AN EFFICIENT LOGIC FAULT DIAGNOSIS FRAMEWORK BASED ON

EFFECT-CAUSE APPROACH

A Dissertation

by

LEI WU

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2007

Major Subject: Computer Engineering



AN EFFICIENT LOGIC FAULT DIAGNOSIS FRAMEWORK BASED ON

EFFECT-CAUSE APPROACH

A Dissertation

by

LEI WU

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Duncan M. Walker

Committee Members, Jianer Chen
Rabinarayan Mahapatra
Weiping Shi

Head of Department,  Valerie E. Taylor

December 2007

Major Subject: Computer Engineering



il

ABSTRACT

An Efficient Logic Fault Diagnosis Framework Based on Effect-Cause Approach.
(December 2007)
Lei Wu, B.S., Sichuan University, China;
M.S., Sichuan University, China;
M.S., McNeese State University

Chair of Advisory Committee: Dr. Duncan M. Walker

Fault diagnosis plays an important role in improving the circuit design process and the
manufacturing yield. With the increasing number of gates in modern circuits, determining
the source of failure in a defective circuit is becoming more and more challenging.

In this research, we present an efficient effect-cause diagnosis framework for
combinational VLSI circuits. The framework consists of three stages to obtain an accurate
and reasonably precise diagnosis. First, an improved critical path tracing algorithm is
proposed to identify an initial suspect list by backtracing from faulty primary outputs
toward primary inputs. Compared to the traditional critical path tracing approach, our
algorithm is faster and exact. Second, a novel probabilistic ranking model is applied to
rank the suspects so that the most suspicious one will be ranked at or near the top. Several
fast filtering methods are used to prune unrelated suspects. Finally, to refine the diagnosis,
fault simulation is performed on the top suspect nets using several common fault models.

The difference between the observed faulty behavior and the simulated behavior is used to



rank each suspect. Experimental results on ISCAS85 benchmark circuits show that this
diagnosis approach is efficient both in terms of memory space and CPU time and the

diagnosis results are accurate and reasonably precise.

v



DEDICATION

To my husband, parents and daughter



vi

ACKNOWLEDGMENTS

I would like to express my gratitude to all those who gave me the possibility to
complete this dissertation. Among the people who have contributed to this work, I would
first like to thank my advisor and committee chair, Dr. Duncan M. (Hank) Walker. I am
deeply indebted to Dr. Walker for his guidance, help, stimulating suggestions and
encouragement throughout my research at Texas A&M University. His advice, novel
ideas and understanding were critical for me to achieve the goal of this research.

I would also like to thank my committee members, Dr. Weiping Shi, Dr. Jianer Chen
and Dr. Rabinarayan Mahapatra for their valuable comments and encouragement on this
research. I would specially like to thank Dr. Weiping Shi and his group for generating
coupling capacitance data for ISCAS85 benchmark circuits so that I can make use of it in
my research.

Many thanks to my colleagues and friends: Wangqi Qiu, Bin Xue, Ziding Yue, Jing
Wang, Zheng Wang, Sagar S. Sabade, Xiang Lu, and Vijay Balasubramanian for their
encouragement and help. Especially I would like to thank Mr. Wangqi Qiu for use of his
CodSim tool and many helpful discussions.

I would like to give my special thanks to my husband Gang whose love,
encouragement, support and patience enabled me to complete this work. I am indebted to
my parents, sisters and parents-in-law for their love and support all these years. I am very
happy to have completed this work, and even happier to be able to dedicate this

dissertation to my family.



vii

TABLE OF CONTENTS

Page

INTRODUCTION.. .. .t 1
1.1 Fault DIaQ@NOSIS .....eeeeuiiieiiieeiiiieeiie et e e sveeeseve e e eesraeeeaeeeenneees 1

1.2 Diagnostic Data........ccceeiiiiiiiiieiiecieece e 3

1.3 Two Diagnostic APProaches..........ceecueerireiiienieeiienieeieeiee e 5

1.4 Goals Of DiSSErtation..........ccouiiiiieriiiiiieiieeieee et 8

1.5 Dissertation OrganizZation .............ecceeeveerueerieeniienieenieeneeenseesseesseessesneees 10

PREVIOUS WORK ...t 12
2.1 Stuck-at Fault Diagnosis ........cccceeeuieiriieeniieeiiie e siee e 12
2.2 Bridging Fault Diagnosis .........cccceerieriiieriieniieniieeie et 17
2.3 Delay Fault DIagnosiS......cc.ccecuieerieeiiiieeiiiescieeeceeeeeeesieeesreeeereeesvee e 24
2.4 Ippq Fault DIagnosis .......cccccueviinininiiinieicicieneseseee e 25
2.5 Per-Test DIagnOoSIS ....ccuueeriieeriieeciieerieeesiieeeeiieeeeeeeteeesteeesbeeesneeesnveeenes 27
CRITICAL PATH TRACING. ...ttt 30
3.1 OVEIVIBW .ttt ettt et sttt ettt et nbe e sieens 30
3.2 Main Concepts and Definitions..........cccccueeeriieeriieeiiieeiee e 32
3.3 Algorithm Flow of Improved Critical Path Tracing ...........ccccceeeveevuvennnnnn. 37
3.4 StEM ANALYSIS .ioeviieeiiieeiiee ettt ettt et eaaeeeenes 40
3.5 Experimental RESUILS ........ccciiiiiiiiiiiiiiiieieceee e 64
SUSPECT RANKING AND FILTERING........coiiiiiiiiiiiiiiieee, 70
4.1 Phase 1: First-Level Filtering.........ccccvveviiiiiiiieiiiecieeeeeeeeeee e 70
4.2 Phase 2: First-Level Ranking..........cccoccveviiiiiinieniieiecieeeeeeeee e 72
4.3 Phase 3: Second-Level FIItering ........ccceevvveeeiiieeiiieeiieeieeceeeee e 73
4.4 Phase 4: Second-Level Ranking .........ccccccevvvieiiiniiiinieniieieeieeieeeeen 74
MODEL-BASED FAULT SIMULATION........oiiiiiiiiiiiiieieeee 78
5.1 Motivation and Basic StruCtUIe ...........ccceerieiiiieiiiiiieieeeieeee e 78
5.2 Line-to-Fault Mapping.........cccoeceeviieriiiiiieniecieesie et 80
5.3 Fault SImMulation.........cccoooiiiiiiiiiee e 83
5.4 Feedback Bridging Fault...........ccooooieiiiiiiiiiiiiiieccceeeee e 87
EXPERIMENTAL RESULTS. ... 90
6.1 Run Time and Memory Usage AnalysiS......c.ccceevveeriieerieeniieeeieeeeieeeee 90

6.2 Diagnosis Accuracy and Resolution for Targeted Faults ...........ccccceee. 95



Page

6.3 Diagnosis Accuracy and Resolution for Untargeted Faults.................... 100

7. CONCLUSIONS AND FUTURE WORK.........cccoiiiiiiiiiiiiie e, 112
7.1 CONCIUSIONS ...ttt 112

7.2 FUture WOrK .....ooouiiiiiiii e e 116
REFERENCES . ... e 119



1X

LIST OF FIGURES

Page
Figure 1. Process of cause-effect fault diagnosis approach ...........c.ceceevveiiiieiiiniiienienninnns 6
Figure 2. General view of our diagnosis framework. ...........cccecevieiiniiiniininieniecceee 9
Figure 3. Comparison of candidate behavior and observed behavior. ...........ccccecevvenenne. 20
Figure 4. Ranking for four candidates proposed in [2]. ...ccccooveviriiiniinieienienenieneeeeee, 21
Figure 5. A gate with unknown input value. ............ccceeeiiiieriiiiniie e 33
Figure 6. Critical and blocked INPUL. .......c..oeeiiieiiiieciiecee e 34
Figure 7. Example of critical path graph. .........cccccoeeiiieiiiieiie e 35
Figure 8. Critical path tracing in a fanout-free CirCuit.........cccveevvieeriieeciie e 36
Figure 9. Example of self-masking [71].......ccccveeiiieeiiieiiiieeiie et 37
Figure 10. Example of multiple path sensitization. ..........ccccoceevervienienieienieneneneeeene, 37
Figure 11. Critical path tracing algorithm flow. .........cccooeriiiiiiiiiiiieee, 39
Figure 12. Example of rule A1 application. ..........ccceeeevieriinieniniinieicceceeeeeeee 41
Figure 13. Corresponding critical path graph of A1 application...........ccccevveveriiernenenne. 41
Figure 14. Critical path graph for rule A1 Cases. ......cccoeervierieririiinieneeieeeeeeeeeen 42
Figure 15. Example of rule A2 application. ...........ccccvieriieeiiieeiiie et 42
Figure 16. Corresponding critical path graph of rule A2 application...........cccccecuveeenenneee. 43
Figure 17. Critical path graph for rule A2 Cases. ......cccceevieiiiieeiiieeieeeee e 43
Figure 18. Example of rule B application. ..........cccoeeciieiiiiieiiii e 45
Figure 19. Corresponding critical path graph of rule B application...........cccceeeeuveeenneneee. 45
Figure 20. Critical path graph for rule B cases........ccoceeverviiniininiiiniiiceceeeseeeen 46
Figure 21. Example of rule C application. ...........ccecuevienieriiinieniniinieceeneeeee e 47



Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.

Figure 43.

Page
Corresponding critical path graph of rule C application..........cccceveerueenennnne 47
Critical path graph for rule C Cases. ........ccccueriiriiiiiiiieiieeie e 48
Example of rule D application. ...........cccueeeiiiiiiiiiieniieiecieeee e 49
Corresponding critical path graph of rule D application...........cccceeceereeuennee 50
Critical path graph of rule D Cases. .......cceeeveiriiiiiieniiciiecieeeece e 50
Example application of rule E.........cccoooiiiiiiieeeeee e 51
Corresponding critical path graph of rule E application. ..........ccccceevvevvveennenn. 51
Critical path graph of rule E €ases. .......cccveviiieiiiieiie e 52
Example application of rule F........ccccoeeiiiiiiieeeeeeeee e 52
Corresponding critical path graph of rule F.........cccoviiiiiiiiiiee 53
Critical path graph of rule F cases. .......cccccceeviiiiiiiiiiieiecieceeeeeeeee e 54
Example of applying rules. ........ccceeviieiiieiiiiieeiieee ettt 56
Another example of applying rules. ........ccceevieviiiiiiniiieiieeeeee e 58
Critical path graph after applying rule on inner 100p. ......ccccoceeverierieneniennnnes 58
Final critical path graph after applying rules . ........cccooceeviiiiiiniiienienieeieee 59
Flowchart for determining stem criticality by applying rules.............ccoc........ 60
Example of the reconvergence case that needs forward simulation. ................ 61
Example of incorrectly determining stem criticality by applying rules............ 62
Algorithm that decides if a stem needs forward simulation..............cccccouueeeee. 63
Average CPU time per vector vs. (#1ines - # POS)......cccccvveevieeeciieeieeeeeee 66
Average CPU time per vector vs. # 1INes. ......ccevveeiiierieeiieieciceeeee e 67
Average CPU time per vector vs. # critical nodes. ..........cccoevveeviieniiniiieniennn. 67



Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.

Figure 57.

X1

Page
Overall ranking and filtering ProcCess. .........ceevueeriieriieeiienieeriieeieeiee e 71
Second-level ranking heuriStic. .........ccveviieiiiriiiiieieeeee e 75
Example case for ranking analysis..........ccccceeeieeriieniiieiienieeiieeie e 76
Basic structure of model-based fault simulation step. .........cccceceeevieriiieniennnn. 79
Metric to reduce fault candidate [ist.........ccooceeviinieiiinieniiiiiecceeeeee 80
Capacitance vs. probability of bridging faults [90]........ccccecevveeviieeiiieeieee. 82
Example of stuck-at fault model. ..........cccoeviiiiiiiiie 84
Wired-AND and Wired-OR fault models. ........cccooiiiiiiiiiiiiiiiiieeee 85
Dominant bridging fault model..............cccoeeiiiiiiiiniee e 86
Example of feedback bridging fault.............cccoooviiiiiiiiiiiiie e, 87
Run time comparison with SAT-based diagnosis tool.........c..cceceevuerieniencnnene 93
MEMmOTry USAZE VS. CITCUIL SIZE. ...ceveerureerieriieeieeniieeieeniieereesieeeteenseesveesseesnseens 95
% Successful diagnosis vs. % dropped failing vectors. .........cccceveveervennennnen. 102
Dominant-AND and Dominant-OR fault models. ...........ccooeeeiiinieniienene. 104



Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

Table 8.

Table 9.

Table 10.

Table 11.

Table 12.

Table 13.

Table 14.

Table 15.

Table 16.

Table 17.

Table 18.

Table 19.

Table 20.

Table 21.

X1l

LIST OF TABLES

Page

Table of previous, present and future semiconductor trends.........c.ccceceevueeiennene. 2
Example of pass-fail fault Signatures. ..........cceeeeeriieiiiniieiece e 4
Example of indexed full-response fault signatures. ...........ccccceeeveerieniienienneenen. 5
Critical path tracing experimental result SUMMAry. .......c..ccocevvevieneriieneenennne 65
Our critical path tracing CPU time vs. FSIM CPU time. .........ccccceevveeecieenneens 68
Percentage of candidate lines deleted after first-level filtering. ......................... 72
Logical behavior of wired-AND/OR Models.........ccceevvieeriieeiiieeiieeieeceeens 85
Logical behavior of dominant model. .........c.cccoiieiiiiiiiieeieeeeece e 86
Diagnosis time for ISCASS8S CITCUILS. ...ccuviieriieeiieeiee e 91
Run time analysis for ISCAS8S CIrcuits........cccooveeiienieeiiieieeiieieeeeeie e 92
MeEmOry USAZE SUMMATY. ...cccuveeerrreeriieeenireeeireesiteesnireesareesseeesseessseeesseessnnes 94
Diagnosis resolution and accuracy for targeted faults..........ccoeceevieiiiieniennnn. 96
ISCASS8S5 benchmark gate numbers SUMMATY..........ccceeeeveeriierieeniienieerireneneens 97
Diagnosis resolution for different type of faults. ..........ccccoevieeiieniiiiiinie, 98
Diagnosis quality comparison with Sproing and MMA............ccceveieenrienee. 99
Voting bridge defect diagnosis results. .........cccoeeeveeeiiieeiiieeiiiecieeeeeeeeeee 103
Behavior of dominant-AND/OR fault.........ccccooiiiiiiiniie 105
Diagnosis result for dominant-AND and dominant-OR fault ....................... 105
Diagnosis result for missing wire design €ITor. ........cceeeevveereuveeeieeerieeesreeenns 107
Diagnosis result for wrong gate type design error. ..........ccoeeeeeveerieenveenneenne. 108

Diagnosis result for multiple faults. ..o, 110



1. INTRODUCTION

1.1 Fault Diagnosis

As integrated circuit (IC) manufacturing technology becomes more complex and
feature size continues to shrink, more logic gates are being integrated into VLSI chips.
Table 1 shows the past, present and future semiconductor technology roadmap [1]. The
increasing complexity in IC designs makes the design and manufacturing process more
vulnerable to defects, which cause deformation to the ideal IC.

Failure analysis has played an important role in improving the manufacturing process
and yield. Failure analysis is the process of determining the actual failure cause for
malfunctioning chips. Discovering the cause of failures in a circuit can often lead to
improvements in circuit design or manufacturing process, with the subsequent
production of higher-quality ICs.

Historically, failure analysis has been a physical process. Failure analysis engineers
investigate the failing part using scanning electron microscopes, infrared sensors,
particle beams, liquid crystal films and a variety of other expensive high-tech equipment
to identify the cause of circuit failure. With the enormous number of circuit elements and
the number of layers in modern ICs, physical search for defects cannot succeed without
first having a small list of suspect locations [2]. This is the job of fault diagnosis. Fault

diagnosis is the process of identifying the potential location of logic faults in

This dissertation follows the style and format of /EEE Transactions on Very Large Scale
Integration (VLSI) Systems.



malfunctioning chips, usually through analysis of the logic behavior of failing circuits.
Physical failure analysis cannot be effectively conducted without considerable guidance
from fault diagnosis. If the diagnosis is imprecise, the failure analysis engineer may
waste time examining a large physical area. Even worse, if the diagnosis is inaccurate,
the failure analysis engineer will be led to the wrong part of the chip, with the possible

destruction of the actual defect site [3].

Table 1. Table of previous, present and future semiconductor trends.

Year 1997-2001 2003-2006 2009-2012
Feature size, nm 250-180 130-70 45-32
Millions transistors per cm’ 4-10 18-39 84-180

Number of wiring layers 6-7 7-9 9-10

Pin Count 100-1200 500-1936 780-3616

Die size, mm’ 50-385 60-520 70-750
Clock rate, MHz 200-1684 3088-5631 11511-19348

Voltage, V 1.2-2.5 0.9-1.2 0.9-1.0
Power, W 1.2-61 2.8-98 3-138

Fault diagnosis is an important component of failure analysis. In principle, logic fault
diagnosis is straightforward: based on the data available about the failing chip, the
purpose of fault diagnosis is to produce a list of likely defect locations. However, with
the enormous number of transistors in modern ICs and the number of layers in most
complex circuits, defect localization is not an easy task. According to the International
Technology Roadmap for Semiconductors (ITRS), the complexity of defect localization

is expected to grow exponentially [1].



Previous-proposed strategies for VLSI fault diagnosis have a variety of limitations.
Some techniques are limited to specific fault models and will fail on unmodeled
behavior or unexpected data. Some techniques require very high memory usage, which
is infeasible for large designs. Others apply ad hoc or arbitrary scoring mechanisms to
rate fault candidates, making the result difficult to interpret or to compare with the
results from other algorithms. The dissertation presents a fault diagnosis approach that is
robust, comprehensive and practical. By introducing an extended critical path tracing
method and a probabilistic ranking framework, the approach can produce accurate and
precise diagnosis for stuck-at fault, wired-AND bridge fault, wired-OR bridge fault and
dominant bridge fault. By using an effect-cause approach, it is designed to be memory

efficient so that it can be applied to large designs.

1.2 Diagnostic Data

Fault diagnosis is used to perform logical detective work. The evidence usually
consists of a description of the circuit design, the tests applied and the pass-fail results of
those tests [4]. In addition, more detailed per-test information may be provided.

The values applied at the circuit inputs and scanned into the flip-flops are referred to
as the input pattern or test vector. The input vectors causing any mismatch between the
outputs of the faulty chip and a fault-free chip are referred to as failing input vectors.

The operation of scanning and applying an input pattern to the circuit and recording its
output response is called a fest [4], and a collection of tests designed to exercise part or

all of the circuit is called a test set.



The output response of a defective circuit to a test set is referred to as the observed
faulty behavior, and its logic representation is commonly known as a fault signature.
The fault signature is usually represented in one of the following two common forms.
The first is the pass-fail fault signature. It reports the result for each test in the test set,
whether a pass or a fail. Typically the fault signature consists either of a bit vector for
the entire test set in which by convention failing tests are represented as 1s and the
passing tests by Os, or the indices of the failing tests. Table 2 gives an example of a fault

signature for a simple example of 10 tests, out of which 5 failing tests are recorded.

Table 2. Example of pass-fail fault signatures.

Result for 10 tests: Pass-fail signatures:
1: Pass 6: Pass By index: 2,3,7,9,10
2: Fail 7: Fail By bit vector: 0110001011
3: Fail 8: Pass
4: Pass 9: Fail
5: Pass 10: Fail

The second type of fault signature is the full-response fault signature, which reports
not only what tests failed but also at which outputs (primary outputs and flip-flops) the
differences are observed. Table 3 shows a simple example of indexed full-response fault
signatures. Each failing test vector is recorded with a list of failing outputs. For example,
the first row represents that primary outputs 3 and 5 are observed as faulty on failing test

vector 2.



Table 3. Example of indexed full-response fault signatures.

Indexed full-response fault signatures:

2: 3,5
3: 4

7: 2,3
9: 2,5
10: 3,4

1.3 Two Diagnostic Approaches

Understanding how chips fail is the first step toward identifying and eliminating the
causes of the failure. The objective of diagnosis is to pinpoint the fault location and
analyze the defect causing it. There are two types of approaches available for fault
diagnosis. The first approach is cause-effect analysis, which enumerates all the possible
faults existing in an fault model and determines their corresponding output responses to
a given set of tests before the test experiments [5]. The second type of approach is effect-
cause analysis, in which the actual response of the failing chip is processed to determine
its possible faults. The initial step of this type of approach is done in a model-

independent fashion to avoid diagnostic failure due to an inadequate fault model.
1.3.1 Cause-Effect Approach

A cause-effect algorithm starts by using possible fault models (the “cause”) to predict
the behavior of faulty circuits through fault simulation, compares the observed faulty

behavior (the “effect”) to these predictions, each representing a fault candidate and



identifies the candidate that most closely matches the observations. A cause-effect
algorithm is characterized by the choice of the particular fault model(s) before any
analysis of the actual faulty behavior is performed. All fault simulation is done ahead of
time and all fault signatures stored in a database called a fault dictionary. Thus, it is also

called model-based diagnosis. Figure 1 shows a simplified view of the process [6].

Fault model and design Tester data

\ 4

Fault simulation

A 4

Fault behavior

\ 4 \ 4

Comparison

A

Likely fault sites

A

Failure analysis

Figure 1. Process of cause-effect fault diagnosis approach.

One of the advantages of the cause-effect approach is that it can often provide a
diagnosis result in less time in terms of analysis time per chip, simply because the fault
simulation work has been done ahead of time and is therefore amortized over many
diagnosis runs. This aspect is especially significant for high-volume situations in which a

large number of parts must be diagnosed and in cases where a quick diagnostic result is



desired. In addition, this approach is successful if the actual defect behavior is accurately
modeled by the selected fault model(s). However, it might be fooled by unmodeled
faults. Since the type of fault is unknown beforehand, any single model-based diagnosis
is unreliable. Another disadvantage of this approach is that fault simulation could
become very expensive and the size of fault dictionary size could quickly become
unmanageable for large designs. A classical fault dictionary includes a bit for detection
or nondetection of each of » faults on a circuit with m outputs and v test vectors, with a
total size of O(n-m-v). Since modern VLSI circuits contains millions of gates, thousands
of scan elements (which are considered outputs), and thousands of test vectors, a large
amount of computational effort is involved in building a fault dictionary. Researchers
have proposed several approaches to shrink the dictionary size, because dictionaries tend
to be sparse, that is, most of their entries are zero [6]. Early methods usually used
compaction, with resulting information loss [7]. In some cases, the information loss in
compaction would dramatically reduce the diagnostic resolution [8]. More recent work
has emphasized compression, with no information loss but with size reductions similar

to the compaction techniques [9][10].
1.3.2 Effect-Cause Approach

The effect-cause approach analyzes the actual circuit responses and determines which
fault(s) might have caused the observed failure effect. This class of methods does not
need to build a fault dictionary.

The effect-cause algorithm starts from faulty outputs of the circuit (the “effect”) and

reasons back through the logic to identify possible sources of failure (the “cause”) [4].



This class of methods usually traces backward from each primary output to determine
the error-propagation paths for all possible fault candidates. The effect-cause diagnosis
approach has several advantages. First, it does not depend on any particular fault model,
so it is general enough to handle various fault types. This is an advantage over diagnosis
methods that rely heavily on fault models. Second, it does not incur the significant
overhead of simulating and storing the response of a large set of faults. Compared with
the cause-effect methods, effect-cause techniques are more memory efficient and can
cope with large designs. The disadvantage of effect-cause diagnosis is the inherent
imprecision, most are conservative in their inference to avoid eliminating any candidate,
but this usually leads to a large implicated area [4]. The other disadvantage is that the
effect-cause approach is not suitable for products that are likely to be diagnosed in large
quantities. As we discussed above, cause-effect approaches have less analysis time per

chip than effect-cause approach because the fault dictionary is built in advance.

1.4 Goals of Dissertation

Since defect behavior is becoming more and more complex, cause-effect diagnosis
even with multiple fault models may leave some faults unmodeled. To obtain an
accurate and reasonably precise diagnosis that can be used to identify various faults, we
propose an efficient fault diagnosis framework based on an effect-cause approach.

Figure 2 shows the general view of the framework.



Critical Path Tracing

—————— Path Tracing |«--
4

Probabilistic Ranking and
Filtering

A 4

Match to Fault Models
to Refine Diagnosis

A 4

Calculate Hamming
Distance

|

Candidate
Explains Fault
Behavior?

End

Figure 2. General view of our diagnosis framework.

In this approach, we first use an improved critical path tracing (CPT) algorithm to
identify the initial suspect list. Then a probabilistic ranking method based on failing test
patterns is used to rate each suspect. A filtering approach is applied to prune off
unrelated fault candidates. Finally, a small list of highly ranked suspects is simulated
with several commonly used fault models and matched to the observed behavior. For
each fault candidate, the Hamming distance between the observed behavior and
simulated behavior is calculated to determine how well each fault candidate can explain

the faulty behavior. All the candidates are re-ranked in ascending order of Hamming



10

distance. If a candidate can explain the faulty behavior well, then we have obtained a
successful diagnosis. Otherwise, this indicates there may be multiple fault sites and we
will rely on path tracing.

Our diagnosis framework currently targets single defect diagnosis since our critical
path tracing approach has a single fault assumption — that at most one fault is observed
on each test pattern. It may not give an accurate prediction in the case of multiple faults,
particularly when the multiple faults effect interfere each other. However, our diagnosis
framework can be adapted to multiple fault diagnosis by incorporating a path tracing
strategy. Compared to critical path tracing, path tracing is a more conservative approach,
but guarantees that the potential source of error is included in the suspect list. Path
tracing alone is not practical for general industry use because it sometimes produces too
many fault candidates.

In general, the goal of this research work is to implement an effect-cause based
diagnosis approach that is more efficient than common cause-effect diagnosis
approaches both in terms of CPU time and memory, and more accurate and precise than

common effect-cause diagnosis approaches.

1.5 Dissertation Organization

The dissertation is organized as follows. In section 2, we discuss previous diagnosis
algorithms, their advantages and drawbacks. Section 3 presents the first stage of the
proposed diagnosis approach - critical path tracing. An improved critical path tracing

algorithm is proposed and its running time is compared with FSIM, a PPSFP fault



11

simulation approach. Section 4 discusses the second stage of diagnosis, in which a
probabilistic ranking model is used to rank the suspects, which may then be filtered.
Section 5 presents the third stage of diagnosis, in which fault simulation using various
fault models is conducted to refine the diagnosis. Commonly used fault models are
introduced and the parallel fault simulation procedure is described in this section. In
section 6, the experimental results on ISCAS85 benchmarks show the accuracy and
resolution of our diagnosis approach. Section 7 concludes the dissertation with future

directions.



12

2. PREVIOUS WORK

This section presents algorithms for VLSI diagnosis proposed by previous
researchers, from the early 1980s to the present day. In general, the earliest algorithms
were targeted solely at stuck-at faults and associated simple defects, while the later and
more sophisticated algorithms have used more detailed fault models and targeted more

complicated defects.

2.1  Stuck-at Fault Diagnosis

Many early VLSI diagnosis systems attempted to incorporate the concept of cause-
effect diagnosis with a previous-generation physical diagnosis method called guided-
probe analysis. Guided-probe analysis employed a physical voltage probe and feedback
from an analysis algorithm to intelligently select accessible circuit nodes for evaluation
[5]. Two examples were Western Electric Company’s DORA [11] and an early approach
of Teradyne, Inc. [12]. The DORA and Teradyne techniques attempted to supplement
the guided-probe analysis with information from stuck-at fault signatures.

Both systems used relatively advanced matching algorithms for their time. The
DORA system used a nearness calculation that is described as fuzzy match by the
authors [2]. The Teradyne system employed the concept of prediction penalties. The
signature of a candidate fault is made up of {output, vector} pairs, which is considered
as a prediction of some faulty behavior. When matching with the actual observed

behavior, the Teradyne algorithm scored a candidate fault by penalizing for each



13

{output, vector} pair found in the stuck-at fault signature but not found in the observed
behavior, and penalizing for each {output, vector} pair found in the observed behavior
but not the stuck-at fault signature. These are now commonly known as misprediction
and nonprediction penalties, respectively.

While other early and less sophisticated algorithms applied the stuck-at fault model
directly and expected exact matches to simulated behaviors, it became obvious that
many failures in VLSI circuits do not behave exactly like stuck-at faults. Some stuck-at
diagnosis algorithms increased the complexity and sophistication of their matching
method to account for unmodeled effects. An algorithm proposed by Kunda [13] ranked
matches by the size of intersection between signature bits. In the algorithm,
misprediction was not penalized but there was a limit on the nonprediction. This reflects
an implicit assumption that unmodeled behavior generally leads to over-prediction: any
unmodeled behavior will cause fewer actual failures than predicted by simulation. This
assumption likely arose from the intuitive expectation that most defects involve a single
fault site with intermittent fault behavior, which could be wrong in case of multiple fault
sites.

A more balanced approach was proposed by De and Gunda [14]. In this algorithm,
users applied relative weights on misprediction and nonprediction. By modifying
traditional scoring with these weights, the algorithm assigned a quantitative ranking to
each stuck-at fault. The authors claimed that the method could be used to explicitly
target defects that behave similar to but not exactly like the stuck-at fault model, such as

some opens and multiple independent stuck-at faults, but it could diagnose bridging



14

defects only implicitly (by user interpretation). This algorithm was unique for its ability
to allow the user to adjust the assumptions about unmodeled behavior that other
algorithms made implicitly and was perhaps the most general of the simple stuck-at
diagnostic algorithms.

Another stuck-at fault diagnosis algorithm was proposed by Waicukauski and
Lindbloom [15]. This algorithm is very pervasive because the most popular commercial
tools, Mentor Graphics FastScan [16] and Synopsys TetraMAX[17] , are based on this
algorithm. We refer to this algorithm as the W&L algorithm.

The W&L algorithm relies solely on stuck-at fault assumptions and simulations. It is
best classified as a dynamic cause-effect algorithm. A cause-effect algorithm is static, in
which all fault simulation is done ahead of time and all fault signatures stored in a fault
dictionary; or, it can be dynamic, where simulations are performed only as needed.
However, W&L algorithm does borrow some ideas from effect-cause approaches
because it uses limited path tracing to reduce the number of simulations it needs to
perform.

The W&L algorithm uses a simple scoring mechanism, relying mainly on exact
matching. However, it performs the matching in an innovative way by matching fault
signatures on a per-test basis. In this algorithm, each failing test pattern is considered
independently. From the first failing pattern and the good-machine values, it uses path
tracing to create a minimum fault list. It then simulates each fault in the fault list; if a
candidate predicts a fail for the test and the outputs match exactly, then a “match” is

found. All the matching fault candidates are then simulated against the remaining failing



15

patterns. The candidate that explains the most failing patterns is kept. Then all of the
failing test patterns that have already been explained by this candidate are eliminated.
The diagnosis process repeats until all failing tests are considered.

The W&L algorithm also conducts a post-processing step. It examines the final
candidate set to classify the diagnosis. If the diagnosis consists of a single stuck-at fault
(with any equivalent faults) that matches all failing test patterns, it then uses passing
patterns to improve diagnosis resolution. If the stuck-at candidates can also explain all of
the passing test patterns, the diagnosis is classified as a “Class I”” diagnosis. If the
diagnosis consists of a single candidate that explains all the failing test patterns but not
all passing test patterns, e.g. there is some misprediction, then the diagnosis is classified
as a “Class II” diagnosis. The authors indicated that the defect types could be diagnosed
in “Class II” diagnosis include CMOS opens, dominant bridging and intermittent
defects. Finally, “Class III”” diagnosis consists of multiple stuck-at candidates with
possible misprediction and nonprediction. The defects that could be diagnosed in this
class of diagnosis included multiple stuck-at defects and wired logic bridging faults.

The two appealing features of the W&L algorithms are the per-test approach and the
post-processing analysis. The matching algorithm is a greedy coverage algorithm over a
set of failing tests. Moreover, the algorithm has the ability to address multiple
simultaneous defects. However, it has an assumption that the fault effects from such
defects are non-interfering. Therefore, the diagnosis would fail if the multiple defects
always overlap on their fault effect propagation for all the failing test patterns.

Because of the huge overhead of fault dictionary size and simulation time in cause-



16

effect stuck-at diagnosis, some researchers introduced effect-cause stuck-at diagnosis.
To our knowledge, the idea was first proposed by Breuer et al. [18]. Their approach is
algebraic in nature and requires the solution of large systems of Boolean equations. This
technique becomes impractical even for circuits of moderate complexity. Abramovici
and Breuer later proposed a new effect-cause approach. The main tool of the algorithm is
the Deduction Algorithm, which processes the actual response of the defective chip to
deduce its internal values [19][20]. The Deduction Algorithm can also recognize a
response generated by a fault situation that cannot be modeled as a stuck fault. Later
Rajski and Cox proposed another effect-cause diagnosis technique [21]. Both algorithms
attempt to identify all fault-free lines, and so can implicitly diagnose multiple faults and
various fault types. However, the diagnostic results are pessimistic and imprecise.

The most widely used effect-cause approach is path tracing. It traces error
propagation paths backward from failed primary outputs toward primary inputs. Critical
path tracing 1s one of the popular path tracing methods. It will be discussed in detail in
the next section. A design error diagnostic algorithm based on critical path tracing was
proposed in [22]. The goal of this method is to find a single-fix net, which is a net where
a change in logical value explains all failing outputs on all failing vectors but does not
cause a change on any passing vectors. Each time a net is found as a fix net for each
primary output on each failing vector, the suspicion level of this net is increased by 1.
All of the candidate nets are ranked by the suspicion level; the one with the highest level
is ranked highest. For defective circuits with multiple faults, there are several strong

partial-fix nets that can partially explain the circuit faulty behavior. In this case, nets



17

with the highest suspicion level can be misleading since this method cannot guarantee

that the best candidates are always ranked at the top in the case of multiple faults.

2.2 Bridging Fault Diagnosis

Since it has been shown repeatedly that the stuck-at fault model does not accurately
reflect the behavior of silicon defects such as bridging [23][24][25][26][27], several
methods have been suggested to improve the diagnosis of bridging faults using the
stuck-at fault model [2][28][29][30].

Millman, McCluskey and Acken proposed an explicit bridging fault diagnosis
technique using the single stuck-at fault model, which is henceforth called the MMA
technique [29]. The authors introduced the idea of composite bridging fault signatures,
which are created by concatenating the four stuck-at fault signatures for the two shorted
nodes. The underlying idea is that any vector that detects a bridging fault will detect one
of the four stuck-at faults associated with the two nodes. Therefore, the bridging fault
signature must be included in the resulting composite signature. The matching algorithm
used in MMA technique is simple subset matching: any candidate whose composite
signature contains all the observed {vector, output} pairs is considered a match and
appears in the final diagnosis.

A notable advantage of the MMA technique is that it relies on the single stuck-at fault
model to create combined stuck-at fault signatures, instead of bridging fault simulation,
which can be computationally expensive both in term of fault list sizes and fault

simulation time complexity. However, the use of combined stuck-at fault signatures



18

over-predicts the bridge fault behavior because it includes stuck-at faults that do not
appear on the bridged nets. For example, in order for a bridging fault to be detected, a
test vector must stimulate opposite logic values on the two bridged nodes. Any vector in
a composite signature that detects the same-valued stuck-at fault on both bridged nodes
must stimulate the same value on both nodes; such a vector cannot detect the bridging
fault. Therefore, the MMA algorithm results in a large, unranked suspect list, with no
expression of preference or likelihood assigned to the candidates. In addition, the MMA
technique may generate incorrect diagnosis results in the case of the Byzantine Generals
Problem [28][31][32]. Because gate input logic thresholds are not identical, different
downstream gates can interpret the voltage as different logic values. This phenomenon is
known as the Byzantine Generals Problem. Since the MMA technique uses a strict
matching algorithm in which the candidate is good if it contains the observed faulty
behavior or is removed if it does not, this causes an unacceptable rate of failed diagnosis.

An approach similar to the MMA algorithm was presented by Chakravarty and Gong
[33]. Their algorithm did not explicitly create composite stuck-at signatures but used a
matching method on combinations of stuck-at signatures to create the same result. Both
of these two bridging fault diagnosis techniques suffer from imprecision: the average
sizes of both diagnosis results are very large, consisting of hundreds or thousands of
candidates. Other researchers have continued to use and extend the idea of stuck-at
based composite signatures for various fault models [34][35].

While the original MMA technique is attractive because of its use of simple stuck-at

fault signatures for diagnosing bridging faults, it has been demonstrated to have several



19

inadequacies: large average diagnoses, unordered fault candidates, and a significant
percentage of failed diagnoses. An improved bridging fault diagnosis technique was
proposed by Lavo et al [2]. They tried to improve the MMA technique by addressing
each of the issues mentioned above by using match restriction, match requirement and
match ranking.

A weakness of the MMA technique is that a faulty signature is likely to be contained
in a large number of composite signatures. The larger a composite signature, the larger
the size of an average diagnosis. The match restriction employed in this improved
technique eliminates from a composite signature any entries that cannot be used to detect
the bridging fault. In order for a bridging fault to be detected, a test vector must
stimulate opposite logic values on the two bridged nodes. Any vectors that place
identical values on the bridged nodes are removed according to the match restriction,
which results in a composite signature that more precisely contains the possible behavior
of the bridging fault.

While the match restriction relied on identifying test vectors that cannot detect a
particular bridging fault, the improvement presented in match requirement is based on
vectors that should be able to detect a bridging fault — namely, those vectors that place
opposite logic values on the bridged nodes and detect single stuck-at faults on both of
the bridged nodes. Therefore, the second improvement is to enforce match requirement
on vectors by identifying such vectors in the composite signatures.

The third improvement suggested by Lavo et al is match ranking. The original MMA

technique did not order the candidates of a diagnosis; a diagnosis simply consists of an



20

unranked list of candidate faults, which is not very helpful to guide the physical search
for defects. In addition, the original MMA technique had a strict matching criterion:
either a candidate contained the observed behavior, or it was eliminated from
consideration. The improved technique can order the candidates by assigning a measure
of likelihood to every candidate. The idea behind ranking candidates is to turn the strict
accept-or-remove criteria into a more quantitative measure of relative match goodness.
Figure 3 [2] shows the comparison between the observed behavior (shaded) and a

candidate fault behavior (unshaded).

Nonpredictions (N) Mispredictions (M)

» Intersection (I) L

[€ »|

[

[

- >

Candidate Behavior (C)
Observed Behavior (B)

Figure 3. Comparison of candidate behavior and observed behavior.

The observed behaviors that are correctly predicted by the candidate are represented
as set I (Intersection), the output errors that are predicted by the candidate but not
observed are represented as set M (Misprediction), and the output errors that are
observed but not predicted by the candidate are represented as set N (Nonprediction) [2].

The primary ranking concern is that the best candidates are the ones that contain the

largest amount of the faulty behavior. Therefore, the first quantitative measure of match



21

goodness is the size of the intersection of the observed behavior and the composite
signature. If the first ranking cannot provide enough information to differentiate
candidates, then the second measure is the number of required vectors; the candidate
containing more required vectors is ranked higher. Additionally, there is a third measure
to judge the quality of an individual match: the amount of misprediction. The candidate
with less misprediction is more likely to be the better explanation for the faulty behavior.
Figure 4 shows the ranking for four candidates C1, C2, C3 and C4. The candidate C1,
C2 and C3 are ranked higher than C4 because they have a larger intersection set; C1 and
C2 are ranked higher than C3 because they contains a higher percentage of required
vectors; and C1 is ranked higher than C2 because it contains less misprediction. One
drawback of this improved bridging fault diagnosis is the need to build a large fault

dictionary [8].

R| [R C,

Required vector

[ | —

R| [R R| [R C,
: L L
[ [

R| R R| [R Cs
: L
[

C,

[

Figure 4. Ranking for four candidates proposed in [2].

A more direct approach to bridging fault diagnosis was suggested by Aitken and



22

Maxwell [36]. Rather than the algorithm described above which used a simple stuck-at
fault model paired with a complex fault diagnostic algorithm, the authors chose to use a
complex and realistic bridging fault model paired with a simple diagnostic algorithm.
This algorithm examined the behavior of actual bridging defects on silicon and
performed simulation using biased voting [37], which is an extension of the voting
model that takes logic gate thresholds into account. This is a cause-effect diagnosis
approach for bridging faults. The authors reported excellent results, both in accuracy and
precision. While there are obvious advantages to this approach, there are also significant
disadvantages. The number of realistic two-line bridging faults is significantly larger
than the number of single stuck-at faults in a circuit. The overall time spent in fault
simulation can be prohibitive since the cost of simulating each of these faults can be
expensive, especially if the simulation considers electrical effects.

All of the above bridging fault diagnosis techniques are based on the cause-effect
approach. Venkataraman and Fuchs presented a deductive technique for diagnosis of
bridging faults [38]. This effect-cause bridging fault diagnosis scheme first uses a path
tracing procedure to deduce lines potentially associated with the bridging faults. An
intersection graph is constructed dynamically from the information obtained through
path tracing from failing outputs. An intersection graph is an undirected graph that
shows the connection among sets that contain nets that lie on the path tracing and have at
least one net in common. The intersection graph implicitly represents all candidate
bridging faults under consideration. Two conditions are used to improve diagnostic

resolution. When a controlling input is the branch of a stem, one of whose other



23

branches has been chose, then this input should be selected. The second condition is that
the most easily controllable input is likely to give the smallest node set. The deductive
algorithm has been experimentally shown to be efficient in both space and time. The
drawback of the technique is that in about 25% of the cases, the diagnosis is partial; that
is, only one of the bridge nodes can be determined with certainty. In such cases, if the
suspect list is so large that bridging fault simulation cannot be performed, then other
techniques [2][28][29][33] need to be incorporated to improve the resolution.

The diagnosis techniques presented so far do not use physical layout information to
diagnose faults. Inductive fault analysis [39] is a method using the circuit layout to
determine the relative probabilities of individual physical faults in the fabricated circuit.
A bridging fault diagnosis approach based on inductive fault analysis was introduced in
[40][41]. This approach is termed CAFDM (Computer-Aided Fault to Defect Mapping).
The authors use physical design and test failure information combined with bridging and
stuck-at fault models to localize defects in random logic. In order to get the list of
realistic bridge faults, the authors developed the FedEx two-node bridge fault extractor
[42]. The FedEx fault extractor analyses the chip layout and identifies the critical areas
where short circuits could occur on the suspect nets, including their locations and layers.
Then a structural procedure, backconing, was used to identify all the potential bridges in
the intersection area. Those bridge faults were then injected in the Verilog netlist.
Finally, the FastScan diagnosis engine was run to find suspect nets. If these are
associated with fault models, they are then mapped to the bridge faults. One of the

advantages of this diagnosis technique is that it uses physical layout to get a realistic



24

bridging fault list including the layer and locations, which efficiently aids failure
analysis. Furthermore, the FedEx tool has proven to be much faster than all previous
fault extractors [43][44][45][46][47][48][49]. The drawback of this approach is that it
requires the physical layout information of the defective chip. In addition, the potential
fault list generated by backconing is typically much larger than obtained using critical

path tracing.

2.3 Delay Fault Diagnosis

Due to the increasing importance of timing-related defects in high-performance
designs, researchers have proposed methods to diagnose timing defects with delay fault
models. Two commonly used delay fault models are the transition fault model [50] and
the path delay fault model [51]. The transition fault model assumes that the delay fault
affects only one gate in the circuit, and the extra delay caused by the fault is large
enough to prevent the transition from reaching any primary output within the
specification time. Under the path delay fault model, a circuit is considered faulty if the
delay of any of its paths exceeds the specification time.

A delay fault diagnosis method based on an effect-cause analysis was developed by
Cox and Rajski [52]. However, this method is unrealistic due to the limitations of the
transition fault model. A single gate delay fault diagnosis approach was presented in [53]
and [54]. Their approach takes advantage of critical path tracing to identify the probable
fault locations, so it is also effect-cause diagnosis. The simple two-valued logic

simulation is used in [53], which misses delay faults caused by static hazards on lines. In



25

[54], a six-valued algebra is used to account for static hazards. However, the backtrace is
performed along all fanin lines that can have transition under test and could lead to a
conservative diagnosis. Since component delays are not considered, the probable fault
location is not guaranteed.

In [55], the authors present an approach based on static timing information targeting
multiple delay fault diagnosis. For each fault candidate, they try to use a robustly tested
path and observe a fault-free situation to determine the upper and lower bounds for a
suspect delay fault. The experimental results show a much-improved diagnostic
resolution when compared to non-timing-based approaches. However, the resolution is
still unsatisfactory for time-to-market requirements.

More recent work advocates using statistical timing information to guide the delay
defect diagnosis [56][57], which produces good diagnostic results. In this method, it is
assumed that the probability density functions of each internal cell or interconnect are
known. In reality, the accurate probability density functions information may not be

easily available.

2.4 Ippg Fault Diagnosis

Mainstream VLSI fault diagnosis has been concerned with logic failures at circuit
outputs or scan flip-flops. Unlike the logic fault diagnosis techniques presented above,
Ippq diagnosis uses the Ippg fault model, in which the presence of a defect causes an
abnormally high amount of current to flow in the circuit in a normally quiescent or static

state. The vectors used for Ippq diagnosis are designed to put the circuit in a static state,



26

in which no logic transitions occur [4].

Aitken presented a method of diagnosing faults when both logic fails and Ippq fails
are measured simultaneously [58], and he later made this approach more general by
including fault models for intra-gate and inter-gate shorts [59]. Later Chakravarty and
Suresh presented an approach which examines the logic value applied to circuit nodes
during failing tests, and attempts to identify pairs of nodes with opposite logic values as
possible bridging fault sites [60]. Both of the approaches rely on Ippg measurements that
can be definitively classified as either a pass or a fail, which limits their application in
some situations. Then the application of current signatures was proposed to address the
limitation [61][62], in which relative current measurements across the test set are used to
infer the presence of a defect, instead of the absolute values of Ippg. A diagnosis
approach introduced in [63][64] attempts to use the presence of certain large differences
between current measurements as a sign that certain types of defects are present. This
idea was further extended by Thibeault [65]. He applied a maximum likelihood estimator
to changes in Ippg measurements to infer fault types.

The advantages of Ippg diagnosis are that the pass/fail Ippq signatures are easy to
construct, and when Ippg diagnosis works, the resulting diagnoses are usually both
precise and accurate [2]. The disadvantage is that not all circuits are Ippq testable.
Furthermore, determining an Ippq diagnostic current threshold (i.e., the limit that
distinguishes “passing” current levels from “failing” current levels) is not simple [66],
which may cause ambiguity. Besides, Ippq diagnosis also requires a lot of manual

intervention: the pass-fail current threshold may have to be repeatedly adjusted for each



27

chip until a perfect diagnostic match is found.

2.5 Per-Test Diagnosis

A recent methodology is based on the concept of “one test at a time,” or per-test
diagnosis [67]. Several previous works, such as Poirot [68], SLAT [69] and iSTAT [70],
have adopted the per-test diagnosis concept where the test patterns are analyzed one at a
time. In these approaches, test patterns are viewed as independent, and diagnosis is
carried out on each test pattern and produces a candidate fault set for each of them.

In [69], a Single Location At-a-Time (SLAT) approach is presented by assuming that
for any defective chip, there will be some tests for which the failing outputs will exactly
match the predicted failing outputs of one or more simple (generally stuck-at) faults.
Each of these test patterns (SLAT patterns) is then associated with a number of such
single fault candidates, and each fault candidate can be used to explain the failing
responses of that test pattern. These candidate faults are arranged into sets of faults that
cover all the matched tests. The collections of faults are called multiplets.

Later in [70], an improved Single Test At-a-Time (iSTAT) approach is introduced.
1STAT still generates multiplets based on the SLAT strategy. However, it applies a
scoring algorithm to rank the multiplets and only the ones with highest score are
selected. It is shown that scoring can significantly reduce the number of candidate
multiplets, hence improve the diagnostic resolution. Although iSTAT has shown a lot of
strength on increasing the diagnostic resolution over SLAT, there still exist some

problems. First, iISTAT can determine which multiplet is more likely to include a true



28

fault site. However, it cannot determine which fault within a multiplet is more likely to
be the true fault site. Therefore, if the top-ranked multiplet contains a large number of
fault candidates, iISTAT becomes less accurate. Second, while iSTAT reduces the
candidate size compared to SLAT, the scoring algorithm and the choice of top-ranked
multiplets in iISTAT can lead to a misleading diagnosis result, where the true fault sites
are not included in the top-ranked multiplets.

In order to improve the diagnostic quality of SLAT and iSTAT, Liu proposed a new
approach named Single Output At-a-Time (SOAT) [67]. SOAT uses the same strategy as
iSTAT to produce scored multiplets. However, in addition to using the response of each
failing test pattern, it also exploits the information associated with each failing output
pin and produces a new list of scored multiplets. The multiplets from iSTAT and SOAT
are then combined and a scored fault list is generated through a new scoring algorithm.
This approach can achieve a diagnostic quality superior to both SLAT and iSTAT in
accuracy and failure coverage. The tradeoff is the increased running time.

Another per-test diagnosis technique is the Poirot algorithm [68]. It also diagnoses
test patterns one at a time. In addition, it employs stuck-at signatures, composite
bridging fault signatures, and composite signatures for open faults on nets with fanout.
Its scoring method is rudimentary, especially when it compares the scores of different
fault models. The scoring algorithm always prefers the simpler model when two faults of
different types equally explain failures.

There are several advantages to the per-test fault diagnosis approach. First, it

explicitly handles pattern-dependence, which is often seen with complex fault behavior.



29

It also explicitly targets multiple fault behaviors. However, the primary assumption
underlying the per-test diagnosis approach is that there will be some failing patterns for
which all the observed failing outputs can be explained exactly be at least one stuck-at
faults. This assumption immediately implies some limitations: what if there are many
individual defects in the design, or the defect is so complex that no test pattern can be
found whose fails can be explained by a single stuck-at fault [69]. In those cases, the

diagnosis would fail.



30

3. CRITICAL PATH TRACING

3.1 Overview

Critical path tracing is very useful in fault and design error diagnosis [22], where fast
observability calculations are important. Critical path tracing has also been proposed as
an efficient alternative to fault simulation because it is faster and requires less memory
than conventional fault simulation [71][72]. One of the key factors contributing to the
increased efficiency of critical path tracing compared to fault simulation is that it deals
directly only with the detected faults rather than all possible faults.

Critical path tracing is used to find faults detected by a specific test vector. It is a two-
step procedure. First, it simulates the fault-free circuit and identifies sensitive gate
inputs. Second, it traces paths from primary outputs (POs) toward primary inputs (PIs)
along which faults are detected. Critical path tracing was proposed by Abramovici,
Menon and Miller. The original implementation of this method is named CRIPT
[71][73]. In this original critical path tracing approach, when a fanout is encountered, a
simulation phase will determine if the effect of changing the value of a fanout stem will
be marked as critical. In order to reduce the size of the section of the circuit that is
simulated, a partitioning of the circuit is done to simulate only up to the point whose
effect on the output is known. CRIPT was reported to be inaccurate due to multiple path
sensitization [71]. In addition, CRIPT had O(G?) time complexity in the worst case [74]
where G is the number of gates in the circuit. CRIPT is inefficient because critical path

tracing by this method requires much forward simulation and backward propagation in



31

an iterative fashion. In addition, partitioning of the circuit into isolated fanout-free
regions (FFR) is a time consuming process. More recently, CRIPT was made exact with
the introduction of stem analysis by forward propagation [73][75]. However, this exact
critical path tracing algorithm was slow. Another critical path tracing approach [76][77]
introduced a dynamic data structure, called the criticality constraint graph (CCG), which
carries enough information during the backward pass to determine a stem’s criticality
from the criticality of its fanout branches. This algorithm is fast and exact, but its
dynamic data management makes the algorithm much more complicated than CRIPT.
Considering the problems associated with the above techniques, a simple method named
one pass critical path tracing was proposed by Navabi et al [78]. This method is exact
and runs in linear time. However, it has several problems. First, the stem analysis only
considers AND, NAND, OR and NOR gates with two inputs. Second, the rules used to
determine stem criticality do not cover all cases of reconvergence. Third, this method
does not consider unknown X values. Thus, this method cannot be applied on real
circuits.

We proposed a fast critical path tracing algorithm which extends one pass critical path
tracing so that it can be applied on any combinational circuit. It avoids frequent iterative
forward simulation and backward propagation [79][80]. Fault free simulation is only
done once and supports three logic values of 0, 1 and X. For most cases, stem criticality
is determined in one pass by applying seven rules. This improved critical path tracing

algorithm is exact because it can handle any kind of recovergence in circuits.



32

3.2 Main Concepts and Definitions
This section introduces the key definitions and concepts in critical path tracing.
3.2.1 Critical Line

The concept of critical line is defined in [81]. A line / has a critical value v in the test

vector ¢ if and only if t detects the fault [ s-a-v. A line with a critical value in ¢ is said to
be critical in ¢.

All primary outputs are critical due to their perfect observability. All critical lines for
a given test vector form the critical paths [82] which are determined by backtracing

from POs towards Pls.
3.2.2 Sensitive Input

A gate input is sensitive if complementing its value would change the value of the
gate output [71]. Sensitive inputs can be identified based on the Dominant Logic Value
(DLV) [72]. A DLV at a gate input is one that forces the gate output to a value,
regardless of the values on the other inputs. The DLV of AND and NAND gates is 0,
while the DLV of OR and NOR gates is 1. XOR and XNOR gates have no DLV because
any single input change will cause an output to change. The following rules are used to
identify sensitivity [71] in a 2-valued simulation:

1. Ifonly one input i has a DLV, then i is sensitive.

2. If all inputs have the complement of the DLV, then all inputs are sensitive.

3. Ifneither 1 nor 2 holds, then no input is sensitive.

4. All inputs on XOR and XNOR gates are sensitive.



33

These rules can be extended to handle 3-valued simulation. Figure 5 demonstrates

such a case.

10

Figure 5. A gate with unknown input value.

In Figure 5, assume there is a SAO (stuck-at-zero) fault at the top input; therefore the
faulty output is 0. In traditional 3-valued simulation, the faulty ‘0’ value is considered as
a different value from the previous X (unknown) value. However, this cannot hold when
we determine sensitive inputs. If the output of the good machine had actually been 0, it
would be impossible to observe the difference between this value and the faulty machine
‘0’ value [83]. Two rules below will be used to determine the sensitivity of a gate input
when using 3-valued simulation:

1. If the gate output is X, then no input is sensitive.

2. [Ifatleast one input is X, there no input is sensitive.

With sensitive inputs identified, we can determine if a gate input is critical. A gate

input is critical if the gate output is critical and the input is sensitive [71].
3.2.3 Blocked Line

If an input of a gate is non-critical, this line is a blocked line. As the name implies, a
blocked line blocks the propagation of a fault from the gate output. A blocked path is a

path with at least one blocked line [78].



34

Each line in the circuit has a blocked value 7, which indicates how many blocked
lines are on the path between the PO and the gate that has this line as output.

Figure 6 shows how an input line is identified as a critical line or blocked line for a
simple two-input AND gate. In a two input AND gate, if only one of the inputs of the
gate has a DLV, as shown in Figure 6(a), that input line is critical and the other is
blocked. If both inputs have a DLV, as shown in Figure 6(b), then each input is blocked
by the other input. Therefore, both inputs will be referred to as blocked. If both inputs of
a gate have non-controlling values, as shown in Figure 6(c), then both inputs are critical,

since changing either input will change the output value.

Critical Blocked Critical
D D D
1----- 0----- 1
Blocked Blocked Critical

(a) (b) (c)

Figure 6. Critical and blocked input.

3.2.4 Critical Path Graph

To simplify our analysis of critical path tracing, a critical path graph (CPG) [78] is
used to describe the gate interconnection. In the graph, each gate is represented as a node
while critical lines and blocked lines are shown as solid and dashed line respectively.
The integer value on each line represents its blocked value. Figure 7 shows a simple
circuit and its corresponding CPG. The dots indicate the sensitive inputs and the bold

lines represent critical lines in Figure 7(a).



0
]l————— ¢ 1

(a)

\O
0 : ~.0
|

(b)

Figure 7. Example of critical path graph.

3.2.5 Self-Masking and Multiple Path Sensitization

If circuit does not contain any reconvergent fanout, critical path tracing is
straightforward [72]. We illustrate critical path tracing in a fanout-free circuit, using the
example in Figure 8. Critical path tracing in a fanout-free circuit is a simple tree
traversal procedure that recursively marks every sensitive input of a gate with critical

output from POs toward PIs. This uses the fact that if a gate output is critical, then its

35



sensitive inputs are critical.

A
o
R 1

DOOI
‘> j}
—f

Figure 8. Critical path tracing in a fanout-free circuit.

However, reconvergence occurs frequently in real digital circuits. Two problems
caused by reconvergence are self~-masking and multiple path sensitization.

Self-masking is a phenomenon in which a fault effect propagates along two or more
paths and reconverges with opposite parities at a gate, where the fault effects cancel out
[72]. In Figure 9, we can see that the effect of the fault B SA0 propagating along two
paths with opposite parities such that they cancel each other at reconvergence point D.

Self-masking implies that a stem may be non-critical even though all of its fanouts are

critical.

36



37

* .-
Bl
-0 10 1
: mm Pttt
0> 0—1
B2 bc o
C ! °

Figure 9. Example of self-masking [71].

Another problem caused by reconvergence is multiple path sensitization [71], which
implies a stem may be critical even though all of its fanouts are non-critical. In Figure
10, although B1 and B2 are both non-critical, stem B is critical because the effect of

fault B SAO could be propagated to primary output D.

1

A °
10 0—>1 1= 0
ﬁ D

0—>1

B2
[ ]

Figure 10. Example of multiple path sensitization.

3.3 Algorithm Flow of Improved Critical Path Tracing

Since the criticality of a stem cannot be directly deduced from the criticality of its
fanouts, stem processing requires a great deal of analysis, and determining criticality of a

stem takes up a major part of the computation time for critical path tracing [72][84][85].



38

In this section, the details of the fast critical path tracing algorithm will be described and
the rules to determine stem criticality will be introduced.

Figure 11 outlines the flow of the improved critical path tracing algorithm for a given
test pattern. First, fault-free simulation is performed to determine the logic value for each
line. Then the algorithm preprocesses the circuit to identify the logic cones feeding each
primary output (PO). In each cone, sensitive inputs are marked according to the rules
described in section 3.2.2. The algorithm then processes every cone starting at its PO.
During the backtracing, there are two main operations on the inputs of the gate being
evaluated. First, the sensitive input net has been directly marked as a critical line and
inserted into the critical path if the gate output is critical and this input net is not a fanout
of a stem. Second, if the input is a stem fanout, the stem is checked to see if its criticality
has already been determined. If the stem is already known as critical, backtracing
continues. If stem criticality is unknown, we must determine if it needs forward fault
simulation to determine its criticality. If yes, fault simulation is performed between the
stem and its convergence gates. The fault simulation stops as soon as the effect of a fault
disappears. Otherwise, the algorithm checks whether all the information needed to
compute stem criticality is available. If so, the stem analysis rules are applied to analyze
the stem. The rules are described in the following section. Otherwise, the inputs in level
n+1 of the circuit are processed, assuming the current level (rank) is #. The level of a net
is computed in the standard fashion: a primary input is assigned level 0, and the level of
a gate output is i, 1 Where i, is the highest level among the levels of the gate inputs.

Thus, no stem is analyzed until all of its fanout branches (FOB) have been considered.



This process repeats until all inputs in the cone have been analyzed.

Fault-free simulation

v
Preprocessing

v

Mark sensitive inputs

v
Get next PO

v
Trace critical paths

A 4

A 4

Stem to
Process?

No

\ 4

Forward

Simulation? Apply Rules

Fault Simulate Stem

Stem
Critical?

A

All PO’s
processed?

Yes

39

Figure 11. Critical path tracing algorithm flow.




40

3.4 Stem Analysis

As discussed above, stem analysis is the major part of the critical path tracing
algorithm. An efficient stem analysis strategy will significantly speed up the entire
process. Before describing the details of the stem analysis, several important definitions
are presented.

1. Convergence Point and Divergence Point

If the fanouts of gate A reconverge at gate B, gate B is called the convergence point
of gate A. Gate A is called a divergence point. A divergence point is just a stem.

2. Loop

The term /oop is first defined in [78]. A reconvergent fanout not containing another
reconvergent fanout is called a loop. A loop has only one divergence point and one
convergence point.

A loop can either be replaced by a critical line or a blocked line in a critical path
graph according to the following rules. The rules consider all common logic gate types
except XOR and XNOR with more than 2 inputs because they rarely appear in circuits.
The algorithm can be readily extended to handle multiple input XOR/XNOR gates, or

such gates can be readily decomposed into two-input gates.
3.4.1 Rule Al

Rule Al is stated as follows: if the convergence point is an XOR/XNOR gate and all
paths between convergence and divergence point are continuous paths, this loop can be
replaced by a blocked line between convergence and divergence point. Figure 12 shows

an application of rule Al. Since the fault effect at X cannot be propagated to Z, the loop



41

is equivalent to a blocked line between X and Z. Figure 13 shows the corresponding

critical path graph of the circuit.

divergence
point
X Z = X------- Z
convergence

point

Figure 13. Corresponding critical path graph of A1l application.

To prove rule Al, Figure 14 shows the critical path graph that summarizes all the
cases covered by rule Al. In this graph, double solid lines represent a critical path,

double dash lines represent a blocked path, on which there is at least one blocked line.



42

I1

12
B

Figure 14. Critical path graph for rule Al cases.

The justification of rule Al is as follows: Since the paths between X and A and
between X and B are both critical paths, the change at X will change both I1 and 12
which are input lines of Z. If both inputs of XOR/XNOR gates change, the output will
not change. Therefore, the fault effect at X cannot be propagated to Z, and the loop

between X and Z is replaced by a blocked line.
3.4.2 Rule A2

Rule A2 is stated as follows: a loop containing no blocked lines at a convergence
point and at least one continuous path of critical lines between convergence point and

divergence point, except if it is covered by rule A1, can be replaced by a critical line.

1%0 10
17?0

Figure 15. Example of rule A2 application.

Figure 15 shows an application of rule A2. Since the effect of a fault at divergence



43

point X can be propagated to convergence point Z, the loop is equivalent to a critical line

between X and Z. Figure 16 shows the corresponding critical path graph of the circuit.

Z = X
convergence
point

Figure 16. Corresponding critical path graph of rule A2 application.

To prove rule A2, Figure 17 shows the critical path graph that summarizes all the

cases covered by rule A2.

A A
11 11
X L Z X Z
AN
S 2 2
B B
() (b)

Figure 17. Critical path graph for rule A2 cases.

The justification of rule A2 for case 1, which is summarized by Figure 17(a), is as
follows:

If Z is a AND/NAND gate, then the inputs I1 and 12 must have logic value (1, 1). So
the output of Z is 1 for an AND gate, 0 for a NAND gate, which is represented by O(Z)
= 0/1. If the output value of X changes, I1 will change while 12 will remain the same

because the path between X and A is critical and the path between X and B is blocked.



44

The new value of (I1°, 12”) is (1, 0), which means O’(Z) = 1/0. It has been shown that the
fault effect at X could be propagated to Z, so rule A2 holds in this case.

If Z is an OR/NOR gate, then the inputs I1 and 12 must have logic value (0, 0). So the
output of Z is 0 for an OR gate, 1 for a NOR gate, which is represented by O(Z) = 0/1. If
the output value of X changes, 11 will change while 12 will remain the same. The new
value of (I1°, 12) is (1, 0), which means O’(Z) = 1/0. It has been shown that the fault
effect at X could be propagated to Z, so rule A2 holds in this case.

If Z is a XOR/XNOR gate, then the output changes as long as one of the inputs
changes. If the output of X changes, 11 changes so that the output of Z changes. Rule A2
also holds in this case.

For case 2, which is summarized by Figure 17(b), gate Z cannot be a XOR or XNOR
gate, since that case is covered by rule Al. A similar justification can be applied to prove

rule A2 also holds for case 2.
343 RuleB

Rule B is stated as follows: a loop with all lines blocked at the convergence point and
no other blocked lines is replaced by a critical line, if all inputs at the convergence point
have dominant logic values. Otherwise, the loop is replaced by a blocked line. Figure 18

show an application of rule B. As we can see, the critical path is a discontinuous path.



45

. o

170 0—>1 120

Figure 18. Example of rule B application.

0—>1

Figure 19 shows the corresponding critical path graph of the example circuit.

divergence
point Y
B loop o—D = B D
_.-~’convergence
point

Figure 19. Corresponding critical path graph of rule B application.

Figure 20 summarizes the cases covered by rule B. Here we only show the cases with

convergence points that have two or three inputs.



46

A A
\\\\\Il /)\\\Il
B ™
X oy X O Z
I3 12
B
C
(a) (b)

Figure 20. Critical path graph for rule B cases.

Here we only provide the proof for the cases with convergence points that have three
inputs. A similar proof could be applied to justify other cases.

If Z is an AND/NAND gate, (I1, 12, I3) must be (0, 0, 0) or (0, 0, 1). First, we
consider the case with (I1, 12, I3) = (0, 0, 0), in which all inputs have dominant logic
value; then the output of Z is 0/1. If X changes, the new value set (I1°, 12°, 13*) = (1, 1,
1). Therefore, the new output of Z is 1/0. Rule B holds at this point. Second, we consider
the case with (I1, 12, 13) = (0, 0, 1); then the output of Z is 0/1. If X changes, the new
value set (I1°, 12°, I3”) = (1, 1, 0). The output of Z is still 0/1. Rule B still holds for this
case.

If Z is an OR/NOR gate, (11, 12, I3) must be (1, 1, 1) or (1, 1, 0). First, we consider
the case with (I1, 12, I3) = (1, 1, 1), in which all inputs have dominant logic values; then
the output of Z is 1/0. If X changes, the new value set (I1°, 12°, I3”) = (0, 0, 0).
Therefore, the new output of Z is 0/1. Rule B holds at this point. Second, we consider the
case with (I1, 12, I3) = (1, 1, 0); then the output of Z is 1/0. If X changes, the new value

set (I1°,12°,13*) = (0, 0, 1). The output of Z is still 1/0. Rule B still holds for this case.



47

The convergence point cannot be an XOR/XNOR gate because the inputs of

XOR/XNOR gates are always critical lines.

3.44 RuleC

Rule C is stated as follows: a loop with at least one blocked line on each path between
divergence and convergence points, and at least one critical line at the convergence

point, can be replaced by a blocked line between convergence and divergence points.

D
[ ]
1

D
o D

Figure 21. Example of rule C application.

Figure 21 shows an application of rule C. Figure 22 shows the corresponding critical

path graph of the example circuit.

~
~
~

divergence -----
point

’

B ““Q/\ loop

convergence
point

Figure 22. Corresponding critical path graph of rule C application.

Figure 23 summarizes the cases covered by rule C. Here we only list the cases with

convergence points that have two inputs for illustration.



48

A A
- Il /%D\\\\I\l
z P
X V4 X Z
A >
S D S 12
B B
(a) (b)
A
/)\\H
X oz
AN
S 12
B
(©)

Figure 23. Critical path graph for rule C cases.

Rule C is true for the cases shown in Figure 23(a) and (b) because both the path
between X and A, and the path between X and B are blocked, which implies (I1, 12) will
not change if X changes. Therefore, the fault effect at X cannot be propagated to Z. Thus
the loop between X and Z could be replaced by a blocked line. For cases in Figure 23(c¢),

a method similar to that used to prove rules A1, A2 and B could be used to prove rule C.

345 RuleD

Rule D is stated as follows: a loop with all lines blocked at the convergence point, and
at least one other blocked line located between divergence and convergence points, can
be replaced by a critical line if both the following conditions are satisfied:

All the paths between the divergence point and the inputs of the convergence point



49

with a DLV are critical paths;

All the paths between the divergence point and the inputs of the convergence point
with a non-DLV are blocked paths.
Otherwise, it is replaced by a blocked line.

Figure 24 shows an example application of rule D.

0 > 1
1 \ 0*1 0»1 D
A O"l. .—J

® 0*>1

Figure 24. Example of rule D application.

Figure 25 shows the corresponding critical path graph of the example circuit. All the
paths between stem A and the inputs with DLV at the convergence point are critical
paths and the path between stem A and the input with non-DLV is a blocked path, so the

fault effect can propagate to the output. Therefore, the loop is replaced with a critical

line.



50

divergence,”” O\\l\\
point .’ 0 o~ .
A - O -mmmmmme- ::O_ D = A D
0 _.--~ convergence

e point

Figure 25. Corresponding critical path graph of rule D application.

Figure 26 summarizes the cases with a two-input convergence point. In Figure 26(a),
since both paths to the convergence point are blocked, the fault effect at the divergence
point cannot be brought to the convergence point. Therefore, the loop between X and Z
is replaced by a blocked line. In other words, stem X is non-critical. The same result can
be obtained by applying rule D. Similarly, rule D can be shown to hold for the case

illustrated in Figure 26(b).

A A
/%1\\11 /Q\\Il
z
X O 7 X O Z
\\ \\
N 12 N 12
B B
(a) (b)

Figure 26. Critical path graph of rule D cases.

34.6 RuleE

Rule E is stated as follows: a loop with only one continuous path of critical lines



between convergence and divergence points, only one critical line at the convergence
point, and at least two blocked lines on each of the other paths, can be replaced by a
critical line. Figure 27 shows an example application of rule E while Figure 28 shows

the corresponding critical path graph of the circuit.
A ° :
0—>1
[ J

Figure 27. Example application of rule E.

divergencefxl

point ~

7 ~

B H\ loop

Figure 28. Corresponding critical path graph of rule E application.

convergence
point

Figure 29(a) summarizes the cases with a two-input convergence point while Figure

29(b) shows the cases with a three-input convergence point.

51



52

A A
PN
p\ Il / \\‘\ Il
P heR z g B S
7 . ..
h O\/ z X Cz © = = Z
SO T
12 ~ -7 13
SO
B C

Figure 29. Critical path graph of rule E cases.

Rule E can be proved by using a method similar to that used for Rule D.

347 RuleF

Rule F is stated as follows: a loop with at least one blocked line at the convergence
point and at least one continuous path of critical lines between convergence and

divergence points, except if it is covered by Rule E, must be replaced by a blocked line.

Al
Bl
g 10
—e

1—0 1
g
0—1

-
B

Figure 30. Example application of rule F.

Figure 30 shows an example application of rule F. This case is a self-masking case,
where the SAO fault on stem B propagates along two paths and the fault effect cancels
out at convergence point D. With Rule F, self-masking case can be handled correctly.

Figure 31 shows the corresponding critical path graph.



53

loop . D —= B --—----- D
_.-""convergence
—=O"  point

Figure 31. Corresponding critical path graph of rule F.

Figure 32(a) summarizes the cases with 2-input convergence point while (b) to (g)
show the cases with three-input convergence point.

For completeness, we show the cases in Figure 32(d), (e), (f), (g) although they will
never happen because for AND/NAND and OR/NOR gate, either only one input line is a
sensitive input or all input lines are sensitive inputs. For XOR/XNOR gate, all inputs are

sensitive inputs.



C C
() (2
Figure 32. Critical path graph of rule F cases.

3.4.8 Examples of Applying Rules

It is easy to apply the above rules in simple circuits with only one loop between a

54



55

divergence point and a convergence point. However, the structures in real circuits are
complex so many interlinked loops can exist. Rules A to F can be applied repeatedly
starting with inner loops until interlinked loops are finally replaced by a critical line or
blocked line. Using these rules, we can determine whether a stem is critical or not in
only one processing pass for most cases.

An example illustrates application of the rules to a fanout for finding faults detected
by an input vector. The circuit shown in Figure 33(a) has two convergence points.
Initially a loop can be observed between the fanout node X and gates a, b and d. By
applying rule B, this inner loop can be replaced by a critical line, and therefore the graph
of Figure 33(b) is converted to that of Figure 33(c). This graph also contains a loop.
Applying rule A2 reduces this loop to a critical line shown in Figure 33(d).

The reduced graph has the stem directly connected to the output, so the stem is
critical. The input vector (0, 1, 0, 0, 0) detects six faults in the circuit in Figure 33(a)

including the SAO fault at stem X.



56

1O
X (ty—z
@\@7
€

(b)
X / loop Z
(c)
X Z
(d)

Figure 33. Example of applying rules.

Consider a more complicated case: a circuit with stems that have fanouts that are also



57

stems. This case occurs very often in real circuits. Since the backtracing proceeds in a
breadth-first fashion toward the primary inputs, the stem with higher level is always
being processed before the stem with lower level is processed. Thus, if stem B is the
fanout of stem A, the loop with B as the divergence point has already been reduced to a
line before determining the criticality of stem A. Then the convergence point of B is
treated as B’s virtual fanout. Therefore, the algorithm can continue looking for A’s
convergence points.

Figure 34 shows an example for applying rules to the case of stems having fanouts
that are stems. To simplify the case, all lines are assumed critical lines and there are no
XOR/XNOR gates. The shaded nodes represent stem nodes. Initially, a, b and c are all
stems. During the backtracing, node b or ¢ should be processed first; assuming b and ¢
are at the same level. Here b is analyzed first. Node b has two convergence points i and
m. Starting from the inner loop rule A2 is applied to convert Figure 34 to Figure 35.
Applying rule A2 again converts Figure 35 to Figure 36(a). Now m is treated as b’s
virtual fanout, therefore, node f, i, j and / logically disappear in Figure 36(a). The loop
formed by ¢, g, & and k can then be processed to form Figure 36(b). Finally, the

interlinked loops have been reduced to a critical line in Figure 36(c).



Figure 35. Critical path graph after applying rule on inner loop.

58



59

loop

(b)

® ®

(©)

Figure 36. Final critical path graph after applying rules .

The overall rule-based algorithm for stem criticality analysis is shown in Figure 37. In
order to apply rules, all convergence points of the stem must be found. Then analysis
starts from the inner loop. This is the loop starting from the stem and ending at the

convergence point with lowest level. The corresponding rule is applied to reduce the



60

loop to a line that is either critical or blocked. The process is repeated until the

interlinked loops are finally converted to a line. At this point, the criticality of the stem

Find all convergence
points of the stem

!

Start from the inner
loop

v

Apply rules

can be determined.

Y

More
Convergence
Points?

Figure 37. Flowchart for determining stem criticality by applying rules.

3.4.9 Stem Forward Simulation

It has been shown that stem criticality can be determined by applying rules. However,
not all the reconvergence cases in real circuits can be handled correctly by the seven
rules we proposed, as shown in Figure 38.

The circuit in Figure 38(a) is represented as the critical path graph shown in Figure

38(b). The circuit has two stems: A and B. Initially a loop is identified between gates B



61

and F. If we try applying rules to determine stem A’s criticality , rule D is applied first,
replacing the loop between B and F by a blocked line, as shown in Figure 39(a). It means
stem B is first determined as non-critical. Continuing applying rule B on the loop
between A and F, the circuit is reduced to a critical line between A and F, as shown in
Figure 39(b). Therefore, stem A would be determined as critical for the test pattern (1, 1,
1, 1) by applying rules, while the forward simulation in Figure 38(a) shows that it is non-

critical.

1
e o
B 0—»1:F 0

(b)

Figure 38. Example of the reconvergence case that needs forward simulation.

The reason why applying rules does not work for this case is because critical path

tracing is based on a single fault assumption. When the rules are applied, only the fault



62

on the stem under analysis is considered. However, when a stem has a fanout that is also
a stem, for example, stem A in Figure 38 has a fanout B that is also a stem, the fault on
stem A could be propagated to both inputs of gate E. When we apply rule D on the inner
loop between B and F, it is assumed that only input B2 could change while C1 should
remain constant. Unfortunately, this assumption does not hold when determining the
criticality of stem A, because both B2 and C1 change. In order to determine the
criticality of stem A, a forward fault simulation between stem A and convergence point

F is required.

(2)

(b)

Figure 39. Example of incorrectly determining stem criticality by applying rules.

Fault simulation time is insignificant, because it need only be performed within the
loop between the step and convergence point, and this region is typically small.

However, the time spent determining whether a stem needs fault simulation could be



63

significant. The algorithm we used to decide if a stem needs forward fault simulation is

presented in Figure 40. It has O(n) time complexity, where 7 is the number of gates in

the loop between the stem and its convergence point.

{
{

for each fanout 7 of the stem X

while i is not the outer convergence point

inTimeSeenInLoop++;
if inTimeSeenInLoop>1 and i is not convergence point

{

X needs forward simulation to determine its criticality;

return;
}
if i is a stem
{
for each gate j in the loop between i and its convergence point
{
jnTimeSeenInLoop++;
if jnTimeSeenInLoop>1 and j is not convergence point
{
X needs forward simulation to determine its criticality;
return;
b
}
set the outer convergence point of i as the next fanout;
b
else

Figure 40. Algorithm that decides if a stem needs forward simulation.

The algorithm counts how many times (n7imeSeenInLoop) each fanout has been

visited. If a fanout has been visited more than once and is not the convergence point,

then the stem needs forward simulation. The process is repeated until all fanouts have



64

been counted or one fanout has been visited more than once.

3.5 Experimental Results

The proposed algorithm has been implemented in Visual C++ and run on Microsoft
Windows XP on a 2.8 GHz Intel Pentium 4 processor with 512 MB main memory.
Experiments were performed on the ISCAS85 benchmark circuits and the full scan
versions of the largest ISCAS89 benchmark circuits using stuck-at test sets generated by
Mentor Graphics FastScan.

Table 4 shows the CPU time for generating all the critical paths for all input vectors
on all primary outputs (POs) for each circuit. Columns 2-4 are circuit statistics. Column
5 is the test set size. The test patterns are single stuck-at fault vectors generated by
Mentor Graphics FastScan. Column 6 shows the average number of critical nodes per
vector. The critical nodes include all critical lines and gates. If a node is critical in the
fanin cones of multiple POs, it will be counted multiple times. Column 7 is the total time
spent in critical path tracing. Column 8 shows the average CPU time spent per test
vector. Of the ISCASSS circuits, c6288 has the highest per-vector CPU time since it has
a large number of stems. Even though c7552 has more lines than c6288, the per-vector
critical CPU time on C7552 is less than c6288 because c6288 has more stems and stem
analysis is the most time consuming procedure in critical path tracing. The number of
test patterns also matters. The benchmark s38417 takes a lot more time than s35932
(about 20 times longer) to process not only because it has more lines to process, but

more importantly because the test pattern set generated for s38417 is much larger (about



65

15 times) than s35932.

Table 4. Ciritical path tracing experimental result summary.

o . 4 Tost # Critical Criti'cal Pgth Per-Vector
Circuit [# Lines |# Stems|# POs Patterns Nodes per Tracing Time CPU Time (s)
Vector (s)
c432 432 89 7 50 149 0.062 0.0012
c499 499 59 32 53 265 0.248 0.0047
c880 880 125 26 52 507 0.062 0.0019
cl1355 1355 259 32 86 456 2.062 0.0240
c1908 1908 385 25 130 1306 2.015 0.0151
c2670 2670 454 140 105 1720 0.923 0.0080
c3540 3540 579 22 149 1047 4.328 0.0290
c5315 5315 806 123 121 3088 3.406 0.0282
c6288 6288 | 1456 | 32 29 9186 12.75 0.4389
c7552 7552 | 1300 | 108 214 3873 7.925 0.0371
$9234 9234 | 1013 | 39 381 7094 15.96 0.0412
s13207 | 13207 | 1224 | 152 477 16692 48.26 0.1012
s15850 [ 15850 | 1518 | 150 438 17663 125.98 0.2866
s35932 | 35932 | 5295 | 319 64 20569 140.66 2.1971
s38417 | 38417 | 4569 | 106 979 39948 2786.15 2.8450
s38584 | 38584 | 3946 | 304 650 40258 1630.01 2.5069

The running time increases with the number of lines. Figure 41 shows that per-vector

CPU time is sub-linear in n-PO, which is the upper bound if all lines in the circuit are the



66

fanins of each PO.

10
*

14— o~
CPU Time
PerVector 01 +--—----------° >~ -"-—--"~"-"~-~~"~~"~-——

(S) L 2 y= 2E_05XO.7011
R? = 0.8696
0.01 -
0.001 ; ; ‘ ‘

1E+3 1E+4 1E+5 1E+6 1E+7 1E+8
(# POs) * (# Lines)

Figure 41. Average CPU time per vector vs. (# lines - # POs).

Figure 42 shows that the per-vector CPU time is nearly linear in the number of lines.

The small quadratic factor exists because some stems need forward fault simulation.



10

y = 7E-10x* + 3E-05x
R? =0.9323

CPU Time
Per Vector (s)

0 fommmmmmmmm e T
*
0.01 +------- .«
0.001 ‘ ‘
100 1000 10000 100000

# Lines

Figure 42. Average CPU time per vector vs. # lines.

Figure 43 shows that the per-vector CPU time is linear in the number of critical

nodes.

10

-
|

y = 6E-05x

R? = 0.9344
001+~~~ - %

CPU Time
Per Vector (s)
o

0.001

100 1000 10000 100000
# Critical Nodes

Figure 43. Average CPU time per vector vs. # critical nodes.

Table 5 shows the CPU time of our critical path tracing algorithm and the FSIM



68

parallel-pattern, single-fault propagation fault simulator [86]. A set of 2016 random test
patterns is used for each circuit, and FSIM is run without fault dropping, so that it
collects the same data as critical path tracing. Critical path tracing is performed from
faulty POs on failing vectors. The CPU time is based on the average of 10 random stuck-
at faults. As we can see from Table 5, the critical path tracing time is 5-48% faster than
FSIM.

Table 5. Our critical path tracing CPU time vs. FSIM CPU time.

Circuit # Failing | F S¥M CPU CPT2 CPU
Vectors | Time (s) | Time (s)

c432 106 0.046 0.03
c499 462 0.094 0.09
c880 252 0.109 0.089
c3540 467 0.671 0.348
c5315 250 0.468 0.364
c6288 483 2.844 1.586
c7552 232 1.142 1.092

An exact, linear-time critical path tracing algorithm has been described for
combinational circuits. Seven rules have been developed to handle stem analysis in only
one processing pass for most cases. The algorithm uses a three-valued algebra so that it
can handle unknown values. The performance in Figure 42 is approximately one CPU
minute per vector for a circuit with one million lines. In applications such as diagnosis, it

is often sufficient to perform critical path tracing from faulty primary outputs. Since



critical path tracing measures line observability, it is an ideal tool for fault diagnosis,

where the fault behavior may not exactly match a particular fault model [87].

69



70

4. SUSPECT RANKING AND FILTERING

Even though the suspect list returned by critical path tracing is much smaller than the
number of circuit lines, it is still inefficient to examine each of its members exhaustively.
To shorten this list, a method of candidate scoring and filtering needs to be defined that
will work for any fault candidate, regardless of fault model.

The method of scoring and ranking fault candidates is probabilistic. In other words,
what a diagnosis should really calculate is the probability that the failures seen are due to
one fault candidate or another, whether that candidate is a stuck-at fault or some other
fault type. It would follow, then, that the candidate with the highest probability is the
most likely suspect [4].

The outline of the overall ranking and filtering process is shown in Figure 44. The
inputs include the gate-level netlist of the circuit under diagnosis (CUD), the observed
response of the CUD, the initial suspect list obtained from critical path tracing, and the

set of failing test patterns. The entire process has four phases.

4.1 Phase 1: First-Level Filtering

The first filtering is based on the following theorem.

Theorem I: If critical path tracing is conducted over multiple failing vectors and the
number of times each line is visited on the paths from faulty POs is represented by
nTimesFaulty, then all the possible candidates will have nTimesFaulty > 0.

In other words, the candidate line(s) should cause at least one primary output on one



71

failing vector to be faulty, or the candidate line(s) should be observed at least once on a
critical path starting from a faulty PO for a failing vector. After the first filtering, all
lines that are visited at least once during the path tracing from faulty POs are kept.

Otherwise, they are removed from the candidate list.

Initial
Suspect
List

Observed
Response

Failing
Vectors

Phase 1: First-Level Filtering

A 4

Phase 2: First-Level Ranking

A 4

Phase 3: Second-Level Filtering

A 4

Phase 4: Second-Level Ranking

A 4

A smaller list of suspect lines

Figure 44. Overall ranking and filtering process.

Table 6 shows the percentage of candidate lines deleted after first-level filtering. In
our experiments, we randomly injected 143 different types of faults, including 32
dominant bridge faults, 30 wired-AND bridge faults, 30 wired-OR bridge faults and 51
stuck-at-0/1 faults. From Table 6, we can see that more than 80% of the candidate lines

are removed from the initial suspect list in 43% of the cases. The first filtering phase



72

greatly reduces the size of suspect list by removing unnecessary candidate lines.

Table 6. Percentage of candidate lines deleted after first-level filtering.

% of candidate lines deleted | number of cases | percentage of the total cases
2%-20% 17 11.9%
20%-40% 24 16.7%
40%-60% 18 12.6%
60%-80% 23 16.1%
80%-99% 61 42.7%

4.2 Phase 2: First-Level Ranking

The first filtering prunes out unrelated suspect lines. The number of suspects in the
list is reduced. Now what is needed is a way to rank the suspect lines to indicate a
preference between them. In order to do so, several measurements are made to calculate
the score of each candidate. The primary ranking criterion is n7imesFaulty, introduced
above. For the same failing vector, if a line is seen at multiple faulty POs, its
nTimesFaulty is increased for each failing PO. The candidate list is sorted in decreasing
order of nTimesFaulty. Intuitively, the more frequently a line is seen at a faulty output,
the greater the likelihood that it is defective.

First-level ranking by itself is not sufficient to trim the suspect list. Suppose there is
only one failing vector and only one faulty PO, then all the lines on the critical paths of

this faulty PO have nTimesFaulty = 1. In this case, we cannot differentiate among the



73

candidate lines with only the first-level ranking. That is why second-level filtering is

required.

4.3  Phase 3: Second-Level Filtering

The first-level filtering phase reduces the initial suspect list, but further reduction is
necessary to limit the physical failure analysis time (locating the physical defect on the
chip). The second-level filtering is based on Theorem 2.

Theorem 2: In a circuit with n defective lines, if path tracing is conducted for a set of
failing input vectors with m faulty POs, then one or more line(s) from the suspect list
will be marked at least m /n times [87].

In other words, the defective lines must explain their share of the faulty outputs. In
our measurements, nFaultyPOs corresponds to m in Theorem 2. We use nMaxFaults to
correspond to 7 in Theorem 2, where nMaxFaults represents the maximum cardinality
depending on what fault models are used. The maximum is user-configurable. For
example, if the diagnosis targets single stuck-at fault and two-line bridge faults, then
nMaxFaults should be set to 2. In our experiments, we set it to 4 to be more
conservative, based on the observation in [88] that multiple defects of large cardinality
(more than four) do not happen very often in practice.

Second-level filtering is performed by selecting the candidate lines with n7TimesFaulty
greater than a threshold T=nFaultyPOs/nMaxFaults. A larger nMaxFaults results in a
smaller 7. In other words, a larger nMaxFaults means that more candidate lines are

retained, which implies a larger probability that the real defect will be included in the



74

final diagnosis, but at the cost of more diagnosis time.

4.4 Phase 4: Second-Level Ranking

In the case that the first-level ranking returns too many candidate lines with equal
ranking, second-level ranking is used to break the tie.

During this phase, we perform PPSFP (Parallel Pattern Single Fault Propagation) fault
simulation on all failing patterns for all candidate lines in the reduced list from first-level
filtering. In each iteration of the fault simulation algorithm, 32 test patterns are simulated
simultaneously. The faulty value of each candidate line on a failing pattern is obtained
by flipping the good machine value of that line. After fault simulation, we measure the
Hamming distance (number of bit differences) between the observed outputs and
simulated outputs. This measurement is used as a tiebreaker. If two candidates have the
same n1limesFaulty, then the one with smaller Hamming distance is ranked higher. For
example, if two candidates A and B both have nTimesFaulty equal to 10, and candidate
A has a Hamming distance of 0 and B has a Hamming distance of 4, then A is more
suspicious than B because the fault on candidate line B may fail some passing PO(s) and

pass some failing PO(s). Figure 45 outlines the second-level ranking heuristic.



75

for each failing input vector v
{
perform logic simulation;
for each candidate line / in the reduced list
{
flip the value at 1 and run PPSFP fault simulation;
calculate Hamming distance between simulated outputs and observed

outputs;

}

Sort the candidate lines using Hamming distance when they have the same

nTimesFaulty;

Figure 45. Second-level ranking heuristic.

We take another two measurements on each candidate line, termed A/ways( and
Always1. As the names suggest, Always0 is true if the line is always being driven by ‘0’
whenever it is seen as faulty. Similarly, Always]! is true if the line is always being driven
by ‘1’ whenever it is seen as faulty. In most cases, a line is more suspicious when it is
driven by a fixed value than if it is driven more randomly. A dominant bridge fault is an
exception, because the victim line is always driven to the logic value of the dominant
line. However, since we also consider stuck-at and wired bridge faults, we use these two
measurements as a tiebreaker when two lines have the same Hamming distance.

The purpose of phase 4 is to bring the real suspect even closer to the top of the
candidate list.

In general, the ranking uses nTimesFaulty as the first key and Hamming distance as



76

the second key. When both n7TimesFaulty and Hamming distance are the same, Always(
and Always| are used to break the tie.
The first and second-level ranking helps bring the real candidate near the top or at

the top of the suspect list. However, some faults could still fool the ranking, as shown in

Figure 46.
T I PO1
____________ 1A
PO2
Wired-AND I
Bridge
____________ —B PO3
- PO4

Figure 46. Example case for ranking analysis.

The shaded squares represents faulty POs. PO2 and PO3 are both faulty POs. Suppose
the actual fault is a wired-AND bridge between nodes A and B. If we conduct critical
path tracing from faulty POs, (A, C) is on the critical path from PO2 while (B, C) is on
the critical path from PO3. Therefore, the critical paths from PO2 and PO3 have node C
in common. Suppose there are 100 failing vectors and A is faulty 50% of the time, which
means A is seen as faulty on 50 failing vectors and so is B. In this case, A and B are both
counted as nTimesFaulty=50 while C has nTimesFaulty=100. Therefore, the real

candidates A and B would be ranked far below candidate C. In cases such as this, the



diagnosis result needs further refinement using model-based fault simulation. This will

be described in the next section.

77



78

5. MODEL-BASED FAULT SIMULATION

5.1 Motivation and Basic Structure

The previous section described the second step of the diagnosis framework: fault
filtering and ranking. This section presents the third step, model-based fault simulation,
to improve the diagnosis resolution and accuracy.

A small list of candidate lines can be obtained after filtering and ranking. However,
sometimes the most suspicious line may not be ranked at the top or near the top, as we
demonstrated in Figure 46. For those cases, we need some metrics to bring the real fault
candidate near the top. Furthermore, filtering and ranking only returns a list of candidate
lines, without indicating the type of the fault. The fault type can be very helpful for
localizing the defect wi