.10 640.90 730.90 640.00

360 2 4 4 0.56 0.16 0.15 917.10 985.00 745.20

390 1 5 4 0.56 0.22 0.33 808.90 1075.50 1141.00

420 3 1 6 0.54 0.24 0.06 1183.80 1054.30 1141.60

450 0 6 4 0.74 0.15 0.15 1796.60 1895.20 2084.80

Ave. 1.83 4.17 4.00 0.57 0.18 0.19 998.52 1072.37 1032.88

U = 8

300 3 3 4 0.41 0.21 0.34 651.90 764.00 568.70

330 8 1 1 0.16 0.41 0.49 852.90 652.70 889.50

360 4 4 2 0.39 0.23 0.33 1148.60 867.20 1274.20

390 3 3 4 0.14 0.25 0.19 1038.20 1045.40 1031.30

420 3 1 6 0.26 0.32 0.11 1714.30 1011.70 1309.20

450 3 5 2 0.34 0.26 0.26 2138.20 1537.50 1508.40

Ave. 4.00 2.83 3.17 0.28 0.28 0.29 1257.35 979.75 1096.88

Dataset 3

U = 4

500 0 1 9 0.53 0.46 0.01 2296.50 956.10 3663.20

550 0 3 7 0.59 0.28 0.05 2610.30 1604.50 2668.80

600 0 4 6 0.71 0.17 0.09 3742.80 2775.40 5226.00

650 1 3 6 0.67 0.21 0.12 4713.50 3538.60 10265.20

700 0 1 9 0.84 0.23 0.01 7560.70 3281.60 11152.40

750 0 4 6 0.57 0.21 0.07 7694.90 5718.60 8912.00

Ave. 0.17 2.67 7.17 0.65 0.26 0.06 4769.78 2979.13 6981.27

U = 6

500 2 4 4 0.29 0.38 0.09 1963.40 919.30 2876.50

550 2 2 6 0.52 0.22 0.15 2398.60 2487.70 3068.30

600 0 3 7 0.57 0.24 0.03 3701.30 2394.60 5182.10

650 1 3 6 0.43 0.20 0.05 4626.60 2824.40 7850.30

700 2 0 8 0.36 0.44 0.02 7849.30 2983.00 5620.20

750 0 4 6 0.50 0.18 0.05 7968.70 4544.00 8543.20

Ave. 1.17 2.67 6.17 0.44 0.28 0.07 4751.32 2692.17 5523.43

U = 8

500 4 2 4 0.23 0.26 0.08 2281.30 995.40 2999.60

550 3 1 6 0.21 0.36 0.09 2944.30 2122.10 2373.30

600 4 2 4 0.41 0.40 0.20 4465.70 2581.10 5870.20

650 2 5 3 0.29 0.12 0.17 5703.00 3052.30 7886.70

700 2 2 6 0.46 0.38 0.15 7662.70 3096.70 5816.90

750 3 3 4 0.42 0.32 0.19 9077.90 4671.60 11135.10

Average 3.00 2.50 4.50 0.34 0.31 0.15 5355.82 2753.20 6013.63

Overall Ave 1.69 3.50 4.81 0.47 0.20 0.12 2586.77 1669.29 3111.14

III.5. Summary and Conclusions

In this chapter, we considered ONDP which is a network design problem with explicit

consideration of consolidating smaller loads into TL shipments. Our setting addresses

the common practice seen in the small package and mail delivery industries where

the commodities (loads) are refer to the shipment requirements between pairs of
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local centers. A commodity is transported between the local centers (its origin and

destination) either directly or it follows a route that visits two regional centers and

is transferred in a TL shipment after consolidation with other commodities between

the regional centers. Observing this practice, we provided a compact mathematical

formulation for the problem of the least cost commodity flow with TL consolidation

considerations addressed explicitly. We observed that a special case of the model

resembles a capacitated location problem with single-sourcing, which is itself an NP-

hard problem, and the instances that we are interested in translate into very large

scale and challenging versions of this problem since they imply a large number of

customers (commodities) and an even larger number of potential locations.

In order to develop heuristic solution algorithms, we first proposed four distinct

compound neighborhood structures. A compound neighborhood involves two main

components, level-change and content-change, and the latter component combines

various simple neighborhood functions in a certain way which may also involve a local

search itself for the purpose of generating a neighboring solution. Given the complex-

ity of the kind of efficient solution representation required in a heuristic framework,

our compound neighborhood functions give us the opportunity to search the solution

space efficiently using a branching strategy that relies on the level-change component,

which is the common component in all four compound neighborhoods. Furthermore,

the components provide a means for instilling intensification (via content-change) and

diversification (via level-change) characteristics into the heuristic search algorithms.

We devised three different heuristic algorithms based on local search, simulated an-

nealing and tabu search. In each algorithm, each of the four compound neighborhoods

can be used, thus giving rise to twelve different approaches. Also, each algorithm uti-

lizes the branching strategy in a certain way that promotes relative efficiency.

Our extensive computational study using four different data sets representing
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varying problem sizes revealed that the serial type compound neighborhood func-

tions (SN and SLSN) perform better in terms of solution quality although they also

require the longest solution time on average. On the other hand, the parallel type

function with local search (PLSN) performs poorly in terms of both solution quality

and time. However, the neighborhood function PN performs best in terms of solution

time and very satisfactorily (most of the time close to the SN and SLSN performance)

in solution quality. These results are generally consistent independent of the heuristic

algorithm with which they are used. From the algorithmic perspective, we observed

that our tabu search approach (TSCB) provides better solutions, especially for the

large instances, but at the expense of solution time. On the other hand, simulated

annealing based SABB performs very satisfactorily in terms of solution quality and

is best in terms of solution time, especially for large instances. We also note that,

although the local search based LSDB performs well with small size problems, its

performance diminishes with larger sized instances where the solution space grows

significantly and the meta-heuristic based approaches become more effective. Never-

theless, the branching strategy that we introduced appears to be very effective in all

of the approaches, and it is flexible enough to be employed in searching the solution

space in different ways.
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CHAPTER IV

TACTICAL NETWORK DESIGN PROBLEM

In view of globalization, growing economies, and increased competition, it becomes

important for LTL and intermodal transportation businesses to make tactical and

strategic plans and achieve higher operational efficiency. As we discussed in the pre-

vious chapters, intermodal transportation models are comparatively new Crainic and

Kim (2005), and the traditional hub-and-spoke network models may not be suitable

for addressing the need of dedicated models for network design problems in the context

of LTL and intermodal transportation problems. In ONDP, we assume availability of

appropriate capacity and that the solution of ONDP can help the operations man-

ager to make operational level decisions. Such an assumption can only be justified if

appropriate capacity is planned at the tactical level. In this chapter, we investigate

tactical capacity planning where the capacity can be obtained either by owned fleet

or by contractual agreement from service providers. The cost of acquiring capacity

on an emergency or expedited basis is much higher than the regular price; therefore,

appropriate capacity planning can help reduce the cost of emergency capacity acqui-

sition. Other tactical decisions may include planning for human resources and other

equipment.

The formal problem description for TNDP can be given as follows. In TNDP,

we are given a network with multi-commodities as described in ONDP. The planning

horizon in TNDP is longer than an operational problem, but shorter than a strategic

period. Depending on the application, the tactical planning horizon may correspond

to a month or a quarter or even a year. Tactical decisions addressed by TNDP include

1. connections and capacities in terms of the number of truckload trips between

the consolidation and deconsolidation centers
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2. assignment of commodities to consolidation and deconsolidation centers and, in

turn, to transfer links.

The costs in the system include collection costs, linehaul transfer costs and distri-

bution costs. We assume that capacity installments on linehaul transfer links can be

set in fixed increments of truckload capacity with associated incremental costs. Also,

we assume that a commodity can follow only a single route from origin to destination.

The main objective is to estimate transportation capacity to ensure the availabil-

ity of resources at the operational level. The resources are either owned or acquired

on a temporary basis via a rental agreement. Generally, last-minute acquisition of

capacity costs more and causes unnecessary delay. Tactical planning of transporta-

tion capacity helps eliminate the need for such arrangements and improves efficiency.

Another benefit of tactical planning is that it facilitates negotiation for better price

from third party providers such as transporters, fleet owners, and equipment rental

companies.

We have already discussed an “auxiliary” network that provides an abstraction

of the general physical network. The reader is referred to 8 of Chapter I for details

of constructing an auxiliary network from a physical network. In the following, we

refer to the auxiliary network in Figure 4 to describe TNDP specific details. The

auxiliary network for TNDP differs from the one for ONDP; for one thing, direct

shipment is not considered in the TNDP, and therefore, the auxiliary network for

TNDP does not include the set of arcs representing direct shipments; second, the

arrows from consolidation centers to deconsolidation centers represent consolidations

that may consist of several TLs as opposed to the individual TLs in ONDP. In fact,

they represent truckload trips over a time period equivalent to a tactical planning

horizon. In the example given in Figure 4 in Chapter I, each of the arrows 2 → 10
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and 5 → 8 represent a capacity in terms of number of truckload trips spanned over

the tactical planning period.

Under these operational and configurational characteristics, our objective is to

determine the linehaul links between the regional centers (consolidation and decon-

solidation centers), the number of truckload trips assigned to each linehaul link, and

the routing and consolidation of commodities so that the total cost of transporta-

tion is minimized. The total cost has three components: collection, distribution, and

linehaul transfer from consolidation to deconsolidation centers.

The remainder of this chapter is organized as follows. Next, in Section IV.1, we

develop an integer program formulation for our problem. This is followed by Sec-

tion IV.2, in which we describe the basic ingredients of heuristic solution approach in

detail, including our compound neighborhood functions. In Section IV.3, we present

Lagrangian relaxation based heuristic to find lower bounds which utilizes upper bound

as obtained in section IV.2 to update the Lagrangian multipliers in subgradient op-

timization framework. In Section IV.4, we present the results of our computational

tests regarding the performance of the approaches and, in Section IV.5, we provide a

summary of our conclusions and future research directions.

IV.1. The Model

Many different mathematical formulations can be used to model a problem. These

formulations may differ from each other in types and number of variables, number of

constraints, and several other characteristics such as LP bound. The mathematical

formulation has bearing on the choice of solution method and, consequently, algorithm

development. We developed several different models and compared them on such

criteria as size of the formulation (number of variables and number of constraints),
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LP bound and branch-and-cut performance. We selected a pure integer model that

overall performed best in our empirical study. In order to develop a mathematical

formulation utilizing the auxiliary graph, we will use the notation given below.

Parameters:

wi the amount of flow for commodity pi

U capacity of truck

β cost of truckload-trip per mile

αf LTL transportation cost per unit per mile between F and J

αt LTL transportation cost per unit per mile between K and T

dfij distance between fpi
and consolidation center j

dtki distance between deconsolidation center k and tpi

djk distance between centers j and k

Decision Variables:

zijk 1 if commodity i is assigned to a transfer link (j, k), 0 o.w.

yjk number of truckload-trips installed on the link (j, k)

Then, the problem can be formulated as follows:

Objective and Constraints:

Min
∑

i∈P

∑

j∈J

∑

k∈K

wi(α
f dfij + αt dtki) zijk +

∑

j∈J

∑

k∈K

djkβ yjk (4.1)
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subject to

∑

j∈J

∑

k∈K

zijk = 1, ∀i. (4.2)

∑

i∈P

wizijk ≤ U yjk, ∀j, k. (4.3)

yjk ∈ Z
+, and zijk ∈ {0, 1}, ∀i, j, k. (4.4)

In the objective function given by expression (4.1), the first term represents the total

transportation cost for the collection and distribution operations in graphs GC(F ∪

J , AFJ) and GD(K ∪ T , AKT ), respectively; the second term represents the total

transportation costs for the linehaul transfers using TL shipments in GL(J ∪K, AJK).

Constraint set (4.2) ensures that each commodity is shipped via exactly one consoli-

dated shipment over a link. Constraint set (4.3) ensures that, for each link (j, k), the

total weight of the commodities assigned does not exceed the capacity installed on

that link. Constraint set (4.4) imposes standard binary restrictions on the decision

variables.

IV.1.1. Relation to SSCFLP with Modular Capacity

TNDP is related to an extension of the single-source capacitated facility location

problem (SSCFLP) which itself is an extension of CFLP with the additional require-

ment that each customer must be assigned to exactly one facility. Below, we describe

how our problem is related to SSCFLP with modular capacity.

In SSCFLP with modular capacity, for each potential facility location ,there is a

finite and discrete set (Modules) of allowable capacities and the objective is to choose

subset of facilities to satisfy the demand at minimum cost. Staircase capacity is a

special case of modular capacity in which all modules are of the same size.

A solution to our problem consists of commodities being assigned to linehaul
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transfer links. One can view a linehaul transfer link as a potential facility on which

capacity can in installed in the form of truckload-trips and the commodities as the

customers. Then, clearly, our problem can be modelled as a CFLP. Since our problem

requires each commodity to be assigned to exactly one linehaul link, our problem is

equivalent to single source CFLP or simply SSCFLP. Furthermore, since our problem

assumes fleet of identical trucks, our problem is equivalent to SSCFLP with staircase

capacity.

As we discussed in Chapter II, facility location problems, even in their simplest

form, belong to the class of NP-Hard problems. Meaning that there does not exist

a polynomial time algorithm for the problem. Moreover, in contrast to a general

location problems, our problems are much larger, because number of customers in a

location problems is of the order of nodes in a network, whereas number of commodi-

ties in our problem are of the order of square of number of nodes.

To the best of our knowledge, SSCFLP with staircase costs has not been solved

in the literature, and there is only one published paper on SSCFLP with modular ca-

pacity by Correia and Captivo (2006). Correia and Captivo (2006) study the SSCFLP

with modular capacity with some additional constraint. They suggest a Lagrangian

heuristic utilizing tabu search for upper bound and a Lagrangian relaxation based

lower bound in which they further relax integrality restriction on the assignment

variables. In order to obtain the lower bound, they use method developed by Cortin-

hal and Captivo (2003). Cortinhal and Captivo (2003) consider modular capacitated

location problem in which they obtain lower bound by Lagrangian relaxation dualiz-

ing assignment constraint. They further tighten the Lagrangian relaxation by adding

a valid inequality. Their relaxation sub-problems break down into one problem for

every facility. In order to solve sub-problem for a facility, they formulate linear pro-

gram for each size in allowable modules for that particular facility, which is continuous
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relaxation of constrained knapsack and can be solved without resorting to simplex

method. Finally, the capacity on each facility is selected based on the objective value

of the linear program solved above and some additional valid inequality on lower and

upper bounds on number of allowed number of facilities.

Our lower bound solution approach also relaxes the assignment constraint, how-

ever, our approach differs from theirs in that: we do not break the problem for each

facility, instead we use additional surrogate constraints to tighten the relaxation. In

our model we exploit the fact that each module is of the same size by utilizing an

integer decision variable to model capacity as opposed to their binary variable for

each module for each facility. This results in a smaller problem size of our model, and

facilitates development of tighter relaxation by adding surrogate constraint which is

not possible if we break the problem into sub-problem for each facility. In contrast

to their work, our problem sizes are much larger because the number of customers in

a location problem are the number of commodities in our problem which is a differ-

ence of the order of N 2 because every node-pair on the network can be defined as a

commodity in the TNDP.

For relatively smaller instances, the formulation can be solved to optimal effi-

ciently using commercial grade software such as CPELX; however, the computational

time and memory requirements become quite prohibitive for large problem instances.

Since our interest is in solving large instances, in this chapter, we suggest a La-

grangian Heuristic (LH) based method. In the Lagrangian Heuristics framework, we

develop an upper bound heuristic using a compound neighborhood search method,

and a Lagrangian relaxation-based lower bound. In our Lagrangian heuristic, the

lower bound solution prescribed by Lagrangian relaxation is utilized by our com-

pound neighborhood search method to obtain a better upper bound, and the upper

bound thus obtained is utilized to update the Lagrangian multipliers in the sub-
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gradient optimization. The efficiency of our Lagrangian framework is demonstrated

by the computational study presented at the end of the chapter.

IV.2. Upper Bound Heuristic

In this section, we first describe the solution representation and objective function

evaluation method which is frequently used during the heuristic solution process.

Later, we provide construction heuristic to generate initial feasible solutions as inputs

to the solution improvement (heuristic search) algorithm. Also in this section, we

present the details of our compound neighborhood functions which are important

ingredients in the metaheuristic simulated annealing to be described later.

IV.2.1. Solution Representation and Objective Function Evaluation

In our problem, a solution represents a set of commodities partitioned into disjoint

and mutually exclusive sets of commodities. All commodities in a particular disjoint

set are shipped over the same linehaul transfer link. Note that, if the cumulative load

of commodities in a disjoint set is more than one truckload, then the commodities

may be shipped in different trucks installed on that linehaul transfer link. We use Sl

to represent a disjoint set of commodities assigned to the same linehaul transfer link

and S to denote the set of all such disjoint subsets. The objective function value for

a solution S is the total transportation cost implied by it. The total transportation

cost can either be obtained by solving a small integer program or be approximated

by using a heuristic. The heuristic is computationally inexpensive while an integer

program may take longer to solve. We denote the exact objective value function by

Z∗(S) and the approximate objective value by Z̃(S).
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IV.2.1.1. Exact Objective Function Value

To model the integer program to evaluate the transportation costs implied by a so-

lution S = {S1 . . . SL}, we use notation similar to the notation used in the model

formulation.

Decision Variables:

zljk 1 if commodity set Sl ∈ S is assigned to a transfer link (j, k), 0 o.w.

yjk number of truckload-trips installed on the link (j, k)

Then, the objective function value associated with S is given by :

Z∗(S) = Min
∑

Sl∈S

∑

i∈Sl

∑

j∈J

∑

k∈K

wi(α
f dfij + αt dtki) zljk +

∑

j∈J

∑

k∈K

djkβ yjk (4.5)

subject to

∑

j∈J

∑

k∈K

zljk = 1, ∀Sl ∈ S (4.6)

∑

Sl∈S

∑

i∈Sl

wizljk ≤ U yjk, ∀j, k. (4.7)

yjk ∈ Z
+, and zljk ∈ {0, 1}, ∀l, j, k. (4.8)

In the integer program shown above, the first terms in the objective function

give by (4.5) represents total transportation cost of collection and distribution and

the second term represents the linehaul transfer cost. Constraint (4.6) makes sure

that each commodity set is assigned to exactly one link, and constraint (4.7) ensures

that every link has sufficient capacity to haul the commodity sets assigned to it. Con-

straint (4.8) represents integrality restrictions on variables y and binary restrictions

on variables z.
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If we replace i ∈ P by Sl ∈ S, our original problem formulation (4.1)-(4.4) is

identical to the objective function evaluation formulation above , however, the size

of the IP to be solved for the same problem is much smaller in the objective func-

tion evaluation formulation because |S| is much smaller than |P|. The approximate

objective function value for a solution S can be calculated by a simple heuristic that

we describe next. For each disjoint set Sl ∈ S, we determine the transfer link (j, k),

where j ∈ J and k ∈ K, that provides the lowest collection-transfer-distribution cost

via enumeration over the |J |× |K| transfer links. Once all the disjoint set Sl ∈ S are

assigned to their nearest links, the implied capacity to be installed on a particular link

(j, k) is calculated as the minimum number of truckload-trips required to haul the

cumulative load assigned to that link. The objective function evaluation procedure

described here provides a computationally inexpensive method for assigning a value

depicting the goodness of the solution. In several cases, it may be very close to the

exact value Z∗(S).

The solution S consists of partitions Sl ∈ S which are assigned to various links in

the process of the objective function evaluation. It may happen that more than one

partition, say S1, S2 and S3 get assigned to the same link. In such a case, we define a

new partition S ′ which consists of all the commodities in S2, S2 and S3 and redefine

the solution as S = S ∪ {S ′} \ ({S1} ∪ {S2} ∪ {S3}). Clearly, the objective function

evaluation then may result in a solution with a reduced level of consolidation.

Since the objective function evaluation is used several times in our neighborhood

search routines, we use Z̃(S) for comparing the neighborhood solutions with each

other. However, we update the objective value assigned to an incumbent solution by

Z∗(S). The use of approximate objective function evaluation enables us to search the

neighborhood quickly. For clarity, although both Z̃(S) and Z∗(S) have an objective

function value that corresponds to a solution S, their purposes are different. The
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heuristic objective function evaluation is used to assign a number to the neighbor-

hood solution for comparison purposes, and the main criterion is to be reasonable for

comparison as well as computationally inexpensive because a large number of neigh-

borhood solutions need to be compared. The exact objective function value is used to

update the incumbent solution’s value in the local search procedure explained later.

IV.2.2. Construction Heuristics

Based on the solution representation described above, the construction of an initial

feasible solution clearly consists of partitioning commodities. There are a number

of possible ways to obtain such partitions. We conducted empirical tests on several

ideas based on random selection, greedy selection and a combination of the two. We

found the greedy heuristic to perform better; therefore, below we present the initial

solution construction method which is greedy in nature. In the construction method,

for each commodity i ∈ P , we select the transfer link (j, k) which has the lowest score

defined by δijk = wi (α
f dfij + αt dtik +

β
U
djk). Notice that the score δijk is a measure

of the total cost of transferring commodity i from its origin to its destination via

link (j, k) assuming 100% capacity utilization. Performing the above described score

based link selection for each commodity partitions the commodities into sets (may

include singleton sets) of commodities assigned to the same link. A collection of the

thus created partitions is our initial solution S.

IV.2.3. Components of Compound Neighborhoods

We developed a compound neighborhood search method in the previous chapter for

ONDP. As we will show shortly, we can use the same framework here as well as the

modified definition of the ingredient functions that adapt to the problem structure.

Just as in ONDP, we begin by observing that in any given solution S, we can identify
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two key attributes including the consolidation level defined as the number of partitions

|S|, and the composition of partitions Sl ∈ S. Given a solution, a neighborhood

function modifies these key attributes in order to generate neighboring solutions in

a heuristic search framework. Since the neighborhood functions that we develop for

this purpose utilize simple operations in various combinations for modifying the key

attributes, we call them compound neighborhood functions. There are two essential

components of a compound neighborhood function: the Level-Change (LC) and the

Content-Change (CC). The LC component perturbs the consolidation level |S| in a

solution S, and the CC component modifies the contents of partition Sl ∈ S. We

define a compound neighbor of a given solution S as a solution obtained by first

applying an operation in the LC component followed by a combination of operations

in the CC component. In the latter, a specific combination is called a CC method.

These components and their operations are outlined in Figure 10.

Figure 10 Components of Compound Neighborhoods
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The LC component is comprised of two operations which are abbreviated as

LC-P() and LC-M(). Given a solution S, LC-P(S) gives a new solution with a

consolidation level |S|+1 whereas LC-M(S) gives a new solution with a consolidation

level |S|−1. Note that the number of possible consolidations in the system varies from

a minimum of 1 consolidated shipment to a maximum M 2 consolidated shipments,

one on every link. Both of the operations LC-P() and LC-M modify the level within

this range. In operation LC-P(), to increase the consolidation level by one, we create

a new empty set of commodities and repeatedly select a commodity at random from
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existing sets one at a time to assign it to the new set until the new set has a total of

N
|S|+1

commodities.

Similarly, in operation LC-M(), we reduce the consolidation level of a solution

S by one consolidation by disaggregating one of the partitions and distributing its

content to other partitions. We disaggregate the consolidation which has a load that

leads to the most undesirable capacity utilization. Let LOAD(Si) denote the to-

tal weight of the commodities in the consolidated shipment Si ∈ S, then unutilized

capacity is given by U−(LOAD(Si)%U), e.g. for LOAD(Si) = 25, U = 10, the unuti-

lized capacity is given by 10 − (25%10) = 5. In operation LC-M(), we disaggregate

the set Si ∈ S having the lowest utilization. We randomly assign the disaggregated

commodities to the remaining sets one at a time. Addition of a new commodity may

cause the consolidated shipment to require an additional trucks. We try to avoid

assigning the disaggregated commodities to such shipments. If it is impossible to

assign the disaggregated commodities to a shipment without requiring an additional

truck, we assign it to a randomly selected consolidation.

The CC component modifies the composition of sets Sl ∈ S using local search

with simple move and exchange neighborhood functions. Recall from the solution

method developed in the case of ONDP, move corresponds to moving a commodity

from a set Si to a set Sj (MCC) where i 6= j and the exchange consists of a pair-

exchange operation corresponding to exchanging a pair of commodities between a set

Si and another set Sj (XCC) where i 6= j. We notice that in TNDP, there are only

two content change methods possible MCC and XCC as opposed to five in ONDP,

namely XCC, XCD, MCC, MCD and MDC. We found that a neighborhood spanned

by just two functions as defined above is not sufficient to generate good solutions.

Therefore, in TNDP we modify the procedures MCC and XCC to pursue intensified

searches by moving or exchanging two commodities instead of just one commodity as
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in the ONDP. Below we describe the XCC and MCC operations specific to TNDP.

In XCC, given partitions S1, S2 ∈ S involved in the exchange, we identify two

links (j, k)1 and (j, k)2 that have the smallest total cost of collection, transfer and

distribution with respect to partitions S1 and S2, respectively. Then, we calculate the

cost of collection and distribution for all commodities in set S1 as if they were assigned

to the link (j, k)2 and select the two commodities with the lowest cost. Similarly, we

identify two commodities in set S2 that have the minimum cost of collection and

distribution as if they were assigned to the link (j, k)1. The XCC returns the new

solution obtained by exchanging the two commodities both from partitions S1, S2.

The solution thus obtained is accepted if the corresponding objective function value

is better than the original solution before the exchange.

The MCC operation gives a solution obtained by moving 2 commodities from one

partition to another partition. In MCC, we identify the least cost link (j, k) corre-

sponding to the commodity set at the receiving end of the move operation. Similarly

to XCC, in order to identify two commodities to be moved from the providing set, we

calculate the cost of collection and transfer for all the commodities in the providing

set assuming the commodities are assigned link (j, k), and select the two commodities

with the lowest cost. The resulting solution is accepted if the corresponding objective

function value is better than the original solution.

These simple neighborhood functions can be combined to prescribe CC methods

that generate a neighboring solution of a given solution provided by the LC operation.

We combine these methods in a serial fashion such that the first improving solution in

XCC provides the initial solution for MCC. An important distinction of the compound

neighborhoods described in ONDP is that here we do not use different compounding

sequence CC-P and CC-M. Instead, the CC is identical for the solutions obtained

from both LC-P and LC-M.
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Notice that, just like in ONDP, the use of the LC and CC components in this

fashion facilitates the incorporation of two desired characteristics in any heuristic

search procedure. The LC component promotes diversification during the search of

the feasible solution space. On the other hand, the methods of the CC component

provide the opportunity for intensification in a solution subspace via the combined

use of simple neighborhood functions.

IV.2.4. Generic Notation and Branching

We define the generic notation that we used in the previous chapter. Again, the

function ConstructionHeuristic() refers to obtaining an initial solution which can be

performed by applying procedure explained in Section IV.2.2. In these local search

procedures, we again take the first improving solution at each iteration. We define

branching on a node representing a current solution S as shown in Figure 11. The

left child of node S, denoted by SL, is a solution obtained by LC-M() followed by

CC() and the right child of node S, denoted by SR, represents a solution obtained by

LC-P() followed by CC().

Figure 11 Branching on a Solution S in TNDP
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The compound neighborhood search framework that we use in TNDP is similar
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to the one used in ONDP in the sense that both use two key attributes to define a

neighborhood, and both level change and content change neighborhoods are based on

similar type of neighborhood search ideas. Level change is still based on increasing

and decreasing the level, and content change neighborhoods still use exchanges and

move based neighborhood search. The key differences are in the implementation of

the ingredient functions as summarized below.

1. In ONDP, the search tree has two levels, while in TNDP the search tree has

only one level.

2. In ONDP, there are 3 move based and two exchange based neighborhoods while

in TNDP we have one move and one exchange neighborhood.

3. In ONDP, we tried four methods of compounding the neighborhood searches,

the PN, PLSN, and SN and SLSN, and three metaheursitics LSDB, SABB and

TSCB. Based on computational results in ONDP, we have confined TNDP to

only one method, SN, for compounding the search and SABB for the meta-

heuristic.

4. Instead of pair-wise exchanges and single moves, TNDP uses two-exchanges and

two-moves and a more sophisticated way of selecting candidate commodities for

the moves and exchanges.

IV.2.5. Simulated Annealing with Biased

Branching (SABB)

The branching strategy that we introduced in ONDP, and again adapted for TNDP

as described above, helps reduce the number of necessary neighborhood searches by

biasing the search direction toward potentially improving good solutions only.
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An overview of basic Simulated Annealing was presented in the previous chapter.

In ONDP, our simulated annealing algorithm utilizes the branching on the solutions

obtained during the search. We suggested a probabilistic branching strategy that

introduced bias into the search in such a way that the iterates tend to move to the

region of the solution space that is more likely to include good solutions. In gen-

eral, the SABB algorithm presented here is a repetition of what we already presented

in ONDP, except for changes in the parameter values and the use of a completely

different bias branching strategy. This solution generation, given in lines 6-20 in Dis-

play 7, uses a biased branching strategy that is particularly specific in our case as

described in detail below. If Sn improves upon the best solution (Sb) to date, we

update the best and current (Sc) solutions and start a new iteration of Metropolis.

On the other hand, if Sn is non-improving, we accept it as the current solution with

a probability e−∆/T where ∆ is the absolute difference between the current and new

solution and T is an algorithm parameter known as temperature. This mechanism

provides an opportunity for accepting the uphill moves mentioned above. The pa-

rameter T is usually high for initial Metropolis runs so the acceptance probabilities

are high and diversification in the search is promoted. After each Metropolis run,

the temperature is decreased before the next one starts, thus providing an overall

decreasing sequence of temperatures, usually in a geometric fashion. This is achieved

using a factor γ (typically a value less than and close to one), i.e., T is updated as γ T.

Each Metropolis procedure is executed at a fixed temperature for a certain number

of iterations M which is another algorithm parameter. Similar to T, we also update

the parameter M after each Metropolis run using another factor φ, i.e., M is updated

with φ M; however, in this case, we choose a factor value that is greater than one. A

cooling schedule set with these general characteristics promotes intensification in the

search as the overall algorithm proceeds while encouraging diversification to reach
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regions with good solutions in the initial stages. The overall SABB Algorithm is

terminated when the required number of iterations in a Metropolis loop exceeds a

preset algorithm parameter value MAX M. The complete SABB algorithm is given in

Display 7. Note that the algorithm parameter values specified in the initialization

step in Display 7 were obtained after some fine-tuning and used in our computational

tests presented in Section IV.4.

Figure 12 Biased Probability in Simulated Annealing
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Similarly to SABB in ONDP, here also we use a biased branching strategy, but

with certain adaptations. This biased branching helps avoid searching in directions

that are less likely to produce better solutions. Note that in TNDP, the level of

consolidation varies from a minimum of Lmin = 1 consolidations to a maximum of

Lmax consolidations where Lmax is given by min{N,M 2}. Let us denote the desirable

level of consolidation under perfect consolidation by L∗ = min{dW (P)/Ue,M 2} and

the consolidation level of the current solution by L. Then the bias in the branching

direction is decided by a ratio r calculated as:
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r =















L−L∗

Lmax−L∗
if L > L∗

L∗−L
L∗−1

if L ≤ L∗
(4.9)

The branch SL for the case L ≥ L∗ is selected with a probability (P = ra) and

branch SR for the case L ≤ L∗ with a probability (P = ra) where r is calculated

as given by 4.9. The parameter a can be selected empirically, and we found a = 0.2

to work well. The probability distribution function plotted for a test problem is

displayed in Figure 12. We implement this branching (see Figure 11) strategy in lines

6-20 of the SABB Algorithm given in Display 7.

IV.3. Lower Bound

It is known that even moderate sizes network design problems are often extremely

difficult to solve using exact methods; therefore it is difficult to obtain benchmark

solutions to evaluate the quality of the feasible solutions obtained by neighborhood

search method. The most popular approach for obtaining lower bounds is by relax-

ation. In relaxation, the idea is to search the relaxed (larger) solution space, and

minimize an objective function of smaller or equal value (Wolsey, 1998). Linear pro-

gramming relaxation, combinatorial relaxation and Lagrangian relaxation are some of

the important approaches found in the literature. Solutions to relaxed problems can

also be used to develop algorithms for finding feasible solutions, e.g. LP based branch

and cut approach, Lagrangian based dual ascent approach. Below, we evaluate two

methods, LP relaxation and Lagrangian relaxation for developing lower bounds for

the problem.
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Display 7 Simulated Annealing Algorithm SABB()

1: initialize M=15, MAX M=55,

T=500, γ = 0.9, φ = 1.2

2: Sc = ConstructionHeuristic(), Sb = Sc

3: while M ≤ MAX M do

4: Set M′ = M

5: repeat {Metropolis Loop}
6: if L > L∗ then

7: Calculate r = L−L∗

Lmax−L∗

8: if ra > rand[0,1] then

9: Sn = ScL
10: else

11: Sn = ScR
12: end if

13: else

14: Calculate r = L∗−L
L∗−1

15: if ra > rand[0,1] then

16: Sn = ScR
17: else

18: Sn = ScL
19: end if

20: end if

21: 4 = Z∗(Sn)− Z∗(Sc)
22: if ∆ < 0 then

23: Sc = Sn

24: if Z∗(Sc) < Z∗(Sb) then
25: Sb = Sc

26: end if

27: else

28: if rand[0,1] < e−∆/T then

29: Sc = Sn

30: end if

31: end if

32: M′ = M′ - 1

33: until M′ = 0

34: T = γ T; M = bφ Mc
35: end while

36: RETURN Z∗(Sb) and Sb
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Linear programming (LP) relaxation of the original problem is one of the easiest

ways to obtain lower bounds. In most cases the LP bound is weak, but it can be

improved by adding valid inequalities or cuts. Disaggregation constraints are valid

inequalities in the form of zijk ≤ yjk ∀j, k, which, though they are redundant for

the integer program, tighten the LP bound. For example, consider the LP polyhedra

defined by LP = {zi : .8 z1 + .7 z2 ≤ 2 y, 0 ≤ z ≤ 1, y ≥ 0}; the polyhedra including

disaggregation constraints is LP ′ = {zi : .8 z1 + .7 z2 ≤ 2 y, z1 ≤ y, z2 ≤ y, 0 ≤ z ≤

1, y ≥ 0}. It is obvious that LP ′ ⊆ LP because {z1 = 1, z2 = 1, y = .8} ∈ LP

but /∈ LP ′. Our empirical study verified that the disaggregation constraints define

a tighter LP polyhedra and help provide a better LP bound. Valid inequalities in

the form of disaggregation constraints provides tighter LP bounds which often helps

branch and cut convergence, but at the cost of having to solve a larger LP at each

branch and bound tree node. Our empirical tests show that although adding valid

inequalities obtained from disaggregation constraints resulted in faster convergence

in the beginning, it suffers from tailing off issues. For larger problems, the impact

was even more severe. Therefore, the LP relaxation based approach is not suitable

for large instances of our problems.

The Lagrangian relaxation approach has been successfully applied to many dif-

ficult problems in distribution network design, facility location, and other areas. The

Lagrangian relaxation-based approach involves relaxing a set of constraints and in-

troducing them in the objective function with a multiplier vector called a Lagrangian

multiplier vector. The relaxed problem is called a Lagrangian relaxation subproblem

and the solution to this relaxed problem provides a lower bound (ZLB) on the op-

timal solution of the main problem. One way to obtain Lagrangian relaxation is to

dualize the capacity constraint (4.3) which results in Lagrangian subproblems con-

sisting of constraints set (4.2) and standard nonnegativity and integrality restrictions.
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This relaxation is separable in each commodity i ∈ P and is solvable by inspection.

Unfortunately, this relaxation, although simpler to solve, suffers from the integrality

property. A Lagrangian relaxation is said to have the integrality property if the so-

lution to the Lagrangian subproblem is unchanged when the integrality restriction is

removed. Furthermore, a Totally Unimodular constraint matrix defines an integral

polyhedra, i.e., all extreme points of the linear program are integral. If a Lagrangian

relaxation subproblem has the integrality property, then the Lagrangian bound can

never be tighter than the LP bound. A matrix A is totally unimodular (TUM) if ev-

ery square submatrix of A has a determinant of either 0, 1 or −1. In the case of this

relaxation, the constraint matrix for each commodity is simply a 1 by M 2 matrix, i.e.

row vector, and its elements are either 0 or 1. Clearly, the constraint matrix is totally

unimodular, and therefore, the polyhedra prescribed by constraint set (4.2) is integral

and the Lagrangian subproblem has the integrality property, implying that the lower

bound provided by this relaxation can never be better than the linear programming

relaxation.

If we add the valid inequalities (zijk ≤ yjk∀i, j, k) to the Lagrangian subproblem

in the previous relaxation, it can be shown that the Lagrangian subproblem polyhedra

defined by constraints (4.10), (4.11) and (4.12) is exactly the uncapacitated facility

location (UFL) polyhedra (shown below by 4.10 - 4.12) which is a known NP-Hard

problem to solve.

∑

j∈J

∑

k∈K

zijk = 1 ∀i. (4.10)

zijk ≤ yjk ∀j, k. (4.11)

yjk ∈ Z
+, zijk ∈ {0, 1}, ∀i, j, k. (4.12)
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Since Lagrangian relaxation obtained by relaxing the capacity constraints yields

poor bounds and an attempt to tighten the bounds by adding valid inequalities results

in a hard problem to solve, we explore Lagrangian relaxation obtained by dualizing

the demand constraint (4.2). The resulting Lagrangian relaxation is given by the

formulation shown below.

Min
∑

i∈P

∑

j∈J

∑

k∈K

(Wijk − µi)zijk +
∑

j∈J

∑

k∈K

Tjk yjk +
∑

i∈P

µi (4.13)

subject to

∑

i∈P

wizijk ≤ U yjk ∀j, k. (4.14)

µi ≥ 0, yjk ∈ Z
+, and zijk ∈ {0, 1}, ∀i, j, k. (4.15)

In the relaxation shown above, µi is the lagrangian multiplier corresponding

to the constraint (4.2). Since the Lagrangian relaxation subproblem does not have

integrality property, it is expected to provide better or at least equal lower-bounds

than the linear programming relaxation of the original problem. The subproblem is of

the binary knapsack type with the knapsack size itself being a decision variable which

is a difficult problem. Since the subproblem needs to be solved at every iteration of the

Lagrangian heuristic, it is important that we find some computationally inexpensive

solution method. We devise a variable relaxation to obtain a faster lower bound as

explained below.

Variable Relaxation: We assume single sourcing constraints, implying that a

commodity must be assigned to exactly one linehaul link ((j, k) − pair). When we

drop the single sourcing constraint by redefining the variable zijk as a real variable

instead of a binary one, we call the resulting relaxed problem the variable relaxation.
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The variable relaxation problem is easier to solve (i.e., results in smaller runtime), but

it would obviously yield a lower bound as it is a relaxation of the original formulation.

We confirm by the empirical test that variable relaxation results in an over 50%

reduction in runtime with negligible compromise (less than 0.1%) in solution quality.

Furthermore, it is possible to tighten this lower bound by adding two surro-

gate constraints (4.18) and (4.19). The complete Lagrangian relaxation formulation

including surrogate constraints and variable relaxation is give below.

ZLB(µ) = Min
∑

i∈P

∑

j∈J

∑

k∈K

(Wijk − µi)zijk +
∑

j∈J

∑

k∈K

Tjk yjk +
∑

i∈P

µi (4.16)

subject to

∑

i∈P

wizijk ≤ U yjk ∀j, k. (4.17)

∑

j∈J

∑

k∈K

U yjk,≥
∑

i∈P

wi (4.18)

∑

i∈P

zijk ≥ N (4.19)

µi ≥ 0, yjk ∈ Z
+, and 0 ≤ zijk ≤ 1 ∀i, j, k. (4.20)
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The surrogate constraint (4.18) dictates that the total capacity in terms of truck-

load trips installed over all links must be greater than, or at least equal to, the total

demand. This surrogate constraint can be derived from constraint (4.3) by summing

it over all links (j, k) and using the constraint (4.2). Similarly, constraint (4.19) im-

plies a surrogate constraint obtained by summing the relaxed constraint (4.2) over all

commodities i ∈ P .

Also, notice that the Lagrangian relaxation subproblem (4.16)-(4.20) is an mixed

integer program having only M 2 integer variables, which is easier to solve than the

pure integer program with number of integer variables of the order of NM 2 +M2.

IV.3.1. Lagrangian Heuristic

In general terms, a Lagrangian heuristic is an iterative procedure where at each

iteration a lower bound ZD(µ) using fixed µi values, an upper bound, using partial

information from the lower bound solution, and updated lagrange multipliers are

obtained. Iterations are continued until a stopping criterion is met. We use the

following notation to describe the Lagrangian Heuristics for our problem.
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Notations:

t iteration number

T maximum number of iterations

Zt
LB, Z

t
UB lower and upper bound at iteration t

Z, Z best lower and upper bound

µ
t vector of lagrange multipliers at iteration t

Rl # of successive iterations with non-improving ZLB (counter rl)

Ru # of cumulative iterations with less than ε% improvement (counter ru)

λ step size factor

dn step size to update lagrange multipliers at iteration v

The general framework for lagrangian heuristics is given in Display 8. The solution

obtained from solving the Lagrangian relaxation can be converted into a feasible

solution and used to generate an upper bound using the neighborhood search method.

The information from the Lagrangian relaxation may be useful for speeding up the

neighborhood search method by providing a good starting solution plus a better upper

bound may further help the Lagrangian heuristic to converge faster.
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Display 8 Lagrangian Heuristic Framework

Step 0: Initialize: t=1, Z = Z0UB = SABB(), Z = Z0LB = −∞,

µt, α = 1.8. rl = ru = 0.

ε = 0.5, E = 100

Step 1: E = 100× ZUB−ZLB

ZUB

Solve ZLB(µ
t) to obtain a lower bound Z t

LB.

If ZLB satisfies constraints (4.2) set ZUB = ZLB, go to step 10.

Step 2: If 100× ZUB−ZLB

ZUB
− E ≥ ε Then ru ← ru + 1

If Zt
LB ≥ Z, then Z = Zt

LB and r = 0, otherwise rl ← rl + 1.

Step 3: Find a feasible solution as upper bound Zv
UB.

Step 4: If Zv
UB ≤ Z, then Z = Zv

UB.

Step 5: If (Z − Z)/Z ≤ ε, then go to step 10.

Step 6: If rl = Rl, then α← α/2

If ru = Ru Then ru = 1 and ZUB = SABB∗()

Step 7: If termination criterion met then go to step 10.

Step 8: Calculate the step size for updating lagrange multipliers.

Step 9: Set t← t+ 1, Update the lagrange multipliers, go to step 1.

Step 10: Record the upper bound solution, stop.

A few remarks regarding the Lagrangian heuristic are in order. We use sub-

gradient optimization to update the Lagrangian multipliers. In order to update the
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multiplier we first calculate the step size using the formula dt = λt UB−LBt
�

i(1−
�

j

�
k zijk)

2 ,

and then each multiplier is updated using the formula µt+1i = max{0, µti + dt(1 −
∑

j

∑

k zijk)}. Notice that in step 6 of the Lagrangian heuristic as shown in Display

8, we update the ZUB by using simulated annealing described in Display 7. However

instead of starting the simulated annealing (refer to line 6 in Display 7 ) with an

initial solution obtained from the ConstructionHeuristic(), we use the lower bound

solution after making it feasible as per the procedure given below.

1. Define sets of commodities A,A0, A1 such that A1 = {i :
∑

j

∑

k zijk = 1 ∀i ∈

P}, A0 = {i :
∑

j

∑

k zijk = 0 ∀i ∈ P} and A = P \ {A0 ∪ A1}

2. Retain the assignments for all commodities in set A0

3. Assign every commodity i in set A1 to the link (j, k) = argmin{βdjk +wi(d
f
ij +

dtki) ∀j, k}

4. Assign every commodity in the set A to link (j, k) = argmin{βdjk + wi(d
f
ij +

dtki) for j, k} without increasing the number of TL requirements. If there is

no such link, assign it to a randomly selected link.

5. Identify disjoint sets of commodities assigned to the same link and create feasible

solution S. Assign an objective function value to S by Z̃(S).

IV.4. Computational Study

In the preceding sections, we have described an integer programming formulation for

our problem, simulated annealing based heuristic algorithms to find upper bound and

a Lagrangian-based heuristic to find the lower bounds on the optimal solution to our

problem. We also described a Lagrangian heuristics framework that uses SABB for
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the upper bound, Lagrangian relaxation for the lower bound, and a sub-gradient based

approach for updating the Lagrangian multipliers. Our theoretical analysis suggests

that the Lagrangian relaxation based lower bound is tighter than the lower bounds

obtained by using LP relaxation and LP relaxation with disaggregated constraints.

In this section, we present a computational test to verify our theoretical results and

test the performance of the methods developed for lower and upper bounds.

IV.4.1. Experimental Setup

The process of generating test instances is presented on page 15.

Table 9 TNDP Experimental Problem Sets
Datasets E NP N M U

Benchmark Problems 15 15 30, 40 . . . , 100 6 8

Dataset 1 25 25 125, 150, . . . , 200 6 8

Dateset 2 40 40 400, 450, 500 6 8

Dataset 3 50 50 800, 900, 1000 6 8

The parameters to generate experiment data data are given in Table 9 which

includes four data sets. In all of the data sets, A is set to 100, and the data sets

differ from each other in terms of E, NP , N , M and U . For each value of N , we

randomly generate 10 instances. For simplicity, we choose |J | = |K| = M , which

implies M 2 possible directed links for TL shipments. In all our problems instances,

we chose M = 6 and U = 8 and, therefore, β = 5 per mile. We reduce the β used in

TNDP to 5 instead of 6 in case ONDP to account for the price break that is possible

due to load commitment to a third party. The first problem set includes 80 small

instances where CPLEX provides benchmark results in the form of either an exact

solution or upper and lower bounds upon termination with a runtime limit of 1800

seconds. Datasets 1 through 3 have comparatively larger numbers of commodities as
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given in Table 9.

IV.4.2. Computational Results

In section IV.3, we discussed various methods of generating lower bounds such as a LP

Lower bound (LP), a lower bound generated by tighter LP that uses disaggregation

constraints to tighten the formulation (LP-Tight), and a Lagrangian Bound (LR).

Let us also denote by B&C the best lower bound reported by CPLEX at the time

of termination. We showed the LP-Tight to be better than LP, the LR to be tighter

than the LP, for the relaxation given by (4.16)-(4.20). Figure 13 shows lower bounds

generated by all four methods LP, LP-Tight, LR and B&C. We observe that the

lower bounds generated by LP and LP-Tight are the weakest. The LR and B&C

lower bounds are tight for relatively smaller problems, however, as the problem size

increases, the LR lower bound is higher than the B&C bounds.

We used CPLEX to obtain solutions for the benchmark problems instances with

the stopping criterion of a 1800 seconds time limit. We benchmark the Lagrangian

heuristic against the solution obtained from CPLEX. In both CPLEX and Lagrangian

heuristics, upon termination we record the lower bound (LB) and upper bound (UB)

and calculate the termination gap as 100 × (ZUB − ZLB)/ZLB. The summary of

computational results for benchmark problems presented in Tables 10 and 11. In

both the tables, column 2 to 5 show the CPLEX results and columns 6 to 9 show

the Lagrangian heuristics. CPLEX is able to prescribe an optimal solution for all

but one case for problems with values of N from 30 to 60. The average runtime for

small instances is 17.2, which grows quickly to 603 seconds for N = 60. For the larger

problems in the benchmark dataset, CPLEX is unable to prescribe an optimal solution

within the set time limit of 1800 seconds. However, when we try to let CPLEX run for

longer, it runs out of memory. The gaps are 7.42, 7.82, 6.70 and 7.97 percent for values
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Figure 13 Comparison of Lower Bounds
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Table 10 Comparison Lagrangian Heuristic and CPLEX on Benchmark Dataset 0

(N = 30− 60)
N

CPLEX Lagrangian Heuristic
LB UB % Gap Time LB UB % Gap Time

30

1122.27 1122.33 0.01 3 1121.12 1121.14 0.00 8
1097.4 1097.5 0.01 13 1097.14 1097.24 0.01 13
1116.16 1116.22 0.01 1 1113.67 1114.1 0.04 5
1099.51 1099.54 0.00 6 1099.17 1099.27 0.01 4
1079.49 1079.51 0.00 13 1079.46 1084.12 0.43 11
1082.52 1082.61 0.01 13 1082.48 1089.32 0.63 7
1072.38 1072.38 0.00 14 1071.98 1086.32 1.32 16
1111.29 1111.29 0.00 18 1108.98 1109.19 0.02 8
1548.03 1548.11 0.01 84 1546.95 1559.96 0.83 408
1061 1061 0.00 7 1060.71 1060.73 0.00 8

Ave. 0.00 17.2 0.33 48.8

40

1611.85 1611.85 0.00 53 1611.64 1611.85 0.01 67
1589.87 1589.94 0.00 166 1589.2 1600.54 0.71 75
1626.11 1626.27 0.01 141 1624.16 1650.3 1.58 112
1595.09 1595.17 0.01 115 1594.89 1610.52 0.97 54
1586.7 1586.76 0.00 229 1585.89 1608.02 1.38 104
1601.26 1601.39 0.01 69 1600.5 1600.51 0.00 30
1622.17 1622.17 0.00 137 1621 1652.28 1.89 114
1540.91 1540.99 0.01 36 1540.86 1540.82 0.00 10
1520.65 1520.8 0.01 96 1518.84 1547.63 1.86 53
1559.93 1559.93 0.00 74 1559.18 1559.41 0.01 48

Ave. 0.00 111.6 0.84 66.7

50

2083.22 2083.28 0.00 1181 2080.16 2131.65 2.42 101
2108.89 2109.08 0.01 693 2107.04 2138.34 1.46 137
2081.96 2082.14 0.01 596 2081.27 2109.09 1.32 96
2148.49 2148.7 0.01 484 2146.7 2187.14 1.85 47
2040.76 2040.89 0.01 525 2040.65 2057.18 0.80 101
2046.24 2046.41 0.01 946 2045.76 2049.74 0.19 74
2092.18 2092.38 0.01 721 2090.34 2126.67 1.71 83
2119.25 2119.46 0.01 692 2117.01 2170.62 2.47 75
2110.78 2110.99 0.01 632 2109.97 2139.87 1.40 76
1694.24 1694.4 0.01 8 1690.08 1732.6 2.45 22

Ave. 0.01 647.8 1.61 81.2

60

2129.77 2129.98 0.01 271 2125.93 2183.94 2.66 23
2109.57 2109.77 0.01 215 2095.06 2138.46 2.03 27
2157.45 2157.67 0.01 52 2151.85 2295.86 6.27 30
2102 2102.13 0.01 890 2096.55 2134.53 1.78 54

2130.22 2130.43 0.01 23 2122.47 2176.25 2.47 8
2151.5 2151.69 0.01 172 2144.74 2172.21 1.26 63
2151.29 2151.5 0.01 970 2150.9 2199.03 2.19 81
2217.4 2227.25 0.44 1801 2214.27 2272.59 2.57 63
2150.9 2151.11 0.01 398 2147.71 2197.69 2.27 38
2164.78 2165 0.01 1242 2159.55 2206.11 2.11 50

Ave. 0.05 603.4 2.56 43.7

of N as 70, 80, 90 and 100, respectively and the runtime is 1800 seconds for most of

the cases. Lagrangian heuristic performs quite well on all of the problems, and is able

to find optimal solutions in several cases for N = 30 and 40. The average gap for

N as 30 and 40 is below 1 percent with a runtime of 48.8 seconds and 66.7 seconds,

respectively. For larger problems in the benchmark dataset, the Lagrangian heuristics

prescribes solution within the range of a 2 to 3 percent gap which is much smaller

than the 7 percent gap for CPLEX. The key feature of the Lagrangian heuristics is its

small runtime in prescribing the good quality solutions. Even for large problems in the
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Table 11 Comparison of Lagrangian Heuristic and CPLEX on Benchmark Problems

(N = 70− 100)
N

CPLEX Lagrangian Heuristic
LB UB % Gap Time LB UB % Gap Time

70

2327.12 2569.89 9.45 1801 2563.4 2603.68 1.55 150
2529.48 2660.38 4.92 1801 2657.43 2765.18 3.90 65
2446.24 2665.7 8.23 1801 2664.75 2665.9 0.04 72
2346.33 2597.65 9.67 1801 2594.31 2665.56 2.67 312
2132.24 2132.45 0.01 58 2125.3 2203.58 3.55 81
2576.1 2699.15 4.56 1801 2685.22 2779.5 3.39 45
2200.78 2480.13 11.26 1801 2476.34 2498.48 0.89 413
2355.86 2580.97 8.72 1801 2576.92 2630.47 2.04 107
2517.56 2708.62 7.05 1801 2706.19 2752.25 1.67 51
2370.94 2642.75 10.29 1801 2635.88 2727.26 3.35 279

Ave. 7.42 1626.7 2.31 157.5

80

2786.08 3147.06 11.47 1801 3143.02 3194.73 1.62 116
2666.07 3039.47 12.29 1801 3029.14 3080.07 1.65 406
2753.54 3078.53 10.56 1801 3071.1 3127.53 1.80 270
2732.01 3134.53 12.84 1801 3131.02 3192.4 1.92 247
2885.34 3210.16 10.12 1801 3203.63 3288.93 2.59 541
2642.49 2642.75 0.01 207 2631.22 2706.71 2.79 49
2920.36 3172.14 7.94 1801 3165.05 3267.22 3.13 81
2697.44 2697.71 0.01 746 2686.29 2790.65 3.74 26
2684.75 2684.94 0.01 738 2674.95 2767.23 3.33 112
2639.22 3031.83 12.95 1800 3028 3081.15 1.73 350

Ave. 7.82 1429.7 2.43 219.8

90

3170.59 3302.19 3.99 1801 3287.7 3412.76 3.66 63
3148.82 3314.62 5.00 1801 3302.61 3419.96 3.43 86
2930.11 3162.3 7.34 1800 3158.11 3208.16 1.56 61
2838.45 3123.85 9.14 1801 3118.05 3156.34 1.21 145
3014.64 3286.01 8.26 1800 3274.29 3345.11 2.12 165
2988.16 3256.46 8.24 1801 3242.22 3341.33 2.97 128
2984.71 3175.18 6.00 1801 3163.04 3214.24 1.59 268
2844.43 3100.43 8.26 1801 3097.71 3121.47 0.76 228
3042.53 3178.32 4.27 1801 3154.98 3249.25 2.90 113
3011.15 3222.17 6.55 1800 3188.95 3294.08 3.19 255

Ave. 6.70 1800.7 2.34 151.2

100

3334.8 3592.41 7.17 1800 3586.17 3664.45 2.14 96
3511.54 3753.61 6.45 1801 3732.22 3825.46 2.44 135
3404.6 3744.02 9.07 1801 3735 3807.58 1.91 254
3376.83 3714.5 9.09 1801 3709.81 3789.26 2.10 145
3318.59 3726.28 10.94 1800 3721.86 3801.8 2.10 224
3507.8 3843.03 8.72 1801 3823.01 3899.48 1.96 253
3297.94 3717.45 11.28 1801 3707.29 3805.68 2.59 655
3485.62 3767.99 7.49 1800 3756.96 3802.7 1.20 181
3416.4 3760.32 9.15 1800 3756.36 3811.32 1.44 261
3184.44 3196.26 0.37 1801 3174.69 3235.75 1.89 29

Ave. 7.97 1800.6 1.98 223.3

benchmark dataset, the runtime for Lagrangian heuristic is quite small in comparison

to the CPLEX.

We know that CPLEX uses a LP based branch and cut approach to generate

lower bounds for the problem, and we showed that Lagrangian relaxation based lower

bound is tighter than the LP bound for our problem. In Figure 14, we show the Upper

and Lower Bounds generated by CPLEX and Lagrangian heuristic. We observe that,

although in most cases, the CPLEX upper bound is very close to that generated by the

compound neighborhood based upper bound, it is the tight lower bound generated
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Figure 14 Comparison of Bounds: Lagrangian Heuristics Vs. Branch and Cut
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by the Lagrangian that give the lagrangian heuristics an edge over the CPLEX’s

LP based branch and cut. On the basis of the encouraging computational results

for benchmark problems, we can conclude that Lagrangian heuristic provides good

quality lower and upper bounds.
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Table 12 Lagrangian Heuristic Results for Dataset 1 (N = 125− 200)

N
Lagrangian Heuristics

LB UB % Gap Time

125

4706.74 4810.04 2.15 70
4331.87 4461.28 2.90 107
4405.31 4606.8 4.37 28
4762.07 4996.88 4.70 192
4351.04 4525.97 3.87 149
4685.14 4809.85 2.59 32
4539.28 4787.34 5.18 25
4441 4544.89 2.29 140

4551.67 4748.59 4.15 44
4384.27 4491.99 2.40 432

150

5479.33 5628.02 2.64 271
5503.22 5772.99 4.67 85
5468.59 5952.83 8.13 76
5586.64 5876.89 4.94 185
5597.75 5789.09 3.31 156
5637.01 5956.65 5.37 159
5438.73 5932.62 8.32 161
5614.94 5781.9 2.89 101
5425.42 5591.91 2.98 163
5411.01 5688.35 4.88 181

175

6080.98 6446.03 5.66 136
6715.05 6905.42 2.76 98
6132.12 6437.09 4.74 149
6104.51 6488.62 5.92 154
6057.7 6250.78 3.09 91
6512.62 6638.18 1.89 175
6076.86 6453.73 5.84 57
6316.49 6757.32 6.52 74
5942.67 6367.95 6.68 87
6861.61 7131.83 3.79 135

200

7332.27 7652.29 4.18 160
6951.85 7328.86 5.14 180
7570.3 7975.45 5.08 122
6931.8 7256.95 4.48 280
6988.3 7330.26 4.67 137
7116.71 7446.13 4.42 180
7157.41 7576.16 5.53 119
7376.74 7987.2 7.64 88
6510.11 6758.54 3.68 141
7005.24 7336.87 4.52 210
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Table 13 Lagrangian Heuristic Results for Dataset 2 (N = 400− 500)

N
Lagrangian Heuristics

LB UB % Gap Time

400

15360.9 16058.6 4.35 285
15647.8 16065.9 2.60 155
15895.3 17129 7.20 209
15912.5 16512.7 3.63 189
14915.9 15735.4 5.21 542
16421.4 17035.6 3.61 155
15339.8 16366.3 6.27 218
15455.9 16315.7 5.27 164
15474.1 16403.4 5.67 243
14660.6 15104.7 2.94 187

450

18349.4 18934.4 3.09 347
18913.2 19701.6 4.00 154
16354.7 16905.2 3.26 230
18111.1 18664.9 2.97 227
17847.2 18317.5 2.57 157
18178.1 18970.5 4.18 492
16953.1 17418 2.67 270
16380.4 16974.1 3.50 168
16855.6 17753.1 5.06 279
17784.2 18631.1 4.55 232

500

18503.2 19078.2 3.01 401
18296.1 19651 6.89 369
19119.1 20009.1 4.45 186
18788.9 19365.8 2.98 232
18605.7 19235 3.27 407
18821.2 19979.1 5.80 392
20614.8 21331.4 3.36 1628
18622.6 19848.1 6.17 288
19315.8 19921.6 3.04 181
20356 20917 2.68 184
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Table 14 Lagrangian Heuristic Results for Dataset 3 (N = 800− 1000)

N
Lagrangian Heuristics

LB UB % Gap Time

800

36245.2 37136.5 2.40 240
29758.7 30597.9 2.74 1335
32793.6 33962 3.44 1515
33753.3 34978.8 3.50 1191
30682.4 32136.9 4.53 393
32523.1 33492.3 2.89 397
29872.1 31308.9 4.59 2591
33769.4 34683.1 2.63 842
30644.8 32018.6 4.29 1937
33711.6 34908 3.43 1159

900

34657.6 37703.6 8.08 386
34153 35411.1 3.55 500

37839.1 39185.5 3.44 4190
39256.4 40665.5 3.47 4441
33207.6 34803.3 4.58 3830
35669.9 36660.2 2.70 681
33849.6 35450.4 4.52 2260
34946 36143.2 3.31 5066
33407 34335.2 2.70 678

34723.2 35815.1 3.05 4646

1000

40232.6 40923.5 1.69 7389
43433.5 44184.4 1.70 4161
40580.9 41915 3.18 1026
40519.6 42002.5 3.53 1056
41280.5 42569.1 3.03 3457
41821.7 43711.8 4.32 468
38405.2 39218.3 2.07 200
39236.4 40433.6 2.96 5370
40058.7 41523.6 3.53 6032
38718.5 40012 3.23 6036

Next, we solved larger problems with the Lagrangian heuristic and we report

their performance in Tables 12, 13, 14. The Table 12 presents the Lagrangian heuristic

performance on dataset 2 having N = 125 to N = 200 which has average runtime

between 110 and 160 seconds with an average termination percentage gap ranging

between 3 to 4 percent. Similarly, as shown in Table 13 and 14, the average gap is
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still within 3 to 4 percent.

It is worth noting that as opposed to CPLEX, the average gap for the Lagrangian

heuristics is consistent even for large problems and the increase in runtime is within

acceptable limits. Note that TNDP needs to be solved less frequently than ONDP,

therefore, slightly higher runtimes for larger problems are acceptable.

IV.5. Summary and Conclusions

In this chapter, we considered a tactical network design problem with explicit con-

sideration of loads consolidation. We consider a network with multi-commodity flows

where each commodity is defined by its unique pair of origin and destination nodes

and a known required flow amount. The system is operated in such a way that the

commodities are collected and consolidated into truckloads at consolidation centers,

a linehaul transfer takes place for the consolidated loads, which are deconsolidated

at deconsolidation centers and from there, the commodities are shipped to their fi-

nal destinations. These type of applications are often found in intermodal and LTL

transportation businesses.

We provided an integer programming formulation for the problem. We make an

observation that the model resembles the single sourcing capacitated location problem

with staircase capacity, which is an NP-hard problem. Since modern state-of-the-art

commercial codes such as CPLEX fail to prescribe solution for even small problem

instances, one has to look for heuristic methods for efficient solutions for larger prob-

lems instances. One of the issues with heuristics and metaheuristic methods is that

they provide solutions but do not guarantee bounds on the quality of the solutions.

In this chapter, we investigate methods of finding upper and lower bounds on optimal

solutions to tactical network design problems.



124

We modified the compound neighborhood search procedures to adapt to the

tactical problem and developed a simulated annealing based heuristic algorithm to

provide a feasible solution, which is an upper bound. As opposed to the one-exchange

and one-move based neighborhoods in TNDP, we develop two-exchange and two-move

based simple neighborhoods that provide good quality solutions in TNDP, despite

the fact that there is a smaller number of simple content-change neighborhoods (

two as opposed to five in ONDP). With simulated annealing-based metaheuristic, we

implement a sophisticated bias tree search strategy which proves to be very efficient

in guiding the search in a direction with potentially good solutions.

Although there are several methods for finding lower bounds (e.g. LP based lower

bounds), we found that the Lagrangian relaxation based methods provides bound of

good quality. We consider two Lagrangian relaxations and showed that the relaxation

obtained by dualizing demand satisfaction constraints provides tighter lower bounds

and facilitates development of efficient solution algorithms. We also suggest a variable

relaxation idea to speed up the computation of Lagrangian relaxation based lower

bounds without compromising the solution quality.

Finally, we developed a Lagrangian heuristic framework that utilize an upper

bound found by a simulated annealing based metaheuristic to update the Lagrange

multipliers using sub-gradient optimization. The Lagrangian framework also utilizes

the lower bound solution as input to the simulated annealing method to find even

better upper bounds.

The computational study confirms the superiority of the Lagrangian relaxation

based lower bound over lower bounds generated based on relaxation of the LP and the

LP with tightening constraints. We compared our Lagrangian heuristics lower and

upper bounds against CPLEX on benchmark problems. The Lagrangian heuristics

provided good quality solution with significantly smaller runtime. For larger problems
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also the Lagrangian heuristic consistently provided good quality solutions in short

runtime.
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CHAPTER V

STRATEGIC NETWORK DESIGN PROBLEM

The strategic network design problem (SNDP) is concerned with the resources that

provide the foundation for tactical and operational level planning problems investi-

gated in the previous two chapters. Recall that ONDP addresses operational decision

issues such as commodity-truck assignments and truck-link assignments assuming that

the human resources, equipment and truck capacities are available at the locations

prescribed by its solution. This assumption is made possible because the capacity

issues are taken care of by a tactical problem that we call TNDP. The TNDP ad-

dresses the capacity planning decisions that ensure the availability of resources at

the operational level at regular prices i.e. without the need for expedited capacity

building at higher prices. However, not all resources can be planned for tactical time

horizons. Some examples of such exceptions are buildings or equipment requiring in-

tensive capital investment. We consider these strategic decisions in this chapter. More

specifically, in addition to the design issues addressed in TNDP, SNDP also consid-

ers the location and capacities of the consolidation/deconsolidation centers and theie

associated costs. These centers support operations such as sorting, loading and un-

loading that require human resources, equipment, buildings and other infrastructure.

We assume a base capacity representative of truck handling capacity (loading, unload-

ing, and other auxiliary operations) and let the solution decide the number of base

unit capacities to be installed at the centers. The costs associated with the centers

varies with location, e.g., buildings and human resources may cost more in California

than in Oklahoma. The operations at the consolidation and deconsolidation center

nodes may include moving, loading and unloading the trucks.

The formal description of SNDP is as follows. We are given a network with
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multi-commodity flows as defined in ONDP and TNDP. The system is operated in

such a way that the commodities are collected at a consolidation center and sent via

consolidated shipments over a linehaul transfer link to a deconsolidation center, and

from there the commodities are shipped to their final destinations. The decisions

considered in SNDP include

1. the locations and capacities of the consolidation and deconsolidation centers;

2. the linehaul transfer links and their capacities in terms of the number of truck-

load trips between the consolidation and deconsolidation centers

3. the assignment of commodities to consolidation and deconsolidation centers

and, in turn, to transfer links.

The costs in the system include collection costs, linehaul transfer costs, distri-

bution costs, and costs for locating consolidation and deconsolidation centers. We

assume that the capacity installments on the linehaul transfer links and at the con-

solidation and deconsolidation centers are set in fixed increments. On transfer links,

capacity can be installed with increments of truckload capacity and at centers, with

increments of some base capacity, both with their associated increment costs. Next,

we present a mixed integer programming formulation for SNDP.

V.1. The Model

We present a mathematical formulation for the problem using the notation given

below:
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Notation:

wi the amount of flow for commodity pi

σ base capacity (handling number of truckloads trips) at

consolidation and deconsolidation centers

U capacity per TL for long-haul transfers

V J
j cost of installing base capacity σ at consolidation centers j

V K
k cost of installing base capacity σ at deconsolidation centers k

β full TL transportation cost per mile between J and K

αf LTL transportation cost per unit per mile between F and J

αt LTL transportation cost per unit per mile between K and T

dfij distance between fpi
and consolidation center j

dtki distance between deconsolidation center k and tpi

djk distance between centers j and k

Tjk β djk

Wijk wi(α
f dfij + αt, dtki)

Decision Variables:

zijk fraction of commodity i’s demand assigned to link (j, k)

yjk capacity (number of truckload trips) installed on the link (j, k)

vJj number of σ units of capacity installed at consolidation center j.

vKk number of σ units of capacity installed at deconsolidation center k.
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Objective & Constraints:

Min
∑

i∈P

∑

j∈J

∑

k∈K

Wijkzijk +
∑

j∈J

∑

k∈K

Tjk yjk +
∑

j∈J

V J
j v

J
J +

∑

k∈K

V K
k vKk . (5.1)

subject to

∑

j∈J

∑

k∈K

zijk = 1 ∀i. (5.2)

∑

i∈P

wizijk ≤ Uyjk ∀j, k. (5.3)

∑

k∈K

yjk ≤ σvJj ∀j. (5.4)

∑

j∈J

yjk ≤ σvKk ∀k. (5.5)

zijk ≥ 0, yjk, v
J
j , v

K
k ∈ Z

+ ∀i, j, k. (5.6)

The first term in the objective function (5.1) shown above is the sum of the col-

lection and distribution costs for all the commodities, The last three terms represent

the sum of costs of capacity installations on transfer links, on consolidation centers

and de-consolidation centers, respectively. The first set of constraints (5.2) makes

sure that each commodity’s demand is satisfied. The next three sets of constraints

(5.3), (5.4), and (5.5) impose a capacity restriction on every transfer link, consoli-

dation center and de-consolidation center, respectively. Finally, constraint (5.6) im-

plies nonnegativity restrictions on z and nonnegativity and integrality restrictions on

y,vJ,vK.

Some remarks regarding the model are in order. The model for SNDP shown

here builds on the model for TNDP by simply incorporating location and capacity

decision variables relating to the consolidation and deconsolidation centers. Notice
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that the assignment variable z is defined as a fraction of commodity i’s demand

assigned to the link (j, k) as opposed to the case of ONDP and TNDP where single

allocations are considered. The multiple allocation of a commodity is motivated

by practical considerations. Single sourcing makes practical sense for operational

reasons, but SNDP deals with time horizons longer than ONDP and TNDP, and

therefore, although at the operational level, it may be a business requirement to

assign commodity to exactly one source, that source may change over a period of

time. For example, consider a consumer goods store which, during the winter season,

sources woolen clothes from China and, therefore, allocates stores in California to

a distribution center at Los Angeles. In summer, however, it sources supplies from

South America and wishes to assign the same stores to a distribution center in Phoenix

during the summer season. These assignments are single source within each season,

but in a time horizon that includes both seasons, the store allocation is multiple.

Clearly, single assignment is not the right choice in the case of strategic level network

design. Moreover, having multiple allocations is a robust design from the reliability

perspective also. Although we do not model risk and uncertainty here, needless to

say, it could be an interesting extension of the problem.

Notice that although the assignment decision variable is defined as a fraction, we

do not need to specify the upper bound as 1 because it is implied by constraint (5.2).

The problem has a structure that the constraints (5.4) and (5.5) involve involve

the integer variables whereas the constraint (5.2) involved only fractional variable.

The constraint (5.3) is the linking constraint between the assignment variable z and

the center capacity variables vj and vk. For fixed values of the integer variables,

this problem is nothing but a transportation problem. This type of structure can

be exploited in developing solution algorithms as we will see shortly. Also, we can

replace constraint (5.2) by
∑

j∈J

∑

k∈K zijk ≥ 1,∀i which is a relaxation because of
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the inequality, however it is tight, because it provides exactly the same solution.

To the best of our knowledge SNDP has not been solved in the literature. SNDP

is an interesting problem that incorporates features from the network design and facil-

ity locations area. Not only does it model the node capacity as a constraint, but also

as a decision variable. The problems most closely related to SNDP are multisourcing

staircase capacitated facility location problems and point to point delivery network

design problems, the literature related to which was discussed in the Chapter II. In

the following section, we develop a Benders decomposition-based solution approach

for SNDP.

V.2. Benders Decomposition Based Solution Approach

Benders decomposition has been successfully applied to many combinatorial opti-

mization problems. In general terms, the Benders decomposition technique involves

decomposing the main problem into a master and a subproblem, and then solving

them iteratively by utilizing the solution of the one in the other. The first problem

is called the Benders master problem, which involves solving a problem obtained by

removing some of the constraints and obtaining the solution of a subset of variables.

The values of the variables fixed in the master problem, are then substituted in the

second problem called the Benders subproblem. The solution to this Benders sub-

problem is used to fix the values of the remaining variables and to generate a cut for

the Benders master problem. This process is repeated until a termination condition,

usually a time limit or maximum maximum number of iterations, is met. Since the

decomposed problems need to be solved at each iteration, it is desirable to have sub-

problems that can be solved easily. The two areas that closely relate to SNDP are

network design problems and capacitated facility location problems. The Benders
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decomposition approaches developed for these problem areas exploit the structure

of the problem, i.e. the subproblems obtained in these problems are often shortest

path, transportation type problems which are easy to solve. Geoffrion and Graves

(1996) developed a Benders decomposition-based solution method for multicommod-

ity distribution system design and implemented it for a major food firm. In this case,

when the primal variables are fixed, the subprobelm is the classical transportation

problem that can be further separated by commodities. The fixed charge network

design problem has a structure suitable for Benders decomposition, because the arcs

selection variable (link open/close) is solved in the master problem and the actual

flow can be solved in the subproblem. Refer to a recent review by Costa (2005) on

Benders decomposition applied to fixed-charge network design problems. Similarly,

Capacitated facility location problems also naturally decompose in such a way that

the facility location decision variables are solved in the master problem whereas cus-

tomer assignment is solved in the Benders subproblem. Roy (1986) develops a cross

decomposition-based approach for a capacitated facility location problem which com-

bines Lagrangian and Benders decomposition in a single framework to iteratively fix

the location variables and solve the resulting transportation problem to produce a new

lagrangian multiplier. For fixed lagrangian multipliers, they solve the Lagrangian re-

laxation to produce new values for the location variables. Magnanti and Wong (1981)

and Roy (1986) shown some methods to tailor the Benders method to perform more

efficiently by generating stronger cuts.

Our SNDP formulation employs integer variables y,vJ,vK to model capacity re-

lated decisions and the continuous variable z for allocation decisions. We observe that

for known capacities (for fixed y,vJ,vK) the allocation problem is a linear program

which can be solve efficiently. Similarly, the problem excluding allocation decisions is

an integer program involving much smaller number of variables and constraints (only
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M2 + 2M variables and 2M constraints) which is easier to solve. We develop a Ben-

ders decomposition-based algorithm to solve SNDP that exploits this structure. We

call the problem of finding best allocations for fixed y,vJ,vK as Benders subproblem

(BSP). Clearly, the sum of optimal solution to the BSP and the fixed cost associated

with y,vJ,vK provides a valid upper bound to the optimal solution of the original

problem. The Benders decomposition technique reformulates the original problem by

introducing a continuous variable and a cut utilizing the information (dual variables)

form BSP. This reformulation of the original problem is called Benders Master Prob-

lem (BMP). The optimal solution of the BMP is a valid lower bound on the optimal

solution of the original problem. The solution of the BMP is used again in solving

the BSP. In practice, the convergence of the Benders decomposition-based approaches

depend strongly on the quality of the Benders cuts that are added to the BMP. An-

other advantage of the Benders decomposition method over other metaheuristic and

heuristics methods is that it provides both lower and upper bounds whereas heuristics

provide only a feasible solution, but not a bound for the solution quality.

Above, we only presented a brief overview of Benders decomposition technique,

for a comprehensive discussion we refer the reader to the text book by Daskin (1995)

and the review by Costa (2005).

In the section that follows, we describe SNDP specific Benders subproblem, its

dual, the Benders cut, and the Benders master problem followed by a method for gen-

erating stronger Benders cuts and finally we provide the overall algorithmic framework

for the Benders decomposition algorithm for SNDP.

V.2.1. Benders Subproblem

Let ȳ, v̄J and v̄K represent the given capacity installations on links and centers that

guarantee feasible allocations. Then, given the capacities that provide a feasible
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assignment, the Benders subproblem LP is simply a transportation problem given by

BSP-LP as shown below:

Min
∑

i∈P

∑

j∈J

∑

k∈K

Wijkzijk (5.7)

subject to

∑

j∈J

∑

k∈K

zijk = 1 ∀i. (5.8)

∑

i∈P

wizijk ≤ Uȳjk ∀j, k. (5.9)

zijk ≥ 0 ∀i, j, k. (5.10)

The objective function (5.7) represents the total cost of allocation, i.e. the sum

of the collection and distribution costs for all commodities. Constraints set (5.8)

ensures that every commodity’s demand is satisfied, and constraints set (5.9) makes

sure that total demand assigned to each link is less than, or equal to, the capacity

installed on it. We observe that the subproblem is a transportation problem which

can be solved easily.

zijk ≤ ȳjk ∀i, j, k. (5.11)

The BSP can be tightened by adding constraint set (5.11) which dictates that a

commodity can be assigned to a link only if a nonzero capacity is installed on it.

These are valid inequalities. Although not required for correct formulation of the

problem, they define a tighter polyhedral description of the solution space. The

optimal objective function value of BSP-LP added to the cost associated with

fixed value of (y,vJ,vK) as given by (5.26) provides an upper bound on the original
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problem.

Defining µi, δijk, λjk as the dual variables for constraints (5.8), (5.11) and (5.9),

respectively, the equivalent dual of the BSP-LP is given by BSP-DUAL as shown

below:

Max
∑

i∈P

µi +
∑

j∈J

∑

k∈K

(

−
∑

i∈P

δijk − Uλjk

)

ȳjk (5.12)

subject to

µi − δijk − wiλjk ≤ Wijk ∀i, j, k. (5.13)

µi-free, δijk, λjk ≥ 0 ∀i, j, k. (5.14)

Let B denote the set of all extreme points of the BSP-DUAL given by (5.12)-

(5.14). Also, we represent by (µi, δijk, λjk)
b and ηb the dual variables and objective

function values, respectively, that are associated with an extreme point b ∈ B. Let

η∗ represent the objective value corresponding to the optimal extreme point. Then,

we must have η∗ ≥ ηb ∀b ∈ B, where

ηb =
∑

i∈P

µbi +
∑

j∈J

∑

k∈K

(

−
∑

i∈P

δbijk − Uλ
b
jk

)

ȳjk (5.15)

Clearly, then we can write the dual problem in terms of extreme points as

min
η≥0

η (5.16)
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subject to

η ≥
∑

i∈P

µbi +
∑

j∈J

∑

k∈K

(

−
∑

i∈P

δbijk − Uλ
b
jk

)

ȳjk ∀b ∈ B (5.17)

V.2.2. Benders Master Problem

Knowing the BSP-DUAL problem representation using the extreme points, we can

reformulate the original problem, called the Benders Master Problem (BMP) as

shown below.

Min η + g(y,vJ,vK) (5.18)

subject to

η ≥
∑

i∈P

µbi +
∑

j∈J

∑

k∈K

(

−
∑

i∈P

δbijk − Uλ
b
jk

)

yjk ∀b ∈ B (5.19)

∑

k∈K

yjk ≤ σvJj ∀j. (5.20)

∑

j∈J

yjk ≤ σvKk ∀k. (5.21)

∑

j∈J

∑

k∈K

U yjk ≥ W (5.22)

∑

j∈J

UσvJj ≥ W (5.23)

∑

k∈K

UσvKk ≥ W (5.24)

η ≥ 0, yjk, v
J
j , v

K
k ∈ Z

+ ∀i, j, k. (5.25)

where the term g(y,vJ,vK) represents the fixed cost of capacity installations on
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linehaul transfer links and fixed cost of locating centers as shown below in Equation

(5.26).

g(y,vJ,vK) =
∑

j∈J

∑

k∈K

Tjkyjk +

(

∑

j∈J

V J
j v

J
J +

∑

k∈K

V K
k vKk

)

(5.26)

The BMP formulation shown above contains a large number of constraints (as

many as the extreme points in the BSP-DUAL ) that implicitly contains the as-

signment part of the problem. Notice that the surrogate constraints (5.22), (5.23)

and,(5.24) which were not present in the main formulation before, are not essential

for correct formulation of the problem. They imply that the total capacity installed

on each link, consolidation center and deconsolidation center meets or exceeds the

total demand.

The problem with this reformulation is that it involves large numbers of con-

straints, one for each extreme point, which makes it prohibitively large to solve.

Moreover, at optimality, many of the constraints that correspond to extreme points

will be satisfied. Therefore, in the Benders decomposition method, one works with

only a restricted set of constraints. The master problem that includes constraints

from the restricted set of extreme points is called the Restricted Master Problem

(RMP). Instead of adding the constraints that correspond to the extreme points all

at once, this algorithm adds them iteratively. Each dual subproblem is used to gener-

ate a cut which is added to the master problem to obtain a new set of dual variables.

The surrogate constraints are essential so that the capacities ȳ, v̄J, v̄K, prescribed by

solution of the Benders master problem, guarantee a feasible assignment. Next, we

summarize the Benders cut and an algorithm to generate stronger Benders cuts.
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V.2.3. Strong Benders Cut

Let us denote the optimal dual variables by µ∗i , δ
∗
ijk and λ∗jk, then the benders cut is

given by

η ≥
∑

i∈P

µ∗i +
∑

j∈J

∑

k∈K

(

Tjk −
∑

i∈P

δ∗ijk − Uλ
∗
jk

)

yjk (5.27)

At each iteration, we obtain a new dual solution and substitute it in the equation

(5.27) and then add it to the RMP and re-solve.

It has been observed that when a Benders subproblem has multiple dual optimal

solutions, the optimal dual reported as the optimal solution to the BSP-DUAL may

not lead to the strongest cut as shown in equation (5.27). Degeneracy is a very well

known issue in transportation problems, and in most cases, there exist multiple dual

optimal solutions. Magnanti and Wong (1981) and Roy (1986) propose an algorithm

for deriving stronger benders cut.

A cut Π1 is said to dominate the other cut Π2 if all points that satisfy Π2 also

satisfy Π1. However there exists at least one point which satisfies Π2 but not Π1. In

the presence of multiple optimal dual solutions, in order to find the strongest cut, one

needs to identify the optimal dual variable corresponding to the strongest cut.

Next we explain an algorithm to strengthen the Benders cut. The algorithm tries

to strengthen the cut given by (5.27) which is reproduced below for convenience.

η ≥
∑

i∈P

µ∗i +
∑

j∈J

∑

k∈K

(

Tjk −
∑

i∈P

δ∗ijk − Uλ
∗
jk

)

yjk (5.28)

Notice that in the cut given above, when ȳjk = 0, one can modify its coefficient
(

Tjk −
∑

i∈P δ
∗
ijk − Uλ

∗
jk

)

without changing the objective function value, provided

feasibility is maintained, i.e. it satisfies constraint (5.13). This can be achieved by
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solving the following LP.

Max Tjk −
∑

i∈P

δijk − Uλjk (5.29)

subject to

µi − δijk − wiλjk ≤ Wijk ∀i. (5.30)

δijk, λjk ≥ 0 ∀i. (5.31)

In this LP, the objective is the coefficient of y in the cut given by (5.27) and

the constraints are the same as in BSP-DUAL . This LP must be solved for every

(j, k) s.t. yjk = 0 to obtain the dual multipliers that give the strong cut.

V.2.4. Benders Decomposition Framework

Having defined the Benders subproblemBSP-LP,BSP-DUAL ,BMP and the algo-

rithm to generate a stronger cut, below we describe the Benders decomposition-based

algorithm in Display 9. The algorithm starts with initializing the integer variables

by solving the master problem (5.18)-(5.25) without any cut. We represent this ini-

tial solution by (y,vJ,vK)0. The basic framework consists of iteratively solving the

BSP-LP or BSP-DUAL using the primal solution (y,vJ,vK)itr at each iteration

itr, and updating the incumbent upper bound if improvement is observed, obtain-

ing the dual variables (µ∗, δ∗, λ∗)itr and generating a strong cut using the method as

described in line 9 of the Display. After generating the Benders cut, we solve the

BMP to obtain new primal variables and continue the process until termination, as

specified in line 2 is met. This basic framework may be tuned for the specific dataset

for performance. We observe that the optimal solution to BMP, which is a lower
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bound on the original problem, often takes longer as the number of cuts is increased

due to growth in the problem size. This affects the performance of the algorithm in an

adverse manner. We allow CPLEX to solve BMP only to the optimality gap of 0.01

percent or 25 seconds, whichever occurs first. Upon termination, we record the lower

bound to the BMP and pass it on as the LBitr. This helps to keep the algorithm

runtime in check and at the same time provides reasonable quality solutions.

Upon termination, the algorithm returns the objective value and the feasible

solution.

V.3. Computational Results

In order to test the efficiency of our solution method, we tested our method on

randomly generated problems as well as data having characteristic from a large parcel

company is US.
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Display 9 Benders Decomposition Based Algorithm

1: initialize MAXITER=100, itr=0, gap=0

LB= −∞, UB=∞, ε = 0.1

µ∗ = 0, δ∗ = 0, λ∗ = 0

Ψ = ∅

(y,vJ,vK)0 = argmin{
∑

j∈J

∑

k∈K Tjkyjk +
∑

j∈J V
J
j v

J
j

+
∑

k∈K V
K
k vKk s.t. (5.20)− (5.24)}

2: while (itr ≤ MAXITER AND gap > ε) do

3: itr = itr + 1

4: Obtain UBitr and (µ∗, δ∗, λ∗)itr from (5.12)-(5.14) and (5.26)

5: if UBitr < UB then

6: UB = UBitr

7: end if

8: Generate strong cut (5.27) using (5.29)-(5.31)

9: Add the cut (5.27) to set of cuts Ψ

10: Obtain LBitr and (y,vJ,vK)itr by solving (5.18)-(5.25)

11: if LBitr > LB then

12: LB = LBitr

13: end if

14: gap = 100× UB−LB
UB

15: end while

16: RETURN UB and (z,y,vJ,vK)

V.3.1. Experimental Setup

The process of generating random test instances is given on page 15. In addition, we

generate test instances using the data from a real life application, a large parcel com-

pany in the US. Typically, large small-package carriers and LTL shipment operators
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strive to provide services to cover a large area, such as anywhere in the US. Although

the demand (outgoing and incoming) for service may not be equally large in all loca-

tions, it may be desirable for the company to cover an entire area. As we mentioned

earlier, the flow between the various origin and destination pairs may show a lot of

variation. For example, there may be flow of over a million packages from New York

City to Houston while the flow from College Station to Boston may be only in the

hundreds. To capture this feature , we have used a large parcel company’s data to

determine the parameters. We generate the demands (w) as:

w =























70% of the demand is uniformly distributed between 0.10 and 0.20 units

20% of the demand is uniformly distributed between 0.30 and 0.60 units

10% of the demand is uniformly distributed between 0.10 and 0.90 units

Apart from the demand, we use the truck capacity U to be 8 units, the base

capacity for centers σ to be 2 truckload trips, values of αf and αt as 1 per unit per

mile, the TL shipment rate β as calculated on page 15, should be 6 per mile. We

further reduce β to 5 per mile to account for discount pricing from the suppliers

for long term quantity commitment and negotiations. The complete list of problems

and settings to generate them is shown in Table 15. The Benchmark Problem are

solved using CPLEX as well as our algorithm. Dataset 1, 2 and 3 involve problems

of increasing sizes. The dataset 4 and 5 have the problems generated-based on real

application data.
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Table 15 SNDP Experimental Problem Sets
Datasets E NP N M U

Benchmark Problems 25 25 100, 200, 300, 400 10 8

Dataset 1 40 40 500, 600, . . . , 1200 6 8

Dateset 2 50 40 1300, 1400, 2000 6 8

Dataset 3 100 100 3000, 4000 6 8

Dataset 4 100 100 3000, 4000 10 8

Dataset 5 100 100 1000 25 8

V.3.2. Computational Results

In order to evaluate the impact of adding the strong cuts, we solved small problems

with the algorithm as shown in Display 9, with and without strong cuts. We compare

the two cases in Figure 15. In Figure 15, we show iterations on the x-axis and the

value of the upper and lower bounds on the y-axis. The blue dotted line shows the

convergence trend for the algorithm without strong cuts, and the black solid line

shows the convergence trends for algorithm with strong. Clearly, the stronger cuts

are very effective in speeding up convergence and they affect both the upper bound

as well as the lower bound. In all of the following computational experiments, we

always use strong cuts.

We were unable to obtain solutions to even small problem instances using the

the formulation (5.1) - (5.6). Therefore we decided to include the valid inequality

(5.11) and surrogate constraints (5.22)-(5.24). In all of our testing, we have used

formulation including these constraints to obtain solutions from CPLEX. We observed

that although adding these valid inequalities and surrogate constraints enables us to

solve small problem instances, the moderately larger problems still remain intractable

to solution by CPLEX due to memory issues.

In Table 16, we benchmark the upper and lower bounds obtained from the Ben-
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Figure 15 Banders Decomposition Based Algorithms: With and Without Strong Cuts
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ders decomposition-based approach. We used CPLEX to obtain the optimal solution

with default options. The lower and upper bounds obtained from the Benders de-

composition are closed to the optimal solution. We notice that the upper bound is

almost equal to the optimal solution and the lower bound is less than 0.3 percent

away from the optimal solution. In addition, the solution time is reasonably short.

On an average, for benchmark problems, the Benders termination gap was 0.18 per-

cent with a runtime of 88.95 seconds compared to a termination gap of 0.01 percent

in 40.7 seconds for CPLEX. The termination criterion for the Benders algorithm as

shown in Display 9 was used, i.e. MAXITER = 100 and ε = 0.1.
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Table 16 Benders Bounds for Benchmark Dataset 0

N
% Gap Time

LB UB CPLEX Benders

100 0.09 0.00 6.50 11.10

120 0.09 0.00 8.20 23.50

140 0.10 0.00 8.10 25.80

160 0.12 0.00 12.80 50.20

180 0.16 0.02 21.90 75.00

200 0.22 0.02 31.60 122.90

220 0.16 0.01 19.10 101.00

240 0.19 0.02 54.90 83.70

260 0.20 0.01 58.30 94.00

280 0.18 0.02 45.80 119.90

300 0.19 0.03 35.80 91.50

320 0.21 0.03 93.50 127.40

340 0.22 0.03 149.00 157.00

360 0.27 0.06 82.80 126.10

380 0.16 0.06 7.50 97.00

400 0.25 0.04 30.60 112.80

Table 17 and 18 summarize the computational results for problems from size

N = 500 to 2000. We use CPLEX to solve the BMP and BSP and the LP for

generating strong cuts. Notice that the BMP is an integer program and with every

iteration of the algorithm, it increases in size due to the addition of cuts. We observed

that solving the BMP to optimality, takes a lot of computational time, with only
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marginal gain in the quality of the bound. The method also suffered from the tailing

off effect. In other words, CPLEX is able to find solution of reasonable quality (upto

0.1 percent) quickly but then suffers from tail-off effect. Therefore, we limited the time

spend on BMP to 25 seconds, and we recorded the best lower bound at termination

as our new lower bound obtained form the BMP. We observed significant savings in

computation time by this way and obtained reasonably good bounds as seen in Tables

17 and 18.

We observe that Benders algorithm is able to obtain good quality solution, most

of them within a 2% gap and a computational time within 4 to 8 minutes for all

problems with N up to 2000. In the results presented for N varying from 500 to 2000,

the average termination gap is 0.86 percent, with maximum, minimum and standard

deviations of 2.45, 0.09 and 0.49 percent, respectively. Similarly, the average runtime

is 283.66 seconds, with a maximum of 479 seconds , a minimum of 112 seconds,

with standard deviations of 91.71 seconds. Therefore, we conclude that the Benders

algorithm developed here provides consistently good quality solutions within small

amounts of time.
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Table 17 Benders Bounds for Larger Problem Instances N=500-1200
N % Gap Time N % Gap Time

500

0.17 119

900

0.35 195
0.60 271 0.75 209
0.39 140 0.96 217
0.67 460 0.66 217
0.44 176 0.83 197
0.34 144 0.46 201
0.40 130 1.36 479
0.12 112 0.92 213
0.73 402 1.00 224
0.20 125 0.73 210

600

0.10 132

1000

0.74 221
0.42 128 0.09 190
0.10 118 1.44 379
0.17 138 0.70 239
0.43 129 0.81 235
0.24 129 0.64 204
0.65 280 0.39 208
0.22 135 0.55 224
0.39 137 0.82 218
0.36 148 0.49 224

700

0.45 172

1100

0.59 205
0.66 193 1.20 250
0.43 169 0.31 242
0.40 164 0.42 239
0.14 158 0.25 242
0.36 160 0.45 237
0.12 148 1.31 283
0.78 231 0.99 237
0.39 156 0.16 251
0.28 156 0.73 245

800

0.90 237

1200

1.11 269
0.43 173 1.47 276
0.49 176 0.83 249
0.45 181 1.10 258
0.20 181 1.63 294
1.04 357 1.23 255
0.59 219 1.41 263
0.58 226 0.59 261
0.65 162 1.28 249
0.09 171 0.67 222



148

Table 18 Benders Bounds for Larger Problem Instances N=1300-2000
N % Gap Time N % Gap Time

1300

1.25 284

1700

1.12 370
1.01 285 1.61 388
1.45 299 0.81 377
0.64 288 1.95 379
1.03 281 1.43 370
1.00 290 0.62 372
0.91 286 1.09 375
0.92 289 1.59 366
0.77 287 1.57 373
1.14 290 1.59 371

1400

1.07 310

1800

0.60 375
0.51 306 0.66 391
1.51 312 0.40 396
0.92 297 0.63 396
1.12 307 0.65 395
0.91 308 1.23 382
1.54 320 0.50 386
1.04 308 0.57 394
1.04 307 1.85 391
1.21 284 1.71 366

1500

1.01 320

1900

0.25 391
1.17 324 0.59 391
0.10 341 2.28 381
0.59 325 0.76 376
1.11 327 1.07 389
0.77 324 1.57 386
0.83 322 1.37 376
0.95 327 2.45 360
0.39 327 1.05 398
0.92 331 1.59 382

1600

1.23 342

2000

0.72 409
1.46 349 1.19 400
2.02 364 1.31 395
0.91 352 1.56 408
2.22 389 0.81 423
1.08 340 0.53 425
0.84 355 0.71 425
1.24 347 2.01 427
1.17 353 1.19 428
1.15 301 1.93 430
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Table 19 Benders Bounds for Larger Problem Instances N=3000 and 4000

N LB UB % Gap Time (Seconds)

3000

253220 258497 2.04 646

255006 257580 1.00 559

250036 252541 0.99 639

276891 279590 0.97 605

275970 284406 2.97 962

248971 252611 1.44 1192

271902 274619 0.99 472

266465 275224 3.18 545

267080 277202 3.65 556

256964 262000 1.92 546

4000

317380 323667 1.94 1125

322776 336906 4.19 1526

334981 339693 1.39 919

347436 356398 2.51 727

323077 330742 2.32 751

354362 363008 2.38 1037

312763 316899 1.31 1045

338618 341879 0.95 664

320963 324191 1.00 1224

347356 355081 2.18 1350

Table 19 presents the largest problems that we attempted to solve. As before, we

limited the Benders algorithm to a maximum of 100 iterations. The BMP is solved to
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optimality within 0.1% with a maximum runtime of 25 seconds. Again, our algorithm

has been able to find good quality solutions with an average gap of 1.97 percent and

an average runtime of 854.5 seconds. 9 out of 10 instances with n = 3000 take less

than 1000 seconds, and similarly, the run times are well within reasonable limits in

the cases of N = 4000.

In Table 20, we present the solutions to the problems instances generated based

on real data from a parcel company. Instead of having two separate squares for origin

and destination nodes, in this problem set, we assume a single square. Again, the

Benders solves large problems of N = 2000 and 3000 with no difficulty. The gaps at

termination are again within 3 percent. The runtime for these problems is, however,

larger than those in the previous datasets but still within reasonable limits.

Finally, the third set of results in Table 20 involves M as 25, which increases

the problem size significantly. Just to get an estimate of the increase in size from

M=10 to M=25, for N=1000, the number of variables in BSP-LP increases from

100,000 to 625,000. Similarly, the size of the BMP also increases significantly. We

observe that the gaps at termination are below 2 percent for 8 out of 10 instances,

and the remaining two are at 2.07 percent and 2.06 percent. Computational runtime

are higher now, but since SNDP is a problem which does not need to be solved on a

regular basis, the increased runtime is acceptable.
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Table 20 Benders Bounds for Data Similar to Parcel Company
N LB UB % Gap Time (Seconds)

M = 10

3000

56911.4 59337.4 4.09 2336
62017.4 63140.1 1.78 821
63240.1 64390.7 1.79 990
61129.2 61811.2 1.10 618
61001.5 62182.1 1.90 974
59840.4 60610 1.27 728
60821.2 62151.3 2.14 1159
59375.1 61133.6 2.88 2112
66061.9 67515.3 2.15 747
59802.1 60974.2 1.92 1301

4000

40249.8 40964.3 1.74 2163
37848.9 38389.8 1.41 1143
44711.4 45182.7 1.04 736
36749.3 37298.5 1.47 2211
41502.2 41990.4 1.16 931
41571.3 42118.6 1.30 687
39020.6 39380.4 0.91 1424
40550.9 41198.3 1.57 1587
42024.4 42688.9 1.56 1695
43852.6 44297.3 1.00 434

M = 25

1000

40249.8 40964.3 1.74 2163
19508 19921.7 2.08 5025

18883.9 19081.5 1.04 4759
18732.6 19046.5 1.65 5936
19015 19257.5 1.26 8394

17560.1 17930 2.06 8657
19162.9 19375.4 1.10 7062
18034 18224 1.04 7297

18148.4 18447.5 1.62 7590
18931.5 19183.2 1.31 7276
18089.4 18344.6 1.39 6162

V.4. Summary and Conclusions

In this chapter we study the strategic network design problem (SNDP), which con-

siders those network design issues considered in the tactical network design problem,
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and further extends to include location and capacity decisions related to consolidation

and deconsolidation centers. The time horizon in the context of SNDP is much longer

than the previous problems considered in this dissertation. The strategic network de-

sign issues addressed by SNDP provide a foundation for the tactical and operations

level business operations. SNDP mainly addresses strategic capacity installation on

linehaul transfer links in terms of truckload trips handling capacity of the consoli-

dation and deconsolidation centers (which implies investment in equipment, building

and human resources, etc.). Also, SNDP considers allocation of commodities to mul-

tiple consolidation and deconsolidation centers, thereby to multiple linehaul links.

We assume that the capacity installments on linehaul transfer links and at the con-

solidation and deconsolidation centers are set in fixed increments. On transfer links,

capacity can be installed with increments of truckload capacity and at centers, with

increments of some base capacity, both with their associated increment costs.

We presented a mixed integer programming formulation for SNDP using a non-

negative allocation variables (fractions) to model the assignment of commodities to

linehaul links and integer variables to model the capacity of transfer links as well as

consolidation and deconsolidation centers. Our problem formulation has a structure in

which, for fixed capacities, the subproblem reduces to transportation problem, integer

program excluding the real variables (the integer program involving only the integer

variables) is a relatively small. Such a structure motivates the Benders decomposition

method as a solution methodology. We present a study of Benders decomposition de-

veloped for applications with similar structures. Problems with similar structure such

as capacitated facility location and fixed charge network design problems, have been

solved by Benders decomposition methods in the literature.

In the Benders decomposition for our problem, fixing the capacities results in

the transportation problem as our subproblem which is a linear program and easy
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to solve. We find that because of the abundant degeneracy in the transportation

problem, we can find the optimal dual variables that generate strong Benders cuts by

solving a simple LP. In our empirical testing, we found that the generation of strong

cuts helps the Benders decomposition algorithm converge much faster. Although

finding optimal dual variables requires additional computation time but it reduces

the number of iterations required for convergence and also facilitates better primal

solutions by BMP, which, therefore, results in a reduction in overall computation

time.

In solving the Benders master problem, we observed that when smaller numbers

of cuts are added, CPLEX is able to solve the BMP quickly. However, for larger

problems, CPLEX starts to take longer and suffers from tailing off effect. To overcome

this problem, we allowed it to run only for limited time and recorded the lower bound

at termination as the incumbent lower bound. This strategy seemed to improve

runtime without affecting solution quality.

We tested our solution methodology on two sets of data, the first generated

randomly using parameters similar to the ONDP and TNDP and the second generated

using data from a large parcel company. We found the Benders-based solution method

to perform consistently well for small as well as comparatively larger problems. All

solutions are within a 2 to 4 percent optimality gap and the run times are also within

reasonable limits.

A few remarks on the potential impact of this study are in order. Since tactical

and operational level networks rely on a basic infrastructure that is presumed to be

available, the solution of SNDP can help a company make decisions possibly at the

strategic levels, that backed by analytical models rather than simply soft methods/or

guess work. Managers and leaders making strategic plans can use SNDP solutions

to negotiate favorable contracts with third party suppliers by offering attractive load
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commitments and long term partnerships as well as providing better quality service

to their customers. Also, better strategic planning results in a smoother tactical and

operational level performance by the company and also minimizes the need for the

ad hoc and hurried arrangements. Further, in terms of algorithm development, we

developed a Benders decomposition-based method for solving large problems. This

approach may be extended to solve other service network design problems with similar

structure.
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CHAPTER VI

CONCLUSIONS AND FUTURE DIRECTIONS

Intermodal transportation and LTL transportation has grown rapidly in the recent

past, and this growth is expected to continue due to globalization and increasing

economic activity. Growth and change in business has put pressure on industry to be

more efficient and productive. Intermodal transportation models are comparatively

new (Crainic and Kim, 2005), and the traditional hub-and-spoke network models

may not be suitable for addressing the needs of dedicated models for network de-

sign problems in the context of intermodal and LTL transportation problems. With

this motivation, this dissertation addresses the need for dedicated models and solu-

tion methods for intermodal and LTL transportation network design problems. The

potential impact of this dissertation can be summarized as follows.

1. The models developed in this dissertation will provide further insight into the

problem and introduce new modelling approaches for solving real world prob-

lems.

2. The solution methods developed will facilitate high quality solution and help

industry improve efficiency and productivity.

3. The solution methods developed will be helpful in solving other discrete opti-

mization problems with similar structures.

Intermodal and LTL transportation companies are faced with decision problems

at all levels. This dissertation provides quantitative model development and solution

algorithms for these problems. Intermodal and LTL transportation firms must make:

1. Strategic decisions about capital investments such as buildings, facilities and



156

equipment for loading, unloading and sorting activities. Transportation capac-

ities must be acquired in the form of either an owned or rented fleet.

2. Tactical capacity planning decisions, such as whether to purchase trucks for

various linehaul links or to acquire capacity from rental agreements. The cost

of acquiring capacity on an emergency or expedited basis costs much more than

the regular price; therefore, appropriate capacity planning can help reduce the

cost of emergency capacity acquisition.

3. Operational decisions, such as truck-linehaul assignments and commodity-truck-

linehaul assignments and other operational constraints.

The decision problems at the strategic, tactical and operational levels are inter-

related. Decisions made at the strategic level provide the resources/information re-

quired at the tactical and operational level, and, similarly, decisions made at the

strategic and tactical levels affect operational level decisions. In this dissertation we

investigate the decision problems at all three levels-operational, tactical and strategic.

Our approach for each decision problem is to first articulate the scope of the problem,

and then conduct a literature survey followed by the development of dedicated models

and efficient solution methods.

All three levels of problems are defined on the same network which can be de-

scribed as follows. We are given a network with multi-commodity flows where each

commodity is defined by its unique pair of origin and destination nodes and a known

required flow amount. The system is operated in such a way that the commodities are

collected and consolidated into truckloads at consolidation centers, a linehaul transfer

takes place for the consolidated loads, which are deconsolidated at deconsolidation

centers, and from there, the commodities are shipped to their final destinations.
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In addition to the network and commodity flows, in ONDP we are also given

a fleet of trucks . Additionally, we allow direct shipments between origin and des-

tination nodes since this is preferred when the origin and destination nodes of a

commodity are relatively close, and, thus, consolidation does not make economical

sense. The decisions to be made in ONDP include 1) the assignment of trucks to

linehaul transfer links, 2) the assignment of commodities to a truckload shipment

established on transfer links, and 3) the identification of commodities that are to be

shipped directly.

In case of TNDP, we consider longer planning horizons and we are no longer given

the truck fleet, plus we do not consider direct shipment. The decisions concerned

with TNDP are 1) the connections and capacities in terms of the number of truckload

trips between the consolidation and deconsolidation centers, and 2) the assignment

of commodities to consolidation and deconsolidation centers and, in turn, to transfer

links. The costs in the system include collection costs, linehaul transfer costs and

distribution costs.

The strategic planning problem SNDP extends the TNDP to include location

and capacity decisions related to centers which are capital intensive decisions. In

SNDP, we allow the multiple allocation of commodities to the centers and, thereby,

to the transfer links.

The literature relevant to the problems addressed in this dissertation can be clas-

sified in four categories, namely hub location, network design, service network design

and facility location. Since our problem concerns the design of a distribution network

and involves consolidation and deconsolidation activities, the hub location literature

is naturally relevant to us, and since we are interested in routing commodities over a

network, the general area of network design is also relevant. Furthermore, due to the

specific application area, studies in logistics service network design and load planning
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are also within our scope. Finally, since each linehaul link can also be considered as a

facility, our problem is related to capacitated facility location problems. In Chapter

II, we presented a detailed survey of the literature in the above mentioned areas.

Below we summarize the distinction between our problems and the problems studied

in the literature.

Our problems, TNDP and ONDP, do not involve hub (or center) location deci-

sions. Further, in all three problems ONDP, TNDP and SNDP, we consider explicit

commodity-based routing decisions, which is not the case in hub location problems.

Therefore, despite operational similarities, the problems considered in this disserta-

tion have fundamental differences from the hub location problems , which hinder the

efficient use of the modelling and solution approaches devised for these problems.

In the context of network design, our problems distinguish themselves from the

general network design problems in the sense that they consider the consolidation

and de-consolidation activities explicitly; in addition, the transportation costs on the

transfer links from consolidation centers to de-consolidation centers is not linear, but

a step function of the quantity being transferred. Further, as opposed to network

design problems, our problem has a structure that requires use of exactly three arcs

(or in case of ONDP, direct shipment) which is not the case in general network design

problems.

We presented a transformation to construct an SSCFLP equivalent of ONDP

in Chapter III, page 46. Similarly, TNDP is nothing but a SSCFLP with staircase

capacities. In this context, we presented a literature review of facility location prob-

lems. We also showed that the SSCFLP equivalent of ONDP is prohibitively large

for the state-of-the-art methods to solve. TNDP is a SSCFLP with staircase cost

and has not been solved in the literature. We presented an extensive review of the

SSCFLP, its applications and solution methods.
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We developed a compact binary program formulation for ONDP. The model con-

siders the transportation economies-of-scale in a simple yet effective manner. For the

purpose of developing efficient solution algorithms, we first proposed four compound

neighborhood functions where each has two main components, level- and content-

change, with the latter being based on various schemes of combining simple neigh-

borhood functions such as move and exchange. Given the complexity of an efficient

solution representation required in a heuristic framework, our compound neighbor-

hood functions enable us to search the solution space efficiently using a branching

strategy that we introduce. In addition, the two components provide the means

for efficiently incorporating intensification and diversification characteristics into the

heuristic search algorithms. We developed three heuristic algorithms based on local

search, simulated annealing and tabu search where each can employ each of the four

compound neighborhood functions and the proposed branching strategy, thus giving

rise to twelve different approaches. We performed extensive computational experi-

ments and obtained results illustrating the relative efficiency and effectiveness of our

compound neighborhood functions and heuristic algorithms.

We developed an integer programming formulation and methods for obtain-

ing lower and upper bounds for the TNDP. We modified the compound neighbor-

hood search procedures to adapt to the tactical problem and developed a Simu-

lated Annealing-based heuristic algorithm to provide a feasible solution, which is an

upper bound. As opposed to one-exchange and one-move based neighborhoods, in

TNDP, we developed two-exchange and two-move based simple neighborhoods that

provides good quality solution in TNDP, despite the fact that there are fewer num-

bers of simple content-change neighborhoods (two as opposed to 5 in ONDP). In a

Simulated Annealing-based metaheuristic, we implemented a sophisticated bias tree

search strategy that proves to be very efficient in guiding the search in a direction
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with potentially good solutions. For finding a lower bound, we proposed a Lagrangian

relaxation-based solution method and theoretically showed it to be tighter than the

LP relaxation lower bound. We also suggested a variable relaxation idea to speed up

the computation of the Lagrangian relaxation-based lower bound without compro-

mising the solution quality. Finally, we developed a Lagrangian heuristic framework

that utilizes the upper bound found by a Simulated Annealing-based metaheuristic

to update the Lagrange multipliers using sub-gradient optimization. The Lagrangian

heuristic framework also utilizes the lower bound solution as input to the Simulated

Annealing method to find even better upper bounds. The computational study con-

firms the superiority of the Lagrangian relaxation-based lower bound over LP-based

lower bounds.

We presented a mixed integer programming formulation for SNDP that has a

structure in which, for fixed capacities, the subproblem reduces to the transportation

problem, and the integer program involving only the integer variables is relatively

small. Such a structure motivates the Benders decomposition method as a solution

methodology. We developed a Benders decomposition-based solution method for

solving SNDP. We tested our solution methodology on two sets of data, first generated

randomly using the parameters similar to the ONDP and TNDP and second generated

using a large parcel company’s data. We found that the Benders-based solution

method performed consistently well for small as well as comparatively larger problems.

VI.1. Contributions

Major contributions of this dissertation are:

• Holistic Approach for Intermodal and LTL Network Design: We provide quan-

titative models for strategic, tactical and operational levels decision problems
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faced by intermodal and LTL transportation companies. The solution of the

strategic problem provides the resources/infrastructure for the tactical prob-

lem and insures efficient planning at the tactical and operational level. The

solution to the tactical planning problem is crucial in enabling the execution

of operational decisions. Therefore, the dissertation provides complete and in-

sightful models and their solutions to the intermodal and LTL transportation

companies.

• Compound Neighborhood Search Based Solution Framework: The compound

neighborhood search method developed in this dissertation can be used to solve

many other problems. Its versatility is demonstrated in the dissertation itself

when the framework developed in ONDP was able to provide good quality so-

lutions for TNDP after adapting the ingredient components to the problem

structure of TNDP. We believe that this method can be beneficial in solving

other combinatorial optimization problems as long as one can find a computa-

tionally inexpensive way to generate the neighborhood solutions and an efficient

way of compounding them.

• SSCFLP with Staircase Capacity: The single source capacitated facility prob-

lem with staircase capacity has not been solved in the literature. Moreover, the

application we are considering, the equivalent SSCFLP are much larger than

the traditional location problems. Therefore, this dissertation contributes in de-

veloping efficient solution approaches for SSCFLP by combining metaheursitic-

based upper bounds and Lagrangian relaxation- based lower bounds through a

Lagrangian heuristics framework.

• Benders Decomposition Based Approach: The mathematical model for the

SNDP has a structure suitable for Benders decomposition-based solution meth-
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ods. The dissertation extends the application of the Benders method to a new

problem successfully and also extends the strong cut generation to this new

problem successfully.

VI.2. Foundation for Future Research

The models and solution methods developed in this dissertation can be extended in

the future to consider generalizations and complexities as described below:

1. Generalized cost functions: Although the cost function in our study involves

step function, all of our models and solution methods can be modified for other

piecewise linear cost functions as well. In a piecewise linear cost function, each

linear segment has a fixed cost called the intercept, a variable cost which is the

slope of the linear segment, and the upper and lower breakpoints. The step

function is a special piecewise cost function where the slopes are zero for all

segments. Similarly, the case where all the segments have same intercept (pos-

sibly zero) but different slopes is known as all unit discount. Using any one of

the three textbook models (Croxton et al., 2003a) for piecewise cost functions;

namely incremental, multiple choice or convex combination, our problem formu-

lations can also be extended for general piecewise linear cost functions. Croxton

et al. (2003a) compare these three formulations of the piecewise nonlinear costs

and shows their equivalence with respect to LP relaxations. By modifying ob-

jective function evaluation, the compound neighborhood function can also be

utilized for general piecewise linear cost functions. The Lagrangian heuristic

and Benders decomposition-based method can also be applied to formulations

extended to model general piecewise linear cost functions. Some studies con-

sidering piecewise linear concave costs include Balakrishnan and Graves (1989),
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Amiri and Pirkul (1997), Croxton et al. (2003b) and Muriel and Munshi (2003).

2. Managerial Insight: The tactical and strategic problems are based on estimated

demands which may not always be realized. The models developed in this dis-

sertation may provide managerial insight. Assuming that the fluctuations in the

demand realization are not major, the model provides quick estimate of change

in the total cost by simple capacity adjustments (removing the unused capacity,

and installing additional capacity on links where required) and evaluation of the

resulting solution. For large variations, the manager can re-solve the problem.

3. Time window constraint: The transportation industry often faces time window

constraints. Increased competition and customer’s expectations for quality ser-

vice make time window constraints all the more important. Our models and

solution approaches can be extended to include time window constraints.

4. Generalized cost functions: In practice, logistics service providers may offer

quantity or other types of contract based discounts. Sometimes a single tractor

is used to pull up to three trailers and this practice is called tandem trailer.

Discounts and tandem trailers may give rise to complex cost functions. Future

extensions of our models and solution approaches may address complex cost

functions.

5. Applying solution methods to other problem domains: The solution methods

that we have developed in this dissertation may also be used in other combina-

torial optimization problems. For example, the Lagrangian relaxation approach

may be used in location problems whereas the heuristics may be used in gener-

alized assignment problem.

6. Other issues in LTL and intermodal transportation:There are several other im-
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portant issues relevant to LTL and intermodal transportation, such as reposi-

tioning of empties, maintenance scheduling and driver turnover. These issues

may have been addressed individually in the literature. However, inclusion of

these issues along with consolidation and routing decisions is a potential future

extension of our models.
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