

AN EFFICIENT LOGIC FAULT DIAGNOSIS FRAMEWORK BASED ON

EFFECT-CAUSE APPROACH

A Dissertation

by

LEI WU

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2007

Major Subject: Computer Engineering

AN EFFICIENT LOGIC FAULT DIAGNOSIS FRAMEWORK BASED ON

EFFECT-CAUSE APPROACH

A Dissertation

by

LEI WU

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Duncan M. Walker

Committee Members, Jianer Chen

 Rabinarayan Mahapatra

 Weiping Shi

Head of Department, Valerie E. Taylor

December 2007

Major Subject: Computer Engineering

 iii

ABSTRACT

An Efficient Logic Fault Diagnosis Framework Based on Effect-Cause Approach.

(December 2007)

Lei Wu, B.S., Sichuan University, China;

M.S., Sichuan University, China;

M.S., McNeese State University

Chair of Advisory Committee: Dr. Duncan M. Walker

Fault diagnosis plays an important role in improving the circuit design process and the

manufacturing yield. With the increasing number of gates in modern circuits, determining

the source of failure in a defective circuit is becoming more and more challenging.

In this research, we present an efficient effect-cause diagnosis framework for

combinational VLSI circuits. The framework consists of three stages to obtain an accurate

and reasonably precise diagnosis. First, an improved critical path tracing algorithm is

proposed to identify an initial suspect list by backtracing from faulty primary outputs

toward primary inputs. Compared to the traditional critical path tracing approach, our

algorithm is faster and exact. Second, a novel probabilistic ranking model is applied to

rank the suspects so that the most suspicious one will be ranked at or near the top. Several

fast filtering methods are used to prune unrelated suspects. Finally, to refine the diagnosis,

fault simulation is performed on the top suspect nets using several common fault models.

The difference between the observed faulty behavior and the simulated behavior is used to

 iv

rank each suspect. Experimental results on ISCAS85 benchmark circuits show that this

diagnosis approach is efficient both in terms of memory space and CPU time and the

diagnosis results are accurate and reasonably precise.

 v

DEDICATION

To my husband, parents and daughter

 vi

ACKNOWLEDGMENTS

I would like to express my gratitude to all those who gave me the possibility to

complete this dissertation. Among the people who have contributed to this work, I would

first like to thank my advisor and committee chair, Dr. Duncan M. (Hank) Walker. I am

deeply indebted to Dr. Walker for his guidance, help, stimulating suggestions and

encouragement throughout my research at Texas A&M University. His advice, novel

ideas and understanding were critical for me to achieve the goal of this research.

I would also like to thank my committee members, Dr. Weiping Shi, Dr. Jianer Chen

and Dr. Rabinarayan Mahapatra for their valuable comments and encouragement on this

research. I would specially like to thank Dr. Weiping Shi and his group for generating

coupling capacitance data for ISCAS85 benchmark circuits so that I can make use of it in

my research.

Many thanks to my colleagues and friends: Wangqi Qiu, Bin Xue, Ziding Yue, Jing

Wang, Zheng Wang, Sagar S. Sabade, Xiang Lu, and Vijay Balasubramanian for their

encouragement and help. Especially I would like to thank Mr. Wangqi Qiu for use of his

CodSim tool and many helpful discussions.

I would like to give my special thanks to my husband Gang whose love,

encouragement, support and patience enabled me to complete this work. I am indebted to

my parents, sisters and parents-in-law for their love and support all these years. I am very

happy to have completed this work, and even happier to be able to dedicate this

dissertation to my family.

 vii

TABLE OF CONTENTS

Page

1. INTRODUCTION……………………………………………………………… 1

1.1 Fault Diagnosis ...1

1.2 Diagnostic Data...3

1.3 Two Diagnostic Approaches...5

1.4 Goals of Dissertation...8

1.5 Dissertation Organization ...10

2. PREVIOUS WORK…………………………………………………………… 12

2.1 Stuck-at Fault Diagnosis ...12

2.2 Bridging Fault Diagnosis ..17

2.3 Delay Fault Diagnosis...24

2.4 IDDQ Fault Diagnosis ...25

2.5 Per-Test Diagnosis ..27

3. CRITICAL PATH TRACING………………………………………………… 30

3.1 Overview...30

3.2 Main Concepts and Definitions...32

3.3 Algorithm Flow of Improved Critical Path Tracing37

3.4 Stem Analysis ...40

3.5 Experimental Results ..64

4. SUSPECT RANKING AND FILTERING……………………………………. 70

4.1 Phase 1: First-Level Filtering..70

4.2 Phase 2: First-Level Ranking..72

4.3 Phase 3: Second-Level Filtering ...73

4.4 Phase 4: Second-Level Ranking ...74

5. MODEL-BASED FAULT SIMULATION…………………………………… 78

5.1 Motivation and Basic Structure ..78

5.2 Line-to-Fault Mapping..80

5.3 Fault Simulation..83

5.4 Feedback Bridging Fault...87

6. EXPERIMENTAL RESULTS………………………………………………… 90

6.1 Run Time and Memory Usage Analysis ...90

6.2 Diagnosis Accuracy and Resolution for Targeted Faults95

 viii

Page

6.3 Diagnosis Accuracy and Resolution for Untargeted Faults100

7. CONCLUSIONS AND FUTURE WORK…………………………………... 112

7.1 Conclusions...112

7.2 Future Work ..116

REFERENCES………………………………………………………………………119

VITA... 135

 ix

LIST OF FIGURES

Page

Figure 1. Process of cause-effect fault diagnosis approach ...6

Figure 2. General view of our diagnosis framework. ...9

Figure 3. Comparison of candidate behavior and observed behavior.20

Figure 4. Ranking for four candidates proposed in [2]. ...21

Figure 5. A gate with unknown input value. ..33

Figure 6. Critical and blocked input. ..34

Figure 7. Example of critical path graph. ...35

Figure 8. Critical path tracing in a fanout-free circuit..36

Figure 9. Example of self-masking [71]...37

Figure 10. Example of multiple path sensitization...37

Figure 11. Critical path tracing algorithm flow..39

Figure 12. Example of rule A1 application. ...41

Figure 13. Corresponding critical path graph of A1 application..41

Figure 14. Critical path graph for rule A1 cases. ...42

Figure 15. Example of rule A2 application. ...42

Figure 16. Corresponding critical path graph of rule A2 application.................................43

Figure 17. Critical path graph for rule A2 cases. ...43

Figure 18. Example of rule B application. ...45

Figure 19. Corresponding critical path graph of rule B application...................................45

Figure 20. Critical path graph for rule B cases...46

Figure 21. Example of rule C application. ...47

 x

Page

Figure 22. Corresponding critical path graph of rule C application...................................47

Figure 23. Critical path graph for rule C cases...48

Figure 24. Example of rule D application. ...49

Figure 25. Corresponding critical path graph of rule D application...................................50

Figure 26. Critical path graph of rule D cases..50

Figure 27. Example application of rule E...51

Figure 28. Corresponding critical path graph of rule E application.51

Figure 29. Critical path graph of rule E cases. ...52

Figure 30. Example application of rule F. ..52

Figure 31. Corresponding critical path graph of rule F. ...53

Figure 32. Critical path graph of rule F cases. ...54

Figure 33. Example of applying rules. ...56

Figure 34. Another example of applying rules. ..58

Figure 35. Critical path graph after applying rule on inner loop..58

Figure 36. Final critical path graph after applying rules . ..59

Figure 37. Flowchart for determining stem criticality by applying rules...........................60

Figure 38. Example of the reconvergence case that needs forward simulation.61

Figure 39. Example of incorrectly determining stem criticality by applying rules............62

Figure 40. Algorithm that decides if a stem needs forward simulation..............................63

Figure 41. Average CPU time per vector vs. (# lines · # POs)...66

Figure 42. Average CPU time per vector vs. # lines. ...67

Figure 43. Average CPU time per vector vs. # critical nodes. ...67

 xi

Page

Figure 44. Overall ranking and filtering process..71

Figure 45. Second-level ranking heuristic..75

Figure 46. Example case for ranking analysis..76

Figure 47. Basic structure of model-based fault simulation step.79

Figure 48. Metric to reduce fault candidate list..80

Figure 49. Capacitance vs. probability of bridging faults [90]...82

Figure 50. Example of stuck-at fault model. ..84

Figure 51. Wired-AND and Wired-OR fault models. ..85

Figure 52. Dominant bridging fault model...86

Figure 53. Example of feedback bridging fault..87

Figure 54. Run time comparison with SAT-based diagnosis tool......................................93

Figure 55. Memory usage vs. circuit size...95

Figure 56. % Successful diagnosis vs. % dropped failing vectors.102

Figure 57. Dominant-AND and Dominant-OR fault models. ..104

 xii

LIST OF TABLES

Page

Table 1. Table of previous, present and future semiconductor trends................................2

Table 2. Example of pass-fail fault signatures. ..4

Table 3. Example of indexed full-response fault signatures. ...5

Table 4. Critical path tracing experimental result summary. ...65

Table 5. Our critical path tracing CPU time vs. FSIM CPU time.68

Table 6. Percentage of candidate lines deleted after first-level filtering.72

Table 7. Logical behavior of wired-AND/OR Models...85

Table 8. Logical behavior of dominant model. ..86

Table 9. Diagnosis time for ISCAS85 circuits. ..91

Table 10. Run time analysis for ISCAS85 circuits...92

Table 11. Memory usage summary. ...94

Table 12. Diagnosis resolution and accuracy for targeted faults......................................96

Table 13. ISCAS85 benchmark gate numbers summary...97

Table 14. Diagnosis resolution for different type of faults. ...98

Table 15. Diagnosis quality comparison with Sproing and MMA...................................99

Table 16. Voting bridge defect diagnosis results. ..103

Table 17. Behavior of dominant-AND/OR fault ..105

Table 18. Diagnosis result for dominant-AND and dominant-OR fault105

Table 19. Diagnosis result for missing wire design error...107

Table 20. Diagnosis result for wrong gate type design error. ..108

Table 21. Diagnosis result for multiple faults. ...110

 1

1. INTRODUCTION

1.1 Fault Diagnosis

As integrated circuit (IC) manufacturing technology becomes more complex and

feature size continues to shrink, more logic gates are being integrated into VLSI chips.

Table 1 shows the past, present and future semiconductor technology roadmap [1]. The

increasing complexity in IC designs makes the design and manufacturing process more

vulnerable to defects, which cause deformation to the ideal IC.

 Failure analysis has played an important role in improving the manufacturing process

and yield. Failure analysis is the process of determining the actual failure cause for

malfunctioning chips. Discovering the cause of failures in a circuit can often lead to

improvements in circuit design or manufacturing process, with the subsequent

production of higher-quality ICs.

Historically, failure analysis has been a physical process. Failure analysis engineers

investigate the failing part using scanning electron microscopes, infrared sensors,

particle beams, liquid crystal films and a variety of other expensive high-tech equipment

to identify the cause of circuit failure. With the enormous number of circuit elements and

the number of layers in modern ICs, physical search for defects cannot succeed without

first having a small list of suspect locations [2]. This is the job of fault diagnosis. Fault

diagnosis is the process of identifying the potential location of logic faults in

This dissertation follows the style and format of IEEE Transactions on Very Large Scale

Integration (VLSI) Systems.

 2

malfunctioning chips, usually through analysis of the logic behavior of failing circuits.

Physical failure analysis cannot be effectively conducted without considerable guidance

from fault diagnosis. If the diagnosis is imprecise, the failure analysis engineer may

waste time examining a large physical area. Even worse, if the diagnosis is inaccurate,

the failure analysis engineer will be led to the wrong part of the chip, with the possible

destruction of the actual defect site [3].

Table 1. Table of previous, present and future semiconductor trends.

Year 1997-2001 2003-2006 2009-2012

Feature size, nm 250-180 130-70 45-32

Millions transistors per cm
2
 4-10 18-39 84-180

Number of wiring layers 6-7 7-9 9-10

Pin Count 100-1200 500-1936 780-3616

Die size, mm
2
 50-385 60-520 70-750

Clock rate, MHz 200-1684 3088-5631 11511-19348

Voltage, V 1.2-2.5 0.9-1.2 0.9-1.0

Power, W 1.2-61 2.8-98 3-138

Fault diagnosis is an important component of failure analysis. In principle, logic fault

diagnosis is straightforward: based on the data available about the failing chip, the

purpose of fault diagnosis is to produce a list of likely defect locations. However, with

the enormous number of transistors in modern ICs and the number of layers in most

complex circuits, defect localization is not an easy task. According to the International

Technology Roadmap for Semiconductors (ITRS), the complexity of defect localization

is expected to grow exponentially [1].

 3

Previous-proposed strategies for VLSI fault diagnosis have a variety of limitations.

Some techniques are limited to specific fault models and will fail on unmodeled

behavior or unexpected data. Some techniques require very high memory usage, which

is infeasible for large designs. Others apply ad hoc or arbitrary scoring mechanisms to

rate fault candidates, making the result difficult to interpret or to compare with the

results from other algorithms. The dissertation presents a fault diagnosis approach that is

robust, comprehensive and practical. By introducing an extended critical path tracing

method and a probabilistic ranking framework, the approach can produce accurate and

precise diagnosis for stuck-at fault, wired-AND bridge fault, wired-OR bridge fault and

dominant bridge fault. By using an effect-cause approach, it is designed to be memory

efficient so that it can be applied to large designs.

1.2 Diagnostic Data

Fault diagnosis is used to perform logical detective work. The evidence usually

consists of a description of the circuit design, the tests applied and the pass-fail results of

those tests [4]. In addition, more detailed per-test information may be provided.

The values applied at the circuit inputs and scanned into the flip-flops are referred to

as the input pattern or test vector. The input vectors causing any mismatch between the

outputs of the faulty chip and a fault-free chip are referred to as failing input vectors.

The operation of scanning and applying an input pattern to the circuit and recording its

output response is called a test [4], and a collection of tests designed to exercise part or

all of the circuit is called a test set.

 4

The output response of a defective circuit to a test set is referred to as the observed

faulty behavior, and its logic representation is commonly known as a fault signature.

The fault signature is usually represented in one of the following two common forms.

The first is the pass-fail fault signature. It reports the result for each test in the test set,

whether a pass or a fail. Typically the fault signature consists either of a bit vector for

the entire test set in which by convention failing tests are represented as 1s and the

passing tests by 0s, or the indices of the failing tests. Table 2 gives an example of a fault

signature for a simple example of 10 tests, out of which 5 failing tests are recorded.

Table 2. Example of pass-fail fault signatures.

Result for 10 tests: Pass-fail signatures:

 1: Pass 6: Pass By index: 2, 3, 7, 9, 10

 2: Fail 7: Fail By bit vector: 0110001011

 3: Fail 8: Pass

 4: Pass 9: Fail

 5: Pass 10: Fail

The second type of fault signature is the full-response fault signature, which reports

not only what tests failed but also at which outputs (primary outputs and flip-flops) the

differences are observed. Table 3 shows a simple example of indexed full-response fault

signatures. Each failing test vector is recorded with a list of failing outputs. For example,

the first row represents that primary outputs 3 and 5 are observed as faulty on failing test

vector 2.

 5

Table 3. Example of indexed full-response fault signatures.

Indexed full-response fault signatures:

 2: 3, 5

 3: 4

 7: 2, 3

 9: 2, 5

 10: 3, 4

1.3 Two Diagnostic Approaches

Understanding how chips fail is the first step toward identifying and eliminating the

causes of the failure. The objective of diagnosis is to pinpoint the fault location and

analyze the defect causing it. There are two types of approaches available for fault

diagnosis. The first approach is cause-effect analysis, which enumerates all the possible

faults existing in an fault model and determines their corresponding output responses to

a given set of tests before the test experiments [5]. The second type of approach is effect-

cause analysis, in which the actual response of the failing chip is processed to determine

its possible faults. The initial step of this type of approach is done in a model-

independent fashion to avoid diagnostic failure due to an inadequate fault model.

1.3.1 Cause-Effect Approach

A cause-effect algorithm starts by using possible fault models (the “cause”) to predict

the behavior of faulty circuits through fault simulation, compares the observed faulty

behavior (the “effect”) to these predictions, each representing a fault candidate and

 6

identifies the candidate that most closely matches the observations. A cause-effect

algorithm is characterized by the choice of the particular fault model(s) before any

analysis of the actual faulty behavior is performed. All fault simulation is done ahead of

time and all fault signatures stored in a database called a fault dictionary. Thus, it is also

called model-based diagnosis. Figure 1 shows a simplified view of the process [6].

Figure 1. Process of cause-effect fault diagnosis approach.

One of the advantages of the cause-effect approach is that it can often provide a

diagnosis result in less time in terms of analysis time per chip, simply because the fault

simulation work has been done ahead of time and is therefore amortized over many

diagnosis runs. This aspect is especially significant for high-volume situations in which a

large number of parts must be diagnosed and in cases where a quick diagnostic result is

Fault model and design

Fault simulation

Fault behavior

Tester data

Comparison

Likely fault sites

Failure analysis

 7

desired. In addition, this approach is successful if the actual defect behavior is accurately

modeled by the selected fault model(s). However, it might be fooled by unmodeled

faults. Since the type of fault is unknown beforehand, any single model-based diagnosis

is unreliable. Another disadvantage of this approach is that fault simulation could

become very expensive and the size of fault dictionary size could quickly become

unmanageable for large designs. A classical fault dictionary includes a bit for detection

or nondetection of each of n faults on a circuit with m outputs and v test vectors, with a

total size of O(n·m·v). Since modern VLSI circuits contains millions of gates, thousands

of scan elements (which are considered outputs), and thousands of test vectors, a large

amount of computational effort is involved in building a fault dictionary. Researchers

have proposed several approaches to shrink the dictionary size, because dictionaries tend

to be sparse, that is, most of their entries are zero [6]. Early methods usually used

compaction, with resulting information loss [7]. In some cases, the information loss in

compaction would dramatically reduce the diagnostic resolution [8]. More recent work

has emphasized compression, with no information loss but with size reductions similar

to the compaction techniques [9][10].

1.3.2 Effect-Cause Approach

The effect-cause approach analyzes the actual circuit responses and determines which

fault(s) might have caused the observed failure effect. This class of methods does not

need to build a fault dictionary.

The effect-cause algorithm starts from faulty outputs of the circuit (the “effect”) and

reasons back through the logic to identify possible sources of failure (the “cause”) [4].

 8

This class of methods usually traces backward from each primary output to determine

the error-propagation paths for all possible fault candidates. The effect-cause diagnosis

approach has several advantages. First, it does not depend on any particular fault model,

so it is general enough to handle various fault types. This is an advantage over diagnosis

methods that rely heavily on fault models. Second, it does not incur the significant

overhead of simulating and storing the response of a large set of faults. Compared with

the cause-effect methods, effect-cause techniques are more memory efficient and can

cope with large designs. The disadvantage of effect-cause diagnosis is the inherent

imprecision, most are conservative in their inference to avoid eliminating any candidate,

but this usually leads to a large implicated area [4]. The other disadvantage is that the

effect-cause approach is not suitable for products that are likely to be diagnosed in large

quantities. As we discussed above, cause-effect approaches have less analysis time per

chip than effect-cause approach because the fault dictionary is built in advance.

1.4 Goals of Dissertation

Since defect behavior is becoming more and more complex, cause-effect diagnosis

even with multiple fault models may leave some faults unmodeled. To obtain an

accurate and reasonably precise diagnosis that can be used to identify various faults, we

propose an efficient fault diagnosis framework based on an effect-cause approach.

Figure 2 shows the general view of the framework.

 9

Figure 2. General view of our diagnosis framework.

In this approach, we first use an improved critical path tracing (CPT) algorithm to

identify the initial suspect list. Then a probabilistic ranking method based on failing test

patterns is used to rate each suspect. A filtering approach is applied to prune off

unrelated fault candidates. Finally, a small list of highly ranked suspects is simulated

with several commonly used fault models and matched to the observed behavior. For

each fault candidate, the Hamming distance between the observed behavior and

simulated behavior is calculated to determine how well each fault candidate can explain

the faulty behavior. All the candidates are re-ranked in ascending order of Hamming

Match to Fault Models

to Refine Diagnosis

Probabilistic Ranking and

Filtering

Path Tracing

Calculate Hamming

Distance

Candidate

Explains Fault

Behavior?

Yes

End

No

Critical Path Tracing

 10

distance. If a candidate can explain the faulty behavior well, then we have obtained a

successful diagnosis. Otherwise, this indicates there may be multiple fault sites and we

will rely on path tracing.

Our diagnosis framework currently targets single defect diagnosis since our critical

path tracing approach has a single fault assumption – that at most one fault is observed

on each test pattern. It may not give an accurate prediction in the case of multiple faults,

particularly when the multiple faults effect interfere each other. However, our diagnosis

framework can be adapted to multiple fault diagnosis by incorporating a path tracing

strategy. Compared to critical path tracing, path tracing is a more conservative approach,

but guarantees that the potential source of error is included in the suspect list. Path

tracing alone is not practical for general industry use because it sometimes produces too

many fault candidates.

In general, the goal of this research work is to implement an effect-cause based

diagnosis approach that is more efficient than common cause-effect diagnosis

approaches both in terms of CPU time and memory, and more accurate and precise than

common effect-cause diagnosis approaches.

1.5 Dissertation Organization

The dissertation is organized as follows. In section 2, we discuss previous diagnosis

algorithms, their advantages and drawbacks. Section 3 presents the first stage of the

proposed diagnosis approach - critical path tracing. An improved critical path tracing

algorithm is proposed and its running time is compared with FSIM, a PPSFP fault

 11

simulation approach. Section 4 discusses the second stage of diagnosis, in which a

probabilistic ranking model is used to rank the suspects, which may then be filtered.

Section 5 presents the third stage of diagnosis, in which fault simulation using various

fault models is conducted to refine the diagnosis. Commonly used fault models are

introduced and the parallel fault simulation procedure is described in this section. In

section 6, the experimental results on ISCAS85 benchmarks show the accuracy and

resolution of our diagnosis approach. Section 7 concludes the dissertation with future

directions.

 12

2. PREVIOUS WORK

This section presents algorithms for VLSI diagnosis proposed by previous

researchers, from the early 1980s to the present day. In general, the earliest algorithms

were targeted solely at stuck-at faults and associated simple defects, while the later and

more sophisticated algorithms have used more detailed fault models and targeted more

complicated defects.

2.1 Stuck-at Fault Diagnosis

Many early VLSI diagnosis systems attempted to incorporate the concept of cause-

effect diagnosis with a previous-generation physical diagnosis method called guided-

probe analysis. Guided-probe analysis employed a physical voltage probe and feedback

from an analysis algorithm to intelligently select accessible circuit nodes for evaluation

[5]. Two examples were Western Electric Company’s DORA [11] and an early approach

of Teradyne, Inc. [12]. The DORA and Teradyne techniques attempted to supplement

the guided-probe analysis with information from stuck-at fault signatures.

Both systems used relatively advanced matching algorithms for their time. The

DORA system used a nearness calculation that is described as fuzzy match by the

authors [2]. The Teradyne system employed the concept of prediction penalties. The

signature of a candidate fault is made up of {output, vector} pairs, which is considered

as a prediction of some faulty behavior. When matching with the actual observed

behavior, the Teradyne algorithm scored a candidate fault by penalizing for each

 13

{output, vector} pair found in the stuck-at fault signature but not found in the observed

behavior, and penalizing for each {output, vector} pair found in the observed behavior

but not the stuck-at fault signature. These are now commonly known as misprediction

and nonprediction penalties, respectively.

While other early and less sophisticated algorithms applied the stuck-at fault model

directly and expected exact matches to simulated behaviors, it became obvious that

many failures in VLSI circuits do not behave exactly like stuck-at faults. Some stuck-at

diagnosis algorithms increased the complexity and sophistication of their matching

method to account for unmodeled effects. An algorithm proposed by Kunda [13] ranked

matches by the size of intersection between signature bits. In the algorithm,

misprediction was not penalized but there was a limit on the nonprediction. This reflects

an implicit assumption that unmodeled behavior generally leads to over-prediction: any

unmodeled behavior will cause fewer actual failures than predicted by simulation. This

assumption likely arose from the intuitive expectation that most defects involve a single

fault site with intermittent fault behavior, which could be wrong in case of multiple fault

sites.

A more balanced approach was proposed by De and Gunda [14]. In this algorithm,

users applied relative weights on misprediction and nonprediction. By modifying

traditional scoring with these weights, the algorithm assigned a quantitative ranking to

each stuck-at fault. The authors claimed that the method could be used to explicitly

target defects that behave similar to but not exactly like the stuck-at fault model, such as

some opens and multiple independent stuck-at faults, but it could diagnose bridging

 14

defects only implicitly (by user interpretation). This algorithm was unique for its ability

to allow the user to adjust the assumptions about unmodeled behavior that other

algorithms made implicitly and was perhaps the most general of the simple stuck-at

diagnostic algorithms.

Another stuck-at fault diagnosis algorithm was proposed by Waicukauski and

Lindbloom [15]. This algorithm is very pervasive because the most popular commercial

tools, Mentor Graphics FastScan [16] and Synopsys TetraMAX[17] , are based on this

algorithm. We refer to this algorithm as the W&L algorithm.

The W&L algorithm relies solely on stuck-at fault assumptions and simulations. It is

best classified as a dynamic cause-effect algorithm. A cause-effect algorithm is static, in

which all fault simulation is done ahead of time and all fault signatures stored in a fault

dictionary; or, it can be dynamic, where simulations are performed only as needed.

However, W&L algorithm does borrow some ideas from effect-cause approaches

because it uses limited path tracing to reduce the number of simulations it needs to

perform.

The W&L algorithm uses a simple scoring mechanism, relying mainly on exact

matching. However, it performs the matching in an innovative way by matching fault

signatures on a per-test basis. In this algorithm, each failing test pattern is considered

independently. From the first failing pattern and the good-machine values, it uses path

tracing to create a minimum fault list. It then simulates each fault in the fault list; if a

candidate predicts a fail for the test and the outputs match exactly, then a “match” is

found. All the matching fault candidates are then simulated against the remaining failing

 15

patterns. The candidate that explains the most failing patterns is kept. Then all of the

failing test patterns that have already been explained by this candidate are eliminated.

The diagnosis process repeats until all failing tests are considered.

The W&L algorithm also conducts a post-processing step. It examines the final

candidate set to classify the diagnosis. If the diagnosis consists of a single stuck-at fault

(with any equivalent faults) that matches all failing test patterns, it then uses passing

patterns to improve diagnosis resolution. If the stuck-at candidates can also explain all of

the passing test patterns, the diagnosis is classified as a “Class I” diagnosis. If the

diagnosis consists of a single candidate that explains all the failing test patterns but not

all passing test patterns, e.g. there is some misprediction, then the diagnosis is classified

as a “Class II” diagnosis. The authors indicated that the defect types could be diagnosed

in “Class II” diagnosis include CMOS opens, dominant bridging and intermittent

defects. Finally, “Class III” diagnosis consists of multiple stuck-at candidates with

possible misprediction and nonprediction. The defects that could be diagnosed in this

class of diagnosis included multiple stuck-at defects and wired logic bridging faults.

The two appealing features of the W&L algorithms are the per-test approach and the

post-processing analysis. The matching algorithm is a greedy coverage algorithm over a

set of failing tests. Moreover, the algorithm has the ability to address multiple

simultaneous defects. However, it has an assumption that the fault effects from such

defects are non-interfering. Therefore, the diagnosis would fail if the multiple defects

always overlap on their fault effect propagation for all the failing test patterns.

Because of the huge overhead of fault dictionary size and simulation time in cause-

 16

effect stuck-at diagnosis, some researchers introduced effect-cause stuck-at diagnosis.

To our knowledge, the idea was first proposed by Breuer et al. [18]. Their approach is

algebraic in nature and requires the solution of large systems of Boolean equations. This

technique becomes impractical even for circuits of moderate complexity. Abramovici

and Breuer later proposed a new effect-cause approach. The main tool of the algorithm is

the Deduction Algorithm, which processes the actual response of the defective chip to

deduce its internal values [19][20]. The Deduction Algorithm can also recognize a

response generated by a fault situation that cannot be modeled as a stuck fault. Later

Rajski and Cox proposed another effect-cause diagnosis technique [21]. Both algorithms

attempt to identify all fault-free lines, and so can implicitly diagnose multiple faults and

various fault types. However, the diagnostic results are pessimistic and imprecise.

The most widely used effect-cause approach is path tracing. It traces error

propagation paths backward from failed primary outputs toward primary inputs. Critical

path tracing is one of the popular path tracing methods. It will be discussed in detail in

the next section. A design error diagnostic algorithm based on critical path tracing was

proposed in [22]. The goal of this method is to find a single-fix net, which is a net where

a change in logical value explains all failing outputs on all failing vectors but does not

cause a change on any passing vectors. Each time a net is found as a fix net for each

primary output on each failing vector, the suspicion level of this net is increased by 1.

All of the candidate nets are ranked by the suspicion level; the one with the highest level

is ranked highest. For defective circuits with multiple faults, there are several strong

partial-fix nets that can partially explain the circuit faulty behavior. In this case, nets

 17

with the highest suspicion level can be misleading since this method cannot guarantee

that the best candidates are always ranked at the top in the case of multiple faults.

2.2 Bridging Fault Diagnosis

Since it has been shown repeatedly that the stuck-at fault model does not accurately

reflect the behavior of silicon defects such as bridging [23][24][25][26][27], several

methods have been suggested to improve the diagnosis of bridging faults using the

stuck-at fault model [2][28][29][30].

Millman, McCluskey and Acken proposed an explicit bridging fault diagnosis

technique using the single stuck-at fault model, which is henceforth called the MMA

technique [29]. The authors introduced the idea of composite bridging fault signatures,

which are created by concatenating the four stuck-at fault signatures for the two shorted

nodes. The underlying idea is that any vector that detects a bridging fault will detect one

of the four stuck-at faults associated with the two nodes. Therefore, the bridging fault

signature must be included in the resulting composite signature. The matching algorithm

used in MMA technique is simple subset matching: any candidate whose composite

signature contains all the observed {vector, output} pairs is considered a match and

appears in the final diagnosis.

A notable advantage of the MMA technique is that it relies on the single stuck-at fault

model to create combined stuck-at fault signatures, instead of bridging fault simulation,

which can be computationally expensive both in term of fault list sizes and fault

simulation time complexity. However, the use of combined stuck-at fault signatures

 18

over-predicts the bridge fault behavior because it includes stuck-at faults that do not

appear on the bridged nets. For example, in order for a bridging fault to be detected, a

test vector must stimulate opposite logic values on the two bridged nodes. Any vector in

a composite signature that detects the same-valued stuck-at fault on both bridged nodes

must stimulate the same value on both nodes; such a vector cannot detect the bridging

fault. Therefore, the MMA algorithm results in a large, unranked suspect list, with no

expression of preference or likelihood assigned to the candidates. In addition, the MMA

technique may generate incorrect diagnosis results in the case of the Byzantine Generals

Problem [28][31][32]. Because gate input logic thresholds are not identical, different

downstream gates can interpret the voltage as different logic values. This phenomenon is

known as the Byzantine Generals Problem. Since the MMA technique uses a strict

matching algorithm in which the candidate is good if it contains the observed faulty

behavior or is removed if it does not, this causes an unacceptable rate of failed diagnosis.

An approach similar to the MMA algorithm was presented by Chakravarty and Gong

[33]. Their algorithm did not explicitly create composite stuck-at signatures but used a

matching method on combinations of stuck-at signatures to create the same result. Both

of these two bridging fault diagnosis techniques suffer from imprecision: the average

sizes of both diagnosis results are very large, consisting of hundreds or thousands of

candidates. Other researchers have continued to use and extend the idea of stuck-at

based composite signatures for various fault models [34][35].

While the original MMA technique is attractive because of its use of simple stuck-at

fault signatures for diagnosing bridging faults, it has been demonstrated to have several

 19

inadequacies: large average diagnoses, unordered fault candidates, and a significant

percentage of failed diagnoses. An improved bridging fault diagnosis technique was

proposed by Lavo et al [2]. They tried to improve the MMA technique by addressing

each of the issues mentioned above by using match restriction, match requirement and

match ranking.

A weakness of the MMA technique is that a faulty signature is likely to be contained

in a large number of composite signatures. The larger a composite signature, the larger

the size of an average diagnosis. The match restriction employed in this improved

technique eliminates from a composite signature any entries that cannot be used to detect

the bridging fault. In order for a bridging fault to be detected, a test vector must

stimulate opposite logic values on the two bridged nodes. Any vectors that place

identical values on the bridged nodes are removed according to the match restriction,

which results in a composite signature that more precisely contains the possible behavior

of the bridging fault.

While the match restriction relied on identifying test vectors that cannot detect a

particular bridging fault, the improvement presented in match requirement is based on

vectors that should be able to detect a bridging fault − namely, those vectors that place

opposite logic values on the bridged nodes and detect single stuck-at faults on both of

the bridged nodes. Therefore, the second improvement is to enforce match requirement

on vectors by identifying such vectors in the composite signatures.

The third improvement suggested by Lavo et al is match ranking. The original MMA

technique did not order the candidates of a diagnosis; a diagnosis simply consists of an

 20

unranked list of candidate faults, which is not very helpful to guide the physical search

for defects. In addition, the original MMA technique had a strict matching criterion:

either a candidate contained the observed behavior, or it was eliminated from

consideration. The improved technique can order the candidates by assigning a measure

of likelihood to every candidate. The idea behind ranking candidates is to turn the strict

accept-or-remove criteria into a more quantitative measure of relative match goodness.

Figure 3 [2] shows the comparison between the observed behavior (shaded) and a

candidate fault behavior (unshaded).

Candidate Behavior (C)

Intersection (I)

Nonpredictions (N) Mispredictions (M)

Observed Behavior (B)

Candidate Behavior (C)

Intersection (I)

Nonpredictions (N) Mispredictions (M)

Observed Behavior (B)

Figure 3. Comparison of candidate behavior and observed behavior.

The observed behaviors that are correctly predicted by the candidate are represented

as set I (Intersection), the output errors that are predicted by the candidate but not

observed are represented as set M (Misprediction), and the output errors that are

observed but not predicted by the candidate are represented as set N (Nonprediction) [2].

The primary ranking concern is that the best candidates are the ones that contain the

largest amount of the faulty behavior. Therefore, the first quantitative measure of match

 21

goodness is the size of the intersection of the observed behavior and the composite

signature. If the first ranking cannot provide enough information to differentiate

candidates, then the second measure is the number of required vectors; the candidate

containing more required vectors is ranked higher. Additionally, there is a third measure

to judge the quality of an individual match: the amount of misprediction. The candidate

with less misprediction is more likely to be the better explanation for the faulty behavior.

Figure 4 shows the ranking for four candidates C1, C2, C3 and C4. The candidate C1,

C2 and C3 are ranked higher than C4 because they have a larger intersection set; C1 and

C2 are ranked higher than C3 because they contains a higher percentage of required

vectors; and C1 is ranked higher than C2 because it contains less misprediction. One

drawback of this improved bridging fault diagnosis is the need to build a large fault

dictionary [8].

R R

RR R R

R R R R

C1

C2

C3

C4

Required vector

R R

RR R R

R R R R

C1

C2

C3

C4

Required vector

Figure 4. Ranking for four candidates proposed in [2].

A more direct approach to bridging fault diagnosis was suggested by Aitken and

 22

Maxwell [36]. Rather than the algorithm described above which used a simple stuck-at

fault model paired with a complex fault diagnostic algorithm, the authors chose to use a

complex and realistic bridging fault model paired with a simple diagnostic algorithm.

This algorithm examined the behavior of actual bridging defects on silicon and

performed simulation using biased voting [37], which is an extension of the voting

model that takes logic gate thresholds into account. This is a cause-effect diagnosis

approach for bridging faults. The authors reported excellent results, both in accuracy and

precision. While there are obvious advantages to this approach, there are also significant

disadvantages. The number of realistic two-line bridging faults is significantly larger

than the number of single stuck-at faults in a circuit. The overall time spent in fault

simulation can be prohibitive since the cost of simulating each of these faults can be

expensive, especially if the simulation considers electrical effects.

All of the above bridging fault diagnosis techniques are based on the cause-effect

approach. Venkataraman and Fuchs presented a deductive technique for diagnosis of

bridging faults [38]. This effect-cause bridging fault diagnosis scheme first uses a path

tracing procedure to deduce lines potentially associated with the bridging faults. An

intersection graph is constructed dynamically from the information obtained through

path tracing from failing outputs. An intersection graph is an undirected graph that

shows the connection among sets that contain nets that lie on the path tracing and have at

least one net in common. The intersection graph implicitly represents all candidate

bridging faults under consideration. Two conditions are used to improve diagnostic

resolution. When a controlling input is the branch of a stem, one of whose other

 23

branches has been chose, then this input should be selected. The second condition is that

the most easily controllable input is likely to give the smallest node set. The deductive

algorithm has been experimentally shown to be efficient in both space and time. The

drawback of the technique is that in about 25% of the cases, the diagnosis is partial; that

is, only one of the bridge nodes can be determined with certainty. In such cases, if the

suspect list is so large that bridging fault simulation cannot be performed, then other

techniques [2][28][29][33] need to be incorporated to improve the resolution.

The diagnosis techniques presented so far do not use physical layout information to

diagnose faults. Inductive fault analysis [39] is a method using the circuit layout to

determine the relative probabilities of individual physical faults in the fabricated circuit.

A bridging fault diagnosis approach based on inductive fault analysis was introduced in

[40][41]. This approach is termed CAFDM (Computer-Aided Fault to Defect Mapping).

The authors use physical design and test failure information combined with bridging and

stuck-at fault models to localize defects in random logic. In order to get the list of

realistic bridge faults, the authors developed the FedEx two-node bridge fault extractor

[42]. The FedEx fault extractor analyses the chip layout and identifies the critical areas

where short circuits could occur on the suspect nets, including their locations and layers.

Then a structural procedure, backconing, was used to identify all the potential bridges in

the intersection area. Those bridge faults were then injected in the Verilog netlist.

Finally, the FastScan diagnosis engine was run to find suspect nets. If these are

associated with fault models, they are then mapped to the bridge faults. One of the

advantages of this diagnosis technique is that it uses physical layout to get a realistic

 24

bridging fault list including the layer and locations, which efficiently aids failure

analysis. Furthermore, the FedEx tool has proven to be much faster than all previous

fault extractors [43][44][45][46][47][48][49]. The drawback of this approach is that it

requires the physical layout information of the defective chip. In addition, the potential

fault list generated by backconing is typically much larger than obtained using critical

path tracing.

2.3 Delay Fault Diagnosis

Due to the increasing importance of timing-related defects in high-performance

designs, researchers have proposed methods to diagnose timing defects with delay fault

models. Two commonly used delay fault models are the transition fault model [50] and

the path delay fault model [51]. The transition fault model assumes that the delay fault

affects only one gate in the circuit, and the extra delay caused by the fault is large

enough to prevent the transition from reaching any primary output within the

specification time. Under the path delay fault model, a circuit is considered faulty if the

delay of any of its paths exceeds the specification time.

A delay fault diagnosis method based on an effect-cause analysis was developed by

Cox and Rajski [52]. However, this method is unrealistic due to the limitations of the

transition fault model. A single gate delay fault diagnosis approach was presented in [53]

and [54]. Their approach takes advantage of critical path tracing to identify the probable

fault locations, so it is also effect-cause diagnosis. The simple two-valued logic

simulation is used in [53], which misses delay faults caused by static hazards on lines. In

 25

[54], a six-valued algebra is used to account for static hazards. However, the backtrace is

performed along all fanin lines that can have transition under test and could lead to a

conservative diagnosis. Since component delays are not considered, the probable fault

location is not guaranteed.

In [55], the authors present an approach based on static timing information targeting

multiple delay fault diagnosis. For each fault candidate, they try to use a robustly tested

path and observe a fault-free situation to determine the upper and lower bounds for a

suspect delay fault. The experimental results show a much-improved diagnostic

resolution when compared to non-timing-based approaches. However, the resolution is

still unsatisfactory for time-to-market requirements.

More recent work advocates using statistical timing information to guide the delay

defect diagnosis [56][57], which produces good diagnostic results. In this method, it is

assumed that the probability density functions of each internal cell or interconnect are

known. In reality, the accurate probability density functions information may not be

easily available.

2.4 IDDQ Fault Diagnosis

Mainstream VLSI fault diagnosis has been concerned with logic failures at circuit

outputs or scan flip-flops. Unlike the logic fault diagnosis techniques presented above,

IDDQ diagnosis uses the IDDQ fault model, in which the presence of a defect causes an

abnormally high amount of current to flow in the circuit in a normally quiescent or static

state. The vectors used for IDDQ diagnosis are designed to put the circuit in a static state,

 26

in which no logic transitions occur [4].

Aitken presented a method of diagnosing faults when both logic fails and IDDQ fails

are measured simultaneously [58], and he later made this approach more general by

including fault models for intra-gate and inter-gate shorts [59]. Later Chakravarty and

Suresh presented an approach which examines the logic value applied to circuit nodes

during failing tests, and attempts to identify pairs of nodes with opposite logic values as

possible bridging fault sites [60]. Both of the approaches rely on IDDQ measurements that

can be definitively classified as either a pass or a fail, which limits their application in

some situations. Then the application of current signatures was proposed to address the

limitation [61][62], in which relative current measurements across the test set are used to

infer the presence of a defect, instead of the absolute values of IDDQ. A diagnosis

approach introduced in [63][64] attempts to use the presence of certain large differences

between current measurements as a sign that certain types of defects are present. This

idea was further extended by Thibeault [65]. He applied a maximum likelihood estimator

to changes in IDDQ measurements to infer fault types.

The advantages of IDDQ diagnosis are that the pass/fail IDDQ signatures are easy to

construct, and when IDDQ diagnosis works, the resulting diagnoses are usually both

precise and accurate [2]. The disadvantage is that not all circuits are IDDQ testable.

Furthermore, determining an IDDQ diagnostic current threshold (i.e., the limit that

distinguishes “passing” current levels from “failing” current levels) is not simple [66],

which may cause ambiguity. Besides, IDDQ diagnosis also requires a lot of manual

intervention: the pass-fail current threshold may have to be repeatedly adjusted for each

 27

chip until a perfect diagnostic match is found.

2.5 Per-Test Diagnosis

A recent methodology is based on the concept of “one test at a time,” or per-test

diagnosis [67]. Several previous works, such as Poirot [68], SLAT [69] and iSTAT [70],

have adopted the per-test diagnosis concept where the test patterns are analyzed one at a

time. In these approaches, test patterns are viewed as independent, and diagnosis is

carried out on each test pattern and produces a candidate fault set for each of them.

In [69], a Single Location At-a-Time (SLAT) approach is presented by assuming that

for any defective chip, there will be some tests for which the failing outputs will exactly

match the predicted failing outputs of one or more simple (generally stuck-at) faults.

Each of these test patterns (SLAT patterns) is then associated with a number of such

single fault candidates, and each fault candidate can be used to explain the failing

responses of that test pattern. These candidate faults are arranged into sets of faults that

cover all the matched tests. The collections of faults are called multiplets.

Later in [70], an improved Single Test At-a-Time (iSTAT) approach is introduced.

iSTAT still generates multiplets based on the SLAT strategy. However, it applies a

scoring algorithm to rank the multiplets and only the ones with highest score are

selected. It is shown that scoring can significantly reduce the number of candidate

multiplets, hence improve the diagnostic resolution. Although iSTAT has shown a lot of

strength on increasing the diagnostic resolution over SLAT, there still exist some

problems. First, iSTAT can determine which multiplet is more likely to include a true

 28

fault site. However, it cannot determine which fault within a multiplet is more likely to

be the true fault site. Therefore, if the top-ranked multiplet contains a large number of

fault candidates, iSTAT becomes less accurate. Second, while iSTAT reduces the

candidate size compared to SLAT, the scoring algorithm and the choice of top-ranked

multiplets in iSTAT can lead to a misleading diagnosis result, where the true fault sites

are not included in the top-ranked multiplets.

In order to improve the diagnostic quality of SLAT and iSTAT, Liu proposed a new

approach named Single Output At-a-Time (SOAT) [67]. SOAT uses the same strategy as

iSTAT to produce scored multiplets. However, in addition to using the response of each

failing test pattern, it also exploits the information associated with each failing output

pin and produces a new list of scored multiplets. The multiplets from iSTAT and SOAT

are then combined and a scored fault list is generated through a new scoring algorithm.

This approach can achieve a diagnostic quality superior to both SLAT and iSTAT in

accuracy and failure coverage. The tradeoff is the increased running time.

Another per-test diagnosis technique is the Poirot algorithm [68]. It also diagnoses

test patterns one at a time. In addition, it employs stuck-at signatures, composite

bridging fault signatures, and composite signatures for open faults on nets with fanout.

Its scoring method is rudimentary, especially when it compares the scores of different

fault models. The scoring algorithm always prefers the simpler model when two faults of

different types equally explain failures.

There are several advantages to the per-test fault diagnosis approach. First, it

explicitly handles pattern-dependence, which is often seen with complex fault behavior.

 29

It also explicitly targets multiple fault behaviors. However, the primary assumption

underlying the per-test diagnosis approach is that there will be some failing patterns for

which all the observed failing outputs can be explained exactly be at least one stuck-at

faults. This assumption immediately implies some limitations: what if there are many

individual defects in the design, or the defect is so complex that no test pattern can be

found whose fails can be explained by a single stuck-at fault [69]. In those cases, the

diagnosis would fail.

 30

3. CRITICAL PATH TRACING

3.1 Overview

Critical path tracing is very useful in fault and design error diagnosis [22], where fast

observability calculations are important. Critical path tracing has also been proposed as

an efficient alternative to fault simulation because it is faster and requires less memory

than conventional fault simulation [71][72]. One of the key factors contributing to the

increased efficiency of critical path tracing compared to fault simulation is that it deals

directly only with the detected faults rather than all possible faults.

Critical path tracing is used to find faults detected by a specific test vector. It is a two-

step procedure. First, it simulates the fault-free circuit and identifies sensitive gate

inputs. Second, it traces paths from primary outputs (POs) toward primary inputs (PIs)

along which faults are detected. Critical path tracing was proposed by Abramovici,

Menon and Miller. The original implementation of this method is named CRIPT

[71][73]. In this original critical path tracing approach, when a fanout is encountered, a

simulation phase will determine if the effect of changing the value of a fanout stem will

be marked as critical. In order to reduce the size of the section of the circuit that is

simulated, a partitioning of the circuit is done to simulate only up to the point whose

effect on the output is known. CRIPT was reported to be inaccurate due to multiple path

sensitization [71]. In addition, CRIPT had O(G
2
) time complexity in the worst case [74]

where G is the number of gates in the circuit. CRIPT is inefficient because critical path

tracing by this method requires much forward simulation and backward propagation in

 31

an iterative fashion. In addition, partitioning of the circuit into isolated fanout-free

regions (FFR) is a time consuming process. More recently, CRIPT was made exact with

the introduction of stem analysis by forward propagation [73][75]. However, this exact

critical path tracing algorithm was slow. Another critical path tracing approach [76][77]

introduced a dynamic data structure, called the criticality constraint graph (CCG), which

carries enough information during the backward pass to determine a stem’s criticality

from the criticality of its fanout branches. This algorithm is fast and exact, but its

dynamic data management makes the algorithm much more complicated than CRIPT.

Considering the problems associated with the above techniques, a simple method named

one pass critical path tracing was proposed by Navabi et al [78]. This method is exact

and runs in linear time. However, it has several problems. First, the stem analysis only

considers AND, NAND, OR and NOR gates with two inputs. Second, the rules used to

determine stem criticality do not cover all cases of reconvergence. Third, this method

does not consider unknown X values. Thus, this method cannot be applied on real

circuits.

We proposed a fast critical path tracing algorithm which extends one pass critical path

tracing so that it can be applied on any combinational circuit. It avoids frequent iterative

forward simulation and backward propagation [79][80]. Fault free simulation is only

done once and supports three logic values of 0, 1 and X. For most cases, stem criticality

is determined in one pass by applying seven rules. This improved critical path tracing

algorithm is exact because it can handle any kind of recovergence in circuits.

 32

3.2 Main Concepts and Definitions

This section introduces the key definitions and concepts in critical path tracing.

3.2.1 Critical Line

The concept of critical line is defined in [81]. A line l has a critical value v in the test

vector t if and only if t detects the fault l s-a- v . A line with a critical value in t is said to

be critical in t.

All primary outputs are critical due to their perfect observability. All critical lines for

a given test vector form the critical paths [82] which are determined by backtracing

from POs towards PIs.

3.2.2 Sensitive Input

A gate input is sensitive if complementing its value would change the value of the

gate output [71]. Sensitive inputs can be identified based on the Dominant Logic Value

(DLV) [72]. A DLV at a gate input is one that forces the gate output to a value,

regardless of the values on the other inputs. The DLV of AND and NAND gates is 0,

while the DLV of OR and NOR gates is 1. XOR and XNOR gates have no DLV because

any single input change will cause an output to change. The following rules are used to

identify sensitivity [71] in a 2-valued simulation:

1. If only one input i has a DLV, then i is sensitive.

2. If all inputs have the complement of the DLV, then all inputs are sensitive.

3. If neither 1 nor 2 holds, then no input is sensitive.

4. All inputs on XOR and XNOR gates are sensitive.

 33

These rules can be extended to handle 3-valued simulation. Figure 5 demonstrates

such a case.

Figure 5. A gate with unknown input value.

In Figure 5, assume there is a SA0 (stuck-at-zero) fault at the top input; therefore the

faulty output is 0. In traditional 3-valued simulation, the faulty ‘0’ value is considered as

a different value from the previous X (unknown) value. However, this cannot hold when

we determine sensitive inputs. If the output of the good machine had actually been 0, it

would be impossible to observe the difference between this value and the faulty machine

‘0’ value [83]. Two rules below will be used to determine the sensitivity of a gate input

when using 3-valued simulation:

1. If the gate output is X, then no input is sensitive.

2. If at least one input is X, there no input is sensitive.

With sensitive inputs identified, we can determine if a gate input is critical. A gate

input is critical if the gate output is critical and the input is sensitive [71].

3.2.3 Blocked Line

If an input of a gate is non-critical, this line is a blocked line. As the name implies, a

blocked line blocks the propagation of a fault from the gate output. A blocked path is a

path with at least one blocked line [78].

1

1

x

x

0

0

 34

Each line in the circuit has a blocked value n, which indicates how many blocked

lines are on the path between the PO and the gate that has this line as output.

Figure 6 shows how an input line is identified as a critical line or blocked line for a

simple two-input AND gate. In a two input AND gate, if only one of the inputs of the

gate has a DLV, as shown in Figure 6(a), that input line is critical and the other is

blocked. If both inputs have a DLV, as shown in Figure 6(b), then each input is blocked

by the other input. Therefore, both inputs will be referred to as blocked. If both inputs of

a gate have non-controlling values, as shown in Figure 6(c), then both inputs are critical,

since changing either input will change the output value.

 (a) (b) (c)

Figure 6. Critical and blocked input.

3.2.4 Critical Path Graph

To simplify our analysis of critical path tracing, a critical path graph (CPG) [78] is

used to describe the gate interconnection. In the graph, each gate is represented as a node

while critical lines and blocked lines are shown as solid and dashed line respectively.

The integer value on each line represents its blocked value. Figure 7 shows a simple

circuit and its corresponding CPG. The dots indicate the sensitive inputs and the bold

lines represent critical lines in Figure 7(a).

0 0
0

0

Blocked

Blocked

1
1

1

Critical

Critical

0

1

Critical

Blocked

 35

(a)

(b)

Figure 7. Example of critical path graph.

3.2.5 Self-Masking and Multiple Path Sensitization

If circuit does not contain any reconvergent fanout, critical path tracing is

straightforward [72]. We illustrate critical path tracing in a fanout-free circuit, using the

example in Figure 8. Critical path tracing in a fanout-free circuit is a simple tree

traversal procedure that recursively marks every sensitive input of a gate with critical

output from POs toward PIs. This uses the fact that if a gate output is critical, then its

2

e

d

b

c
2

1

0 a

0 0

1

1

1

2

0

1

0
0

1

1 1

a

b

c d

e

0
0

1

1
1

 36

sensitive inputs are critical.

Figure 8. Critical path tracing in a fanout-free circuit.

However, reconvergence occurs frequently in real digital circuits. Two problems

caused by reconvergence are self-masking and multiple path sensitization.

Self-masking is a phenomenon in which a fault effect propagates along two or more

paths and reconverges with opposite parities at a gate, where the fault effects cancel out

[72]. In Figure 9, we can see that the effect of the fault B SA0 propagating along two

paths with opposite parities such that they cancel each other at reconvergence point D.

Self-masking implies that a stem may be non-critical even though all of its fanouts are

critical.

0
0

1

0

0

0

0

1

1

1

1

1

1

1 0

0

1

A

B

C

D

E

F

G H

 37

Figure 9. Example of self-masking [71].

Another problem caused by reconvergence is multiple path sensitization [71], which

implies a stem may be critical even though all of its fanouts are non-critical. In Figure

10, although B1 and B2 are both non-critical, stem B is critical because the effect of

fault B SA0 could be propagated to primary output D.

Figure 10. Example of multiple path sensitization.

3.3 Algorithm Flow of Improved Critical Path Tracing

Since the criticality of a stem cannot be directly deduced from the criticality of its

fanouts, stem processing requires a great deal of analysis, and determining criticality of a

stem takes up a major part of the computation time for critical path tracing [72][84][85].

B

C

B1

B2

D

1

1

1

0

0

1 0 1

1

0

A

A

B

B1

B2

D

1

1

1

0

1

0

1 0 0

1
1

C

 38

In this section, the details of the fast critical path tracing algorithm will be described and

the rules to determine stem criticality will be introduced.

Figure 11 outlines the flow of the improved critical path tracing algorithm for a given

test pattern. First, fault-free simulation is performed to determine the logic value for each

line. Then the algorithm preprocesses the circuit to identify the logic cones feeding each

primary output (PO). In each cone, sensitive inputs are marked according to the rules

described in section 3.2.2. The algorithm then processes every cone starting at its PO.

During the backtracing, there are two main operations on the inputs of the gate being

evaluated. First, the sensitive input net has been directly marked as a critical line and

inserted into the critical path if the gate output is critical and this input net is not a fanout

of a stem. Second, if the input is a stem fanout, the stem is checked to see if its criticality

has already been determined. If the stem is already known as critical, backtracing

continues. If stem criticality is unknown, we must determine if it needs forward fault

simulation to determine its criticality. If yes, fault simulation is performed between the

stem and its convergence gates. The fault simulation stops as soon as the effect of a fault

disappears. Otherwise, the algorithm checks whether all the information needed to

compute stem criticality is available. If so, the stem analysis rules are applied to analyze

the stem. The rules are described in the following section. Otherwise, the inputs in level

n+1 of the circuit are processed, assuming the current level (rank) is n. The level of a net

is computed in the standard fashion: a primary input is assigned level 0, and the level of

a gate output is imax+1 where imax is the highest level among the levels of the gate inputs.

Thus, no stem is analyzed until all of its fanout branches (FOB) have been considered.

 39

This process repeats until all inputs in the cone have been analyzed.

Figure 11. Critical path tracing algorithm flow.

Fault-free simulation

Start

Preprocessing

Mark sensitive inputs

No

No Yes

Yes

Stem to

Process?

Yes

Yes

Get next PO

Trace critical paths

Forward

Simulation?

Fault Simulate Stem

Stem

Critical?

Apply Rules

All PO’s

processed?
No

End

 40

3.4 Stem Analysis

As discussed above, stem analysis is the major part of the critical path tracing

algorithm. An efficient stem analysis strategy will significantly speed up the entire

process. Before describing the details of the stem analysis, several important definitions

are presented.

1. Convergence Point and Divergence Point

If the fanouts of gate A reconverge at gate B, gate B is called the convergence point

of gate A. Gate A is called a divergence point. A divergence point is just a stem.

2. Loop

The term loop is first defined in [78]. A reconvergent fanout not containing another

reconvergent fanout is called a loop. A loop has only one divergence point and one

convergence point.

A loop can either be replaced by a critical line or a blocked line in a critical path

graph according to the following rules. The rules consider all common logic gate types

except XOR and XNOR with more than 2 inputs because they rarely appear in circuits.

The algorithm can be readily extended to handle multiple input XOR/XNOR gates, or

such gates can be readily decomposed into two-input gates.

3.4.1 Rule A1

Rule A1 is stated as follows: if the convergence point is an XOR/XNOR gate and all

paths between convergence and divergence point are continuous paths, this loop can be

replaced by a blocked line between convergence and divergence point. Figure 12 shows

an application of rule A1. Since the fault effect at X cannot be propagated to Z, the loop

 41

is equivalent to a blocked line between X and Z. Figure 13 shows the corresponding

critical path graph of the circuit.

Figure 12. Example of rule A1 application.

Figure 13. Corresponding critical path graph of A1 application.

To prove rule A1, Figure 14 shows the critical path graph that summarizes all the

cases covered by rule A1. In this graph, double solid lines represent a critical path,

double dash lines represent a blocked path, on which there is at least one blocked line.

X loop
convergence
point

Z

divergence

 point
X Z

X

0

1

0

1

1

0
0

0

0
Z

 42

Figure 14. Critical path graph for rule A1 cases.

The justification of rule A1 is as follows: Since the paths between X and A and

between X and B are both critical paths, the change at X will change both I1 and I2

which are input lines of Z. If both inputs of XOR/XNOR gates change, the output will

not change. Therefore, the fault effect at X cannot be propagated to Z, and the loop

between X and Z is replaced by a blocked line.

3.4.2 Rule A2

Rule A2 is stated as follows: a loop containing no blocked lines at a convergence

point and at least one continuous path of critical lines between convergence point and

divergence point, except if it is covered by rule A1, can be replaced by a critical line.

Figure 15. Example of rule A2 application.

Figure 15 shows an application of rule A2. Since the effect of a fault at divergence

X

0

1

0

1

1

0 0

0

0 1
Z

X Z

I1

I2

A

B

 43

point X can be propagated to convergence point Z, the loop is equivalent to a critical line

between X and Z. Figure 16 shows the corresponding critical path graph of the circuit.

Figure 16. Corresponding critical path graph of rule A2 application.

To prove rule A2, Figure 17 shows the critical path graph that summarizes all the

cases covered by rule A2.

 (a) (b)

Figure 17. Critical path graph for rule A2 cases.

The justification of rule A2 for case 1, which is summarized by Figure 17(a), is as

follows:

If Z is a AND/NAND gate, then the inputs I1 and I2 must have logic value (1, 1). So

the output of Z is 1 for an AND gate, 0 for a NAND gate, which is represented by O(Z)

= 0/1. If the output value of X changes, I1 will change while I2 will remain the same

because the path between X and A is critical and the path between X and B is blocked.

X Z

I1

I2

A

B

X Z

I1

I2

A

B

X loop
convergence

point

Z

divergence

 point

X Z

 44

The new value of (I1’, I2’) is (1, 0), which means O’(Z) = 1/0. It has been shown that the

fault effect at X could be propagated to Z, so rule A2 holds in this case.

If Z is an OR/NOR gate, then the inputs I1 and I2 must have logic value (0, 0). So the

output of Z is 0 for an OR gate, 1 for a NOR gate, which is represented by O(Z) = 0/1. If

the output value of X changes, I1 will change while I2 will remain the same. The new

value of (I1’, I2’) is (1, 0), which means O’(Z) = 1/0. It has been shown that the fault

effect at X could be propagated to Z, so rule A2 holds in this case.

If Z is a XOR/XNOR gate, then the output changes as long as one of the inputs

changes. If the output of X changes, I1 changes so that the output of Z changes. Rule A2

also holds in this case.

For case 2, which is summarized by Figure 17(b), gate Z cannot be a XOR or XNOR

gate, since that case is covered by rule A1. A similar justification can be applied to prove

rule A2 also holds for case 2.

3.4.3 Rule B

Rule B is stated as follows: a loop with all lines blocked at the convergence point and

no other blocked lines is replaced by a critical line, if all inputs at the convergence point

have dominant logic values. Otherwise, the loop is replaced by a blocked line. Figure 18

show an application of rule B. As we can see, the critical path is a discontinuous path.

 45

Figure 18. Example of rule B application.

Figure 19 shows the corresponding critical path graph of the example circuit.

Figure 19. Corresponding critical path graph of rule B application.

Figure 20 summarizes the cases covered by rule B. Here we only show the cases with

convergence points that have two or three inputs.

B loop
convergence

point

D

divergence

 point

B D

B

C

D

1

1

1

0

0

1 0 1

1

0

A

 46

 (a) (b)

Figure 20. Critical path graph for rule B cases.

Here we only provide the proof for the cases with convergence points that have three

inputs. A similar proof could be applied to justify other cases.

If Z is an AND/NAND gate, (I1, I2, I3) must be (0, 0, 0) or (0, 0, 1). First, we

consider the case with (I1, I2, I3) = (0, 0, 0), in which all inputs have dominant logic

value; then the output of Z is 0/1. If X changes, the new value set (I1’, I2’, I3’) = (1, 1,

1). Therefore, the new output of Z is 1/0. Rule B holds at this point. Second, we consider

the case with (I1, I2, I3) = (0, 0, 1); then the output of Z is 0/1. If X changes, the new

value set (I1’, I2’, I3’) = (1, 1, 0). The output of Z is still 0/1. Rule B still holds for this

case.

If Z is an OR/NOR gate, (I1, I2, I3) must be (1, 1, 1) or (1, 1, 0). First, we consider

the case with (I1, I2, I3) = (1, 1, 1), in which all inputs have dominant logic values; then

the output of Z is 1/0. If X changes, the new value set (I1’, I2’, I3’) = (0, 0, 0).

Therefore, the new output of Z is 0/1. Rule B holds at this point. Second, we consider the

case with (I1, I2, I3) = (1, 1, 0); then the output of Z is 1/0. If X changes, the new value

set (I1’, I2’, I3’) = (0, 0, 1). The output of Z is still 1/0. Rule B still holds for this case.

X Z

I1

I2

A

B

X Z

I1

I3

A

B I2

C

 47

The convergence point cannot be an XOR/XNOR gate because the inputs of

XOR/XNOR gates are always critical lines.

3.4.4 Rule C

Rule C is stated as follows: a loop with at least one blocked line on each path between

divergence and convergence points, and at least one critical line at the convergence

point, can be replaced by a blocked line between convergence and divergence points.

Figure 21. Example of rule C application.

Figure 21 shows an application of rule C. Figure 22 shows the corresponding critical

path graph of the example circuit.

Figure 22. Corresponding critical path graph of rule C application.

Figure 23 summarizes the cases covered by rule C. Here we only list the cases with

convergence points that have two inputs for illustration.

B loop
convergence

point

D

divergence

 point

B D

B

C

D

0

0

0

1 1

1

0

A

 48

 (a) (b)

 (c)

Figure 23. Critical path graph for rule C cases.

Rule C is true for the cases shown in Figure 23(a) and (b) because both the path

between X and A, and the path between X and B are blocked, which implies (I1, I2) will

not change if X changes. Therefore, the fault effect at X cannot be propagated to Z. Thus

the loop between X and Z could be replaced by a blocked line. For cases in Figure 23(c),

a method similar to that used to prove rules A1, A2 and B could be used to prove rule C.

3.4.5 Rule D

Rule D is stated as follows: a loop with all lines blocked at the convergence point, and

at least one other blocked line located between divergence and convergence points, can

be replaced by a critical line if both the following conditions are satisfied:

All the paths between the divergence point and the inputs of the convergence point

X Z

I1

I2

A

B

B

X Z

I1

I2

A

B

X Z

I1

I2

A

 49

with a DLV are critical paths;

All the paths between the divergence point and the inputs of the convergence point

with a non-DLV are blocked paths.

Otherwise, it is replaced by a blocked line.

Figure 24 shows an example application of rule D.

Figure 24. Example of rule D application.

Figure 25 shows the corresponding critical path graph of the example circuit. All the

paths between stem A and the inputs with DLV at the convergence point are critical

paths and the path between stem A and the input with non-DLV is a blocked path, so the

fault effect can propagate to the output. Therefore, the loop is replaced with a critical

line.

0

1
A

0 1

1

1

0 1 0 1

0 1

D

 50

Figure 25. Corresponding critical path graph of rule D application.

Figure 26 summarizes the cases with a two-input convergence point. In Figure 26(a),

since both paths to the convergence point are blocked, the fault effect at the divergence

point cannot be brought to the convergence point. Therefore, the loop between X and Z

is replaced by a blocked line. In other words, stem X is non-critical. The same result can

be obtained by applying rule D. Similarly, rule D can be shown to hold for the case

illustrated in Figure 26(b).

 (a) (b)

Figure 26. Critical path graph of rule D cases.

3.4.6 Rule E

Rule E is stated as follows: a loop with only one continuous path of critical lines

X Z

I1

I2

A

B

X Z

I1

I2

A

B

A D
convergence

point

divergence

point

1

0

0
A D

 51

between convergence and divergence points, only one critical line at the convergence

point, and at least two blocked lines on each of the other paths, can be replaced by a

critical line. Figure 27 shows an example application of rule E while Figure 28 shows

the corresponding critical path graph of the circuit.

Figure 27. Example application of rule E.

Figure 28. Corresponding critical path graph of rule E application.

Figure 29(a) summarizes the cases with a two-input convergence point while Figure

29(b) shows the cases with a three-input convergence point.

B loop
convergence

point

D

divergence

 point

B D

B

C

D

0

1

1

0 1

1

0

A

0

1

 52

Figure 29. Critical path graph of rule E cases.

Rule E can be proved by using a method similar to that used for Rule D.

3.4.7 Rule F

Rule F is stated as follows: a loop with at least one blocked line at the convergence

point and at least one continuous path of critical lines between convergence and

divergence points, except if it is covered by Rule E, must be replaced by a blocked line.

Figure 30. Example application of rule F.

Figure 30 shows an example application of rule F. This case is a self-masking case,

where the SA0 fault on stem B propagates along two paths and the fault effect cancels

out at convergence point D. With Rule F, self-masking case can be handled correctly.

Figure 31 shows the corresponding critical path graph.

A

B

B1

B2

D

1

1

1

0

1

0

1 0 0

1
1

C

X Z

I1

I3

A

B I2

C

X Z

I1

I2

A

B

 53

Figure 31. Corresponding critical path graph of rule F.

Figure 32(a) summarizes the cases with 2-input convergence point while (b) to (g)

show the cases with three-input convergence point.

For completeness, we show the cases in Figure 32(d), (e), (f), (g) although they will

never happen because for AND/NAND and OR/NOR gate, either only one input line is a

sensitive input or all input lines are sensitive inputs. For XOR/XNOR gate, all inputs are

sensitive inputs.

B loop
convergence

point

D B D

divergence

 point

 54

Figure 32. Critical path graph of rule F cases.

3.4.8 Examples of Applying Rules

It is easy to apply the above rules in simple circuits with only one loop between a

X

X Z

I1

I2

A

B

(a)

Z

I1

I3

B I2

C

(b)

A

Z

I1

I3

A

B I2

C

(c)

Z

I1

I3

A

B I2

C

X X Z

I1

I3

A

B I2

C

(e) (d)

X Z

I3

B

C
(g)

I2

I1

A

X

X
Z

I3

B

C

A

(f)

 55

divergence point and a convergence point. However, the structures in real circuits are

complex so many interlinked loops can exist. Rules A to F can be applied repeatedly

starting with inner loops until interlinked loops are finally replaced by a critical line or

blocked line. Using these rules, we can determine whether a stem is critical or not in

only one processing pass for most cases.

An example illustrates application of the rules to a fanout for finding faults detected

by an input vector. The circuit shown in Figure 33(a) has two convergence points.

Initially a loop can be observed between the fanout node X and gates a, b and d. By

applying rule B, this inner loop can be replaced by a critical line, and therefore the graph

of Figure 33(b) is converted to that of Figure 33(c). This graph also contains a loop.

Applying rule A2 reduces this loop to a critical line shown in Figure 33(d).

The reduced graph has the stem directly connected to the output, so the stem is

critical. The input vector (0, 1, 0, 0, 0) detects six faults in the circuit in Figure 33(a)

including the SA0 fault at stem X.

 56

Figure 33. Example of applying rules.

Consider a more complicated case: a circuit with stems that have fanouts that are also

X Z

X

c

d

e

f loop Z

X b

a

c

d

e

f

loop

Z

a

b

c

e

f

0

1

0

0

0

1

1

1

1

1

1

X
d

Z

(a)

(b)

(c)

(d)

 57

stems. This case occurs very often in real circuits. Since the backtracing proceeds in a

breadth-first fashion toward the primary inputs, the stem with higher level is always

being processed before the stem with lower level is processed. Thus, if stem B is the

fanout of stem A, the loop with B as the divergence point has already been reduced to a

line before determining the criticality of stem A. Then the convergence point of B is

treated as B’s virtual fanout. Therefore, the algorithm can continue looking for A’s

convergence points.

Figure 34 shows an example for applying rules to the case of stems having fanouts

that are stems. To simplify the case, all lines are assumed critical lines and there are no

XOR/XNOR gates. The shaded nodes represent stem nodes. Initially, a, b and c are all

stems. During the backtracing, node b or c should be processed first; assuming b and c

are at the same level. Here b is analyzed first. Node b has two convergence points i and

m. Starting from the inner loop rule A2 is applied to convert Figure 34 to Figure 35.

Applying rule A2 again converts Figure 35 to Figure 36(a). Now m is treated as b’s

virtual fanout, therefore, node f, i, j and l logically disappear in Figure 36(a). The loop

formed by c, g, h and k can then be processed to form Figure 36(b). Finally, the

interlinked loops have been reduced to a critical line in Figure 36(c).

 58

Figure 34. Another example of applying rules.

Figure 35. Critical path graph after applying rule on inner loop.

f j l

loop

g

h

k c

b

a

n i m

e

d

f

i

j l

loop

g
k c

b

a

m

h

n

 59

Figure 36. Final critical path graph after applying rules .

The overall rule-based algorithm for stem criticality analysis is shown in Figure 37. In

order to apply rules, all convergence points of the stem must be found. Then analysis

starts from the inner loop. This is the loop starting from the stem and ending at the

convergence point with lowest level. The corresponding rule is applied to reduce the

a n

(c)

k c

b

a

m n

loop

(b)

loop

g

h

k c

b

a

m n

(a)

 60

loop to a line that is either critical or blocked. The process is repeated until the

interlinked loops are finally converted to a line. At this point, the criticality of the stem

can be determined.

Figure 37. Flowchart for determining stem criticality by applying rules.

3.4.9 Stem Forward Simulation

It has been shown that stem criticality can be determined by applying rules. However,

not all the reconvergence cases in real circuits can be handled correctly by the seven

rules we proposed, as shown in Figure 38.

The circuit in Figure 38(a) is represented as the critical path graph shown in Figure

38(b). The circuit has two stems: A and B. Initially a loop is identified between gates B

Find all convergence

points of the stem

Start

More

Convergence

Points? No

Start from the inner

loop

Apply rules

End

Yes

 61

and F. If we try applying rules to determine stem A’s criticality , rule D is applied first,

replacing the loop between B and F by a blocked line, as shown in Figure 39(a). It means

stem B is first determined as non-critical. Continuing applying rule B on the loop

between A and F, the circuit is reduced to a critical line between A and F, as shown in

Figure 39(b). Therefore, stem A would be determined as critical for the test pattern (1, 1,

1, 1) by applying rules, while the forward simulation in Figure 38(a) shows that it is non-

critical.

 (a)

 (b)

Figure 38. Example of the reconvergence case that needs forward simulation.

The reason why applying rules does not work for this case is because critical path

tracing is based on a single fault assumption. When the rules are applied, only the fault

B

C

D

E

F

A

loop

A

B

C

D

E

F

B1

B2

C1

1

1

1 0

1

0 1

1 0

0

0 0 1

 62

on the stem under analysis is considered. However, when a stem has a fanout that is also

a stem, for example, stem A in Figure 38 has a fanout B that is also a stem, the fault on

stem A could be propagated to both inputs of gate E. When we apply rule D on the inner

loop between B and F, it is assumed that only input B2 could change while C1 should

remain constant. Unfortunately, this assumption does not hold when determining the

criticality of stem A, because both B2 and C1 change. In order to determine the

criticality of stem A, a forward fault simulation between stem A and convergence point

F is required.

(a)

(b)

Figure 39. Example of incorrectly determining stem criticality by applying rules.

Fault simulation time is insignificant, because it need only be performed within the

loop between the step and convergence point, and this region is typically small.

However, the time spent determining whether a stem needs fault simulation could be

F A

C E

F loop

B

A

 63

significant. The algorithm we used to decide if a stem needs forward fault simulation is

presented in Figure 40. It has O(n) time complexity, where n is the number of gates in

the loop between the stem and its convergence point.

 Figure 40. Algorithm that decides if a stem needs forward simulation.

The algorithm counts how many times (nTimeSeenInLoop) each fanout has been

visited. If a fanout has been visited more than once and is not the convergence point,

then the stem needs forward simulation. The process is repeated until all fanouts have

for each fanout i of the stem X

{

 while i is not the outer convergence point

 {

 i.nTimeSeenInLoop++;

 if i.nTimeSeenInLoop>1 and i is not convergence point

 {

 X needs forward simulation to determine its criticality;

 return;

 }

 if i is a stem

 {

 for each gate j in the loop between i and its convergence point

 {

 j.nTimeSeenInLoop++;

 if j.nTimeSeenInLoop>1 and j is not convergence point

 {

 X needs forward simulation to determine its criticality;

 return;

 }

 }

 set the outer convergence point of i as the next fanout;

 }

 else

 64

been counted or one fanout has been visited more than once.

3.5 Experimental Results

The proposed algorithm has been implemented in Visual C++ and run on Microsoft

Windows XP on a 2.8 GHz Intel Pentium 4 processor with 512 MB main memory.

Experiments were performed on the ISCAS85 benchmark circuits and the full scan

versions of the largest ISCAS89 benchmark circuits using stuck-at test sets generated by

Mentor Graphics FastScan.

Table 4 shows the CPU time for generating all the critical paths for all input vectors

on all primary outputs (POs) for each circuit. Columns 2-4 are circuit statistics. Column

5 is the test set size. The test patterns are single stuck-at fault vectors generated by

Mentor Graphics FastScan. Column 6 shows the average number of critical nodes per

vector. The critical nodes include all critical lines and gates. If a node is critical in the

fanin cones of multiple POs, it will be counted multiple times. Column 7 is the total time

spent in critical path tracing. Column 8 shows the average CPU time spent per test

vector. Of the ISCAS85 circuits, c6288 has the highest per-vector CPU time since it has

a large number of stems. Even though c7552 has more lines than c6288, the per-vector

critical CPU time on C7552 is less than c6288 because c6288 has more stems and stem

analysis is the most time consuming procedure in critical path tracing. The number of

test patterns also matters. The benchmark s38417 takes a lot more time than s35932

(about 20 times longer) to process not only because it has more lines to process, but

more importantly because the test pattern set generated for s38417 is much larger (about

 65

15 times) than s35932.

Table 4. Critical path tracing experimental result summary.

The running time increases with the number of lines. Figure 41 shows that per-vector

CPU time is sub-linear in n·PO, which is the upper bound if all lines in the circuit are the

Circuit # Lines # Stems # POs
Test

Patterns

Critical

Nodes per

Vector

Critical Path

Tracing Time

(s)

Per-Vector

CPU Time (s)

c432 432 89 7 50 149 0.062 0.0012

c499 499 59 32 53 265 0.248 0.0047

c880 880 125 26 52 507 0.062 0.0019

c1355 1355 259 32 86 456 2.062 0.0240

c1908 1908 385 25 130 1306 2.015 0.0151

c2670 2670 454 140 105 1720 0.923 0.0080

c3540 3540 579 22 149 1047 4.328 0.0290

c5315 5315 806 123 121 3088 3.406 0.0282

c6288 6288 1456 32 29 9186 12.75 0.4389

c7552 7552 1300 108 214 3873 7.925 0.0371

s9234 9234 1013 39 381 7094 15.96 0.0412

s13207 13207 1224 152 477 16692 48.26 0.1012

s15850 15850 1518 150 438 17663 125.98 0.2866

s35932 35932 5295 319 64 20569 140.66 2.1971

s38417 38417 4569 106 979 39948 2786.15 2.8450

s38584 38584 3946 304 650 40258 1630.01 2.5069

 66

fanins of each PO.

y = 2E-05x
0.7011

R
2
 = 0.8696

0.001

0.01

0.1

1

10

1E+3 1E+4 1E+5 1E+6 1E+7 1E+8

(# POs) * (# Lines)

CPU Time

Per Vector

(s)

Figure 41. Average CPU time per vector vs. (# lines · # POs).

Figure 42 shows that the per-vector CPU time is nearly linear in the number of lines.

The small quadratic factor exists because some stems need forward fault simulation.

 67

y = 7E-10x
2
 + 3E-05x

R2 = 0.9323

0.001

0.01

0.1

1

10

100 1000 10000 100000

Lines

C
P
U
 T
im
e

P
e
r
V
e
c
to
r
(s
)

Figure 42. Average CPU time per vector vs. # lines.

Figure 43 shows that the per-vector CPU time is linear in the number of critical

nodes.

y = 6E-05x

R
2
 = 0.9344

0.001

0.01

0.1

1

10

100 1000 10000 100000

Critical Nodes

C
P
U
 T
im
e

P
e
r
V
e
c
to
r
(s
)

Figure 43. Average CPU time per vector vs. # critical nodes.

Table 5 shows the CPU time of our critical path tracing algorithm and the FSIM

 68

parallel-pattern, single-fault propagation fault simulator [86]. A set of 2016 random test

patterns is used for each circuit, and FSIM is run without fault dropping, so that it

collects the same data as critical path tracing. Critical path tracing is performed from

faulty POs on failing vectors. The CPU time is based on the average of 10 random stuck-

at faults. As we can see from Table 5, the critical path tracing time is 5-48% faster than

FSIM.

Table 5. Our critical path tracing CPU time vs. FSIM CPU time.

Circuit
Failing

Vectors

FSIM CPU

Time (s)

CPT2 CPU

Time (s)

c432 106 0.046 0.03

c499 462 0.094 0.09

c880 252 0.109 0.089

c3540 467 0.671 0.348

c5315 250 0.468 0.364

c6288 483 2.844 1.586

c7552 232 1.142 1.092

An exact, linear-time critical path tracing algorithm has been described for

combinational circuits. Seven rules have been developed to handle stem analysis in only

one processing pass for most cases. The algorithm uses a three-valued algebra so that it

can handle unknown values. The performance in Figure 42 is approximately one CPU

minute per vector for a circuit with one million lines. In applications such as diagnosis, it

is often sufficient to perform critical path tracing from faulty primary outputs. Since

 69

critical path tracing measures line observability, it is an ideal tool for fault diagnosis,

where the fault behavior may not exactly match a particular fault model [87].

 70

4. SUSPECT RANKING AND FILTERING

Even though the suspect list returned by critical path tracing is much smaller than the

number of circuit lines, it is still inefficient to examine each of its members exhaustively.

To shorten this list, a method of candidate scoring and filtering needs to be defined that

will work for any fault candidate, regardless of fault model.

The method of scoring and ranking fault candidates is probabilistic. In other words,

what a diagnosis should really calculate is the probability that the failures seen are due to

one fault candidate or another, whether that candidate is a stuck-at fault or some other

fault type. It would follow, then, that the candidate with the highest probability is the

most likely suspect [4].

The outline of the overall ranking and filtering process is shown in Figure 44. The

inputs include the gate-level netlist of the circuit under diagnosis (CUD), the observed

response of the CUD, the initial suspect list obtained from critical path tracing, and the

set of failing test patterns. The entire process has four phases.

4.1 Phase 1: First-Level Filtering

The first filtering is based on the following theorem.

Theorem 1: If critical path tracing is conducted over multiple failing vectors and the

number of times each line is visited on the paths from faulty POs is represented by

nTimesFaulty, then all the possible candidates will have nTimesFaulty > 0.

In other words, the candidate line(s) should cause at least one primary output on one

 71

failing vector to be faulty, or the candidate line(s) should be observed at least once on a

critical path starting from a faulty PO for a failing vector. After the first filtering, all

lines that are visited at least once during the path tracing from faulty POs are kept.

Otherwise, they are removed from the candidate list.

Figure 44. Overall ranking and filtering process.

Table 6 shows the percentage of candidate lines deleted after first-level filtering. In

our experiments, we randomly injected 143 different types of faults, including 32

dominant bridge faults, 30 wired-AND bridge faults, 30 wired-OR bridge faults and 51

stuck-at-0/1 faults. From Table 6, we can see that more than 80% of the candidate lines

are removed from the initial suspect list in 43% of the cases. The first filtering phase

CUD

Netlist

Failing

Vectors

Initial

Suspect

List

Observed

Response

Phase 1: First-Level Filtering

Phase 2: First-Level Ranking

Phase 3: Second-Level Filtering

Phase 4: Second-Level Ranking

A smaller list of suspect lines

 72

greatly reduces the size of suspect list by removing unnecessary candidate lines.

Table 6. Percentage of candidate lines deleted after first-level filtering.

% of candidate lines deleted number of cases percentage of the total cases

2%-20% 17 11.9%

20%-40% 24 16.7%

40%-60% 18 12.6%

60%-80% 23 16.1%

80%-99% 61 42.7%

4.2 Phase 2: First-Level Ranking

The first filtering prunes out unrelated suspect lines. The number of suspects in the

list is reduced. Now what is needed is a way to rank the suspect lines to indicate a

preference between them. In order to do so, several measurements are made to calculate

the score of each candidate. The primary ranking criterion is nTimesFaulty, introduced

above. For the same failing vector, if a line is seen at multiple faulty POs, its

nTimesFaulty is increased for each failing PO. The candidate list is sorted in decreasing

order of nTimesFaulty. Intuitively, the more frequently a line is seen at a faulty output,

the greater the likelihood that it is defective.

First-level ranking by itself is not sufficient to trim the suspect list. Suppose there is

only one failing vector and only one faulty PO, then all the lines on the critical paths of

this faulty PO have nTimesFaulty = 1. In this case, we cannot differentiate among the

 73

candidate lines with only the first-level ranking. That is why second-level filtering is

required.

4.3 Phase 3: Second-Level Filtering

The first-level filtering phase reduces the initial suspect list, but further reduction is

necessary to limit the physical failure analysis time (locating the physical defect on the

chip). The second-level filtering is based on Theorem 2.

Theorem 2: In a circuit with n defective lines, if path tracing is conducted for a set of

failing input vectors with m faulty POs, then one or more line(s) from the suspect list

will be marked at least m /n times [87].

In other words, the defective lines must explain their share of the faulty outputs. In

our measurements, nFaultyPOs corresponds to m in Theorem 2. We use nMaxFaults to

correspond to n in Theorem 2, where nMaxFaults represents the maximum cardinality

depending on what fault models are used. The maximum is user-configurable. For

example, if the diagnosis targets single stuck-at fault and two-line bridge faults, then

nMaxFaults should be set to 2. In our experiments, we set it to 4 to be more

conservative, based on the observation in [88] that multiple defects of large cardinality

(more than four) do not happen very often in practice.

Second-level filtering is performed by selecting the candidate lines with nTimesFaulty

greater than a threshold T=nFaultyPOs/nMaxFaults. A larger nMaxFaults results in a

smaller T. In other words, a larger nMaxFaults means that more candidate lines are

retained, which implies a larger probability that the real defect will be included in the

 74

final diagnosis, but at the cost of more diagnosis time.

4.4 Phase 4: Second-Level Ranking

In the case that the first-level ranking returns too many candidate lines with equal

ranking, second-level ranking is used to break the tie.

During this phase, we perform PPSFP (Parallel Pattern Single Fault Propagation) fault

simulation on all failing patterns for all candidate lines in the reduced list from first-level

filtering. In each iteration of the fault simulation algorithm, 32 test patterns are simulated

simultaneously. The faulty value of each candidate line on a failing pattern is obtained

by flipping the good machine value of that line. After fault simulation, we measure the

Hamming distance (number of bit differences) between the observed outputs and

simulated outputs. This measurement is used as a tiebreaker. If two candidates have the

same nTimesFaulty, then the one with smaller Hamming distance is ranked higher. For

example, if two candidates A and B both have nTimesFaulty equal to 10, and candidate

A has a Hamming distance of 0 and B has a Hamming distance of 4, then A is more

suspicious than B because the fault on candidate line B may fail some passing PO(s) and

pass some failing PO(s). Figure 45 outlines the second-level ranking heuristic.

 75

Figure 45. Second-level ranking heuristic.

We take another two measurements on each candidate line, termed Always0 and

Always1. As the names suggest, Always0 is true if the line is always being driven by ‘0’

whenever it is seen as faulty. Similarly, Always1 is true if the line is always being driven

by ‘1’ whenever it is seen as faulty. In most cases, a line is more suspicious when it is

driven by a fixed value than if it is driven more randomly. A dominant bridge fault is an

exception, because the victim line is always driven to the logic value of the dominant

line. However, since we also consider stuck-at and wired bridge faults, we use these two

measurements as a tiebreaker when two lines have the same Hamming distance.

The purpose of phase 4 is to bring the real suspect even closer to the top of the

candidate list.

In general, the ranking uses nTimesFaulty as the first key and Hamming distance as

for each failing input vector v

{

 perform logic simulation;

 for each candidate line l in the reduced list

 {

 flip the value at l and run PPSFP fault simulation;

calculate Hamming distance between simulated outputs and observed

outputs;

 }

}

Sort the candidate lines using Hamming distance when they have the same

nTimesFaulty;

 76

the second key. When both nTimesFaulty and Hamming distance are the same, Always0

and Always1 are used to break the tie.

 The first and second-level ranking helps bring the real candidate near the top or at

the top of the suspect list. However, some faults could still fool the ranking, as shown in

Figure 46.

Figure 46. Example case for ranking analysis.

The shaded squares represents faulty POs. PO2 and PO3 are both faulty POs. Suppose

the actual fault is a wired-AND bridge between nodes A and B. If we conduct critical

path tracing from faulty POs, (A, C) is on the critical path from PO2 while (B, C) is on

the critical path from PO3. Therefore, the critical paths from PO2 and PO3 have node C

in common. Suppose there are 100 failing vectors and A is faulty 50% of the time, which

means A is seen as faulty on 50 failing vectors and so is B. In this case, A and B are both

counted as nTimesFaulty=50 while C has nTimesFaulty=100. Therefore, the real

candidates A and B would be ranked far below candidate C. In cases such as this, the

C

A

B

 PO1

PO2

PO3

PO4

Wired-AND

Bridge

 77

diagnosis result needs further refinement using model-based fault simulation. This will

be described in the next section.

 78

5. MODEL-BASED FAULT SIMULATION

5.1 Motivation and Basic Structure

The previous section described the second step of the diagnosis framework: fault

filtering and ranking. This section presents the third step, model-based fault simulation,

to improve the diagnosis resolution and accuracy.

A small list of candidate lines can be obtained after filtering and ranking. However,

sometimes the most suspicious line may not be ranked at the top or near the top, as we

demonstrated in Figure 46. For those cases, we need some metrics to bring the real fault

candidate near the top. Furthermore, filtering and ranking only returns a list of candidate

lines, without indicating the type of the fault. The fault type can be very helpful for

localizing the defect within the chip. With model-based fault simulation, we can report

both the location and type of the real fault.

Figure 47 shows the basic structure of this step. First, we choose the top n candidates

from the small list of ranked candidates. We initially set n to 100, since in all of the

experiments performed to date, the real fault was in the top 65 candidates. Next, we need

to map each candidate line to its corresponding candidate faults. We use several

common fault models: stuck-at fault, dominant bridge fault, wired-OR and wired-AND

bridge fault. Each candidate line may be mapped to multiple candidate faults. In

particular, a line could be mapped to multiple bridge fault candidates depends on how

many neighboring lines to which it could bridge. We use the extracted coupling

capacitance to get a list of most likely bridge fault sites. To reduce fault simulation time,

 79

we use several metrics to dynamically remove unnecessary fault candidates. Then fault

simulation is performed on all test patterns using PPSFP. After model-based fault

simulation, the Hamming distance between the simulated fault behavior and observed

fault behavior is calculated, and the fault candidates ranked in decreasing order of

distance. Fault candidates with the lowest Hamming distances are the ones most likely to

correctly explain the faulty behavior.

Figure 47. Basic structure of model-based fault simulation step.

Passing patterns are used in our diagnosis to help distinguish fault candidates. For

example, suppose we have two fault candidates A and B. If both A and B can explain all

the failing vectors, but A causes several passing test vectors to fail while B does not fail

any passing vectors, then B is a better candidate than A.

Choose Top n Candidate Lines

Line-to-Fault Mapping

Fault Simulation

Ranked by Hamming Distance

A smaller list of suspect lines

Coupling

Capacitance list

All

Test Vectors

 80

5.2 Line-to-Fault Mapping

In order to refine the diagnosis by using fault simulation, we need to map each

candidate line to fault candidates on it. The fault simulation is based on several common

fault models: stuck-at fault, wired-AND bridge, wired-OR bridge and dominant bridge.

We will introduce these fault models in next section. The relationship between candidate

line and fault candidates involving this line is one to many because the candidate line

could have different types of faults on it or is possible to bridge with different lines so

that different bridge faults could have this line involved.

Figure 48. Metric to reduce fault candidate list.

To speed up fault simulation, we reduce the fault candidate list by using several

metrics, as shown in Figure 48. We consider single fault location such as single stuck-at

faults and dominant bridge fault and multiple fault locations such as wired-AND and

wired-OR bridge fault. We do not consider multiple stuck at faults or bridge faults. Even

Always1?
SA0

Wired-AND Bridge

Dominant Bridge

Always0?
SA1

Wired-OR Bridge

Dominant Bridge

Wired-AND Bridge

Wired-OR Bridge

Dominant Bridge

Yes

Yes

No

No

 81

if multiple defects are present on a chip, they usually can be considered separately.

Simulation of multiple faults is not practical due to the large increase in CPU time.

Here we utilize two of measurements we have taken: Always0 and Always1. As we

mentioned in the previous section, Always0 is true if the line is always being driven by

‘0’ whenever it is seen as faulty, and similarly for Always1. Therefore, if a line is always

being driven by logic value ‘0’ whenever it is seen as faulty, there is no need to perform

stuck-at-0 fault or wired-AND fault simulation on this line, because the fault will not be

sensitized.

In order to find all the possible bridge faults with a candidate line involved, we need a

list of realistic bridge faults. A common way to extract bridging fault site is IFA

(Inductive Fault Analysis). IFA uses circuit layout to determine the relative probabilities

of individual physical faults in fabricated circuits [40]. The extracted bridges include the

layers and locations involved in each bridge site, which greatly aids defect localization

within the chip. For example, if the top suspect faults are all bridges between second-

level metal lines, the upper metal layers can be quickly stripped away, significantly

reducing failure analysis time. The disadvantage of bridge fault extraction is that it is an

extra step in the design flow.

An alternative way is obtain a bridge fault list is to use the list of coupling

capacitances. The list of coupling capacitances can be used as an unordered list of two-

node bridging faults [89]. Using the parallel plate model, capacitance C is given by: C =

εA/d where A is the area and d is the distance between the two conductors (ε is the inter-

layer dielectric constant) [90]. Since the probability of a bridging fault occurring

 82

between two conductors is proportional to the area A and inversely proportional to the

distance d, then the capacitance C has the same relationship to A and d as the probability

of a bridging fault occurring between two conductors. As a result, by comparing the

capacitance between two different sets of adjacent conductors, we can determine which

set may be more likely to sustain a bridging fault [90]. This is illustrated in Figure 49

where the two lines that have a longer region of adjacency (l1 >> l2) are more likely to

sustain a bridging fault even though the distance between the two lines (d) is the same.

Similarly, two lines that are closer together (d1 << d2) are more likely to sustain a

bridging fault even though their lengths (l) are the same.

Figure 49. Capacitance vs. probability of bridging faults [90].

The advantage of using a capacitance extractor to generate to bridging fault list is that

the capacitance extraction is part of the design flow, so no extra step is needed. In

addition, the capacitance extraction method does not require information based on

manufacturing data [91]. The disadvantage of using coupling capacitances is that the

d
l1

d1
l2

d2
l2

l1 >> l2 d1 << d2

Higher probability of bridging faults

 83

mapping to a physical bridge site and layer is less accurate, so the diagnosis provides

less benefit to localization of the physical defect.

In this research, the coupling capacitance list was used to obtain a realistic bridge

fault list, since the coupling capacitance was already available for the designs used in the

experiments. The coupling capacitance list was generated by Dr. Weiping Shi’s group in

the Department of Electrical and Computer Engineering at Texas A&M University.

5.3 Fault Simulation

The fault simulation is based on several common fault models: single stuck-at model,

wired-AND bridge model, wired-OR bridge model and dominant bridge model. A fault

model is an abstraction of a type of defect behavior. Two common models are single

stuck-at model and bridging fault model.

5.3.1 Single Stuck-at Fault Model

The single stuck-at fault model assumes that the defect causes a given circuit line to

be permanently connected to ground (stuck-at 0) or to power (stuck-at 1) and that only a

single fault is present in a circuit at a time, as shown in Figure 50. The stuck-at fault

model is the most commonly used fault model, because it is simple and computationally

manageable.

 84

Figure 50. Example of stuck-at fault model.

5.3.2 Wired Bridging Fault Model

The bridging fault model is used to model shorts between signal lines that are

normally unconnected. The popular bridging fault models include wired-AND, wired-

OR and dominant bridging models. The behavior of the wired-AND and wired-OR

bridging fault models are illustrated in Figure 51, where a resistive bridging fault is

modeled as either a logical AND in the case of the wired-AND fault or a logical OR in

the case of the wired-OR fault [92]. In this example, A and B represent the signal

sources for the two nets while A’ and B’ represents the faulty values on the two bridged

nets.

b

c

h

a

c

d

e

f

SA0

 85

Figure 51. Wired-AND and Wired-OR fault models.

Table 7. Logical behavior of wired-AND/OR Models.

Signal lines Wired-AND Wired-OR

AB A’B’ A’B’

00 0 0 0 0

01 0 0 1 1

10 0 0 1 1

11 1 1 1 1

The logic behavior of these fault models is further illustrated in Table 7. As can be

seen in the case of the wired-AND model, if either of the sources is at a logic ‘0’, then

both destinations see a logic ‘0’. Similarly, in the wired-OR model, if either source is at

a logic ‘1’, then both destinations see a logic ‘1’.

5.3.3 Dominant Bridging Fault Model

The dominant bridging fault model is illustrated in Figure 52. In this model, it is

A

B

A’

B’

RBF

Resistive short

A

B

A’

B’

Wired-AND bridging fault

A

B

A’

B’

Wired-OR bridging fault

 86

assumed that one source (the dominant) has a stronger driver than the other (the victim),

such that the victim sees the logic value determined by the dominant [92].

Figure 52. Dominant bridging fault model.

Table 8. Logical behavior of dominant model.

Signal lines A dominates B B dominates A

AB A’B’ A’B’

00 0 0 0 0

01 0 0 1 1

10 1 1 0 0

11 1 1 1 1

The logical behavior of the dominant bridge is given in Table 8. As can be seen, the

dominant source sees no faulty value, so that the fault cannot be observed on this net.

A

B

A’

B’

RBF

Resistive short

A

B

A’

B’

A dominates B

A

B

A’

B’

B dominates A

 87

5.4 Feedback Bridging Fault

A feedback bridging fault exists when there is at least one path between the two

bridged nodes [93]. An example of a feedback bridging fault is shown in Figure 53. The

bridge between nodes A and D is a feedback bridge and the bridge fault is a wired-AND

bridge.

Figure 53. Example of feedback bridging fault.

We can categorize feedback bridge fault into two classes upon application of given

test patterns [94].

Non-sensitized feedback: the bridged nodes have opposite fault-free logic values, and

the front node F (the node further from the primary inputs) is not sensitized to the back

node B (the node closer to the primary inputs) in the fault-free circuit.

Sensitized feedback: the bridged nodes have opposite fault-free logic values, and the

front node F is sensitized to the back node B in the fault-free circuit.

For non-sensitized feedback bridging fault, the front node F is not sensitized to the

back node the back node B in the fault-free circuit, and a fault effect on B cannot

propagate to F through the path. In this case, the feedback bridging fault behaves just

like a non-feedback bridging fault, and this can be handled by our diagnostic approach.

A

B

C
D

 88

On the other hand, in sensitized feedback, if all inputs of the gates along the path have

noncontrolling logic values, an output value change on the back node will cause a

change on the output of the front node. The back node can then affect the front node

through both the bridge and the path between them. A sensitized feedback bridging fault

could cause oscillation or sequential behavior. Two cases need to be considered under

the sensitized feedback condition. One case is that the driving strength of the back node

is larger than that of the front node. The other case is that the driving strength of the

frond node is larger than that of the back node [94].

If the driving strength of the back node is larger than that of the front node, such that

the back node dominates the front node, the front node is affected by the back node

through the bridge, rather than through the path between the two nodes. Therefore, the

output value of the front node is driven to a faulty logic value by the dominant back node

through the bridge while the output value of the back node does not change. The

feedback bridging fault behaves the same as a non-feedback dominant bridging fault and

can be diagnosed using our approach.

If the front node has a higher driving strength, an oscillation might occur. In general,

oscillation occurs rarely because the logic requirements of oscillation are not too

common to meet.

From [95][96][97][98][99], the logic requirements of oscillation are as follows: First,

the output of the front gate dominates the output of the back gate; second, the number of

inversion in the feedback loop must be an odd number; third, VY has intermediate

voltage and is less than the threshold voltage of the driven gate C when gate A has logic

 89

1, or vice versa when gate A has logic 0, and VY is larger than the threshold voltage of

gate C.

Our diagnosis framework does not consider feedback bridge faults causing oscillation

because prior work [100][101][102] showed that only under special and rare situations

do some feedback faults result in oscillations.

 90

6. EXPERIMENTAL RESULTS

The proposed diagnosis algorithm has been implemented in C++ in Microsoft Visual

Studio.net. All experiments are performed on a Microsoft Windows XP on a 2.8 GHz

Intel Pentium 4 processor with 512 MB main memory for the ISCAS85 benchmark

circuits. In normal practice, the failing response used as input for the diagnosis

procedure would be obtained by testing the failing circuit on a tester. For our diagnosis

experiments, the failing responses were generated using a fault simulator written by us to

ensure that the diagnosis experiments were able to mimic the realistic failing response as

much as possible. The test vectors used were stuck-at test vectors generated by Mentor

Graphics FastScan.

6.1 Run Time and Memory Usage Analysis

To obtain the average CPU time for diagnosis, we performed 1000 trials. For each of

the benchmark circuits, 100 random faults were injected one at a time. Table 9 shows the

run time for each benchmark circuit. The first column contains the circuit name. Column

2 is the total number of lines in each circuit. Column 3 shows the number of stems in

each benchmark circuit. Column 4 is the number of test patterns we used in simulation to

obtain the failing response. The types and locations of faults injected in the circuits are

selected at random. Faults that did not produce any failing vectors were dropped.

Columns 5 and 6 shows the average number of faulty primary outputs and the number of

failing vectors respectively. Column 7 is the average number of candidate lines after

 91

second-level filtering. Fault simulation was performed on the candidate lines. Column 8

shows the average number of fault candidates after line-to-fault mapping. Those fault

candidate are the ones on which we performed model-based fault simulation. Column 9

shows the average total diagnosis time.

Table 9. Diagnosis time for ISCAS85 circuits.

Circuit

Lines
Stems

Test

Patterns

Faulty

POs

Failing

Vectors

Candidate

Lines

Fault

Candidates.

Total

Diagnosis

Time (s)

C432 432 89 50 25 10 63 767 0.043

C499 499 59 53 23 12 104 946 0.044

C880 880 125 52 20 15 42 484 0.034

C1355 1355 259 86 38 32 356 1286 0.143

C1908 1908 385 130 81 42 243 916 0.232

C2670 2670 454 105 52 28 156 914 0.109

C3540 3540 579 149 76 22 256 1769 0.819

C5315 5315 806 121 81 33 86 1197 0.256

C6288 6288 1456 29 42 15 134 2147 1.114

C7552 7552 1300 214 121 56 326 1718 0.792

The diagnosis algorithm includes three major procedures: critical path tracing to get

the initial suspect list, filtering and ranking to reduce the list, and model-base simulation

to refine the diagnosis result. Table 10 shows the time and percentage of the average

total diagnosis time each procedure takes. From the table, we can see that model-based

simulation and critical path tracing take most of the diagnosis time, while filtering and

ranking time is only 2%-4% of the total time. This is because in filtering and ranking, we

 92

only need to perform fault simulation on a small set of candidate lines. Comparing

model-based simulation and critical path tracing, model-base simulation takes more time

than critical path tracing in all but one circuit. The only exception is C6288, in which

model-based simulation time takes 40.6% while critical path tracing takes 56.5% of the

time. This is because C6288 has many stems, so that stem analysis in critical path tracing

costs much time. The conclusion is that future run time improvements must focus on

model-based fault simulation. Currently we perform parallel forward fault simulation in

the model-based simulation step. We believe that a more complex and efficient fault

simulation strategy could speed up this step.

Table 10. Run time analysis for ISCAS85 circuits.

Circuit

CPT

Time

(s)

CPT

Time

(%)

Filtering &

Ranking

Time (s)

Filtering &

Ranking

Time (%)

Model-based

Simulation

Time (s)

Model-based

Simulation

Time (%)

C432 0.019 42.3% 0.0021 3.8% 0.022 53.9%

C499 0.013 32.9% 0.0016 3.2% 0.030 63.9%

C880 0.011 33.4% 0.0014 3.6% 0.021 67.0%

C1355 0.038 32.4% 0.0099 5.9% 0.095 61.7%

C1908 0.084 33.3% 0.0078 3.5% 0.139 63.2%

C2670 0.019 25.1% 0.0035 4.1% 0.086 70.8%

C3540 0.198 23.2% 0.0105 1.6% 0.611 75.2%

C5315 0.046 20.2% 0.0036 1.8% 0.207 78.0%

C6288 0.724 56.5% 0.0170 2.9% 0.373 40.6%

C7552 0.104 12.2% 0.0136 2.1% 0.674 85.7%

 93

Figure 54 compares the run time of our tool with the run time of a model-free fault

diagnosis tool developed by A. Smith et al [103], the most recently published diagnosis

tool at this writing. This diagnosis tool is based on Boolean satisfiability (SAT).

Experimental results reported in [103] are collected on ISCAS85 benchmark circuits

using an Intel Pentium 4 2.8GHz platform with 2GB of memory. The experimental

environments used by us and Smith are almost the same, except that we use only 512MB

of memory. As shown in the future, our tool runs 1.3 to 6.8 times faster than the SAT-

based diagnosis tool.

0

1

2

3

4

5

6

c432
c499

c880

c1355

c1908

c2670

c3540

c5315

c6288

c7552

D
ia
g
n
o
s
is
 C
P
U
 T
im
e
 (
s
)

Our Diagnosis Tool SAT-Based Diagnosis Tool

Figure 54. Run time comparison with SAT-based diagnosis tool.

As discussed in a previous section, one of the reasons why we chose effect-cause

 94

diagnosis strategy is that it is space-efficient compared to cause-effect diagnosis. If a

cause-effect diagnosis tool uses a complex fault model, such as abridge fault model, its

fault dictionary will grow exponentially as the design size or the number of defects

increases. Table 11 summarizes the memory usage on ISCAS85 circuits of our tool.

Figure 55 shows that the memory usage grows linearly as the size of circuit increases,

and that diagnosis of multi-million gate designs is feasible with today’s memory sizes.

Table 11. Memory usage summary.

Circuit # Lines # Gates
Test

Patterns

Memory

Usage (MB)

C432 432 160 50 1.1

C499 499 202 53 1.9

C880 880 383 52 2.7

C1355 1355 546 86 3.6

C1908 1908 880 130 4.4

C2670 2670 1193 105 5.2

C3540 3540 1669 149 6.1

C5315 5315 2307 121 6.7

C6288 6288 2416 29 6.8

C7552 7552 3512 214 8.5

 95

y = 0.0008x + 1.989

R2 = 0.9232

0

1

2

3

4

5

6

7

8

9

10

0 1000 2000 3000 4000

Gates

M
e
m
o
ry
 U
s
a
g
e
 (
M
B
)

Figure 55. Memory usage vs. circuit size.

6.2 Diagnosis Accuracy and Resolution for Targeted Faults

In evaluating diagnosis methods, it is important to consider both accuracy and

resolution. An accurate diagnosis method means that it can pinpoint the correct location

of the defect. On the other hand, diagnosis resolution shows how precise the diagnosis

result is. A vague diagnosis, declaring a number of fault locations, may be too imprecise

to be useful.

We use first-hit index to evaluate the performance of our diagnosis tool. First-hit

index is the index of the first fault candidate in the sorted list that is a true defect location

[104]. In [104][105][106], first-hit index is also used to evaluate diagnosis performance.

 96

To enhance the diagnosis resolution and accuracy, our tool uses model-based fault

simulation in the last step, using several common fault models. The fault models we

used are stuck-at fault, wired-AND, wired-OR and dominant bridge faults. These four

types of faults are considered targeted faults. It is well-known that the more a defect

behaves like a targeted fault, the more accurate the diagnosis.

Table 12. Diagnosis resolution and accuracy for targeted faults

Circuit
Failing

Patterns

Failing

POs

Average First

Hit Index

Top

Candidates

C432 10.2 25.5 1 5.22

C499 18.2 22.2 1 1.78

C880 15.76 20.86 1 2.92

C1355 30.32 36.24 1 3.18

C1908 37.76 67.74 1 8.36

C2670 32.74 61.42 1 11.06

C3540 29.68 84.58 1 12.32

C5315 28.12 63.3 1 5.12

C6288 14.26 42.46 1 1.56

C7552 56.46 117.46 1 18.48

Table 12 shows the diagnosis accuracy and resolution for the targeted faults. To

obtain the average result, we conducted 5000 trials in total. For each benchmark, 500

trials have been conducted with 100 random SA0 faults, 100 random SA1 (stuck-at-one)

faults, 100 random dominant bridge faults, 100 random wired-AND and 100 random

wired-OR bridge faults injected, one for each trial. Column 4 shows the average first-hit

index. As we expected, the actual fault is always ranked at the top of fault candidate list.

Column 5 shows the number of fault candidates ranked at the top. For the top-ranked

 97

fault candidates, the Hamming distances are all equal to 0, which means there is no way

to differentiate them given the available test patterns. They all behave the same as the

observed behavior of the injected fault. Additional test patterns can improve resolution,

by sensitizing or observing top-ranked faults with different patterns. Diagnostic test

pattern generation is beyond the scope of this dissertation. From the table, we can see

that the C7552 benchmark has the lowest resolution. This is because C7552 has many

buffer and inverters (40% of the total gates), which results in a large number of logically

equivalent faults (e.g. a SA0 on an inverter input is equivalent to a SA1 on the output)

that cannot be distinguished with any test set. For reference, Table 13 shows the number

of different type of gates in each benchmark.

Table 13. ISCAS85 benchmark gate numbers summary.

Circuit # buffer # not # and # nand # or # nor # xor Total

C432 40 4 79 19 18 160

C499 40 56 2 104 202

C880 26 63 117 87 29 61 383

C1355 32 40 56 416 2 546

C1908 162 277 63 377 1 880

C2670 196 321 333 254 77 12 1193

C3540 223 490 498 298 92 68 1669

C5315 313 518 718 454 214 27 2307

C6288 32 256 2128 2416

C7552 534 876 776 1028 244 54 3512

Table 14 shows the diagnosis accuracy and resolution for different types of faults. As

we can see, stuck-at fault diagnosis has a lower resolution than bridge fault diagnosis.

 98

This is to be expected, since the more complex the fault behavior, the less possibility of

equivalent faults.

Table 14. Diagnosis resolution for different type of faults.

Injected Fault
Failing

Patterns

Failing

POs

Average First

Hit Index

Top

Candidates

Stuck-At 24.66 42.01 1 10.56

Dominant

Bridge
26.71 52.73 1 5.36

Wired-AND

Bridge
29.45 67.77 1 4.14

Wired-OR

Bridge
30.29 65.76 1 4.29

In Table 15, we compare the fault diagnosis performance of our tool with the Sproing

diagnosis tool [2][4][8] and the original MMA technique [29]. The MMA technique is a

bridging fault diagnosis technique using the single stuck-at fault model that was

proposed by Millman, McCluskey, and Acken. It was introduced in Section 2.2. The

Sproing tool was developed by Lavo, Chess and Larrabee at the University of California,

Santa Cruz. Sproing is a cause-effect diagnosis tool base on MMA. It performs fault

diagnosis using a stuck-at fault signature, but also uses improved MMA with match

restriction, match requirement and match ranking. It matches the failing vectors from the

tester to the fault signature found in a stuck-at dictionary. In the table, we use the

percentage of diagnoses with the real fault candidate in the top 10 (including equivalent

faults) as the criteria to evaluate diagnosis performance. This approach is also used in

[2]. As we can see from the table, our tool outperforms both Sproing and MMA. The

 99

original MMA technique has the lowest resolution because it considers vectors that place

identical values on the bridged nodes and does not rank the candidates. Sproing

improves the resolution by eliminating from a composite signature any entries that

cannot detect the bridging fault and by ranking the fault candidates. The reason why our

tool outperforms Sproing is that Sproing uses a simple single stuck-at fault model to

construct the composite bridge fault signature for diagnosis purposes. In our tool, the

first two steps - critical path tracing and ranking and filtering suspect lines - are both

model-independent. These two steps efficiently remove unrelated lines from the suspect

list. The third step, model-based simulation includes the bridging fault model, which

helps improve the diagnosis precision.

Table 15. Diagnosis quality comparison with Sproing and MMA.

Circuit
Percent ≤10 in

original MMA

Percent ≤10 in

Sproing

Percent ≤10 in our

diagnosis framework

C432 29.4% 93.8% 93.2%

C499 40.1% 90.3% 99.2%

C880 60.7% 93.3% 96.1%

C1355 43.8% 95.5% 96.6%

C1908 32.6% 85.1% 85.3%

C2670 40.9% 78.3% 81.2%

C3540 55.9% 87.9% 88.1%

C5315 66.0% 87.5% 91.2%

C6288 33.8% 90.2% 100%

C7552 47.7% 79.7% 81.1%

 100

6.3 Diagnosis Accuracy and Resolution for Untargeted Faults

With continuing increases in semiconductor technology density and process

complexity, the assumption that a defect will behave like a specific fault type (e.g.,

stuck-at fault or bridging fault) is becoming more and more impractical and the

diagnosis for unmodeled faults has emerged as a new challenge. A sophisticated

diagnosis tool must be able to tolerate some unexpected behavior in the form of both

unexpected errors and the absence of expected errors. Then how robust is our diagnosis

framework when observed behaviors are unexpected?

In order to answer the question, we executed a number of diagnostic trials designed to

evaluate the technique. We tested our tool by considering different unmodeled faults

such as biased-voting bridged fault, dominant-0 and dominant-1 bridged fault, errors

caused by an intermediate voltage level, design errors such as wrong gate type fault and

missing wire fault, and multiple faults.

6.3.1 Defect Causing Intermediate Voltage

As stated previously, no fault model is a perfect predictor of the behavior of real

defective circuits. As a simple example, it is difficult to predict the voltage created by a

short circuit when the value of the short’s resistance is not known beforehand [107].

Suppose gate A’s output n1 feeds gate B and output n1 is shorted to VDD through a

resistance R. If a test vector sets node n1 to logic 0, such conditions create a conducting

path from VDD to GND through node n1, including resistance R. Intermediate voltage

Vn1 appears on node n1. The logic interpretation of this intermediate voltage depends on

the logic threshold of the driven gate B. Gate B logically interprets Vn1 as a defective 1 if

 101

it is higher than its logic threshold. In this case, a defective value will appear on gate B’s

output and propagate to the circuit’s primary outputs. On the other hand, if Vn1 is less

than the logic threshold of gate B, the circuit interprets this as a 0, and a faulty-free value

propagates to the circuit’s primary outputs. This short example demonstrates that

whether a test vector can detect the short circuit depends on the value of intermediate

voltage and the logic threshold of the driven gate. If the intermediate voltage is close to

the logic threshold, then supply and coupling noise can also affect defect detection.

In order to mimic this type of unexpected defect behavior, we took the bridging fault

behaviors generated by the fault simulator and modified them by including noise. We

randomly removed from 10% to 90% of the failing vectors from the observed behaviors.

We randomly choose C6288 to do the experiment.

Figure 56 shows the results of this experiment. A successful diagnosis is defined as

one where the real fault candidate index is in the top 10. As shown, we obtain 100%

successful diagnosis even if 30% of the “failing” vectors are fault-free. The candidate

ranking is successful even when 60% of the original failing vectors are fault-free. We

expect that as long as enough failing vectors are available, diagnosis will be successful.

 102

0

10

20

30

40

50

60

70

80

90

100

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

 Dropped Failing Vectors

%
 S
u
c
c
e
s
s
fu
l
D
ia
g
n
o
s
is

Figure 56. % Successful diagnosis vs. % dropped failing vectors.

6.3.2 Voting Bridge Fault

As discussed earlier, the wired and the dominant bridge fault models do not model

many defect behaviors in CMOS circuits. One widely accepted model is the biased

voting model [37], which is an improvement on the voting model [32]. These two

models consider the bridge as a resistive divider between VDD and GND when the gates

try to drive the shorted lines to opposite values. To put it more precisely, the voting

models compare the conductance of the transistor networks of static CMOS gates

involved in the bridge. Whichever network (pullup or pulldown) has greater strength

determines the logic value on the bridge.

To mimic the behavior of short circuit defects described by the voting model, we

 103

inject bridges and then randomly choose one bridging node to be dominant for each test

pattern. In total 1,000 trials were run on ISCAS85 benchmarks. For each circuit, 100

trials were performed to obtain the diagnosis result. As shown in Table 16, the diagnosis

is very successful. The average first-hit index for each circuit is about 1-2, which means

the real candidate fault is always ranked in the top 1 or 2. Column 3 shows the number

of top candidates, that is, the number of candidates ranked #1. The average number of

top candidates is 6.7, which is good enough for the failure analysis engineer. Columns 4

and 5 show the percentage of diagnoses that ranked the true fault candidate in the top 10

and top 5 respectively. The results show that a high success rate. The results show that

our diagnosis technique can tolerate this type of unmodeled fault behavior.

Table 16. Voting bridge defect diagnosis results.

Circuit Average First

Hit Index

Top

Candidates

Percent

≤ 10

Percent

≤ 5

C432 1.4 7.2 99% 98%

C499 1.0 1.6 100% 100%

C880 1.3 1.5 99% 97%

C1355 2.3 8.2 98% 96%

C1908 1.5 8.8 99% 96%

C2670 1.5 8.7 99% 96%

C3540 2.2 12.2 97% 92%

C5315 1.3 2.5 99% 99%

C6288 1.1 1.4 100% 99%

C7552 1.2 15.8 100% 99%

Average 1.48 6.7 99% 97.2%

 104

6.3.3 Dominant-AND and Dominant-OR Bridging Fault

It has been observed in static Random Access Memory (RAM) that the behavior of

some short circuit defects between adjacent memory cells cannot be accurately modeled

by wired or dominant bridging models [92]. The faulty behavior observed in many faulty

RAMs was that a logic ‘1’ in the dominating cell forced a logic ‘1’ in the victim cell,

while logic ‘0’ in the dominating cell allowed normal operation in the victim cell. Bridge

fault models named dominant-AND (or diode-AND) and dominant-OR (or diode-OR)

were proposed to describe this type of fault behavior [92].

Figure 57. Dominant-AND and Dominant-OR fault models.

The fault behavior is illustrated in Figure 57. The model can be seen as a hybrid of

wired-AND/wired-OR and dominant bridging fault models. The logical behavior is

further summarized in Table 17.

A

B

A’

B’

RBF

Resistive short

A

B

A’

B’

A

B

A’

B’

Dominant-AND bridging fault (A Dominates)

Dominant-OR bridging fault (A Dominates)

 105

Table 17. Behavior of dominant-AND/OR fault

Signal lines A dand B A dor B B dand A B dor A

AB A’B’ A’B’ A’B’ A’B’

00 0 0 0 0 0 0 0 0

01 0 0 0 1 1 1 1 1

10 1 0 1 1 0 0 1 0

11 1 1 1 1 1 1 1 1

This type of fault behavior is not modeled in our analysis so it is also interesting to

see how the diagnosis tool handles this type of fault. We ran 1,000 trials on ISCAS85

benchmarks. For each circuit, 100 cases of single random dominant-AND/OR bridges

were injected, the circuit simulated, and diagnosed.

Table 18. Diagnosis result for dominant-AND and dominant-OR fault

Circuit # Failing

Vector

Average First

Hit Index

Percent

≤ 10

Percent

≤ 5

C432 6.2 5.2 87% 81%

C499 9.6 3.6 94% 80%

C880 8.7 4.1 92% 80%

C1355 15.3 5.9 84% 75%

C1908 23.2 4.0 92% 85%

C2670 18.1 5.1 93% 88%

C3540 13.5 6.4 85% 82%

C5315 19.4 5.1 90% 79%

C6288 9.1 3.3 91% 84%

C7552 37.3 4.5 92% 89%

Average 16.04 4.72 90% 82.3%

The results in Table 18 show that the average first-hit index is 4.72, which means that

 106

the real fault candidate is ranked in top 5 most of the time. The diagnosis resolution is a

little lower than for dominant or wired bridging faults, because the dominant-AND/OR

fault is more difficult to detect than either the wired or dominant bridging faults.

Comparing to Table 14, fewer failing vectors are observed in dominant-AND/OR

diagnosis than dominant or wired bridging fault diagnosis.

6.3.4 Design Error Diagnosis

Our modeled faults focus on defects within interconnects. A defect within a gate can

change the gate behavior, in the same manner as a design error. We tested our diagnosis

tool on two types of design errors: missing wire and wrong gate type. For each type of

design error, 1,000 trials are performed to collect the result data, 100 trials for each

circuit.

There are several assumptions we have made in the missing wire design error

simulation. First, if the missing wire is an input of AND/NAND/XNOR gate, the

missing wire is assumed to float to ‘1’, so that it behaves the same as a missing input. If

the missing wire floated to ‘0’, then it would behave the same as a SA0 fault at the gate

output, which is a modeled fault. We only consider two-input XOR/XNOR gates. If the

missing wire is an input of OR/NOR /XOR gate, the missing wire is assumed to float to

‘0’.

Table 19 shows the diagnosis quality for missing wire error. The average first hit

index is 2.67, which means the real fault is ranked in the top 3 on average. As long as the

real missing wire is the same as one of the candidate lines (e.g., a bridge fault candidate),

 107

it is considered a hit. The percentage of diagnoses that have the real candidate ranked in

the top 10 is 94% and in the top 5 is 90%, which shows that our diagnosis tool can

handle missing wire behavior. Column 6 shows the percentage of failing diagnosis. Here

we determine that a diagnosis is failing if the real candidate is not ranked in the top 100.

On average, the failing diagnosis rate is 2.2%, which is not significant. We find that all

the failing diagnoses have one thing in common: these chips have only a few failing

vectors (usually only 1 or 2).

Table 19. Diagnosis result for missing wire design error.

Circuit # Failing

Vector

Average First

Hit Index

Percent

≤ 10

Percent

≤ 5

% Failing

Diagnosis

C432 5.9 1.2 100% 100% 0%

C499 17.7 3.8 81% 68% 11%

C880 10.1 1.1 100% 100% 0%

C1355 22.2 3.4 94% 92% 1%

C1908 22.6 1.7 98% 95% 1%

C2670 10.4 1.9 93% 88% 5%

C3540 18.6 3.0 95% 91% 0%

C5315 16.4 2.1 98% 92% 0%

C6288 8.0 3.7 90% 85% 4%

C7552 36.5 4.8 91% 85% 0%

Average 18.84 2.67 94% 90% 2.2%

We also injected wrong gate type design errors to evaluate our tool’s performance.

The type of error that we inject is to complement the gate output, so an AND becomes

NAND, NAND becomes AND, OR to NOR, NOR to OR, XOR to XNOR, XNOR to

XOR, buffer to inverter, and vice-versa. Defects with this complementing behavior have

 108

been observed in production chips. Table 20 shows the diagnosis result for wrong gates.

The result shows our tool does not work very well with wrong gate type error. The

percentage of diagnoses that rank the real candidate at the top 10 is 77% and the

percentage that ranks in the top 5 is only 68%. The failing diagnosis rate is 17.5% on

average. However, if we take a closer look at the diagnosis, we find that actually the real

candidate line (the output net of the wrong gate) is always ranked as the top candidate in

the second phase ranking, which is shown in column 7 in Table 20. This suggests that

the critical path tracing and the second-step ranking works very well because both these

steps are model-independent.

Table 20. Diagnosis result for wrong gate type design error.

Circuit # Failing

Vector

Average First

Hit Index

Percent

≤ 10

Percent

≤ 5

% Failing

Diagnosis

First Hit Index in

2
nd
-phase ranking

C432 19.9 2.7 75% 72% 20% 1

C499 34.4 4.6 75% 60% 18% 1

C880 30.8 3.4 70% 61% 26% 1

C1355 55.4 5.5 73% 67% 17% 1

C1908 71.7 4.0 71% 62% 23% 1

C2670 29.3 4.3 74% 69% 18% 1

C3540 38.6 4.1 82% 74% 11% 1

C5315 33.0 3.7 80% 66% 15% 1

C6288 26.0 3.3 83% 74% 12% 1

C7552 82.0 4.8 86% 76% 15% 1

Average 42.1 4.0 77% 68% 17.5% 1

As introduced in the previous section, during second-phase ranking, we perform fault

simulation on the suspect line for failing vectors and calculate the Hamming distance

 109

between observed behavior and simulated behavior. All the suspect lines are then ranked

by the Hamming distance. The one with the smallest Hamming distance explains the

most failing responses. For the wrong gate type errors we injected (inversion), the output

net of the wrong gate always has the Hamming distance equal to 0 because flipping its

logic value can explain all failing primary outputs. It is the third step, model-based

simulation, that adds noise to the diagnosis because the stuck-at and bridge fault models

do not completely model the wrong gate type behavior. This suggests that we should

consider adding wrong gate type to the fault simulation to improve the diagnosis

accuracy and resolution.

6.3.5 Multiple Fault Diagnosis

Although our tool is based on a single fault assumption, we tested the tool on multiple

fault cases to see how it worked. We randomly injected two stuck-at faults 15 times in

C7552. The results are summarized in Table 21.

 110

Table 21. Diagnosis result for multiple faults.

Trial # Failing

Vector

First Hit

Index of

SA node 1

First Hit

Index of

SA node 2

Correct

Diagnosis?

Case1 169 1 60 partial

Case2 86 5 >100 partial

Case3 115 8 22 partial

Case4 44 1 >100 partial

Case5 131 5 >100 partial

Case6 18 1 1 correct

Case7 157 1 >100 partial

Case8 19 4 >100 partial

Case9 124 1 >100 partial

Case10 116 1 14 partial

Case11 104 1 >100 partial

Case12 28 3 >100 partial

Case13 21 26 >100 misleading

Case14 174 2 30 partial

Case15 152 2 >100 partial

Columns 3 and 4 show the first-hit index of stuck-at node1 and node2. Note that

node1 is the node that ranks higher in the fault candidate list. From the experimental

results, we can see that in most cases, our tool can locate one of the faults. Except for

case 13, the diagnosis ranked one of the faults in the top 10. In case 6, our tool ranked

both of the faults as #1. In case 13, the diagnosis is misleading because the true fault

candidates are ranked at 26 and greater than 100, while the one ranked at the top is

unrelated to the true candidates. This top candidate has a Hamming distance of 0, which

 111

means this “false” candidate can perfectly explain the observed faulty behavior. In

general, the results show that our single fault based diagnosis tool can return a partial

diagnosis result for most of the two SA fault cases.

 112

7. CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this research, we have developed an effect-cause fault diagnosis framework. The

work includes three parts: an improved critical path tracing algorithm, a statistical

filtering and ranking method and model-based fault simulation.

The classical diagnosis algorithms follow two different paradigms: cause-effect

approach and effect-cause approach. Cause-effect analysis is based on a specific fault

model. Algorithms in this class build a fault dictionary for the modeled faults and

compare these simulated behaviors with the observed failure responses to determine the

probable causes of the failures. The cause-effect approach can give very good results if

the defect behavior is similar to the modeled fault behavior. Otherwise, the accuracy and

resolution may be drastically impaired. The other drawback of the cause-effect approach

is the huge space and time overhead for fault dictionary construction and storage. The

dictionary size grows rapidly as the circuit size or the number of defects increases.

The effect-cause diagnosis approach, searches for the locations (or causes) of the

defects without building a dictionary. Algorithms in this class analyze the actual chip

responses and determine which fault(s) might have caused the observed failure effect.

Those methods trace backward from each primary output to determine the error-

propagation paths for all possible fault candidates. Comparing with the cause-effect

methods, effect-cause techniques are more memory efficient and scalable to large

designs. Furthermore, the effect-cause approach is more model-independent compared to

 113

the cause-effect approach. Since the type of defect is unknown beforehand, effect-cause

methods can better handle unmodeled defects.

Based on the above reasons, we chose to use effect-cause diagnosis approach in our

tool. Critical path tracing is used as the first step to obtain a reduced list of suspect nets.

Critical path tracing backtraces from primary outputs toward primary inputs, to obtain a

sequence of critical lines. Those critical lines are the suspicious candidates because a

fault effect on them could propagate to the primary outputs. Previous critical path tracing

algorithms are incomplete in that they are either too slow or not exact. To overcome

these problems, we developed seven rules to determine the stem criticality in one pass

when the stem does not need forward simulation. If a stem requires a forward

simulation, a fast forward fault simulation is performed from the stem to its outer

convergence point. The simulation algorithm is greedy in that once no fanout is found to

be active, the simulation stops. The only tradeoff in making the critical path tracing

algorithm exact is the time cost of determining whether the stem needs forward

simulation. Experimental results on ISCAS85 and ISCAS89 benchmark circuits show

that the run time is nearly linear to the circuit size. Comparing to the FSIM parallel

pattern single fault propagation fault simulation tool, our critical path tracing is 5%-48%

faster.

The second step is using statistical filtering and ranking methods to further reduce the

size of the suspect list. The step includes first and second-level filtering and ranking. The

first-level filtering removes unrelated candidates that have never been seen as faulty and

the first-level ranking is based on the number of times we see each line faulty.

 114

Intuitively, the more frequently we see a line faulty, the more suspicious it is. The

second-level filtering removes the candidate lines that appear faulty less than a threshold

T. This threshold T is determined by nFaultyPOs/nMaxFaults where nMaxFaults is the

maximum number of defects we consider and nFaultyPOs is the number of faulty POs.

We set nMaxFaults to 4, since a larger number of faults does not occur very often. After

second-level filtering, second-level ranking is performed as a tie breaker if two suspect

lines are seen as faulty the same number of times. To rank the suspect lines, we

performed PPSFP fault simulation on the suspect lines for failing test vectors and

calculated the Hamming distance between the simulated and observed behavior. The

suspects are then ranked by the Hamming distance if two lines have been seen faulty the

same number of times. In general, the first and second level filtering and ranking are

used to reduce the size of suspect list and rank the most suspicious lines near or at the

top so that we can save time in the third step.

The third step is to refine the diagnosis through model-based fault simulation. During

this step, heuristically, we choose the top 100 candidate lines for fault simulation based

on the observation that the real candidate line is always ranked in the top 100 for all the

experiments we conducted. Then we utilize two measurements, Always0 and Always1, to

selectively map each candidate line to the fault candidates on it. As their names imply,

Always0 and Always1 indicates that if the line is always being driven by ‘0’ or ‘1’

whenever it is seen as faulty. From these two measurements, we can determine if a SA

fault or bridge fault is possible on this line. In this way, we can avoid unnecessary fault

simulation. After line-to-fault mapping, model-based simulation is conducted for a set of

 115

fault models and the Hamming distance between the observed faulty behavior and the

simulated faulty behavior is used to rank the fault candidates.

Experimental results on ISCAS85 circuits show that the run time of our diagnosis is

1.3 to 6.8 faster than a recent SAT-based model-free diagnosis tool. The memory usage

of our tool is linear to the size of the circuit, so large designs are feasible. For targeted

faults, the diagnosis accuracy and resolution of our tool are very good. The diagnosis

tool can always report the result with the real fault ranked at the top for targeted faults.

For untargeted faults, the diagnosis can return reasonably good accuracy and resolution

in most cases, which shows that our tool is sophisticated enough to tolerate the noise

brought by unexpected defect behavior. For the wrong gate type fault, our diagnosis tool

does not perform as well, because the model-based simulation step adds noise to the

diagnosis, because the fault models we used cannot completely match the behavior of a

wrong gate type. However, the model-independent first and second steps of the

diagnosis procedure return good ranking results. Our single-fault tool was evaluated on

multiple faults. Most of the time, a partial diagnosis (diagnosis of one of the faults) could

be achieved. In one case, the diagnosis was misleading.

In summary, the major contributions of our works are as follows:

A fast and exact critical path tracing algorithm was developed that can handle all

kinds of reconvergence cases efficiently while considering unknown values.

A combination of filtering and ranking strategies can dramatically reduce the suspect

fault list and greatly reduce the suspect search area.

Integration of fault models and model-free strategies result in a diagnosis framework

 116

that achieves very good accuracy and resolution for modeled faults while achieving

reasonably good results on unmodeled faults.

7.2 Future Work

As discussed earlier, critical path tracing algorithm could be extended to handle more

complex gate types in real industrial circuits, such as MUX and tri-state gates. Our

algorithm is readily extended to handle MUX or complex logic gate types such as AND-

OR, because we can treat them as a combination of common logic gates. For tri-state

gates, we need to consider both the input line and control signal line because a fault on

either of these two lines could change the gate output. One challenge is handling the

high impedance (Z) state.

Since our diagnosis tool was challenged by wrong gate type faults, it suggests that we

should consider adding this fault to the model-based simulation step. Adding this as a

general fault for fault simulation may be too expensive, especially when considering all

the different wrong gate types that can occur. Instead, we could choose the top-ranked

suspect lines and examine the driving cells of these lines to see if changing the gate

behavior of these cells could correct the faulty behavior on the driven lines for all the

failing vectors. If it is possible to synthesize the new function on the suspect line by

changing the type of the gate that feeds this line or by other types of correction to

explain and correct all the faulty bits, it is successful. Otherwise, we continue to use the

line-to-fault mapping and model-based simulation.

As we can see from the run time result, model-based simulation takes most of the

 117

diagnosis time. This suggests that if we want to improve the run time, we must reduce

the simulation time. A more sophisticated filtering method could be used to reduce the

simulation cost. Currently, we use a threshold (the number of faulty primary outputs

divided by four) to cut off the suspect line list in the second-level filtering. A more

sophisticated way would be to compute the distribution of nTimeFaulty (the number of

times we see each candidate line faulty) and compute the threshold based on the tail of

the distribution.

In order to handle multiple defects, we need to incorporate the path tracing method

and SLAT patterns. Since critical path tracing is based on a single fault assumption, it

does not correctly handle multiple defects. The alternative is to use path tracing. Path

tracing is a linear-time routine, which is similar to critical path tracing. It starts from

faulty POs and pessimistically marks lines that may belong to a sensitized path. If the

output of a gate has been marked and the gate has one or more fanin(s) with controlling

values, then all the controlling fanins are marked. If a gate has all fanins with

noncontrolling inputs, then all fanins are marked. Finally, if a branch is marked, then the

stem of the branch is marked [38]. Comparing to critical path tracing, path tracing is

more conservative, but it guarantees that the real faulty line is contained in the set of

lines marked by path tracing. The challenge is determining when path tracing or critical

path tracing is appropriate. SLAT patterns could easily extend our diagnosis framework

to multiple defect diagnosis. SLAT patterns are those patterns during which the defect

affected only a single location [69]. The original ranking and filtering methods only need

a slight adjustment to handle multiple fault diagnosis. To identify SLAT patterns, we can

 118

still flip the logic value on the suspect line and perform PPSFP, then match the observed

behavior to the simulated behavior. The difference is that for multiple fault diagnosis, we

need to identify all the faults that can explain all the observed fails for each failing

pattern. Once we know which faults can completely explain all the fails collected for

each failing pattern, the remaining work is to find a smallest set of candidates that can

explain all the fails.

In our current diagnosis framework, we have incorporated physical design

information in bridge fault diagnosis by using the coupling capacitance list to find the

realistic bridge faults (if available, an extracted bridge fault list would be even better). In

future work, we could also use physical design information to identify locations and

layers within the circuit where open circuit faults can occur. This information can be

used to filter and improve the suspect net list so that the scanning electron microscope

(SEM) search area could be reduced [108].

 119

REFERENCES

[1] Semiconductor Industries Association, International Technology Roadmap for

Semiconductors, Austin, TX, 1999.

[2] D. B. Lavo, B. Chess, T. Larrabee and F. J. Ferguson, “Diagnosis Realistic

Bridging Faults with Single Stuck-at Information,” IEEE Transactions on

Computer Aided Design, vol. 17, no. 3, 1998, pp. 255-268.

[3] K. Shigeta and T. Ishiyama, “An Improved Fault Diagnosis Algorithm Based on

Path tracing with Dynamic Circuit Extraction,” in Proc. IEEE International Test

Conference, Atlantic City, NJ, Oct. 2000, pp. 235-244.

[4] D. B. Lavo, “Comprehensive Fault Diagnosis of Combinational Circuits,” Ph. D.

Dissertation, Department of Computer Engineering, University of California,

Santa Cruz, 2002.

[5] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing and

Testable Design. New York: Computer Science Press, 1990.

[6] R. C. Aitken, “Modeling the Unmodelable: Algorithmic Fault Diagnosis,” IEEE

Design & Test of Computers, vol. 14, no. 3, Sept. 1997, pp. 98-103.

[7] P. K. Ryan, W. K. Fuchs, and I. Pomeranz, “Fault Dictionary Compression and

Equivalence Class Computation for Sequential Circuits,” in Proc. International

Conference on Computer-Aided Design, Santa Clara, CA, Nov. 1993, pp.508-

511.

 120

[8] D. Lavo, T. Larrabee, “Making Cause-Effect Cost Effective: Low-Resolution

Fault Dictionaries,” in Proc. IEEE International Test Conference, Tokushima,

Japan, Oct. 2001, pp. 278-286.

[9] V. Boppana, I. Hartanto, and W. K. Fuchs, “Full Fault Dictionary Storage Based

on Labeled Tree Encoding,” in Proc. VLSI Test Symposium, Princeton, NJ, Apr.

1996, pp. 174-179.

[10] B. Chess, “Diagnostic Test Pattern Generation and the Creation of Small Fault

Dictionaries,” M. S. Thesis, Department of Computer Engineering, University of

California, Santa Cruz, 1995.

[11] R. W. Allen, M. M. Ervin-Willis and R. E. Tullose, “DORA: CAD Interface to

Automatic Diagnostics,” in Proc. ACM/IEEE Design Automation Conference,

Las Vegas, NV, Jun. 1982, pp. 559-563

[12] V. Ratford and P. Keating, “Integrating Guided Probe and Fault Dictionary: An

Enhanced Diagnostic Approach,” in Proc. IEEE International Test Conference,

Washington, DC, Sep. 1986, pp. 304-311.

[13] R. P. Kunda, “Fault Location in Full-Scan Designs,” in Proc. International

Symposium for Testing & Failure Analysis, Materials Park, OH, Nov. 1993, pp.

121-126

[14] K. De and A. Gunda, “Failure Analysis for Full-Scan Circuits,” in Proc. IEEE

International Test Conference, Washington, DC, Oct. 1995, pp. 636-645

[15] J. Waicukauski and E. Lindbloom, “Failure Diagnosis of Structured VLSI,”

IEEE Design and Test of Computers, vol. 6, no. 4, Aug. 1989, pp. 49-60.

 121

[16] Mentor Graphics Corporation, FastScan ATPG Tool Suite, Wilsonville, OR, Sep.

2000.

[17] Synopsis Inc., TetraMAX
TM

 ATPG High-Performance Automatic Test Pattern

Generator, Mountain View, CA, May 1999.

[18] M. A. Breuer, S. J. Chang, and S. Y. H. Su, “Identification of Multiple Stuck-

Type Faults in Combinational Networks,” IEEE Transactions on Computers, vol.

C-25, Jan. 1976, pp.44-54.

[19] M. Abramovici, M. A. Breuer, “Multiple Fault Diagnosis in Combinational

Circuits Based on an Effect-Cause Analysis,” IEEE Transactions on Computers,

vol. C-29, no. 6, Jun. 1980, pp. 451-460.

[20] M. Abramovici and M. A. Breuer, “Fault Diagnosis Based on Effect-Cause

Analysis: An Introduction,” in Proc. ACM/IEEE Design Automation Conference,

Minneapolis, MN, Jun. 1980, pp. 69-76.

[21] J. Rajski and H. Cox, “A Method of Test Generation and Fault Diagnosis in Very

Large Combinational Circuits,” in Proc. IEEE International Test Conference,

Washington, DC, Sep. 1987, pp. 932-943.

[22] D. Nayak and D. M. H. Walker, “Simulation-Based Design Error Diagnosis and

Correction in Combinational Digital Circuits,” in Proc. IEEE VLSI Test

Symposium, Dana Point, CA, Apr. 1999, pp. 70-78.

[23] C. C. Beh, K. H. Arya, C. E. Radke, and K. E. Torku, “Do Stuck Fault Models

Reflect Manufacturing Defects,” in Proc. IEEE International Test Conference,

Philadelphia, PA, Nov. 1982, pp. 35-42.

 122

[24] F. J. Ferguson and J. P. Shen, “Extraction and Simulation of Realistic CMOS

Faults with Inductive Fault Analysis,” in Proc. IEEE International Test

Conference, Washington, DC, Sep. 1988, pp. 475-484.

[25] C. F. Hawkins, J. M. Doen, A. W. Righter, and F. J. Ferguson, “Defect Classes-

An Overdue Paradigm for CMOS IC Testing,” in Proc. IEEE International Test

Conference, Washington, DC, Oct. 1994, pp. 413-425.

[26] J. P. Shen, W. Maly, and F. J. Ferguson, “Inductive Fault Analysis of MOS

Integrated Circuits,” IEEE Design and Test of Computers, vol. 2, no. 6, Dec.

1985, pp. 13-26.

[27] R. C. Aitken, “Finding Defects with Fault Models,” in Proc. IEEE International

Test Conference, Washington, DC, Oct. 1995, pp. 498-505.

[28] D. Lavo, T. Larrabee, and B. Chess, “Beyond the Byzantine Generals:

Unexpected Behavior and Bridging Fault Diagnosis,” in Proc. IEEE

International Test Conference, Washington, DC, Oct. 1996, pp. 611-619.

[29] S. D. Millman, E. McCluskey, and J. Acken, “Diagnosing CMOS Bridging

Faults with Stuck-At Fault Dictionaries,” in Proc. IEEE International Test

Conference, Washington, DC, Sep. 1990, pp. 860-870.

[30] D. Lavo, B. Chess, T. Larrabee, F. J. Ferguson, J. Saxena, and K. M. Butler,

“Bridging Fault Diagnosis in the Absence of Physical Information,” in Proc.

IEEE International Test Conference, Washington, DC, Oct. 1997, pp. 887-893.

 123

[31] J. M. Acken and S. D. Millman, “Accurate Modeling and Simulation Bridging

Faults,” in Proc. IEEE Custom Integrated Circuits Conference, San Diego, CA,

May 1991, pp.17.4.1-17.4.4.

[32] J. M. Acken and S. D. Millman, “Fault Model Evaluation for Diagnosis:

Accuracy vs. Precision,” in Proc. IEEE Custom Integrated Circuits Conference,

San Diego, CA, May 1991, pp. 13.4.1-13.4.4.

[33] S. Chakaravarty and Y. Gong, “An Algorithm for Diagnosing Two-Line

Bridging Faults in Combinational Circuits,” in Proc. ACM/IEEE Design

Automation Conference, Dallas, TX, June 1993, pp. 346-356.

[34] S. Venkataraman and S. Drummonds, “Poirot: A Logic Fault Diagnosis Tool and

Its Applications,” in Proc. IEEE International Test Conference, Atlantic City,

NJ, Oct. 2000, pp. 253-262.

[35] J. Wue and E. M. Rudnick, “A Diagnostic Fault Simulator for Fast Diagnosis of

Bridge Faults,” IEEE Transactions on Computer-Aided Design, vol. 8, no. 4,

Aug. 2000, pp. 435-439.

[36] R. Aitken and P. Maxwell, “Better Models or Better Algorithms? On Techniques

to Improve Fault Diagnosis,” Hewlett-Packard Journal, Feb. 1995.

[37] P. C. Maxwell and R. C. Aitken, “Biased Voting: A Method for Simulating

CMOS Bridging Faults in the Presence of Variable Gate Logic Thresholds,” In

Proc. IEEE International Test Conference, Piscataway, NJ, Oct. 1993, pp. 63-72.

 124

[38] S. Venkataraman and W. K. Fuchs, “A Deductive Technique for Diagnosis of

Bridging Faults,” in Proc. VLSI Design Conference, Chennai, India, Jan. 1998,

pp. 476-481.

[39] J. P. Shen, W. Maly and F. J. Ferguson, “Inductive Fault Analysis of MOS

Integrated Circuits,” IEEE Design and Test of Computers, vol. 2, no. 6, Dec.

1985, pp. 13-26.

[40] Z. Stanojevic, “Computer-Aided Fault to Defect Mapping (CAFDM) for Defect

Diagnosis,” Ph. D. Dissertation, Department of Electrical Engineering, Texas

A&M University, College Station, TX, 2002.

[41] Z. Stanojevic, H. Balachandran, D. M. H. Walker, F. Lakhani, S. Jandhyala, K.

Butler and J. Saxena, “Computer-Aided Fault to Defect Mapping (CAFDM) for

Defect Diagnosis,” in Proc. IEEE International Test Conference, Atlantic City,

NJ, Oct. 2000, pp. 729-738.

[42] Z. Stanojevic, D. M. H. Walker, “FedEx – A Fast Bridging Fault Extractor,” in

Proc. IEEE International Test Conference, Baltimore, MD, Oct. 2001, pp. 696-

703.

[43] S. T. Zachariah and S. Charkravarty, “A Scalable and Efficient Methodology to

Extract Two Node Bridges from Large Industrial Circuits,” in Proc. IEEE

International Test Conference, Atlantic City, NJ, Oct. 2000, pp. 750-759.

[44] D. M. H. Walker and S. W. Director, “VLASIC: A Catastrophic Fault Yield

Simulator for Integrated Circuits,” IEEE Transactions on Computer-Aided

Design, vol. CAD-5, no. 4, Oct. 1986, pp. 541-556.

 125

[45] D. D. Gaitonde and D. M. H. Walker, “Hierarchical Mapping of Spot Defects to

Catastrophic Faults – Design and Applications,” IEEE Transactions on

Semiconductor Manufaturing, vol. 8, no. 2, May 1995, pp. 167-177.

[46] P. K. Nag and W. Maly, “Hierarchical Extraction of Critical Area for Shorts in

Very Large ICs,” in Proc.IEEE International Workshop on Defect and Fault

Tolerance in VLSI Systems, Lafayette, LA, Nov. 1995, pp. 19-27.

[47] A. L. Jee and F. J. Ferguson, “Carafe: An Inductive Fault Analysis Tool for VLSI

Circuits,” in Proc. IEEE VLSI Test Symposium, Atlantic City, NJ, Apr. 1993, pp.

92-98.

[48] F. M. Goncalves, I. C. Teixeira and J. P. Teixeira, “Realistic Fault Extraction for

High-Quality Design and Test of VLSI Systems,” in Proc. IEEE International

Symposium on Defect and Fault Tolerance in VLSI Systems, Paris, France, Oct.

1997, pp. 29-37.

[49] S. T. Zachariah, S. Chakravarty and C. D. Roth, “A Novel Algorithm to Extract

Two-Node Bridges,” in Proc. ACM/IEEE Design Automation Conference, Los

Angeles, CA, Jun. 2000, pp. 790-793.

[50] Z. Barzilai and B. K. Rosen, “Comparison of AC Self-Testing Procedures,” in

Proc. IEEE International Test Conference, Philadelphia, PA, Oct. 1983, pp. 89-

94.

[51] G. L. Smith, “Model for Delay Faults Based Upon Paths,” in Proc. IEEE

International Test Conference, Philadelphia, PA, Oct. 1985, pp. 342-349.

 126

[52] H. Cox and J. Rajski, “A Method of Fault Analysis for Test Generation and Fault

Diagnosis,” IEEE Transactions on Computer-Aided Design, vol. 7, no. 7, July

1988, pp. 813-833.

[53] M. L. Flottes, P. Girard, C. Landrault and S. Pravossoudovitch, “A New Reliable

Method for Delay-Fault Diagnosis,” in Proc. IEEE International Conference on

VLSI Design, Bangalore, India, Jan. 1992, pp. 12-16.

[54] P. Girard, C. Landrault and S. Pravossoudovitch, “A Novel Approach to Delay-

Fault Diagnosis,” in Proc. ACM/IEEE Design Automation Conference, Jun.

1992, Anaheim, CA, pp. 357-360.

[55] J. G. Dastidar, N. A. Touba, “A Systematic Approach for Diagnosing Multiple

Delay Faults,” in Proc. IEEE International Symposium on Defect and Fault

Tolerance in VLSI Systems, Austin, TX, Nov. 1998, pp. 211-216.

[56] A. Krstic, L. C. Wang, K. T. Cheng, J. J. Liou, T. M. Mak, “Enhancing

Diagnosis Resolution for Delay Defects Based Upon Statistical Timing and

Statistical Fault Models,” in Proc. ACM/IEEE Design Automation Conference,

Anaheim, CA, Jun. 2003, pp. 668-673.

[57] A. Krstic, L. C. Wang, K. T. Cheng, J. J. Liou, M. S. Abadir, “Delay Defect

Diagnosis Based Upon Statistical Timing Models – The First Step,” in Proc.

Design Automation and Test in Europe, Paris, France, March 2003, pp. 10328-

10334.

[58] R. Aitken, “Fault Location with Current Monitoring,” in Proc. IEEE

International Test Conference, Nashville, TN, Oct. 1991, pp. 623-632.

 127

[59] R. Aitken, “A Comparison of Defect Models for Fault Location with Iddq

Measurements,” in Proc. IEEE International Test Conference, Baltimore, MD,

Sep. 1992, pp. 778-787.

[60] S. Chakravarty and S. Suresh, “IDDQ Measurement Based Diagnosis of Bridging

Faults in Full Scan Circuits,” in Proc. International Conference on VLSI Design,

Calcutta, India, Jan. 1994, pp. 179-182.

[61] D. Burns, “Locating High Resistance Shorts in CMOS Circuits by Analyzing

Supply Current Measurement Vectors,” in Proc. International Symposium for

Testing and Failure Analysis, Los Angeles, CA, Nov. 1989, pp. 231-237.

[62] A. Gattiker and W. Maly, “Current Signatures,” in Proc. IEEE VLSI Test

Symposium, Princeton, NJ, Apr. 1996, pp. 112-117.

[63] A. Gattiker and W. Maly, “Current Signatures: Application,” in Proc. IEEE

International Test Conference, Washington, DC, Nov. 1998, pp. 1168-1167.

[64] A. Gattiker and W. Maly, “Toward Understanding “IDDQ-Only” Fails,” in Proc.

IEEE International Test Conference, Washington, DC, Oct. 1998, pp. 174-183.

[65] C. Thibeault, “A Novel Probablistic Approach for IC Diagnosis Based on

Differential Quiescent Current Signatures,” in Proc. IEEE VLSI Test Symposium,

Monterey, CA, Apr. 1997, pp. 80-85.

[66] P. Nigh, D. Forlenza and F. Motika, “Application and Analysis of IDDQ

Diagnostic Software,” in Proc. IEEE International Test Conference, Washington,

DC, Nov. 1997, pp. 319-327.

 128

[67] Chunsheng Liu, “An Efficient Method for Improving the Quality of Per-Test

Fault Diagnosis,” in Proc. IEEE International Conference on Computer Aided

Design, San Jose, CA, Nov 2004, pp. 648-651.

[68] S. Venkataraman, S. Drummonds, “Poirot: A Logic Fault Diagnosis Tool and Its

Applications,” in Proc. IEEE International Test Conference, Atlantic City, NJ,

Oct. 2000, pp. 253-262.

[69] T. Bartenstein, D. Heaberlin, L. Huisman, D. Sliwinski, “Diagnosing

Combinational Logic Designs Using the Single Location At-a-Time (SLAT)

Paradigm,” in Proc. IEEE International Test Conference, Baltimore, MD, Oct.

2001, pp. 287-296.

[70] D. Lavo, I. Hartanto and T. Larrabee, “Multiplets, Models and the Search for

Meaning: Improving Per-Test Fault Diagnosis,” in Proc. IEEE International Test

Conference, Baltimore, MD, Oct. 2002, pp. 250-259.

[71] M. Abramovici, P. R. Menon, and D. T. Miller, “Critical Path Tracing: An

Alternative to Fault Simulation,” in Proc. ACM/IEEE Design Automation

Conference, Miami Beach, FL, Jun. 1983, pp. 214-230.

[72] Alexander Miczo, Digital Logic Testing and Simulation, NJ: John Wiley & Sons,

Hoboken, 2003.

[73] P. Menon, Y. Levendel, and M. Abramovici, “Critical Path Tracing in Sequential

Circuits,” in Proc. IEEE International Conference on Computer Aided Design,

Santa Clara, CA, Nov. 1988, pp. 162-165.

 129

[74] T. Ramakrishnan and L. Kinney, “Extension of the Critical Path Tracing

Algorithm,” in Proc. ACM/IEEE Design Automation Conference, Orlando, FL,

Jun. 1990, pp. 720-723.

[75] M. Favalli, P. Olivo, M. Damiani, and B. Ricco, “Fault Simulation of

Unconventional Faults in CMOS circuits,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 10, no. 5, May 1991, pp.

667-682.

[76] W. Ke, S. Seth, and B. Bhattacharya, “A Fast Fault Simulation Algorithm for

Combinational Circuits,” in Proc. IEEE International Conference on Computer

Aided Design, Santa Clara, CA, Nov. 1988, pp. 166-169.

[77] M. Favalli, P. Olivo, and B. Ricco, “A Novel Critical Path Heuristic for Fast

Fault Grading,” IEEE Transaction on Computer Aided Design of Integrated

Circuits and Systems, vol. 10, no. 4, Apr. 1991, pp. 544-548.

[78] M. Shadfar, A. Peymandoust, Z. Navabi, “Using VHDL Critical Path Tracing

Models for Pseudo Random Test Generation,” in Proc. of VHDL International

User’s Forum, Santa Clara, CA, Apr. 1995, pp. 41-45.

[79] L. Wu, D. M. H. Walker, “A Fast Algorithm for Critical Path Tracing in VLSI

Digital Circuits,” in Proc. IEEE International Symposium on Defect and Fault

Tolerance in VLSI Systems, Monterey, CA, Oct. 2005, pp 178-186.

[80] L. Wu, D. M. H. Walker, “An Extended Critical Path Tracing Approach for

Combinational Circuits,” in IEEE International Test and Synthesis Workshop,

San Antonio, TX, Mar. 2007.

 130

[81] D. T. Wang, “An Algorithm for the Generation of Test Sets for Combinational

Logic Networks,” IEEE Transaction on Computers, vol. c-24, no. 7, July 1975,

pp. 742-746.

[82] S. Makar, E. McCluskey, “The Critical Path for Multiple Faults,” in Proc. IEEE

International Conference on Computer Aided Design, Santa Clara, CA, Nov.

1989, pp. 162-165.

[83] C. J. Burnett, “Fault Simulation of Combinational Circuits Based on Critical Path

Tracing,” M.S. Thesis, Department of Electrical Engineering, Texas A&M

University, College Station, TX, Dec. 1992.

[84] F. Maamari and J. Rajski, “A Fault Simulation Method Based on Stem Region,”

in Proc. IEEE International Conference on Computer Aided Design, Santa

Clara, CA, Nov. 1988, pp. 170-173.

[85] F. Maamari and J. Rajski, “A Reconvergent Fanout Analysis for Efficient Exact

Fault Simulation of Combinational Circuits,” in Proc. International Symposium

on Fault-Tolerant Computing, Tokyo, Japan, Jun. 1988, pp. 122-127.

[86] H. K. Lee, D. S. Ha, “An Efficient, Forward Fault Simulation Algorithm Based

on the Parallel Pattern Single Fault Propagation,” in Proc. IEEE International

Test Conference, Nashville, TN, Sep. 1991, pp.946-955.

[87] J. B. Liu and A. Veneris, “Incremental Fault Diagnosis,” IEEE Transaction on

Computer Aided Design, vol. 24, no. 2, Feb. 2005, pp. 240-251.

 131

[88] Z. Wang, M. Marek-Sadowska, K. Tsai, J. Rajski, “Analysis and Methodology

for Multiple-Fault Diagnosis,” IEEE Transaction on Computer-Aided Design of

Integrated Circuits and Systems, vol. 25, no. 3, Mar. 2006, pp. 558-575.

[89] N. Bhat, “Development of a Bridge Fault Extractor Tool,” Master’s Thesis,

Department of Electrical Engineering, Texas A&M University, 2004.

[90] C. E. Stroud, J. M. Emmert, J. R. Bailey, K. S. Chhor and D. Nikolic, “Bridging

Fault Extraction from Physical Design Data for Manufacturing Test

Development,” in Proc. IEEE International Test Conference, Atlantic City, NJ,

Oct. 2000, pp. 760-769.

[91] P. Maxwell, R. Aitken and L. Huismann, “The Effect on Quality of Non-Uniform

Fault Coverage and Fault Probability,” in Proc. IEEE International Test

Conference, Washington, DC, Oct. 1994, pp. 739-746.

[92] J. M. Emmert, C. E. Stroud and J. R. Bailey, “A New Bridging Fault Model for

More Accurate Fault Behavior,” in Proc. IEEE International Automatic Testing

Conference, Anaheim, CA, Sep. 2000, pp. 481-485.

[93] R. Rajsuman, “An Analysis of Feedback Bridging Faults in MOS VLSI,” in

Proc. IEEE VLSI Test Symposium, Atlantic City, NJ, Apr. 1991, pp. 53-58.

[94] J. Wu, E. M. Rudnick, “A Diagnostic Fault Simulator for Fast Diagnosis of

Bridge Faults,” in Proc. International Conference on VLSI Design, Goa, India,

Jan. 1999, pp. 498-505.

 132

[95] M. Hashizume, H. Yotsuyanagi, T. Tamesada, “Identification of Feedback

Bridging Faults with Oscillation,” in Proc. Asian Test Symposium, Shanghai,

China, Nov. 1999, pp. 25-30.

[96] P. Dahlgren, “Switch-Level Bridging Fault Simulation in the Presence of

Feedback,” in Proc. IEEE International Test Conference, Washington, DC, Oct.

1998, pp. 363-371.

[97] M. Roca and A. Rubio, “Current Testability Analysis of Feedback Bridging

Faults in CMOS Circuits,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 14, no. 10, Oct. 1995, pp. 1299-1305.

[98] A. Keshk, Y. Miura and K. Kinoshita, “Simulation of Resistive Bridging Fault to

Minimize the Presence of Intermediate Voltage and Oscillation in CMOS

Circuits,” in Proc. Asian Test Symposium, Taiwan, Dec. 2000, pp. 120-124.

[99] K. C. Y. Mei, “Bridging and Stuck-At Faults,” IEEE Transactions on Computers,

vol. c-23, no. 7, July 1974, pp. 720-727.

[100] V. Sar-Dessai and D. M. H. Walker, “Accurate Fault Modeling and Fault

Simulation of Resistive Bridges,” in Proc. International Symposium on Defect

and Fault-Tolerance in VLSI Systems, Austin, TX, Nov. 1998, pp. 102-107.

[101] H. Konuk and F. J. Ferguson, “Oscillation and Sequential Behavior Caused by

Interconnect Opens in Digital CMOS Circuits,” in Proc. IEEE International Test

Conference, Washington, DC, Nov. 1997, pp. 597-606.

 133

[102] Y. J. Kwon and D. M. H. Walker, “Yield Learning via Functional Test Date,” in

Proc. IEEE International Test Conference, Washington, DC, Oct. 1995, pp. 626-

635.

[103] A. Smith, A. Veneris, M. F. Ali and A. Viglas, “Fault Diagnosis and Logic

Debugging Using Boolean Satisfiability,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 24, no. 10, Oct. 2005, pp.

1606-1621.

[104] S. Y. Huang, “On Improving the Accuracy of Multiple Defect Diagnosis,” in

Proc. IEEE VLSI Test Symposium, Marina Del Rey, CA, May 2001, pp. 34-39.

[105] Z. Wang, M. Marek-Sadowska, K.-H. Tsai, J. Rajski, “Analysis and

Methodology for Multiple-Fault Diagnosis,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 25, no. 3, Mar. 2006, pp.

558-575.

[106] H. C. Kao, M. F. Tsai, S. Y. Huang, C. W. Wu, W. F. Chang, S. K. Lu, “Efficient

Double Fault Diagnosis for CMOS Logic Circuits with a Specific Application to

Generic Bridging Faults,” Journal of Information Science and Engineering, vol.

19, no. 4, July 2003, pp. 571-587.

[107] M. Renovell, F. Azais, Y. Bertrand, “Improving Defect Detection in Static-

Voltage Testing,” IEEE Design & Test of Computers, vol. 19, no. 6, Nov.-Dec.

2002, pp. 83-89.

 134

[108] W. Zou, W-T Cheng, S. M. Reddy, “Interconnect Open Defect Diagnosis with

Physical Information,” in Proc. Asian Test Symposium, Fukuoka, Japan, Nov.

2006, pp. 203-209.

 135

VITA

Lei Wu

5 N. Guojiaqiao St. 4-3-602

Chengdu, Sichuan 610064

People’s Republic of China

E-mail: tinaleiwu@yahoo.com

Lei Wu was born in Wuhan, China. She obtained a B.S. in library and information

science in July 1997 and a M.S. in electrical engineering in June 2000 from Sichuan

University, Chengdu, Sichuan, China, and a M.S. in computer science from McNeese

State University, Lake Charles, Louisiana in August 2002, and a Ph.D. in computer

engineering from Texas A&M University, College Station, TX in December 2007. Her

research interests are logic fault diagnosis, design verification and design for test.

