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ABSTRACT

Multiterminal Source Coding: Sum-Rate Loss,

Code Designs, and Applications to Video Sensor Networks. (December 2008)

Yang Yang, B.S., Tsinghua University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Zixiang Xiong

Driven by a host of emerging applications (e.g., sensor networks and wireless video),

distributed source coding (i.e., Slepian-Wolf coding, Wyner-Ziv coding and various other

forms of multiterminal source coding), has recently become a very active research area.

This dissertation focuses on multiterminal (MT) source coding problem, and con-

sists of three parts. The first part studies the sum-rate loss of an important special case

of quadratic Gaussian multi-terminal source coding, where all sources are positively sym-

metric and all target distortions are equal. We first give the minimum sum-rate for joint

encoding of Gaussian sources in the symmetric case, and then show that the supremum of

the sum-rate loss due to distributed encoding in this case is 1
2 log2

5
4 = 0.161 b/s when L = 2

and increases in the order of
º

L
2 log2 e b/s as the number of terminals L goes to infinity.

The supremum sum-rate loss of 0.161 b/s in the symmetric case equals to that in general

quadratic Gaussian two-terminal source coding without the symmetric assumption. It is

conjectured that this equality holds for any number of terminals.

In the second part, we present two practical MT coding schemes under the framework

of Slepian-Wolf coded quantization (SWCQ) for both direct and indirect MT problems.

The first, asymmetric SWCQ scheme relies on quantization and Wyner-Ziv coding, and it

is implemented via source splitting to achieve any point on the sum-rate bound. In the sec-

ond, conceptually simpler scheme, symmetric SWCQ, the two quantized sources are com-

pressed using symmetric Slepian-Wolf coding via a channel code partitioning technique
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that is capable of achieving any point on the Slepian-Wolf sum-rate bound. Our practical

designs employ trellis-coded quantization and turbo/LDPC codes for both asymmetric and

symmetric Slepian-Wolf coding. Simulation results show a gap of only 0.139-0.194 bit per

sample away from the sum-rate bound for both direct and indirect MT coding problems.

The third part applies the above two MT coding schemes to two practical sources, i.e.,

stereo video sequences to save the sum rate over independent coding of both sequences.

Experiments with both schemes on stereo video sequences using H.264, LDPC codes for

Slepian-Wolf coding of the motion vectors, and scalar quantization in conjunction with

LDPC codes for Wyner-Ziv coding of the residual coefficients give slightly smaller sum

rate than separate H.264 coding of both sequences at the same video quality.



v

To my parents



vi

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to Dr. Zixiang Xiong for his great patience

and enlightening guidance. He was always a source of encouragement throughout my

graduate studies. I would like to thank Dr. Wei Zhao for all his kind help without which

I could not be where I am today. I would also like to thank Dr. Costas N. Georghiades,

and Dr. Mosong Cheng for serving on my committee. I want to thank my colleagues in

the Multimedia Laboratory for sharing their insightful knowledge with me. I am especially
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CHAPTER I

INTRODUCTION

In many emerging applications (e.g., distributed sensor networks), multiple correlated sources

need to be separately compressed at distributed terminals and transmitted to a central unit.

Due to complexity and power constraints, the transmitters are often not allowed to commu-

nicate with each other. This gives rise to the problem of multiterminal source coding [4],

which has thirty years of history.

Multiterminal (MT) source coding is a distributed source coding problem. Distributed

source coding was started by Slepian and Wolf in 1973 [47], who considered separate loss-

less compression of two correlated sources, and showed the surprising result that separate

encoding and joint decoding suffer no rate loss compared to the case when the sources

are compressed jointly. Their seminal work [47] was subsequently extended to other dis-

tributed source coding scenarios. In 1976, Wyner and Ziv [62] extended one special case

of Slepian-Wolf (SW) coding, namely, lossless source coding with decoder side informa-

tion, to lossy source coding with decoder side information. Unlike SW coding, there is in

general a rate loss with Wyner-Ziv (WZ) coding [62] compared to the lossy source cod-

ing problem when side information is also available at the encoder. An exception occurs

when the source and side information are jointly Gaussian and the distortion measure is

mean-squared error (MSE).

Soon after the celebrated works of Slepian and Wolf [47] and Wyner and Ziv [62],

Berger [4] introduced the general problem of MT source coding by considering a more

general case of separate lossy source coding of two (or more) sources1. Two classes of MT

The journal model is IEEE Transactions on Automatic Control.
1One can loosely think of MT source coding as the lossy version of SW coding.
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source coding problems have been studied in the literature. In the original work of Berger

and Tung [4, 55], the case where each encoder observes directly its source was considered;

later, Yamamoto and Itoh [64] and Flynn and Gray [17] focused on another scenario where

each encoder cannot observe directly the source that is to be reconstructed at the decoder,

but is rather provided only with a noisy version. These two classes are distinguished as

the direct and indirect (or remote) MT source coding problem, respectively. Note that in

the latter case, often referred to as the CEO problem [36, 57], a single source is to be

reconstructed at the decoder.

Theoretical study of the MT source coding problem amounts to determining the achiev-

able rate region (i.e., all possible compression rate tuples) under distortion constraint(s) on

the source(s). Finding the achievable rate region for general MT source coding is a difficult

task and still remains open. Only inner and outer bounds2 for both MT coding problems

have been provided [4, 17, 55, 64].

Owing to the difficulty of the general MT source coding problem, researchers have

focused on the quadratic Gaussian setup with Gaussian source(s) and MSE distortion mea-

sure. Theoretical results on the quadratic Gaussian MT source coding problem appeared

in [4, 35, 55] for the direct setting and in [8, 36, 37, 40, 57] for the indirect/CEO setting.

However, even for this special case, the achievable rate region was unknown until recently.

The indirect/CEO problem (with arbitrary number of encoders) was solved independently

by Oohama [37] in 1999 (and published recently in [38]) and Prabhakaran et al. [40], using

the entropy power inequality [12]. But the direct MT source coding problem is more chal-

lenging because it requires the reconstruction of a vector source instead of a single remote

source, and the lack of a vector version of the entropy power inequality has prevented the

generalization of the proofs of [38, 40]. Consequently, the exact achievable rate region is

2All rate points within the inner bound are achievable, while those outside the outer
bound are not.
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still unknown for the direct MT source coding problem with arbitrary number of encoders.

However, for the case with two encoders, Wagner et al. [58] made the connection in 2005

between the direct and indirect MT source coding problems (via a so-called µ-sum prob-

lem) and showed tightness of the Berger-Tung achievable bound [4, 55] by proving the

converse.

It is interesting to investigate the exact sum-rate loss of distributed encoding as com-

pared to joint encoding (and decoding) of Gaussian sources. To this end, In the first part of

this dissertation, we study the minimum sum-rate for the joint encoding case. For general

jointly Gaussian sources (without the symmetric assumption), the optimal joint encoding

strategy is to first transform the sources into independent unit-variance Gaussian sources

and then apply classical source coding on the transformed sources. Interestingly, our re-

sults indicate that the optimal transform varies with different target distortions, and is not

always the Karhunen-Loéve transform (KLT) of the sources, and the minimum sum-rate

of joint encoding can be obtained by solving an optimization problem over all achievable

distortion matrices D (defined as the covariance matrix of the sources given the trans-

mitted messages). Although we are not able to explicitly solve this optimization prob-

lem for general jointly Gaussian sources and target distortions, for the symmetric case

we are interested in, the minimum sum-rate can be written in exact form and the KLT

is always optimal. We also show that the supremum (i.e., the least upper bound, which

is not achievable) of the sum-rate loss is only 1
2 log2

5
4 = 0.161 bit per sample (b/s) for

quadratic Gaussian two-terminal source coding with or without our symmetric assump-

tion. Moreover, our results indicate that for the quadratic Gaussian MT source coding

problem with more than two positively symmetric sources and equal target distortions, the

supremum of the sum-rate loss increases in the order of
º

L
2 log2 e, where L is the num-

ber of terminals. We conjecture that for any integer L A 2, the supremum sum-rate loss

in the symmetric case equals to that in general quadratic Gaussian MT source coding.
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This conjecture is numerically verified for L = 3 and 4.

With the precise rate regions for both the direct and indirect quadratic Gaussian MT

problems with two encoders recently provided in [38, 40, 58], now is the time to study

practical code designs that are capable of achieving any point in these regions. Compared

to the body of theoretical works on MT source coding problems, research on practical

code designs is still in its infancy. Targeting the tight sum-rate bound for the two-encoder

quadratic Gaussian CEO problem [38, 40], Pradhan and Ramchandran [42] provided a code

design based on generalized coset codes, with fixed-rate scalar quantizers and trellis codes.

Although capable of trading off transmission rates between the two encoders, the design

in [42] performs relatively far away from the theoretical limits, especially at low rates.

Motivated by the fact that WZ coding [62] is a special case of MT coding, in an earlier

work [66], we proposed an asymmetric coding system for the CEO problem that essentially

relies on WZ coding. Although the scheme in [66] gives better results than those of [42], it

is limited to approaching the two corner points of the achievable rate region only.

In the second part of this dissertation, we focus on practical code designs for the

quadratic Gaussian direct and indirect MT problems with two encoders. Generally speak-

ing, MT source coding is a joint source-channel coding problem: first, its lossy nature

necessitates quantization of the sources; second, the distributed nature of the encoders

calls for compression (after quantization) by SW coding, which is commonly implemented

by a channel code. More importantly, one of the conclusions of the theoretical works of

[38, 40, 58] is that vector quantization (VQ) plus SW coding is indeed optimal for the

quadratic Gaussian MT source coding with two terminals3. Following this guiding prin-

ciple, we propose a framework called Slepian-Wolf coded quantization (SWCQ) for prac-

tical MT source coding. Unlike nested lattice codes suggested by Zamir et al. [76] and

3We point out that separate VQ and SW coding is in general not optimal for MT source
coding.
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generalized coset codes used by Pradhan and Ramchandran [42], which are essentially

nested source-channel codes, SWCQ explicitly separates the SW coding component from

the vector quantizers at the encoder (while employing joint estimation/reconstruction at

the decoder). This approach not only allows us to design a good source code and a good

channel code individually, but also enables us to evaluate the practical performance loss

due to source coding and channel coding separately. Moreover, SWCQ is very general as it

applies to both direct and indirect MT source coding problems. It also generalizes similar

approaches recently developed in [28, 65] for WZ coding.

Slepian and Wolf [47] showed that the separate compression of two correlated sources

can be near lossless at the total rate of their joint entropy. In particular, when one source is

available only at the decoder as side information, the other source can still be near-losslessly

compressed at the rate of its conditional entropy given the decoder side information. This

special case corresponds to the two corner points of the SW rate region, and is called asym-

metric SW coding; on the other hand, symmetric (or more precisely, non-asymmetric) SW

coding attempts to approach any point between the two corner points. Correspondingly,

two classes of SW code designs exist in the literature. Asymmetric SW code designs based

on coset codes [41], turbo codes [1, 2, 20, 30] and low-density parity-check (LDPC) codes

[29, 54] were developed for binary sources. The main idea [61] is to compress a binary

input source sequence to the syndrome of a linear channel code for the “virtual” corre-

lation channel between the source and the decoder side information, and find the binary

sequence with the same syndrome that is closest to the side information at the decoder.

This syndrome-based method can approach one of the two corner points of the SW rate

region if the employed channel code approaches the capacity of the “virtual” correlation

channel.

In practical applications (e.g., sensor networks), it is preferable for the encoders to

be able to operate at flexible rates. This necessitates symmetric SW coding. The most
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straightforward approach is time-sharing between the two corner points. However, time-

sharing might not be practical because it requires synchronization between the encoders.

An alternative is the source splitting approach introduced by Rimoldi and Urbanke [46].

By “splitting” one source into two subsources, arbitrary point on the two-terminal SW rate

region can be mapped to the corner point of a three-terminal SW rate region, which can

be approached using asymmetric SW coding. A drawback of source splitting is that it in-

creases coding complexity and introduces extra error propagations. Recently, Pradhan and

Ramchandran [42] suggested a method for symmetric SW coding based on partitioning a

single parity-check code. Following this idea, in [49], a practical code design method for

symmetric SW coding of uniform binary sources was developed; assuming binary sym-

metric correlation channel between two sources, the designs of [49] with irregular repeat-

accumulate codes [25] and turbo codes [5] give results that are very close to the SW limit.

Combining trellis coded quantization (TCQ) [33], as the most powerful source coding

technique, with asymmetric and symmetric SW coding, respectively, we present in this

dissertation two practical designs under the SWCQ framework for both direct and indirect

quadratic Gaussian MT source coding with two encoders. The first asymmetric SWCQ

scheme employs quantization (i.e., TCQ), asymmetric SW coding, and source splitting

to realize MT source coding with two encoders. More precisely, our MT source code

design is “split” into one classic source coding component and two WZ coding components.

While classic source coding relies on entropy-coded VQ, WZ coding is implemented by

combining TCQ and turbo/LDPC codes (for asymmetric SW coding).

In our second symmetric SWCQ scheme, the outputs of two TCQs are compressed

using symmetric SW coding, which is based on the concept of channel code partitioning

[49] for arbitrary rate allocation between the two encoders. Exploiting the joint statistics of

the quantized sources, we develop a multi-level channel coding framework for symmetric

SW coding. Furthermore, arithmetic coding [3] is employed at each encoder to exploit the
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cross-bit-plane correlation in each of the quantized sources for further compression.

To demonstrate the effectiveness of our proposed SWCQ framework, we show that,

assuming ideal source coding and ideal SW coding (realized, for example, via capacity-

achieving channel coding), both asymmetric SWCQ and symmetric SWCQ can achieve

any point on the sum-rate bound of the rate region for both direct and indirect MT source

coding. We also perform high-rate performance analysis of SWCQ under practical TCQ

and ideal SW coding. Practical designs using TCQ and turbo/LDPC codes for asymmetric

SW coding, and TCQ, arithmetic coding, and turbo/LDPC code for symmetric SW coding

perform only 0.139-0.194 bit per sample (b/s) away from the sum-rate bounds of quadratic

Gaussian MT source coding.

In the third part of this dissertation, we examine MT video coding of two correlated

sequences captured by calibrated cameras with known intrinsic (e.g., focal length and pixel

width) and extrinsic 3D geometric parameters (e.g., relative positions). They are often

referred to as stereo video sequences. The two encoders, one at each camera, cannot com-

municate with each other. Each encoder compresses its captured video before sending it to

the joint decoder for stereo video reconstruction.

In general, effective coding of a single/monocular video sequence necessitates ex-

ploitation of both spatial and temporal redundancies within the sequence. H.264/AVC [59]

provides the currently most efficient solution by using motion estimation/compensation

to strip off the temporal redundancy between frames, the DCT of the resulting motion-

compensated residual frames for energy compaction and de-correlation, and variable-length

coding for compression.

For stereo video sequences, the compression efficiency can be further improved by

exploiting the inter-sequence correlation (as done in the MPEG-2 stereo video coding stan-

dard [34]) in a joint encoding setup. This leads us to stereo matching [50] at the encoder

side, which is a fundamental problem in stereo vision, and has been extensively studied



8

in the past by many researchers. For MT video coding, since the correlation between the

two video sequences is not known a priori, correlation modeling is one of the key issues;

although the encoders cannot communicate with each other, the 3D geometric information

of the cameras can still help exploit the binocular correlation between the stereo pair at the

decoder.

We describe in this dissertation two MT video coders, each capable of outperform-

ing separate H.264/AVC coding of two stereo sequences. The first coder shares the basic

structure of SWCQ developed in [69] for MT source coding of two Gaussian sources.

Specifically, the left video sequence is compressed by the left encoder using H.264/AVC

and a reconstructed version is available at the joint decoder. Then, the first I-frame of the

right sequence is successively coded: a low-quality version is generated by H.264/AVC

Intra coding and sent to the decoder to obtain a rough disparity map, which is combined

with the decoded left I-frame to generate decoder side information for SW coding of the

refinement bit stream of the right I-frame. With a better quality right I-frame, the dis-

parity map between the left and right I-frames are refined at the decoder to serve as an

initial point-to-point correspondence for the subsequent P-frames of the right sequence.

The joint decoder subsequently generates side informations for both the motion vectors

and the motion-compensated residual frames of the right sequence on the fly by imposing

an “identical motion constraint”, which means the corresponding points in the left and right

scenes must have identical 3D motions. With side information available at the decoder, mo-

tion vectors for the P-frames of the right sequence are SW coded by LDPC codes, and the

corresponding motion-compensated residual frames are WZ coded [62] via SWCQ.

The second coder employs the source splitting idea of [46] in conjunction with SWCQ

[69]. The goal is to allow flexible rate allocation between the two video sequences. Specif-

ically, the two sources are first coded with lower quality and the resulting bitstreams are

transmitted to the decoder to generate a rough disparity map, which is used to compute a
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side information of the first source by warping the low-quality second source. Then the

residual frame of the first source is refined via SWCQ. Now the decoder comes back to

warp the decoded high-quality first source to generate a side information of the second

source, which is in turn used for refining the residual frames of the second source. This

way, the two encoders are able to control the quality of the four quantized versions (one

coarse version and one finer version for each source) and arbitrarily allocate rates between

the two encoders.

Unlike approaches (e.g., in [43, 71]) that emphasize low-complexity encoding, this

work aims to show for the first time that MT video coding can outperform independent

coding with standard approaches (e.g., H.264/AVC) at the same sum rate, thus making the

nascent field of distributed video coding viable. With H.264/AVC being a very powerful

video compression standard, our solution for MT video coding is to use the disparity maps

generated by the stereo matching algorithm to explore the joint statistics between compo-

nent H.264/AVC bit streams (e.g., motion vector bits and texture bits) of the left and right

sequences. Instead of using the entropy coder of H.264/AVC for the right sequence, we

employ SW coding (or conditional entropy coding) based on the joint statistics. Since con-

ditioning reduces entropy, the compression performance of our proposed schemes with SW

coding is guaranteed (in theory) to be no worse than that of separate H.264/AVC compres-

sion. In our implementation of MT video coding, although inaccurate correlation modeling

and rate loss with practical SW coding hurt the overall performance, we are able to achieve

savings, albeit very small, in terms of the sum rate over separate H.264/AVC coding.

In summary, the main contributions of this dissertation are:

1. Exact form of minimum sum-rate for joint encoding of Gaussian sources in the sym-

metric case,

2. Proof that the supremum of the sum-rate loss due to distributed encoding in this case



10

is 1
2 log2

5
4 = 0.161 b/s when L = 2 and increases in the order of

º
L

2 log2 e b/s as the

number of terminals L goes to infinity.

3. Conjecture that for any number of terminals, the supremum sum-rate loss in the sym-

metric case equals to that in general quadratic Gaussian two-terminal source coding

without the symmetric assumption. It is conjectured that this equality holds.

4. The SWCQ framework based on separate vector quantization and SW coding for

the quadratic Gaussian direct and indirect MT source coding problems with two en-

coders,

5. Demonstration of optimality of SWCQ for quadratic Gaussian MT source coding in

the sense of being able to approach arbitrary points on the sum-rate bounds, assuming

ideal source coding and ideal SW coding,

6. High-rate performance analysis of SWCQ for MT source coding under practical TCQ

and ideal SW coding,

7. Characterization of the joint behavior of two independently dithered TCQ quantizers

with independent identically distributed (i.i.d.) dither sequences; the quantization

noises of the two quantizers are shown to be (nearly) independent, which is required

by optimality of an MT source coding scheme,

8. An efficient multi-level symmetric SW code design that extends channel code parti-

tioning approach for binary sources [49] to arbitrary correlation models among the

sources; this design is capable of exploiting the joint statistics of the quantization

indices and incorporating the statistics into the decoding algorithm.

9. Practical asymmetric and symmetric MT code designs with dithered TCQ and multi-

level asymmetric/symmetric SW coding that come much closer to the sum-rate bounds
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of direct and indirect MT problems with two encoders than the design of [42].

10. Two MT video coders that are capable of saving sum rate over independent H.264/AVC

coding of stereo video sequences.

Notation-wise, random variables are denoted by capital letters, e.g., X . They take

values x from alphabet X . Random vectors are denoted by capital letters superscripted by

their lengths, e.g., Xn. All channel codes are binary. Matrices are denoted by bold-face

upper-case letters. Ik is the k�k identity matrix and Ok1�k2 the k1�k2 all-zero matrix. All

logarithms are of base two.
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CHAPTER II

THEORETICAL LIMITS OF MT SOURCE CODING

In this section, we review theoretical bounds of direct and indirect MT source coding.

A. Direct MT source coding

The direct MT source coding setup is depicted in Fig. 1. The encoders observe sources Y1

and Y2, which take values in Y1 �Y2, and are drawn i.i.d. from the joint probability density

function (p.d.f.) fY1,Y2�y1, y2�. Each sequence of n source samples is grouped as a source

block Y n
1 and Y n

2 , where Y n
1 = �Y1,i�n

1 , Y
n
2 = �Y2,i�n

1 . Two encoder functions

φ1 � Yn
1 � �1,2, ...,2nR1�,

φ2 � Yn
2 � �1,2, ...,2nR2� (2.1)

separately compress Y n
1 and Y n

2 to W1 and W2 at rates R1 and R2, respectively. A decoder

function

ϕ � �1,2, ...,2nR1� � �1,2, ...,2nR2� � Yn
1 � Yn

2 (2.2)

reconstructs the source block as �Ŷ n
1 , Ŷ n

2 � based on the received W1 and W2.

For a distortion pair �D1,D2� and a given distortion measure d�ċ, ċ�, a rate pair �R1,R2�
is achievable if for any ε A 0, there exists a large enough n and a triple �φ1, φ2, ϕ� such that

the distortion constraints

1

n

n

Q
i=1

E�d�Y1,i, Ŷ1,i�� B D1 + ε,

1

n

n

Q
i=1

E�d�Y2,i, Ŷ2,i�� B D2 + ε (2.3)
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are satisfied. The achievable rate region R��D1,D2� is the convex hull of the set of all

achievable rate pairs �R1,R2�.

Encoder I

Encoder II

Y1

Y2

W1

R1

W2

R2

Lossless 
Channel

W2

Decoder

Y1

Y2

^

^

W1

Fig. 1. Two-terminal direct MT source coding.

The exact achievable rate region for the direct MT source coding problem is still un-

known. Only inner and outer rate regions are provided. For auxiliary random variables Z1

and Z2 let

R̃�Z1, Z2� = ��R1,R2� � Ri C I�Y1Y2;ZiSZj�, i, j = 1,2, i x j,

R1 +R2 C I�Y1Y2;Z1Z2��, (2.4)

then the inner rate region is given by [4, 55, 64]

R̂�D1,D2� = conv�R̃�Z1, Z2� � Z1 � Y1 � Y2 � Z2,

§ ϕ�Zn
1 , Zn

2 � satisfying �3.5��, (2.5)

while the outer rate region is [4, 55, 64]

Ř�D1,D2� = conv�R̃�Z1, Z2� � Z1 � Y1 � Y2, Z2 � Y2 � Y1,

§ ϕ�Zn
1 , Zn

2 � satisfying �3.5��, (2.6)

where conv�ċ� represents convex closure. Let ∂R̂�D1,D2� be the set of all boundary points

of the rate region R̂�D1,D2�; likewise, let ∂Ř�D1,D2� be the set of all boundary points
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of the rate region Ř�D1,D2�. We call ∂R̂�D1,D2� the inner bound, and ∂Ř�D1,D2� the

outer bound.

For the direct Gaussian MT source coding problem with MSE distortion measure

d�ċ, ċ�, where the sources �Y1, Y2� are jointly Gaussian random variables with variances

�σ2
y1

, σ2
y2
� and correlation coefficient ρ = E�Y1Y2�

σy1σy2
, the Berger-Tung (BT) inner rate region

(2.5) becomes [35]

R̂BT �D1,D2� = R̂BT
1 �D1,D2� 9 R̂BT

2 �D1,D2� 9 R̂BT
12 �D1,D2�, (2.7)

where

R̂BT
i �D1,D2� = ��R1,R2� � Ri C 1

2
log+��1 − ρ2 + ρ22−2Rj�σ2

yi

Di

��, i, j = 1,2, i x j,(2.8)

R̂BT
12 �D1,D2� = ��R1,R2� � R1 +R2 C 1

2
log+��1 − ρ2�βmaxσ2

y1
σ2

y2

2D1D2

��, (2.9)

with βmax = 1 +
½

1 + 4ρ2D1D2

�1−ρ2�2σ2
y1

σ2
y2

, and log+ x = max�logx,0�.

Recently, the achievable BT rate region R̂BT �D1,D2� is shown to be tight [58] for

the two-terminal direct Gaussian MT source coding problem, that is, R̂BT �D1,D2� =
R��D1,D2�. The boundary of the rate region R̂BT �D1,D2� consists of a diagonal line

segment and two curved portions (see Fig. 2 for an example) if and only if (iff ) [58]

ρ2 D1

σ2
y1

+ 1 − ρ2 A D2

σ2
y2

and ρ2 D2

σ2
y2

+ 1 − ρ2 A D1

σ2
y1

. (2.10)

Under this constraint, the set of all achievable rate pairs that minimize the sum-rate R =
R1 +R2 is called the sum-rate bound and will be denoted as ∂R̂BT

12 �D1,D2�.

In the special case when D1 = D2 = D and σ2
y1

= σ2
y2

= σ2
y , the sum-rate bound
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Separate encoding

Fig. 2. The BT rate region for the direct Gaussian MT source coding problem with
σ2

y1
= σ2

y2
= σ2

y = 1, ρ = 0.9,D1 = D2 = 0.1.

∂R̂BT
12 �D1,D2� becomes

∂R̂BT
12 �D� = ��R1,R2� � R1,R2 C 1

2
log+�σ

2
yβ

�
max

2D
− ρ2

1 − ρ2
�;

R1 +R2 = 1

2
log+��1 − ρ2�β�maxσ

4
y

2D2
��, (2.11)

where β�max = 1 +
½

1 + 4ρ2D2

�1−ρ2�2σ4
y
. It is represented by the diagonal line segment in Fig. 2.

B. Indirect MT source coding

The indirect MT source coding setup with two encoders is depicted in Fig. 3. The remote

source X and two noises N1 and N2 are mutually independent i.i.d. random variables drawn

from the joint p.d.f. fX,N1,N2�x,n1, n2� = fX�x�fN1�n1�fN2�n2�. The block �Y n
1 , Y n

2 � is

a length-n sequence of noisy observations: Y n
1 = Xn + Nn

1 , Y n
2 = Xn + Nn

2 at the two
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encoders. The indirect system shares the form of encoder functions �φ1, φ2� with the direct

system (2.1), while having a different decoder function

ψ � �1,2, ...,2nR1� � �1,2, ...,2nR2� � X n, (2.12)

which reconstructs the remote source block as X̂n. Similar to the direct case, we define

the achievable rate region R��D� as the convex hull of the set of all achievable rate pairs

�R1,R2� such that for any ε A 0, there exists a large enough n and a triple �φ1, φ2, ψ�
satisfying the distortion constraint

1

n

n

Q
i=1

E�d�Xi, X̂i�� B D + ε. (2.13)

Encoder I

Encoder II

Y1

Y2

W1

R1

W2

R2

Lossless 
Channel

W2

Decoder

Y1

Y2

^

^

W1

N1

N2

X
Estimator X̂

Fig. 3. Two-terminal indirect MT source coding.

The exact achievable rate region for the indirect MT source coding problem is also

unknown. For auxiliary random variables Z1 and Z2, the inner rate region is given by

[4, 55, 64]

R̂�D� = conv�R̃�Z1, Z2� � Z1 � Y1 �X � Y2 � Z2,

§ ψ�Zn
1 , Zn

2 � satisfying �2.13��, (2.14)
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while the outer rate region is [4, 55, 64]

Ř�D� = conv�R̃�Z1, Z2� � Z1 � Y1 �X � Y2, Z2 � Y2 �X � Y1,

§ ψ�Zn
1 , Zn

2 � satisfying �2.13��. (2.15)

In the indirect Gaussian MT source coding problem with MSE distortion measure, X

is an i.i.d. Gaussian random variable � N�0, σ2
x�, and for i = 1,2 the noisy observations at

the two encoders are given by Yi = X +Ni, where N1 � N�0, σ2
n1
� and N2 � N�0, σ2

n2
� are

i.i.d. Gaussian random variables independent of each other and X . For this special case,

Yamamoto and Itoh [64] reported the Yamamoto-Itoh (YI) achievable rate region, which

can be expressed in an equivalent form in terms of �σ2
x, σ

2
n1

, σ2
n2

,D� as

R̂Y I�D� = conv�R̂Y I
1 �D� 9 R̂Y I

2 �D� 9 R̂Y I
12 �D��, (2.16)

where

R̂Y I
i �D� = ��R1,R2� � Ri C 1

2
log+ �

σ4
x�2−2Rjσ2

x + σ2
nj

�2�σ2
x + σ2

nj
�−1

2−2Rjσ4
x�D − σ2

ni
� + σ2

xD�σ2
n1
+ σ2

n2
� − σ2

n1
σ2

n2
�σ2

x −D���,

i, j = 1,2, i x j, (2.17)

R̂Y I
12 �D� = ��R1,R2� � R1 +R2 C 1

2
log+ � 4σ2

x

σ2
n1

σ2
n2

D� 1
σ2

x
− 1

D + 1
σ2

n1

+ 1
σ2

n2

�2
��. (2.18)

The YI achievable rate region (2.16) is shown to be tight [38, 40], that is, R̂Y I�D� =
R��D�. The boundary of R̂Y I�D� consists of a diagonal line segment and two curved

portions (see Fig. 4 for an example) iff

1

σ2
x

+ 1

σ2
n1

+ 1

σ2
n2

A 1

D
A max� 1

σ2
x

− 1

σ2
n1

+ 1

σ2
n2

,
1

σ2
x

+ 1

σ2
n1

− 1

σ2
n2

�. (2.19)

Under this constraint, the sum-rate bound ∂R̂Y I
12 �D� is defined as the set of all achievable

rate pairs that minimize the sum-rate R = R1 +R2.

Note that in the symmetric case with σ2
n1

= σ2
n2

= σ2
n, the sum-rate bound ∂R̂Y I

12 �D�
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Fig. 4. The YI rate region for the indirect MT problem with σ2
x = 1, σ2

n1
= σ2

n2
= 0.1,

D = 0.07.

becomes

∂R̂Y I
12 �D� = ��R1,R2� � R1 +R2 = 1

2
log+� σ2

x

Dθ2
�,R1,R2 C 1

2
log+� 2σ2

x

�σ2
x +D�θ ��, (2.20)

where θ = 1 − σ2
n�σ2

x−D�
2σ2

xD .
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CHAPTER III

THE SUPREMUM SUM-RATE LOSS OF QUADRATIC GAUSSIAN DIRECT MT

SOURCE CODING

A. Problem setup and existing knowledge

Let L > N 9 �2,ª�, define a length-L Gaussian vector source as Y = �Y1, Y2, ..., YL�T �
N�µY ,ΣY � with

µY = �µ1, µ2, . . . , µL�T , ΣY =

<@@@@@@@@@@@@@>

σ2
1 ρ12σ1σ2 ρ13σ1σ3 . . . ρ1Lσ1σL

ρ21σ2σ1 σ2
2 ρ23σ2σ3 . . . ρ2Lσ2σL

� � � � �
ρL1σLσ1 ρL2σLσ2 ρL3σLσ3 . . . σ2

L

=AAAAAAAAAAAAA?

. (3.1)

Denote Y n = �Y n
1 , Y n

2 , ..., Y n
L �T = �Y 1,Y 2, . . . ,Y n�, where Y n

i = �Yi,1, Yi,2, . . . , Yi,n�T ,1 B
i B L is a length-n vector of source samples independently drawn from Yi.

Define a set of L encoding functions φ�n� = �φ�n�
1 , φ

�n�
2 , . . . , φ

�n�
L � as

φ
�n�
i � Rn � �1,2, ...,M �n�

i �, 1 B i B L, (3.2)

and a set of L decoding functions ϕ�n� = �ϕ�n�
1 , ϕ

�n�
2 , . . . , ϕ

�n�
L � as

ϕ
�n�
i � �1,2, ...,M �n�

1 � � �1,2, ...,M �n�
2 � � . . . � �1,2, ...,M �n�

L � � Rn, 1 B i B L.

(3.3)

Define Ri = 1
n log2 M

�n�
i as the transmission rate of the i-th encoder function φ

�n�
i , and

the total transmission rate R = PL
i=1 Ri of the L encoders is called the sum-rate of φ�n�.

Notation-wise, for 1 B i B L, denote Wi = φ
�n�
i �Y n

i � as the output of the i-th encoder,

and Ŷ n
i = ϕ

�n�
i �W1,W2, . . . ,WL� as the reconstructed version of Y n

i . Also denote W =
�W1,W2, ...,WL�T and Ŷ

n = ϕ�n��φ�n��Y n�� = �Ŷ n
1 , Ŷ n

2 , ..., Ŷ n
L �T .
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Let D = �D1,D2, . . . ,DL�T > �0,ª�L be an L-tuple target distortion vector, and

d�X,Y � = E��X − Y �2� be the mean squared error (MSE) distortion measure, an L-tuple

R = �R1,R2, . . . ,RL�T is �ΣY ,D�-achievable if for any ε A 0, there exists a large enough

n and a pair �φ�n�,ϕ�n�� such that for any i > �1,2, . . . , L�, the following constraints

1

n
log2 M

�n�
i B Ri + ε, (3.4)

1

n

n

Q
j=1

E�d�Yi,j, Ŷi,j�� B Di + ε, (3.5)

are satisfied. Define the �ΣY ,D�-achievable rate region R�
ΣY

�D� as the convex closure

of all �ΣY ,D�-achievable rate tuples, i.e.,

R�
ΣY

�D� = cl��R1,R2, . . . ,RL�T � �R1,R2, . . . ,RL�T is �ΣY ,D� achievable�.(3.6)

The minimum sum-rate with respect to �ΣY ,D� is then defined as

R�ΣY
�D� = inf�

L

Q
i=1

Ri � �R1,R2, . . . ,RL�T > R�
ΣY

�D��. (3.7)

For comparison, we also consider the problem of joint encoding (and joint decoding)

of Gaussian vector sources. Let �φ�n�
� , ϕ

�n�
� � be a pair of joint encoding/decoding functions

defined as
φ
�n�
� � Rn �Rn � . . . �Rn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
L

� �1,2, ...,M �n�
� �,

ϕ
�n�
� � �1,2, ...,M �n�

� � � Rn �Rn � . . . �Rn

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
L

.
(3.8)

A non-negative rate R is �ΣY ,D�-jointly-achievable if for any ε A 0, there exists a

large enough n and a pair �φ�n�
� , ϕ

�n�
� � such that the following constraints

1

n
log2 M

�n�
� B R + ε, (3.9)

1

n

n

Q
j=1

E�d�Yi,j, Ŷi,j�� B Di + ε, ∀i > �1,2, . . . , L�, (3.10)
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are satisfied. The joint encoding minimum sum-rate with respect to �ΣY ,D� is defined as

R�ΣY
�D� = inf�R � R is �ΣY ,D�−jointly−achievable�. (3.11)

Then the sum-rate loss of distributed over joint encoding is defined as

R∆
ΣY

�D� = R�ΣY
�D� −R�ΣY

�D�. (3.12)

1. Existing knowledge

Berger and Tung [4, 55] provide an inner rate region inside which all rate tuples are

�ΣY ,D�-achievable: let U = �U1, U2, . . . , UL�T be a length-L auxiliary random vector

such that

• Ui = Yi +Qi, i = 1,2, . . . , L, where Qi � N�0, σ2
Qi

�, and all Qi’s are independent of

each other and of all Yi’s,

• U satisfies E��Yi −E�YiSU��2� B Di for all i = 1,2, . . . , L,

and define U�ΣY ,D� as the set of all auxiliary random vectors U that satisfy the above

conditions. Denote the index set �1,2, . . . , L� as IL, and for a length-L random vector

X = �X1,X2, . . . ,XL�T and a non-empty subset A b IL, denote XA as the length-SAS
random vector formed by �Xi � i > A�. Then the following lemma gives the Berger-Tung

inner rate region, the proof can be found in [4, 55].

Lemma 1 (Berger-Tung inner rate region) Define

RBT
ΣY

�D� = �
U >U�ΣY ,D�

��R1,R2, . . . ,RL�T � Q
i>A

Ri C I�Y A;UASUIL�A� for all A b IL�,

then

RBT
ΣY

�D� b R�
ΣY

�D�. (3.13)



22

The Berger-Tung minimum sum-rate with respect to �ΣY ,D� is

RBT
ΣY

�D� = inf�
L

Q
i=1

Ri � �R1,R2, . . . ,RL�T > RBT
ΣY

�D��. (3.14)

RBT
ΣY

�D� (3.15)

= inf

¢̈̈
¨̈
¦̈
¨̈̈
¤

I�Y ;U� �
U = Y +Q where Q � N�0,ΛQ� is independent of Y

and E��Yi −E�YiSU��2� B Di for all i = 1,2, . . . , L

£̈̈
¨̈
§̈
¨̈̈
¥

.(3.16)

If we define

D�D� = �D > RL�L � D is positive definite and diag�D� B D�, (3.17)

A �ΣY � = �D > RL�L � Λ = D−1 −Σ−1
Y is diagonal� (3.18)

where “B” and “C” represent component-wise inequalities, then the Berger-Tung minimum

sum-rate can be rewritten as

RBT
ΣY

�D� = min
D >D�D� 9 A �ΣY �

1

2
log2

SΣY S
SDS . (3.19)

Finding the exact rate region R�
ΣY

�D� for the general quadratic Gaussian MT source

coding problem is very challenging. Hence, researchers have so far focused on several

special cases that are easier to handle. One such case is the quadratic Gaussian two-terminal

source coding problem, for which Oohama [35] showed partial tightness of the Berger-

Tung inner rate region, while Wagner et al. [58] finished the story by proving tightness

of the Berger-Tung inner sum-rate bound. These results are summarized in the following

lemma.
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Lemma 2 (Tightness of the Berger-Tung inner rate region for the two-terminal case)

It holds for any positive-definite ΣY > R2�2 and any positive distortion vector D > R2,

R�
ΣY

�D� = RBT
ΣY

�D�. (3.20)

Another interesting case of MT source coding is when only one of the L sources is

to be reconstructed at the decoder while all others serve as helpers. This is known as the

quadratic Gaussian many-help-one problem, which still remains open in the general setup.

Tavildar et al. [53] considered a special case when the source correlation satisfies a “tree-

structure” Markov condition and showed that the Berger-Tung inner rate region is tight.

Hence we have the following lemma.

Lemma 3 (Tightness of the Berger-Tung inner rate region for the tree-structured many-

help-one problem) Suppose ΣY satisfies the tree-structure Markov conditions defined in

[53], and let D = �D,ª,ª, . . . ,ª�T , then

R�
ΣY

�D� = RBT
ΣY

�D�. (3.21)

For the MT source coding problem with two continuous sources and MSE distortion

measure, it is shown that the sum-rate loss is upper-bounded by 1 b/s [72]. Particularly,

since jointly Gaussian sources are continuous, we have the following lemma.

Lemma 4 (Upper bound on the sum-rate loss of quadratic Gaussian MT source coding

with two sources) It holds for any positive-definite ΣY > R2�2 and any positive distortion

vector D > R2 [72],

R∆
ΣY

�D� B 1 b/s. (3.22)
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It is shown in [73] that for two jointly Gaussian sources, as the target distortions D1

and D2 go to zero, the sum-rate loss R∆
ΣY

�D� also goes to zero. This result is consistent

with the Slepian-Wolf theorem [47]. One can loosely think of MT source coding as the

lossy version of Slepian-Wolf coding. For MT source coding with more than two sources,

there is still no prior knowledge about the sum-rate loss.

2. The exact sum-rate bound of distributed encoding in the symmetric case

Consider a special case of quadratic Gaussian MT source coding problem, where the

sources are positively symmetric in the sense that all the sources are zero-mean and in-

terchangeable with positive correlation coefficients between each other, and all the target

distortions are equal, i.e.,

µY = 0,ΣY =

<@@@@@@@@@@@@@>

1 ρ . . . ρ

ρ 1 . . . ρ

� � � �
ρ ρ . . . 1

=AAAAAAAAAAAAA?L�L

,D = �D,D, . . . ,D�T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
L

, (3.23)

for some L > N9�2,ª�, ρ > �0,1� and D > �0,1�. Then this special case is fully character-

ized by �L,ρ,D�, hence the �ΣY ,D�-achievable rate region R�
ΣY

�D� can be also denoted

as R�
L,ρ�D�. Similarly, the corresponding minimum sum-rate with respect to �ΣY ,D� is

written as R�L,ρ�D�, and the joint encoding minimum sum-rate as R�L,ρ�D�; the difference

between them, namely,

R∆
L,ρ�D� ∆= R�L,ρ�D� −R�L,ρ�D�, (3.24)

is the sum-rate loss in the quadratic Gaussian symmetric MT source coding problem de-

fined by �L,ρ,D�. For this special case, it is shown in [58] that the Berger-Tung inner
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sum-rate bound is tight, i.e., we have the following lemma.

Lemma 5 For the quadratic Gaussian symmetric MT source coding problem defined by

�L,ρ,D� such that L > N 9 �2,ª�, ρ > �0,1� and D > �0,1�, it holds,

R�L,ρ�D� = RBT
L,ρ�D�. (3.25)

Then for any L>N9�2,ª�, ρ>�0,1� and D>�0,1�, it can be shown that

RBT
L,ρ�D� = R�

L,ρ�D� = 1

2
log2

δL�ρ�
DLδL�θ�� , (3.26)

where δL�x� ∆= �1 − x�L−1�1 + �L − 1�x� for x>� −1
L−1 ,1�, and

θ� = t� +
»

�t��2 + 1~�L − 1�, (3.27)

where t� = L−2
2�L−1� −

�1−ρ��1+�L−1�ρ�
2�L−1�Dρ .

Before stating our main results, we first gives some notations that are used in sequel.

For any L > N 9 �2,ª�, D > �0,ª�, and θ > �−1,1�, define SL�D,θ� as a L � L matrix

with equal diagonal elements D and equal off-diagonal elements θD.

B. Sum-rate loss of quadratic Gaussian MT source coding

In this section, we study the minimum sum-rate for joint encoding of Gaussian sources,

explicitly evaluate the sum-rate loss due to distributed coding in the symmetric case, and

show that the supremum of the sum-rate loss in this symmetric case increases in the order of
º

L
2 log2 e. It is conjectured that this supremum sum-rate loss in the symmetric case equals

to that in general quadratic Gaussian MT source coding.
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1. The minimum sum-rate of joint encoding

In this subsection, we give the quadratic Gaussian joint encoding minimum sum-rate R�ΣY
�D�,

which can be computed by solving an optimization problem for general ΣY and D. Par-

ticularly, for the symmetric case, the minimum sum-rate R�L,ρ�D� is given explicitly as a

function of L, ρ and D.

Let D be an L � L positive-definite matrix, then there exists an L � L non-singular

matrix T , such that

T T DT = Λ, (3.28)

T TΣY T = I, (3.29)

where Λ is a diagonal matrix with positive diagonal elements (since both D and ΣY

are positive-definite). Then T is called the simultaneous diagonalization matrix [18] of

�ΣY ,D�, and the L column vectors in T the generalized eigenvectors, the L diagonal

elements of Λ the generalized eigenvalues. Write eig�ΣY ,D� = diag�Λ�, and define

E �ΣY � = �D > RL�L � eig�ΣY ,D� B 1�. (3.30)

The following theorem characterizes the minimum sum-rate of joint encoding of Gaus-

sian sources.

Theorem 1 The quadratic Gaussian joint encoding minimum sum-rate is the solution to

the following optimization problem,

R�ΣY
�D� = min

D >D�D� 9 E �ΣY �
1

2
log2

SΣY S
SDS . (3.31)

Proof 1 The achievability part is straightforward since we can always transform Y into
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Z = T T Y at the joint encoder and then employ classical source coding on Z with target

distortion vector diag�Λ�. At the decoder, Y = �T T �−1Z is reconstructed with a distortion

matrix �T T �−1ΛT −1 = D.

Let Z = T T Y , then the covariance matrix of Z is the identity matrix I due to defi-

nition of T . Then any scheme that achieves a distortion matrix D for quadratic Gaussian

joint encoding of vector source Y must be able to achieve a distortion matrix Λ = T T DT
for quadratic Gaussian joint encoding of vector source Z. Since Z is a Gaussian vector

source with independent unit-variance components, then Λ must be a diagonal matrix with

all components no larger than 1, i.e., D > E �ΣY �. Then the classical rate-distortion theory

ensures that

R�ΣY
�D� C min

D >D�D� 9 E �ΣY �
1

2
log2

SΛS
SI S (3.32)

= min
D >D�D� 9 E �ΣY �

1

2
log2

ST TΣY T S
ST T DT S (3.33)

= min
D >D�D� 9 E �ΣY �

1

2
log2

SΣY S
SDS . (3.34)

For the special case with positively symmetric sources and equal target distortions, the

joint encoding minimum sum-rate R�L,ρ�D� can be written explicitly as a function of L, ρ

and D. First, it is sufficient to consider the distortion matrices of the form S�D,θ�. Hence

(3.31) can be simplified as

R�L,ρ�D� = min
θ>�− 1

L−1 ,1��SL�D,θ� > E �ΣY �
1

2
log2

δL�ρ�
DLδL�θ� (3.35)

=
¢̈̈
¨̈
¦̈
¨̈̈
¤

1
2 log2

1 + �L − 1�ρ
LD − �L − 1��1 − ρ� D A 1 − ρ

1
2 log2

δL�ρ�
DL D B 1 − ρ

. (3.36)

In another special case of L = 2, the joint encoding minimum sum-rate in (3.31) is

also computable. In this case, it suffices to consider positively symmetric sources with

covariance matrix ΣY = S2�1, ρ�, and general target distortion pair D = �D1,D2�T such
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that D1 B 1 − ρ2�1 −D2� or D2 B 1 − ρ2�1 −D1� [58]. Then (3.31) can be simplified as

R�ΣY
�D� = min

θ>�−1,1��D2�θ� > E �ΣY �
1

2
log2

δL�ρ�
DLδL�θ� , (3.37)

=
¢̈̈
¨̈̈
¦̈
¨̈̈̈
¤

1

2
log2

�1 − ρ2�
�1 − θ2

max�D1D2

if ρ C ρ�

1

2
log2

�1 − ρ2�
D1D2

if ρ < ρ�
, (3.38)

where ρ�=
»

�1−D1��1−D2�, D2�θ�=
<@@@@@@>

D1 θ
º

D1D2

θ
º

D1D2 D2

=AAAAAA?
.

Remark 1: Denote

DΣY ,D
min = arg min

D >D�D� 9 E �ΣY �
1

2
log2

SΣY S
SDS . (3.39)

In general, for joint encoding of L sources with a fixed ΣY , there are L + 1 categories of

D, each corresponding to a different number of coded transformed sources in the optimal

strategy.

0) If all the components in D are no less than 1, there is no need to code. Write this

case as D > C0.

1) If one or more components in D decrease by a small amount such that exactly one

generalized eigenvalue in eig�ΣY ,DΣY ,D
min � is less than 1, then only one transformed

source need to be coded. Write this case as D > C1.

...

L) If all the components in D are small enough such that all the generalized eigenvalues

in eig�ΣY ,DΣY ,D
min � are less than 1, then all L transformed sources need to be coded.

Write this case as D > CL.

It follows that if D > Ck, the joint encoding minimum sum-rate R�ΣY
�D� obeys the 6

k -dB

rule in the sense that R�ΣY
�D� increases by 1 b/s if (every component of) D decreases by
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approximately 6
k dB. Although it is not easy to analytically separate the Ck’s, numerical

examples of these different cases with L = 3 are given in Table I.

Table I. Examples of different cases for joint encoding of L = 3 sources.

ΣY DT eig�ΣY ,DΣY ,D
min � # coded R�ΣY

�D�

<@@@@@@@@@>

1 0.9 0.8

0.9 1 0.7

0.8 0.7 1

=AAAAAAAAA?

[1.000 1.000 1.000] [1.000 1.000 1.000] 0 0.000 b/s

[0.200 0.250 0.300] [0.135 1.000 1.000] 1 1.445 b/s

[0.100 0.150 0.200] [0.064 0.628 1.000] 2 2.324 b/s

[0.050 0.100 0.150] [0.030 0.417 0.876] 3 3.251 b/s

[0.025 0.050 0.075] [0.015 0.208 0.438] 3 4.751 b/s

<@@@@@@@@@>

1 0.9 0.9

0.9 1 0.9

0.9 0.9 1

=AAAAAAAAA?

[1.000 1.000 1.000] [1.000 1.000 1.000] 0 0.000 b/s

[0.200 0.200 0.200] [0.143 1.000 1.000] 1 1.404 b/s

[0.050 0.050 0.050] [0.018 0.500 0.500] 3 3.904 b/s

[0.025 0.025 0.025] [0.009 0.250 0.250] 3 5.404 b/s

We say that a target distortion vector D = �D1, ...,DL�T is saturated and write D >
SΣY

if at least one component of diag�DΣY ,D
min � is strictly less than the corresponding

component of D. This corresponds to the case when one of the target distortions, say D1,

is too large, such that any scheme that achieves the other target distortions D2, ...,DL must

be able to achieve a distortion smaller than D1. For example, if ΣY = S3�1,0.9� and

D = �1.0 0.1 0.1�T , one can verify that diag�DΣY ,D
min � � �0.192 0.1 0.1�T . Note that for the

quadratic Gaussian MT source coding problem, we can also define a saturation set S MT
ΣY

such that for any D > S MT
ΣY

, at least one component of D is not achieved with equality

in the optimal strategy. In general, it is not easy to analytically characterize the sets SΣY

and S MT
ΣY

, but it is possible to show that SΣY
û S MT

ΣY
(“û” means strict inclusion, for

example, when ΣY = S3�1,0.9�, D = �0.210 0.1 0.1�T > SΣY
�S MT

ΣY
).
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Moreover, it can be shown that

D = �D1,D2, ...,DL�T > CL�SΣY
� DΣY ,D

min is diagonal, and diag�DΣY ,D
min � = D

� R�ΣY
�D� = 1

2
log2

SΣY S
LL

i=1 Di

, (3.40)

this implies that for any unsaturated D = �D1,D2, ...,DL�T > CL, the optimal strategy can

exhaust the source correlation in the sense that the resulting estimation errors for different

sources are independent Gaussian noises; and the optimal transform is always an equiv-

alent scaled version of the KLT, namely, T = US− 1
2 , where ΣY = USUT is the SVD

decomposition of ΣY .

2. The sum-rate loss of quadratic Gaussian MT source coding

In general, due to Lemma 1, the sum-rate loss for the quadratic Gaussian MT source coding

problem can be upper-bounded by the difference between the Berger-Tung inner sum-rate

bound and the joint encoding minimum sum-rate, i.e.,

R∆
ΣY

�D� = R�ΣY
�D� −R�ΣY

�D� (3.41)

B RBT
ΣY

�D� −R�ΣY
�D� (3.42)

= 1

2
log2

min
D >D�D� 9 E �ΣY �

SDS
min

D >D�D� 9 A �ΣY �
SDS . (3.43)

For the special case with positively symmetric sources and equal target distortions,

we can combine the joint encoding minimum sum-rate in (3.36) for the quadratic Gaussian

source coding problem and the minimum sum-rate in Theorem 5 for the quadratic Gaussian

MT source coding problem, and thus evaluate the exact sum-rate loss between the two
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problems, i.e., we have

R∆
L,ρ�D� = R�L,ρ�D� −R�L,ρ�D� (3.44)

=
¢̈̈
¨̈
¦̈
¨̈̈
¤

1
2 log2

δL�ρ�
DLδL�θ�� − 1

2 log2
δL�ρ�

DLδL�θ�� D A 1 − ρ

1
2 log2

δL�ρ�
DLδL�θ�� − 1

2 log2
δL�ρ�

DLδL�0� D B 1 − ρ

=
¢̈̈
¨̈
¦̈
¨̈̈
¤

1
2 log2

δL�θ��
δL�θ�� D A 1 − ρ

1
2 log2

1
δL�θ�� D B 1 − ρ

, (3.45)

where θ� = 1 − 1−ρ
D and θ� is defined in (3.27).
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Fig. 5. The sum-rate loss R∆
2,ρ�D� for the quadratic Gaussian two-terminal source coding

problem.

Example of the sum-rate loss R∆
L,ρ�D� are plotted in Fig. 5 as a function of ρ and D

for L = 2. When ρ = 0, all sources are independent, hence R�L,ρ�D� = R�L,ρ�D� = L
2 log2

1
D

and R∆
L,ρ�D� = 0; when ρ = 1, all sources are statistically identical, thus coding one of
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them suffices, hence R�L,ρ�D� = R�L,ρ�D� = 1
2 log2

1
D and R∆

L,ρ�D� = 0; when D = 0, we

have a Slepian-Wolf coding problem of L sources, hence R∆
L,ρ�D� = 0 due to the no rate

loss conclusion of the Slepian-Wolf theorem [47] and its extensions [12, 60]; finally, when

D = 1, R�L,ρ�D� = R�L,ρ�D� = 0 and the rate loss is also zero.

For any fixed ρ > �0,1�, there is a maximum sum-rate loss over all D’s, and this

maximum sum-rate loss (as a function of ρ) monotonically increases to a supremum value

as ρ � 1. Moreover, it is seen from Fig. 5 that the distortion that maximizes the sum-rate

loss goes to zero as ρ � 1. This implies that the supremum sum-rate loss is approached

from below as both minimum sum-rates R�L,ρ�D� and R�L,ρ�D� go to infinity, while the

difference between them remains finite. And the sum-rate loss R∆
L,ρ�D� has singularity at

�ρ,D� = �1,0�.

Lemma 6 For a given L, the supremum sum-rate loss over all possible ρ’s and D’s is

sup
ρ>�0,1�,D>�0,1�

R∆
L,ρ�D� = 1

2
log2

δL�2L+1−º1+4L
2L2 �

δL�−1+º1+4L
2L �

(3.46)

L�ª 
º

L

2
log2 e + 1

2
− 1

4
log2 L, (3.47)

where A
L�ª  B means limL�ª�A −B� = 0.

Proof 2 See Appendix A.

Remark: First, (3.46) hold for any integer L C 2; second, according to (3.46), the exact

supremum sum-rate loss is 1
2 log2

5
4 = 0.161 b/s, 0.300 b/s, 1.775 b/s, and 5.260 b/s, for

L = 2,3,20, and 100, respectively; third, the 0.161 b/s supremum sum-rate loss for L = 2

is much smaller than the 1 b/s upper bound (see Lemma 4) provided by Zamir in [72];

finally, (3.47) indicates that, as L increases, the supremum sum-rate loss increases in the

order of
º

L
2 log2 e b/s, since limL�ª

1~2−1~4 log2 Lº
L

= 0. Fig. 6 plots the supremum sum-rate

loss as a function of L, together with its asymptotic limit function (3.47) for comparison.
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As L�ª, we can see that the supremum sum-rate loss asymptotically approaches its limit

function (3.47).
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Fig. 6. The supremum sum-rate loss supρ,D R∆
L,ρ�D� for the quadratic Gaussian MT source

coding problem.

Now we compute the exact sum-rate loss for the two-terminal case without the sym-

metric assumption. The main results in [58] state that

R�2,ρ��D1,D2�T � = 1

2
log2

�1 − ρ2�βmax

2D1D2

, (3.48)

where βmax = 1 +
¼

1 + 4ρ2D1D2

�1−ρ2�2 . For a fixed ρ > �0,1�, define the maximum rate loss
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as

R∆max
2,ρ = max

D1,D2>�0,1�
R∆

2,ρ��D1,D2�T � (3.49)

=
¢̈̈
¨̈
¦̈
¨̈̈
¤

1
2 log2

βmax

2
ċ �1 − θ2

max� if ρ C ρ�

1
2 log2

βmax

2
if ρ < ρ�

, (3.50)

where θmax = ρ−
»

�1−D1��1−D2�º
D1D2

. It can be shown that for any ρ > �0,1�, DC
1 = DC

2 =
�1+ρ�2�1−ρ�

1+2ρ maximizes R∆max
2,ρ . Then we have

sup
ρ>�0,1�,D1,D2>�0,1�

R∆
2,ρ��D1,D2�T � (3.51)

= sup
ρ>�0,1�

1

2
log2 �1 +

ρ2

�1 + ρ�2
� = 1

2
log2

5

4
= 0.161 b/s. (3.52)

Fig. 7 plot the sum-rate loss for ρ = 0.9 and general D1 and D2, we observe that the

maximum sum-rate loss for a fixed ρ is achieved at one diagonal point, which is consistent

with the analytical results.
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Fig. 7. The sum-rate loss for the quadratic Gaussian MTsource coding problem with two
sources ΣY = S2�1,0.9� and general D1 and D2.
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3. A conjecture on the supremum sum-rate loss

In section 2, we show that for the quadratic Gaussian MT source coding problem with two

terminals, the supremum sum-rate loss over all symmetric sources and equal distortions is

actually the supremum loss over all possible source correlations and distortions.

Moreover, overwhelming numerical evaluations of the upper bound (3.42) have been

made for L = 3 and L = 4 with general source correlations and target distortions, and no

exceptions (that exceed the supremum sum-rate loss in (3.46)) have been found. Hence we

have the following conjecture.

Conjecture 1 (supremum sum-rate loss for the general quadratic Gaussian MT source

coding problem): For any integer L C 2, it holds,

sup
ΣY ,D

R∆
ΣY

�D� = sup
ρ>�0,1�,D>�0,1�

R∆
L,ρ�D�. (3.53)
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CHAPTER IV

CODE DESIGNS FOR QUADRATIC GAUSSIAN MT SOURCE CODING

A. Proposed code designs for MT source coding

In this section, we propose two code designs for the direct and indirect Gaussian MT coding

problems, which are capable of trading off rates between the two encoders. The first is

based on asymmetric SWCQ, which employs quantization and asymmetric SW coding, and

is implemented via source splitting [46]. The second relies on symmetric SWCQ, which

exploits quantization and symmetric SW coding [49]. We show that using random binning

argument [12], both designs can potentially approach any point on the sum-rate bound in

either of the two Gaussian MT coding problems.

1. Asymmetric SWCQ

Asymmetric SWCQ is schematically depicted in Fig. 8 in conjunction with source splitting

for MT source coding. It consists of a classical source encoder/decoder pair, two WZ

encoder/decoder pairs, and a linear combinator.

The Classical Source Encoder/Decoder pair is defined by the following four functions

Q21 � Yn
2 � �1,2, ...,2nRQ

21�,
EENT � �1,2, ...,2nRQ

21� � �1,2, ...,2nR21�,
DENT � �1,2, ...,2nR21� � �1,2, ...,2nRQ

21�,
Q−1

21 � �1,2, ...,2nRQ
21� � Zn

21,

where RQ
21 is the quantization rate of Quantizer II, R21 is the transmission rate of the

Classical Source Encoder, and Zn
21 is an n-dimensional vector codebook of size 2nRQ

21 .

Quantizer II first quantizes Y n
2 (which is a block of n source samples in the direct or

a block of noisy observations in the indirect setup) using codebook Zn
21 by finding the
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Fig. 8. Block diagram of asymmetric SWCQ for MT source coding.

vector codeword Zn
21 > Zn

21 that is “closest” (e.g., in Euclidean distance) to Y n
2 , and out-

puts the quantization index I21 = Q21�Y n
2 � < i21�Zn

21�, where i21 is an index function of

Zn
21 that bijectively maps each codeword in Zn

21 to an index in �1,2, ...,2nRQ
21�. Then

the Entropy Encoder compresses I21 to S21 = EENT �I21�, which is transmitted at rate

R21 b/s. At the decoder side, the Classical Source Decoder losslessly decompresses S21

to Î21 = DENT �S21� using the Entropy Decoder, and then employs Dequantizer II to

reconstruct Zn
21 as Ẑn

21 = Q−1
21�Î21� < i−1

21�Î21�. Operations in the Classical Source En-

coder/Decoder pair can be summarized as

Encoder � S21 = EENT �Q21�Y n
2 ��,

Decoder � Ẑn
21 = Q−1

21�DENT �S21��. (4.1)
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Wyner-Ziv Encoder/Decoder pair I is defined by the following four functions

Q1 � Yn
1 � �1,2, ...,2nRQ

1 �,
EASW

1 � �1,2, ...,2nRQ
1 � � �1,2, ...,2nR1�,

DASW
1 � �1,2, ...,2nR1� �Zn

21 � �1,2, ...,2nRQ
1 �,

Q−1
1 � �1,2, ...,2nRQ

1 � � Zn
1 ,

where RQ
1 is the quantization rate of Quantizer I, R1 the transmission rate of Wyner-Ziv

Encoder I, and Zn
1 a codebook of size 2nRQ

1 , which is used in Quantizer I to quantize Y n
1 .

The resulting quantization index I1 = Q1�Y n
1 � < i1�Zn

1 � is compressed by Asymmetric

SW Encoder I to S1 = EASW
1 �I1�, which is transmitted at rate R1 b/s. With Ẑn

21 as side

information, Wyner-Ziv Decoder I generates Î1 = DASW
1 �S1, Ẑn

21� as the reconstruction of

I1, and decodes it to Ẑn
1 = Q−1

1 �Î1� < i−1
1 �Î1� with Dequantizer II. Operations in the Wyner-

Ziv Encoder/Decoder pair I can be summarized as

Encoder � S1 = EASW
1 �Q1�Y n

1 ��,

Decoder � Ẑn
1 = Q−1

1 �DASW
1 �S1, Ẑ

n
21��. (4.2)

To generate the side information for the second Wyner-Ziv encoder/decoder pair, the

Linear Combinator ψc � Zn
1 �Zn

21 � Zn
c implements a linear function Ẑn

c = ψc�Ẑn
1 , Ẑn

21� =
αcẐn

1 + βcẐn
21.

Wyner-Ziv Encoder/Decoder pair II then implements the following four functions

Q22 � Yn
2 � �1,2, ...,2nRQ

22�,
EASW

2 � �1,2, ...,2nRQ
22� � �1,2, ...,2nR22�,

DASW
2 � �1,2, ...,2nR22� �Zn

c � �1,2, ...,2nRQ
22�,

Q−1
1 � �1,2, ...,2nRQ

22� � Zn
22,

where RQ
22 is the quantization rate of Quantizer III, R22 the transmission rate of the Wyner-
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Ziv Encoder II, and Zn
22 a codebook of size 2nRQ

22 , which is used in Quantizer III to quantize

Y n
2 . The resulting quantization index I22 = Q22�Y n

2 � < i22�Zn
22� is compressed by Asym-

metric SW Encoder II to S22 = EASW
2 �I22�, which is transmitted at rate R22 b/s. With Ẑn

c as

side information, Wyner-Ziv Decoder II generates Î22 = DASW
2 �S22, Ẑn

c � as the reconstruc-

tion of I22, and decodes it to Ẑn
22 = Q−1

22�Î22� < i−1
22�Î22� with Dequantizer III. Operations in

the Linear Combinator and the Wyner-Ziv Encoder/Decoder pair II can be summarized as

Encoder � S22 = EASW
2 �Q22�Y n

2 ��,

Decoder � Ẑn
22 = Q−1

22�DASW
2 �S22, ψc�Ẑn

1 , Ẑn
21���. (4.3)

Note that, Encoder I and Encoder II separately encode Y n
1 and Y n

2 using rates R1

b/s and R2 < R21 + R22 b/s, respectively; Decoder then reconstructs the three quantized

versions of the sources as �Ẑn
1 , Ẑn

21, Ẑ
n
22�.

Our design for direct MT coding is a combination of asymmetric SWCQ and Linear

Estimator, which implements the function ψASWCQ
Direct � Zn

1
�Zn

21
�Zn

22
� Yn

1 � Yn
2 defined

by

�
��
�

Ŷ n
1

Ŷ n
2

�
��
�
=
<@@@@@@>

αA
1 βA

1 γA
1

αA
2 βA

2 γA
2

=AAAAAA?

�
������
�

Ẑn
1

Ẑn
21

Ẑn
22

�
������
�

. (4.4)

Similarly, our design for indirect MT coding is a combination of asymmetric SWCQ

and Linear Estimator, which implements the function ψASWCQ
Indirect � Zn

1
� Zn

21
� Zn

22
� X n

defined by

X̂n = �αA
X βA

X γA
X� ċ �Ẑn

1 Ẑn
21 Ẑn

22�T . (4.5)

The following two theorems state that our asymmetric SWCQ designs can approach

any point on the sum-rate bound ∂R̂BT
12 �D�

1 ,D
�
2� in the direct MT setting and ∂R̂Y I

12 �D��
in the indirect setting.
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Theorem 2 Let �R�
1 ,R

�
2� be any point on the sum-rate bound ∂R̂BT

12 �D�
1 ,D

�
2� of (2.9) for

the direct MT problem (assume (2.10) is satisfied). For any ε A 0, there exists a block length

n, two asymmetric SWCQ encoders E1, E2, which separately compress sources Y1 and Y2

at rates R1 and R2, respectively, and an asymmetric decoder D, which jointly reconstructs

the sources as Ŷ1 and Ŷ2, such that

1

n

n

Q
i=1

E��Yj,i − Ŷj,i�2� < D�
j + ε, j = 1,2, (4.6)

Rj < R�
j + ε, j = 1,2. (4.7)

Proof 3 See Appendix A.

Theorem 3 Let �R�
1 ,R

�
2� be any point on the sum-rate bound ∂R̂Y I

12 �D�� of (2.18) for the

indirect MT problem (assume (2.19) is satisfied). For any ε A 0, there exists a block length

n, two asymmetric SWCQ encoders E1, E2, which separately compress observations Y1 and

Y2 at rates R1 and R2, respectively, and an asymmetric decoder D, which reconstructs

source X as X̂ , such that

1

n

n

Q
i=1

E��Xi − X̂i�2� < D� + ε, (4.8)

Rj < R�
2 + ε, j = 1,2. (4.9)

Proof 4 See Appendix B.

2. Symmetric SWCQ

Symmetric SWCQ is schematically depicted in Fig. 9. Quantizer I and Quantizer II sep-

arately quantize Y n
1 and Y n

2 using n-dimensional codebooks Zn
2 and Zn

2 of size 2nRQ
1

and 2nRQ
2 , respectively. The resulting quantization indices I1 = Q1�Y n

1 � < i1�Zn
1 � and

I2 = Q2�Y n
2 � < i2�Zn

2 � are separately compressed by Symmetric SW Encoder I ESSW
1 �

�1,2, ...,2nRQ
1 � � �1,2, ...,2nR1� and Symmetric SW Encoder II ESSW

2 � �1,2, ...,2nRQ
2 � �
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�1,2, ...,2nR2� defined by S1 = ESSW
1 �I1� and S2 = ESSW

1 �I2�, respectively. The transmis-

sion rates for the two encoders are R1 b/s and R2 b/s, respectively.

Quantizer I

Quantizer II

Symmetric
SW Encoder I

Symmetric
SW Encoder II

Symmetric

SW DecoderY   n2

Y   n1 I1

I2

I1

I2

Dequantizer I

Dequantizer II

Z 
n

1S1

S2

Q1

Q2 ESSW
2

ESSW
1 DSSW Q -1

1

Q -1
2

ˆ

Z 
n

2
ˆ

ˆ

ˆ

Encoder I

Encoder II

S1=E1(Y   n)1

S2=E2(Y   n)2

Decoder 2 (Z 
n, Z 

n) = D(S  , S )11 2
ˆ ˆ

Fig. 9. Block diagram of symmetric SWCQ for MT source coding.

At the decoder side, the Symmetric SW Decoder jointly reconstructs the quantization

indices I1 and I2 based on the received messages S1 and S2. Specifically, it implements a

function

DSSW � �1,2, ...,2nR1� � �1,2, ...,2nR2� � �1,2, ...,2nRQ
1 � � �1,2, ...,2nRQ

2 � (4.10)

defined by �Î1, Î2� = DSSW �S1, S2�. Finally, Dequantizer I and Dequantizer II reproduce

the codewords as Ẑn
1 = Q−1

1 �Î1� < i−1
1 �Î1� and Ẑn

2 = Q−1
2 �Î2� < i−1

2 �Î2�, respectively.

Our direct MT code design is a combination of symmetric SWCQ and Linear Estima-

tor, which implements the function ψSSWCQ
Direct � Zn

1
�Zn

2
� Yn

1 � Yn
2 defined by

�
��
�

Ŷ n
1

Ŷ n
2

�
��
�
=
<@@@@@@>

αS
1 βS

1

αS
2 βS

2

=AAAAAA?

�
��
�

Ẑn
1

Ẑn
2

�
��
�

. (4.11)

Similarly, our indirect MT code design is a combination of symmetric SWCQ and

Linear Estimator, which implements the function ψSSWCQ
Indirect � Zn

1
�Zn

2
� X n defined by

X̂n = �αS
X βS

X� ċ �Ẑn
1 Ẑn

2 �T . (4.12)
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Similar to the asymmetric SWCQ scheme, the following two theorems assert optimal-

ity of our symmetric SWCQ designs in the sense of achieving any point on the sum-rate

bounds (2.9) and (2.18). The proofs of both theorems are given in Appendix C.

Theorem 4 Let �R�
1 ,R

�
2� be any point on the sum-rate bound ∂R̂BT

12 �D�
1 ,D

�
2� of (2.9) for

the direct MT problem (assume (2.10) is satisfied). For any ε A 0, there exists a block

length n, two symmetric SWCQ encoders �E1,E2�, which separately compress sources Y1

and Y2 at rates R1 and R2, respectively, and a symmetric SWCQ decoder D, which jointly

reconstructs the sources as Ŷ1 and Ŷ2, such that

1

n

n

Q
i=1

E��Yj,i − Ŷj,i�2� < D�
j + ε, j = 1,2, (4.13)

Rj < R�
j + ε, j = 1,2. (4.14)

Theorem 5 Let �R�
1 ,R

�
2� be any point on the sum-rate bound ∂R̂Y I

12 �D�� of (2.18) for the

indirect MT problem (assume (2.19) is satisfied). For any ε A 0, there exists a block length

n, two symmetric SWCQ encoders �E1,E2�, which separately compress observations Y1 and

Y2 at rates R1 and R2, respectively, and a symmetric SWCQ decoder D, which reconstructs

source X as X̂ , such that

1

n

n

Q
i=1

E��Xi − X̂i�2� < D� + ε, (4.15)

Rj < R�
j + ε, j = 1,2. (4.16)

B. Practical quantizer design and high-rate performance analysis

There are two key components in our SWCQ framework: vector quantization (VQ) and

SW coding. Both of them need to be optimal to achieve the sum-rate bounds in (2.11) and

(2.20) for the direct and indirect MT problems, respectively; that is, each quantizer must be

capable for achieving the rate-distortion limit of its Gaussian input source, and SW coding
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capable of compressing the two quantized sources to their joint entropy. Additionally, it

also requires the two quantization noises to be independent of the sources (and each other)

such that the Markov assumptions in the achievability proofs of [38, 40, 58] are satisfied.

It is shown by Zamir and Berger [73] that at high resolution, high-dimensional dithered

lattice quantizer [74, 73, 76] can fulfill the above requirements. When the dimensionality

goes to infinity, a dithered lattice quantizer can indeed achieve the rate-distortion limit of

the Gaussian source, while producing white Gaussian quantization noise that is indepen-

dent of the source. The use of independently dithered lattice quantizers for direct MT

source coding was suggested in [73] so that the quantization noises are mutually indepen-

dent. However, it is not practical to implement lattice quantizers in high dimension. Fortu-

nately, TCQ [33] provides a suboptimal yet efficient means of realizing high-dimensional

VQ. Although TCQ is not strictly a lattice quantizer, it shares many nice properties (e.g.,

congruent Voronoi regions) with the latter. Another merit of using TCQ is that its dithering

sequence can be generated by a simple i.i.d. uniformly distributed source. This reduces

the complexity of TCQ when compared to dithered lattice quantization, which requires

the dither sequence to be uniformly distributed over the basic Voronoi region. Moreover,

except for the trellis bits, the codeword vectors in the TCQ indices are memoryless, mak-

ing the design of the succeeding SW coder much easier. Therefore, in our practical code

design, we use TCQ for all quantizers described in the previous section.

In the rest of this section, we first review TCQ and show how a dithering sequence

can be used in TCQ to produce quantization noise independent of the source, we then

perform high-rate performance analysis of our asymmetric and symmetric SWCQ design

under practical TCQ and ideal SW coding.
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1. Trellis Coded Quantization (TCQ)

TCQ [33] is the source coding counterpart of trellis coded modulation (TCM) [56]. It is

the most powerful practical technique for implementing high-dimensional VQ, due to its

excellent MSE performance at modest complexity.

A TCQ is defined by a one-dimensional expanded signal set (ESS) and trellis of a

convolutional code. Suppose we want to quantize a continuous source X using rate R

b/s. TCQ first forms an ESS of size 2R+1 (denoted as D), and equally partitions it into

Nc = 2R̃+1 subsets, R̃ B R, each having 2R−R̃ points. These Nc subsets (also referred to

as cosets) are denoted as D0, D1, D2, ..., DNc−1, and hence D = �Nc−1
i=0 Di. In general, the

partition of the 2R+1 signal points in D proceeds from left to right, labeling consecutive

points D0, D1, ..., DNc−1; �; D0, D1, ..., DNc−1. This way, each signal point in D can be

denoted as qw
c ,w = 0,1, . . . ,2R−R̃−1, c = 0,1, ...,Nc − 1, where c is the coset index such that

qw
c > Dc, and w the codeword index. A trellis is defined by a possibly time-dependent state

transition diagram of a finite-state machine. More precisely, a length-n rate- R̃
R̃+1

trellis T

with Ns states is a concatenation of n mappings, where the i-th mapping (0 B i B n − 1)

is from the i-th state of the machine Si (0 B Si B Ns − 1) and the i-th input R̃-bit message

mi to the next state Si+1 and the i-th output �R̃ + 1�-bit message ci, i.e., T = �φi�n−1
i=0 with

φi � �Si,mi� ( �Si+1, ci�. The trellises used in TCQ are usually time-invariant and are

based on an underlying convolutional code C with rate R̃
R̃+1

. Under this constraint, we can

define a trellis T by one of its component mappings φi � φ � �Scurrent,m� ( �Snext, c�,

where 0 B m B 2R̃ − 1 and 0 B c B 2R̃+1 − 1. The input-output relation of T can be written

then as c = T�m�.

Based on a size-2R+1 ESS D and a length-n trellis T with Ns-state machine, the

source X is quantized using the Viterbi algorithm one block x at a time. We associate

the i-th sample xi in x with the coset Dci
indexed by the output ci of the trellis, and de-
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fine the distortion for xi as Di�ci� = minwi
Yxi − qwi

ci Y2, which is the distortion between

xi and the codeword in Dci
that is closest to xi. The Viterbi algorithm then searches

for the input vector m = �m0,m1,� ,mn−1� that minimizes the accumulated distortion

defined as D�m� = Pn−1
i=0 Di�Ti�m��, where Ti�m� = ci is the i-th trellis output corre-

sponding to the input vector m. Finally, TCQ stacks the R − R̃ bit-planes of the code-

word vector w = �w0,w1,� ,wn−1� on top of the R̃ bit-planes of trellis vector m to

form its output index vector b = �b0,b1,� ,bn−1�, achieving a rate of R b/s, where

bi = ��bR−1
i ,� , bR̃

i �, �bR̃−1
i ,� , b0

i ��T , with �bR−1
i ,� , bR̃

i � and �bR̃−1
i ,� , b0

i � coming from

the binary representation of wi = �bR−1
i � bR̃+1

i bR̃
i �2 and mi = �bR̃−1

i � b1
i b

0
i �2, respectively.

This way, we can denote a trellis coded quantizer as b = QTCQ
C,D �x�. The above defined TCQ

is often referred to as fixed rate TCQ [33]. Although the ESS of TCQ can be carefully de-

signed according to a specific source distribution, we constrain ourselves to a uniform ESS

due to its analytical simplicity and nice properties.

In general, TCQ cannot be classified as a lattice quantizer, because stacking R̃ + 1

binary linear code does not necessarily result in a linear code in GF �2R̃+1�. However, in

the special case of R̃ = 1 (number of cosets Nc = 4), TCQ shares a nice property with

the lattice quantizers: congruent Voronoi regions. Indeed, suppose that QTCQ
C,D is a trellis

coded quantizer with R̃ = 1. Then, for any b,b′ > 2R�n, Voronoi region Vb = �x > X n �
QTCQ
C,D �x� = b� is congruent to Voronoi region Vb′ = �x > X n � QTCQ

C,D �x� = b′�.
Fig. 10 (a) is an example of the Voronoi region V0 of TCQ with n = 3, R̃ = 1, Ns = 4

and D = �−7,−6, ...,0,1, ...7,8�. We can see that V0 is a non-regular polyhedron with 18

vertices and 12 faces. Fig. 10 (b) illustrates how V0 and its congruent counterparts fill the

three-dimensional space. Clearly, the Voronoi regions of TCQ are not simply translations

of each other, while those of lattice quantizers are.

In terms of practical performance, TCQ with a trellis of Ns = 256 states performs 0.2

dB away from the distortion-rate bound for uniform sources, which is better than any vector
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quantizer of dimension less than 69 [52]. With the help of entropy coding, the same 0.2

dB gap can be obtained at all rates by entropy constrained TCQ [32, 52] for any smooth

p.d.f. by using carefully designed codebooks. This small performance gap can be further

reduce by increasing Ns or R̃, which leads to higher complexity. For example, another 0.1

dB granular gain can be obtained by increasing Ns to 8192 [65].

2. Independently dithered TCQ

TCQ is a powerful and efficient source coding technique; however, there is no guarantee

that multiple trellis coded quantizers will produce quantization noises independent of each

other (that are also independent of the sources), which is a key requirement in the achiev-

ability proofs for the direct and indirect MT source coding [38], [40], [58]. To resolve

this issue, we have to consider the possibility of adding a dither to TCQ, just as with the

entropy-constraint dithered lattice quantizers. Since TCQ is not a lattice quantizer, classi-

cal dithering with uniformly distributed dither over the basic Voronoi region of the lattice

no longer produces an independent quantization noise. Thus we have to find an alternative

way of generating a dither sequence of TCQ.

In this subsection, we show that under some mild assumptions, a trellis coded quan-

tizer with an i.i.d. dither sequence can produce independent quantization noise. Without

loss of generality, we assume that R̃ = 1 and the step size of the ESS is one, i.e., the ESS

D = �−2R + 0.5,−2R + 1.5, ...,2R − 0.5� is partitioned into Nc = 4 cosets, each with 2R−1

points. For a given p.d.f. fX�x�, we define the accumulated distribution of fX�x� with

respect to the ESS D as

pPD�x� =

¢̈̈
¨̈̈̈
¨̈
¦̈
¨̈̈̈
¨̈̈
¤

fX�x − 2R + 4� x B 0

P2R−2−2
i=−2R−2+1 fX�x − 4i� 0 < x B 4

fX�x + 2R − 8� x A 4.

(4.17)

We say that a source distribution fX�x� is Σ-uniform with respect to D iff pPD�x� is



47

(a)

(b)

Fig. 10. Voronoi regions of TCQ when n = 3, R̃ = 1, Ns = 4 and
D = �−7,−6, ...,0,1, ...7,8�. (a) Voronoi region for the all-zero codeword. (b)
Packing of TCQ Voronoi regions.

uniformly distributed in the interval �0,4�. Indeed, all symmetric smooth distributions are

very close to Σ-uniform unless the rate R is very low.

The following lemma states that under the Σ-uniform assumption, a trellis coded quan-

tizer with an i.i.d. uniform dither sequence in the range of �−0.5,0.5� can produce inde-

pendent quantization noises. The proof is given in Appendix D.

Lemma 7 Assume fX+V �x+ v� is Σ-uniform with respect to D (with step size 1), where V

is a random variable uniformly distributed over �−0.5,0.5�. Define the quantization error
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as

Qn = �Xn + V n� − �QTCQ
D �−1�QTCQ

D �Xn + V n��, (4.18)

where QTCQ
D is a trellis coded quantizer with R̃ = 1. Then as n goes to infinity, Qi becomes

independent of Xi for 0 B i B n − 1, i.e.,

lim
n�ªpXi,Qi

�xi, qi� = pXi
�xi� ċ pQi

�qi� or lim
n�ªpQiSxi

�qiSxi� = pQi
�qi�. (4.19)

An illustrative comparison between dithered and non-dithered trellis coded quantizers

is given in Fig. 11, in terms of the joint statistics of the i-th quantization noise Qi and

the i-th source sample Xi. Obviously, dithered TCQ (Fig. 11 (a)) produces independent

quantization noise, whereas non-dithered TCQ (Fig. 11 (b)) does not.

Note that for the case with R̃ A 1 (i.e., there are more than four cosets), Lemma 7 still

holds, since a similar symmetry property (as stated in Proposition 1 of Appendix D) exists

among the cosets.

3. High-rate performance analysis

Since a practical MT source coding problem is a source-channel coding problem, where

quantization is followed by channel coding for SW coding, the total loss contains quan-

tization loss due to source coding and binning loss due to channel coding [63]. In this

subsection, we assume ideal binning (via capacity-achieving channel coding), and restrict

ourselves to the high-rate/resolution scenario (i.e., D�,D�
1 ,D

�
2 � 0). The asymptotical

performance of our TCQ-based asymmetric and symmetric SWCQ schemes for both direct

and indirect MT source coding can be characterized by the following two theorems. The

proofs are given in Appendix E and F, respectively.

Theorem 6 Let �R�
1 ,R

�
2� be any point on the sum-rate bound ∂R̂BT

12 �D�
1 ,D

�
2� of (2.9) for

the direct MT source coding problem (assume (2.10) is satisfied), or ∂R̂Y I
12 �D�� of (2.18)
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Fig. 11. Joint statistics of quantization noise Qi and Xi for TCQ (a) with dither and (b)
without dither.

for the indirect MT source coding problem (assume (2.19) is satisfied), then under ideal SW

coding, the achievable rates R21,R1, and R22 with our asymmetric SWCQ scheme satisfy

R1 = R�
1 +

1

2
log�2πeGQ1� + o�1�,

R2 = R21 +R22 = R�
2 +

1

2
log�2πeGQ21� +

1

2
log�2πeGQ22� + o�1�, (4.20)

where GQ1 ,GQ21 , and GQ22 are the normalized second moments of V0 for the three em-

ployed trellis coded quantizersQ1,Q21, andQ22, respectively; and o�1� � 0 as D�,D�
1 ,D

�
2 �
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0.

Theorem 7 Let �R�
1 ,R

�
2� be any point on the sum-rate bound ∂R̂BT

12 �D�
1 ,D

�
2� of (2.9) for

the direct MT source coding problem (assume (2.10) is satisfied), or ∂R̂Y I
12 �D�� of (2.18)

for the indirect MT source coding problem (assume (2.19) is satisfied), then under ideal SW

coding, the achievable sum-rate of our symmetric SWCQ scheme satisfies

R1 +R2 = R�
1 +R�

2 +
1

2
log�2πeGQ1� +

1

2
log�2πeGQ2� + o�1�, (4.21)

where GQ1 and GQ2 are the normalized second moments of V0 for the two trellis coded

quantizers Q1 and Q2, respectively; and o�1� � 0 as D�,D�
1 ,D

�
2 � 0.

Before presenting our practical asymmetric and symmetric SW designs, we point out

that our results in Theorems 6 and 7 are consistent with those obtained by Zamir and Berger

[73] in their theoretical work on MT source coding at high resolution.

C. Practical asymmetric and symmetric SW code designs

The main elements of our practical asymmetric/symmetric SWCQ schemes are dithered

TCQ (described in Section 2) and asymmetric/symmetric SW coding based on LDPC and

turbo codes. We give details of the latter next.

1. Asymmetric SW code design

The SW theorem [47] was proved using random binning arguments [12]. The main idea is

to randomly partition all length-n sequences into disjoint bins, transmit the index of the bin

containing the source sequence, and pick from the specified bin a source sequence that is

jointly typical with the side information sequence at the decoder. Asymptotically, no rate

loss is incurred in SW coding due to the absence of side information at the encoder.

However, there is no efficient decoding algorithm for such a random binning scheme.

The first step towards a constructive SW code was given in [61], where the use of a linear
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parity-check channel code was suggested for partitioning all the source sequences into

bins indexed by syndromes of a channel code. The set of all valid codewords (with zero

syndrome) of the channel code forms only one bin, while other bins are shifts of this zero-

syndrome bin. This approach is detailed below.

Let C be an �n, k� binary linear block code with generator matrix Gk�n and parity-

check matrix H�n−k��n such that GHT = 0. The syndrome of any length-n binary se-

quence x with respect to code C is defined as s = xHT , which is a length-�n − k� bi-

nary sequence. Hence there are 2n−k distinct syndromes, each indexing 2k length-n binary

source sequences. A coset Cs of code C is defined as the set of all length-n sequences with

syndrome s, i.e., Cs = �x > �0,1�n � xHT = s�.

Consider the problem of SW coding of a binary source X with decoder side informa-

tion Y (with discrete [47] or continuous [28] alphabet). Syndrome-based SW coding of x

proceeds as follows:

• Encoding: The encoder computes the syndrome s = xHT and sends it to the decoder

at rate RSW = n−k
n b/s. By the SW theorem [47],

RSW = n − k

n
C H�X SY �. (4.22)

• Decoding: Based on the side information y and received syndrome s, the decoder

finds the most probable source sequence x̂ in the coset Cs, i.e.,

x̂ = argmax
x>Cs

P �xSy�. (4.23)

This syndrome-based approach was first implemented by Pradhan and Ramchandran

[41] using block and trellis codes. More advanced channel codes such as turbo codes

are later used for asymmetric SW coding [1, 2, 30] to achieve better performance. Fol-

lowing the work in [29], we consider using LDPC codes [19], not only because of their
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capacity-approaching performance, but also their flexible code designs using density evo-

lution [45]. Another reason for our choice lies in low-complexity decoding based on the

message-passing algorithm, which can be applied in SW coding with only slight modifica-

tion [29]. Specifically, as in the conventional message-passing algorithm, the input for the

i-th variable node is the log-likelihood-ratio (LLR) of xi defined as

Lch�xi� < log
P �Y = yiSX = 1�
P �Y = yiSX = 0� , 0 B i B n − 1. (4.24)

If X is uniform with P �X = 1� = P �X = 0� = 1
2 , we have

Lch�xi� = log
P �X = 1SY = yi�
P �X = 0SY = yi� , 0 B i B n − 1. (4.25)

The j-th syndrome bit sj , 0 B j B n − k − 1, is in fact the binary sum of the source

bits corresponding to the ones in the j-th row of the parity-check matrix H. Hence the

j-th check node in the Tanner graph is related to sj . The only difference from conventional

LDPC decoding is that one needs to flip the sign of the check-to-bit LLR if the correspond-

ing syndrome bit sj is one [29]. Moreover, conventional density evolution [45] can be

employed to analyze the iterative decoding procedure without any modification [9].

2. Symmetric SW code design

Our symmetric SWCQ design consists of dithered TCQ followed by symmetric SW coding

(hence the name symmetric SWCQ) based on turbo/LDPC codes. In the remaining part

of this section, we describe the employed symmetric SW coding scheme based on the

channel partitioning method of [49], elaborate our novel multi-level symmetric SW coding

framework for compressing different bit-planes of quantization indices, and compute the

loss of the SWCQ design due to practical coding.
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a. Symmetric SW coding for uniform binary sources [49]

Let J and K be two memoryless uniform binary sources. They are related by a binary

symmetric channel (BSC) with crossover probability P �J `K = 1� = p, where ` denotes

binary addition. Our goal is to separately compress J and K, and to jointly reconstruct

them. Due to the SW theorem [47], any rate pair �r1, r2� that satisfies

r1 C H�J SK� = H�p�

r2 C H�K SJ� = H�p�

r1 + r2 C H�J,K� = H�p� + 1 (4.26)

is achievable. In [49] an efficient algorithm to design good symmetric SW codes by par-

titioning a single linear parity-check code was proposed. Although this algorithm can be

applied to compression of multiple correlated sources, we restrict ourselves to two sources

only.

Suppose that we aim at approaching a point �r1, r2� (i.e., to compress J at rate r1

and K at r2) that satisfies (4.26). Let C be an �n, k� linear channel block code with k =
�2 − r1 − r2�n. Although both systematic and non-systematic codes can be used for C [49],

for the sake of easy implementation, we assume that C is a systematic channel code with

generator matrix G = �Ik P k��n−k��. We partition C into two subcodes, C1 and C2, defined

by generator matrices

G1 = �Im1 Om1�m2 P 1� and G2 = �Om2�m1 Im2 P 2�,

which consist of the top m1 and bottom m2 rows of G, respectively, where m1 < �1− r1�n,

m2 < �1 − r2�n (thus m1 +m2 = k). Then the parity-check matrices for C1 and C2 can be

written as
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H1 =
<@@@@@@>

Om2�m1 Im2 Om2��n−k�

P T
1 O�n−k��m2

In−k

=AAAAAA?
, (4.27)

H2 =
<@@@@@@>

Im1 Om1�m2 Om1��n−k�

O�n−k��m1
P T

2 In−k

=AAAAAA?
, (4.28)

respectively.

Encoding: It is done by multiplying un and vn, the realization of Jn and Kn, respec-

tively, by the corresponding parity check matrix H1 and H2, respectively. We partition the

length-n vectors un and vn into three parts (which are of lengths m1, m2, and n − k)

un = �um1
1 um2

2 un−k
3 � , vn = �vm1

1 vm2
2 vn−k

3 � . (4.29)

Then, the resulting syndrome vectors are

sn−m1
1 = unHT

1 = �um2
2 un−k

3 ` um1
1 P 1� , sn−m2

2 = vnHT
2 = �vm1

1 vn−k
3 ` vm2

2 P 2� ,

(4.30)

which are directly send to the decoder. It is easy to see that the total number of transmitted

bits for un and vn is m2 + �n − k� = nr1 and m1 + �n − k� = nr2, respectively, with the

desirable sum-rate of r1 + r2 b/s.

Decoding: Upon receiving the syndrome vectors sn−m1
1 and sn−m2

2 , the decoder forms an

auxiliary length-n row vector as

sn = �vm1
1 um2

2 �un−k
3 ` vn−k

3 � ` um1
1 P 1 ` vm2

2 P 2�

= �vm1
1 um2

2 �un−k
3 ` vn−k

3 � ` �um1
1 vm2

2 �P � . (4.31)

Then it finds a codeword cn of the main code C closest (in Hamming distance) to sn. Let
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the vector �ûm1
1 v̂m2

2 � be the systematic part of cn, then un and vn are recovered as

ûn = ûm1
1 G1 ` �O1�m1 um2

2 un−k
3 ` um1

1 P 1� (4.32)

v̂n = v̂m2
2 G2 ` �vm1

1 O1�m2 vn−k
3 ` vm2

2 P 2� . (4.33)

It is shown in [49] that if the �n, k� main code C approaches the capacity of a BSC

with crossover probability p, then the above designed symmetric SW code approaches the

SW limit for the same binary symmetric correlation channel model.

b. Correlation model between B1 and B2

To apply the above symmetric SW coding scheme, first, we have to model the correlation

between outputs of the two dithered quantizers Bn
1 and Bn

2 . Clearly, this correlation is

uniquely determined by the pair of dither sequences �V n
1 , V n

2 � used in the two quantizers.

Now fix a pair of �V n
1 , V n

2 �, and expand the trellis bit-plane �Jn
1 ,Kn

1 � to the corresponding

coset index sequences �Cn
Q1

= TQ1�Jn
1 �,Cn

Q2
= TQ2�Kn

1 ��, then correlation modeling is

done on the sample level by computing the joint p.m.f. P �B̄1, B̄2�, where B̄1 and B̄2 are

the indices of the signal points q
WQ1

CQ1
and q

WQ2

CQ2
(the ESSD are the same for both quantizers),

respectively, to which the sources are quantized, namely,

B̄1 = WQ1 � 4 +CQ1 = �JmJm−1...J2�2 � 4 +CQ1 ,

B̄2 = WQ2 � 4 +CQ2 = �KmKm−1...K2�2 � 4 +CQ2 . (4.34)

One possible solution to compute P �B̄1, B̄2� is to collect empirical statistics of �B̄1, B̄2�
by counting the number of occurrences of each quantization index pair �B̄1, B̄2� based on

the quantization output of training data generated according to the joint p.d.f. of �Y1, Y2�.

This method is similar to that used in [65]. However, to get a good approximate of two-

dimensional p.m.f. P �B̄1, B̄2� using empirical statistics, we need a large number of Monte
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Carlo simulations, which is time-consuming, especially when the number of quantization

levels is large, which is the case in the high-rate regime we consider.

A simpler solution can be obtained by assuming a Markov chain B̄1 � Ȳ1 � Ȳ2 � B̄2,

where Ȳ1 = Y1 + V1 and Ȳ2 = Y2 + V2 are the actual inputs to the two TCQ quantizers. That

is,

PB̄1,B̄2SȲ1,Ȳ2
�b̄1, b̄2Sȳ1, ȳ2� = PB̄1SȲ1

�b̄1Sȳ1� ċ PB̄2SȲ2
�b̄2Sȳ2�. (4.35)

Note that both PB̄1SȲ1
�b̄1Sȳ1� and PB̄2SȲ2

�b̄2Sȳ2� are the one-dimensional output-input rela-

tionship of non-dithered TCQ, which can be approximated using the method described in

[65]. Specifically, we write

PB̄1,B̄2
�b̄1, b̄2�

= S
ª

−ª S
ª

−ª
PB̄1,B̄2SȲ1,Ȳ2

�b̄1, b̄2Sȳ1, ȳ2� ċ pȲ1,Ȳ2
�ȳ1, ȳ2� dȳ1dȳ2

= S
ª

−ª S
ª

−ª
PB̄1SȲ1

�b̄1Sȳ1� ċ PB̄2SȲ2
�b̄2Sȳ2� ċ pȲ1,Ȳ2

�ȳ1, ȳ2� dȳ1dȳ2

�
T

Q
i=−T

T

Q
j=−T

PB̄1SȲ1
�b̄1Sηi� ċ PB̄2SȲ2

�b̄2Sηj� ċ S
Θi
S

Θj

pȲ1,Ȳ2
�ȳ1, ȳ2� dȳ1dȳ2 (4.36)

� θ2 ċ
T

Q
i=−T

T

Q
j=−T

PB̄1SȲ1
�b̄1Sηi� ċ PB̄2SȲ2

�b̄2Sηj� ċ pȲ1,Ȳ2
�ηi, ηj�, (4.37)

where the real line R is partitioned into 2T + 1 length-θ intervals (except two boundary

ones): Θ−T ,Θ−T+1, ...,ΘT , with ηi, i = −T, ..., T , being the middle point of the i-th interval

Θi. Note that the last approximation in (4.37) may be inaccurate if θ is not small enough

or the correlation coefficient ρ is very close to 1. Under these circumstances, we can resort

to the numerical method described in [13] to compute the bivariate Gaussian probability

RΘi RΘj
pȲ1,Ȳ2

�ȳ1, ȳ2� dȳ1dȳ2.

An example of the resulting joint p.m.f. p�B̄1, B̄2� computed using (4.36) with V1 =
V2 = 0 and the number of bit planes m = 3 is plotted in Fig. 12. Note that, because of the

symmetry assumptions on the sources (recall that we assume σ2
y1

= σ2
y2

in the direct case
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and σ2
n1

= σ2
n2

in the indirect case) and the quantizers (the same quantization step size q),

p�B̄1, B̄2� is symmetric with respect to the diagonal line on the �B̄1, B̄2� plane. We also

observe that most of the probability mass is concentrated near the diagonal line, because

the quantization outputs of the two correlated sources/noisy observations, Y1 and Y2, are

still correlated. Based on p�B̄1, B̄2�, we develop a multi-level coding framework for SW

coding of the bit-planes of B1 and B2.
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Fig. 12. Joint p.m.f. of quantization outputs p�B̄1, B̄2�.

c. Multi-level symmetric SW coding framework

Let �J1, . . . , Jm� and �K1, . . . ,Km� be binary representations of B1 and B2, respectively.

J1 and K1 are the trellis bit-planes, used to specify one of the four cosets for each sample.

The rest are codeword bit-planes, which are the output of the scalar quantizer with the

specified coset as its codebook. Hence, given a trellis bit-plane, all codeword bit-planes are

memoryless. Then, from the chain rule, we have

H�B1,B2� = H�J1, . . . , Jm,K1, . . . ,Km� = H�J1,K1� +
m

Q
j=2

H�Jj,Kj SMj−1�, (4.38)
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whereMj−1 < �Jj−1,Kj−1, . . . , J1,K1�. To introduce flexibility in the rate allocation be-

tween the two encoders, we employ the symmetric SW code design based on channel code

partitioning [49] for each bit-plane of B1 and B2. Note that if we assume ideal source

coding (with independent dithering) and ideal SW coding, Y1, Y2, Ẑ1, Ẑ2 are jointly Gaus-

sian. In this case, H�B1,B2� = I�Y1Y2; Ẑ1Ẑ2� is the sum-rate bound defined in (2.9) and

(2.18); hence we have the following lemma. The proof is straightforward (hence skipped)

by considering two extreme cases of multi-level symmetric SW coding when we attempt

to allocate the minimum rate to B1 or B2.

Lemma 8 For fixed dithered quantizers Q1 and Q2 with outputs B1 = �J1, ..., Jm� and

B2 = �K1, ...,Km�, any rate pair �R1,R2� that satisfies Rs
min B R1,R2 B Rs

max, where

Rs
max=H�J1�+Pm

j=2 H�Jj SMj−1�, Rs
min=H�K1SJ1�+Pm

j=2 H�Kj SMj−1, Jj�, (4.39)

is potentially achievable with our multi-level symmetric SW codes.

If we compute the difference between �Rs
max,R

s
min� and one of the corner points on

the inner sum-rate bound, which is �Ra
max,R

a
min� = �H�B1�,H�B2SB1��, we have a gap of

∆R = Ra
max −Rs

max = Rs
min −Ra

min = Pm
j=2 I�Jj;Kj−1 . . .K1SJj−1 . . . J1� C 0. (4.40)

This gap comes from the different coding order between multi-level symmetric and asym-

metric SW coding in the extreme cases. Our experiments show that this gap is very small in

practice (e.g., 0.03 b/s). One possible improvement of this pure symmetric design is to use

asymmetric SW coding for some of the bit-planes. If we carefully design the order of SW

coding, the resulting SWCQ design not only can approach more points on the inner sum-

rate bounds than the symmetric SWCQ design, but also has better practical performance.
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d. Practical implementation

In practice, there is a rate loss due to the suboptimality of TCQ. In addition, compressing

trellis bit-planes J1,K1 to H�J1,K1� b/s is very difficult because of the lack of a mecha-

nism for exploiting the memory in these trellis bits in practical SW coding. We thus send

J1 and K1 to the decoder using one b/s for each and incur some loss in rate (note that for

the two-bit variables J1 and K1, the second bit is a function of the first bit).

For SW coding of Jj and Kj , 2 B j B m, the symmetric SW code design in [49]

cannot be directly applied because the correlation between Jj and Kj conditioned onMj−1

is more complex than the BSC correlation model exploited in [49]. Our proposed multi-

level coding framework generalizes the approach of [49] in terms of handling more general

correlation models, while still enjoying the desirable property of arbitrarily allocating the

total number of output syndrome bits between the two encoders. The key novelties lie in

the construction of look-up tables for the probabilities �P �Jj = 1SKj = 0,Mj−1�, P �Jj =
0SKj = 1,Mj−1�, P �Kj =1SJj =0,Mj−1�, P �Kj =0SJj =1,Mj−1�, P �Jj `Kj = 0SMj−1��,

which are used for computing the LLR’s at the multi-level channel decoder. An example of

the look-up table for P �J2 `K2 = 0SM1� (recall thatM1 = �J1,K1�) is given in Table II.

Table II. Look-up table for P �J2 `K2 = 0SM1�.

J1 ÓK1 0 1 2 3

0 0.9959 0.9558 0.5019 0.0451

1 0.9558 0.9958 0.9553 0.5045

2 0.5028 0.9561 0.9958 0.9567

3 0.0456 0.5037 0.9562 0.9959

According to [49], part of the SW-coded syndrome bits for Jj and Kj consists of a

portion of the uncompressed Jj and Kj (see (4.30)). To exploit cross-bit-plane correlation
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among the codeword bits �J2, . . . , Jm� (and likewise among codeword bits �K2, . . . ,Km�),

we employ adaptive arithmetic coding separately at each encoder to compress this part of

the syndrome bits from 1 b/s to H�JiSJi−1 . . . J1� (or H�KiSKi−1 . . .K1�) b/s. The remain-

ing syndrome bits are sent to the decoder without further compression. Note that the j-th

bit-plane Jj (or Kj), 2 B j B m, is compressed with rate rj1 (or rj2) using the symmetric SW

coding scheme of [49] outlined in Section a while assuming all previously reconstructed

bit-planes as decoder side information. Thus we design an �n, kj� linear block code Cj
with kj = 2−rj1−rj2

�2−hj� n, where hj < 1
nH�Jn

j SJn
j−1, . . . , J

n
1 � = 1

nH�Kn
j SKn

j−1, . . . ,K
n
1 �; we set

rj1 + rj2 A hj to ensure kj < n.

D. Simulation results

1. Asymmetric SWCQ

For the direct MT source coding problem, sources Y1 and Y2 are zero mean, jointly Gaus-

sian with variances σ2
y1
= σ2

y2
= 1 and correlation coefficient ρ = 0.99. The target distortions

D�
1 and D�

2 are both set to be 0.001, then the sum-rate bound ∂R̂BT
12 �D�

1 ,D
�
2� for the direct

MT problem can be computed using (2.9) as

R1 +R2 C 1

2
log+��1 − ρ2�βmaxσ2

y1
σ2

y2

2D�
1D

�
2

� = 7.142 b~s. (4.41)

Suppose we are attempting to approach the middle point of sum-rate bound ∂R̂BT
12�D�

1,D
�
2�,

i.e., R�
1 = R�

2 = 7.142~2 = 3.571 b/s. Then using equations (B.6) - (B.8) and (B.11), we can

compute the three quantization distortions �d21, d1, d22� (assuming ideal quantization) and

the minimum MSE coefficients �αA
1 , βA

1 , γA
1 �, �αA

2 , βA
2 , γA

2 �, and �αc, βc�, yielding
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d21 = 0.14937908, d1 = 0.00105018, d22 = 0.00105762;

αA
1 = 0.95239893, βA

1 = 0.00032965, γA
1 = 0.04674618;

αA
2 = 0.04707583, βA

2 = 0.00666912, γA
2 = 0.94572981;

αc = 0.86743434, βc = 0.12288739. (4.42)

For the indirect MT source coding problem, source X and noises N1 and N2 are zero

mean, jointly Gaussian, and mutually independent with variances σ2
x = 1, σ2

n1
= σ2

n = 1
99 ,

and σ2
n2
= σ2

n = 1
99 , respectively. Noisy observations are given by Y1 = X + N1 and Y2 =

X +N2. We refer to the ratio σ2
x~σ2

n = 99 = 19.96 dB as correlation signal to noise ratio

(CSNR). The target distortion is set to D� = 0.00555 = −22.58 dB. Then the sum-rate

bound ∂R̂Y I
12 �D�� for the indirect MT problem can be computed using (2.18) as

R1 +R2 C 1

2
log+ � 4σ2

x

σ2
n1

σ2
n2

D� 1
σ2

x
− 1

D� + 1
σ2

n1

+ 1
σ2

n2

�2
� = 7.142 b~s. (4.43)

Due to equations (C.1)-(C.4), one can verify that �d21, d1, d22� and �αc, βc� are the same as

those in (4.42), while �αA
X , βA

X , γA
X� are computed using (C.4) as

αA
X = 0.49722766, βA

X = 0.00349566, γA
X = 0.49372983. (4.44)

In our implementation, to get the quantization distortions �d21, d1, d22� in (4.42), we

employ three dithered TCQ quantizers with parameters

1. Q21 � RTCQ = 5 b/s, step size ∆21 = 0.7850;

2. Q1 � RTCQ = 7 b/s, step size ∆1 = 0.06570;

3. Q22 � RTCQ = 7 b/s, step size ∆22 = 0.06594.

The transmission rates with ideal SW coding, i.e., R21 = 1
nH�Bn

21�, R1 = 1
nH�Bn

1 SẐn
21�, and

R22 = 1
nH�Bn

22SẐn
c � are computed using Monte Carlo simulations. Practical SW encoders
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are based on turbo and irregular LDPC codes, which are designed such that the decoding

bit error rate is less than 10−6. In our simulations, the block length (BL) for both turbo

and LDPC codes equals to 106, and the maximum number of iterations is set to 100 for

turbo decoding and 500 for LDPC decoding. Table III shows the resulting bit-plane-level

conditional entropies and the practical SW coding rates. With turbo based asymmetric

SW coding, the total transmission rate R21 + R1 + R22 = 1.506 + 3.650 + 2.180 = 7.336

b/s. Practical distortions are �D1,D2� = �−30.05 dB,−30.01 dB� for the direct setting and

D = −22.60 dB for the indirect setting, satisfying the target distortion constraints. Hence

our asymmetric SWCQ design based on turbo codes performs 7.336 − 7.142 = 0.194 b/s

away from both sum-rate bounds ∂R̂BT
12 �D�

1 ,D
�
2� for the direct setting and ∂R̂Y I

12 �D�� for

the indirect setting. With LDPC based asymmetric SW coding, the total transmission rate

is R21 +R1 +R22 = 1.506 + 3.623 + 2.152 = 7.281 b/s, which is 7.281 − 7.142 = 0.139 b/s

away from both sum-rate bounds. These results together with the sum-rate bounds for both

the direct and indirect MT settings are depicted in Fig. 13.

The loss of 0.139 b/s for the best results with LDPC based asymmetric SW coding

consists of three 0.03 b/s losses (corresponding to the 1.34 dB granular gain of 256-state

TCQ, or roughly 0.19 dB loss in distortion) from the suboptimality of TCQ, a total of 0.04

b/s loss (see Table III) from practical arithmetic/SW coding, and a very small loss from the

jointly Gaussian assumption of the two quantized versions at the two encoders.

2. Symmetric SWCQ

In the implementation of symmetric SWCQ scheme, we use the same set of source distri-

butions and target distortions as in Section 1, namely,

Direct setting � σ2
y1
= σ2

y2
= 1, ρ = 0.99, D�

1 = D�
2 = 0.001;

Indirect setting � σ2
x = 1, σ2

n1
= σ2

n2
= 1

99 , D� = 0.00555. (4.45)
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Fig. 13. Results of asymmetric SWCQ with TCQ and turbo/LDPC-based SW coding for the
direct and indirect MT problems. The corner point with LDPC based SW coding
is (2.262,4.983) b/s, total sum-rate loss is 0.103 b/s. The corner point with turbo
based SW coding is (2.273,4.983) b/s, total sum-rate loss is 0.114 b/s.
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Fig. 14. Results of symmetric SWCQ with TCQ and turbo/LDPC-based SW coding for the
direct and indirect MT problems. The corner point with LDPC based SW coding
is (2.320,4.979) b/s, total sum-rate loss is 0.157 b/s. The corner point with turbo
based SW coding is (2.315,4.979) b/s, total sum-rate loss is 0.152 b/s.
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Table III. Entropies vs practical rates at high rate for direct and indirect MT coding using
asymmetric SWCQ.

Quantizer Bit Entropy Practical Rate (b/s) Irregular LDPC Code Profile
Plane (b/s) Turbo LDPC

# (BL=106) (BL=106)

Q21 All 1.504 1.506 1.506 –

Q1 1 1.000 1.000 1.000 –
2 1.000 1.000 1.000 –
3 0.998 1.000 1.000 –
4 0.588 0.625 0.600 λ�x� = 0.1536x + 0.2398x2 + 0.0747x6 + 0.0888x7 + 0.0174x9+

0.0105x10 + 0.0215x14 + 0.0063x15 + 0.0336x16 + 0.007417+
0.0025x21 + 0.0061x24 + 0.0348x25 + 0.0777x28 + 0.0524x29+

0.0015x98 + 0.1714x99;ρ�x� = 0.35x7 + 0.65x8.
5 0.020 0.025 0.023 λ�x� = 0.0818x + 0.2207x2 + 0.0397x4 + 0.1374x6 + 0.0774x7+

0.0106x14 + 0.0640x15 + 0.0143x17 + 0.0121x20 + 0.0616x21+
0.0141x30 + 0.0781x39 + 0.0661x40 + 0.0081x48 + 0.0269x49+
0.0449x64 + 0.0086x65 + 0.0289x66 + 0.0047x67;ρ�x� = x259.

6 0.000 0.000 0.000 –
7 0.000 0.000 0.000 –

All 3.606 3.650 3.623 –

Q22 1 1.000 1.000 1.000 –
2 0.908 0.925 0.920 λ�x� = 0.3315x + 0.2869x2 + 0.0079x4 + 0.0447x6 + 0.1068x8+

0.0016x9 + 0.0030x10 + 0.0038x11 + 0.0032x14 + 0.0028x15+
0.1091x19 + 0.0188x20 + 0.0014x60 + 0.0064x61 + 0.0328x65+

0.0188x66 + 0.0040x98 + 0.0164x99;ρ�x� = 0.2x2 + 0.8x3.
3 0.223 0.250 0.230 λ�x� = 0.0937x + 0.2225x2 + 0.0375x6 + 0.1605x7 + 0.0014x9+

0.0117x16 + 0.1529x17 + 0.0010x28 + 0.0808x36 + 0.0289x37+
0.0209x56 + 0.0028x57 + 0.1854x98;ρ�x� = x26.

4 0.0004 0.005 0.002 λ�x� = 0.0002x + 0.3390x2 + 0.0108x3 + 0.0158x4 + 0.3057x5+
0.0064x19 + 0.0173x20 + 0.0718x21 + 0.0592x22 + 0.1221x34+

0.0446x35 + 0.0069x42;ρ�x� = x2749.
5 0.000 0.000 0.000 –
6 0.000 0.000 0.000 –
7 0.000 0.000 0.000 –

All 2.131 2.180 2.152 –

Total - 7.241 7.336 7.281 –
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Then the sum-rate bounds ∂R̂BT
12 �D�

1 ,D
�
2� for the direct setting and ∂R̂Y I

12 �D�� for

the indirect setting are both R1 +R2 C 7.142 b/s, and the two quantization distortions are

d1 = d2 = 0.0010502. We employ two identical dithered TCQ quantizers with parameters

1. Q1 � RTCQ = 7 b/s, step size ∆1 = 0.06570;

2. Q2 � RTCQ = 7 b/s, step size ∆2 = 0.06570.

The conditional entropies for the seven bit-planes of B1 and B2 are shown in Table IV

(due to the symmetry between the sources and encoders, Ji’s and Ki’s are interchangeable).

Table IV. Conditional entropies for the seven bit-planes of B1 and B2 for direct and indirect
MT source coding with symmetric SWCQ at high rate.

Bit H�JiKiSMi−1�H�JiSMi−1�H�JiSJi−1...J1� Practical Rate (b/s) Rate loss (b/s)
Plane (b/s) (b/s) (b/s) Turbo LDPC Turbo LDPC

BL=106 BL=105 BL=105 BL=106 BL=105 BL=105

1 2.000 1.000 1.000 2.000 2.000 2.000 0.000 0.000 0.000
2 1.945 1.000 1.000 1.965 1.970 1.970 0.020 0.025 0.025
3 1.307 1.000 1.000 1.340 1.360 1.340 0.033 0.053 0.033
4 1.002 1.000 1.000 1.005 1.010 1.005 0.003 0.008 0.003
5 0.840 0.840 0.842 0.842 0.842 0.842 0.002 0.002 0.002
6 0.139 0.139 0.141 0.141 0.141 0.141 0.002 0.002 0.002
7 0.0001 0.0001 0.0001 0.001 0.001 0.001 0.001 0.001 0.001

Total 7.234 - - 7.294 7.324 7.299 0.060 0.090 0.065

In our practical SW code implementation based on turbo codes, the code length n

equals 106, and we control the transmission rates such that the decoding probability of

error is less than 10−6 after 100 iterations. In the bottom-up order, the seven bit planes of

B1 and B2 are coded in the following way:

1. The first bit plane �J1,K1� is directly transmitted using 2 b/s.

2. The second, third, and fourth bit-plane are coded using symmetric SW coding [49],

wherein the turbo code rates are 0.035 b/s, 0.64 b/s, and 0.995 b/s, respectively.

Since H�J2SJ1� = H�J3SJ2, J1� = H�J4SJ3, J2, J1� = 1.000 b/s, then the practical

transmission rates are 1 + �1 − 0.035� = 1.965 b/s, 1 + �1 − 0.66� = 1.34 b/s, and

1 + �1 − 0.995� = 1.005 b/s, respectively.
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3. The fifth, sixth, and seventh bit-plane are all compressed to their conditional entropy

H�JiSJi−1, ..., J1� for i = 5,6,7. We can do this since H�KiSJi,Mi−1� � 0 for i =
5,6,7.

The subtotal in rate loss due to practical SW coding is 0.020+ 0.033+ 0.003+ 0.005 �
0.060 b/s. Using linear estimators with minimum MSE coefficients, the resulting distortions

are �D1,D2� = �−30.07 dB,−30.00 dB� for the direct setting and D = −22.63 dB for the

indirect setting. Compared to the sum-rate bound R1 + R2 C 7.142 b/s, the total rate loss

with turbo code for SW coding is thus 7.294 − 7.142 = 0.152 b/s in the specific direct and

indirect MT coding problems we consider.

We also implement the practical SW code based on LDPC codes using the method

described in [49]. Since LDPC code is often nonsystematic, matrix inverse operation is

needed offline [49], hence the code length n is set to 105 due to memory limitations. Opti-

mized by density evolution and differential evolution as in [45], LDPC codes are generated

for the second, third, and fourth bit planes. Simulation results with a maximum of 200 itera-

tions are also shown in Table IV. The total rate loss of symmetric SWCQ with LDPC codes

for both direct and indirect MT coding problems is 7.299 − 7.142 = 0.157 b/s. Detailed re-

sults together with the theoretical bounds are shown in Fig. 14. We see that practical SW

codes based on LDPC codes (of length 105 bits) perform slightly worse than that based on

turbo codes (of length 106 bits), with a SW rate loss of 0.065 b/s compared to 0.060 b/s,

this is due to the shorter block length with LDPC codes. Indeed, at the same block length

of 105, LDPC code based scheme performs 0.090 − 0.065 = 0.025 b/s better than the turbo

based scheme, as shown in Table IV.

3. Low rate performance and complexity analysis

We next evaluate the performance of our asymmetric and symmetric SWCQ schemes at

low transmission rate, and compare the results to those in [42] for the indirect MT problem

at a practical sum-rate of 4.0 b/s.
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In our simulations for symmetric SWCQ, CSNR is set to σ2
x~σ2

n = 99 = 19.96 dB,

and the target distortion is D� = −18.58 dB. Then the sum-rate bound ∂R̂Y I
12 �D�� = 3.728

b/s. Practical results with LDPC code based symmetric SW coding are shown in Table V,

where block length n = 105. The total transmission rate is 3.999 b/s, which is 0.27 b/s away

from the sum-rate bound ∂R̂Y I
12 �D��. At the same sum-rate and CSNR, the scheme in [42]

can achieve distortion of −16.3 dB, which corresponds to a theoretical sum-rate of 3.048

b/s, and is more than 2 dB worse than our results.

Table V. Conditional entropies for direct and indirect MT coding at low rate.

Bit Plane # H�JiKiSMi−1� H�JiSMi−1� H�JiSJi−1...J1� Practical Rate Rate loss
(b/s) (b/s) (b/s) (b/s) (b/s)

1 1.923 1.000 0.999 1.950 0.027
2 1.086 1.000 1.000 1.100 0.014
3 0.818 0.818 0.824 0.824 0.006
4 0.119 0.119 0.125 0.125 0.006

Total 3.946 - - 3.999 0.053

In our simulations for asymmetric SWCQ, CSNR is set to σ2
x~σ2

n = 99 = 19.96 dB,

and the target distortion is D� = −18.30 dB. Then the sum-rate bound ∂R̂Y I
12 �D�� = 3.631

b/s. Practical results with LDPC code based asymmetric SW coding are shown in Table

VI, where block length n = 106. The total transmission rate is 4.00 b/s, which is 0.37 b/s

away from the sum-rate bound ∂R̂Y I
12 �D��. This performance gap is larger than that with

the symmetric SWCQ, which is due to the inefficiency in compressing the trellis bit planes

using asymmetric SW coding [65]. However, the overall distortion D� = −18.30 dB with

asymmetric SWCQ is still much better than the −16.3 dB performance in [42] at the same

sum-rate and CSNR.

Complexity-wise, the best results of [42] for a sum-rate of 4 b/s are obtained with

8-level Lloyd-Max fixed-length scalar quantizer and 32-state trellis codes, while our asym-

metric SWCQ scheme employs 256-state TCQ and LDPC codes. The running time on an

Intel Core 2 Duo 1.8GHz machine and peak memory usage are shown in Table VII.
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Table VI. Entropies vs practical rates at low rate for direct and indirect MT coding using
asymmetric SWCQ.

Quantizer Bit Plane # Conditional Entropy (b/s) Practical Rate (b/s)

Q21 All 1.231 1.231

Q1 1 1.000 1.000

2 0.822 0.840

3 0.077 0.090

4 0.000 0.000

All 1.799 1.830

Q22 1 0.861 0.880

2 0.053 0.060

3 0.000 0.000

4 0.000 0.000

All 0.914 0.940

Total - 3.934 4.001

Table VII. Computational complexity and peak memory usage for asymmetric SWCQ and
symmetric SWCQ.

SWCQ scheme Encoding Decoding
Time (sec) Memory (MByte) Time (sec) Memory (MByte)

Asymmetric LDPC based 366 75.1 981 372
(BL=106) Turbo based 365 21.5 2291 966
Symmetric LDPC based 25.3 2.1 11.8 15.1
(BL=105) Turbo based 25.0 2.1 75.6 95.5
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CHAPTER V

MT VIDEO CODING

A. Problem setup and notations

Let L = �L1, L2, ..., Ln� and R = �R1,R2, ...,Rn� be the left and right n-frame stereo

video sequences, respectively, and the frame size is fixed at W � H for both sequences.

Denote �E �
L ,D�

L� and �E �
R ,D�

R� as the H.264/AVC encoder/decoder pairs for the left and

right sequences, respectively, where only the first frames L1 and R1 of the two sequences

are intra-coded (I-frames), and all the remaining frames are inter-coded (P-frames). The

bit rate in bits per second (bps) is R�
L for the left sequence, and R�

R for the right sequence.

The reconstructed version of the left and right sequences are ÂLD�q� = �ÂLD�q�
1 , ..., ÂLD�q�

n � and

ÂRD�q� = �ÂRD�q�
1 , ..., ÂRD�q�

n �, respectively, where q is the quantization parameter used in the

H.264/AVC coders. The average peak signal-to-noise ratio (PSNR) of both sequences is

defined as

P� = 1

2n

n

Q
k=1

10 log10

2552

1
WH YLk − ÂLD�q�

k Y2
+ 1

2n

n

Q
k=1

10 log10

2552

1
WH YRk − ÂRD�q�

k Y2
dB, (5.1)

where 1
WH YA −BY2 is the average squared difference between images A and B.

We consider the problem of MT source coding of stereo video sequences such that, at

the same video quality, the resulting total bit rate (or sum rate) is smaller than that of indi-

vidual H.264/AVC coding. Thus, our goal is to design an MT video coder �EL,ER,DLR�
that is capable of achieving a smaller sum rate compared to that of separate H.264/AVC

encoding on the stereo video sequences �L,R� at the same average PSNR P�, i.e., RL +
RR < R�

L +R�
R while P = P�, where RL and RR are the bit rate of the left and right

sequences, respectively, and P is the average PSNR, obtained with MT video coding.

Our main idea of MT video coding of �L,R� is to employ the DCT to explore spatial
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correlation among neighboring pixels, motion compensation to remove temporal redun-

dancies between consecutive video frames, and stereo matching and motion fusion at the

decoder to generate side information for SW and WZ coding.

Before describing the details of our proposed MT video coding schemes, we need to

introduce some notations. Let L1�i, j� be the 4 � 4 macroblock whose top-left corner is at

the �4i + 1�-th row and �4j + 1�-th column of frame L1, with 0 B i < H~4, 0 B j < W ~4.

Write the intra-predicted version of L1�i, j� and the corresponding intra-prediction mode

KI�q�
1 �i, j� as (for simplicity, we assume that only 4 � 4 luma intra-prediction is used)

�LI�q�
1 �i, j�,KI�q�

1 �i, j�� = PI�ÂLD�q�
1 �i, j − 1�, ÂLD�q�

1 �i − 1, j�, ÂLD�q�
1 �i − 1, j + 1��, (5.2)

where q is the quantization parameter, PI�ċ, ċ, ċ� represents the intra prediction operation,

whose arguments are the previously decoded macroblocks (if available) ÂLD�q�
1 �i, j − 1�,

ÂLD�q�
1 �i − 1, j� and ÂLD�q�

1 �i − 1, j + 1�. Then the corresponding residual block and its

H.264/AVC integer-transformed version are expressed as

L
R�q�
1 �i, j� = L1�i, j� −L

I�q�
1 �i, j� and L

T �q�
1 �i, j� = T�LR�q�

1 �i, j��, (5.3)

respectively, where T�ċ� represents the integer DCT.

Define a dead-zone quantizer as

C�d, d0� � W quantized toÐ�

¢̈̈
¨̈̈̈
¨̈
¦̈
¨̈̈̈
¨̈̈
¤

��W + d0

2 �~d� ċ d W < −d0

2

0 −d0

2 B W B d0

2

��W − d0

2 �~d� ċ d W A d0

2

(5.4)

where d is the quantization step size, d0 is the size of the dead-zone, W is the input, and

�x� (resp. 
x�) is the closest integer to x that is larger (resp. smaller) than x. Then the

equivalent H.264/AVC dead-zone quantizer [59] with quantization parameter QP = q can

be denoted as CI
q = C�dq,

4
3dq� for intra-frames and CP

q = C�dq,
5
3dq� for inter-frames, where
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dq is the quantization step size with q = 1,2, ...,52.

Write the quantization levels of the �i, j�-th block as

L
K�q�
1 �i, j� = Q�LT �q�

1 �i, j�,CI
q �, (5.5)

and the corresponding de-quantized version of the residual block as

ÂLT �q�
1 �i, j� = Q−1�LK�q�

1 �i, j�,CI
q � = L

K�q�
1 �i, j� ċ dq. (5.6)

The reconstructed �i, j�-th block (before deblocking filtering) is denoted as

ÂLD�q�
1 �i, j� = T−1�ÂLT �q�

1 �i, j�� +L
I�q�
1 �i, j�, (5.7)

which will be used in intra-predicting the neighboring macroblocks. Moreover, we will

drop the index �i, j� to denote the corresponding W �H frame, for example, the W �H

intra-predicted frame is written as L
I�q�
1 = �0Bi<H~4,0Bj<W ~4�LI�q�

1 �i, j��.

Similarly, for the P-frame Lk, write Lk�i, j� as the original macroblock at the �i, j�-th

position, and

�LP �q�
k �i, j�,MP �q�

Lk
�i, j�� = PP�ÂLD�q�

k−1 ,Mmax� (5.8)

as the inter-predicted residual block and the �i, j�-th motion vector, respectively, where

PP represents the inter prediction operation, whose arguments are the previously decoded

�k − 1�-frame and the maximum motion search rangeMmax, then we must have

−Mmax BMP �q�
Lk

�i, j� − ÃMP �q�
Lk

�i, j� BMmax, (5.9)

where ÃMP �q�
Lk

�i, j� is the predicted motion vector for the �i, j�-th macroblock. Table VIII

lists important notations used in this chapter. All other notations follow the same naming

rule unless otherwise noted.
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Table VIII. Notations for H.264/AVC.
Category Notation Explanation Defined in

L1 First frame of the left sequence
L

I�q�
1 H.264/AVC intra-predicted frame for L1 with QP = q (5.2)

H.264/AVC L
R�q�
1 H.264/AVC residual frame for L1 with QP = q (5.3)

intra L
T �q�
1 H.264/AVC transformed residual frame for L1 with QP = q (5.3)

L
K�q�
1 H.264/AVC residual quantization levels for L1 with QP = q (5.5)

ÂLT �q�
1 H.264/AVC de-quantized residual frame for L1 with QP = q (5.6)

ÂLD�q�
1 H.264/AVC reconstruction of L1 with QP = q (5.7)

H.264/AVC ÂLP �q�
k

H.264/AVC inter-predicted frame for Lk with QP = q (5.8)
inter MP �q�

Lk
H.264/AVC motion vectors for Lk with QP = q (5.8)

ÃMP �q�
Lk

H.264/AVC predicted motion vectors for Lk with QP = q

B. Proposed MT video coding scheme 1

In our first proposed MT video coder, the left sequence L is first compressed by H.264/AVC

using a group of picture (GOP) structure IP...PI and transmitted to the joint decoder. The

right sequenceR is then WZ coded with the decoded left sequence as decoder side informa-

tion. The right I-frame and P-frames are compressed using different algorithms, because

there is no a priori knowledge about the stereo correlation between the two sequences

when compressing the right I-frame, while for the right P-frames, previous decoded pairs

of frames provide information about the stereo correlation (via a motion fusion algorithm

that uses previous disparity map and incorporates the 3D camera geometry information),

whose reliability depends on the quality of previous decoded frames. Another reason is

because the I-frame uses intra-prediction with different prediction modes, whereas the P-

frames use inter-prediction with different motion vectors. The motion vectors of the left

and right sequences are highly correlated, thus exploring this correlation will help reduce

the transmission rate of the motion vectors, which is important at low rates when the motion

vectors occupy a large portion of the compressed bitstream.
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1. MT video coding of I-frames

Our proposed MT video coding scheme for the right I-frame R1 is depicted in Fig. 15. First,

the left sequence L is compressed at Encoder 1 using H.264/AVC and transmitted to the

joint decoder, using quantizers CI
q1
= C�dq1 ,

4
3dq1�,CP

q1
= C�dq1 ,

5
3dq1� and a transmission

rate of RL bps. Then the first frame R1 of right sequence is intra-coded using a quantizer

CI
q2 = C�dq2 ,

4
3dq2� with a larger QP = q2 rather than QP = q1 to produce a low-quality

reconstruction ÂRD�q2�
1 at the decoder. A rough disparity map ÇD1 between ÂRD�q2�

1 and the

H.264/AVC-decoded left I-frame ÂLD�q1�
1 is generated, i.e.,

ÇD1 = D�ÂLD�q1�
1 , ÂRD�q2�

1 �, (5.10)

where D�A,B� is the disparity map between frame A and frame B generated by the BP

based stereo matching algorithm [15], which is detailed in Section D. ÇD1 is then used to

produce a side information R
W �q1�
1 by warping ÂLD�q1�

1 , i.e.,

R
W �q1�
1 = W�ÂLD�q1�

1 , ÇD1�, (5.11)

where W�A,D� denote the warped version of frame A according to disparity map D, i.e.,

the intensity of �i, j�-th pixel of W�A,D� equals to that of the �i + δV
i,j, j + δH

i,j�-th pixel

of A, where δV
i,j and δH

i,j denote the vertical and horizontal disparity values of the disparity

map D, respectively.

Now the encoder re-quantizes the residual DCT coefficients R
T �q2�
1 = T�RR�q2�

1 � using

the same quantizer CI
q1

= C�dq1 ,
4
3dq1� as that for the left I-frame, without doing another

intra-prediction step, i.e.,

ÇRK�q1�
1 = Q�RT �q2�

1 ,CI
q1
�. (5.12)

We choose proper q1 and q2 such that q1 = q2 − 12k where k > N, which ensures that

the two quantizers CI
q1

and CI
q2

are embedded in the sense that every quantization threshold
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Fig. 15. The codec for the right I-frame R1 in our first proposed MT video coder.

in CI
q1

must also be a threshold in CI
q2

. Moreover, we write

CI
q2
= �n,n0� �CI

q1
(5.13)

if the zeroth quantization cell of CI
q2

contains n0 cells of CI
q1

while each non-zero cell of

CI
q2 contains n cells of CI

q1
(we only consider the case when n0 is an odd integer). For

example, when q1 = 22, q2 = 34, we have CI
34 = �4,5� �CI

22, as shown in Fig. 16.
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Fig. 16. Quantizers used in the codec for the right I-frame in our first proposed MT video
coder.

Now let R
F �q1,q2�
1 be the refining cell indices that distinguish among the n or n0 finer
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quantization cells of CI
q1

in a given coarse quantization cell of CI
q2

, i.e.,

R
F �q1,q2�
1 =

¢̈̈
¨̈
¦̈
¨̈̈
¤

ÇRK�q1�
1 − nR

K�q2�
1 + n0−1

2 , if R
K�q2�
1 < 0

ÇRK�q1�
1 − nR

K�q2�
1 + 2n−n0−1

2 , if R
K�q2�
1 C 0

. (5.14)

Then we compress R
F �q1,q2�
1 with ÇRK�q2�

1 and R
W �q1�
1 as decoder side informations using

SW coding. To model the correlation between the I-frame quantization levels ÇRK�q1�
1 and

the side information R
W �q1�
1 , we collect the joint statistics over all n frames to build an

empirical model. Specifically, define

ÇRK�q��
1 = Q�T�RW �q1�

1 −R
I�q2�
1 �,CI

q��, (5.15)

where q�  q1, q2 (that is, CI
q� is a much finer quantizer than CI

q1
and CI

q2
). Then for each

of the 16 position in a 4 � 4 macroblock, we count the occurrences of all possible pair

�l2, l�� in � ÇRK�q1�
k �i, j�c, ÇRK�q��

k �i, j�c� for all 0 B i < H~4,0 B j < W ~4, c = 0,1, ...,15,

and k = 1,2, ..., n, where A�i, j�c is the c-th coefficient of the 4 � 4 macroblock A�i, j�.

Now we have the joint statistics

N Ic
�l2, l��=

n

Q
k=1

H~4−1

Q
i=0

W ~4−1

Q
j=0
I�ÇRK�q1�

k �i, j�c= l2 and ÇRK�q��
k �i, j�c = l��, c = 0,1, ...,15,(5.16)

where I�ċ� is the binary indicator function. An example of the resulting statistics N Ic
�ċ, ċ�

with c = 0 (i.e., the DC coefficients) for I-frame residual coefficients is shown in Fig. 17.

Clearly, given the knowledge of ÇRK�q2�
1 , R

F �q1,q2�
1 is uniquely determined by ÇRK�q1�

1 ,

thus the decoder can always generate conditional probabilities

Pr�RF �q1,q2�
1 �i, j�c=f U ÇRK�q2�

1 �i, j�c=l2, ÇRK�q��
1 �i, j�c=l�� = N Ic

�l2,min + f, l��
Pl2,max

l=l2,min
N Ic

�l, l��
, (5.17)

where l2,min = nl2 − n0−1
2 + I�l2 A 0�n0+1−n

2 , l2,max = nl2 + n0−1
2 − I�l2 < 0�n0+1−n

2 . With

these conditional probabilities at the decoder, R
F �q1,q2�
1 is compressed by multi-level SW

coding (described in Section F), and the resulting syndromes are sent to the decoder. Then
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Fig. 17. Example of the correlation model for I-frame coefficients.

the final decoded I-frame ÇRD�q1�
1 is generated. Note that ÇRD�q1�

1 is not necessarily the same

as the H.264/AVC decoded version ÂRD�q1�
1 , since the intra-predicted versions R

I�q1�
1 and

R
I�q2�
1 are different.

2. MT video coding of P-frames

Our proposed MT video coding scheme for the right P-frames is depicted in Fig. 18. The

coded bitstream for the k-th inter-coded frame Rk (k = 2,3, ..., n) with QP = q1 consists

of three parts, namely, the overhead information OP �q1�
Rk

(which is directly compressed by

H.264/AVC), the motion vectorsMP �q1�
Rk

, and texture bits UP �q1�
Rk

for the DCT coefficients.

Denote the compressed bits of OP �q1�
Rk

and MP �q1�
Rk

as BM,O
k , and the compressed bits of

UP �q1�
Rk

as BX
l .

Before compressing Rk for k = 2, ..., n at Encoder 2, we assume that the joint decoder

has access to the reconstructions �ÂLD�q1�
1 , ..., ÂLD�q1�

k−1 , ÂLD�q1�
k � and �ÇRD�q1�

1 , ..., ÇRD�q1�
k−1 �. At

the decoder, we first employ stereo matching algorithm to generate a disparity map Dk−1 =
D�ÂLD�q1�

k−1 , ÇRD�q1�
k−1 � between ÂLD�q1�

k−1 and ÇRD�q1�
k−1 . Using a slightly modified stereo matching



78

D

Rk

Motion
Fusion

Stereo
Matching

Dk-1

Motion
Analysis

Mk
L

Forward
Warping

Mk
R

Motion
Compensation

Rk
D W E

+

Stereo
Matching

Forward
Warping

Dk

Slepian-Wolf 
Decoding

Mk
R

Wyner-Ziv 
Decoding

Bk
X

Yk

Xk
ˆ

Recon-
struction

Lk-1   r 
D(q1)^ Rk-1   r 

D(q1)~

Lk     r 
D(q1)^

~

Rk      r 
D(q1)~

Rk
M

Rk-1   r 

Rk

Motion 
Search

Motion
Compen-

sation

Rk

Slepian-Wolf
Encoding

Rk

Xk

+
M    , O

M

Wyner-Ziv
Encoding

Bk
M,O

D(q1)~

Rk
P  (q1)

Rk
P (q1)

Bk
X

Bk
M,O

P  (q1)M̂    , OP  (q1) ^
Rk Rk

Encoder

Decoder

Fig. 18. The codec for the right P-frames in our first proposed MT video coder.

algorithm (by allowing vertical disparities), we also obtain a forward motion fieldML
k from

ÂLD�q1�
k−1 to ÂLD�q1�

k , and write

ML
k = M�ÂLD�q1�

k−1 , ÂLD�q1�
k �. (5.18)

Then, use knowledge about the 3D stereo camera settings and follow the “identical motion

constraint”, we apply a novel motion fusing algorithm to produce the right forward motion
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fieldMR
k based on the known information Dk−1 andML

k , i.e.,

MR
k = F�ML

k ,Dk−1�. (5.19)

The detailed motion fusion algorithm will be described in Section E. It is obvious that the

motion vectorsMP �q1�
Rk

in the H.264/AVC bitstream are correlated to the motion fieldMR
k .

Hence SW coding is employed to compressMP �q1�
Rk

withMR
k as decoder side information.

Specifically, define

ÈMP �q1�
Rk

�i, j� = median�MR
k �i, j��, (5.20)

as the side information for the motion vector of the �i, j�-th block, where we use bold in-

dices i and j to allow various inter-search mode, including 16 � 16, 16 � 8, and 8 � 16, etc.

Instead of directly doing SW coding on the motion vectors M
P �q1�
Rk

�i, j�, which are with

memory, the encoder generates the motion vector difference (MVD) defined as the differ-

ence between the motion vectors M
P �q1�
Rk

�i, j� and their predicted versions ÃMP �q1�
Rk

�i, j�
(using the same prediction method as in H.264/AVC), i.e., ∆M

P �q1�
Rk

�i, j� = M
P �q1�
Rk

�i, j�−
ÃMP �q1�

Rk
�i, j�, and compresses ∆M

P �q1�
Rk

using SW coding. The side information for the

MVDs are generated as

É∆M
P �q1�
Rk

�i, j� = ÈMP �q1�
Rk

�i, j� − ÃÈMP �q1�
Rk

�i, j�, (5.21)

where ÃÈMP �q1�
Rk

�i, j� is the �i, j�-th H.264/AVC-predicted motion vector using the neigh-

boring ÈMP �q1�
Rk

�i, j�’s as references. Now we assume that the MVDs are memoryless

sources, collect joint statistics between the MVDs ∆M
P �q1�
Rk

�i, j� and estimated MVDs

É∆M
P �q1�
Rk

�i, j� for all n − 1 P-frames to build an empirical model, and compute the condi-
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tional probabilities for the MVDs, we have

N MV D�m,m′� =
n

Q
k=2

Q
�i,j�
I�∆M

P �q1�
Rk

�i, j� = m, É∆M
P �q1�
Rk

�i, j� = m′�; (5.22)

Pr�∆M
P �q1�
Rk

�i, j� = mUÉ∆M
P �q1�
Rk

�i, j� = m′� = N MV D�m,m′�
PMmax

m̄=−Mmax
N MV D�m̄,m′� . (5.23)

An example of the correlation model for motion vectors is shown in Fig. 19 (a).

(a) (b)

Fig. 19. An example of the correlation model for (a) P-frame motion vectors and (b) P-frame
residual coefficients.

Next, ÇRD�q1�
k−1 is warped according to the right motion fieldMR

k , generating an estimate

RW
k of the k-th frame Rk, i.e.,

RW
k = W�ÇRD�q1�

k−1 ,MR
k �. (5.24)

Now an estimation of the k-th disparity map can be obtained from ÂLD�q1�
k and RW

k , then we

have

ÇDk = D�ÂLD�q1�
k ,RW

k �. (5.25)

Assume ideal SW decoding, such thatMP �q1�
Rk

is perfectly reconstructed at the decoder,
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then exactly the same motion compensated frame RM
k at the encoder can be formed by

warping ÇRD�q1�
k−1 according toMP �q1�

Rk
, i.e.,

RM
k = W�ÇRD�q1�

k−1 ,MP �q1�
Rk

�. (5.26)

Consequently, the source and side information for WZ coding are computed as

Xk = Rk −W� ÇRD�q1�
k−1 ,MP �q1�

Rk
� = Rk −RM

k ; (5.27)

Yk = W�ÂLD�q1�
k , ÇDk� −W� ÇRD�q1�

k−1 ,MP �q1�
Rk

�, (5.28)

respectively, for k = 2, ..., n, where RE
k = W�ÂLD�q1�

k , ÇDk� is the warped version of ÂLD�q1�
k

using disparity map ÇDk. Finally, WZ coding is employed to explore the remaining cor-

relation between Xk and Yk and joint decoder reconstructs ÇRD�q1� = �ÇRD�q1�
1 , ..., ÇRD�q1�

n �
using a total transmission rate of RR = Pn

i=1 Ri
R bps. To do this, the WZ encoder and

decoder quantizes the transformed source T�Xk�i, j�� and transformed side information

T�Yk�i, j��, using dead-zone quantizers CP
q1

= C�dq1 ,
5
3dq1� and CP

q� = C�dq� ,
5
3dq��, re-

spectively. The resulting quantization levels X
K�q1�
k �i, j� = Q�T�Xk�i, j��,CP

q1
� are then

coded by a multi-level SW encoder with Y
K�q��
k �i, j� = Q�T�Yk�i, j��,CP

q�� as decoder

side information. Similar to the SW coding of MVDs, we collect joint statistics for all n−1

P-frames to build an empirical correlation model,

N P �l, l�� =
n

Q
k=2

H~4−1

Q
i=0

W ~4−1

Q
j=0
I�XK�q1�

k �i, j� = l, Y
K�q��
k �i, j� = l��, (5.29)

and compute

Pr�X
K�q1�
k �i, j� = lUY K�q��

k �i, j� = l�� = N P �l, l��
Plmax

l̄=lmin
N P �l̄, l�� . (5.30)

Finally, the joint decoder uses the syndrome bits and the log-likelihood ratios computed

using the correlation model and the side information to reconstruct X
K�q1�
k �i, j� and hence
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X̂k. An example of the correlation model for P-frame residual coefficients is shown in Fig.

19 (b). Detailed encoding/decoding algorithms for MT source coding can be found in [69].

C. Proposed MT video coding scheme 2 with source splitting of the I-frames

Theoretically, the first MT video coding scheme proposed in Section B can only achieve the

corner points of the MT sum rate bound, meaning the encoder for the left sequence always

uses the same rate (resulted from H.264/AVC coding). To build a MT video coder that is

capable of trading of rates between the two encoders, one solution is to employ the source

splitting method of [46], which is first introduced for SW coding, and then applied for

quadratic Gaussian MT source coding in [69]. The main idea of source splitting is to “split”

one of the sources into two parts, then transmit the first part using classical source coding,

the second part using WZ coding given the decoded first source, and the third part using

another WZ coder with the decoded versions of the two sources as side information. Such

a scheme can potentially achieve any point on the MT sum rate bound if the sources are

jointly Gaussian under the assumption of ideal quantization and SW coding [69]. However,

for practical sources including stereo video sequences, since source-splitting includes an

extra WZ coding step, we should expect a slightly larger sum rate loss (compared to our

first proposed MT video coding scheme) − the price to pay for arbitrary rate allocation.

The block diagram for our second proposed MT video codec (for I-frames) is shown

in Fig. 20. The left I-frame is first coded by H.264/AVC using a dead-zone quantizer

with quantizer CI
qL
2

, then the residual frame L
R�qL

2 �
1 is quantized using another quantizer

CI
q1; similarly, the right I-frame is coded by H.264/AVC using a dead-zone quantizer with

quantizer CI
qR
2

, and the residual frame R
R�qR

2 �
1 is quantized using CI

q1
. The quantization

thresholds are selected such that the resulting two quantizers for the same sequence are
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embedded, i.e.,

CI
qL
2
= �nL, nL

0 � �CI
q1

and CI
qR
2
= �nR, nR

0 � �CI
q1

, (5.31)

which implies that the finer quantization levels ÇLK�q1�
1 and ÇRK�q1�

1 are uniquely determined

by the coarse quantization levels ÂLK�qL
2 �

1 and ÂRK�qR
2 �

1 and the refining cell indices L
F �q1,qL

2 �
1

and R
F �q1,qR

2 �
1 defined as

L
F �q1,qL

2 �
1 =

¢̈̈
¨̈
¦̈
¨̈̈
¤

ÇLK�q1�
1 − nLL

K�qL
2 �

1 + nL
0 −1

2 , if L
K�qL

2 �
1 < 0

ÇLK�q1�
1 − nLL

K�qL
2 �

1 + 2nL−nL
0 −1

2 , if L
K�qL

2 �
1 C 0

, (5.32)

R
F �q1,qR

2 �
1 =

¢̈̈
¨̈
¦̈
¨̈̈
¤

ÇRK�q1�
1 − nRR

K�qR
2 �

1 + nR
0 −1

2 , if R
K�qR

2 �
1 < 0

ÇRK�q1�
1 − nRR

K�qR
2 �

1 + 2nR−nR
0 −1

2 , if R
K�qR

2 �
1 C 0

. (5.33)

This property significantly reduces the decoder’s computational complexity.

The two coarse versions ÂLD�qL
2 �

1 and ÂRD�qR
2 �

1 are first transmitted to the decoder, where

a disparity map ÇD1 = D�ÂLD�qL
2 �

1 , ÂRD�qR
2 �

1 � is generated between these two decoded I-frames.

With ÇD1 at the decoder, the decoded right I-frame ÂRD�qR
2 �

1 is warped to generate a side

information for SW coding of the lower two bit-planes (that are used to distinguish among

nL or nL
0 quantization cells) of the left I-frame, i.e., ÂLW �qR

2 �
1 =W�ÂRD�qR

2 �
1 , ÇD1�.

Next, as in our first proposed scheme, we compute

ÇLK�q1�
1 = Q�LT �qL

2 �
1 ,CI

q1
�, and ÇLK�q��

1 = Q�T�ÂLW �qR
2 �

1 −L
I�qL

2 �
1 �,CI

q��; (5.34)

and for each c = 0,1, ...,15, define

N SP
I1c

�l2, l�� =
n

Q
k=1

H~4−1

Q
i=0

W ~4−1

Q
j=0
I�ÇLK�q1�

k �i, j�c = l2, ÇLK�q��
k �i, j�c = l��(5.35)

Pr�L
F �q1,qL

2 �
1 �i, j�c = f UÇLK�qL

2 �
1 �i, j�c = l2, ÇLK�q��

1 �i, j�c = l�� = N SP
I1c

�l2,min + f, l��
Pl2,max

l=l2,min
N SP

I1c
�l, l��

.(5.36)

An example of the correlation model N SP
I1 for the first SW coding step is shown in
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Fig. 20. MT video coding of I-frames using source splitting.

Fig. 21. Then the refinement cell indices L
F �q1,qL

2 �
1 of the left I-frame ÂLD�q1�

1 can be com-

pressed and reconstructed at the decoder. Hence a new disparity map ÇÇD1 = D�ÂLD�q1�
1 , ÂRD�qR

2 �
1 �

is generated, and another SW coding step is done to compress the cell indices of the right

I-frame R
F �q1,qR

2 �
1 . Finally, the decoded version of the left I-frame ÂLD�q1�

1 and the right

I-frame ÇRD�q1�
1 are reconstructed at the decoder.

Before moving on, we point out that conceptually source splitting can also be applied

to the P-frames. However, our practical implementation does not improve the sum rate

performance than that without source splitting of the P-frames. Explanations are given in

Section 5.2.2.
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Fig. 21. An example of the correlation model for I-frame residual coefficients our second
proposed MT video coder.

D. BP based stereo matching algorithm

In this subsection, we provide some details of the BP based stereo matching algorithm,

which is the key to explore the binocular correlation between the left and right sequences.

Suppose P is the set of all pixels in the reference frame, and L is the set of possible discrete

disparity values. The disparity of a pixel p > P is denoted as fp. Then the stereo matching

problem is formalized as an energy minimization problem with total energy [15]

E�f� = Q
p>P

Dp�fp� + Q
p,q>N

V �fp − fq�, (5.37)

where Dp�fp� is the cost of assigning disparity value fp to pixel p, N is the set of neigh-

boring pixel pairs, and V �fp − fq� is the cost function of assigning disparity values fp and

fq to neighboring pixels p and q. To solve this minimization problem, Felzenszwalb et

al. [15] implemented the standard “max-product” algorithm, where messages are passed

between each pair of neighboring pixels �p, q� in an iterative manner. More specifically, at
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t-th iteration, a message mt
p�q, a length-SLS vector, is updated in the following way,

mt
p�q�fq� = min

fp

�V �fp − fq� +Dp�fp� + Q
s>N�p��q

mt−1
s�p�fp��, (5.38)

where mt−1
s�p�fp� is the component in message mt−1

s�p (sent from s to p at �t−1�-th iteration)

that corresponds to the disparity value fp. After T iterations (where T is a fixed number),

a final disparity value f�q is assigned for each pixel q, such that

f�q = argmin
fq

bq�fq�, where bq�fq� = Dq�fq� + Q
p>N�q�

mT
p�q�fq�. (5.39)

In general, updating messages mt
p�q will take O�SLS2� time where SLS is the number of

possible disparities. However, if the cost function V �fp − fq� in (5.37) is in the following

form,

V �fp − fq� = min�cSfp − fqS, d�, where c, d > R+, (5.40)

it is possible to compute new messages in O�SLS� time. Detailed message update algorithm

can be found in [15]. Finally, a disparity map is generated in O�SPS ċ SLS� time, where SPS is

the number of pixels.

E. Motion fusion

In this subsection, we give details on the motion fusion algorithm for estimating the right

forward motion field. The 3D camera geometry is depicted again in Fig. 22 (a). Although

originally designed for stereo matching, the BP based algorithm [50, 15] can also be applied

for motion field estimation. Since most stereo cameras are aligned such that no vertical

disparity exists between corresponding pixels, the algorithm in [50] only allows horizontal

disparities, which are clearly not enough for motion field. Hence we slightly modify the

above algorithm by allowing vertical disparities: ds, all scalar disparities ds become vector

disparities ds; the Birchfield and Tomasi’s pixel dissimilarity SF �s,ds, I�S [50] is changed
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to

F �s,ds, I� = min�d̄�s, s′, I�~σf , d̄�s′, s, I�~σf�, (5.41)

where d̄�s, s′, I�=min�SIK�s�−IR�s′�S, SIK�s�−I�R �s′�S, SIK�s�−I�R �s′�S, SIK�s�−I�R�s′�S,
SIK�s� − I�R�s′�S�, s′ is the matching pixel of s with disparity ds, and �I�R �s′�, I�R �s′�,

I�R�s′�, I�R�s′�� are the linearly interpolated intensity halfway between s′ and its neighbor-

ing pixel to the left, right, top and bottom, respectively, and σf is the image noise variance

that depends on the quality of input pictures.
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Fig. 22. Stereo motion fusion (a) 3D camera geometry (b) motion decomposition; (c) block
diagram.

The next step is to fuse the disparity map D and the left motion fieldML to estimate

the right motion fieldMR. As shown in Fig. 22 (b), the 3D motion vector can be decom-

posed into three components: horizontal motion Vh that is parallel to olor, vertical motion

Vv that is perpendicular to the oolor plane, and parallel motion Vp that is perpendicular to

both Vh and Vv (which is ignored in the motion fusion algorithm). Recall from Section A



88

that F is the focal length of both cameras, B the base line distance olor between the two

cameras, S the pixel size in the imaging plane, and Q the convergence distance. The stereo

motion fusion algorithm has the following steps (see block diagram in Fig. 22 (c)).

1. Estimating the depth. Calculate angles α and β using the horizontal coordinate of the

pixel s. Then the depth of s is Hp = B~��tan�α��−1 + �tan�β��−1�.
2. Estimating the right horizontal motion vector vr

h = V r
h rp~Rp based on the depth Hp

and the left horizontal motion vector vl
h = V l

hlp~Lp using (note that V l
h = V r

h )

vr
h

vl
h

= rpLp

lpRp

= sin�α + θ
2� sin�β�

sin�β + θ
2� sin�α� . (5.42)

3. Estimating the right vertical motion vector using

vr
v

vl
v

= vr
h

vl
h

= sin�α + θ
2� sin�β�

sin�β + θ
2� sin�α� . (5.43)

F. Multi-level SW coding of motion vectors and quantization levels

In this subsection, we describe the multi-level SW encoding and decoding algorithms,

which are used to compress the motion vectors and the quantization levels of the resid-

ual coefficients. We first break the m-ary motion vectors or quantized residual coefficients

into log2 m bit planes, and then use binary SW coding to compress the bit planes. For the

motion vectors, which is often a 2n-array source, a regular labeling suffices. However, the

refining cell indices R
F �q1,qL

2 �
1 and R

F �q1,qR
2 �

1 in our first and second proposed schemes are

not necessarily 2k-ary sources. For example, when �nL, nL
0 � = �4,5� and �nR, nR

0 � = �2,3�,

L
F �q1,qL

2 �
1 and R

F �q1,qR
2 �

1 are 5-ary and ternary sources, respectively. This necessitates irreg-

ular labeling as shown in Fig. 23.

Specifically, for the 5-ary source R
F �q1,qR

2 �
1 , the first two bit planes are used to distin-

guish between index sets ��0,4�,�1�,�2�,�3��, and the third bit plane is used to distin-

guish between �0� and �4�. Similarly, for the ternary source R
F �q1,qR

2 �
1 , the first bit plane
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Fig. 23. Labeling of cell indices, the top figure is the labeling of R
F �q1,qL

2 �
1 for our first pro-

posed scheme and the bottom figure depicts the labeling of R
F �q1,qR

2 �
1 for our second

proposed scheme.

is used to distinguish between index sets �0,2� and �1�, and the second bit plane is used

to distinguish between �0� and �2�. Detailed encoding/decoding algorithms again can be

found in [69].

G. Experimental results

In our experiments, the stereo video sequences are captured by two closely located cameras

in the setting depicted in Fig. 24. Each camera has a focal length of F = 40mm and

pixel size s = 0.014mm. The two cameras are separated by a baseline distance of B =
olor = 87.5mm to observe the same scene from two different angles. The convergence

distance of the cameras is Q = ool = oor = 2.80m, and the convergence angle is defined as

θ = 2arcsin � B
2D� � 2.13 X. Both test sequences “tunnel” and “aqua” can be downloaded at

“http://lena.tamu.edu/sequences.zip”, and the first pair of frames of the “tunnel” sequences

are also shown in Fig. 24.

We use the Y-component of the 720 � 288 “tunnel” and “aqua” as test stereo video

sequences, each with 20 left frames and 20 right frames. Since the efficiency of MT video

coding hinges upon the video quality at the decoder (for accurate correlation modeling),

we target at both low-rate and high-rate regimes and expect the latter to be more favorable

for MT video coding.

Since MT video coding is expected to perform better than separate encoding (and de-

coding), but worse than joint encoding (and decoding), as one benchmark, we use H.264/AVC
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Fig. 24. 3D camera settings (left) and first pair of frames (right) from “tunnel”: top-right is
the left first frame, and bottom-right is the right first frame.

for separate encoding (and decoding) of the left and right sequences using the IP...P struc-

ture. For “tunnel”, we code the left and right sequences using the H.264/AVC reference

software JM73 [26], and list the coding parameters and statistics of the resulting bitstream

for both the low-rate and high-rate cases in Table IX.

For joint encoding, we interleave the left and right stereo video sequences and use

H.264/AVC (with the same parameters) to code the interleaved sequence with two reference

frames in motion estimation. We note that this is but one way of generating the benchmark

for joint coding1. Better benchmarks can be obtained by using more reference frames in

motion estimation.

In MT video coding, the disparity maps and motion fields are generated in half-pel

1We also ran the Joint Scalable Video Model software [44] to compress “tunnel”. How-
ever, the total bit rate is 6.461 Mbps, which is only slightly smaller than the 6.501 Mbps
obtained with our simple H.264/AVC-based joint encoding scheme (with two reference
frames) at the same visual quality. Similar result was also obtained for “aqua”.
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Table IX. H.264/AVC compression parameters and statistics for “tunnel”.

Parameters Low-rate regime High-rate regime
QP I frame 35 22
QP P frame 33 20
Total frames 20 20

Inter-search mode 16�16,16�8,8�16 16�16,16�8,8�16
Motion precision quarter-pel quarter-pel

Statistics Low-rate regime High-rate regime
I-frame bits (%) 32.8 17.3

Overhead bits (%) 5.8 1.6
Motion vector bits (%) 13.6 3.5
Coefficients bits (%) 47.8 77.6

Total 287,248 bits 286,584 bits
Bit rate 866.3 kbps 6.630 Mbps

Average PSNR 31.15 dB 40.59 dB

precision by the modified stereo matching algorithm described in Section E. The parameter

values are consistent with those in [50]: ed = 0.01, σd = 8, ep = 0.05, σp = 0.6. We also

incorporate segmentation results produced by the mean-shift algorithm [10].

In our implementation, the SW rate is determined by simulation: if the conditional

entropy is much smaller (e.g., A 0.05 b/s) than the self entropy, SW coding is used, and

the SW rate is set to be the smallest value such that decoding is successful (determined by

simulation); if the conditional entropy is very close (e.g., < 0.05 b/s difference) to the self

entropy, arithmetic coding is used instead.

1. Low-rate regime

In the low-rate regime, the sum rate is relatively low (866.28 kbps at a frame rate of 30 f/s),

leading to poor reconstruction quality. Consequently, the disparity map and the motion

field generated from the decoded frames are not very reliable compared to those from the

originals. Hence in the implemented MT video coding scheme 1, only the motion vectors

(generated from the originals and independent of the coding rate) for the inter-coded blocks

are SW coded with side information generated at the decoder, while the I-frames and P-
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frame residual coefficients are directly coded by H.264/AVC. Using the joint statistics col-

lected from all 20 frames of “tunnel” for an empirical correlation model, and a multi-level

SW code implemented by LDPC codes with 7 bit planes each for the vertical and horizontal

component of motion vectors, we are able to save 3,747 bits from the 38,970 motion vector

bits in the right bitstream (all the other components are entropy coded as in H.264/AVC).

The SW coding block length varies from frame to frame, and ranges in �800,1100�. Fig.

25 compares the performance of separate encoding, MT video coding, and joint encoding

of “tunnel”.
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RL  (bps)

R
R

 (
bp
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MT coding scheme 1
(436.40, 424.26) Kbps
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Sum rate = 790.24 Kbps

Separate encoding
(436.40, 429.88) Kbps

Rate saving = 5.62 Kbps

Minimum sum rate
of MT coding lower 
bounded by that of 

joint encoding

Fig. 25. Comparison between separate H.264/AVC coding, MT video coding, and joint en-
coding at the same average PSNR of P = 31.15 dB over all 40 frames for “tunnel”.

2. High-rate regime

a. MT video coding without source splitting of the I-frames

In the high-rate case, since most of the bits are spent on coding the residual frame (77.2% of

the bit stream as indicated in Table 1) in our first proposed MT video coding scheme (with-

out source-splitting of the I-frames), we implement the algorithms described in Section 1
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for I-frame coding (with Pl = 34 and Ph = 22) and in Section 2 for the residual coefficients

of the P-frames. Generic correlation models between the sources and the side informations

are generated based on the joint statistics collected from all 20 frames of “tunnel”. Nested

scalar quantization [76, 28] followed by multi-level SW coding (using LDPC codes) are

employed for WZ coding. In our implementations, the WZ coding block length for the I-

frame coefficients is 12,096, while that for the P-frame coefficients ranges in �4000,6000�.

Table X lists the SW code rate used for each of the 4 � 4 residual coefficients (for each of

the two bit planes).

Table X. Practical SW coding rates (in b/s) for the I-frame 4x4 residual coefficients of “tun-
nel”.

Bit plane #1 Bit plane #2
0 1 2 3 0 1 2 3

0 0.83 0.78 0.67 0.39 0.84 0.77 0.64 0.40
1 0.80 0.74 0.61 0.32 0.82 0.72 0.61 0.35
2 0.77 0.71 0.51 0.26 0.82 0.71 0.52 0.23
3 0.76 0.66 0.45 0.19 0.78 0.66 0.42 0.17

For “tunnel”, the total saving is 32,548 bits, which is equivalent to 48.8 kbps, or 0.75%

of the total sum rate. Similar experiments on the “aqua” stereo video sequences give a total

sum rate savings of 37.0 kbps, or 0.53% of the total sum rate. Performance comparisons

among separate encoding, MT video coding, and joint encoding for the “tunnel” and “aqua”

sequences are shown in Fig. 26.

We additionally run experiments on “tunnel” with both separate and joint encoding at

the same sum rate of 6.581 Mbps (by slightly adjusting the H.264/AVC encoding parame-

ters in Table IX) as with MT video coding. This allows us to compare the PSNR vs. frame

number performance of these three different schemes at the same sum rate in Fig. 27.
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Remarks:

• From Fig. 26, we see that RL by design is the same for both separate H.264/AVC

coding and MT video coding. Thus our first proposed scheme (without source split-

ting) is “asymmetric” in nature, meaning that it can only approach the corner points

of the rate region at best. Note that, although the minimum sum rate of MT video

coding is not known, it is lower bounded by the sum rate of joint encoding.

• It is seen from Figs. 25 and 26 that, compared to separate H.264/AVC coding, MT

video coding achieves some savings at low sum rate and a bit more at high sum rate.

However, the rate saving is 48.4 Kbps (or 0.75%) for “tunnel” and 15.8 Kbps (or

0.53%) for “aqua” − less less than one percent in this case. In addition, we used the

true joint statistics in our experiments, leading to best scenario performance. Thus,

it is in general not easy to beat separate H.264/AVC coding with MT video cod-

ing, especially at low sum rate. This underscores one of the challenging issues with

practical MT video coding that is correlation modeling. A true generic correlation

model should be built off-line by collecting joint statistics from many stereo video

sequences − much like codebook training (e.g., for Huffman coding and for vector

quantization) in classic source coding. Towards this end, we run simulations using

a slightly more general correlation model computed from both “tunnel” and “aqua”

(after mixing them together). At the same average PSNR of 40.59 dB for “tunnel”,

the sum-rate saving of MT video coding over separate H.264/AVC coding is now

17.6 (instead of 48.4) Kbps. For “aqua”, the new sum-rate saving is 15.8 (instead of

37.0) Kbps at the same average PSNR of 40.66 dB.

• We believe that our marginal 0.75% sum rate savings with MT video coding for

“tunnel” in the high-rate regime are partially due to the small 1.94% rate savings

with joint coding (both over separate H.264/AVC coding). We expect improvements

with both MT video coding and joint encoding when multiple reference frames are
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used in motion estimation and fusion.

• In this work, we do not emphasize low-complexity encoding (as advocated in [43,

71]). Instead, our only premise is distributed coding, i.e., no collaboration between

the encoders. The complexity of our MT video encoders is essentially the same as

that of H.264/AVC encoding. The complexity of the joint MT video decoder is high

due to stereo matching, which takes around 40 minutes per frame on our Pentium IV

2.0GHz PC.

b. MT video coding with source splitting of the I-frames

We also implement our second proposed scheme based on source splitting (described in

Section C) of the I-frames. The quantizers are set to

CI
q1
= C�d22,

4

3
d22�, CI

qL
2
= C�d34,

4

3
d34� = C�4d22,

16

3
d22�, CI

qR
2
= C�3d22,

10

3
d22�,(5.44)

as shown in Fig. 28. Then we have �nL, nL
0 � = �4,5� and �nR, nR

0 � = �4,5�. These

quantizers are carefully chosen such that rate savings can be achieved for both the left and

right sequences.

Generic correlation models between the sources and the side informations are gener-

ated based on the joint statistics collected from all 20 frames of “tunnel” sequence. The

rate saving is 8,470 bits for the right sequence and 9,468 bits for the left sequence. The

total saving is equivalent to 26.9 kbps, or 0.41% of the total bit rate. Again, the WZ coding

block length for the I-frame coefficients is fixed at 12,096. Experiments are also run on the

Y-component of “aqua” sequences. The total saving is equivalent to 27.8 kbps, or 0.39% of

the total bit rate. Performance comparisons between separate encoding, MT video coding,

and joint encoding for both “tunnel” and “aqua” are also included in Fig. 26.

Remarks:

• We see from Fig. 26 that source splitting on top of SWCQ does lead to flexible
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Fig. 28. Quantizers used in our second proposed MT video coder based on source splitting
of the I-frames.

rate allocation between the two encoders, while achieving savings in the sum rate.

However, with source splitting, we obtain less sum rate savings than without source

splitting in our first proposed scheme. This is mainly due to the fact that one more

WZ coding step (with attendant performance loss in practice) is needed with source

splitting. Additionally, splitting the left I-frame also introduces rate loss since a

coarser intra-predicted version ÂLD�qL
2 � is used instead of ÂLD�q1�.

• In order to outperform separate H.264/AVC Intra coding, choices of the quantiz-

ers CI
q1

, CI
qL
2

and CI
qR
2

are crucial. Note that CI
q1

determines the final reconstruction

quality of the left and right I-frames, while CI
qL
2

and CI
qR
2

control the amount of rate

savings. Clearly, CI
qL
2

and CI
qR
2

cannot be too coarse since otherwise the quality of

the coarse disparity map ÇD1 will be very poor. Moreover, from our experiments,

we find that to achieve positive rate savings for both the left and right I-frames, it is

necessary for CI
qR
2

to be a much finer quantizer than CI
qL
2

. This can be explained as

follows. The first reconstructed version of the right I-frame ÂRD�qR
2 �

1 is used to gener-

ate decoder side information for WZ coding of the refinement cell indices L
F �q1,qL

2 �
1

of the left I-frame; if CI
qR
2

is too coarse, the obtained decoder side information will

contain little information about L
F �q1,qL

2 �
1 , which makes the first WZ coding step in-

effective (in terms of beating H.264/AVC Intra coding). In fact, we may consider the

extreme case when the left and right I-frames are exactly the same, i.e., L1 = R1, then

ÂRD�qR
2 �

1 = ÂLD�qR
2 �

1 will tell almost no more information about L
F �q1,qL

2 �
1 than ÂLD�qL

2 �
1 if
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CI
qR
2

is coarser than CI
qL
2

. For the same reason, CI
qR
2

cannot be too fine compared to

CI
q1

since otherwise it will be difficult to save bits in the second WZ coding step.

Thus we constrain the choices of quantizers to

CI
q1
g CI

qR
2
g CI

qL
2
g C�ª,ª�, (5.45)

where “g” means “finer than”.

• In the original version of source splitting proposed by Rimoldi and Urbanke [46] for

SW coding, where the source correlation is assumed to be known a priori at both the

encoders and the decoder, only one classic source coding step and two WZ coding

steps are involved. However, in our implementation of MT video coding using source

splitting, it is not possible to obtain the exact correlation between the left and right

sequences before compression. Hence it is necessary for the two encoders to first

send “snapshots” of the two I-frames to the decoder to generate a rough estimate of

the source correlation (in terms of disparity map) before WZ coding can be applied.

This is why we have two classic source coding steps and two WZ coding steps.

• We also experiment with source splitting on the P-frames, but no sum rate gain is

obtained. To explain, we note that it is easy for H.264/AVC to explore the remaining

correlation among the 16 quantized DCT coefficients in the same 4 � 4 macroblock

(by directly encoding the number of non-zero coefficients, number of trailing ones,

etc.). For MT video coding, this is not trivial as it involves SW coding of non-i.i.d.

sources. Consequently, our MT video coder ignores this in-source correlation and

compresses the coefficients one position at a time. Fortunately, most of the sum

rate savings in our first proposed MT video coding scheme (without source split-

ting) comes from the I-frames, and doing source splitting only on the I-frames al-

ready offers considerable flexibility in rate allocation (while outperforming separate

H.264/AVC encoding).
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CHAPTER VI

CONCLUSIONS

This dissertation focused on MT source coding problem, and consists of three parts: sum-

rate loss, code designs, and applications to video sensor networks.

In the first part of this dissertation, we focused on the symmetric case of quadratic

Gaussian MT source coding, where all sources are positively symmetric and all target

distortions are equal. We gave the exact forms of the minimum sum-rate for both joint

encoding and separate encoding problems, and thus the sum-rate loss between them. The

supremum of the sum-rate loss for this special case is provided in exact form, and is shown

to be increasing with the number of sources L in the order of
º

L
2 log2 e b/s. It is then con-

jectured that this supremum sum-rate loss is the supremum sum-rate loss over all jointly

Gaussian source correlations and target distortions, for any given number of sources L.

In the second part of this dissertation, by extending our previous results on practical

SW coding [29, 30, 49] and WZ coding [65], we have developed a general SWCQ frame-

work for MT source coding and detailed practical code designs. Assuming ideal source

coding (with independent dithering) and ideal SW coding, we have shown that our asym-

metric design can achieve any point on the sum-rate bound of the rate regions for both the

quadratic Gaussian direct and indirect MT source coding problems, while the symmetric

design can approach most of the points. We have also provided an improved SWCQ design

that can approach more points and has better performance. Our practical results are very

close to the theoretical limits. Compared to asymmetric SWCQ that involves source split-

ting, symmetric SWCQ is conceptually simpler, because it only has one quantization step

and one SW coding step, and more elegant, because all compression is done in one step that

includes both classic entropy coding and syndrome-based channel coding for compression.

However, our practical results using LDPC codes for the asymmetric scheme (with a 0.139
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b/s gap to the sum-rate bound) performs slightly better than the symmetric scheme (with

a 0.157 b/s gap to the sum-rate bound), because the asymmetric scheme benefits from the

longer block length (106 bits) than the symmetric scheme (105 bits). Moreover, there are

other extra losses in the symmetric SWCQ design, one of which comes from the assump-

tion that (4.35) holds; another loss stems from the inefficiency of the symmetric SW code

designs of [49] for (conditionally) non-uniform sources. Finally, we point out that TCQ and

SWC coding in our proposed SWCQ framework are designed separately. This is proofably

optimal at high rate (see Section IV). At low rate, a separate design is not optimal, and

improved performance than those reported in Sectin 3 can be obtained by exploiting the

non-Gaussian statistics of TCQ indices and employing non-linear estimation at the joint

decoder (as done in [65] for Wyner-Ziv coding).

In the third part of this dissertation, building upon our experience with practical de-

signs for quadratic Gaussian MT source coding, we have addressed MT video coding that

targets at saving the sum rate over separate H.264/AVC coding. The main idea is to mimic

H.264/AVC coding with a twist that instead of entropy coding, we explore the binocular

redundancy by using disparity maps generated by stereo matching to form decoder side

information for WZ coding. We proposed two MT video coders: the first (without source

splitting) targets at the corner points of the MT sum rate bound, and second (with source

splitting) aims at approaching any point on the MT sum rate bound. Results on rate savings

for motion vectors in the low-rate regime and for I-frame and P-frame residual coefficients

in the high-rate regime are given. We have represented the first work on practical MT video

coding. It essentially relies on “asymmetric” SW coding and WZ coding, where one source

is assumed to be available at the decoder as side information − the trick of source splitting is

pulled to realize flexible rate allocation. This makes it easier in practical MT video coding,

as we only need to focus on encoding one source at a time. For simultaneous SW coding of

two sources, although the elegant idea of partitioning a single channel code was proposed
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in [42] and successfully explored in [49] for arbitrary rate allocation between the two en-

coders for quadratic Gaussian MT source coding (after TCQ), it remains a challenging task

to implement simultaneous MT video coding in practice. The main issue again lies in cor-

relation modeling when dealing with practical video coding. Finally, for MT video coding

with more than two terminals, since the theory is incomplete even with jointly Gaussian

sources, there has not been any serious study yet.
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APPENDIX A

PROOF OF LEMMA 6

Proof 5 First, differentiating θ� with respect to D, we have

∂θ�

∂D
= ∂θ�

∂t�
ċ ∂t�

∂D
= �1 + t�¼

�t��2 + 1
L−1

� ċ ��1 − ρ��1 + �L − 1�ρ�
2�L − 1�D2ρ

� A 0, (A.1)

hence θ� � D S�0,1� for fixed L and ρ. Then it is easy to verify that limD�0 θ� = 0 and

limD�1 θ� = ρ, thus θ� > �0, ρ�, and δL�θ�� � D S�0,1�. Now consider the case when

D B 1 − ρ, we have R∆
L,ρ�D� = −1

2 log2 δL�θ�� �D S�0,1�. Hence

sup
ρ>�0,1�,D>�0,1�

R∆
L,ρ�D� = max� sup

ρ>�0,1�,D>�1−ρ,1�
R∆

L,ρ�D�, sup
ρ>�0,1�,D>�0,1−ρ�

R∆
L,ρ�D��(A.2)

= max� sup
ρ>�0,1�,D>�1−ρ,1�

R∆
L,ρ�D�, sup

ρ>�0,1�
R∆

L,ρ�1 − ρ�� (A.3)

= sup
ρ>�0,1�,D>�1−ρ,1�

R∆
L,ρ�D� (A.4)

= sup
ρ>�0,1�,D>�1−ρ,1�

1

2
log2

δL�θ��
δL�θ�� . (A.5)

Denote LL�ρ,D� = δL�θ��
δL�θ�� , we have

∂LL�ρ,D�
∂D

(A.6)

=
∂� δL�θ��

δL�θ���
∂D

(A.7)

= −L�L − 1��1 − θ��L−2�1 − θ��L−2

δ2
L�θ��

(A.8)

ċ�θ��1 − θ���1 + �L − 1�θ��∂θ�

∂D
− θ��1 − θ���1 + �L − 1�θ��∂θ�

∂D
�. (A.9)
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Setting ∂LL�ρ,D�
∂D to zero, we have a unique solution in �1 − ρ,1�, namely,

D�
ρ =

¢̈̈
¨̈̈̈
¦̈
¨̈̈̈
¤̈

�1 + ρ�2�1 − ρ�
1 + 2ρ

L = 2

��2�L − 1��L − 2�ρ2 + 2�2L − 3�ρ + 1� −
»

1 + 4ρ + 4ρ2�L − 1��
2ρ�L − 2��2 + �L − 2�ρ� �1 − ρ� L A 2.

(A.10)

Then we compute

θ� SD=D�
ρ

= −1 +
»

1 + 4ρ + 4ρ2�L − 1�
2�1 + �L − 1�ρ�

∆= θ�max�ρ� (A.11)
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= 2ρ�1 + �L − 1�ρ� + 1 −
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1 + 4ρ + 4ρ2�L − 1�
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∆= θ�max�ρ� (A.12)

Hence
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L A 2,

where A and B are rational functions of L and ρ. We observe that for L = 2, ∂LL�ρ,D�
ρ�

∂ρ A 0

for any ρ > �0,1�. Moreover, it is not hard to verify that A and B satisfy the following

conditions,

B < 0, A 2 −B2 � �1 + 4ρ + 4ρ2�L − 1�� = −ρ�L − 2�2�2 + �L − 2�ρ�2

�1 + �L − 1�ρ�7
< 0, (A.13)
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which implies that ∂LL�ρ,D�
ρ�

∂ρ A 0 for any L A 2 and ρ > �0,1�, hence

sup
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APPENDIX B

PROOF OF THEOREM 2

Before proving Theorem 2, we first state the following lemma.

Lemma 9 Define three jointly Gaussian random variables �Z1, Z21, Z22� as

Z1 = Y1 +Q1, Z21 = Y2 +Q21, Z22 = Y2 +Q22, (B.1)

where Q1,Q21,Q22 are zero-mean independent Gaussian random variables that are also

independent of Y1 and Y2. For any ε A 0, there exists sufficiently large n, asymmetric SWCQ

encoders E1, E2, and an asymmetric SWCQ decoder D, such that the transmission rates R1

and R2 satisfy

R1 < I�Y1;Z1� − I�Z1;Z21� + ε, (B.2)

R2 < I�Y2;Z21� + I�Y2;Z22� − I�Z22;Z1Z21� + ε, (B.3)

with average distortions

E� 1

n

n

Q
i=1

�Y1,i − Ŷ1,i�2� < E ��Y1 −E�Y1SZ1, Z21, Z22��2� + ε, (B.4)

E� 1

n

n

Q
i=1

�Y2,i − Ŷ2,i�2� < E ��Y2 −E�Y2SZ1, Z21, Z22��2� + ε. (B.5)

Proof 6 This lemma is a direct consequence of results in [4, 35, 55, 58], hence the detailed

proof is omitted here. However, we need to emphasize that the proof requires the linear

coefficients �αc, βc� to be the minimum MSE coefficients in estimating Y2 using Z1 and

Z21, and �αA
1 , βA

1 , γA
1 � (respectively, �αA

2 , βA
2 , γA

2 �) to be the minimum MSE coefficients of

estimating Y1 (respectively, Y2) using �Z1, Z21, Z22�.
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Proof of Theorem 2: Without loss of generality, we assume that σ2
y1 = σ2

y2 = σ2
y . Define

d�1 = D�
1

σ2
y

and d�2 = D�
2

σ2
y

. Then βmax = 1 +
½

1 + 4ρ2d�1d�2
�1−ρ2�2 . Let �Z1, Z21, Z22,Q1,Q21,Q22� be

the same random variables as in Lemma 9, such that

E�Q2
1�

σ2
y

= d1 = �βmax

2d�1
− 1

�1 − ρ2��
−1

, (B.6)

E�Q2
21�

σ2
y

= d21 = ρ2

1 + d1�1 − 22R�
1� − 1, (B.7)

E�Q2
22�

σ2
y

= d22 = � 1

d2

− 1

d21

�−1, where d2 = �βmax

2d�2
− 1

�1 − ρ2��
−1

. (B.8)

Then using (B.2) and (B.3) in Lemma 9, we have

R1 < I�Y1;Z1� − I�Z1;Z21� + ε = R�
1 + ε, (B.9)

R2 < I�Y2;Z21� + I�Y2;Z22� − I�Z22;Z1Z21� + ε = R�
2 + ε. (B.10)

The minimum MSE coefficients �αc, βc�, �αA
1 , βA

1 , γA
1 � and �αA

2 , βA
2 , γA

2 � are

αc = ρd21

Ω
, βc = �1 − ρ2� + d1

Ω
;

αA
1 = �1 − ρ2� + d2

Ω� , βA
1 = ρd1

Ω� ċ d2

d21

, γA
1 = ρd1

Ω� ċ d2

d22

;

αA
2 = ρd2

Ω� , βA
2 = �1 − ρ2� + d1

Ω� ċ d2

d21

, γA
2 = �1 − ρ2� + d1

Ω� ċ d2

d22

.

(B.11)

where Ω = �1 + d1��1 + d21� − ρ2 and Ω� = �1 + d1��1 + d2� − ρ2.

Then due to (B.4) and (B.5) in Lemma 9,

E� 1

n

n

Q
i=1

�Y1,i − Ŷ1,i�2� < E ��Y1 − αA
1 Z1 − βA

1 Z21 − γA
1 Z22�2� + ε = D�

1 + ε (B.12)

E� 1

n

n

Q
i=1

�Y2,i − Ŷ2,i�2� < E ��Y2 − αA
2 Z1 − βA

2 Z21 − γA
2 Z22�2� + ε = D�

2 + ε.(B.13)

Thus, we can approach any point on the sum-rate bound (2.9).
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APPENDIX C

PROOF OF THEOREM 3

Proof 7 The proof of Theorem 3 is similar to that of Theorem 2, hence we only provide the

necessary parameters. Denote d� = D�
σ2

x
, n1 = σ2

n1

σ2
x

, n2 = σ2
n2

σ2
x

, and define �Q1,Q21,Q22� as in

Lemma 9 such that

E�Q2
1�

σ2
x

= d1 = 2

�d��−1 − 1 + n−1
1 − n−1

2

− n1 (C.1)

E�Q2
21�

σ2
x

= d21 = 1

1 + n1 + d1�1 − 22R�
1� − 1 − n2 (C.2)

E�Q2
22�

σ2
x

= d22 = � 1

d2

− 1

d21

�−1, where d2 = 2

�d��−1 − 1 + n−1
2 − n−1

1

− n2. (C.3)

The minimum MSE coefficients are

αc = d21

Λ
, βc = �1 + n1��1 + n2 + d1� − 1

Λ
;

αA
X = n2 + d2

Λ� , βA
X = n1 + d1

Λ� ċ d2

d21

, γA
X = n1 + d1

Λ� ċ d2

d22

;
(C.4)

where Λ = �1 + n1 + d1��1 + n2 + d21� − 1 and Λ� = �1 + n1 + d1��1 + n2 + d2� − 1.
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APPENDIX D

PROOF OF THEOREMS 4 AND 5

Proof 8 By setting d21 in (B.7) to infinity, we can construct an asymmetric SWCQ coder

�E (1,E (2,D(� that achieves one corner point (denoted as �R(
1,R

(
2�) of the sum-rate bound for

the direct MT problem. On the other hand, by setting d21 to d2 in (B.8), we can construct

another asymmetric SWCQ coder �E -1,E -2,D-� that achieves the other corner point (denoted

as �R-
1,R

-
2�). Hence any point on the sum-rate bound ∂R̂BT

12 �D�
1 ,D

�
2� can be achieved by

using time sharing between �E (1,E (2,D(� and �E -1,E -2,D-�. This proves Theorem 4.

Similarly, by setting d21 in (C.2) to infinity or to d2 in (C.3), the two corner points of

the sum-rate bound ∂R̂Y I
12 �D�� can be achieved. Hence any point on ∂R̂Y I

12 �D�� can be

achieved by time sharing, and Theorem 5 is proved.
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APPENDIX E

PROOF OF LEMMA 7

Proof 9 First, we need to invoke the regularity and symmetry conditions in designing a

trellis T (i.e., the corresponding convolution code C) [56]:

1. Four cosets �D0,D1,D2,D3� should occur with equal frequency in the sense that

Ns

Q
i=1

1

Q
m=0

χ�φ�i,m� = ��, c�� = Ns~2, c = 0,1,2,3, (E.1)

where the indicator function χ = 1 if the output part of the trellis mapping φ for state

i and input m is c, and χ = 0, otherwise.

2. Define B0 = D0 8D2 and B1 = D1 8D3. And denote the trellis output as c = φo�i,m�,

then for any 1 B i B Ns, Dφo�i,0� 8Dφo�i,1� is either B0 or B1.

3. For any 1 B i B Ns, let j, k be the two distinct states satisfying φs�j,mj� = i and

φs�k,mk� = i, where φs�i,m� denotes the next-state part of the trellis mapping, then

Dφo�j,mj� 8Dφo�k,mk� is either B0 or B1.

These conditions and the Σ-uniformity of X ensure that each input vector m (thus coset

index vector c) appears with equal probability, i.e., P �C = T�m�� = P �M = m� = 2−n for

any m > �0,1�n (here the starting phase of TCQ is not considered). Hence P �X̂i > Dc� = 1
4

for c = 0,1,2,3.

Now note that the quantization noise Qi must be in the range �−2,2�. For a given pair

of �qi, xi�, since qi + xi + vi must be a signal point j + 0.5 with j > Z, then xi + vi can only

take one value in the range �x − 0.5, x + 0.5�, i.e., xi + vi = qi + 
xi − qi + 1� − 0.5. Let
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Yi = Xi + Vi, then Qi � Yi �Xi, hence

pQiSxi
�qiSxi� = S

y>�xi−0.5,xi+0.5�
pQiSYi=y�qiSy� ċ pV �vi�dy.

pQiSxi
�qiSxi� = S

y>�xi−0.5,xi+0.5�
pQiSYi=y�qiSy� ċ pY SXi=xi

�ySxi�dy

= S
y>�xi−0.5,xi+0.5�

pQiSYi=y�qiSy�dy

= P �Ŷi > D
xi−qi+1� mod 4SYi = qi + 
xi − qi + 1� − 0.5�

= P �Ŷi > D0SYi = qi − 0.5�, (E.2)

which is independent of xi.

The last equation of (E.2) is due to the following proposition, which states a key

property of a non-dithered trellis coded quantizer: statistical symmetry between cosets.

Proposition 1 Assume fX�x� is Σ-uniform with respect to D (with step size 1). Consider

a trellis coded quantizer QTCQ
D with R̃ = 1 and without dither. Let the quantized version of

Xn be X̂n = �QTCQ
D �−1�QTCQ

D �Xn��, then for sufficiently large n,

P �X̂i > DcSXi = xi� = P �X̂i > D�c+j� mod 4SXi = xi + j�, (E.3)

for 0 B i B n − 1, 0 B c B 3, j > Z, −2R + 1.5 B xi, xi + j B 2R − 1.5.

Proof 10 First, consider the following two input vectors

x = �x1, x2, ..., xn�, x′ = �x1 + 4i1, x2 + 4i2, ..., xn + 4in�, (E.4)

where ij > Z, and −2R + 1.5 B xi, xi + 4ij B 2R − 1.5, for j = 1,2, ..., n. It is obvious that

the Viterbi algorithm in TCQ produces the same coset index vector C = T�M�, and the

codeword index vector of x′ differs from that of x by i = �i1, i2, ..., in�. Consider the set
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S i
j = �c = T�m� � m > �0,1�n, ci = j� for j = 0,1,2,3. Since X is i.i.d., we have

PC�cSXi = xi� = PC�cSXi = xi + j� for any c = T�m�

� P �c > S i
cSXi = xi� = P �c > S i

cSXi = xi + j�

� P �X̂i > DcSXi = xi� = P �X̂i > DcSXi = xi + j�, (E.5)

for 0 B i B n − 1, 0 B c B 3, j > 4Z, −2R + 1.5 B xi, xi + j B 2R − 1.5. Hence we can assume

that xi > �0,4� without loss of generality. Then Σ-uniformity implies that X is i.i.d.

Fix c = 0 and j = 1 with i AA 1. We need to show that P �X̂i > D0SXi = xi� = P �X̂i >
D1SXi = �xi + 1� mod 4� for any xi > �0,4�. Let c� = �c�1, c�2, ..., c�n� > S i

1, then consider

two input vectors x = �x1, x2, ..., xi, ..., xn� and x′ = �x1 + c�1, x2 + c�2, ..., xn + c�n� mod 4.

Suppose x corresponds to a coset index vector c, then x′ must correspond to coset index

vector c`c� (and vice versa), where ` denotes item-wise binary addition (XOR). Since the

mapping c� c` c� from S i
ci

to S i
ci`c�i

is one-to-one, it follows that

P �X̂i > D0SXi = xi� = Q
c>Si

0

PC�cSXi = xi�

= Q
c>Si

0`1

PC�cSXi = �xi + 1� mod 4�

= P �X̂i > D1SXi = �xi + 1� mod 4�. (E.6)

This result can be easily generalized to c = 0,1,2,3 and j = 1,2,3. Thus the proposition is

proved.
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APPENDIX F

PROOF OF THEOREM 6

Proof 11 Assume that Quantizer II in Fig. 8 is the dithered trellis coded quantizer Q21

which uses an ESS of size 2R+1, with R̃ = 1 and step size ∆21. Thus, the ESS D = �−2R +
∆21~2,−2R + 3∆21~2, ...,2R − ∆21~2� is partitioned into 4 cosets, each with 2R−1 points.

Then due to Proposition 1, P �Ŷ2,i > DcSY2,i = y2,i� = P �Ŷ2,i > D�c+j�mod 4SY2,i = y2,i+j∆21�,

for 0 B i B n−1, 0 B c, j B 3, and �−2R+1.5�∆21 B y2,i, y2,i+j∆21 B �2R−1.5�∆21. Denote

the trellis bit vector of Q21 as m21 = �m21,0,m21,1, ...,m21,n−1�, and the codeword vector

w21 = �w21,0,w21,1, ...,w21,n−1�. Now if we directly transmit the trellis bit vector m21 using

one b/s (since R̃ = 1) without SW coding, the practical transmission rate R21 satisfies

R21 = 1 + 1

n
H�W21SM 21, V

n
21� = 1 + 1

n
H�W21SC21, V

n
21�

B 1 + 1

n

n−1

Q
i=0

H�W21,iSC21,i, V21,i�

= 1 + 1

n

n−1

Q
i=0
S

∆21~2

−∆21~2
1

∆21

H�W21,iSC21,i, V21,i = v21,i�dv21,i. (F.1)

Here V n
21 = �V21,i�n−1

i=0 is a length-n vector of i.i.d. random dithers, C21 = T�M 21� is the

coset index vector, and C21,i = Ti�M 21� is the i-th coset index for 0 B i B n − 1.

Note that the conditional distribution of Y2,i given C21,i and V21,i completely deter-

mines the conditional entropy H�W21,iSC21,i, V21,i = v21,i� in (F.1). We have

p�Y2,i = y2,iSC21,i = c21,i, V21,i = v21,i� (F.2)

= p�Y2,i = y2,i + v21,iSC21,i = c21,i, V21,i = 0� (F.3)

= p�Y2,i = y2,i + v21,i� ċ P �C21,i = c21,iSY2,i = y2,i + v21,i�
P �C21,i = c21,i� . (F.4)
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An example of the conditional distribution p�Y2,i = y2,iSC21,i = c21,i, V21,i = v21,i� is shown

in Fig. 29.
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Fig. 29. Conditional distribution p�Y2,i = y2,iSC21,i = c21,i, V21,i = v21,i� for c21,i = 0 and

v21,i = 0.

Next we consider the first WZ coding component which quantizes Y n
1 and compresses

the quantization output I1 = Q1�Y n
1 � to R1 b/s. Let the ESS step size of the employed

dithered TCQ be ∆1. Similar to (F.1) and (F.4), we have

R1 = 1 + 1

n
H�W1SM 1, Ẑ

n
21, V

n
1 � = 1 + 1

n
H�W1SC1, Ẑ

n
21, V

n
1 �

B 1 + 1

n

n−1

Q
i=0

H�W1,iSC1,i, Ẑ21,i, V1,i�

= 1 + 1

n

n−1

Q
i=0
S

∆1~2

−∆1~2
1

∆1

H�W1,iSC1,i, Ẑ21,i, V1,i = v1,i�dv1,i, (F.5)

p�Y1,i = y1,iSC1,i = c1,i, Ẑ21,i = ẑ21,i, V1,i = v1,i�

= p�Y1,i = y1,i + v1,iSC1,i = c1,i, Ẑ21,i = ẑ21,i, V1,i = 0�

= p�Y1,i = y1,i + v1,iSẐ21,i = ẑ21,i� ċ P �C1,i = c1,iSY1,i = y1,i + v1,i, Ẑ21,i = ẑ21,i�
P �C1,i = c1,iSẐ21,i = ẑ21,i�

���= p�Y1,i = y1,i + v1,iSẐ21,i = ẑ21,i� ċ P �C1,i = c1,iSY1,i = y1,i + v1,i�
P �C1,i = c1,iSẐ21,i = ẑ21,i�

, (F.6)

where V n
1 = �V1,i�n−1

i=0 is a length-n vector of i.i.d. random dithers, and (�) is true since the

Markov chain Ẑ21,i � Y1,i � C1,i holds.

Similar results can be obtained for the second WZ coding component which quantizes
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Y n
2 and compresses the quantization output I22 = Q22�Y n

2 � to R22 b/s:

R22 B 1 + 1

n

n−1

Q
i=0
S

∆22~2

−∆22~2
1

∆22

H�W22,iSC22,i, Ẑc,i, V22,i = v22,i�dv22,i, (F.7)

p�Y2,i = y2,iSC22,i = c22,i, Ẑc,i = ẑc,i, V22,i = v22,i�

= p�Y2,i = y2,i + v22,iSẐc,i = ẑc,i� ċ P �C22,i = c22,iSY2,i = y2,i + v22,i, Ẑc,i = ẑc,i�
P �C22,i = c22,iSẐc,i = ẑc,i�

����= p�Y2,i = y2,i + v22,iSẐc,i = ẑc,i� ċ P �C22,i = c22,iSY2,i = y2,i + v22,i�
P �C22,i = c22,iSẐc,i = ẑc,i�

, (F.8)

where V n
22 = �V22,i�n−1

i=0 is a length-n vector of i.i.d. random dithers, and (��) is true since

the Markov chain Ẑc,i � Y2,i � C22,i holds.

Equations (F.1) – (F.8) are based on the assumption of Σ-uniformity and are very

difficult to compute in practice. However, at high rate, all the TCQ step sizes ∆21,∆1,∆22

tend to zero. Thus (see Fig. 29)

p�W21,i = jSC21,i = c21,i, V21,i = v21,i� = p�Y2,i + v21,i > Wj SC21,i = c21,i, V21,i = v21,i�

� p�Y2,i + v21,i > Wj�, (F.9)

whereWj = ��4j + ci − 2R + 0.5�∆21, �4j + ci + 2R − 0.5�∆21�. Then

H�W21,iSC21,i = c21,i, V21,i = v21,i�

=
2R−1

Q
j=0

p�W21,i = jSC21,i = c21,i, V21,i = v21,i� log p�W21,i = jSC21,i = c21,i, V21,i = v21,i�

  h�Y2,i + v21,i� − log�4∆21�

  h�Y2,i� − log�4∆21�, (F.10)

where “A  B” means “A approaches B asymptotically”, or lim∆1�0,∆2�0,∆21�0 SA−BS =
0.

On the other hand, assuming ideal SW coding in the sense that Ẑn
21 = Zn

21, due to the
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definition of normalized second moment GQ21 , we have

d21 = 1

n
E�YẐn

21 − Y n
2 Y2� = 1

n
E�YZn

21 − Y n
2 Y2� = V 2~nGQ21 = �2∆21�2GQ21 . (F.11)

Hence,

R21 = 1 + 1

n

n−1

Q
i=0
S

∆21~2

−∆21~2
1

∆21

H�W21,iSC21,i = c21,i, V21,i = v21,i�dv21,i

  1 + 1

n

n−1

Q
i=0

h�Y2,i� − log�4∆21�

  1 + 1

2
log�2πeσ2

y2
� − log�2 ċ

»
d21~GQ21�

= 1

2
log�σ2

y2

d21

� + 1

2
log�2πeGQ21�. (F.12)

Similarly, we write

p�W1,i = jSC1,i = c1,i, Ẑ21,i = ẑ21,i, V1,i = v1,i�

= p�Y1,i + v1,i > Wj SC1,i = c1,i, Ẑ21,i = ẑ21,iV1,i = v1,i�

= SWj

p�Y1,i + v1,i = τ SẐ21,i = ẑ21,i� ċ P �C1,i = c1,iSY1,i = τ�
P �C1,i = c1,iSẐ21,i = ẑ21,i�

dτ

� p�Y1,i + v1,i = τ�SẐ21,i = ẑ21,i�SWj

P �C1,i = c1,iSY1,i = τ�
P �C1,i = c1,i� dτ

� p�Y1,i + v1,i > Wj SẐ21,i = ẑ21,i�. (F.13)
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Then

H�W21,iSCi, Ẑ21,i, V1,i = v1,i�

= SR
2R−1

Q
j=0

�p�W21,i = jSCi = ci, Ẑ21,i = ẑ21,i, V1,i = v1,i�

ċ log p�W21,i = jSCi = ci, Ẑ21,i = ẑ21,i, V1,i = v1,i��dẑ21,i

  SR
2R−1

Q
j=0

�p�Y1,i + v1,i > Wj SẐ21,i = ẑ21,i� log p�Y1,i + v1,i > Wj SẐ21,i = ẑ21,i��dẑ21,i

  h�Y1,i + v1,iSẐ21,i� − log�4∆1�

  h�Y1,iSẐ21,i� − log�4∆1�. (F.14)

Hence

R1 = 1 + 1

n

n−1

Q
i=0
S

∆1~2

−∆1~2
1

∆1

H�W21,iSCi, Ẑ21,i, V1,i = v1,i�dv1,i

  1

2
log�

σ2
Y1SẐ21

d1

� + 1

2
log�2πeGQ1�. (F.15)

Similarly, R22 can be written as

R22 = 1 + 1

n

n−1

Q
i=0
S

∆22~2

−∆22~2
1

∆22

H�W22,iSCi, Ẑc,i, V22,i = v22,i�dv22,i

  1

2
log�

σ2
Y2SẐc

d22

� + 1

2
log�2πeGQ22�. (F.16)

Finally, due to equations (B.9) and (B.10) in the proof of Theorems 2,

1

2
log�

σ2
Y1SẐ21

d1

�   R�
1 ,

1

2
log�σ2

y2

d21

� + 1

2
log�

σ2
Y2SẐc

d22

�   R�
2 . (F.17)

Therefore, (4.20) is true and the theorem proved.
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APPENDIX G

PROOF OF THEOREM 7

Proof 12 At high rate, there is no loss in transmitting the trellis bit-planes Jn
1 and V n

1

using two b/s. Then the total transmission rate of our symmetric SWCQ scheme is 2 +
1
nH�W1,W2SC1,C2, V n

1 , V n
21� b/s. Now let �R-

1,R
-
2� be one corner point of the sum-rate

bound. By setting d22 to infinity, we have

R21 +R1 = �1 + 1

n
H�W1SC1, V

n
21�� + �1 + 1

n
H�W2SC2, Ẑ

n
21, V

n
1 ��

= 2 + 1

n
H�W1,W2SC1,C2, V

n
1 , V n

21�

= R
-
1 +R

-
2 +

1

2
log�2πeGQ1� +

1

2
log�2πeGQ2� + o�1�

= R�
1 +R�

2 +
1

2
log�2πeGQ1� +

1

2
log�2πeGQ2� + o�1�. (G.1)

Then the theorem readily follows.
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