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ABSTRACT 

 

 

An Efficient Logic Fault Diagnosis Framework Based on Effect-Cause Approach. 

(December 2007) 

Lei Wu, B.S., Sichuan University, China; 

M.S., Sichuan University, China; 

M.S., McNeese State University 

Chair of Advisory Committee: Dr. Duncan M. Walker 

 

Fault diagnosis plays an important role in improving the circuit design process and the 

manufacturing yield. With the increasing number of gates in modern circuits, determining 

the source of failure in a defective circuit is becoming more and more challenging.  

In this research, we present an efficient effect-cause diagnosis framework for 

combinational VLSI circuits. The framework consists of three stages to obtain an accurate 

and reasonably precise diagnosis. First, an improved critical path tracing algorithm is 

proposed to identify an initial suspect list by backtracing from faulty primary outputs 

toward primary inputs. Compared to the traditional critical path tracing approach, our 

algorithm is faster and exact. Second, a novel probabilistic ranking model is applied to 

rank the suspects so that the most suspicious one will be ranked at or near the top. Several 

fast filtering methods are used to prune unrelated suspects. Finally, to refine the diagnosis, 

fault simulation is performed on the top suspect nets using several common fault models. 

The difference between the observed faulty behavior and the simulated behavior is used to 
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rank each suspect. Experimental results on ISCAS85 benchmark circuits show that this 

diagnosis approach is efficient both in terms of memory space and CPU time and the 

diagnosis results are accurate and reasonably precise. 
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1. INTRODUCTION 

1.1 Fault Diagnosis 

As integrated circuit (IC) manufacturing technology becomes more complex and 

feature size continues to shrink, more logic gates are being integrated into VLSI chips. 

Table 1 shows the past, present and future semiconductor technology roadmap [1]. The 

increasing complexity in IC designs makes the design and manufacturing process more 

vulnerable to defects, which cause deformation to the ideal IC. 

 Failure analysis has played an important role in improving the manufacturing process 

and yield. Failure analysis is the process of determining the actual failure cause for 

malfunctioning chips. Discovering the cause of failures in a circuit can often lead to 

improvements in circuit design or manufacturing process, with the subsequent 

production of higher-quality ICs. 

Historically, failure analysis has been a physical process. Failure analysis engineers 

investigate the failing part using scanning electron microscopes, infrared sensors, 

particle beams, liquid crystal films and a variety of other expensive high-tech equipment 

to identify the cause of circuit failure. With the enormous number of circuit elements and 

the number of layers in modern ICs, physical search for defects cannot succeed without 

first having a small list of suspect locations [2]. This is the job of fault diagnosis. Fault 

diagnosis is the process of identifying the potential location of logic faults in 

   

This dissertation follows the style and format of IEEE Transactions on Very Large Scale 

Integration (VLSI) Systems. 
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malfunctioning chips, usually through analysis of the logic behavior of failing circuits. 

Physical failure analysis cannot be effectively conducted without considerable guidance 

from fault diagnosis. If the diagnosis is imprecise, the failure analysis engineer may 

waste time examining a large physical area. Even worse, if the diagnosis is inaccurate, 

the failure analysis engineer will be led to the wrong part of the chip, with the possible 

destruction of the actual defect site [3].  

Table 1.   Table of previous, present and future semiconductor trends. 

Year 1997-2001 2003-2006 2009-2012 

Feature size, nm 250-180 130-70 45-32 

Millions transistors per cm
2
 4-10 18-39 84-180 

Number of wiring layers 6-7 7-9 9-10 

Pin Count  100-1200 500-1936 780-3616 

Die size, mm
2
 50-385 60-520 70-750 

Clock rate, MHz 200-1684 3088-5631 11511-19348 

Voltage, V 1.2-2.5 0.9-1.2 0.9-1.0 

Power, W 1.2-61 2.8-98 3-138 

 

Fault diagnosis is an important component of failure analysis. In principle, logic fault 

diagnosis is straightforward: based on the data available about the failing chip, the 

purpose of fault diagnosis is to produce a list of likely defect locations. However, with 

the enormous number of transistors in modern ICs and the number of layers in most 

complex circuits, defect localization is not an easy task. According to the International 

Technology Roadmap for Semiconductors (ITRS), the complexity of defect localization 

is expected to grow exponentially [1].  
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Previous-proposed strategies for VLSI fault diagnosis have a variety of limitations. 

Some techniques are limited to specific fault models and will fail on unmodeled 

behavior or unexpected data. Some techniques require very high memory usage, which 

is infeasible for large designs. Others apply ad hoc or arbitrary scoring mechanisms to 

rate fault candidates, making the result difficult to interpret or to compare with the 

results from other algorithms. The dissertation presents a fault diagnosis approach that is 

robust, comprehensive and practical. By introducing an extended critical path tracing 

method and a probabilistic ranking framework, the approach can produce accurate and 

precise diagnosis for stuck-at fault, wired-AND bridge fault, wired-OR bridge fault and 

dominant bridge fault. By using an effect-cause approach, it is designed to be memory 

efficient so that it can be applied to large designs.  

1.2 Diagnostic Data 

Fault diagnosis is used to perform logical detective work. The evidence usually 

consists of a description of the circuit design, the tests applied and the pass-fail results of 

those tests [4]. In addition, more detailed per-test information may be provided.  

The values applied at the circuit inputs and scanned into the flip-flops are referred to 

as the input pattern or test vector. The input vectors causing any mismatch between the 

outputs of the faulty chip and a fault-free chip are referred to as failing input vectors. 

The operation of scanning and applying an input pattern to the circuit and recording its 

output response is called a test [4], and a collection of tests designed to exercise part or 

all of the circuit is called a test set.  
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The output response of a defective circuit to a test set is referred to as the observed 

faulty behavior, and its logic representation is commonly known as a fault signature. 

The fault signature is usually represented in one of the following two common forms. 

The first is the pass-fail fault signature. It reports the result for each test in the test set, 

whether a pass or a fail. Typically the fault signature consists either of a bit vector for 

the entire test set in which by convention failing tests are represented as 1s and the 

passing tests by 0s, or the indices of the failing tests. Table 2 gives an example of a fault 

signature for a simple example of 10 tests, out of which 5 failing tests are recorded. 

Table 2.   Example of pass-fail fault signatures. 

Result for 10 tests: Pass-fail signatures: 

 1: Pass 6: Pass     By index:             2, 3, 7, 9, 10 

 2: Fail 7: Fail     By bit vector:       0110001011 

 3: Fail 8: Pass  

 4: Pass 9: Fail  

 5: Pass 10: Fail  

 

The second type of fault signature is the full-response fault signature, which reports 

not only what tests failed but also at which outputs (primary outputs and flip-flops) the 

differences are observed. Table 3 shows a simple example of indexed full-response fault 

signatures. Each failing test vector is recorded with a list of failing outputs. For example, 

the first row represents that primary outputs 3 and 5 are observed as faulty on failing test 

vector 2.  
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Table 3.   Example of indexed full-response fault signatures. 

Indexed full-response fault signatures: 

 2:  3, 5 

 3:  4 

 7:  2, 3 

 9:  2, 5 

 10:  3, 4 

 

1.3 Two Diagnostic Approaches 

Understanding how chips fail is the first step toward identifying and eliminating the 

causes of the failure. The objective of diagnosis is to pinpoint the fault location and 

analyze the defect causing it. There are two types of approaches available for fault 

diagnosis. The first approach is cause-effect analysis, which enumerates all the possible 

faults existing in an fault model and determines their corresponding output responses to 

a given set of tests before the test experiments [5]. The second type of approach is effect-

cause analysis, in which the actual response of the failing chip is processed to determine 

its possible faults. The initial step of this type of approach is done in a model-

independent fashion to avoid diagnostic failure due to an inadequate fault model.  

1.3.1 Cause-Effect Approach 

A cause-effect algorithm starts by using possible fault models (the “cause”) to predict 

the behavior of faulty circuits through fault simulation, compares the observed faulty 

behavior (the “effect”) to these predictions, each representing a fault candidate and 
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identifies the candidate that most closely matches the observations. A cause-effect 

algorithm is characterized by the choice of the particular fault model(s) before any 

analysis of the actual faulty behavior is performed. All fault simulation is done ahead of 

time and all fault signatures stored in a database called a fault dictionary. Thus, it is also 

called model-based diagnosis. Figure 1 shows a simplified view of the process [6]. 

 

Figure 1. Process of cause-effect fault diagnosis approach. 

One of the advantages of the cause-effect approach is that it can often provide a 

diagnosis result in less time in terms of analysis time per chip, simply because the fault 

simulation work has been done ahead of time and is therefore amortized over many 

diagnosis runs. This aspect is especially significant for high-volume situations in which a 

large number of parts must be diagnosed and in cases where a quick diagnostic result is 

Fault model and design 

Fault simulation 

Fault behavior 

Tester data 

Comparison 

Likely fault sites 

Failure analysis 
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desired. In addition, this approach is successful if the actual defect behavior is accurately 

modeled by the selected fault model(s). However, it might be fooled by unmodeled 

faults. Since the type of fault is unknown beforehand, any single model-based diagnosis 

is unreliable. Another disadvantage of this approach is that fault simulation could 

become very expensive and the size of fault dictionary size could quickly become 

unmanageable for large designs. A classical fault dictionary includes a bit for detection 

or nondetection of each of n faults on a circuit with m outputs and v test vectors, with a 

total size of O(n·m·v). Since modern VLSI circuits contains millions of gates, thousands 

of scan elements (which are considered outputs), and thousands of test vectors, a large 

amount of computational effort is involved in building a fault dictionary. Researchers 

have proposed several approaches to shrink the dictionary size, because dictionaries tend 

to be sparse, that is, most of their entries are zero [6]. Early methods usually used 

compaction, with resulting information loss [7]. In some cases, the information loss in 

compaction would dramatically reduce the diagnostic resolution [8]. More recent work 

has emphasized compression, with no information loss but with size reductions similar 

to the compaction techniques [9][10].  

1.3.2 Effect-Cause Approach 

The effect-cause approach analyzes the actual circuit responses and determines which 

fault(s) might have caused the observed failure effect. This class of methods does not 

need to build a fault dictionary.  

The effect-cause algorithm starts from faulty outputs of the circuit (the “effect”) and 

reasons back through the logic to identify possible sources of failure (the “cause”) [4]. 
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This class of methods usually traces backward from each primary output to determine 

the error-propagation paths for all possible fault candidates. The effect-cause diagnosis 

approach has several advantages. First, it does not depend on any particular fault model, 

so it is general enough to handle various fault types. This is an advantage over diagnosis 

methods that rely heavily on fault models. Second, it does not incur the significant 

overhead of simulating and storing the response of a large set of faults. Compared with 

the cause-effect methods, effect-cause techniques are more memory efficient and can 

cope with large designs. The disadvantage of effect-cause diagnosis is the inherent 

imprecision, most are conservative in their inference to avoid eliminating any candidate, 

but this usually leads to a large implicated area [4]. The other disadvantage is that the 

effect-cause approach is not suitable for products that are likely to be diagnosed in large 

quantities. As we discussed above, cause-effect approaches have less analysis time per 

chip than effect-cause approach because the fault dictionary is built in advance. 

1.4 Goals of Dissertation 

Since defect behavior is becoming more and more complex, cause-effect diagnosis 

even with multiple fault models may leave some faults unmodeled. To obtain an 

accurate and reasonably precise diagnosis that can be used to identify various faults, we 

propose an efficient fault diagnosis framework based on an effect-cause approach. 

Figure 2 shows the general view of the framework.  
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Figure 2. General view of our diagnosis framework. 

In this approach, we first use an improved critical path tracing (CPT) algorithm to 

identify the initial suspect list. Then a probabilistic ranking method based on failing test 

patterns is used to rate each suspect. A filtering approach is applied to prune off 

unrelated fault candidates. Finally, a small list of highly ranked suspects is simulated 

with several commonly used fault models and matched to the observed behavior. For 

each fault candidate, the Hamming distance between the observed behavior and 

simulated behavior is calculated to determine how well each fault candidate can explain 

the faulty behavior. All the candidates are re-ranked in ascending order of Hamming 
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distance. If a candidate can explain the faulty behavior well, then we have obtained a 

successful diagnosis. Otherwise, this indicates there may be multiple fault sites and we 

will rely on path tracing.  

Our diagnosis framework currently targets single defect diagnosis since our critical 

path tracing approach has a single fault assumption – that at most one fault is observed 

on each test pattern. It may not give an accurate prediction in the case of multiple faults, 

particularly when the multiple faults effect interfere each other. However, our diagnosis 

framework can be adapted to multiple fault diagnosis by incorporating a path tracing 

strategy. Compared to critical path tracing, path tracing is a more conservative approach, 

but guarantees that the potential source of error is included in the suspect list. Path 

tracing alone is not practical for general industry use because it sometimes produces too 

many fault candidates.  

In general, the goal of this research work is to implement an effect-cause based 

diagnosis approach that is more efficient than common cause-effect diagnosis 

approaches both in terms of CPU time and memory, and more accurate and precise than 

common effect-cause diagnosis approaches.  

1.5 Dissertation Organization 

The dissertation is organized as follows. In section 2, we discuss previous diagnosis 

algorithms, their advantages and drawbacks. Section 3 presents the first stage of the 

proposed diagnosis approach - critical path tracing. An improved critical path tracing 

algorithm is proposed and its running time is compared with FSIM, a PPSFP fault 
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simulation approach. Section 4 discusses the second stage of diagnosis, in which a 

probabilistic ranking model is used to rank the suspects, which may then be filtered. 

Section 5 presents the third stage of diagnosis, in which fault simulation using various 

fault models is conducted to refine the diagnosis. Commonly used fault models are 

introduced and the parallel fault simulation procedure is described in this section. In 

section 6, the experimental results on ISCAS85 benchmarks show the accuracy and 

resolution of our diagnosis approach. Section 7 concludes the dissertation with future 

directions. 
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2. PREVIOUS WORK 

This section presents algorithms for VLSI diagnosis proposed by previous 

researchers, from the early 1980s to the present day. In general, the earliest algorithms 

were targeted solely at stuck-at faults and associated simple defects, while the later and 

more sophisticated algorithms have used more detailed fault models and targeted more 

complicated defects.  

2.1 Stuck-at Fault Diagnosis 

Many early VLSI diagnosis systems attempted to incorporate the concept of cause-

effect diagnosis with a previous-generation physical diagnosis method called guided-

probe analysis. Guided-probe analysis employed a physical voltage probe and feedback 

from an analysis algorithm to intelligently select accessible circuit nodes for evaluation 

[5]. Two examples were Western Electric Company’s DORA [11] and an early approach 

of Teradyne, Inc. [12]. The DORA and Teradyne techniques attempted to supplement 

the guided-probe analysis with information from stuck-at fault signatures. 

Both systems used relatively advanced matching algorithms for their time. The 

DORA system used a nearness calculation that is described as fuzzy match by the 

authors [2]. The Teradyne system employed the concept of prediction penalties. The 

signature of a candidate fault is made up of {output, vector} pairs, which is considered 

as a prediction of some faulty behavior. When matching with the actual observed 

behavior, the Teradyne algorithm scored a candidate fault by penalizing for each 
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{output, vector} pair found in the stuck-at fault signature but not found in the observed 

behavior, and penalizing for each {output, vector} pair found in the observed behavior 

but not the stuck-at fault signature. These are now commonly known as misprediction 

and nonprediction penalties, respectively.  

While other early and less sophisticated algorithms applied the stuck-at fault model 

directly and expected exact matches to simulated behaviors, it became obvious that 

many failures in VLSI circuits do not behave exactly like stuck-at faults. Some stuck-at 

diagnosis algorithms increased the complexity and sophistication of their matching 

method to account for unmodeled effects. An algorithm proposed by Kunda [13] ranked 

matches by the size of intersection between signature bits. In the algorithm,   

misprediction was not penalized but there was a limit on the nonprediction. This reflects 

an implicit assumption that unmodeled behavior generally leads to over-prediction: any 

unmodeled behavior will cause fewer actual failures than predicted by simulation. This 

assumption likely arose from the intuitive expectation that most defects involve a single 

fault site with intermittent fault behavior, which could be wrong in case of multiple fault 

sites. 

A more balanced approach was proposed by De and Gunda [14]. In this algorithm, 

users applied relative weights on misprediction and nonprediction. By modifying 

traditional scoring with these weights, the algorithm assigned a quantitative ranking to 

each stuck-at fault. The authors claimed that the method could be used to explicitly 

target defects that behave similar to but not exactly like the stuck-at fault model, such as 

some opens and multiple independent stuck-at faults, but it could diagnose bridging 
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defects only implicitly (by user interpretation). This algorithm was unique for its ability 

to allow the user to adjust the assumptions about unmodeled behavior that other 

algorithms made implicitly and was perhaps the most general of the simple stuck-at 

diagnostic algorithms. 

Another stuck-at fault diagnosis algorithm was proposed by Waicukauski and 

Lindbloom [15]. This algorithm is very pervasive because the most popular commercial 

tools, Mentor Graphics FastScan [16] and Synopsys TetraMAX[17] , are based on this 

algorithm. We refer to this algorithm as the W&L algorithm.  

The W&L algorithm relies solely on stuck-at fault assumptions and simulations. It is 

best classified as a dynamic cause-effect algorithm. A cause-effect algorithm is static, in 

which all fault simulation is done ahead of time and all fault signatures stored in a fault 

dictionary; or, it can be dynamic, where simulations are performed only as needed. 

However, W&L algorithm does borrow some ideas from effect-cause approaches 

because it uses limited path tracing to reduce the number of simulations it needs to 

perform. 

The W&L algorithm uses a simple scoring mechanism, relying mainly on exact 

matching. However, it performs the matching in an innovative way by matching fault 

signatures on a per-test basis. In this algorithm, each failing test pattern is considered 

independently. From the first failing pattern and the good-machine values, it uses path 

tracing to create a minimum fault list. It then simulates each fault in the fault list; if a 

candidate predicts a fail for the test and the outputs match exactly, then a “match” is 

found. All the matching fault candidates are then simulated against the remaining failing 
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patterns. The candidate that explains the most failing patterns is kept. Then all of the 

failing test patterns that have already been explained by this candidate are eliminated. 

The diagnosis process repeats until all failing tests are considered.  

The W&L algorithm also conducts a post-processing step. It examines the final 

candidate set to classify the diagnosis. If the diagnosis consists of a single stuck-at fault 

(with any equivalent faults) that matches all failing test patterns, it then uses passing 

patterns to improve diagnosis resolution. If the stuck-at candidates can also explain all of 

the passing test patterns, the diagnosis is classified as a “Class I” diagnosis. If the 

diagnosis consists of a single candidate that explains all the failing test patterns but not 

all passing test patterns, e.g. there is some misprediction, then the diagnosis is classified 

as a “Class II” diagnosis. The authors indicated that the defect types could be diagnosed 

in “Class II” diagnosis include CMOS opens, dominant bridging and intermittent 

defects. Finally, “Class III” diagnosis consists of multiple stuck-at candidates with 

possible misprediction and nonprediction. The defects that could be diagnosed in this 

class of diagnosis included multiple stuck-at defects and wired logic bridging faults.  

The two appealing features of the W&L algorithms are the per-test approach and the 

post-processing analysis. The matching algorithm is a greedy coverage algorithm over a 

set of failing tests. Moreover, the algorithm has the ability to address multiple 

simultaneous defects. However, it has an assumption that the fault effects from such 

defects are non-interfering. Therefore, the diagnosis would fail if the multiple defects 

always overlap on their fault effect propagation for all the failing test patterns. 

Because of the huge overhead of fault dictionary size and simulation time in cause-
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effect stuck-at diagnosis, some researchers introduced effect-cause stuck-at diagnosis. 

To our knowledge, the idea was first proposed by Breuer et al. [18]. Their approach is 

algebraic in nature and requires the solution of large systems of Boolean equations. This 

technique becomes impractical even for circuits of moderate complexity. Abramovici 

and Breuer later proposed a new effect-cause approach. The main tool of the algorithm is 

the Deduction Algorithm, which processes the actual response of the defective chip to 

deduce its internal values [19][20]. The Deduction Algorithm can also recognize a 

response generated by a fault situation that cannot be modeled as a stuck fault. Later 

Rajski and Cox proposed another effect-cause diagnosis technique [21]. Both algorithms 

attempt to identify all fault-free lines, and so can implicitly diagnose multiple faults and 

various fault types. However, the diagnostic results are pessimistic and imprecise.  

The most widely used effect-cause approach is path tracing. It traces error 

propagation paths backward from failed primary outputs toward primary inputs. Critical 

path tracing is one of the popular path tracing methods. It will be discussed in detail in 

the next section. A design error diagnostic algorithm based on critical path tracing was 

proposed in [22]. The goal of this method is to find a single-fix net, which is a net where 

a change in logical value explains all failing outputs on all failing vectors but does not 

cause a change on any passing vectors. Each time a net is found as a fix net for each 

primary output on each failing vector, the suspicion level of this net is increased by 1. 

All of the candidate nets are ranked by the suspicion level; the one with the highest level 

is ranked highest. For defective circuits with multiple faults, there are several strong 

partial-fix nets that can partially explain the circuit faulty behavior. In this case, nets 
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with the highest suspicion level can be misleading since this method cannot guarantee 

that the best candidates are always ranked at the top in the case of multiple faults.  

2.2 Bridging Fault Diagnosis 

Since it has been shown repeatedly that the stuck-at fault model does not accurately 

reflect the behavior of silicon defects such as bridging [23][24][25][26][27], several 

methods have been suggested to improve the diagnosis of bridging faults using the 

stuck-at fault model [2][28][29][30].  

Millman, McCluskey and Acken proposed an explicit bridging fault diagnosis 

technique using the single stuck-at fault model, which is henceforth called the MMA 

technique [29]. The authors introduced the idea of composite bridging fault signatures, 

which are created by concatenating the four stuck-at fault signatures for the two shorted 

nodes. The underlying idea is that any vector that detects a bridging fault will detect one 

of the four stuck-at faults associated with the two nodes. Therefore, the bridging fault 

signature must be included in the resulting composite signature. The matching algorithm 

used in MMA technique is simple subset matching: any candidate whose composite 

signature contains all the observed {vector, output} pairs is considered a match and 

appears in the final diagnosis.  

A notable advantage of the MMA technique is that it relies on the single stuck-at fault 

model to create combined stuck-at fault signatures, instead of bridging fault simulation, 

which can be computationally expensive both in term of fault list sizes and fault 

simulation time complexity. However, the use of combined stuck-at fault signatures 
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over-predicts the bridge fault behavior because it includes stuck-at faults that do not 

appear on the bridged nets. For example, in order for a bridging fault to be detected, a 

test vector must stimulate opposite logic values on the two bridged nodes. Any vector in 

a composite signature that detects the same-valued stuck-at fault on both bridged nodes 

must stimulate the same value on both nodes; such a vector cannot detect the bridging 

fault. Therefore, the MMA algorithm results in a large, unranked suspect list, with no 

expression of preference or likelihood assigned to the candidates. In addition, the MMA 

technique may generate incorrect diagnosis results in the case of the Byzantine Generals 

Problem [28][31][32]. Because gate input logic thresholds are not identical, different 

downstream gates can interpret the voltage as different logic values. This phenomenon is 

known as the Byzantine Generals Problem. Since the MMA technique uses a strict 

matching algorithm in which the candidate is good if it contains the observed faulty 

behavior or is removed if it does not, this causes an unacceptable rate of failed diagnosis. 

An approach similar to the MMA algorithm was presented by Chakravarty and Gong 

[33]. Their algorithm did not explicitly create composite stuck-at signatures but used a 

matching method on combinations of stuck-at signatures to create the same result. Both 

of these two bridging fault diagnosis techniques suffer from imprecision: the average 

sizes of both diagnosis results are very large, consisting of hundreds or thousands of 

candidates. Other researchers have continued to use and extend the idea of stuck-at 

based composite signatures for various fault models [34][35]. 

While the original MMA technique is attractive because of its use of simple stuck-at 

fault signatures for diagnosing bridging faults, it has been demonstrated to have several 
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inadequacies: large average diagnoses, unordered fault candidates, and a significant 

percentage of failed diagnoses. An improved bridging fault diagnosis technique was 

proposed by Lavo et al [2]. They tried to improve the MMA technique by addressing 

each of the issues mentioned above by using match restriction, match requirement and 

match ranking.  

A weakness of the MMA technique is that a faulty signature is likely to be contained 

in a large number of composite signatures. The larger a composite signature, the larger 

the size of an average diagnosis. The match restriction employed in this improved 

technique eliminates from a composite signature any entries that cannot be used to detect 

the bridging fault. In order for a bridging fault to be detected, a test vector must 

stimulate opposite logic values on the two bridged nodes. Any vectors that place 

identical values on the bridged nodes are removed according to the match restriction, 

which results in a composite signature that more precisely contains the possible behavior 

of the bridging fault.  

While the match restriction relied on identifying test vectors that cannot detect a 

particular bridging fault, the improvement presented in match requirement is based on 

vectors that should be able to detect a bridging fault − namely, those vectors that place 

opposite logic values on the bridged nodes and detect single stuck-at faults on both of 

the bridged nodes. Therefore, the second improvement is to enforce match requirement 

on vectors by identifying such vectors in the composite signatures. 

The third improvement suggested by Lavo et al is match ranking. The original MMA 

technique did not order the candidates of a diagnosis; a diagnosis simply consists of an 
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unranked list of candidate faults, which is not very helpful to guide the physical search 

for defects. In addition, the original MMA technique had a strict matching criterion: 

either a candidate contained the observed behavior, or it was eliminated from 

consideration. The improved technique can order the candidates by assigning a measure 

of likelihood to every candidate. The idea behind ranking candidates is to turn the strict 

accept-or-remove criteria into a more quantitative measure of relative match goodness. 

Figure 3 [2] shows the comparison between the observed behavior (shaded) and a 

candidate fault behavior (unshaded).  

Candidate Behavior (C)

Intersection (I)

Nonpredictions (N) Mispredictions (M)

Observed Behavior (B)

Candidate Behavior (C)

Intersection (I)

Nonpredictions (N) Mispredictions (M)

Observed Behavior (B)
 

Figure 3. Comparison of candidate behavior and observed behavior. 

The observed behaviors that are correctly predicted by the candidate are represented 

as set I (Intersection), the output errors that are predicted by the candidate but not 

observed are represented as set M (Misprediction), and the output errors that are 

observed but not predicted by the candidate are represented as set N (Nonprediction) [2].  

The primary ranking concern is that the best candidates are the ones that contain the 

largest amount of the faulty behavior. Therefore, the first quantitative measure of match 
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goodness is the size of the intersection of the observed behavior and the composite 

signature. If the first ranking cannot provide enough information to differentiate 

candidates, then the second measure is the number of required vectors; the candidate 

containing more required vectors is ranked higher. Additionally, there is a third measure 

to judge the quality of an individual match: the amount of misprediction. The candidate 

with less misprediction is more likely to be the better explanation for the faulty behavior. 

Figure 4 shows the ranking for four candidates C1, C2, C3 and C4. The candidate C1, 

C2 and C3 are ranked higher than C4 because they have a larger intersection set; C1 and 

C2 are ranked higher than C3 because they contains a higher percentage of required 

vectors; and C1 is ranked higher than C2 because it contains less misprediction. One 

drawback of this improved bridging fault diagnosis is the need to build a large fault 

dictionary [8]. 
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C4

Required vector
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C2
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C4

Required vector

 

Figure 4. Ranking for four candidates proposed in [2]. 

A more direct approach to bridging fault diagnosis was suggested by Aitken and 
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Maxwell [36]. Rather than the algorithm described above which used a simple stuck-at 

fault model paired with a complex fault diagnostic algorithm, the authors chose to use a 

complex and realistic bridging fault model paired with a simple diagnostic algorithm. 

This algorithm examined the behavior of actual bridging defects on silicon and 

performed simulation using biased voting [37], which is an extension of the voting 

model that takes logic gate thresholds into account. This is a cause-effect diagnosis 

approach for bridging faults. The authors reported excellent results, both in accuracy and 

precision. While there are obvious advantages to this approach, there are also significant 

disadvantages. The number of realistic two-line bridging faults is significantly larger 

than the number of single stuck-at faults in a circuit. The overall time spent in fault 

simulation can be prohibitive since the cost of simulating each of these faults can be 

expensive, especially if the simulation considers electrical effects.  

All of the above bridging fault diagnosis techniques are based on the cause-effect 

approach. Venkataraman and Fuchs presented a deductive technique for diagnosis of 

bridging faults [38]. This effect-cause bridging fault diagnosis scheme first uses a path 

tracing procedure to deduce lines potentially associated with the bridging faults. An 

intersection graph is constructed dynamically from the information obtained through 

path tracing from failing outputs. An intersection graph is an undirected graph that 

shows the connection among sets that contain nets that lie on the path tracing and have at 

least one net in common. The intersection graph implicitly represents all candidate 

bridging faults under consideration. Two conditions are used to improve diagnostic 

resolution. When a controlling input is the branch of a stem, one of whose other 
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branches has been chose, then this input should be selected. The second condition is that 

the most easily controllable input is likely to give the smallest node set. The deductive 

algorithm has been experimentally shown to be efficient in both space and time. The 

drawback of the technique is that in about 25% of the cases, the diagnosis is partial; that 

is, only one of the bridge nodes can be determined with certainty. In such cases, if the 

suspect list is so large that bridging fault simulation cannot be performed, then other 

techniques [2][28][29][33] need to be incorporated to improve the resolution. 

The diagnosis techniques presented so far do not use physical layout information to 

diagnose faults. Inductive fault analysis [39] is a method using the circuit layout to 

determine the relative probabilities of individual physical faults in the fabricated circuit. 

A bridging fault diagnosis approach based on inductive fault analysis was introduced in 

[40][41]. This approach is termed CAFDM (Computer-Aided Fault to Defect Mapping). 

The authors use physical design and test failure information combined with bridging and 

stuck-at fault models to localize defects in random logic. In order to get the list of 

realistic bridge faults, the authors developed the FedEx two-node bridge fault extractor 

[42]. The FedEx fault extractor analyses the chip layout and identifies the critical areas 

where short circuits could occur on the suspect nets, including their locations and layers. 

Then a structural procedure, backconing, was used to identify all the potential bridges in 

the intersection area. Those bridge faults were then injected in the Verilog netlist. 

Finally, the FastScan diagnosis engine was run to find suspect nets. If these are 

associated with fault models, they are then mapped to the bridge faults. One of the 

advantages of this diagnosis technique is that it uses physical layout to get a realistic 
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bridging fault list including the layer and locations, which efficiently aids failure 

analysis. Furthermore, the FedEx tool has proven to be much faster than all previous 

fault extractors [43][44][45][46][47][48][49]. The drawback of this approach is that it 

requires the physical layout information of the defective chip. In addition, the potential 

fault list generated by backconing is typically much larger than obtained using critical 

path tracing. 

2.3 Delay Fault Diagnosis 

Due to the increasing importance of timing-related defects in high-performance 

designs, researchers have proposed methods to diagnose timing defects with delay fault 

models. Two commonly used delay fault models are the transition fault model [50] and 

the path delay fault model [51]. The transition fault model assumes that the delay fault 

affects only one gate in the circuit, and the extra delay caused by the fault is large 

enough to prevent the transition from reaching any primary output within the 

specification time. Under the path delay fault model, a circuit is considered faulty if the 

delay of any of its paths exceeds the specification time.  

A delay fault diagnosis method based on an effect-cause analysis was developed by 

Cox and Rajski [52]. However, this method is unrealistic due to the limitations of the 

transition fault model. A single gate delay fault diagnosis approach was presented in [53] 

and [54]. Their approach takes advantage of critical path tracing to identify the probable 

fault locations, so it is also effect-cause diagnosis. The simple two-valued logic 

simulation is used in [53], which misses delay faults caused by static hazards on lines. In 
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[54], a six-valued algebra is used to account for static hazards. However, the backtrace is 

performed along all fanin lines that can have transition under test and could lead to a 

conservative diagnosis. Since component delays are not considered, the probable fault 

location is not guaranteed. 

In [55], the authors present an approach based on static timing information targeting 

multiple delay fault diagnosis. For each fault candidate, they try to use a robustly tested 

path and observe a fault-free situation to determine the upper and lower bounds for a 

suspect delay fault. The experimental results show a much-improved diagnostic 

resolution when compared to non-timing-based approaches. However, the resolution is 

still unsatisfactory for time-to-market requirements. 

More recent work advocates using statistical timing information to guide the delay 

defect diagnosis [56][57], which produces good diagnostic results. In this method, it is 

assumed that the probability density functions of each internal cell or interconnect are 

known. In reality, the accurate probability density functions information may not be 

easily available.  

2.4 IDDQ Fault Diagnosis 

Mainstream VLSI fault diagnosis has been concerned with logic failures at circuit 

outputs or scan flip-flops. Unlike the logic fault diagnosis techniques presented above, 

IDDQ diagnosis uses the IDDQ fault model, in which the presence of a defect causes an 

abnormally high amount of current to flow in the circuit in a normally quiescent or static 

state. The vectors used for IDDQ diagnosis are designed to put the circuit in a static state, 
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in which no logic transitions occur [4].  

Aitken presented a method of diagnosing faults when both logic fails and IDDQ fails 

are measured simultaneously [58],  and he later made this approach more general by 

including fault models for intra-gate and inter-gate shorts [59]. Later Chakravarty and 

Suresh presented an approach which examines the logic value applied to circuit nodes 

during failing tests, and attempts to identify pairs of nodes with opposite logic values as 

possible bridging fault sites [60]. Both of the approaches rely on IDDQ measurements that 

can be definitively classified as either a pass or a fail, which limits their application in 

some situations. Then the application of current signatures was proposed to address the 

limitation [61][62], in which relative current measurements across the test set are used to 

infer the presence of a defect, instead of the absolute values of IDDQ. A diagnosis 

approach introduced in [63][64] attempts to use the presence of certain large differences 

between current measurements as a sign that certain types of defects are present. This 

idea was further extended by Thibeault [65]. He applied a maximum likelihood estimator 

to changes in IDDQ measurements to infer fault types. 

The advantages of IDDQ diagnosis are that the pass/fail IDDQ signatures are easy to 

construct, and when IDDQ diagnosis works, the resulting diagnoses are usually both 

precise and accurate [2]. The disadvantage is that not all circuits are IDDQ testable. 

Furthermore, determining an IDDQ diagnostic current threshold (i.e., the limit that 

distinguishes “passing” current levels from “failing” current levels) is not simple [66], 

which may cause ambiguity. Besides, IDDQ diagnosis also requires a lot of manual 

intervention: the pass-fail current threshold may have to be repeatedly adjusted for each 
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chip until a perfect diagnostic match is found. 

2.5 Per-Test Diagnosis 

A recent methodology is based on the concept of “one test at a time,” or per-test 

diagnosis [67]. Several previous works, such as Poirot [68], SLAT [69] and iSTAT [70], 

have adopted the per-test diagnosis concept where the test patterns are analyzed one at a 

time. In these approaches, test patterns are viewed as independent, and diagnosis is 

carried out on each test pattern and produces a candidate fault set for each of them.  

In [69], a Single Location At-a-Time (SLAT) approach is presented by assuming that 

for any defective chip, there will be some tests for which the failing outputs will exactly 

match the predicted failing outputs of one or more simple (generally stuck-at) faults. 

Each of these test patterns (SLAT patterns) is then associated with a number of such 

single fault candidates, and each fault candidate can be used to explain the failing 

responses of that test pattern. These candidate faults are arranged into sets of faults that 

cover all the matched tests. The collections of faults are called multiplets.  

Later in [70], an improved Single Test At-a-Time (iSTAT) approach is introduced. 

iSTAT still generates multiplets based on the SLAT strategy. However, it applies a 

scoring algorithm to rank the multiplets and only the ones with highest score are 

selected. It is shown that scoring can significantly reduce the number of candidate 

multiplets, hence improve the diagnostic resolution. Although iSTAT has shown a lot of 

strength on increasing the diagnostic resolution over SLAT, there still exist some 

problems. First, iSTAT can determine which multiplet is more likely to include a true 
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fault site. However, it cannot determine which fault within a multiplet is more likely to 

be the true fault site. Therefore, if the top-ranked multiplet contains a large number of 

fault candidates, iSTAT becomes less accurate. Second, while iSTAT reduces the 

candidate size compared to SLAT, the scoring algorithm and the choice of top-ranked 

multiplets in iSTAT can lead to a misleading diagnosis result, where the true fault sites 

are not included in the top-ranked multiplets. 

In order to improve the diagnostic quality of SLAT and iSTAT, Liu proposed a new 

approach named Single Output At-a-Time (SOAT) [67]. SOAT uses the same strategy as 

iSTAT to produce scored multiplets. However, in addition to using the response of each 

failing test pattern, it also exploits the information associated with each failing output 

pin and produces a new list of scored multiplets. The multiplets from iSTAT and SOAT 

are then combined and a scored fault list is generated through a new scoring algorithm. 

This approach can achieve a diagnostic quality superior to both SLAT and iSTAT in 

accuracy and failure coverage. The tradeoff is the increased running time. 

Another per-test diagnosis technique is the Poirot algorithm [68]. It also diagnoses 

test patterns one at a time. In addition, it employs stuck-at signatures, composite 

bridging fault signatures, and composite signatures for open faults on nets with fanout. 

Its scoring method is rudimentary, especially when it compares the scores of different 

fault models. The scoring algorithm always prefers the simpler model when two faults of 

different types equally explain failures. 

There are several advantages to the per-test fault diagnosis approach. First, it 

explicitly handles pattern-dependence, which is often seen with complex fault behavior. 



 29 

 

It also explicitly targets multiple fault behaviors. However, the primary assumption 

underlying the per-test diagnosis approach is that there will be some failing patterns for 

which all the observed failing outputs can be explained exactly be at least one stuck-at 

faults. This assumption immediately implies some limitations: what if there are many 

individual defects in the design, or the defect is so complex that no test pattern can be 

found whose fails can be explained by a single stuck-at fault [69]. In those cases, the 

diagnosis would fail.  
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3. CRITICAL PATH TRACING 

3.1 Overview 

Critical path tracing is very useful in fault and design error diagnosis [22], where fast 

observability calculations are important. Critical path tracing has also been proposed as 

an efficient alternative to fault simulation because it is faster and requires less memory 

than conventional fault simulation [71][72]. One of the key factors contributing to the 

increased efficiency of critical path tracing compared to fault simulation is that it deals 

directly only with the detected faults rather than all possible faults.  

Critical path tracing is used to find faults detected by a specific test vector. It is a two-

step procedure. First, it simulates the fault-free circuit and identifies sensitive gate 

inputs. Second, it traces paths from primary outputs (POs) toward primary inputs (PIs) 

along which faults are detected. Critical path tracing was proposed by Abramovici, 

Menon and Miller. The original implementation of this method is named CRIPT 

[71][73]. In this original critical path tracing approach, when a fanout is encountered, a 

simulation phase will determine if the effect of changing the value of a fanout stem will 

be marked as critical. In order to reduce the size of the section of the circuit that is 

simulated, a partitioning of the circuit is done to simulate only up to the point whose 

effect on the output is known. CRIPT was reported to be inaccurate due to multiple path 

sensitization [71]. In addition, CRIPT had O(G
2
) time complexity in the worst case [74] 

where G is the number of gates in the circuit. CRIPT is inefficient because critical path 

tracing by this method requires much forward simulation and backward propagation in 
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an iterative fashion. In addition, partitioning of the circuit into isolated fanout-free 

regions (FFR) is a time consuming process. More recently, CRIPT was made exact with 

the introduction of stem analysis by forward propagation [73][75]. However, this exact 

critical path tracing algorithm was slow. Another critical path tracing approach [76][77] 

introduced a dynamic data structure, called the criticality constraint graph (CCG), which 

carries enough information during the backward pass to determine a stem’s criticality 

from the criticality of its fanout branches. This algorithm is fast and exact, but its 

dynamic data management makes the algorithm much more complicated than CRIPT. 

Considering the problems associated with the above techniques, a simple method named 

one pass critical path tracing was proposed by Navabi et al [78]. This method is exact 

and runs in linear time. However, it has several problems. First, the stem analysis only 

considers AND, NAND, OR and NOR gates with two inputs. Second, the rules used to 

determine stem criticality do not cover all cases of reconvergence. Third, this method 

does not consider unknown X values. Thus, this method cannot be applied on real 

circuits. 

We proposed a fast critical path tracing algorithm which extends one pass critical path 

tracing so that it can be applied on any combinational circuit. It avoids frequent iterative 

forward simulation and backward propagation [79][80]. Fault free simulation is only 

done once and supports three logic values of 0, 1 and X. For most cases, stem criticality 

is determined in one pass by applying seven rules. This improved critical path tracing 

algorithm is exact because it can handle any kind of recovergence in circuits. 
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3.2 Main Concepts and Definitions 

This section introduces the key definitions and concepts in critical path tracing.  

3.2.1 Critical Line 

The concept of critical line is defined in [81]. A line l has a critical value v in the test 

vector t if and only if t detects the fault l s-a- v . A line with a critical value in t is said to 

be critical in t.  

All primary outputs are critical due to their perfect observability. All critical lines for 

a given test vector form the critical paths [82] which are determined by backtracing 

from POs towards PIs.   

3.2.2 Sensitive Input 

A gate input is sensitive if complementing its value would change the value of the 

gate output [71]. Sensitive inputs can be identified based on the Dominant Logic Value 

(DLV) [72]. A DLV at a gate input is one that forces the gate output to a value, 

regardless of the values on the other inputs. The DLV of AND and NAND gates is 0, 

while the DLV of OR and NOR gates is 1. XOR and XNOR gates have no DLV because 

any single input change will cause an output to change. The following rules are used to 

identify sensitivity [71] in a 2-valued simulation: 

1.    If only one input i has a DLV, then i is sensitive.  

2.    If all inputs have the complement of the DLV, then all inputs are sensitive. 

3.    If neither 1 nor 2 holds, then no input is sensitive. 

4.   All inputs on XOR and XNOR gates are sensitive. 
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These rules can be extended to handle 3-valued simulation. Figure 5 demonstrates 

such a case.  

 

Figure 5. A gate with unknown input value. 

In Figure 5, assume there is a SA0 (stuck-at-zero) fault at the top input; therefore the 

faulty output is 0. In traditional 3-valued simulation, the faulty ‘0’ value is considered as 

a different value from the previous X (unknown) value. However, this cannot hold when 

we determine sensitive inputs. If the output of the good machine had actually been 0, it 

would be impossible to observe the difference between this value and the faulty machine 

‘0’ value [83]. Two rules below will be used to determine the sensitivity of a gate input 

when using 3-valued simulation: 

1.    If the gate output is X, then no input is sensitive. 

2.    If at least one input is X, there no input is sensitive. 

With sensitive inputs identified, we can determine if a gate input is critical. A gate 

input is critical if the gate output is critical and the input is sensitive [71]. 

3.2.3 Blocked Line 

If an input of a gate is non-critical, this line is a blocked line. As the name implies, a 

blocked line blocks the propagation of a fault from the gate output. A blocked path is a 

path with at least one blocked line [78].   
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Each line in the circuit has a blocked value n, which indicates how many blocked 

lines are on the path between the PO and the gate that has this line as output. 

Figure 6 shows how an input line is identified as a critical line or blocked line for a 

simple two-input AND gate. In a two input AND gate, if only one of the inputs of the 

gate has a DLV, as shown in Figure 6(a), that input line is critical and the other is 

blocked. If both inputs have a DLV, as shown in Figure 6(b), then each input is blocked 

by the other input. Therefore, both inputs will be referred to as blocked. If both inputs of 

a gate have non-controlling values, as shown in Figure 6(c), then both inputs are critical, 

since changing either input will change the output value.  

 

       (a)           (b)         (c) 

Figure 6. Critical and blocked input. 

3.2.4 Critical Path Graph 

To simplify our analysis of critical path tracing, a critical path graph (CPG) [78] is 

used to describe the gate interconnection. In the graph, each gate is represented as a node 

while critical lines and blocked lines are shown as solid and dashed line respectively. 

The integer value on each line represents its blocked value. Figure 7 shows a simple 

circuit and its corresponding CPG. The dots indicate the sensitive inputs and the bold 

lines represent critical lines in Figure 7(a). 
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(a) 

 

 

(b) 

Figure 7. Example of critical path graph. 

3.2.5 Self-Masking and Multiple Path Sensitization 

If circuit does not contain any reconvergent fanout, critical path tracing is 

straightforward [72]. We illustrate critical path tracing in a fanout-free circuit, using the 

example in Figure 8. Critical path tracing in a fanout-free circuit is a simple tree 

traversal procedure that recursively marks every sensitive input of a gate with critical 

output from POs toward PIs. This uses the fact that if a gate output is critical, then its 
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sensitive inputs are critical. 

 

Figure 8. Critical path tracing in a fanout-free circuit. 

However, reconvergence occurs frequently in real digital circuits. Two problems 

caused by reconvergence are self-masking and multiple path sensitization.  

Self-masking is a phenomenon in which a fault effect propagates along two or more 

paths and reconverges with opposite parities at a gate, where the fault effects cancel out 

[72]. In Figure 9, we can see that the effect of the fault B SA0 propagating along two 

paths with opposite parities such that they cancel each other at reconvergence point D. 

Self-masking implies that a stem may be non-critical even though all of its fanouts are 

critical.   
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Figure 9. Example of self-masking [71]. 

Another problem caused by reconvergence is multiple path sensitization [71], which 

implies a stem may be critical even though all of its fanouts are non-critical. In Figure 

10, although B1 and B2 are both non-critical, stem B is critical because the effect of 

fault B SA0 could be propagated to primary output D.  

 

Figure 10. Example of multiple path sensitization. 

3.3 Algorithm Flow of Improved Critical Path Tracing 

Since the criticality of a stem cannot be directly deduced from the criticality of its 

fanouts, stem processing requires a great deal of analysis, and determining criticality of a 

stem takes up a major part of the computation time for critical path tracing [72][84][85]. 
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In this section, the details of the fast critical path tracing algorithm will be described and 

the rules to determine stem criticality will be introduced.  

Figure 11 outlines the flow of the improved critical path tracing algorithm for a given 

test pattern. First, fault-free simulation is performed to determine the logic value for each 

line. Then the algorithm preprocesses the circuit to identify the logic cones feeding each 

primary output (PO). In each cone, sensitive inputs are marked according to the rules 

described in section 3.2.2. The algorithm then processes every cone starting at its PO. 

During the backtracing, there are two main operations on the inputs of the gate being 

evaluated. First, the sensitive input net has been directly marked as a critical line and 

inserted into the critical path if the gate output is critical and this input net is not a fanout 

of a stem. Second, if the input is a stem fanout, the stem is checked to see if its criticality 

has already been determined. If the stem is already known as critical, backtracing 

continues. If stem criticality is unknown, we must determine if it needs forward fault 

simulation to determine its criticality. If yes, fault simulation is performed between the 

stem and its convergence gates. The fault simulation stops as soon as the effect of a fault 

disappears. Otherwise, the algorithm checks whether all the information needed to 

compute stem criticality is available. If so, the stem analysis rules are applied to analyze 

the stem. The rules are described in the following section. Otherwise, the inputs in level 

n+1 of the circuit are processed, assuming the current level (rank) is n. The level of a net 

is computed in the standard fashion: a primary input is assigned level 0, and the level of 

a gate output is imax+1 where imax is the highest level among the levels of the gate inputs. 

Thus, no stem is analyzed until all of its fanout branches (FOB) have been considered. 
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This process repeats until all inputs in the cone have been analyzed. 

 

Figure 11. Critical path tracing algorithm flow. 
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3.4 Stem Analysis 

As discussed above, stem analysis is the major part of the critical path tracing 

algorithm. An efficient stem analysis strategy will significantly speed up the entire 

process. Before describing the details of the stem analysis, several important definitions 

are presented. 

1.    Convergence Point and Divergence Point 

If the fanouts of gate A reconverge at gate B, gate B is called the convergence point 

of gate A. Gate A is called a divergence point. A divergence point is just a stem. 

2.    Loop 

The term loop is first defined in [78]. A reconvergent fanout not containing another 

reconvergent fanout is called a loop. A loop has only one divergence point and one 

convergence point.  

A loop can either be replaced by a critical line or a blocked line in a critical path 

graph according to the following rules. The rules consider all common logic gate types 

except XOR and XNOR with more than 2 inputs because they rarely appear in circuits. 

The algorithm can be readily extended to handle multiple input XOR/XNOR gates, or 

such gates can be readily decomposed into two-input gates. 

3.4.1 Rule A1 

Rule A1 is stated as follows: if the convergence point is an XOR/XNOR gate and all 

paths between convergence and divergence point are continuous paths, this loop can be 

replaced by a blocked line between convergence and divergence point. Figure 12 shows 

an application of rule A1. Since the fault effect at X cannot be propagated to Z, the loop 
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is equivalent to a blocked line between X and Z. Figure 13 shows the corresponding 

critical path graph of the circuit. 

 

Figure 12. Example of rule A1 application. 

 

Figure 13. Corresponding critical path graph of A1 application. 

To prove rule A1, Figure 14 shows the critical path graph that summarizes all the 

cases covered by rule A1. In this graph, double solid lines represent a critical path, 

double dash lines represent a blocked path, on which there is at least one blocked line.  
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Figure 14. Critical path graph for rule A1 cases. 

The justification of rule A1 is as follows: Since the paths between X and A and 

between X and B are both critical paths, the change at X will change both I1 and I2 

which are input lines of Z. If both inputs of XOR/XNOR gates change, the output will 

not change. Therefore, the fault effect at X cannot be propagated to Z, and the loop 

between X and Z is replaced by a blocked line. 

3.4.2 Rule A2 

Rule A2 is stated as follows: a loop containing no blocked lines at a convergence 

point and at least one continuous path of critical lines between convergence point and 

divergence point, except if it is covered by rule A1, can be replaced by a critical line.  

 

Figure 15. Example of rule A2 application.  
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point X can be propagated to convergence point Z, the loop is equivalent to a critical line 

between X and Z. Figure 16 shows the corresponding critical path graph of the circuit.  

 

Figure 16. Corresponding critical path graph of rule A2 application. 

To prove rule A2, Figure 17 shows the critical path graph that summarizes all the 

cases covered by rule A2.  
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Figure 17. Critical path graph for rule A2 cases. 
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The new value of (I1’, I2’) is (1, 0), which means O’(Z) = 1/0. It has been shown that the 

fault effect at X could be propagated to Z, so rule A2 holds in this case. 

If Z is an OR/NOR gate, then the inputs I1 and I2 must have logic value (0, 0). So the 

output of Z is 0 for an OR gate, 1 for a NOR gate, which is represented by O(Z) = 0/1. If 

the output value of X changes, I1 will change while I2 will remain the same. The new 

value of (I1’, I2’) is (1, 0), which means O’(Z) = 1/0. It has been shown that the fault 

effect at X could be propagated to Z, so rule A2 holds in this case. 

If Z is a XOR/XNOR gate, then the output changes as long as one of the inputs 

changes. If the output of X changes, I1 changes so that the output of Z changes. Rule A2 

also holds in this case. 

For case 2, which is summarized by Figure 17(b), gate Z cannot be a XOR or XNOR 

gate, since that case is covered by rule A1. A similar justification can be applied to prove 

rule A2 also holds for case 2.  

3.4.3 Rule B 

Rule B is stated as follows: a loop with all lines blocked at the convergence point and 

no other blocked lines is replaced by a critical line, if all inputs at the convergence point 

have dominant logic values. Otherwise, the loop is replaced by a blocked line. Figure 18 

show an application of rule B. As we can see, the critical path is a discontinuous path. 
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Figure 18. Example of rule B application. 

Figure 19 shows the corresponding critical path graph of the example circuit. 

 

Figure 19. Corresponding critical path graph of rule B application. 

Figure 20 summarizes the cases covered by rule B. Here we only show the cases with 

convergence points that have two or three inputs.  
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      (a)                  (b) 

Figure 20. Critical path graph for rule B cases. 
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The convergence point cannot be an XOR/XNOR gate because the inputs of 

XOR/XNOR gates are always critical lines. 

3.4.4 Rule C 

Rule C is stated as follows: a loop with at least one blocked line on each path between 

divergence and convergence points, and at least one critical line at the convergence 

point, can be replaced by a blocked line between convergence and divergence points.  

 

Figure 21. Example of rule C application. 

Figure 21 shows an application of rule C. Figure 22 shows the corresponding critical 

path graph of the example circuit.  

 

Figure 22. Corresponding critical path graph of rule C application. 

Figure 23 summarizes the cases covered by rule C. Here we only list the cases with 
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      (a)                 (b) 

 

      (c) 

Figure 23. Critical path graph for rule C cases. 

Rule C is true for the cases shown in Figure 23(a) and (b) because both the path 

between X and A, and the path between X and B are blocked, which implies (I1, I2) will 

not change if X changes. Therefore, the fault effect at X cannot be propagated to Z. Thus 
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with a DLV are critical paths; 

All the paths between the divergence point and the inputs of the convergence point 

with a non-DLV are blocked paths. 

Otherwise, it is replaced by a blocked line. 

Figure 24 shows an example application of rule D.  

 

Figure 24. Example of rule D application. 

Figure 25 shows the corresponding critical path graph of the example circuit. All the 

paths between stem A and the inputs with DLV at the convergence point are critical 

paths and the path between stem A and the input with non-DLV is a blocked path, so the 

fault effect can propagate to the output. Therefore, the loop is replaced with a critical 

line. 
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Figure 25. Corresponding critical path graph of rule D application. 

Figure 26 summarizes the cases with a two-input convergence point. In Figure 26(a), 

since both paths to the convergence point are blocked, the fault effect at the divergence 

point cannot be brought to the convergence point. Therefore, the loop between X and Z 

is replaced by a blocked line. In other words, stem X is non-critical. The same result can 

be obtained by applying rule D. Similarly, rule D can be shown to hold for the case 

illustrated in Figure 26(b). 

 

      (a)               (b) 

Figure 26. Critical path graph of rule D cases. 
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between convergence and divergence points, only one critical line at the convergence 

point, and at least two blocked lines on each of the other paths, can be replaced by a 

critical line. Figure 27 shows an example application of rule E while Figure 28 shows 

the corresponding critical path graph of the circuit. 

 

Figure 27. Example application of rule E. 

 

Figure 28. Corresponding critical path graph of rule E application. 

Figure 29(a) summarizes the cases with a two-input convergence point while Figure 

29(b) shows the cases with a three-input convergence point. 
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Figure 29. Critical path graph of rule E cases. 

Rule E can be proved by using a method similar to that used for Rule D. 

3.4.7 Rule F 

Rule F is stated as follows: a loop with at least one blocked line at the convergence 

point and at least one continuous path of critical lines between convergence and 

divergence points, except if it is covered by Rule E, must be replaced by a blocked line.  

 

Figure 30. Example application of rule F. 

Figure 30 shows an example application of rule F. This case is a self-masking case, 

where the SA0 fault on stem B propagates along two paths and the fault effect cancels 

out at convergence point D. With Rule F, self-masking case can be handled correctly. 

Figure 31 shows the corresponding critical path graph.  
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Figure 31. Corresponding critical path graph of rule F.  

Figure 32(a) summarizes the cases with 2-input convergence point while (b) to (g) 

show the cases with three-input convergence point. 

For completeness, we show the cases in Figure 32(d), (e), (f), (g) although they will 

never happen because for AND/NAND and OR/NOR gate, either only one input line is a 

sensitive input or all input lines are sensitive inputs. For XOR/XNOR gate, all inputs are 

sensitive inputs.  
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Figure 32. Critical path graph of rule F cases. 
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divergence point and a convergence point. However, the structures in real circuits are 

complex so many interlinked loops can exist. Rules A to F can be applied repeatedly 

starting with inner loops until interlinked loops are finally replaced by a critical line or 

blocked line. Using these rules, we can determine whether a stem is critical or not in 

only one processing pass for most cases. 

An example illustrates application of the rules to a fanout for finding faults detected 

by an input vector. The circuit shown in Figure 33(a) has two convergence points. 

Initially a loop can be observed between the fanout node X and gates a, b and d. By 

applying rule B, this inner loop can be replaced by a critical line, and therefore the graph 

of Figure 33(b) is converted to that of Figure 33(c). This graph also contains a loop. 

Applying rule A2 reduces this loop to a critical line shown in Figure 33(d).  

The reduced graph has the stem directly connected to the output, so the stem is 

critical. The input vector (0, 1, 0, 0, 0) detects six faults in the circuit in Figure 33(a) 

including the SA0 fault at stem X. 
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Figure 33. Example of applying rules. 
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stems. This case occurs very often in real circuits. Since the backtracing proceeds in a 

breadth-first fashion toward the primary inputs, the stem with higher level is always 

being processed before the stem with lower level is processed. Thus, if stem B is the 

fanout of stem A, the loop with B as the divergence point has already been reduced to a 

line before determining the criticality of stem A. Then the convergence point of B is 

treated as B’s virtual fanout. Therefore, the algorithm can continue looking for A’s 

convergence points.  

Figure 34 shows an example for applying rules to the case of stems having fanouts 

that are stems. To simplify the case, all lines are assumed critical lines and there are no 

XOR/XNOR gates. The shaded nodes represent stem nodes. Initially, a, b and c are all 

stems. During the backtracing, node b or c should be processed first; assuming b and c 

are at the same level. Here b is analyzed first. Node b has two convergence points i and 

m. Starting from the inner loop rule A2 is applied to convert Figure 34 to Figure 35. 

Applying rule A2 again converts Figure 35 to Figure 36(a). Now m is treated as b’s 

virtual fanout, therefore, node f, i, j and l logically disappear in Figure 36(a). The loop 

formed by c, g, h and k can then be processed to form Figure 36(b). Finally, the 

interlinked loops have been reduced to a critical line in Figure 36(c). 
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Figure 34. Another example of applying rules. 

 

Figure 35. Critical path graph after applying rule on inner loop.  
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Figure 36. Final critical path graph after applying rules . 
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loop to a line that is either critical or blocked. The process is repeated until the 

interlinked loops are finally converted to a line. At this point, the criticality of the stem 

can be determined. 

                                    

Figure 37. Flowchart for determining stem criticality by applying rules. 

3.4.9 Stem Forward Simulation  

It has been shown that stem criticality can be determined by applying rules. However, 

not all the reconvergence cases in real circuits can be handled correctly by the seven 

rules we proposed, as shown in Figure 38. 

The circuit in Figure 38(a) is represented as the critical path graph shown in Figure 

38(b). The circuit has two stems: A and B. Initially a loop is identified between gates B 

Find all convergence 

points of the stem 

Start 

More 

Convergence 

Points? No 

Start from the inner 

loop 

Apply rules 

End 

Yes 



 61 

 

and F. If we try applying rules to determine stem A’s criticality , rule D is applied first, 

replacing the loop between B and F by a blocked line, as shown in Figure 39(a). It means 

stem B is first determined as non-critical. Continuing applying rule B on the loop 

between A and F, the circuit is reduced to a critical line between A and F, as shown in 

Figure 39(b). Therefore, stem A would be determined as critical for the test pattern (1, 1, 

1, 1) by applying rules, while the forward simulation in Figure 38(a) shows that it is non-

critical.  

 

                                              (a) 

 

                                              (b) 

Figure 38. Example of the reconvergence case that needs forward simulation. 
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on the stem under analysis is considered. However, when a stem has a fanout that is also 

a stem, for example, stem A in Figure 38 has a fanout B that is also a stem, the fault on 

stem A could be propagated to both inputs of gate E. When we apply rule D on the inner 

loop between B and F, it is assumed that only input B2 could change while C1 should 

remain constant. Unfortunately, this assumption does not hold when determining the 

criticality of stem A, because both B2 and C1 change. In order to determine the 

criticality of stem A, a forward fault simulation between stem A and convergence point 

F is required.  

 

(a) 

 

(b) 

Figure 39. Example of incorrectly determining stem criticality by applying rules. 
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significant. The algorithm we used to decide if a stem needs forward fault simulation is 

presented in Figure 40. It has O(n) time complexity, where n is the number of gates in 

the loop between the stem and its convergence point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            

 Figure 40. Algorithm that decides if a stem needs forward simulation. 

The algorithm counts how many times (nTimeSeenInLoop) each fanout has been 

visited. If a fanout has been visited more than once and is not the convergence point, 

then the stem needs forward simulation. The process is repeated until all fanouts have 

for each fanout i of the stem X 

{ 

      while i is not the outer convergence point 

        { 

             i.nTimeSeenInLoop++; 

                 if i.nTimeSeenInLoop>1 and i is not convergence point 

                 { 

      X  needs forward simulation to determine its criticality; 

      return; 

                 }  

                 if i is a stem 

             { 

      for each gate j in the loop between  i and its convergence point 

      { 

             j.nTimeSeenInLoop++; 

                        if j.nTimeSeenInLoop>1 and j is not convergence point  

             { 

                 X  needs forward simulation to determine its criticality; 

         return; 

                              }   

      } 

      set the outer convergence point of i as the next fanout; 

                  } 

           else 
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been counted or one fanout has been visited more than once. 

3.5 Experimental Results 

The proposed algorithm has been implemented in Visual C++ and run on Microsoft 

Windows XP on a 2.8 GHz Intel Pentium 4 processor with 512 MB main memory. 

Experiments were performed on the ISCAS85 benchmark circuits and the full scan 

versions of the largest ISCAS89 benchmark circuits using stuck-at test sets generated by 

Mentor Graphics FastScan.  

Table 4 shows the CPU time for generating all the critical paths for all input vectors 

on all primary outputs (POs) for each circuit. Columns 2-4 are circuit statistics. Column 

5 is the test set size. The test patterns are single stuck-at fault vectors generated by 

Mentor Graphics FastScan. Column 6 shows the average number of critical nodes per 

vector. The critical nodes include all critical lines and gates. If a node is critical in the 

fanin cones of multiple POs, it will be counted multiple times. Column 7 is the total time 

spent in critical path tracing. Column 8 shows the average CPU time spent per test 

vector. Of the ISCAS85 circuits, c6288 has the highest per-vector CPU time since it has 

a large number of stems. Even though c7552 has more lines than c6288, the per-vector 

critical CPU time on C7552 is less than c6288 because c6288 has more stems and stem 

analysis is the most time consuming procedure in critical path tracing. The number of 

test patterns also matters. The benchmark s38417 takes a lot more time than s35932 

(about 20 times longer) to process not only because it has more lines to process, but 

more importantly because the test pattern set generated for s38417 is much larger (about 
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15 times) than s35932. 

Table 4.   Critical path tracing experimental result summary. 

 

The running time increases with the number of lines. Figure 41 shows that per-vector 

CPU time is sub-linear in n·PO, which is the upper bound if all lines in the circuit are the 

Circuit # Lines # Stems # POs 
# Test 

Patterns 

# Critical 

Nodes per 

Vector 

Critical Path 

Tracing Time 

(s) 

Per-Vector 

CPU Time (s) 

c432 432 89 7 50 149 0.062 0.0012 

c499 499 59 32 53 265 0.248 0.0047 

c880 880 125 26 52 507 0.062 0.0019 

c1355 1355 259 32 86 456 2.062 0.0240 

c1908 1908 385 25 130 1306 2.015 0.0151 

c2670 2670 454 140 105 1720 0.923 0.0080 

c3540 3540 579 22 149 1047 4.328 0.0290 

c5315 5315 806 123 121 3088 3.406 0.0282 

c6288 6288 1456 32 29 9186 12.75 0.4389 

c7552 7552 1300 108 214 3873 7.925 0.0371 

s9234 9234 1013 39 381 7094 15.96 0.0412 

s13207 13207 1224 152 477 16692 48.26 0.1012 

s15850 15850 1518 150 438 17663 125.98 0.2866 

s35932 35932 5295 319 64 20569 140.66 2.1971 

s38417 38417 4569 106 979 39948 2786.15 2.8450 

s38584 38584 3946 304 650 40258 1630.01 2.5069 
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fanins of each PO.  
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Figure 41. Average CPU time per vector vs. (# lines · # POs). 

Figure 42 shows that the per-vector CPU time is nearly linear in the number of lines. 

The small quadratic factor exists because some stems need forward fault simulation.  
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Figure 42. Average CPU time per vector vs. # lines. 

Figure 43 shows that the per-vector CPU time is linear in the number of critical 

nodes. 
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Figure 43. Average CPU time per vector vs. # critical nodes. 

Table 5 shows the CPU time of our critical path tracing algorithm and the FSIM 
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parallel-pattern, single-fault propagation fault simulator [86]. A set of 2016 random test 

patterns is used for each circuit, and FSIM is run without fault dropping, so that it 

collects the same data as critical path tracing. Critical path tracing is performed from 

faulty POs on failing vectors. The CPU time is based on the average of 10 random stuck-

at faults. As we can see from Table 5, the critical path tracing time is 5-48% faster than 

FSIM.  

Table 5.   Our critical path tracing CPU time vs. FSIM CPU time. 

Circuit 
# Failing 

Vectors 

FSIM CPU 

Time (s) 

CPT2 CPU 

Time (s) 

c432 106 0.046 0.03 

c499 462 0.094 0.09 

c880 252 0.109 0.089 

c3540 467 0.671 0.348 

c5315 250 0.468 0.364 

c6288 483 2.844 1.586 

c7552 232 1.142 1.092 

 

An exact, linear-time critical path tracing algorithm has been described for 

combinational circuits. Seven rules have been developed to handle stem analysis in only 

one processing pass for most cases. The algorithm uses a three-valued algebra so that it 

can handle unknown values. The performance in Figure 42 is approximately one CPU 

minute per vector for a circuit with one million lines. In applications such as diagnosis, it 

is often sufficient to perform critical path tracing from faulty primary outputs. Since 
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critical path tracing measures line observability, it is an ideal tool for fault diagnosis, 

where the fault behavior may not exactly match a particular fault model [87]. 
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4. SUSPECT RANKING AND FILTERING 

Even though the suspect list returned by critical path tracing is much smaller than the 

number of circuit lines, it is still inefficient to examine each of its members exhaustively. 

To shorten this list,  a method of candidate scoring and filtering needs to be defined that 

will work for any fault candidate, regardless of fault model.  

The method of scoring and ranking fault candidates is probabilistic. In other words, 

what a diagnosis should really calculate is the probability that the failures seen are due to 

one fault candidate or another, whether that candidate is a stuck-at fault or some other 

fault type. It would follow, then, that the candidate with the highest probability is the 

most likely suspect [4].  

The outline of the overall ranking and filtering process is shown in Figure 44. The 

inputs include the gate-level netlist of the circuit under diagnosis (CUD), the observed 

response of the CUD, the initial suspect list obtained from critical path tracing, and the 

set of failing test patterns. The entire process has four phases.  

4.1 Phase 1: First-Level Filtering 

The first filtering is based on the following theorem. 

Theorem 1: If critical path tracing is conducted over multiple failing vectors and the 

number of times each line is visited on the paths from faulty POs is represented by 

nTimesFaulty, then all the possible candidates will have nTimesFaulty > 0.  

In other words, the candidate line(s) should cause at least one primary output on one 
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failing vector to be faulty, or the candidate line(s) should be observed at least once on a 

critical path starting from a faulty PO for a failing vector. After the first filtering, all 

lines that are visited at least once during the path tracing from faulty POs are kept. 

Otherwise, they are removed from the candidate list. 

 

Figure 44. Overall ranking and filtering process. 

Table 6 shows the percentage of candidate lines deleted after first-level filtering. In 

our experiments, we randomly injected 143 different types of faults, including 32 

dominant bridge faults, 30 wired-AND bridge faults, 30 wired-OR bridge faults and 51 

stuck-at-0/1 faults. From Table 6, we can see that more than 80% of the candidate lines 

are removed from the initial suspect list in 43% of the cases. The first filtering phase 
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greatly reduces the size of suspect list by removing unnecessary candidate lines. 

Table 6.   Percentage of candidate lines deleted after first-level filtering. 

% of candidate lines deleted number of cases percentage of the total cases 

2%-20% 17 11.9% 

20%-40% 24 16.7% 

40%-60% 18 12.6% 

60%-80% 23 16.1% 

80%-99% 61 42.7% 

 

4.2 Phase 2: First-Level Ranking 

The first filtering prunes out unrelated suspect lines. The number of suspects in the 

list is reduced. Now what is needed is a way to rank the suspect lines to indicate a 

preference between them. In order to do so, several measurements are made to calculate 

the score of each candidate. The primary ranking criterion is nTimesFaulty, introduced 

above. For the same failing vector, if a line is seen at multiple faulty POs, its 

nTimesFaulty is increased for each failing PO. The candidate list is sorted in decreasing 

order of nTimesFaulty. Intuitively, the more frequently a line is seen at a faulty output, 

the greater the likelihood that it is defective. 

First-level ranking by itself is not sufficient to trim the suspect list. Suppose there is 

only one failing vector and only one faulty PO, then all the lines on the critical paths of 

this faulty PO have nTimesFaulty = 1. In this case, we cannot differentiate among the 
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candidate lines with only the first-level ranking. That is why second-level filtering is 

required. 

4.3 Phase 3: Second-Level Filtering 

The first-level filtering phase reduces the initial suspect list, but further reduction is 

necessary to limit the physical failure analysis time (locating the physical defect on the 

chip). The second-level filtering is based on Theorem 2. 

Theorem 2: In a circuit with n defective lines, if path tracing is conducted for a set of 

failing input vectors with m faulty POs, then one or more line(s) from the suspect list 

will be marked at least m /n times [87]. 

In other words, the defective lines must explain their share of the faulty outputs. In 

our measurements, nFaultyPOs corresponds to m in Theorem 2. We use nMaxFaults to 

correspond to n in Theorem 2, where nMaxFaults represents the maximum cardinality 

depending on what fault models are used. The maximum is user-configurable. For 

example, if the diagnosis targets single stuck-at fault and two-line bridge faults, then 

nMaxFaults should be set to 2. In our experiments, we set it to 4 to be more 

conservative, based on the observation in [88] that multiple defects of large cardinality 

(more than four) do not happen very often in practice.  

Second-level filtering is performed by selecting the candidate lines with nTimesFaulty 

greater than a threshold T=nFaultyPOs/nMaxFaults. A larger nMaxFaults results in a 

smaller T. In other words, a larger nMaxFaults means that more candidate lines are 

retained, which implies a larger probability that the real defect will be included in the 
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final diagnosis, but at the cost of more diagnosis time.  

4.4 Phase 4: Second-Level Ranking 

In the case that the first-level ranking returns too many candidate lines with equal 

ranking, second-level ranking is used to break the tie.  

During this phase, we perform PPSFP (Parallel Pattern Single Fault Propagation) fault 

simulation on all failing patterns for all candidate lines in the reduced list from first-level 

filtering. In each iteration of the fault simulation algorithm, 32 test patterns are simulated 

simultaneously. The faulty value of each candidate line on a failing pattern is obtained 

by flipping the good machine value of that line. After fault simulation, we measure the 

Hamming distance (number of bit differences) between the observed outputs and 

simulated outputs. This measurement is used as a tiebreaker. If two candidates have the 

same nTimesFaulty, then the one with smaller Hamming distance is ranked higher. For 

example, if two candidates A and B both have nTimesFaulty equal to 10, and candidate 

A has a Hamming distance of 0 and B has a Hamming distance of 4, then A is more 

suspicious than B because the fault on candidate line B may fail some passing PO(s) and 

pass some failing PO(s). Figure 45 outlines the second-level ranking heuristic. 
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Figure 45. Second-level ranking heuristic. 

We take another two measurements on each candidate line, termed Always0 and 

Always1. As the names suggest, Always0 is true if the line is always being driven by ‘0’ 

whenever it is seen as faulty. Similarly, Always1 is true if the line is always being driven 

by ‘1’ whenever it is seen as faulty. In most cases, a line is more suspicious when it is 

driven by a fixed value than if it is driven more randomly. A dominant bridge fault is an 

exception, because the victim line is always driven to the logic value of the dominant 

line. However, since we also consider stuck-at and wired bridge faults, we use these two 

measurements as a tiebreaker when two lines have the same Hamming distance.  

The purpose of phase 4 is to bring the real suspect even closer to the top of the 

candidate list. 

In general, the ranking uses nTimesFaulty as the first key and Hamming distance as 

for each failing input vector v 

{ 

 perform logic simulation; 

 for each candidate line l in the reduced list 

 { 

  flip the value at l and run PPSFP fault simulation; 

calculate Hamming distance between simulated outputs and observed 

outputs;  

 } 

} 

Sort the candidate lines using Hamming distance when they have the same 

nTimesFaulty; 
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the second key. When both nTimesFaulty and Hamming distance are the same, Always0 

and Always1 are used to break the tie.  

  The first and second-level ranking helps bring the real candidate near the top or at 

the top of the suspect list. However, some faults could still fool the ranking, as shown in 

Figure 46. 

 

Figure 46. Example case for ranking analysis. 

The shaded squares represents faulty POs. PO2 and PO3 are both faulty POs. Suppose 

the actual fault is a wired-AND bridge between nodes A and B. If we conduct critical 

path tracing from faulty POs, (A, C) is on the critical path from PO2 while (B, C) is on 

the critical path from PO3. Therefore, the critical paths from PO2 and PO3 have node C 

in common. Suppose there are 100 failing vectors and A is faulty 50% of the time, which 

means A is seen as faulty on 50 failing vectors and so is B. In this case, A and B are both 

counted as nTimesFaulty=50 while C has nTimesFaulty=100. Therefore, the real 

candidates A and B would be ranked far below candidate C. In cases such as this, the 
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diagnosis result needs further refinement using model-based fault simulation. This will 

be described in the next section. 
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5. MODEL-BASED FAULT SIMULATION 

5.1 Motivation and Basic Structure 

The previous section described the second step of the diagnosis framework: fault 

filtering and ranking. This section presents the third step, model-based fault simulation, 

to improve the diagnosis resolution and accuracy.  

A small list of candidate lines can be obtained after filtering and ranking. However, 

sometimes the most suspicious line may not be ranked at the top or near the top, as we 

demonstrated in Figure 46. For those cases, we need some metrics to bring the real fault 

candidate near the top. Furthermore, filtering and ranking only returns a list of candidate 

lines, without indicating the type of the fault. The fault type can be very helpful for 

localizing the defect within the chip. With model-based fault simulation, we can report 

both the location and type of the real fault.  

Figure 47 shows the basic structure of this step. First, we choose the top n candidates 

from the small list of ranked candidates. We initially set n to 100, since in all of the 

experiments performed to date, the real fault was in the top 65 candidates. Next, we need 

to map each candidate line to its corresponding candidate faults. We use several 

common fault models: stuck-at fault, dominant bridge fault, wired-OR and wired-AND 

bridge fault. Each candidate line may be mapped to multiple candidate faults. In 

particular, a line could be mapped to multiple bridge fault candidates depends on how 

many neighboring lines to which it could bridge. We use the extracted coupling 

capacitance to get a list of most likely bridge fault sites. To reduce fault simulation time, 



 79 

 

we use several metrics to dynamically remove unnecessary fault candidates. Then fault 

simulation is performed on all test patterns using PPSFP. After model-based fault 

simulation, the Hamming distance between the simulated fault behavior and observed 

fault behavior is calculated, and the fault candidates ranked in decreasing order of 

distance. Fault candidates with the lowest Hamming distances are the ones most likely to 

correctly explain the faulty behavior.  

 

Figure 47. Basic structure of model-based fault simulation step. 

Passing patterns are used in our diagnosis to help distinguish fault candidates. For 

example, suppose we have two fault candidates A and B. If both A and B can explain all 

the failing vectors, but A causes several passing test vectors to fail while B does not fail 

any passing vectors, then B is a better candidate than A.  
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Line-to-Fault Mapping 

Fault Simulation  

Ranked by Hamming Distance 

A smaller list of suspect lines 

Coupling 

Capacitance list 

All  

Test Vectors 



 80 

 

5.2 Line-to-Fault Mapping 

In order to refine the diagnosis by using fault simulation, we need to map each 

candidate line to fault candidates on it. The fault simulation is based on several common 

fault models: stuck-at fault, wired-AND bridge, wired-OR bridge and dominant bridge. 

We will introduce these fault models in next section. The relationship between candidate 

line and fault candidates involving this line is one to many because the candidate line 

could have different types of faults on it or is possible to bridge with different lines so 

that different bridge faults could have this line involved.  

 

Figure 48. Metric to reduce fault candidate list. 

To speed up fault simulation, we reduce the fault candidate list by using several 

metrics, as shown in Figure 48. We consider single fault location such as single stuck-at 

faults and dominant bridge fault and multiple fault locations such as wired-AND and 

wired-OR bridge fault. We do not consider multiple stuck at faults or bridge faults. Even 
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if multiple defects are present on a chip, they usually can be considered separately. 

Simulation of multiple faults is not practical due to the large increase in CPU time. 

Here we utilize two of measurements we have taken: Always0 and Always1. As we 

mentioned in the previous section, Always0 is true if the line is always being driven by 

‘0’ whenever it is seen as faulty, and similarly for Always1. Therefore, if a line is always 

being driven by logic value ‘0’ whenever it is seen as faulty, there is no need to perform 

stuck-at-0 fault or wired-AND fault simulation on this line, because the fault will not be 

sensitized.  

In order to find all the possible bridge faults with a candidate line involved, we need a 

list of realistic bridge faults. A common way to extract bridging fault site is IFA 

(Inductive Fault Analysis). IFA uses circuit layout to determine the relative probabilities 

of individual physical faults in fabricated circuits [40]. The extracted bridges include the 

layers and locations involved in each bridge site, which greatly aids defect localization 

within the chip. For example, if the top suspect faults are all bridges between second-

level metal lines, the upper metal layers can be quickly stripped away, significantly 

reducing failure analysis time. The disadvantage of bridge fault extraction is that it is an 

extra step in the design flow.  

An alternative way is obtain a bridge fault list is to use the list of coupling 

capacitances. The list of coupling capacitances can be used as an unordered list of two-

node bridging faults [89]. Using the parallel plate model, capacitance C is given by: C = 

εA/d where A is the area and d is the distance between the two conductors (ε is the inter-

layer dielectric constant) [90]. Since the probability of a bridging fault occurring 
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between two conductors is proportional to the area A and inversely proportional to the 

distance d, then the capacitance C has the same relationship to A and d as the probability 

of a bridging fault occurring between two conductors. As a result, by comparing the 

capacitance between two different sets of adjacent conductors, we can determine which 

set may be more likely to sustain a bridging fault [90]. This is illustrated in Figure 49  

where the two lines that have a longer region of adjacency (l1 >> l2) are more likely to 

sustain a bridging fault even though the distance between the two lines (d) is the same. 

Similarly, two lines that are closer together (d1 << d2) are more likely to sustain a 

bridging fault even though their lengths (l) are the same. 

 

Figure 49. Capacitance vs. probability of bridging faults [90]. 

The advantage of using a capacitance extractor to generate to bridging fault list is that 

the capacitance extraction is part of the design flow, so no extra step is needed. In 

addition, the capacitance extraction method does not require information based on 

manufacturing data [91]. The disadvantage of using coupling capacitances is that the 
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mapping to a physical bridge site and layer is less accurate, so the diagnosis provides 

less benefit to localization of the physical defect. 

In this research, the coupling capacitance list was used to obtain a realistic bridge 

fault list, since the coupling capacitance was already available for the designs used in the 

experiments. The coupling capacitance list was generated by Dr. Weiping Shi’s group in 

the Department of Electrical and Computer Engineering at Texas A&M University.  

5.3 Fault Simulation 

The fault simulation is based on several common fault models: single stuck-at model, 

wired-AND bridge model, wired-OR bridge model and dominant bridge model. A fault 

model is an abstraction of a type of defect behavior. Two common models are single 

stuck-at model and bridging fault model. 

5.3.1 Single Stuck-at Fault Model 

The single stuck-at fault model assumes that the defect causes a given circuit line to 

be permanently connected to ground (stuck-at 0) or to power (stuck-at 1) and that only a 

single fault is present in a circuit at a time, as shown in Figure 50. The stuck-at fault 

model is the most commonly used fault model, because it is simple and computationally 

manageable. 
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Figure 50. Example of stuck-at fault model. 

5.3.2 Wired Bridging Fault Model 

The bridging fault model is used to model shorts between signal lines that are 

normally unconnected. The popular bridging fault models include wired-AND, wired-

OR and dominant bridging models. The behavior of the wired-AND and wired-OR 

bridging fault models are illustrated in  Figure 51, where a resistive bridging fault is 

modeled as either a logical AND in the case of the wired-AND fault or a logical OR in 

the case of the wired-OR fault [92]. In this example, A and B represent the signal 

sources for the two nets while A’ and B’ represents the faulty values on the two bridged 

nets.  
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Figure 51. Wired-AND and Wired-OR fault models. 

Table 7.   Logical behavior of wired-AND/OR Models.  

Signal lines Wired-AND Wired-OR 

AB A’B’ A’B’ 

00 0  0 0  0 

01 0  0 1  1 

10 0  0 1  1 

11 1  1 1  1 

 

The logic behavior of these fault models is further illustrated in Table 7. As can be 

seen in the case of the wired-AND model, if either of the sources is at a logic ‘0’, then 

both destinations see a logic ‘0’. Similarly, in the wired-OR model, if either source is at 

a logic ‘1’, then both destinations see a logic ‘1’. 

5.3.3 Dominant Bridging Fault Model  

The dominant bridging fault model is illustrated in Figure 52. In this model, it is 
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assumed that one source (the dominant) has a stronger driver than the other (the victim), 

such that the victim sees the logic value determined by the dominant [92]. 

 

Figure 52. Dominant bridging fault model. 

Table 8.   Logical behavior of dominant model. 

Signal lines A dominates B B dominates A 

AB A’B’ A’B’ 

00 0  0 0  0 

01 0  0 1  1 

10 1  1 0  0 

11 1  1 1  1 

 

The logical behavior of the dominant bridge is given in Table 8. As can be seen, the 

dominant source sees no faulty value, so that the fault cannot be observed on this net.  
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5.4 Feedback Bridging Fault 

A feedback bridging fault exists when there is at least one path between the two 

bridged nodes [93]. An example of a feedback bridging fault is shown in Figure 53. The 

bridge between nodes A and D is a feedback bridge and the bridge fault is a wired-AND 

bridge.  

 

Figure 53. Example of feedback bridging fault.  

We can categorize feedback bridge fault into two classes upon application of given 

test patterns [94]. 

Non-sensitized feedback: the bridged nodes have opposite fault-free logic values, and 

the front node F (the node further from the primary inputs) is not sensitized to the back 

node B (the node closer to the primary inputs) in the fault-free circuit.  

Sensitized feedback: the bridged nodes have opposite fault-free logic values, and the 

front node F is sensitized to the back node B in the fault-free circuit.  

For non-sensitized feedback bridging fault, the front node F is not sensitized to the 

back node the back node B in the fault-free circuit, and a fault effect on B cannot 

propagate to F through the path. In this case, the feedback bridging fault behaves just 

like a non-feedback bridging fault, and this can be handled by our diagnostic approach.  
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On the other hand, in sensitized feedback, if all inputs of the gates along the path have 

noncontrolling logic values, an output value change on the back node will cause a 

change on the output of the front node. The back node can then affect the front node 

through both the bridge and the path between them. A sensitized feedback bridging fault 

could cause oscillation or sequential behavior. Two cases need to be considered under 

the sensitized feedback condition. One case is that the driving strength of the back node 

is larger than that of the front node. The other case is that the driving strength of the 

frond node is larger than that of the back node [94].  

If the driving strength of the back node is larger than that of the front node, such that 

the back node dominates the front node, the front node is affected by the back node 

through the bridge, rather than through the path between the two nodes. Therefore, the 

output value of the front node is driven to a faulty logic value by the dominant back node 

through the bridge while the output value of the back node does not change. The 

feedback bridging fault behaves the same as a non-feedback dominant bridging fault and 

can be diagnosed using our approach.  

If the front node has a higher driving strength, an oscillation might occur. In general, 

oscillation occurs rarely because the logic requirements of oscillation are not too 

common to meet. 

From [95][96][97][98][99], the logic requirements of oscillation are as follows: First, 

the output of the front gate dominates the output of the back gate; second, the number of 

inversion in the feedback loop must be an odd number; third, VY has intermediate 

voltage and is less than the threshold voltage of the driven gate C when gate A has logic 
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1, or vice versa when gate A has logic 0, and VY is larger than the threshold voltage of 

gate C. 

Our diagnosis framework does not consider feedback bridge faults causing oscillation 

because prior work [100][101][102] showed that only under special and rare situations 

do some feedback faults result in oscillations. 
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6. EXPERIMENTAL RESULTS 

The proposed diagnosis algorithm has been implemented in C++ in Microsoft Visual 

Studio.net. All experiments are performed on a Microsoft Windows XP on a 2.8 GHz 

Intel Pentium 4 processor with 512 MB main memory for the ISCAS85 benchmark 

circuits. In normal practice, the failing response used as input for the diagnosis 

procedure would be obtained by testing the failing circuit on a tester. For our diagnosis 

experiments, the failing responses were generated using a fault simulator written by us to 

ensure that the diagnosis experiments were able to mimic the realistic failing response as 

much as possible. The test vectors used were stuck-at test vectors generated by Mentor 

Graphics FastScan. 

6.1 Run Time and Memory Usage Analysis 

To obtain the average CPU time for diagnosis, we performed 1000 trials. For each of 

the benchmark circuits, 100 random faults were injected one at a time. Table 9 shows the 

run time for each benchmark circuit. The first column contains the circuit name. Column 

2 is the total number of lines in each circuit. Column 3 shows the number of stems in 

each benchmark circuit. Column 4 is the number of test patterns we used in simulation to 

obtain the failing response. The types and locations of faults injected in the circuits are 

selected at random. Faults that did not produce any failing vectors were dropped. 

Columns 5 and 6 shows the average number of faulty primary outputs and the number of 

failing vectors respectively. Column 7 is the average number of candidate lines after 
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second-level filtering. Fault simulation was performed on the candidate lines. Column 8 

shows the average number of fault candidates after line-to-fault mapping. Those fault 

candidate are the ones on which we performed model-based fault simulation. Column 9 

shows the average total diagnosis time.  

Table 9.   Diagnosis time for ISCAS85 circuits. 

Circuit 
# 

Lines 
# Stems 

# Test 

Patterns 

# Faulty 

POs 

# Failing 

Vectors 

# 

Candidate 

Lines 

# Fault 

Candidates. 

Total 

Diagnosis 

Time (s) 

C432 432 89 50 25 10 63 767 0.043 

C499 499 59 53 23 12 104 946 0.044 

C880 880 125 52 20 15 42 484 0.034 

C1355 1355 259 86 38 32 356 1286 0.143 

C1908 1908 385 130 81 42 243 916 0.232 

C2670 2670 454 105 52 28 156 914 0.109 

C3540 3540 579 149 76 22 256 1769 0.819 

C5315 5315 806 121 81 33 86 1197 0.256 

C6288 6288 1456 29 42 15 134 2147 1.114 

C7552 7552 1300 214 121 56 326 1718 0.792 

 

The diagnosis algorithm includes three major procedures: critical path tracing to get 

the initial suspect list, filtering and ranking to reduce the list, and model-base simulation 

to refine the diagnosis result. Table 10 shows the time and percentage of the average 

total diagnosis time each procedure takes. From the table, we can see that model-based 

simulation and critical path tracing take most of the diagnosis time, while filtering and 

ranking time is only 2%-4% of the total time. This is because in filtering and ranking, we 
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only need to perform fault simulation on a small set of candidate lines. Comparing 

model-based simulation and critical path tracing, model-base simulation takes more time 

than critical path tracing in all but one circuit. The only exception is C6288, in which 

model-based simulation time takes 40.6% while critical path tracing takes 56.5% of the 

time. This is because C6288 has many stems, so that stem analysis in critical path tracing 

costs much time. The conclusion is that future run time improvements must focus on 

model-based fault simulation. Currently we perform parallel forward fault simulation in 

the model-based simulation step. We believe that a more complex and efficient fault 

simulation strategy could speed up this step. 

Table 10.   Run time analysis for ISCAS85 circuits. 

Circuit 

CPT 

Time 

(s) 

CPT 

Time 

(%) 

Filtering & 

Ranking 

Time (s) 

Filtering & 

Ranking 

Time (%) 

Model-based 

Simulation 

Time (s) 

Model-based 

Simulation 

Time (%) 

C432 0.019 42.3% 0.0021 3.8% 0.022 53.9% 

C499 0.013 32.9% 0.0016 3.2% 0.030 63.9% 

C880 0.011 33.4% 0.0014 3.6% 0.021 67.0% 

C1355 0.038 32.4% 0.0099 5.9% 0.095 61.7% 

C1908 0.084 33.3% 0.0078 3.5% 0.139 63.2% 

C2670 0.019 25.1% 0.0035 4.1% 0.086 70.8% 

C3540 0.198 23.2% 0.0105 1.6% 0.611 75.2% 

C5315 0.046 20.2% 0.0036 1.8% 0.207 78.0% 

C6288 0.724 56.5% 0.0170 2.9% 0.373 40.6% 

C7552 0.104 12.2% 0.0136 2.1% 0.674 85.7% 
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Figure 54 compares the run time of our tool with the run time of a model-free fault 

diagnosis tool developed by A. Smith et al [103], the most recently published diagnosis 

tool at this writing. This diagnosis tool is based on Boolean satisfiability (SAT). 

Experimental results reported in [103] are collected on ISCAS85 benchmark circuits 

using an Intel Pentium 4 2.8GHz platform with 2GB of memory. The experimental 

environments used by us and Smith are almost the same, except that we use only 512MB 

of memory. As shown in the future, our tool runs 1.3 to 6.8 times faster than the SAT-

based diagnosis tool.  
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Figure 54. Run time comparison with SAT-based diagnosis tool. 

As discussed in a previous section, one of the reasons why we chose effect-cause 
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diagnosis strategy is that it is space-efficient compared to cause-effect diagnosis. If a 

cause-effect diagnosis tool uses a complex fault model, such as abridge fault model, its 

fault dictionary will grow exponentially as the design size or the number of defects 

increases. Table 11 summarizes the memory usage on ISCAS85 circuits of our tool. 

Figure 55 shows that the memory usage grows linearly as the size of circuit increases, 

and that diagnosis of multi-million gate designs is feasible with today’s memory sizes. 

Table 11.   Memory usage summary. 

Circuit # Lines # Gates 
# Test 

Patterns 

Memory 

Usage (MB) 

C432 432 160 50 1.1 

C499 499 202 53 1.9 

C880 880 383 52 2.7 

C1355 1355 546 86 3.6 

C1908 1908 880 130 4.4 

C2670 2670 1193 105 5.2 

C3540 3540 1669 149 6.1 

C5315 5315 2307 121 6.7 

C6288 6288 2416 29 6.8 

C7552 7552 3512 214 8.5 
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Figure 55. Memory usage vs. circuit size. 

6.2 Diagnosis Accuracy and Resolution for Targeted Faults 

In evaluating diagnosis methods, it is important to consider both accuracy and 

resolution. An accurate diagnosis method means that it can pinpoint the correct location 

of the defect. On the other hand, diagnosis resolution shows how precise the diagnosis 

result is. A vague diagnosis, declaring a number of fault locations, may be too imprecise 

to be useful.  

We use first-hit index to evaluate the performance of our diagnosis tool. First-hit 

index is the index of the first fault candidate in the sorted list that is a true defect location 

[104]. In [104][105][106], first-hit index is also used to evaluate diagnosis performance.  
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To enhance the diagnosis resolution and accuracy, our tool uses model-based fault 

simulation in the last step, using several common fault models. The fault models we 

used are stuck-at fault, wired-AND, wired-OR and dominant bridge faults. These four 

types of faults are considered targeted faults. It is well-known that the more a defect 

behaves like a targeted fault, the more accurate the diagnosis. 

Table 12.   Diagnosis resolution and accuracy for targeted faults 

Circuit 
# Failing 

Patterns 

# Failing 

POs 

Average First 

Hit Index 

# Top 

Candidates 

C432 10.2 25.5 1 5.22 

C499 18.2 22.2 1 1.78 

C880 15.76 20.86 1 2.92 

C1355 30.32 36.24 1 3.18 

C1908 37.76 67.74 1 8.36 

C2670 32.74 61.42 1 11.06 

C3540 29.68 84.58 1 12.32 

C5315 28.12 63.3 1 5.12 

C6288 14.26 42.46 1 1.56 

C7552 56.46 117.46 1 18.48 

 

Table 12 shows the diagnosis accuracy and resolution for the targeted faults. To 

obtain the average result, we conducted 5000 trials in total. For each benchmark, 500 

trials have been conducted with 100 random SA0 faults, 100 random SA1 (stuck-at-one) 

faults, 100 random dominant bridge faults, 100 random wired-AND and 100 random 

wired-OR bridge faults injected, one for each trial. Column 4 shows the average first-hit 

index. As we expected, the actual fault is always ranked at the top of fault candidate list. 

Column 5 shows the number of fault candidates ranked at the top. For the top-ranked 
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fault candidates, the Hamming distances are all equal to 0, which means there is no way 

to differentiate them given the available test patterns. They all behave the same as the 

observed behavior of the injected fault. Additional test patterns can improve resolution, 

by sensitizing or observing top-ranked faults with different patterns. Diagnostic test 

pattern generation is beyond the scope of this dissertation. From the table, we can see 

that the C7552 benchmark has the lowest resolution. This is because C7552 has many 

buffer and inverters (40% of the total gates), which results in a large number of logically 

equivalent faults (e.g. a SA0 on an inverter input is equivalent to a SA1 on the output) 

that cannot be distinguished with any test set. For reference, Table 13 shows the number 

of different type of gates in each benchmark. 

Table 13.   ISCAS85 benchmark  gate numbers summary. 

Circuit # buffer # not # and # nand # or # nor # xor Total 

C432  40 4 79  19 18 160 

C499  40 56  2  104 202 

C880 26 63 117 87 29 61  383 

C1355 32 40 56 416 2   546 

C1908 162 277 63 377  1  880 

C2670 196 321 333 254 77 12  1193 

C3540 223 490 498 298 92 68  1669 

C5315 313 518 718 454 214 27  2307 

C6288  32 256   2128  2416 

C7552 534 876 776 1028 244 54  3512 

  

Table 14 shows the diagnosis accuracy and resolution for different types of faults. As 

we can see, stuck-at fault diagnosis has a lower resolution than bridge fault diagnosis. 
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This is to be expected, since the more complex the fault behavior, the less possibility of 

equivalent faults.  

Table 14.   Diagnosis resolution for different type of faults. 

Injected Fault 
# Failing 

Patterns 

#  Failing 

POs 

Average First 

Hit Index 

# Top 

Candidates 

Stuck-At 24.66 42.01 1 10.56 

Dominant 

Bridge 
26.71 52.73 1 5.36 

Wired-AND 

Bridge 
29.45 67.77 1 4.14 

Wired-OR 

Bridge 
30.29 65.76 1 4.29 

 

In Table 15, we compare the fault diagnosis performance of our tool with the Sproing 

diagnosis tool [2][4][8] and the original MMA technique [29]. The MMA technique is a 

bridging fault diagnosis technique using the single stuck-at fault model that was 

proposed by Millman, McCluskey, and Acken. It was introduced in Section 2.2. The 

Sproing tool was developed by Lavo, Chess and Larrabee at the University of California, 

Santa Cruz. Sproing is a cause-effect diagnosis tool base on MMA. It performs fault 

diagnosis using a stuck-at fault signature, but also uses improved MMA with match 

restriction, match requirement and match ranking. It matches the failing vectors from the 

tester to the fault signature found in a stuck-at dictionary. In the table, we use the 

percentage of diagnoses with the real fault candidate in the top 10 (including equivalent 

faults) as the criteria to evaluate diagnosis performance. This approach is also used in 

[2]. As we can see from the table, our tool outperforms both Sproing and MMA. The 
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original MMA technique has the lowest resolution because it considers vectors that place 

identical values on the bridged nodes and does not rank the candidates. Sproing 

improves the resolution by eliminating from a composite signature any entries that 

cannot detect the bridging fault and by ranking the fault candidates. The reason why our 

tool outperforms Sproing is that Sproing uses a simple single stuck-at fault model to 

construct the composite bridge fault signature for diagnosis purposes. In our tool, the 

first two steps - critical path tracing and ranking and filtering suspect lines - are both 

model-independent. These two steps efficiently remove unrelated lines from the suspect 

list. The third step, model-based simulation includes the bridging fault model, which 

helps improve the diagnosis precision.  

Table 15.   Diagnosis quality comparison with Sproing and MMA. 

Circuit 
Percent ≤10 in 

original MMA 

Percent ≤10 in 

Sproing 

Percent ≤10 in our 

diagnosis framework 

C432 29.4% 93.8% 93.2% 

C499 40.1% 90.3% 99.2% 

C880 60.7% 93.3% 96.1% 

C1355 43.8% 95.5% 96.6% 

C1908 32.6% 85.1% 85.3% 

C2670 40.9% 78.3% 81.2% 

C3540 55.9% 87.9% 88.1% 

C5315 66.0% 87.5% 91.2% 

C6288 33.8% 90.2% 100% 

C7552 47.7% 79.7% 81.1% 
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6.3 Diagnosis Accuracy and Resolution for Untargeted Faults 

With continuing increases in semiconductor technology density and process 

complexity, the assumption that a defect will behave like a specific fault type (e.g., 

stuck-at fault or bridging fault) is becoming more and more impractical and the 

diagnosis for unmodeled faults has emerged as a new challenge. A sophisticated 

diagnosis tool must be able to tolerate some unexpected behavior in the form of both 

unexpected errors and the absence of expected errors. Then how robust is our diagnosis 

framework when observed behaviors are unexpected?  

In order to answer the question, we executed a number of diagnostic trials designed to 

evaluate the technique. We tested our tool by considering different unmodeled faults 

such as biased-voting bridged fault, dominant-0 and dominant-1 bridged fault, errors 

caused by an intermediate voltage level, design errors such as wrong gate type fault and 

missing wire fault, and multiple faults. 

6.3.1 Defect Causing Intermediate Voltage 

As stated previously, no fault model is a perfect predictor of the behavior of real 

defective circuits. As a simple example, it is difficult to predict the voltage created by a 

short circuit when the value of the short’s resistance is not known beforehand [107]. 

Suppose gate A’s output n1 feeds gate B and output n1 is shorted to VDD through a 

resistance R. If a test vector sets node n1 to logic 0, such conditions create a conducting 

path from VDD to GND through node n1, including resistance R. Intermediate voltage 

Vn1 appears on node n1. The logic interpretation of this intermediate voltage depends on 

the logic threshold of the driven gate B. Gate B logically interprets Vn1 as a defective 1 if 
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it is higher than its logic threshold. In this case, a defective value will appear on gate B’s 

output and propagate to the circuit’s primary outputs. On the other hand, if Vn1 is less 

than the logic threshold of gate B, the circuit interprets this as a 0, and a faulty-free value 

propagates to the circuit’s primary outputs. This short example demonstrates that 

whether a test vector can detect the short circuit depends on the value of intermediate 

voltage and the logic threshold of the driven gate. If the intermediate voltage is close to 

the logic threshold, then supply and coupling noise can also affect defect detection.  

In order to mimic this type of unexpected defect behavior, we took the bridging fault 

behaviors generated by the fault simulator and modified them by including noise. We 

randomly removed from 10% to 90% of the failing vectors from the observed behaviors. 

We randomly choose C6288 to do the experiment.  

Figure 56 shows the results of this experiment. A successful diagnosis is defined as 

one where the real fault candidate index is in the top 10. As shown, we obtain 100% 

successful diagnosis even if 30% of the “failing” vectors are fault-free. The candidate 

ranking is successful even when 60% of the original failing vectors are fault-free. We 

expect that as long as enough failing vectors are available, diagnosis will be successful. 
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Figure 56. % Successful diagnosis vs. % dropped failing vectors. 

6.3.2 Voting Bridge Fault  

As discussed earlier, the wired and the dominant bridge fault models do not model 

many defect behaviors in CMOS circuits. One widely accepted model is the biased 

voting model [37], which is an improvement on the voting model [32]. These two 

models consider the bridge as a resistive divider between VDD and GND when the gates 

try to drive the shorted lines to opposite values. To put it more precisely, the voting 

models compare the conductance of the transistor networks of static CMOS gates 

involved in the bridge. Whichever network (pullup or pulldown) has greater strength 

determines the logic value on the bridge.  

To mimic the behavior of short circuit defects described by the voting model, we 
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inject bridges and then randomly choose one bridging node to be dominant for each test 

pattern. In total 1,000 trials were run on ISCAS85 benchmarks. For each circuit, 100 

trials were performed to obtain the diagnosis result. As shown in Table 16, the diagnosis 

is very successful. The average first-hit index for each circuit is about 1-2, which means 

the real candidate fault is always ranked in the top 1 or 2. Column 3 shows the number 

of top candidates, that is, the number of candidates ranked #1. The average number of 

top candidates is 6.7, which is good enough for the failure analysis engineer. Columns 4 

and 5 show the percentage of diagnoses that ranked the true fault candidate in the top 10 

and top 5 respectively. The results show that a high success rate. The results show that 

our diagnosis technique can tolerate this type of unmodeled fault behavior.  

Table 16.   Voting bridge defect diagnosis results. 

Circuit Average First 

Hit Index 

# Top 

Candidates 

Percent 

≤ 10 

Percent 

≤ 5 

C432 1.4 7.2 99% 98% 

C499 1.0 1.6 100% 100% 

C880 1.3 1.5 99% 97% 

C1355 2.3 8.2 98% 96% 

C1908 1.5 8.8 99% 96% 

C2670 1.5 8.7 99% 96% 

C3540 2.2 12.2 97% 92% 

C5315 1.3 2.5 99% 99% 

C6288 1.1 1.4 100% 99% 

C7552 1.2 15.8 100% 99% 

Average 1.48 6.7 99% 97.2% 
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6.3.3 Dominant-AND and Dominant-OR Bridging Fault  

It has been observed in static Random Access Memory (RAM) that the behavior of 

some short circuit defects between adjacent memory cells cannot be accurately modeled 

by wired or dominant bridging models [92]. The faulty behavior observed in many faulty 

RAMs was that a logic ‘1’ in the dominating cell forced a logic ‘1’ in the victim cell, 

while logic ‘0’ in the dominating cell allowed normal operation in the victim cell. Bridge 

fault models named dominant-AND (or diode-AND) and dominant-OR (or diode-OR) 

were proposed to describe this type of fault behavior [92].  

 

Figure 57. Dominant-AND and Dominant-OR fault models. 

The fault behavior is illustrated in Figure 57. The model can be seen as a hybrid of 

wired-AND/wired-OR and dominant bridging fault models. The logical behavior is 

further summarized in Table 17.  
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Table 17.   Behavior of dominant-AND/OR fault 

Signal lines A dand B A dor B B dand A B dor A 

AB A’B’ A’B’ A’B’ A’B’ 

00 0  0 0  0 0  0 0  0 

01 0  0 0  1 1  1 1  1 

10 1  0 1  1 0  0 1  0 

11 1  1 1  1 1  1 1  1 

 

This type of fault behavior is not modeled in our analysis so it is also interesting to 

see how the diagnosis tool handles this type of fault. We ran 1,000 trials on ISCAS85 

benchmarks. For each circuit, 100 cases of single random dominant-AND/OR bridges 

were injected, the circuit simulated, and diagnosed.   

Table 18.   Diagnosis result for dominant-AND and dominant-OR fault 

Circuit # Failing 

Vector 

Average First 

Hit Index  

Percent 

≤ 10 

Percent 

≤ 5 

C432 6.2 5.2 87% 81% 

C499 9.6 3.6 94% 80% 

C880 8.7 4.1 92% 80% 

C1355 15.3 5.9 84% 75% 

C1908 23.2 4.0 92% 85% 

C2670 18.1 5.1 93% 88% 

C3540 13.5 6.4 85% 82% 

C5315 19.4 5.1 90% 79% 

C6288 9.1 3.3 91% 84% 

C7552 37.3 4.5 92% 89% 

Average 16.04 4.72 90% 82.3% 

 

The results in Table 18 show that the average first-hit index is 4.72, which means that 
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the real fault candidate is ranked in top 5 most of the time. The diagnosis resolution is a 

little lower than for dominant or wired bridging faults, because the dominant-AND/OR 

fault is more difficult to detect than either the wired or dominant bridging faults. 

Comparing to Table 14, fewer failing vectors are observed in dominant-AND/OR 

diagnosis than dominant or wired bridging fault diagnosis.  

 

6.3.4 Design Error Diagnosis 

Our modeled faults focus on defects within interconnects. A defect within a gate can 

change the gate behavior, in the same manner as a design error. We tested our diagnosis 

tool on two types of design errors: missing wire and wrong gate type. For each type of 

design error, 1,000 trials are performed to collect the result data, 100 trials for each 

circuit.  

There are several assumptions we have made in the missing wire design error 

simulation. First, if the missing wire is an input of AND/NAND/XNOR gate, the 

missing wire is assumed to float to ‘1’, so that it behaves the same as a missing input. If 

the missing wire floated to ‘0’, then it would behave the same as a SA0 fault at the gate 

output, which is a modeled fault. We only consider two-input XOR/XNOR gates. If the 

missing wire is an input of OR/NOR /XOR gate, the missing wire is assumed to float to 

‘0’.  

Table 19 shows the diagnosis quality for missing wire error. The average first hit 

index is 2.67, which means the real fault is ranked in the top 3 on average. As long as the 

real missing wire is the same as one of the candidate lines (e.g., a bridge fault candidate), 
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it is considered a hit. The percentage of diagnoses that have the real candidate ranked in 

the top 10 is 94% and in the top 5 is 90%, which shows that our diagnosis tool can 

handle missing wire behavior. Column 6 shows the percentage of failing diagnosis. Here 

we determine that a diagnosis is failing if the real candidate is not ranked in the top 100. 

On average, the failing diagnosis rate is 2.2%, which is not significant. We find that all 

the failing diagnoses have one thing in common: these chips have only a few failing 

vectors (usually only 1 or 2). 

Table 19.   Diagnosis result for missing wire design error. 

Circuit # Failing 

Vector 

Average First 

Hit Index 

Percent 

≤ 10 

Percent 

≤ 5 

% Failing 

Diagnosis 

C432 5.9 1.2 100% 100% 0% 

C499 17.7 3.8 81% 68% 11% 

C880 10.1 1.1 100% 100% 0% 

C1355 22.2 3.4 94% 92% 1% 

C1908 22.6 1.7 98% 95% 1% 

C2670 10.4 1.9 93% 88% 5% 

C3540 18.6 3.0 95% 91% 0% 

C5315 16.4 2.1 98% 92% 0% 

C6288 8.0 3.7 90% 85% 4% 

C7552 36.5 4.8 91% 85% 0% 

Average 18.84 2.67 94% 90% 2.2% 

 

We also injected wrong gate type design errors to evaluate our tool’s performance. 

The type of error that we inject is to complement the gate output, so an AND becomes 

NAND, NAND becomes AND, OR to NOR, NOR to OR, XOR to XNOR, XNOR to 

XOR, buffer to inverter, and vice-versa. Defects with this complementing behavior have 
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been observed in production chips. Table 20 shows the diagnosis result for wrong gates. 

The result shows our tool does not work very well with wrong gate type error. The 

percentage of diagnoses that rank the real candidate at the top 10 is 77% and the 

percentage that ranks in the top 5 is only 68%. The failing diagnosis rate is 17.5% on 

average. However, if we take a closer look at the diagnosis, we find that actually the real 

candidate line (the output net of the wrong gate) is always ranked as the top candidate in 

the second phase ranking, which is shown in column 7 in Table 20. This suggests that 

the critical path tracing and the second-step ranking works very well because both these 

steps are model-independent. 

Table 20.   Diagnosis result for wrong gate type design error. 

Circuit # Failing 

Vector 

Average First 

Hit Index 

Percent 

≤ 10 

Percent 

≤ 5 

% Failing 

Diagnosis 

First Hit Index in 

2
nd
-phase ranking 

C432 19.9 2.7 75% 72% 20% 1 

C499 34.4 4.6 75% 60% 18% 1 

C880 30.8 3.4 70% 61% 26% 1 

C1355 55.4 5.5 73% 67% 17% 1 

C1908 71.7 4.0 71% 62% 23% 1 

C2670 29.3 4.3 74% 69% 18% 1 

C3540 38.6 4.1 82% 74% 11% 1 

C5315 33.0 3.7 80% 66% 15% 1 

C6288 26.0 3.3 83% 74% 12% 1 

C7552 82.0 4.8 86% 76% 15% 1 

Average 42.1 4.0 77% 68% 17.5% 1 

 

As introduced in the previous section, during second-phase ranking, we perform fault 

simulation on the suspect line for failing vectors and calculate the Hamming distance 
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between observed behavior and simulated behavior. All the suspect lines are then ranked 

by the Hamming distance. The one with the smallest Hamming distance explains the 

most failing responses. For the wrong gate type errors we injected (inversion), the output 

net of the wrong gate always has the Hamming distance equal to 0 because flipping its 

logic value can explain all failing primary outputs. It is the third step, model-based 

simulation, that adds noise to the diagnosis because the stuck-at and bridge fault models 

do not completely model the wrong gate type behavior. This suggests that we should 

consider adding wrong gate type to the fault simulation to improve the diagnosis 

accuracy and resolution. 

6.3.5 Multiple Fault Diagnosis 

Although our tool is based on a single fault assumption, we tested the tool on multiple 

fault cases to see how it worked. We randomly injected two stuck-at faults 15 times in 

C7552. The results are summarized in Table 21.  
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Table 21.   Diagnosis result for multiple faults. 

Trial # Failing 

Vector 

First Hit 

Index  of 

SA node 1 

First Hit 

Index of 

SA node 2 

Correct 

Diagnosis? 

Case1 169 1 60 partial 

Case2 86 5 >100 partial 

Case3 115 8 22 partial 

Case4 44 1 >100 partial 

Case5 131 5 >100 partial 

Case6 18 1 1 correct 

Case7 157 1 >100 partial 

Case8 19 4 >100 partial 

Case9 124 1 >100 partial 

Case10 116 1 14 partial 

Case11 104 1 >100 partial 

Case12 28 3 >100 partial 

Case13 21 26 >100 misleading 

Case14 174 2 30 partial 

Case15 152 2 >100 partial 

 

Columns 3 and 4 show the first-hit index of stuck-at node1 and node2. Note that 

node1 is the node that ranks higher in the fault candidate list. From the experimental 

results, we can see that in most cases, our tool can locate one of the faults. Except for 

case 13, the diagnosis ranked one of the faults in the top 10. In case 6, our tool ranked 

both of the faults as #1. In case 13, the diagnosis is misleading because the true fault 

candidates are ranked at 26 and greater than 100, while the one ranked at the top is 

unrelated to the true candidates. This top candidate has a Hamming distance of 0, which 



 111 

 

means this “false” candidate can perfectly explain the observed faulty behavior. In 

general, the results show that our single fault based diagnosis tool can return a partial 

diagnosis result for most of the two SA fault cases. 
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7. CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

In this research, we have developed an effect-cause fault diagnosis framework. The 

work includes three parts: an improved critical path tracing algorithm, a statistical 

filtering and ranking method and model-based fault simulation. 

The classical diagnosis algorithms follow two different paradigms: cause-effect 

approach and effect-cause approach. Cause-effect analysis is based on a specific fault 

model. Algorithms in this class build a fault dictionary for the modeled faults and 

compare these simulated behaviors with the observed failure responses to determine the 

probable causes of the failures. The cause-effect approach can give very good results if 

the defect behavior is similar to the modeled fault behavior. Otherwise, the accuracy and 

resolution may be drastically impaired. The other drawback of the cause-effect approach 

is the huge space and time overhead for fault dictionary construction and storage. The 

dictionary size grows rapidly as the circuit size or the number of defects increases. 

The effect-cause diagnosis approach, searches for the locations (or causes) of the 

defects without building a dictionary. Algorithms in this class analyze the actual chip 

responses and determine which fault(s) might have caused the observed failure effect. 

Those methods trace backward from each primary output to determine the error-

propagation paths for all possible fault candidates. Comparing with the cause-effect 

methods, effect-cause techniques are more memory efficient and scalable to large 

designs. Furthermore, the effect-cause approach is more model-independent compared to 
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the cause-effect approach. Since the type of defect is unknown beforehand, effect-cause 

methods can better handle unmodeled defects.  

Based on the above reasons, we chose to use effect-cause diagnosis approach in our 

tool. Critical path tracing is used as the first step to obtain a reduced list of suspect nets. 

Critical path tracing backtraces from primary outputs toward primary inputs, to obtain a 

sequence of critical lines. Those critical lines are the suspicious candidates because a 

fault effect on them could propagate to the primary outputs. Previous critical path tracing 

algorithms are incomplete in that they are either too slow or not exact. To overcome 

these problems, we developed seven rules to determine the stem criticality in one pass 

when the stem does not need forward simulation. If a stem requires a forward 

simulation, a fast forward fault simulation is performed from the stem to its outer 

convergence point. The simulation algorithm is greedy in that once no fanout is found to 

be active, the simulation stops. The only tradeoff in making the critical path tracing 

algorithm exact is the time cost of determining whether the stem needs forward 

simulation. Experimental results on ISCAS85 and ISCAS89 benchmark circuits show 

that the run time is nearly linear to the circuit size. Comparing to the FSIM parallel 

pattern single fault propagation fault simulation tool, our critical path tracing is 5%-48% 

faster.  

The second step is using statistical filtering and ranking methods to further reduce the 

size of the suspect list. The step includes first and second-level filtering and ranking. The 

first-level filtering removes unrelated candidates that have never been seen as faulty and 

the first-level ranking is based on the number of times we see each line faulty. 
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Intuitively, the more frequently we see a line faulty, the more suspicious it is. The 

second-level filtering removes the candidate lines that appear faulty less than a threshold 

T. This threshold T is determined by nFaultyPOs/nMaxFaults where nMaxFaults is the 

maximum number of defects we consider and nFaultyPOs is the number of faulty POs. 

We set nMaxFaults to 4, since a larger number of faults does not occur very often. After 

second-level filtering, second-level ranking is performed as a tie breaker if two suspect 

lines are seen as faulty the same number of times. To rank the suspect lines, we 

performed PPSFP fault simulation on the suspect lines for failing test vectors and 

calculated the Hamming distance between the simulated and observed behavior. The 

suspects are then ranked by the Hamming distance if two lines have been seen faulty the 

same number of times. In general, the first and second level filtering and ranking are 

used to reduce the size of suspect list and rank the most suspicious lines near or at the 

top so that we can save time in the third step. 

The third step is to refine the diagnosis through model-based fault simulation. During 

this step, heuristically, we choose the top 100 candidate lines for fault simulation based 

on the observation that the real candidate line is always ranked in the top 100 for all the 

experiments we conducted. Then we utilize two measurements, Always0 and Always1, to 

selectively map each candidate line to the fault candidates on it. As their names imply, 

Always0 and Always1 indicates that if the line is always being driven by ‘0’ or ‘1’ 

whenever it is seen as faulty. From these two measurements, we can determine if a SA 

fault or bridge fault is possible on this line. In this way, we can avoid unnecessary fault 

simulation. After line-to-fault mapping, model-based simulation is conducted for a set of 
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fault models and the Hamming distance between the observed faulty behavior and the 

simulated faulty behavior is used to rank the fault candidates.  

Experimental results on ISCAS85 circuits show that the run time of our diagnosis is 

1.3 to 6.8 faster than a recent SAT-based model-free diagnosis tool. The memory usage 

of our tool is linear to the size of the circuit, so large designs are feasible. For targeted 

faults, the diagnosis accuracy and resolution of our tool are very good. The diagnosis 

tool can always report the result with the real fault ranked at the top for targeted faults. 

For untargeted faults, the diagnosis can return reasonably good accuracy and resolution 

in most cases, which shows that our tool is sophisticated enough to tolerate the noise 

brought by unexpected defect behavior. For the wrong gate type fault, our diagnosis tool 

does not perform as well, because the model-based simulation step adds noise to the 

diagnosis, because the fault models we used cannot completely match the behavior of a 

wrong gate type. However, the model-independent first and second steps of the 

diagnosis procedure return good ranking results. Our single-fault tool was evaluated on 

multiple faults. Most of the time, a partial diagnosis (diagnosis of one of the faults) could 

be achieved. In one case, the diagnosis was misleading. 

In summary, the major contributions of our works are as follows: 

A fast and exact critical path tracing algorithm was developed that can handle all 

kinds of reconvergence cases efficiently while considering unknown values.  

A combination of filtering and ranking strategies can dramatically reduce the suspect 

fault list and greatly reduce the suspect search area. 

Integration of fault models and model-free strategies result in a diagnosis framework 
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that achieves very good accuracy and resolution for modeled faults while achieving 

reasonably good results on unmodeled faults. 

7.2 Future Work 

As discussed earlier, critical path tracing algorithm could be extended to handle more 

complex gate types in real industrial circuits, such as MUX and tri-state gates. Our 

algorithm is readily extended to handle MUX or complex logic gate types such as AND-

OR, because we can treat them as a combination of common logic gates. For tri-state 

gates, we need to consider both the input line and control signal line because a fault on 

either of these two lines could change the gate output. One challenge is handling the 

high impedance (Z) state. 

Since our diagnosis tool was challenged by wrong gate type faults, it suggests that we 

should consider adding this fault to the model-based simulation step. Adding this as a 

general fault for fault simulation may be too expensive, especially when considering all 

the different wrong gate types that can occur. Instead, we could choose the top-ranked 

suspect lines and examine the driving cells of these lines to see if changing the gate 

behavior of these cells could correct the faulty behavior on the driven lines for all the 

failing vectors. If it is possible to synthesize the new function on the suspect line by 

changing the type of the gate that feeds this line or by other types of correction to 

explain and correct all the faulty bits, it is successful. Otherwise, we continue to use the 

line-to-fault mapping and model-based simulation.  

As we can see from the run time result, model-based simulation takes most of the 
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diagnosis time. This suggests that if we want to improve the run time, we must reduce 

the simulation time. A more sophisticated filtering method could be used to reduce the 

simulation cost. Currently, we use a threshold (the number of faulty primary outputs 

divided by four) to cut off the suspect line list in the second-level filtering. A more 

sophisticated way would be to compute the distribution of nTimeFaulty (the number of 

times we see each candidate line faulty) and compute the threshold based on the tail of 

the distribution. 

In order to handle multiple defects, we need to incorporate the path tracing method 

and SLAT patterns. Since critical path tracing is based on a single fault assumption, it 

does not correctly handle multiple defects. The alternative is to use path tracing. Path 

tracing is a linear-time routine, which is similar to critical path tracing. It starts from 

faulty POs and pessimistically marks lines that may belong to a sensitized path. If the 

output of a gate has been marked and the gate has one or more fanin(s) with controlling 

values, then all the controlling fanins are marked. If a gate has all fanins with 

noncontrolling inputs, then all fanins are marked. Finally, if a branch is marked, then the 

stem of the branch is marked [38]. Comparing to critical path tracing, path tracing is 

more conservative, but it guarantees that the real faulty line is contained in the set of 

lines marked by path tracing. The challenge is determining when path tracing or critical 

path tracing is appropriate. SLAT patterns could easily extend our diagnosis framework 

to multiple defect diagnosis. SLAT patterns are those patterns during which the defect 

affected only a single location [69]. The original ranking and filtering methods only need 

a slight adjustment to handle multiple fault diagnosis. To identify SLAT patterns, we can 
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still flip the logic value on the suspect line and perform PPSFP, then match the observed 

behavior to the simulated behavior. The difference is that for multiple fault diagnosis, we 

need to identify all the faults that can explain all the observed fails for each failing 

pattern. Once we know which faults can completely explain all the fails collected for 

each failing pattern, the remaining work is to find a smallest set of candidates that can 

explain all the fails.  

In our current diagnosis framework, we have incorporated physical design 

information in bridge fault diagnosis by using the coupling capacitance list to find the 

realistic bridge faults (if available, an extracted bridge fault list would be even better). In 

future work, we could also use physical design information to identify locations and 

layers within the circuit where open circuit faults can occur. This information can be 

used to filter and improve the suspect net list so that the scanning electron microscope 

(SEM) search area could be reduced [108]. 
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