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ABSTRACT

Multiscale Modeling of Damage in Multidirectional Composite Laminates.

(December 2008)

Chandra Veer Singh, B.En., Dayalbagh Educational Institute, Agra, India;

M.Tech., Indian Institute of Science, Bangalore, India

Chair of Advisory Committee: Dr. Ramesh Talreja

The problem of damage accumulation in laminated composite materials has

received much attention due to their widespread application in the aerospace, auto-

motive, civil, and sports industries. In the aerospace industry, composites are used

to make light weight and efficient structural components. In the Boeing 787, for

example, more than 50% of the structure is made of composite materials. Although

there have been significant developments in analyzing cross-ply laminates, none of

the present approaches provides reasonable predictions for multidirectional laminates

in which intralaminar cracks may form in multiple orientations. Nevertheless, the

prediction of damage accumulation and its effect on structural performance is a very

difficult problem due to complexity of the cracking processes.

This study presents a synergistic damage mechanics (SDM) methodology to an-

alyze damage behavior in multidirectional composite laminates with intralaminar

cracks in plies of multiple orientations. SDM combines the strengths of micro-damage

mechanics (MDM) and continuum damage mechanics (CDM) in predicting the stiff-

ness degradation due to these cracks. The micromechanics is performed on a repre-

sentative unit cell using a three-dimensional finite element analysis to calculate the

crack opening displacement accounting for the influence of the surrounding plies, the

so-called constraint effect. This information is then incorporated in the CDM formu-

lation dealing with laminates containing cracks in different ply orientations through a
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‘constraint parameter’. Following CDM, a separate damage mode is defined for each

type of crack and the expressions for engineering moduli of the damaged laminate

are then derived in terms of crack density and the constraint parameter. The SDM

methodology is implemented for [0m/± θn/0m/2]s laminates containing cracks in ±θ
plies. It is then extended to [0m/±θn/90r]s and [0m/90r/±θn]s laminates with cracks

additionally in the 90◦-plies. The predictions agree well with published experimen-

tal data as well as independent FE computations. Limited parametric studies are

performed to show usability of SDM for more general laminates.

To predict the initiation and growth of intralaminar cracks, an energy based

model is proposed in which these cracks initiate and multiply when the work required

to form new set of cracks exceeds a laminate dependent critical energy release rate.

The approach requires determination of average crack opening and sliding displace-

ments at varying crack spacing. This task is performed through a suitable 3-D FE

analysis. In case of off-axis ply cracking, a mixed mode fracture criterion is utilized,

where the critical energy release rates in normal and shear modes are determined

by fitting the damage model with the experimental data for a reference laminate.

The predictions from the model for [0/± θ4/01/2]s and [0/90/∓ 45]s laminates show

remarkable agreement with the experimental results.

The methodology and the results covered in this dissertation will be of interest to

mechanics of materials researchers as well as to engineers in industry where composite

materials for structural applications are of interest.
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CHAPTER I

INTRODUCTION

“Materials science underpins every product and process on which our modern society

depends.”

Senator P. Domenici, US senator for the state of New Mexico, keynote lecture

Heterogeneous materials combining the best aspects of dissimilar constituents

have been present in nature for millions of years. Composites are heterogeneous

engineering materials made from two or more constituents with significantly different

mechanical properties and which remain separate and distinct within the finished

structure. Although, they have been in use from the primitive times, e.g., ancient

societies like Romans, extensively used mortars and concrete for building purposes [1],

the technological developments in past few decades have made them the materials of

choice over metals and alloys for many engineering applications.

Polymer Matrix Composites (PMCs) are a class of composites in which a polymer

matrix is reinforced with glass or carbon fibers. Advanced PMCs depict the leading

edge of materials technology with applications ranging from golf clubs and tennis

rackets to jet skis, aircrafts, missiles and spacecrafts. The fibers used in modern

composites far surpass traditional bulk materials in terms of specific strengths and

stiffnesses. The high strength of fibers is a consequence of less internal or surface

flaws than a bulk material. To protect the fibers from abrasion and environmental

attack and enable proper load transfer, the fibers are usually impregnated by a matrix

material. This dilutes properties to some degree, but they are still far superior than

those of the bulk material. While composites are often stronger, stiffer and lighter

The journal model is IEEE Transactions on Industry Applications.
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than the monolithic materials, they lack ductility and fracture toughness of metals

making them sensitive to the presence of cracks and notches. However, there has been

significant progress in increasing toughness of fiber composites through stitching [2–5],

Z-pinning [6] or adding whiskers [7, 8] or using braided composites. These advances

have made PMCs increasingly attractive materials, with processing difficulties and

predictive capabilities being their major limitations.

In past few decades, the composites are fast replacing their metallic counterparts.

In particular, carbon fiber reinforced composites have shown tremendous potential.

Fig. 1, taken from [9], shows the market expansion of carbon fibers in recent decades.

It highlights how advances in materials, technologies and customer awareness are cre-

ating new opportunities for the carbon fiber in a variety of applications [9]. Also the

price of carbon fiber has come down substantially in recent decades. In aerospace

industry composites usage has increased mostly in the past decade, as exemplified by

Boeing 787. Fig. 2, reproduced from [10], depicts the increase in percentage of compo-

nents made from composites for commercial airplanes. Nearly all the exterior surfaces

of the Boeing 787 are composites (blue in Fig. 3, source: [11]), except the leading

edges of the wings, the stabilizers and the engine pylons. For future airplanes, the

composites would yield better fatigue and corrosion resistance and higher strength-

to-weight ratios, provide for a more integrated structure, and increase the useful life

and residual value of each aircraft. Further, composite resistance to condensation

would allow engineers to increase cabin humidity to enhance passenger comfort.

However, usage of new advanced materials entails development of new predictive

methodologies. Engineered structures are exposed to a series of events that can

involve loading, environment, and damage threats. These events, either individually

or in combination, can cause structural degradation, which, in turn, can affect the

ability of the structure to perform its function. The degradation of performance in
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Fig. 1. Market expansion of carbon fibers in the past few decades (source: [9]).

Fig. 2. Percentage of composite components in commercial aircrafts (source: [10]).
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Fig. 3. Materials usage in Boeing 787. Composites constitute more than 50% by vol-

ume of the airplane (source: [11]).

composite structures is different than metallic components because composites do

not have a uniquely defined failure. Instead, due to extreme levels of anisotropy

and inhomogeneity of constituents, a multiplicity of damage mechanisms can degrade

the material. For PMCs, these include transverse cracking of the matrix (Fig. 4a),

separation of fibers from the matrix (debonding) (Fig. 4b), fiber breaks Fig. (4c), or

separation of lamina from each other (delamination) (Fig. 4d).

Amongst these, matrix cracking is mostly the first observed mode of damage.

Although, usually not critical from failure aspect, matrix cracks may degrade mate-

rial stiffness significantly, thereby affecting its overall structural integrity. Moreover,

they may initiate and assist other damage mechanisms in complex ways. Since matrix

cracks generally develop long before final failure of a structure they should be taken

into account in the design in order to fully utilize the load bearing capacity of a com-

posite structure. The National Research Council has recognized that “the inability

to predict the long-term durability of PMCs–and the consequent overdesign of struc-
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tures necessitated by this uncertainty has limited their use” [11]. Thus, development

of an accurate predictive methodology for microcrack initiation and progression is

paramount to the potential of composite structures.

The design of structures made of composites often involves layup optimization.

The stacking sequence of plies affects the overall stiffness and failure properties of the

designed structure. The simplest layup configuration is that of the cross-ply laminates

where the plies are oriented along 0◦ and 90◦ directions. But more complex loadings

necessitate more elaborate layup configurations. Often, the coupling between exten-

sion, bending and twisting can be a useful tool for achieving specific aerodynamic and

structural capability in the airplanes. This is exemplified by Grumman X-29 aircraft

where the laminate layup is chosen such that bending induces twist to counteract

aerodynamic forces. Thus laminates with layers in various orientations with respect

to the principal loading are quite useful in aerospace industry. Examples of layup

sequences are cross-ply, angle ply or multidirectional.

For cross-ply laminates, a wealth of analytical and numerical tools exist to predict

microcracking initiation, progression and their effects on material stiffness. However,

damage modeling in multidirectional laminates is little understood and no accurate

model exists at present to analyze effects of matrix induced damage in multidirectional

composite laminates. This study caters to the development of such a predictive

methodology.

The overall approach is to combine the knowledge base available from experi-

mental, analytical and computational techniques to yield a more effective and general

methodology, which can be used to analyze damage in multidirectional composite

laminates. The required analytical expressions are developed in the framework of

continuum damage mechanics (CDM). This is aided by suitable micromechanical

computations carried out through finite element calculations. The methodology is
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(a) Matrix Cracking

(b) Delamination

(c) Fiber/Matrix Debonding

(d) Fiber Fracture

Fig. 4. Various mechanisms of damage in composite laminates.

applied to a variety of laminate layups and the predictions are compared with exper-

iments and independent FE simulations wherever applicable.

A. Background and Motivation

Damage in composite materials usually initiates with matrix cracking. Fig. 5, re-

produced from [12] depicts the stress-strain response of a glass without fibers and

fiber-reinforced glass in tension loading. The striking difference in the behavior is

due to non-linearity shown by the reinforced specimen. This non-linearity is a type

of ductility which occurs due to multiple matrix cracking [12]. In case of laminated

composites, this phenomenon is called transverse ply cracking. Ply cracking does not

cause laminate failure, but reduces its stiffness properties, and thus is considered as
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Fig. 5. The stress strain curves for borosilicate glass alone (dotted line) and reinforced

with aligned carbon fibers (source: [12]).

‘sub-critical’ from the viewpoint of failure analysis. The subject of ‘damage mechan-

ics’ caters to characterization of the initiation of sub-critical damage, its growth, and

its effects on overall laminate behavior.

The phenomenon of multiple fracture occurs due to difference in failure strains of

constituent materials. As argued by Aveston et al. [13], if one of the two constituents

of a fibrous composite breaks at a much lower elongation than the other and if the

non-broken constituent is able to bear the load, a tensile specimen will show multiple

fracture of the more brittle phase until the specimen finally breaks when the ultimate

strength of the stronger phase is reached. For a unidirectional lamina with strong,

stiff fibers in a weak matrix, the matrix phase will undergo multiple fractures if

σfuVf > σmuVm + σ
′
fVf (1.1)
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where, σfu and σmu are failure strengths and Vf , Vm are the volume fractions of fiber

and matrix, respectively; and σ
′
f is the stress carried by the fiber after matrix failure.

In the following paragraphs, we will review the progress in damage of composite

materials over the past three decades. Due to the vast literature available, the follow-

ing review is divided into sub-sections. First, we cover the initial studies in the light

of experimental evidence. Then, we briefly describe modeling approaches for stiffness

degradation and damage evolution. Finally the recent progress focusing on damage

in off-axis laminates is summarized.

1. Initial Research Investigations

Initial studies of microcracking were done in the 1970s. These studies concentrated on

the initiation of microcracking glass-reinforced polyester [14, 15] and glass-reinforced

epoxy [16–21] cross-ply laminates. The effect of 90◦ ply thickness was investigated.

For thick 90◦ plies, transverse microcracks initiated at the edge of the specimen and

propagated instantaneously through the width of entire cross-section. Thin plies

also developed cracks at the edges. However, cracks propagated under load control.

Fig. 6 shows that as thickness of 90◦ plies decreases, the strain to transverse crack

initiation increases [22]. For very thin plies (< 0.1 mm), cracks are suppressed and

the laminate fails before initiation of transverse cracks. Talreja [23] later explained

this thickness effect in terms of constraint posed by un-cracked plies over cracked

plies. As thickness of 90◦ plies increases, the constraint from 0◦ plies decreases and

microcracking initiates at lower applied strain and vice-versa. A microscopy study

into the origin of microcracks [17] has revealed that they are associated with the

processing flaws, voids and regions of higher fiber volume fraction; and usually initiate

with debonding at the fiber-matrix interface.

Hahn and Tsai [24] put forward the first-ply failure theory to predict the strain



9

Fig. 6. Strain to initiate transverse cracks in [0/90n] laminate for different thickness

of 90◦ layer (from [22]).

to first microcrack assuming that the first crack develops when the strain in the

plies reaches the strain to failure. However, the predictions did not match with the

experimental observations because it predicts initiation strain to be independent of

the ply-thickness, which obviously is contrary to the experimental observations. More

advanced ply-failure criteria [25, 26] that included all stress components were also

inaccurate. Modification of first-ply failure theory by using in situ failure properties

have also been tried [26] with little success. Statistical strength arguments have

also been put forward to account for the variations in microcrack initiation strain

[27–31]. These statistical strength models also use in situ statistical parameters to fit

experimental results [30, 31] and fail to distinguish between [0m/90n]s and [90n/0m]s

laminates. The strain to initiate microcracking is lower for surface 90◦ plies than

for central 90◦ plies. It is because central 90◦ plies are supported from both sides,

whereas surface 90◦ plies are free to crack on the outer side. Thus, microcracking
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initiates more readily in [90n/0m]s laminates [19,32–35].

The first transverse crack has almost no effect on the laminate behavior. How-

ever, continued loading causes formation of more matrix cracks thereby causing a

significant degradation in thermo-elastic properties of the structure. Numerous ex-

perimental investigations [30,32,36–44] have focused on counting the number of trans-

verse cracks in cross-ply laminates during quasi-static loading. Qualitatively, all offer

similar insights: microcracks form very quickly just after first crack initiates. This

initial rapid rise in microcrack density is followed by a slowing down, eventually reach-

ing a saturation level. Reifsnider [45, 46] described this micro-crack saturation as a

material state called characteristic damage state (CDS). They observed that CDS

is a well defined laminate property and does not depend on load history, environ-

ment or residual or moisture stresses. However, later investigations by Akshantala

and Talreja [47] refuted this because CDS depended upon strain rate during fatigue

loading.

At high loading levels, other damage modes start to occur. Frictional sliding at

the fiber/matrix interface becomes significant and delaminations can form from the

tip of a transverse microcrack at the interface. Once delaminations begin to form, they

propagate on continued loading while additional microcracking slows down or stops.

If the applied strain is high enough, the Poisson’s effect can lead to microcracking

(splits) in the 0◦-ply. On very high strains, progressive fiber breakage takes place

leading to localization of damage and subsequent failure of the composite structure.

Failure theories can be used to predict the final event of failure. Hinton et

al. [48] compared five well-known failure criteria against leakage and fracture stresses

for filament wound tubes of ±θ fiber orientations and found the failure criteria were

generally deficient in predicting failure because of the lack of account for progressive

damage. A World Wide Failure Exercise (WWFE) carried out a careful investigation
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into applicability of failure theories against experimental evidence. Models by Puck

[49], Zinoviev [50] and Tsai [51] were found to exhibit good predictive capability and

have only minor weaknesses. However, some issues, such as the effect of thermal

residual stresses on failure prediction, use of in-situ strength by some models, and

failure modeling of leakage in tubes under internal pressure loading, still remain open

due to lack of evidence [52].

2. Modeling Thermoelastic Properties of Damaged Laminates

Analysis of material degradation as a result of damage or defect mechanisms is an

important consideration in materials design. A broad classification of models used

to address material degradation in polymer matrix composites was documented in

a report by the ‘National Research Council’ [11]. Table I, reproduced from [53],

compares the broad modeling approaches to model material degradation.

In the present context of analyzing mechanical behavior of composite laminates

subsequent to the development of transverse matrix cracking, the basic theme of

nearly all studies has been to predict the stiffness degradation as a function of trans-

verse crack density. The major attempts to model thermo-elastic constants of dam-

aged laminates are described below.

a. Ply discount method

The simplest way to model transverse matrix cracks in composite laminates is to

completely neglect the transverse stiffness of cracked plies [54]. This method un-

derestimates the stiffness of cracked laminates since the cracked plies in reality can

support a substantial portion of applied loading. The modified ply-discount model

where only the transverse stiffness of a cracked layer is put to zero, does not help

either. Also, these models do not characterize stiffness as a function of the crack
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density and therefore are more suitable at high crack densities. Although being sim-

ple, they are based on a crude estimate of the effect of transverse cracking and, often

unreliable for design and failure analysis [55].

b. Shear lag method

The most common approach to include the effects of load transfer between micro

cracked plies and their neighbors is by so called shear lag analysis [14, 37]. In this

model, the load transfer between plies is assumed to take place in shear layers be-

tween neighboring plies and the normal stress in external load direction is assumed

to be constant over ply thickness. The unknowns are the thickness and stiffness of

these shear layers. The shear lag theory neglects variations in the stresses and strain

through ply thickness. Moreover, being a one dimensional theory, its application to

layup configurations other than cross plies is doubtful. The shear lag theory has how-

ever successfully been applied to cross-ply laminates [14,37,56–58]. Crack interaction

has also been included in some shear lag models [27,34].

All shear lag analyses are based on the concept that in the plane of transverse

crack the transverse ply carries no load, while away from the crack a part of this load

is transferred back to the transverse ply by shear. For a cross-ply laminate, the shear

lag analysis assumes that

τi = G
u90 − u0

t
(1.2)

where τi is the shear stress at the 0◦/90◦-interface, G is a proportionality constant,

similar to the shear modulus, u90, u0 are the longitudinal displacements in 90◦, and

0◦ plies, respectively, and t is a thickness parameter. In some initial shear lag models,

e.g., [14, 59], t is taken to be equal to thickness of the 90◦ layer (t90), whereas in

others [27, 60], it is taken as the thickness of resin-rich layers about the 0◦/90◦-
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interface. Following [14,59], the use of equilibrium and constitutive equations results

in the following ordinary differential equation (ODE) for the longitudinal stress in

90◦ layer, σ90
xx,

d2σ90
xx

dx2
− β2

t290

σ90
xx = −β

2

t290

E90
x0

Ec
σc (1.3)

where x denotes the laminate longitude, β is a material parameter known as ‘shear

lag parameter’, E90
x0, Ec are longitudinal moduli for 90◦ layer and the whole laminate

in the undamaged form, respectively, and σc is the longitudinal stress applied to the

laminate. The solution of the above ODE gives 1-D stress field in the laminate.

Averaging stress and strain fields over a typical unit cell of the cracked laminate

gives the effective longitudinal modulus for a fixed state of damage (prescribed crack

spacing, 2l) as [32]

1

Ex
=

1

Ec

(
1 +

E90
x0

λE0
x0

tanh βρ

βρ

)
(1.4)

where λ = t0
t90

, and ρ = l
t90

with t0 being the thickness of 0◦ layer.

Good reviews of shear lag methods for damage analysis of composite materials

can be found in [61–63].

c. Variational approach

By application of the principle of minimum complementary potential energy, Hashin

[64,65] derived estimates for stiffness, ply stresses and thermal expansion coefficients

of cross-ply laminates with regularly spaced ply cracks. This approach attempts to

solve a two-dimensional boundary value problem, and thus yields much better results

than 1-D shear lag models. The predictions are in reasonably good agreement with

the experimental data. It is important to note that Hashin’s method essentially yields

a lower bound for the stiffness. Varna and Berglund [66–68] have improved Hashin’s

model by using a better stress analysis. A disadvantage of the variational approach
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is that the stress analysis problem is extremely complex for laminate layups other

than cross plies and currently no variational solution exists for off-axis laminates.

Other significant works on Hashin’s variational analysis involved inclusion of thermal

residual stresses [69], stress solutions for orthogonally cracked cross-ply laminates [70],

comparison of stress fields and stiffness reductions in [0/90]s and [90/0]s laminates

[35], and analysis of delaminations induced by matrix cracking [71].

For cracked cross-ply laminates, the basic unit cell for the resulting 2-D boundary

value problem is as sketched in Fig. 7 (adapted from [63]). Hashin [64] constructed

admissible stress field for the problem assuming that the normal stresses in the load-

ing direction are constant over the ply thickness. The admissible stress field satisfied

equilibrium and boundary and interface conditions. The stresses and reduced stiff-

ness coefficients for the damaged laminate were then obtained using minimization of

complementary energy. Hashin’s variational problem results into the following ODE

d4φ

dξ4
+ p

d2φ

dξ2
+ qφ = 0 (1.5)

where φ is an unknown function representing stress perturbation due to cracking,

ξ = x
t90

, and p, q are laminate parameters. The longitudinal stress in 90◦ layer is

related to φ as

σ90
xx = σ90

xx0 [1− φ (x)] (1.6)

where σ90
xx0 is the 90◦ ply stress in un-damaged state. For details on complete stress

field, the reader is referred to the original study [64].

McCartney [72] used a generalized plain strain formulation to derive governing

equations similar to Hashin’s model. His main assumption was that the in-plane

normal stress dependence on the two in-plane coordinates is given by two indepen-

dent functions. This approach is actually equivalent to the minimization of Reissner’s
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Fig. 7. Boundary value problem for a cracked cross-ply laminate (adapted from [63]).

energy function [73]. To have a better representation of stress variation across ply

thickness, a ply is sub-divided into thin layers and equilibrium equations are applied

using average stress fields for each layer. This results into a series of recursive equa-

tions. For this reason, McCartney’s model is semi-analytical and requires numerical

calculations for complete damage characterization [73–75].

d. Self consistent method

Laws and Dvorak [76,77] have estimated stiffness and thermal expansion coefficients

of matrix cracked composite plies by use of self consistent approximations. In their

model, each crack was modeled as the limit of an elliptic cylinder when the aspect

ratio tends to zero, thus leading to a three-phase model for cracked fibrous composites

(fibers, matrix and cracks). The self consistent stiffness matrix was then derived for

an infinite, homogeneous, matrix cracked material. The predicted results, however,



17

are not consistent with experimental data.

A similar micromechanics approach for cross-ply laminates has recently been de-

veloped by Hoiseth and Qu [78,79]. Following the differential self-consistent method,

they have derived an incremental differential equation describing the effective longi-

tudinal modulus for the cracked laminate by representing the change in strain energy

due to increase in terms of number of cracks in a lamina.

e. 3-Dimensional laminate theory

Gudmundson and co-workers [80,81] considered laminates with general layup and used

the homogenization technique to derive expressions for average stiffness and thermal

expansion coefficient of laminates with cracks in layers of 3-D laminates. These ex-

pressions in an exact form correlate damaged laminate thermo-elastic properties with

parameters characterizing crack behavior: the average crack opening displacement

(COD) and average crack face sliding. However, these parameters follow from the

solution of the local boundary value problem and their determination is a very com-

plex task. Gudmundson and co-workers suggested to neglect the effect of neighboring

layers on crack face displacements and to determine them using the known solu-

tion for a periodic system of cracks in an infinite homogeneous transversely isotropic

medium (90◦-layer). As will be shown later, this assumption is actually not valid due

to constraint effects on cracked ply surface displacements from the supporting plies.

The application of their methodology by other researchers has been rather limited

due to the fairly complex form of the presented solutions and use of approximate

COD and CSD parameters. Further developments on this methodology can be found

in [41,82–86].
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f. Continuum damage mechanics (CDM)

An alternative way to describe the mechanical behavior of matrix cracked laminates

is to apply concepts of damage mechanics. Talreja [23,87–89] and Allen et al. [90,91]

have derived models for laminate stiffness in terms of internal damage state param-

eters. In order to apply the models, it is necessary to fit certain parameters to

experimental or numerical data. For a matrix cracked cross-ply laminate Lee and

Allen [92] have derived approximate relations between the internal damage state pa-

rameter and laminate stiffness. They determined approximate solutions for local

stresses and strains by use of the principle of minimum potential energy. In this way

upper bounds for laminate stiffness could be derived.

We will use this methodology as our basis in formulation of effective stiffness

properties of a cracked laminate. Further details will be given in the subsequent

chapters.

g. Numerical methods

Several numerical solutions to cracked cross-ply and quasi-isotropic laminates have

also been obtained. Most of the analyses have tried to solve the 2-D boundary value

problem similar to that of Hashin’s variational analysis (see Fig. 7) assuming a

plane stress or generalized plane strain condition [93, 94], while few have attempted

a full 3-D stress analysis [84, 95]. The chief computational methods used are: the

finite element method (FEM) [84,93–95], finite difference method, boundary element

method (BEM), and finite strip method [96]. Some have attempted Fourier and

other series expansions to describe the stress and displacement fields [97] in cracked

cross-ply laminates. Modifications of laminated plate theories, such as the ‘layerwise

laminate theory’ [98], are some other numerical tools to analyze transverse cracking.
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Fig. 8. Damage evolution in [0m/90n]s laminates (source: [99]).

The benefit of these approaches is that they provide more accurate stress solutions,

thereby providing important insights. However, they need to be performed every

time laminate layup, material or crack density changes, and thus can not be used

in practice. Often computational tools have also been used to verify, compare or

validate existing or proposed analytical methods. Additionally, some semi-analytical

methods, e.g., [73, 74], use numerical tools to reinforce or improve their solutions to

stress and displacement fields in cracked laminates.

3. Damage Evolution

If the applied load is increased beyond the stress at the initiation of cracking in

a transverse ply, new cracks form in the cracked ply in between existing cracks.

Initially these cracks are far apart and do not interact with each other. However,

quickly they form a roughly periodic array of parallel cracks. Fig. 8 (source: [99])

shows the increase in density of transverse cracks for typical configurations of cross-

ply laminates [43]. The figure distinctly marks three stages in cracking: initial rapid
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rise, slowing down and saturation. Usually, the damage evolution is measured or

predicted in terms of the number of cracks per mm (crack density) as a function

of applied strain or stress. The approaches to model crack initiation and damage

evolution can be divided into two categories:

1. Strength Based Models: According to these models, microcracks form when the

stress reaches the transverse strength of the ply material or some multi-axial

stress state criterion is met [14–17,24,27–29,31,59,100]. Since, the stress state

at the onset of transverse cracking is not constant for different laminates [26],

these models fail to account for difference in crack initiation and progression for

specimens of different ply thicknesses. Moreover, detailed stress analysis is a

necessary step in prediction, thereby limiting their usage to cross-ply laminates.

Still, their main drawback is lack of agreement with the experimental predic-

tions. Even statistical strength models [27–31] do not help because they use

in situ strength properties requiring additional measurements for each stacking

sequence.

2. Energy Based Models: These models predict a microcrack when the total energy

released by the formation of that microcrack reaches the critical energy release

rate for microcracking. Highly similar in concept and nature to fracture me-

chanics, it has also been termed as finite fracture mechanics [101]. In contrast

to the conventional fracture mechanics, transverse cracking comprises events

that involve finite amount of new fracture area. When complemented with an

accurate stress analysis approach, this methodology has proved to be highly

successful. For example, in case of cross-ply laminates, finite fracture mechan-

ics coupled with variational analysis predicts accurate damage evolution for a

wide variety of laminates [35, 44,102].
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For microcracking in [0/ ± θ]s laminates, as θ is made smaller than 90◦, 3-D stress

analysis shows that the principal stress trajectories in the off-axis plies is no longer

straight [103] and may account for the observation of curved microcracks at low crack

density. Moreover, the microcracks initiate on the edge but only propagate part

way into the laminate. Such curved and angled edge cracks typically cause edge

delaminations.

Nairn et al. [43] carried out the most comprehensive experimental study of dam-

age evolution in cross-ply laminates by comparing 18 different laminate layups of

same material. It was found that the energy release rate criterion when combined

with an accurate stress analysis, such as the variational approach, only gave consistent

results. Clearly, all strength models are bound to fail to predict damage evolution

in off-axis laminates. Energy based models using average crack opening displacement

(COD) for damage evolution do not require a detailed stress analysis of the cracked

solid [104–106] and are suited irrespective of laminate layup.

4. Studies on Off-axis Laminates and Recent Progress

Experimental studies on off-axis laminates [45, 60, 107–110] show that the matrix

crack pattern is more complex than cross-ply laminates and majority of cracks form

at the edges of the test coupons and may or may not grow across the thickness

and the width of the specimen immediately. Johnson and Chang [111] carried out

extensive experiments on a variety of off-axis laminate configurations and found that

for laminates having ply angle greater than 45◦, significant ply cracking is a dominant

damage mode, although edge effects can lead to delaminations. The approaches

proposed for analyzing off-axis laminates include 2-D finite element method (FEM)

[94, 110, 112], first order shear deformation laminated plate theory (FSDT) [113],

equivalent constraint model (ECM) [114], and modified shear lag models [115–120].
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But these models provide approximate solutions whose accuracy cannot be verified

as no exact analytical solutions currently exist. Moreover, these authors do not verify

their stiffness predictions with experimental data.

It should be pointed out that the damaged laminate material may contain a

large number of tiny internal and partially grown cracks. On increase in loading,

these cracks may grow and coalesce to form fully developed matrix cracks. The usual

experimental methods such as X-ray, The common techniques for nondestructive de-

tection of transverse matrix cracks in laminated composites, such as edge replica-

tion, penetrant-enhanced X-ray radiography, acoustic emission and ultrasonic C-scan

imaging etc. do not provide accurate information on the formation, number, size and

progression of these internal cracks. A through-transmission ultrasonic C-scan imag-

ing with inclined focusing transducers in confocal configuration has been suggested

for the detection of partial and internal cracks in composite laminates [121,122].

Recently, use of CFRP laminates for the cryogenic propellant tanks to the de-

velop light-weight future reusable/expendable launch vehicles has thrown a new light

into matrix cracking because they may cause unallowable propellant leakage [123].

Experimental studies on such laminates consisting multiple off-axis plies, a high den-

sity form of matrix microcracking, called stitch cracking, can form in plies adjacent

to a cracked ply [124]. Yokozeki et al. [125, 126] have clarified the effect of ply angle

on stitch cracking. They have carried out experimental investigations on [0/θ/90]s

laminate to study development of microcracks in θ-ply subsequent to formation of

fully grown ply cracks in contiguous 90◦ plies.

Crocker et al. [127] studied the intra-laminar fracture in angle ply laminates and

found that cracks in an angle ply do not grow fully through the coupon width, in

contrast to 90◦-ply, and are significantly affected by the ply orientation. Below a ply

orientation of 45◦, delamination started just after the formation of off-axis ply cracks.
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For generally symmetric laminated systems, McCartney [74, 128] has developed a

semi-analytical approach that is capable of predicting the stress and displacement

distributions in cross-ply and general symmetric laminates containing arrays of ply

cracks having a single orientation. McCartney and Shoeppner [129] also studied the

effect of non-uniform matrix cracking on laminate properties in cross-ply laminates.

On the experimental side, ‘Raman Spectroscopy’ has also been used to study off-axis

ply cracking [130–133].

Approximate variational solutions for stress fields in cracked cross-ply laminates

in bending have been reported in [134], wherein the predictions are compared with

FE calculations. The stress results for the [0/90]s and [90/0]s laminates show that

the transverse normal stress can be tensile or compressive, depending on the laminate

lay-up and location of the cracked layer; and this complicates the damage analysis.

Kim and Nairn [135,136] have also performed a similar study for analyzing the crack

formation in coating/substrate systems under bending loads.

For prediction of crack formation and damage evolution, energy based methods

are gaining popularity and wide acceptance. Some such models are proposed by

McCartney [79,128,137]. Other issues have also been addressed lately. For example,

the randomness and non-uniformity of the microcracking process is accounted by

using statistical distribution of matrix fracture toughness [102,129,137–139]. The non-

uniformity of fiber distribution in ceramic-matrix composites has also been analyzed

[140].

B. Problem Statement

Consider a generally symmetric composite laminate loaded in axial tension (Fig. 9).

Depending upon the ply layup and material properties, different plies will have dif-
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Fig. 9. A representative volume element (RVE) illustrating intralaminar multiple

cracking in a general off-axis ply of a composite laminate.

Fig. 10. An illustration of multiple cracking systems in a [0/90/θ1/θ2] laminate.
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ferent stress states. On sufficient tensile loads, some of these plies will develop matrix

cracks in direction preferably transverse to the loading direction. So, the cracks will

first appear in a ply with 90◦ orientation to the loading direction. Subsequently, other

off-axis plies with orientations close to 90◦ will also develop matrix cracks. Currently

we have many analytical and numerical models, e.g., Shear lag, variational, 3-D lam-

inate and continuum damage mechanics, which can analyze damage due to matrix

cracking in cross-ply laminates to a good accuracy. However, one faces an uphill

task while analyzing damage in multidirectional composite laminates due to follow-

ing modeling challenges:

• The resulting boundary value problem accounting for an array of matrix cracks

in a layer of an arbitrary direction with respect to the laminate loading direction

is very complex and can not be solved even with the variational approach.

• Depending on the laminate layup, the transverse cracks may appear in multiple

layers. Since these cracks tend to follow the fiber direction in a particular layer,

we may have different crack patterns in different layers. See, e.g., Fig. 10 for

an illustration of multiple cracking systems in a [0/90/θ1/θ2] laminate.

• The crack patterns in different cracked layers will influence the stress and dis-

placement profile in other layers.

• There is no clear cut way of determining the constraint of the undamaged layers

on opening of the cracked surfaces.

The above issues necessitate an analysis method which can consider a truly multi-

mode damage scenario while predicting stiffness changes. Although there have been

some efforts in damage analysis of multidirectional composites, there is no acceptable

approach. The following issues highlight the limitations of available approaches:
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• Some of the researchers claim to have developed models for generally symmetric

off-axis laminates. However, they always verify their results with cross-ply

([0m/90n]s) or [±θm/90n]s laminates thereby considering cracks in 90◦ layer

only [84,119,141].

• Modified or two dimensional shear lag models [113, 116, 125] use questionable

assumptions related to the shear layer properties and stiffness transformation.

• Gudmundson’s approach [41, 81] assumes approximate crack opening displace-

ment for infinite solid and hence neglects effects of constraint of neighboring

layers on opening of cracked surfaces.

• McCartney [74] has developed an analytical model for general symmetric lam-

inates. However, this approach involves a system of recurrent relations and a

fourth order differential equation, thus requiring substantial numerical compu-

tations. Moreover, the case of damage in multiple orientations requires homog-

enization [75] and is still not fully developed.

• Continuum damage mechanics can provide predictions for almost any laminate

layup. However, it needs determination of certain phenomenological constants

for every configuration limiting its practical application [87,142].

• The aspects pertaining to non-stationary length scale during damage evolution

and multiple damage modes are not treated in most models.

• Many approaches are unable to treat stiffness degradation and damage evolution

in a common framework.

• Some of the existing models can provide predictions for stiffness changes only

(e.g., semi-analytical methods), and do not treat damage evolution explicitly.



27

• Some of the recently developed analytical models for general symmetric lami-

nates use coordinate transformation [84,125,126] of damage effects in an off-axis

ply to an equivalent 90◦ ply. This is an inaccurate description of the actual dam-

age and do not conform to the experimental observations.

These issues are taken up in some further detail in the chapter II. In essence, the

above issues suggest that it is incredibly difficult to obtain solutions to stress fields

in a cracked multidirectional laminate. CDM, which rather focuses on predicting

effective stiffness properties, is quite general and can be used for variety of lami-

nate layups. It however requires determination of phenomenological constants, which

may change with laminate configuration. To eliminate the limitation of CDM, Tal-

reja [142] proposed a synergistic damage mechanics (SDM) methodology and applied

it for [±θ/902]s layup. This approach combines micromechanics and continuum dam-

age mechanics judiciously to produce a versatile methodology. The micromechanical

damage mechanics, or briefly, micro-damage mechanics (MDM) performs analysis of

local stress-redistributions due to cracking, incorporating the micro-level geometry.

On the other hand, CDM, as formulated by [88,143], allows a specific output of MDM

(average crack surface displacements) to be used within a representative volume ele-

ment (RVE), i.e., at meso level. In this way, the synergism between micromechanics

and CDM effectively treats the multi-scale nature of damage. More recently, the SDM

approach has also been extended to analyze viscoelastic behavior of composites with

damage [144].

In the present work, we advance the SDM technique for multidirectional lami-

nates. Although the basic framework of CDM is retained, the damage stiffness rela-

tions are derived with multiple damage modes with each damage mode corresponding

to the family of transverse cracks in ply of a particular orientation. SDM will be ap-
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plied for the cases with cracks in two and three different orientations. The framework

is quite general and can be extended to more complex laminate configurations. More-

over, SDM effectively treats the multiscale nature of damage mechanisms and their

evolution. Finally, the approach can be complemented easily with an energy based

damage evolution model, thereby enabling a complete description of damage analysis

problem for multidirectional composites in a common framework.

C. Overall Objective and Scope

The SDM methodology proposed above will be developed and applied for the following

tasks:

1. Stiffness Degradation in Multidirectional Laminates: This part will aim at

deriving stiffness relations for damaged off-axis laminates in terms of matrix

crack spacing.

• Two Damage Modes: First we will develop SDM formulation for damage

in off-axis laminates due to transverse cracking in 2 damage modes, i.e.,

+θ and −θ plies. Our major objective here will be to develop numerical

micromechanics for evaluation of CODs for [0/ ± θ4/01/2]s laminate con-

figuration and compare them with published experimental data [109]. In

addition, the SDM predictions for stiffness degradation will be compared

against the experimental results [109]. Additionally, to enable predictions

for a more general configuration [0m/± θn/0m/2]s, parametric studies will

be carried out to evaluate COD as a function of important geometry and

material parameters.

• Three Damage Modes: This task will involve extending SDM approach to

a more complex laminate configuration, specifically [0m/±θn/90p]s system.
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SDM predictions will be compared with independent computational (FE)

simulations. We will also verify SDM results against experimental data for

quasi-isotropic laminates.

2. Damage Evolution in Off-axis Plies of Multidirectional Laminates: This section

will target the problem of how matrix crack density evolves with applied loading.

A fracture mechanics based energy criterion will be developed for prediction of

crack initiation and progression. The analysis will be done for the case with

two damage modes as well as for three damage modes.

3. Stress-strain Response of Multidirectional Laminates: This task will combine

the SDM predictions for stiffness changes with evolution of crack density to

arrive at the overall stress-strain response of the composite structure subjected

to tensile loading along the longitudinal direction.

The approach and predictions covered in this study can be applied to treat be-

havior of laminated structures containing sub-critical damage in the form of matrix

cracking. Many of present designs treat initiation of ply cracking as structural fail-

ure, making them too conservative. Some other approaches only consider more severe

damage modes, e.g., delaminations in their models. Design of composites based on

progressive damage analysis can improve the design life of the structures, reducing

our dependence on using arbitrary “knock-down” factors. Proper treatment of pro-

gressive damage can also assist in predicting laminate failure more accurately, thus

helping us to get away from empirical failure theories. The constitutive relations

derived in this work can be easily incorporated in a multiscale FE model, thereby

enabling complete structural analysis of composite structures.

The scope of the study is limited to:

1. Laminated composite materials made from polymer reinforced plastics.
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2. Multiple matrix cracking: Other forms of damage are not considered.

3. Quasi-static loading: No fatigue or time dependent aspects are considered.

4. Uni-axial loading.

D. Outline of Dissertation

In the present chapter, we have introduced the issues in damage analysis of multidi-

rectional laminates citing the relevant literature. In chapter II, we will discuss them in

some more detail, present the available approaches, and make a case for a synergistic

approach which addresses these issues. Chapter III will describe the 3D FE modeling

and its limited verification with experimental data. In the next two chapters, SDM

approach will be implemented and illustrated for two and three damage modes, re-

spectively. Chapter VI will cover modeling of damage evolution in multidirectional

laminates. We will then discuss the results obtained in this study in the light of the

“big” picture and end with some concluding remarks.
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CHAPTER II

DAMAGE MECHANICS OF COMPOSITE MATERIALS

From the chapter I, it is clear that all the existing analytical models are inadequate

for an accurate analysis of damage in multidirectional laminates. In this chapter, we

will focus on developing a coherent strategy for damage analysis of such laminates.

We will highlight the main issues and complexities in the analysis of multidirectional

laminates, and formulate a multiscale damage mechanics methodology to address

them. The approach, its implementation and validation will be the main focus of the

successive chapters.

A. Damage Development in Composite Materials

Property tailoring is one of the main objective in the design of composite materials by

which a designer can assure desirable stiffness properties in desired directions. Poly-

mer matrix composites (PMCs) use strong, stiff fibers embedded in a compliant poly-

mer matrix to make up a unidirectional lamina (UDL), which provides the necessary

strength in the direction along fiber longitude. When a UDL (also known as a ply) is

loaded in tension along the fiber direction, it fails by the rupture of fibers. Since the

failure strain of fibers is quite large, a UDL can support sufficiently large tensile loads.

Usually, the failed UDL specimen will show fiber ruptures at random locations due to

variation in fiber strength because of inherent defects, and this can be accounted for

by using a suitable statistical distribution for fiber strength [139,145–149]. If, on the

other hand, the usual thin UDL is loaded transversely, normal to the fiber direction, it

fails abruptly by a single crack lying in matrix between fibers or at the fiber/matrix

interface, without a prior discernible development of damage. Thus, the strength

and stiffness of a UDL are very high in the fiber direction, but very low transverse
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Fig. 11. Lamination scheme for property tailoring in the design of composite materials.

to fibers. To meet the necessary strength and stiffness requirements in transverse

direction, two or more laminae having different fiber directions are stacked together

to make a ‘composite laminate’ (see Fig. 11). The sequence of fiber orientations for

laminae from top to the bottom is known as ‘layup configuration’, and its choice and

optimization is an important step in achieving desired directional properties for the

composite structure. For an undamaged laminate, the stress state in each lamina is

constant and plane stress except at the free edges where it is three dimensional. The

stresses, strains and effective stiffness properties in the laminate can be obtained by

the so called ‘classical laminated plate theory’ (CLPT) [147].

A schematic description of damage development in composite laminates in ten-

sion is depicted in Fig. 12 (based on [46, 87]), where the five identifiable damage

mechanisms are indicated in the order of their occurrence. Although the figure is

developed on the basis of fatigue experiments, it provides the basic details for quasi-

static loading.

In the early stage of damage accumulation, multiple matrix cracking dominates

in the layers which have fibers aligned transverse to the applied load direction. Static

tensile tests on cross-ply laminates have shown that the transverse matrix cracks can

initiate as early as at about 0.4-0.5% applied strain depending upon the laminate
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configuration. They initiate from the locations of defects such as voids, or areas of

high fiber volume fraction or resin rich areas. Ply cracks grow unstably through width

direction and quickly span the specimen width. As the applied load is increased (or

the specimen is cyclically loaded), more and more cracks appear. The accumulation

of ply cracks in a cracked ply is depicted in Fig. 13 (redrawn from [55], based on X-ray

radiographs reported in [99]). Initially these cracks are irregularly spaced and isolated

from each other, i.e., have no interaction among themselves. However, as cracks

become closer they start interacting, i.e., the in-between tensile stresses diminish and

can no longer build up to earlier levels. Thus further increase in load is required

to produce new cracks. This is well illustrated in Fig. 14, reproduced from [46],

by plots of diminishing crack spacing versus load or number of cycles. The state at

which crack density saturates, often reached only under fatigue loading, is termed as

‘Critical Damage State’ (CDS) [46]. This state seems to mark the termination of the

intralaminar cracking.

Subsequent loading causes initiation of cracks transverse to the primary (in-

tralaminar) cracks lying in plies adjacent to the ones with those primary cracks (see

Fig. 12). These cracks, known as secondary cracks, are small in size and they can

cause interfacial debonding, thereby initiating interlaminar cracks. The interlaminar

cracks are also initially small, isolated and distributed in the interlaminar planes.

Subsequently, some interlaminar cracks merge into strip-like zones leading to large

scale delaminations. This results into the loss of the integrity of the laminate in those

regions. Further development of damage is highly localized, increasing unstably and

involving large scale fiber breakage. The final failure event is manifested by the for-

mation of a failure path through the locally failed regions and is therefore highly

stochastic.

Our focus here is to analyze sub-critical damage related to the intralaminar
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Fig. 12. Damage development in composite laminates (based on [46,87]).

cracking. Intralaminar or transverse ply cracking causes loss of stiffness properties in

the laminate. The field of ‘damage mechanics’ caters to the development of methods

to predict the initiation, and growth of intralaminar cracks, and their effect on the

overall stiffness properties of the laminate.

B. Complexity of Analyzing Ply Cracking in Multidirectional Laminates

The major issues in analyzing damage in a multidirectional laminate are given below:

1. Anisotropy & heterogeneity: All the laminate analysis in the literature is based

on the assumption that the plies are homogeneous and orthotropic. This is

a valid assumption for undamaged laminates for general membrane force and

moment loading. Here, the resulting laminate stresses are either constant or
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Fig. 13. Accumulation of intralaminar cracks in an off-axis ply of a composite laminate.

The figure is redrawn from [55], based on X-ray radiographs reported in [99].

Fig. 14. Spacing of cracks in −45◦ plies of [0/90/± 45]s graphite/epoxy laminates as

a function of quasi-static and fatigue loading (source: [46]).
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linearly varying across ply thickness. The presence of intralaminar cracks how-

ever, may invalidate this assumption because the cracking may lead to high

stress gradients through very thin plies [55].

2. Stress singularity: Theoretically, there is a stress singularity at the crack tip,

which leads to a very high transverse shear and normal stresses near the crack

tip. In reality, however, the crack tips are blunted due to the finitely sized

fibers near to the inter-ply interface, and other nonlinear (plastic) processes.

Hence, the actual stress field in the vicinity of the crack tip is very complex,

and the usual damage procedures can not be expected to describe it accurately.

Numerical approaches, such as [150], can only accurately model stress gradients

at the crack tip.

3. Interaction between cracks: At sufficient crack densities, the stress fields around

two adjacent cracks in a ply start interacting, thereby relaxing the region in be-

tween those two cracks. This crack interaction affects the crack surface displace-

ments as well as the overall stress fields. Accurate modeling of crack interaction

is a complex task.

4. Three dimensionality of the boundary value problem: Following all the previous

points, and realizing that in a real scenario the cracks may be curved, irregularly

spaced, or not fully grown through the laminate width, we get the full picture

of a complex 3D boundary value problem (BVP) arising out of intralaminar

cracking. In a cracked cross-ply laminate, along with the assumption that all

cracks are periodic, straight and fully grown, the resulting BVP can be reduced

to a generalized plane strain problem. The off-axis ply cracking can however

result into a truly 3D BVP, and any generalization to a 2D scenario cannot

provide accurate predictions.
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5. Difficulty in RVE definition: To apply elasticity theory to a composite material

body, it is important that the RVE size is sufficiently large enough to contain

many micro-entities, and that the whole composite structure is itself much larger

than RVE, i.e., Lmicro << LRV E << Lmacro. It is difficult to meet this definition

while choosing an RVE for a cracked laminate. A typical ply may have thickness

of the order of 0.2 mm, while typical fiber diameter is of the order of 0.01 mm.

At typical fiber volume fraction 0.60, a ply can accommodate about 15 fibers.

A typical 2D RVE for damage analysis may be about 10× 10 fibers size. This

is not fully consistent with the definition of effective media, because crack tip

uncertainty regions may not be very small compared to crack size (i.e., ply

thickness) and RVE size is of the same order as of the macrosize [55].

6. Multiscale effects: Reinforcing the previous point, there are multiple scales in-

volved in damage analysis. Transverse cracks initiate from material defects,

which can be of much smaller scale than the laminate. Additionally, the struc-

ture made of the laminate, e.g., an aircraft wing, may involve analysis at a much

larger scale. Thus the damage analysis procedure should be easily integrable

with the structural integrity analysis module.

7. Constraint effects: In a cracked laminate, stress perturbations are caused by

the surface displacements of the ply cracks in response to the applied loading.

These surface displacements do not occur freely, as they would if the cracks were

to lie in a homogeneous ply of infinite thickness, but are affected by constraint

from the neighboring plies. Understanding these constraint effects is the key in

determining the effective properties of cracked laminate. Following Talreja [87,

145], they can be classified in four categories: A-no constraint; B-low constraint;

C-high constraint, and D-full constraint. Considering [0m/90n]s laminate, for
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example, the constraint of 0◦ plies on 90◦ cracks will decrease as ‘n’ increases,

or if ‘m’ decreases, or if the 0◦ ply is somehow made less stiffer (by using a

different material). This will force the surface displacements of cracks in 90◦

plies to increase in magnitude, thereby affecting the overall stiffness properties to

a greater degree. The stress-strain response in the four categories, illustrated in

Fig. 15 (source: [145]), clearly shows widely different characteristics, resembling

an elastic-plastic behavior for constraint type A at one extreme, and linear

elastic behavior for constraint type D at the other extreme. The constraint

effect in a real scenario is usually somewhere in between the two and has to be

determined/modeled accurately in a damage analysis.

8. Complexity of off-axis ply cracking: Unlike in cross-ply laminates, transverse

cracking in off-axis plies of orientations other than 90◦ can be extremely com-

plex. Morphological observations suggest that these cracks may be partially

grown, erratic in shape, size, and distribution [60, 108]. Raman Spectroscopy

experiments on [0/45]s laminates showed that a crack developing in the 45◦

ply behaves differently from a similar crack in the 90◦ ply of a cross-ply lami-

nate [133], which seemed to suggest that the initiation and propagation strains

for 45◦ were different. For the laminates containing a 90◦ ply, the cracks usually

initiate in that ply, while cracks in other off-axis plies initiate at higher load-

ing. The observations on multidirectional laminates indicate that intersecting

angle between the two plies may have significant effects on damage initiation

and progression. When the intersecting angle is small, micro-formed cracks are

observed before propagation in the fiber direction. However, developed cracks

mainly form in the cases of large intersecting angles [126]. The damage devel-

opment in the 60◦ ply of a [0/602/90]s is shown in Fig. 16, taken from [126].
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Moreover, shear-extension coupling may introduce some additional complexity

in analysis of off-axis laminates [119,120].

9. Multiple damage modes: Multidirectional laminates, having plies in different

orientations may develop ply cracks in multiple plies with different orientations

because cracks grow parallel to the fibers in a cracked ply. This means there

could be crack systems in a number of orientations, with each family of cracks

constituting a particular cracking mode, which can interact and perturb stress

fields. Obviously, analyzing such a cracked laminate is extremely complex, and

even numerical methods may not fully cope with the situation, as defining a

representative unit cell for analysis can be too demanding, and may sometimes

be impossible.

10. Randomness in cracking process: In general, all damage models assume a uni-

form longitudinal distribution of transverse cracks, i.e., they are assumed to be

periodic and self-similar. This neglects the effect of variations in crack spacing

that are considerable in some cases. Recently, there have been some develop-

ments to account for the influence of the spatial scatter of matrix cracking on

the stress transfer and the effective mechanical properties of cracked cross-ply

laminates [129,138,139].

11. Multiple damage mechanisms: Since damage in composites may occur due to

multiple processes, they need to be characterized appropriately to fully analyze

the laminated structure. Here, our focus is on transverse cracking, which usu-

ally occurs much before other damage mechanisms such as delaminations, fiber

fracture etc. may occur. Influence or interaction from manufacturing induced

defects like voids, fiber clusters may further complicate the analysis. They may

become important for failure analysis of ‘Short Fiber Composites’ (SFC), and
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Fig. 15. Schematic stress-strain response of cross-ply laminates at different constraint

to transverse cracking, reproduced from [145].

are dealt in [151–156].

The above list of complex issues governing analysis of cracked laminates, even for

simple configurations, may overwhelm any analyst. It is obvious that accurate stress

analysis for a cracked laminate with a general layup is extremely demanding, and can

be obtained only through computational means. There is still a silver-lining. The

effects of the crack tip are highly localized, and cannot induce appreciable conse-

quences on the overall stiffness properties. This is the major motivation for the CDM

approaches, which do not worry too much about the complexity of stress field inside

a cracked laminate, but focus on the prediction of effective properties. It is highly

unlikely to address all the above issues, and we will simplify the development as and
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when necessary. Our main focus will be to formulate a methodology which can be

applied to many practical laminate sequences, while preserving the essential aspects

of off-axis ply cracking.

C. Modeling of Ply Cracking in Multidirectional Composite Laminates

Consider a laminate consisting of plies of various fiber orientations loaded in tension

along the longitudinal direction. Each lamina within the laminate will develop a

state of plane stress, which can be different for different plies depending upon their

orientation, thickness and material properties. When the stress exceeds the threshold

for initiation of matrix cracking, one or more off-axis plies may develop cracks along

fibers. We shall call these plies as cracked plies, and the remaining plies as constraining

plies. Also, for a given cracked ply, all the surrounding plies, whether cracked (in

orientation different than the current ply) or uncracked, will constrain the motion of

cracked surfaces.

An example of an multidirectional laminate undergoing transverse cracking in

multiple off-axis plies is shown in Fig. 17 (adapted from [91]). All the developed

methods to meet the objectives mentioned above can be broadly categorized in two

approaches: Micro Damage Mechanics and Continuum Damage Mechanics.

1. Micro Damage Mechanics

Micro damage mechanics (MDM) basically tries to solve the boundary value problem

arising out of damaged microstructure and evaluate the resulting stress and displace-

ment fields in the vicinity of damage entities. It would appear at first that MDM

must be an obvious choice because it provides more insight into the mechanics of

damage processes and their effects on modifying the stress and strain fields in the
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Fig. 16. Consecutive matrix cracking behavior in contiguous plies in a [0/602/90]s

laminate (source: [126]).
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Fig. 17. A schematic representation of an off-axis laminate ([0/45/90]s) laminate un-

dergoing ply cracking in multiple off-axis orientations during tensile loading in

longitudinal direction (adapted from [91]). The laminate coordinate system

is shown by Xi, i = 1, 2, 3.

neighboring volume. Unfortunately, it is also very difficult to carry out, since it

requires the determination of stress and displacement fields produced by many in-

teracting damage entities and can therefore be performed only for relatively simple

geometries utilizing simplifying assumptions along side. In fact, there is no MDM

solution for cracked laminates other than cross-ply ([0/90]s) and similar variations

which can yield consistent and accurate results.

1-D Shear lag models [14, 27, 34, 37, 56–58], 2-D variational methods [64–70],

self-consistent approximations [76–79], 2-D generalized plane strain models [72–75],

3-D laminate theories [41,80–86], and numerical methods [93,94,96–98] all belong to

this category. These have already been described in some detail in the introductory

chapter.

2. Continuum Damage Mechanics

Continuum Damage Mechanics (CDM) on the other hand tries to look at the stiffness

changes resulting from damage development. In CDM, the material microstructure,

e.g., distributed fibers, and the distributed damage, which may be called the mi-
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Fig. 18. Illustration of the two-step homogenization process for composites with dam-

age, redrawn from [157].

crodamage structure, are treated as smeared-out fields. For evaluating the effective

properties of the continuum body, the continuum is homogenized using a two step

homogenization procedure (see Fig. 18 redrawn from [157]), where the material mi-

crostructure is viewed as consisting of “stationary” entities, e.g., fibers and plies,

and the microdamage structure is considered as a family of “evolving entities”, e.g.,

cracks. In the first step, the stationary microstructure of the composite material (e.g.,

fibers, plies) are smeared into a homogeneous, anisotropic material. In the next step,

the evolving microstructure (damage entities) are smeared into a homogeneous field

represented by suitable internal variables. A set of response functions are expressed in

terms of the field variables (stress, strain, temperature), and internal variables which

represent the smeared-out field of evolving damage entities.

Following Talreja [87,89], the damage is characterized using a second order tensor

called the ‘damage mode tensor’. Consider an RVE containing a representative sample
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of damage entities, around a generic point P in the solid body (Fig. 18). Focusing on

a typical damage entity within RVE, let it be bounded by a surface S, and associate

two vectors ai and ni with a point on the damage surface S, such that the vector

ai represents some pre-specified influence (e.g., displacement, extent of disturbance)

of the considered point on the surrounding volume, and ni is a unit outward normal

to the surface as shown in Fig. 18. Let the surface integral of dyadic product ainj,

described by a second order tensor, be given as

dij =

∮
S

ainjdS (2.1)

The total set of damage entities may be divided in subsets of entities having same

geometrical characteristics (orientation, shape, etc.) and termed as damage modes.

For example, matrix cracks may constitute one damage mode, while fiber/matrix

debonds may constitute another. Also, matrix cracks in different orientations may be

grouped into different damage modes. Assuming that there are N damage entities of

a given mode α in the RVE, the damage mode tensor is defined by

D
(α)
ij =

1

V

N∑
kα

(dij)kα (2.2)

Following the theory of thermodynamics with internal variables developed by Cole-

man and Gurtin [158], the thermomechanical response of a composite body can be

represented by a set of response functions consisting of the Cauchy stress tensor σij,

the specific Helmholtz free energy ψ, the specific entropy η, the heat flux vector qi, and

a set of damage rate tensors Ḋα
ij. The thermodynamic state of the body is given by

the strain tensor εij, the absolute temperature T , the temperature gradient gi = T,i,

and a set of damage tensors Dα
ij. Assuming the Truesdell’s principle of equipresence,
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we have

σij = σij

(
εkl, T, gk, D

(α)
kl

)
ψ = ψ

(
εkl, T, gk, D

(α)
kl

)
η = η

(
εkl, T, gk, D

(α)
kl

)
q = q

(
εkl, T, gk, D

(α)
kl

)
Ḋ

(α)
kl = Ḋ

(α)
kl

(
εkl, T, gk, D

(β)
kl

)
(2.3)

Invoking the Clausius-Duhem inequality, we obtain [87,89]

σij = ρ
∂ψ

∂εkl
(2.4)

η = −∂ψ
∂T

(2.5)

and

∂ψ

∂gi
= 0 (2.6)

This reduces the function dependence of variables in Eq. (2.3). Considering only σij

for a purely mechanical response (at constant temperature), we get

σij = ρ
∂ψ

∂εkl
(2.7)

where

ψ = ψ
(
εkl, D

(α)
kl

)
(2.8)

Thus, the constitutive relation for a damaged composite body is given by

Cijkl = ρ
∂2ψ

(
εkl, D

(α)
kl

)
∂εij∂εkl

(2.9)

Here it is important to note that the Helmholtz free energy ψ is a function of damage

mode tensor. In CDM [87, 89], ψ is written as a polynomial function in strain and
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damage mode terms such that the material symmetries present in the solid body are

exploited by using the so called integrity bases [159,160].

D. Synergistic Damage Mechanics (SDM)

Obviously, the CDM approach is quite versatile, and can be used for any laminate con-

figuration. However, it needs determination of certain phenomenological constants,

which requires experimentation or computational simulations. Additionally, these

constants need to be determined whenever laminate material or layup changes. This

is a major limitation which puts a question mark on its practical applicability.

Fortunately, the past experience has shown these phenomenological constants are

primarily determined by the constituent ply properties and are negligibly affected by

the ply orientations [106]. This assumption was found to hold for [±θ/902]s laminates

of carbon/epoxy [142] and of glass/epoxy laminates [161]. For intralaminar cracking

in an off-axis lamina with ply orientation θ with respect to the loading direction, the

elements of damage mode tensor can be represented as [87]

D
(α)
ij =

κθt
2
c

st sin θ
ninj (2.10)

where κθ, known as the ‘constraint parameter’, is a parameter characterizing the

displacement of the crack surfaces. The change in κ measures the effect of ply ori-

entation on the crack opening displacement (COD). Since the energy stored in the

system changes according to how much these crack surfaces move, average COD is a

good measure of change in the overall stiffness properties of a cracked laminate. Also,

the average COD in a cracked laminate is less sensitive to the stress singularities, and

can be determined through a suitable computational or analytical procedure. The

most suitable way to determine is by using micromechanics of the damaged lami-
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nate. Hence, if we assume the phenomenological constants to be independent of the

ply orientation, for a given laminate system, and can find the relative change in the

constraint parameter, we can characterize stiffness changes in a variety of laminate

configurations. This is the basic idea behind the ‘Synergistic Damage Mechanics’

(SDM) which combines the strengths of CDM and MDM. MDM can provide an easy

solution to the constraint parameter, and by using this parameter into CDM formu-

lation, we can predict stiffness changes in a multidirectional laminate.

In fact, some studies on analysis of stiffness degradation in cross-ply laminates

have identified that the stiffness changes can be directly expressed in terms of av-

erage COD [162, 163]. For example, Varna et al. [163] demonstrated that the rate

of reduction in longitudinal modulus is directly related to average COD. They com-

pared shear lag and variational approaches and recognized that the major difference

between these analyses is how they model average COD.

The basic steps in damage analysis using the SDM approach are shown in Fig.

19. As an example consider [±θ/904]s laminates. Suppose, for the given material, we

have stiffness degradation results available to us for [02/904]s laminate. We call it the

reference laminate. Applying the CDM stiffness-damage relationships (see,e.g. [106]),

we can obtain the damage constants. For this step, we essentially require E1, E2, ν12,

and G12 for the damaged cross-ply laminate at a fixed crack density. Being a cross-ply,

stiffness changes can be easily obtained, either by experiments, numerical simulations,

or by an MDM approach, such as the variational approach. In a separate step, we

determine average COD for [±θ/904]s laminate as θ varies. Since the average COD

carries the constraint effects appropriately, the relative change in average COD as θ

varies gives us the relative constraint parameter. Then, the SDM stiffness-damage

relationships are utilized to obtain stiffness changes for a [±θ/904]s laminates. If we

are concerned in the analysis of a structure made of [±θ/904]s laminates, the SDM
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COMPUTATIONAL MICROMECHANICS

Determine COD and constraint parameter(s)

Structural scale: Micro

EXPERIMENTAL/
COMPUTATIONAL

Evaluate damage constants
using the experimental

or computational results
for the reference laminate

configuration

SYNERGISTIC DAMAGE MECHANICS

Use SDM to determine stiffness reduction in
present laminate configuration

Structural scale: Meso

STRUCTURAL ANALYSIS

Analyze overall structural response to external
loading using the reduced stiffness properties

Structural scale: Macro

Fig. 19. Flowchart showing the multi-scale synergistic methodology for analyzing dam-

age behavior in a class of symmetric laminates.

approach can be linked in a multiscale framework to update the structural stiffness

as and when damage initiates and progresses.

The SDM approach has been successfully verified for [±θ/902]s carbon/epoxy

laminates [142], and [±θ/904]s glass/epoxy laminates [104, 106, 161]. The approach

has also been extended for damage analysis of viscoelastic cross-ply laminates [144].

In this study, we extend it to the multidirectional laminates with multiple damage

modes.

E. Assumptions

Before we proceed to the implementation of SDM methodology, we would like to point

out the assumptions made in the present study:
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1. A unidirectional ply is considered to be homogeneous and orthotropic. To obtain

3D orthotropic properties, a lamina is assumed to be transversely isotropic.

Perfect bonding between fibers and matrix, and a uniform distribution of fibers

is assumed.

2. The analysis does not consider any residual stresses, either formed during man-

ufacturing process or by thermal effects.

3. Laminates are considered to be symmetric about the mid-plane.

4. The laminate material is assumed to behave elastically.

5. All the cracks are considered periodic, planar and fully developed. However, a

way to account for partial cracks, specially in non-dominant damage modes, is

also discussed while modeling damage in quasi-isotropic laminates.

F. Summary

The composite laminates can “perform” satisfactorily in the presence of sub-critical

damage to some level. Intralaminar cracking, usually the first mode of damage affects

is a complex process which affect the stiffness properties of the laminates. This chap-

ter highlighted some of the issues which mechanics researchers face while modeling

transverse cracking in composite laminates. Analysis of off-axis ply cracking is even

more complex owing due to multiplicity of crack paths, and hence the two common

strategies used presently, continuum damage mechanics and micro damage mechan-

ics, both fail to accurately model this scenario. A practical solution is to combine

these two approaches so that they complement each other and such a methodology,

termed as the synergistic damage mechanics, is described in the chapter.
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CHAPTER III

FINITE ELEMENT MODELING OF CRACKED COMPOSITE LAMINATES

A. Introduction

Computational micromechanics is an essential component of the SDM approach (see

Fig. 19). It helps us determine the change in average COD as the laminate configu-

ration is changed. In a general sense, the average COD in a cracked off-axis ply of a

composite laminate depends upon the ply material, ply thickness, ply orientation and

the constraint effects of the supporting plies. Due to heterogeneity in the composite

laminates and constraint effects on crack surfaces from the surrounding uncracked

plies makes it is impossible to derive exact analytical solutions. It should be pointed

that some researchers, e.g. [81,82,164], use approximate analytical solutions for COD

in their damage models. In their models, the crack surface displacements are assumed

to be equal to those for a single crack in an infinite, homogeneous transversely isotropic

medium. Obviously, this assumption is not accurate for the constrained cracking in

a multidirectional composite laminate, because it does not consider the effect of ply

orientation and the interaction between cracks in the same and different cracked lay-

ers. In fact, these solutions are not even true for a cross-ply laminate. More accurate

COD modeling has been performed by Varna and his colleagues [162, 163] using 2D

and 3D FE modeling for cross-ply laminates. When the average COD, determined

experimentally or numerically, is used in combination with the CDM approach, con-

sistent predictions for stiffness degradation can be obtained [105,106,109,161]. Also,

detailed parametric calculations [106], on cross-ply laminates have shown that the

average COD can be expressed as a function of material and geometry parameters.

For example, for [S/90]s glass/epoxy laminates, where S represents the sublaminate,
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the average COD can be expressed by [84,85]

uan = A+B

(
E2

Es
x

)n
(3.1)

where A,B and n are given by

A = 0.52,

B = 0.3075 + 0.1652

(
t90 − 2ts

2ts

)
n = 0.030667

(
t90

2ts

)2

− 0.0626

(
t90

2ts

)
+ 0.7037 (3.2)

where uan = ua
E2

t90σ20

is the normalized average COD, with E2 is the transverse

modulus for ply material, t90 and ts are the thicknesses for 90◦ and sublaminate plies,

respectively, Es
x is the effective longitudinal modulus for uncracked sublaminate, and

σ20 is the far away stress in the 90◦ ply in the laminate longitude direction.

In the present chapter, the 3D FE modeling for cracked multidirectional com-

posite laminates will be described. FE analysis carried out in the present study will

utilized for the following purposes:

1. Calculation and analysis of average crack surface displacements (COD and

CSD), and the constraint parameter(s) derived from them,

2. Calculation of stiffness changes for a fixed state of damage (crack density),

3. Verification of SDM predictions, in cases where experimental data is not avail-

able, and

4. Parametric study of stiffness changes due to change in material and geometry

parameters for the laminate.

An obvious advantage of FE computations is the accuracy of displacement fields.
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B. FE Modeling Strategy

Although some analyses in literature use 2-D generalized FE models even for damage

in off-axis plies, e.g. in [0/90/∓45]s laminates [94], the boundary value problem for a

multidirectional laminate necessitates a 3-D analysis. It should be noted, however, it

is not easy to define a repeating unit cell for a multidirectional laminate undergoing

cracking multiple layers. A repeating unit cell can be defined upto a maximum of

two off-axis cracking modes, utilizing a skewed RVE in FE modeling (refer [165,166]

for more details). But, the application of periodic boundary conditions in a skewed

RVE is a complex task. Fortunately, for our purpose here, we need average surface

displacements and stiffness properties, and they are less sensitive to periodicity. Thus,

it makes more sense to develop simpler FE models, which carry the essential aspects of

the cracking process and the external loading. On the other hand, if one is interested

in actual stress fields inside the cracked laminate, it is essential to model the periodic

conditions accurately, and we suggest the use of a skewed RVE for such analysis.

The second issue in developing unit cell for multidirectional laminates is that

the different crack systems in different cracked plies may have different densities. If

a laminate contains a 90◦ layer, it is expected that for most of the time during the

damage development that 90◦ crack density is the highest. This is true except at

very high loads because 90◦ cracking will start well before other plies start developing

cracks, and till sufficient load levels, other plies may not even develop fully grown

cracks before the laminate fails by delamination. Hence, for the worst case scenario,

we can assume the same crack densities in 90◦ and other cracked layers.

The interaction between adjacent cracks in a layer can be easily modeled by

varying the length of unit cell, i.e., by varying the crack spacing. This requires

multiple FE calculations. The present SDM approach, is a linear model with respect
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to the crack density variation. Hence, we require COD calculation at one crack

spacing only. For the calculation of average COD, to be used in SDM, we choose

a very high crack spacing to avoid any interaction between cracks. But, as will be

shown later, the prediction of damage progression requires determination of average

COD and CSD as a function of crack spacing, and there multiple FE calculations

are necessary. Also, for verification of SDM predictions for stiffness changes in cases

where experimental data is not available, we carry out FE calculations at varying

crack densities.

It is also quite possible that the crack systems in different damage modes may

interact and affect average COD. Because the crack spacing in the two crack systems

may be different, we simulated two scenarios:

1. Case 1: Maximum interaction between different damage modes - For this, the

FE models contained cracks in all possible damage modes.

2. Case 2: No interaction between different damage modes - For this, cracks were

assumed to exist only in the layer in consideration. This way if the laminate

contained three damage modes, FE analysis were performed three times, with

only one active damage mode each time. This was achieved by closing all the

nodes on surfaces of inactive cracks.

The above scenarios represent extreme material behavior and the real situation will

be somewhere in between. To determine the exact response of a laminate undergo-

ing cracking in multiple damage modes, the information regarding crack densities in

different layers is necessary.

The representative geometric model for [0/ ± θ4/01/2]s, as shown in Fig. 20,

represents the damage model with two damage modes and contains cracks in +θ and

−θ plies. The models for [0m/±θn/90r]s and [0m/90r/∓θn]s laminate configurations,
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shown in Fig. 21, represent the case with three damage modes, and contain cracks in

90◦, +θ and −θ plies. The boundary conditions and the local and global coordinate

systems are also shown in the figures.

In a periodic unit cell, the periodicity in the displacement and stress fields are

represented by

ui (xα + ∆xα) = ui (xα) + ∆xβ

〈
∂ui
∂xβ

〉
εij (xα + ∆xα) = εij (xα)

σij (xα + ∆xα) = σij (xα)

(3.3)

where ui,
〈
∂ui
∂xβ

〉
, and ∆xβ, i, α, β = 1, 2, 3, are the displacements, the volume average

displacement gradients, and the vector of periodicity, respectively.

Assuming a periodic array of fully developed ply cracks in off-axis plies, the

periodicity in the laminate longitude direction (X1) is automatically satisfied by the

present choice of FE models. However, the periodicity in the laminate width direction

is not modeled here because the representative unit cells shown in Figs. 20-21 are

not repeatable in the X2 direction. To avoid errors due to free edges of the unit

cells, the width of unit cells is chosen large as compared to the ply thicknesses.

The exact application of periodic boundary conditions requires a more sophisticated

RVE definition, and can be obtained by using a skewed RVE. A recently submitted

work [166] on FE modeling of a skewed RVE with cracks in +θ, and −θ plies in

[0/ ± θ4/01/2]s, and [0/ ± 45/0]s laminates provides the details this issue. For three

damage modes, such as [0m/± θn/90r]s considered here, definition of a periodic unit

cell is not possible, and some simplification is necessary.

The in-plane material properties in the analysis were obtained from the literature.

To obtain the remaining properties for use in the 3-D model, the unidirectional ply

is assumed transversely isotropic in the cross-sectional plane.

The mid-plane symmetry of the laminate was accounted for in the FE models.
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(u1)X1=0 = 0 (u1)X1=2l = u0

(u3)X3=0 = 0

(symmetry about mid-plane)

0 layer

+θ4 layer

−θ4 layer

01/2 layer

X1

X2

X3

x
y

z

X1, X2, X3: Laminate Coordinate System

x, y, z: Crack-plane Coordinate System

Fig. 20. A representative unit cell for FE analysis of [0/± θ4/01/2]s laminate.
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Fig. 21. Representative unit cells for FE analysis of [0m/±θn/90r]s and [0m/90r/∓θn]s

laminates.
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The matrix cracks were taken to have grown across the entire width of the specimen.

ANSYS SOLID45 (eight-noded isoparametric) elements were used. Each FE model

contained a large number of elements. Mesh density was varied to arrive at an opti-

mum level of accuracy and complexity of the 3-D FE model. Mapped meshing was

utilized to flow the mesh smoothly through the thickness. Aspect ratio of elements

near the crack surfaces was kept close to 1.0 for better accuracy. Linear Elastic FE

analyses were carried out using ANSYS version 9.0-11.0 at strain levels ranging from

0.1% to 1.0%. Displacement boundary conditions were applied by constraining the

left end of the unit cell and providing required displacement at the right end, such

that,

(u1)X1=0 = 0; (u1)X1=2l = u0; (u3)X3=0 = 0 (symmetry) (3.4)

where ∆X1 = 2l and u0 represent the length of unit cell and the applied displacement,

respectively, in the laminate longitudinal direction. The ply orientation was modeled

using a elemental coordinate transformation.

C. Post-processing

The crack opening displacements are calculated in the lamina coordinate system

(x, y, z) by calculating the difference of nodal displacements on the two sides of a

crack surface normal to the fiber direction and in the lamina plane, i.e., ∆uy =

u+
y − u−y , where + and − represent the right and left crack surfaces, respectively.

The total relative displacements of the crack surfaces along the laminate longitude

was calculated in the laminate global coordinate system (Xi, i = 1, 2, 3), such that,

∆uX1 = uX1
+−uX1

−. The crack sliding displacement in the lamina coordinate system

is then given by ∆ux =
√

(∆uX1)
2 − (∆uy)

2.

The average COD and CSD are then determined by averaging the surface dis-
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placements first along the fiber direction in each cracked ply, then averaging the result

across the ply thickness. Thus, they are given as

∆uy =
1

tc

∫ tc/2

−tc/2
∆uy(z) dz (3.5)

and,

∆ux =
1

tc

∫ tc/2

−tc/2
∆ux(z) dz (3.6)

where ∆uy, and ∆ux represent the separation of crack planes in the direction normal

and parallel to the crack face, respectively.

For the calculations of average stiffness properties at a fixed crack density, the

following homogenization relation is utilized:

〈∗〉 =
1

VRV E

∫
V

∗ dV (3.7)

where 〈∗〉 represents the volume average of the variable ∗, and VRV E is the volume

of the RVE. Thus, the average longitudinal modulus and the Poisson’s ratio of the

damaged laminate were obtained using the volume averaging of stresses and strains

as given by the following equations

E1 =
〈σ11〉
〈ε11〉 =

1
VRV E

∫
V
σ11 dV

u0/2l
(3.8)

ν12 = −〈ε22〉
〈ε11〉 = −

1
VRV E

∫
V
ε22 dV

u0/2l
(3.9)

D. Validation

Since this is possibly the first 3D FE modeling utilized for cracked multidirectional

composite laminates, the modeling approach is verified with the published experi-

mental data for both cross-ply and off-axis laminates.
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1. Cross-ply Laminates: [0m/90n]s

The stiffness degradation in glass/epoxy [0m/90n]s were simulated using the FE mod-

eling approach described above. The models were created to have an equivalent crack

density varying from 0.1 to 2.0 cracks/mm, in steps of 0.1 cracks/mm. The variation

of the longitudinal modulus and the Poisson’s ratio are shown in Fig. 22 for [0/902]s

laminate, and in Fig. 23 for [02/902]s laminate. The experimental data shown is taken

from reference [84]. Clearly the FE predictions are in excellent agreement with the

experimental data for both laminate sequences and both for the longitudinal modulus

and the Poisson’s ratio. It can be observed that the stiffness reductions are of smaller

magnitude for [02/902]s laminate than [0/902]s laminate. This is due to the higher

constraint on the opening of 90◦ in [02/902]s laminate than in the [0/902]s laminate,

as the 0◦ ply is thicker in the former case. Another point to observe is that FE simu-

lations accurately follow the nonlinear shape of the reduction plots. This shows that

the interaction between adjacent cracks is being modeled correctly.

2. Off-axis Laminates: [0/± θ4/01/2]s

In the above sub-section, we have verified the stiffness degradation modeling using

FEM for a cross-ply laminate. For the case of off-axis ply cracking in multidirec-

tional laminates, we considered [0/ ± θ4/01/2]s glass-epoxy laminates, for which ex-

perimental data is reported in [109]. In this case, 3D FE models were constructed

for θ = 90◦, 70◦, 55◦, 40◦ and 25◦, and for varying crack density along X1 direction.

Linear FE analyses using ANSYS 10.0 were conducted for varying crack spacing,

sθ = 16, 8, 4, 3, 2, 1.5, 1.25, 1, 0.75, 0.6 and 0.5 mm. Figs. 24-25 compare FE simula-

tions with the published experimental data [109] for [0/908/01/2]s and [0/±704/01/2]s

laminate configurations. As can be seen these simulations show excellent agreement
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Fig. 22. Comparison of FE simulated stiffness properties for [0/902]s laminates with

experiments reported in [84].
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Fig. 23. Comparison of FE simulated stiffness properties for [02/902]s laminates with

experiments reported in [84].
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Fig. 24. Comparison of FE simulated stiffness properties for [0/908/01/2]s laminates

with experiments reported in [109].

with the experimental data for θ = 90◦, and reasonable agreement for θ = 70◦. For

θ = 70◦, the experimental data for Poisson’s ratio shows no change beyond initial

cracking. This could be due to average data reported here, the actual experimental

measurements showed a large scatter [109]. Also, the experimental measurement of

the Poisson’s ratio of a cracked laminate is not easy to carry out and may carry some

measurement errors.

E. Summary

In this chapter, we described the finite element procedure used in the evaluation of

crack surface displacements and stiffness reductions in cracked multidirectional lam-

inates. The strategy for developing three dimensional RVE for damage analysis was

described along with the accompanying issues and simplifications. The FE simula-
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Fig. 25. Comparison of FE simulated stiffness properties for [0/±704/01/2]s laminates

with experiments reported in [109].

tions for stiffness properties were compared with the published experimental data to

verify the analysis procedure.
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CHAPTER IV

STIFFNESS CHANGES WITH TWO DAMAGE MODES1

A. Introduction

In an un-constrained uni-directional composite, such as a ply not bonded to other

plies, a uniform tensile stress applied normal to fibers will cause failure from a single

crack lying in the matrix between fibers or at the fiber/matrix interface. However,

if the composite is constrained, such as a ply within a laminate, then failure does

not result from a single crack. Instead, multiple cracks form as the applied load

increases. This phenomenon is described as multiple matrix cracking [145]. These

matrix cracks usually form first in the ply thickness direction and then grow along

fibers spanning the laminate width. Matrix cracks, usually the first mode of damage,

are not critical from a final failure point of view but can lead to a significant reduc-

tion in individual ply properties as well as in the laminate properties. Modeling of

stiffness degradation subsequent to matrix damage has been the topic of extensive

research in the recent decades, especially for cross-ply laminates ([0m/90n]s). A va-

riety of analytical approaches have been suggested, e.g., ply-discount method, shear

lag models [37, 56], variational method [64], self-consistent approximation [77], 3D

laminate theory [80] and continuum damage mechanics [88,90]. However, most of the

research work is limited to cross-ply laminates, which are easier to analyze but are

not used often in practical applications. Analyzing damage in laminates of general

layup is quite challenging due to multiplicity of damage modes and the constraints

induced on individual ply cracks by the neighboring plies.

1Reprinted from Int. J. Solids Struct., vol. 45, no. 16, C.V. Singh and R. Tal-
reja, Analysis of multiple off-axis ply cracks in composite laminates, pp. 4574–4589,
Copyright (2008), with permission from Elsevier.
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Composite laminates with off-axis plies are important for applications where

structures undergo loading combinations that necessitate use of multiple fiber orien-

tations to generate required properties. Still, damage in such laminates has not been

fully analyzed. Masters and Reifsnider [60] experimentally observed damage devel-

opment in quasi-isotropic ([0/ ± 45/90]s and [0/90/ ± 45]s) carbon-epoxy laminates

under fatigue loading. Tong et al. [108] conducted experimental investigations of ma-

trix crack growth behavior under quasi-static and fatigue loadings in quasi-isotropic

glass-epoxy [0/90/ ∓ 45]s laminates and used generalized plane-strain finite element

analysis to predict stiffness degradation and ply stress distribution [94]. However,

damage in off-axis plies is essentially a 3-D stress analysis problem and a general-

ized plane strain formulation cannot adequately address it. Other approaches such

as equivalent constraint model (ECM), in combination with the first order shear de-

formation laminated plate theory (FSDT) [113] and with a modified shear lag anal-

ysis [116], have also been attempted. Recently, Yokozeki et al. [126, 167, 168] have

analyzed laminates with obliquely crossed matrix cracks utilizing a two dimensional

shear lag analysis. Considering the complexity of the problem at hand, these works

are good starting point but they provide approximate solutions whose accuracy can-

not be fully verified as no exact analytical solutions currently exist.

To analyze the deformational response of composite laminates subsequent to ma-

trix cracking, the most direct measure of crack influence over laminate properties is

the “coefficient” of crack opening displacement (COD), i.e., average crack surface sep-

aration per unit of an applied load quantity. Only a few researchers in the past have

focused on surface displacements of ply cracks in an explicit manner. Gudmund-

son and Ostlund [80] derived analytical expressions for average stiffness properties

of cracked symmetric laminates in terms of COD. They assumed that the average

COD for matrix cracks in a composite laminate of general layup could be approxi-
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mated by the analytical solutions of an array of parallel cracks in an infinite homo-

geneous medium. However, this completely neglects the constraint effect on COD

and evaluating the consequence of such approximation is therefore necessary either

by experimental or computational means. To study COD, Varna et al. [162] devel-

oped a device to experimentally measure COD in cross-ply laminates. A separate

study [163] verified the accuracy of different analytical models for estimating COD in

cross-ply laminates. Joffe et al. [104] later used a FE plane stress model to evaluate

the average COD dependence on the crack spacing and on the constraint of adjacent

sub-laminates.

The classical CDM approach is quite efficient in predicting stiffness degradation

if certain phenomenological constants can be evaluated [23]. An experimental eval-

uation of the constants may not be easy in all cases and to alleviate this limitation,

Talreja [142] later proposed a synergistic damage mechanics (SDM) approach and

illustrated it to describe the deformational response of [±θ/902]s laminates. This

approach combines micromechanics and continuum damage mechanics judiciously to

produce a versatile methodology. The micromechanical damage mechanics, or briefly,

micro-damage mechanics (MDM) performs analysis of local stress-redistributions due

to cracking, incorporating the micro-level geometry. On the other hand, CDM, as

formulated by [88,143], allows a specific output of MDM (COD) to be used within a

representative volume element (RVE), i.e., at meso level. In this way, the synergism

between micromechanics and CDM effectively treats the multi-scale nature of dam-

age. More recently, the SDM approach has also been extended to analyze viscoelastic

behavior of composites with damage [144].

In the present study, we present a synergistic methodology to deal with matrix

cracks in plies with multiple off-axis orientations. The continuum damage mechan-

ics formulation of particular relevance to this work is the one presented by [89, 143],
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wherein the damage state in the laminate is described by second order tensors. In

the present scenario, the damage state can be suitably represented by damage mode

tensors regarding ply cracking in each orientation as an individual damage mode. The

constraint effects on the cracked plies imposed by the surrounding plies are evaluated

in terms of the COD changes in off-axis plies. CODs are determined using 3-D FE

analysis and then subsequently used in the CDM model through the constraint pa-

rameter to predict the stiffness properties of the degraded laminate. The CODs are

evaluated at different applied strains and the variation in these is checked against the

experimental values at 0.4% and 0.6% strains. The strength of SDM approach lies

in accurate COD calculation using computational micromechanics and an accurate

damage description using CDM. Thus, SDM promises to be a pragmatic solution to

the damage analysis problem for laminates with complex layups for which analytical

results are difficult to derive. In order to make the SDM approach more versatile,

detailed parametric studies are conducted to study the variables which may affect

the constraint of un-cracked plies over cracked plies. Using these parametric studies,

a master equation for CODs in terms of geometry and material variables is pro-

posed. Also, the profile of average crack surface displacements through thickness of

the cracked ply is studied for different laminate configurations. Finally, stiffness mod-

uli for [0m/± θn/0m/2]s laminates are predicted for different stiffness and thicknesses

of cracked and supporting plies.

B. Damage Characterization and Elastic Response for Two Damage Modes

Consider a symmetric laminate with a general layup (see Fig. 9 on page 24), e.g.

[0m/ ± θn/φp]s, loaded in axial tension, with φ restricted to angles which do not

cause cracking. The loading will produce an in-plane stress state in each off-axis ply
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consisting of normal stresses along and perpendicular to fibers in that ply and a shear

stress in the plane of the ply. Depending on the values of θ, φ and ply properties, the

stress perpendicular to the fibers could be tensile or compressive. Thus, on loading,

an off-axis ply may or may not develop intralaminar cracks. When θ = 90◦ the matrix

will undergo multiple cracking in the transverse plies. For other cases of off-axis ply

orientations, multiple cracking is typically observed to occur for angles from 50◦ to

90◦. However, it has been observed that even in cases where these cracks do not

initiate in the off-axis plies, the laminate moduli change with the applied load due to

shear stress induced damage within the plies [109].

Fig. 26. A representative volume element (RVE) illustrating intralaminar multiple

cracking in a general off-axis ply of a composite laminate.
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When cracks are formed, the opening and sliding of crack surfaces alter the stress

and strain states in the cracked plies, thereby changing the global deformational

response of the laminate. The damage state in the laminate representative volume

element (RVE) can be described suitably by a set of second order tensors [89, 143].

Fig. 26 shows an RVE of a general laminate with an array of transverse cracks in

an off-axis ply. For simplicity in presentation cracks are shown in only one off-axis

ply. However, it is understood that transverse cracks may develop in multiple off-axis

plies of a general laminate. Assuming these matrix cracks to be fully grown parallel

to the fiber direction in each lamina, the family of cracks in a given lamina can be

represented by a separate damage modes. In this way a general laminate with cracks

in plies of multiple orientations can be characterized suitably using multiple damage

modes. At present, it is assumed that the interactions between different damage

modes are negligible.

For [0m/± θn/φp]s laminates with cracks in +θn and −θn plies, the damage state

can be represented by two damage mode tensors, one each for matrix cracking in +θn

plies and −θn plies. Assuming that there are N damage entities of a given damage

mode α in the RVE, the damage tensor is defined as [87,89]

D
(α)
ij =

1

V

∑
kα

[∮
S

ainj dS

]
kα

(4.1)

where ni = (sin θ, cos θ, 0) are components of the unit vector normal to a matrix crack

plane in the off-axis ply of orientation θ with respect to laminate longitudinal axis,

V is volume of RVE and kα = 1, 2, ..., N . The tensor Dij is an asymmetric tensor

in general. However, we can represent the vector ai along the normal and tangential

directions at any point on the surface of the damage entity and write

dij = d1
ij + d2

ij (4.2)
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where

d1
ij =

∮
S

aninj dS (4.3)

and

d1
ij =

∮
S

bminj dS (4.4)

Here a and b are the magnitudes of the normal and tangential projections of vector

ai, and vectors ni, and mj are unit normal and tangential vectors, respectively. Thus

the damage damage mode tensor Dij can be written as

D
(α)
ij = D

1(α)
ij +D

2(α)
ij (4.5)

where

D
1(α)
ij =

1

V

∑
kα

(
d1
ij

)
kα

(4.6)

and

D
2(α)
ij =

1

V

∑
kα

(
d2
ij

)
kα

(4.7)

Physically, the damage tensor D
1(α)
ij represents the effects of crack opening on the

surrounding medium whereas tensor D
2(α)
ij represents the effects of sliding between

the two crack faces. For intralaminar cracks constrained by stiff plies, the sliding

between the crack faces can be negligible, and hence we assume D
2(α)
ij ≡ 0. This

implies D
(α)
ij = D

1(α)
ij which is a symmetric tensor. For intralaminar cracking in an

off-axis ply, the volume of the RVE V , the surface area of a crack, S, and the influence

vector magnitude, a, are specified as

V = L.W.t (4.8)

S =
tc.W

| sin θ| (4.9)

a = κ.tc (4.10)
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where κ, called the constraint parameter, is an unspecified constant of (assumed)

proportionality between a and the crack size tc (also cracked-ply thickness), L is the

RVE length, and W is the laminate and width (Fig. 26). Assuming a to be constant

over the crack surface, D
(α)
ij for the case of intralaminar cracking is given by

D
(α)
ij =

κt2c
sθt sin θ

ninj (4.11)

where sθ = L/N is the axial crack spacing in the cracked ply.

Now we derive the stiffness-damage relations for multiple modes of damage.

With the damage mode tensors D
(α)
ij , α = 1, 2, 3, .., taken as internal variables, the

Helmholtz free energy is given by

ρψ = ρψ
(
εij, D

(α)
ij

)
(4.12)

where ψ is the specific Helmholtz energy, ρ is the mass density, and εij is the strain

tensor. Using the second law of thermodynamics in the form of the Clausius-Duhem

inequality, stress response for a given state of damage is given by [87]

σij = ρ
∂ψ

∂εij
(4.13)

Utilizing the linear elastic stress-strain relation σij = Cijklεij for the composite ma-

terial, its stiffness tensor Cijkl is given by

Cijkl = ρ
∂2ψ

∂εij∂εkl
(4.14)

Composite laminates used in practice are usually symmetric and balanced about the

mid-plane. Such stacking introduces an orthotropic symmetry of the laminate in its

virgin state. To incorporate this material symmetry, the integrity bases [159,160] are

used to express ρψ as a polynomial function. Here, we are interested in describing

damage in [0m/± θn/0m/2] laminates with the following two damage modes
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Damage Mode 1 ⇒ α = 1, cracks in +θ plies

Damage Mode 2 ⇒ α = 2, cracks in −θ plies

The irreducible integrity bases for a scalar polynomial function of symmetric second

rank tensors (strain and two damage mode tensors) for this case (α = 1, 2) are given

by [159,160]

ε11, ε22, ε33, ε
2
23, ε

2
31, ε

2
12, ε23ε31ε12,

D
(1)
11 , D

(1)
22 , D

(1)
33 ,
(
D

(1)
23

)2

,
(
D

(1)
31

)2

,
(
D

(1)
12

)2

, D
(1)
23 D

(1)
31 D

(1)
12 ,

D
(2)
11 , D

(2)
22 , D

(2)
33 ,
(
D

(2)
23

)2

,
(
D

(2)
31

)2

,
(
D

(2)
12

)2

, D
(2)
23 D

(2)
31 D

(2)
12 ,

ε23D
(1)
23 , ε31D

(1)
31 , ε12D

(1)
12 , ε23D

(2)
23 , ε31D

(2)
31 , ε12D

(2)
12 ,

ε31ε12D
(1)
23 , ε12ε23D

(1)
31 , ε23ε31D

(1)
12 , ε31ε12D

(2)
23 , ε12ε23D

(2)
31 , ε23ε31D

(2)
12 ,

ε23D
(1)
31 D

(1)
12 , ε31D

(1)
12 D

(1)
23 , ε12D

(1)
23 D

(1)
31 , ε23D

(2)
31 D

(2)
12 , ε31D

(2)
12 D

(2)
23 , ε12D

(2)
23 D

(2)
31 ,

ε23D
(1)
31 D

(2)
12 , ε31D

(1)
12 D

(2)
23 , ε12D

(1)
23 D

(2)
31 , ε23D

(2)
31 D

(1)
12 , ε31D

(2)
12 D

(1)
23 , ε12D

(2)
23 D

(1)
31 (4.15)

If we consider a thin laminate loaded in its plane, this set of integrity bases can be

further reduced by considering only the in-plane strain and damage tensor compo-

nents. Thus, the remaining integrity bases in the Voigt notation, for the case with

two damage modes, are given by

ε1, ε2, ε
2
6

D
(1)
1 , D

(1)
2 ,
(
D

(1)
6

)2

, D
(2)
1 , D

(2)
2 ,
(
D

(2)
6

)2

ε6D
(1)
6 , ε6D

(2)
6 (4.16)

where ε1 ≡ ε11, ε2 ≡ ε22, ε6 ≡ ε12, D1 ≡ D11, D2 ≡ D22, D6 ≡ D12. Using these

integrity bases, the most general polynomial form for ρψ, restricted to second order

terms in the strain components (small strains) and first order terms in damage tensor
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components (small volume fraction of damage entities in the RVE), is given by

ρψ = P0 + c1ε
2
1 + c2ε

2
2 + c3ε

2
6 + c4ε1ε2

+ ε21

{
c5D

(1)
1 + c6D

(1)
2 + c7D

(2)
1 + c8D

(2)
2

}
+ ε22

{
c9D

(1)
1 + c10D

(1)
2 + c11D

(2)
1 + c12D

(2)
2

}
+ ε26

{
c13D

(1)
1 + c14D

(1)
2 + c15D

(2)
1 + c16D

(2)
2

}
+ ε1ε2

{
c17D

(1)
1 + c18D

(1)
2 + c19D

(2)
1 + c20D

(2)
2

}
+ ε1ε6

{
c21D

(1)
6 + c22D

(2)
6

}
+ ε2ε6

{
c23D

(1)
6 + c24D

(2)
6

}
+ P1(εp, D

(1)
q ) + P2(εp, D

(2)
q ) + P3(D(1)

q ) + P4(D(2)
q ) (4.17)

where P0 and ci are material constants, P1 and P2 are linear functions of strain and

damage tensor components, and P3 and P4 are linear functions only of the damage

tensor components. Setting ρψ = 0 for unstrained and undamaged material, we have

P0 = 0; and assuming the unstrained material of any damaged state to be stress-free,

we get P1 = P2 = 0 on using Eq. (4.13). Considering the virgin material to be

orthotropic and proceeding in a similar manner as given in [142], we obtain following

relations for stiffness matrix of the damaged laminate

Cpq = C0
pq + C(1)

pq + C(2)
pq (4.18)

where p, q = 1, 2, 6, C0
pq is the stiffness coefficient matrix of the virgin laminate and the

changes in stiffness brought about by the individual damage modes are represented
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by C
(1)
pq and C

(2)
pq . The three matrices are given by

C0
pq =


2c1 c4 0

c4 2c2 0

0 0 2c3

 =



E0
1

1−ν0
12ν

0
21

ν0
12E

0
2

1−ν0
12ν

0
21

0

ν0
12E

0
2

1−ν0
12ν

0
21

E0
2

1−ν0
12ν

0
21

0

0 0 G0
12


(4.19)

C(1)
pq =


2c5D

(1)
1 + 2c6D

(1)
2 c17D

(1)
1 + c18D

(1)
2 c21D

(1)
6

2c9D
(1)
1 + 2c10D

(1)
2 c23D

(1)
6

Symm 2c13D
(1)
1 + 2c14D

(1)
2

 (4.20)

C(2)
pq =


2c7D

(2)
1 + 2c8D

(2)
2 c19D

(2)
1 + c20D

(2)
2 c22D

(2)
6

2c11D
(2)
1 + 2c12D

(2)
2 c24D

(2)
6

Symm 2c15D
(2)
1 + 2c16D

(2)
2

 (4.21)

where E0
1 , E

0
2 , ν

0
12 and ν0

21 are longitudinal modulus, transverse modulus, and major

and minor Poisson’s ratios, respectively, for the virgin laminate. Since we are dealing

here with off-axis ply cracking, it is more convenient to rewrite the damage mode

tensor defined in Eq. (4.11) in terms of normal crack spacing, sθn = sθ sin θ, where sθ

is the crack spacing in the axial direction (see Fig. 27) for the ply of orientation θ.

Accordingly, the damage tensor is given by

D
(α)
ij =

κt2c
sθnt

ninj (4.22)

With reference to Fig. 27(b) where the orientations of the two damage modes are

shown and using Eq. (4.11), the damage tensor elements for this scenario are given by
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Fig. 27. Characterization of damage in ±θ off-axis plies: (a) normal crack spacing

sθn, and axial crack spacing sθ in a cracked ply, and (b) directions of normal

vectors for cracks in +θ and -θ plies, respectively.

α = 1: n
(1)
i = (sin θ, cos θ, 0)

D
(1)
1 = κθ

+
t2c

sθ+n t
sin2 θ; D

(1)
2 = κθ

+
t2c

sθ+n t
cos2 θ; D

(1)
6 = κθ

+
t2c

sθ+n t
sin θ cos θ (4.23)

α = 2: n
(2)
i = (sin θ,− cos θ, 0)

D
(2)
1 = κθ

−
t2c

sθ−n t
sin θ; D

(2)
2 = κθ

−
t2c

sθ−n t
cos2 θ; D

(2)
6 = −κθ

−
t2c

sθ−n t
sin θ cos θ (4.24)

where the superscripts θ+ and θ− indicate variables for +θ and −θ plies, respectively.

We now make an assumption that will be evaluated in the main text of the paper:

the damage in +θ-plies and −θ-plies occurs at the same intensity of damage and it

has the same effect on the laminate behavior. Thus,

κθ
+

= κθ
−

= κθ, sθ
+

n = sθ
−
n = sθn (4.25)

With this assumption it follows that the laminate will retain its orthotropic symmetry,
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implying that the normal stress to shear stress coupling vanishes. Thus, from (4.23)-

(4.25) and using (4.18), (4.20) and (4.21), we get

C
(1)
11 + C

(2)
11 = 2κθt

2
c

sθnt

[
(c5 + c7) sin2 θ + (c6 + c8) cos2 θ

]
C

(1)
22 + C

(2)
22 = 2κθt

2
c

sθnt
[(c9 + c11) sin θ + (c10 + c12) cos2 θ]

C
(1)
66 + C

(2)
66 = 2κθt

2
c

sθnt

[
(c13 + c15) sin2 θ + (c14 + c16) cos2 θ

]
C

(1)
12 + C

(2)
12 = κθt

2
c

sθnt

[
(c17 + c19) sin2 θ + (c18 + c20) cos2 θ

]
C

(1)
16 + C

(2)
16 = κθt

2
c

sθnt
sin θ cos θ [−c21 + c22] = 0

C
(1)
26 + C

(2)
26 = κθt

2
c

sθnt
sin θ cos θ [−c23 + c24] = 0

(4.26)

Finally,

C(1)
pq + C(2)

pq =


2a1D1 + 2b1D2 a4D1 + b4D2 0

a4D1 + b4D2 2a2D1 + 2b2D2 0

0 0 2a3D1 + 2b3D2

 (4.27)

where the superscripts for denoting damage mode have been dropped for convenience,

and ai and bi, i = 1, 2, 3, 4 are the two sets of four material constants, given by

a1 = c5 + c7; a2 = c9 + c11; a3 = c13 + c15; a4 = c17 + c19

b1 = c6 + c8; b2 = c10 + c12; b3 = c14 + c16; b4 = c18 + c20

(4.28)

Denote

a1 (θ) = a1 sin2 θ + b1 cos2 θ

a2 (θ) = a2 sin2 θ + b2 cos2 θ

a3 (θ) = a3 sin2 θ + b3 cos2 θ

a4 (θ) = a4 sin2 θ + b4 cos2 θ (4.29)
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Then,

C(1)
pq + C(2)

pq = Dθ


2a1(θ) a4(θ) 0

2a2(θ) 0

Symm 2a3(θ)

 (4.30)

where

Dθ =
κθt

2
c

sθnt
(4.31)

Rewriting Eq. (4.29), as

ai (θ) = ai sin
2 θ + bi cos2 θ = ai sin

2 θ

(
1 +

bi
ai

cot2 θ

)
(4.32)

We now consider the case when ai ≥ bi. Then,

bi
ai

cot2 θ ≤ 1 for
π

4
≤ θ ≤ π

2
(4.33)

Also, it can be expected that

bi
ai

cot2 θ << 1 for
π

3
≤ θ ≤ π

2

i.e., ai (θ) ≈ ai for
π

3
≤ θ ≤ π

2
(4.34)

Thus, finally the elastic stiffness tensor of the damaged laminate for in-plane response

can be expressed as

Cpq =


E0

1

1−ν0
12ν

0
21

ν0
12E

0
2

1−ν0
12ν

0
21

0

ν0
12E

0
2

1−ν0
12ν

0
21

E0
2

1−ν0
12ν

0
21

0

0 0 G0
12

+
κθt

2
c

st
sinθ


2a1 a4 0

2a2 0

Symm 2a3

 (4.35)

In equation (4.35), κθ is the constraint parameter and ai(θ), i=1,2,3,4 are phenomeno-

logical constants for ply of orientation θ. From this equation it is clear that the two

symmetric damage modes (+θ and −θ cracking) effectively act as a single damage

mode. The engineering moduli for the damaged laminate can now be derived from
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the following relationships:

E1 =
C11C22 − C2

12

C22

; E2 =
C11C22 − C2

12

C11

; ν12 =
C12

C22

; G12 = C66 (4.36)

Thus, using equations (4.35)-(4.36), we get

E1(θ) =
E0

1

1− ν0
12ν

0
21

+ 2
κθt

2
csinθ

st
a1(θ)−

[
ν0

12E
0
2

1− ν0
12ν

0
21

+
κθt

2
csinθ

st
a4(θ)

]2

E0
2

1− ν0
12ν

0
21

+ 2
κθt

2
csinθ

st
a2(θ)

(4.37)

E2(θ) =
E0

2

1− ν0
12ν

0
21

+ 2
κθt

2
csinθ

st
a2(θ)−

[
ν0

12E
0
2

1− ν0
12ν

0
21

+
κθt

2
csinθ

st
a4(θ)

]2

E0
1

1− ν0
12ν

0
21

+ 2
κθt

2
csinθ

st
a1(θ)

(4.38)

ν12(θ) =

ν0
12E

0
2

1− ν0
12ν

0
21

+
κθt

2
csinθ

st
a4(θ)

E0
2

1− ν0
12ν

0
21

+ 2
κθt

2
csinθ

st
a2(θ)

(4.39)

(4.40)

G12(θ) = G0
12 + 2

κθt
2
csinθ

st
a3(θ) (4.41)

As seen from equations (4.37)-(4.41), the shear modulus is uncoupled from the other

three moduli and thus can be treated independently. The three material constants

κθa1, κθa2 and κθa4 are present in the first three coupled equations and can be eval-

uated for a selected reference laminate, e.g. a cross ply laminate (θ = 90◦), by using

data generated either experimentally or by an analytical or a computational model.

The remaining constant κθa3 associated with the shear modulus change can in prin-

ciple also be obtained similarly. However, experimental data to determine shear

modulus are usually difficult to obtain. The analytical or computational determina-

tion of the shear modulus for a cracked cross ply laminate would require setting up
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a boundary value problem different from that needed to determine the other moduli.

We shall not treat the shear modulus here since the constraint parameter κθ can as

well be studied by considering the other three elastic moduli.

The stiffness change in a given laminate subsequent to damage depends on how

much the matrix cracks “open up” in response to the imposed loading. This opening

is affected by the neighboring plies as they apply constraint on the deformation of

the cracked plies. Consequently, the stiffness change in a given laminate can be

expressed as a function of the constraint effect measured in an appropriate way. Here

a reference laminate belonging to the class of laminates considered is selected and

the relative constraint effect in the other laminates is expressed with respect to this

laminate. The stiffness change as a function of crack density in the reference laminate

(θ = 90◦) is determined either from experiments or from numerical simulations (FE

or micromechanics). Based on notions of fracture mechanics, the relative constraint

effect is taken as the ratio of the COD in the off-axis ply to that of the same-sized

transverse crack in the reference laminate.

For laminates of the [0m/ ± θn/0m/2]s configurations, the material constants ai

are assumed to remain unaffected by the angle θ for a given ply material. From

experimental observations on carbon/epoxy [142] and glass/epoxy [161] laminates,

this assumption has been found to hold true. This is supposedly because the damage-

associated constants are primarily determined by the constituent ply properties and

are only weakly dependent on ply orientation. Of course, the influence of the ply

orientation on the constraint imposed by surrounding plies over damaged plies is

important and is suitably carried by the ‘constraint parameter’ through changes in

COD. The procedure to evaluate a1, a2, a4 and κθ will now be described. Using

equations (4.37)-(4.41) with θ = 90 and s = s0; we obtain
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
E0

1

1−ν0
12ν

0
21

ν0
12E

0
2

1−ν0
12ν

0
21

0

E0
2

1−ν0
12ν

0
21

0

Symm G0
12

+
κ90t

2
c

s0t


2a1 a4 0

2a2 0

Symm 2a3

 =


E1

1−ν12ν21
ν12E2

1−ν12ν21 0

E2

1−ν12ν21 0

Symm G12


(4.42)

where, the right-hand side of the equation represents the stiffness matrix of the dam-

aged laminate expressed in terms of moduli E1, E2, G12, ν12 and ν21 evaluated at crack

density s = s0. Solving this equation the material constants of interest can be written

as

a1κ90 =
s0t

2t2c

[
E1

1− ν12ν21

− E0
1

1− ν0
12ν

0
21

]
(4.43)

a2κ90 =
s0t

2t2c

[
E2

1− ν12ν21

− E0
2

1− ν0
12ν

0
21

]
(4.44)

a4κ90 =
s0t

t2c

[
ν12E1

1− ν12ν21

− ν0
12E

0
1

1− ν0
12ν

0
21

]
(4.45)

The procedure for damage analysis in the synergistic damage mechanics approach is

sketched in Fig. 28. As illustrated, this procedure combines micromechanics with

CDM for complete evaluation of structural response. Micromechanics involves analy-

sis to determine CODs in cracked plies within a RVE (or unit cell, if applicable), from

which the constraint effect is evaluated, as we shall explain in the next section. The

constraint effect is carried over in the CDM formulation through the constraint pa-

rameter. In a separate step, the damage constants κ90ai are determined from data for

a reference laminate, which, as mentioned earlier, is chosen here to be [0/908/01/2]s.

With the values of the κ90ai constants and β = κθ
κ90

known, the CDM based expressions

given by equations (4.37)-(4.40) are employed to predict stiffness degradation with

crack density. The overall structural behavior is finally analyzed using the reduced

stiffness properties for the laminate.
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)
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Structural scale: Micro

EXPERIMENTAL/
COMPUTATIONAL

Evaluate damage constants
ai using the experimental
or computational results
for the reference laminate
configuration [0/908/01/2]s

SYNERGISTIC DAMAGE MECHANICS

Use SDM to determine stiffness reduction in
present laminate configuration [0m/± θn/0m/2]s

Structural scale: Meso

STRUCTURAL ANALYSIS

Analyze overall structural response to external
loading using the reduced stiffness properties

Structural scale: Macro

Fig. 28. Flowchart showing the multi-scale synergistic methodology for analyzing dam-

age behavior in a class of symmetric laminates with layup [0m/ ± θn/0m/2]s

containing transverse cracks in +θ and −θ layers.
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C. FE Modeling

Three-dimensional FE analysis is performed here as a micromechanical tool to evalu-

ate the constraint effect. It should be noted that although some analyses in literature

use 2-D generalized FE modeling even for damage in off-axis plies , e.g. in [0/90/∓45]s

laminates [94], the boundary value problem requires a 3-D analysis. A representative

geometric model for [0/ ± θ4/01/2]s laminate configuration along with the boundary

conditions is shown in Fig. 20 on page 56. As noted earlier, in this laminate con-

figuration both sets of of-axis plies (+θ and −θ plies) experience almost identical

constraint from the un-cracked 0-plies and hence the COD values for cracks in both

orientations are expected to be nearly equal. The experimental results, which natu-

rally show scatter, seem to support this [109]. We shall compute the CODs here to

validate this expectation. Since the experimental data on COD were taken for cracks

sufficiently away from neighboring cracks to eliminate the mutual crack interaction

effect on CODs, focusing instead on the constraint effect, we shall simulate the exper-

imental condition by choosing a large length of the RVE (unit cell) in the FE analysis

conducted here.

For the laminate used in the experimental work, ply thickness and laminate

width were equal to 0.125 mm and 3.5 mm, respectively. The ply material is glass-

epoxy (HyE 9082Af, Fiberite) with in-plane properties E11=44.7 GPa, E22=12.7 GPa,

G12=5.8 GPa and ν12=0.297. To obtain the remaining properties for use in the 3-D

model, the unidirectional ply is assumed transversely isotropic in the cross-sectional

plane. Thus, E33 = E22 = 12.7 GPa; G13 = G12 = 5.8 GPa; ν13 = ν12=0.297;

G23 = E22

2(1+ν23)
=4.885 GPa. The Poisson’s ratio in the isotropic cross-sectional plane

ν23 is taken as 0.3.

Separate 3-D FE models were constructed for [0/± θ4/01/2]s laminate configura-
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tion for ply orientations θ = 25, 40, 55, 70 and 90◦. The models assumed the matrix

cracks to have grown across the entire width of the specimen, as observed in the

experimental work. More details on the FE simulations methodology have already

been provided in the previous chapter.

D. Results and Discussion

The results obtained by the SDM approach described in section 2 are grouped in

four sections below. First, the CODs computed by the FE model are compared with

available experimental data to verify their accuracy. Next, the stiffness moduli for

[0/±θ4/01/2]s laminates are predicted and compared with the experiments. A detailed

parametric study is then conducted to determine the dependency of the COD on the

factors that characterize the constraint effect. Finally, the constraint parameter is

calculated from the COD results and used in the SDM methodology described above

for prediction of stiffness property changes due to off-axis cracking in [0m/±θn/0m/2]s

laminates with varying m,n and stiffness ratio of the cracked plies relative to the

constraining plies.

1. Crack Surface Displacements

Fig. 29 shows the variation of nodal displacements in x, y and z directions (see Fig.

20 on page 56 for coordinate system) plotted with respect to x. All the displacements

are averaged over thickness of the cracked layers. The average nodal displacements

in x (crack longitudinal) and y (normal to crack plane) directions are nearly same in

+θ and −θ layers in values and show similar trends over x; whereas in z-directions

they are just opposite showing that as overall out of plane displacement is nullified.

Thus, displacements averaged over the two orientations of cracks result in only sym-
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metric components. The canceling of anti-symmetric components retains the overall

orthotropic symmetry of the laminate. While the nodal displacements of the crack

surfaces in y direction correspond to the opening mode (Mode I), the nodal displace-

ments in x and z directions correspond respectively to the in-plane and out-of-plane

sliding modes (Mode II and III). The sliding displacements are observed to be lower

than the opening displacements. Especially, the out-of-plane displacements are neg-

ligible as compared to the opening displacements. Hence, for prediction of stiffness

of the damaged laminate, crack opening displacements are enough. However, the

in-plane sliding displacements may release substantial energy during fracture events

and must be considered while analyzing the damage progression in off-axis laminates,

which will be dealt in a future work.

In a previous work [109], comprehensive experiments were carried out to evaluate

CODs in [0/± θ4/01/2]s laminates subjected to tensile loading in axial direction. The

full-size specimens (20 mm width) were loaded in an Instron 1272 testing machine to

measure residual elastic properties at different states of damage and to characterize

damage (density of cracks in the θ-plies) in the laminates at increasing tensile loads.

Thin strips (3.5 mm width) were then cut longitudinally from the cracked specimens

and were placed in a set-up developed for measuring COD. The set-up consisted of

a miniature materials tester (MINIMAT) for loading the thin strip to open cracks,

which were observed by an optical microscope equipped with a video camera. The

video signal transmitted to a TV monitor displayed the crack profile at sufficient

magnification (×2463) to measure the COD. A typical COD of 10 µm was thus

magnified to 24.63 mm. The micro-specimens (thin strips) were loaded at two pre-

selected longitudinal strains, 0.4 and 0.6%, for the COD measurements. A specially

constructed mini-extensometer was used to measure strains on the micro-specimens.

These strains were much below the strains in the macro-specimens at which the
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intralaminar cracks were produced, thus generating no further cracking. The CODs

for a given crack were recorded at 25 equidistant points along the crack length (i.e.

the total thickness of the ply group containing cracks). In a general case, COD in a

RVE depends on the crack spacing, the laminate layup parameters, the orientations

of the cracked plies, their relative thickness as compared to the longitudinal plies, the

imposed loading level and the ratio of stiffnesses of cracked and constraining plies.

The average COD is defined as

∆uy =
1

tc

∫ tc/2

−tc/2
∆uy(z) dz (4.46)

where ∆uy represents the separation of crack planes in the direction normal to the

crack face. In experiments, no matrix cracks were observed on the specimen edge for

ply orientations below θ = 40◦. However, note that FE analysis assumes transverse

cracks present for all angles of ply orientations. To estimate ∆uy numerically, ∆uy

is determined from nodal y-direction displacements averaged over the entire crack

surface. Furthermore, in keeping with the assumption of equal damage in +θ and −θ
plies, the average COD values are averaged over the two orientations to eliminate any

small differences. The experimental and numerically estimated results are compared

in Fig. 30(a) for 0.5% axial strain. The experimental data for this strain is taken

by averaging COD measurements for 0.4% and 0.6% axial strains. The variation of

CODs with applied axial strain is compared with experimental data in Fig. 30(b).

The profiles of normalized CODs, averaged over +θ and −θ plies, through the

thickness for different ply orientation are shown in Fig. 31(a). As expected, for

cross-ply laminates, the profile is symmetric about mid-plane of the cracked ply and

consequently the maximum COD occurs at the mid-plane of the cracked layer. This

COD profile is different from an elliptic profile for a single crack in an infinite isotropic

elastic medium subjected to a uniform far-field stress due to difference in constraint
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Fig. 29. Variation of average nodal displacements for [0/ ± 704/01/2]s laminate with

respect to crack longitudinal (x) direction. The displacements ux, uy and uz

are averaged over cracked ply thickness.
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Fig. 31. COD profiles for cracked plies in [0/±θ4/01/2]s laminates. (a) CODs averaged

over −θ and +θ plies; (b) Crack profile for 90◦ transverse crack compared with

an elliptic profile for an isotropic medium; (c)-(d) COD profiles for +θ4 and

+θ4 separately: (c) θ = 70◦,(d) θ = 40◦. The figures (c)-(d) depict the

asymmetry of opening displacements for off-axis laminates, especially at a ply

orientation farther from θ = 90◦.
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from the surrounding material. Fig. 31(b) compares the actual COD profile (based

on FE computations) and an elliptic profile with the same maximum COD. Thus,

the magnitude of average COD for 90◦ crack is different from that for the elliptic

crack. For other off axis laminates, the crack surface displacements are not symmetric

about the mid-plane as shown in Fig. 31(b)-(d). This asymmetry increases as we go

away from cross-ply laminates (θ = 90◦) and maximum COD does not occur midway

through the thickness of the cracked +θ4 or −θ4 layers (e.g., for θ = 40◦, see Fig.

31(d)). The aspect ratio of COD profiles, γ =
(∆uy)max

∆uy
varies from 1.33 for θ = 90◦ to

1.40 for θ = 40◦. This is different from the aspect ratio of 4/π ≈ 1.273 for an elliptic

profile.

2. Prediction of Stiffness Degradation

In this section we will implement the SDM methodology described above for [0/ ±
θ4/01/2]s laminates. Following the procedure sketched in Fig. 28, the constraint

parameter κθ normalized by κ90 is taken as the average COD of the θ-cracks relative

to the average COD of 90◦-cracks. Thus,

β =
κθ
κ90

=

(
∆uy

)
±θ4(

∆uy
)

908

(4.47)

It is noted that the COD value in the numerator is the sum of CODs of the +θ4 and

−θ4 cracks, while the COD in the denominator is of an 8-ply thick 90◦-crack. All

CODs are calculated at the same imposed displacement on the unit cells.

The procedure for stiffness prediction is now carried out in the following steps:

1. Determine the three material constants κ90a1, κ90a2 and κ90a4 by solving the

three coupled equations (4.43)-(4.45). The data needed to solve these equations

are the elastic moduli E1, E2 (= E0
2) and ν12 (ν21 is given by the reciprocal
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relationship for orthotropic laminates) for a selected crack spacing s = s0 in

addition to the already known initial moduli and lamina thicknesses. This is

the CDM procedure for cross ply laminates used in earlier works, e.g. [89,143].

The prediction of the two moduli E1 and ν12 normalized with corresponding

values for a virgin laminate are shown in Fig. 32 where they are compared with

experimental data reported in [109].

2. Determine β by using calculated COD values in equation (4.47). Find κθa1, κθa2

and κθa4 by multiplying with β the constants κ90a1,κ90a2 and κ90a4 determined

in Step 1. Calculate E1, E2 and ν12 from equations (4.37)-(4.40) by substituting

these constants, using the assumption that a1, a2 and a4 are independent of θ,

as noted above.

The elastic moduli E1 and ν12 predicted by SDM approach are shown in Fig. 33 for

[0/ ± 704/01/2]s laminate. Experimental data reported by [109] are also shown for

comparison. The agreement with data is about the same as that obtained by using

experimentally measured COD values in equation (4.47).

For the [0/ ± 554/01/2]s laminate the stiffness reduction is caused by matrix

cracking as well as shear induced damage in off-axis plies, as discussed in [109], where

a procedure for calculating stiffness reduction due to shear damage was described. Fig.

34 shows the predictions of E1 and ν12 by the SDM procedure. Experimental data

from [109] are also shown for comparison. The total reduction in the elastic moduli

is taken as the sum of the two effects, as in [109], and the final values are shown in

Fig. 34 along with experimental data. Once again, the agreement of predictions with

the experimental data is nearly the same as that reported in [109] by using measured

COD values.

It would be of interest to note that the stiffness predictions using experimentally
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measured COD values in equation (4.47) are subject to scatter, which is inherent

in testing. Furthermore, the experimental procedure requires a specialized test set-

up [109,162], which is costly and takes a certain amount of training to operate. The

3-D FE computations on a unit cell, on the other hand, are easy to perform and can

provide accurate values of CODs.

3. Parametric Study of Constraint Effects

In the preceding section we have illustrated the SDM procedure for stiffness prediction

of [0/± θ4/01/2]s laminates using computed average COD results, which provide the

relative constraint parameter β (equation (4.47)). It is of interest to know how the

constraint parameter depends on the laminate configuration parameters within the

broader class of laminates given by [0m/± θn/0m/2]s. This laminate configuration is

restricted by the assumption that the cracks are present only in the +θ and−θ plies,

which have nearly the same constraint. Thus, the parameters to vary are the crack

orientation θ and ply thicknesses m and n. Furthermore, variation of the ply material

itself can be accounted for through relative ply moduli, as suggested by previous

studies [104,161].

The FE model described above was used to calculate COD values for various

cases by systematically varying the parameters involved. First, the effect of relative

stiffness of the plies was studied by fixing the ply thicknesses at m = 1 and n = 4

and varying θ in the range 40◦ ≤ θ ≤ 90◦. Lower θ values were not used since the

experimental observations suggest that cracks do not form at those ply orientations

under axial tensile loading. The computed average COD values are plotted against a

ply stiffness ratio in the laminate axial direction (X1 direction) given by r =
(
E±θA
E90
A

)
in Fig. 35(a) for different θ-values. Here, E±θA and E90

A represent the axial stiffness of

±θ-plies and the 90◦-plies, respectively.
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Fig. 32. Stiffness reduction for [0/908/01/2]s laminate compared with experimental re-

sults [109]. These results form the basis for computation of CDM constants.
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Next the effect of cracked ply thickness, or equivalently, the number ‘n’ of adja-

cent cracked plies is studied by fixing m = 1. The average COD is plotted against n

for different θ in Fig 35(b). Finally, the effect of the thickness of the constraining plies

is studied by fixing n = 4 and varying m. The COD variation for this case is shown

in Fig 35(c). All variations of average COD described above are captured in a master

equation assuming that the individual effects are independent, i.e., non-interactive.

Thus, the following equation results

(
∆uy

)
±θn = U.f1 (θ) .f2 (r) .f3 (m) .f4 (n) (4.48)

where, U is the average COD for the reference laminate [0/908/01/2]s.

The parametric functions fi are obtained by curve-fitting the computed data and

are given by

f1 (θ) = sin2θ (4.49)

f2 (r) = r−c1 (4.50)

f3 (m) =
c2

m
+ c3 (4.51)

f4 (n) = c4n
c5 (4.52)

The values of the constants appearing in these relations are found to be: c1 =

0.0871; c2 = 0.1038; c3 = 0.8949; c4 = 0.247; c5 = 0.99. It is noted that these con-

stants are laminate material specific.

4. Stiffness Predictions for Other Laminates

The parametric study described above enables us to predict stiffness degradation

in off-axis laminates with different geometry and stiffness values. For example, one

can consider a laminate with stiffer outer plies. The average COD used in equation
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(4.47) for different values of stiffness ratio can be computed using equation (4.48).

The variation of engineering moduli E1 and ν12 for different stiffness ratios (r) for

[0/±704/01/2]s laminate is shown in Fig. 36. As expected, stiffer outer plies cause less

sever degradation in the moduli. In contrast to changing the stiffness of outer plies,

one can vary the number of constraining (m) or cracked plies (n). The effect of number

of supporting plies over change in stiffness moduli E1 and ν12 of the [0m/±704/0m/2]s

laminate is shown in Fig. 37. The effect of number of cracked plies over change in

stiffness moduli E1 and ν12 of the [0/± 70n/01/2]s laminate is shown in Fig. 38. Fig.

36-38 indicate that the cracking ply thickness, i.e., crack size, has significant effect

on stiffness degradation, while the thickness of the constraining plies as well as the

change in axial stiffness ratio r have small effect.

E. Summary

One major goal of damage mechanics is to provide methodologies for predicting

changes in the mechanical response of composite laminates undergoing damage. It

appears unrealistic at this point that this goal can be achieved for general laminates

by a single method or approach. To make progress, however, it is necessary that

the approach taken is capable of treating laminates of more complex configuration

than the cross ply laminate, at the least. In the work reported here, we have made

effort in this direction by considering a class of laminates given by [0m/± θn/0m/2]s.

The approach taken has been to use the CDM framework that has the capabilities

to treat general laminates with wide range of damage modes. To make the CDM

framework versatile and practical, a methodology has been developed that utilizes

computational micromechanics in sufficient measure to provide synergism with CDM,

producing what we have called synergistic damage mechanics (SDM). Specifically, a
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Fig. 36. Stiffness reduction for [0/ ± 704/01/2]s laminate for different axial stiffness

ratio, r.
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constraint parameter (or function) is computed from a FE analysis of CODs in a

unit cell and entered into the CDM stiffness-damage relationships. This provides a

methodology for prediction of stiffness changes due to cracking in the off-axis plies

when those changes for a selected reference laminate ( [0/908/01/2]s) are known.

Although the SDM approach was described in earlier works [109, 142], it was

illustrated only for one specific subclass of the general laminate configuration stated

above, i.e. [0/± θ4/01/2]s. Also, the CODs needed in the approach were measured on

the edges of test coupons using a specialized set-up developed for the purpose. In the

present work we have used those experimental CODs to verify the computed values

by a 3-D FE analysis of appropriate unit cells. We have then performed a parametric

study of CODs to cover the general [0m/ ± θn/0m/2]s laminate over useful ranges of

the parameters m, n and θ. A master equation is developed by curve-fitting the

computed data that can provide the basis for stiffness prediction at a given damage

state in the laminate at hand.

A successful completion of the task of treating two off-axis cracking modes (+θ

and +θ) points to proceeding further to treat three damage modes in [0m/±θn/90p]s.

This will be the subject of our next chapter.
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CHAPTER V

STIFFNESS CHANGES WITH THREE DAMAGE MODES

A. Introduction

Efficient use of composite laminates in a wide range of applications requires plac-

ing plies in multiple orientations. A common example is a class of laminates called

quasi-isotropic that have ply orientations of 0, 45 and 90 degrees, exemplified by the

[0/ ± 45/90]s configuration. In spite of such laminates already in use, there is no

rigorous and comprehensive analysis available to assess their response in the presence

of cracking in more than one set of plies. The need for such analysis in the context of

durability and life prediction has been emphasized in a committee report [11]. Lacking

such analysis, the current design procedures are conservative, often relying on criteria

that allow no cracking at all. To remedy this situation we require an approach that is

capable of incorporating effects of ply level (microscopic) failure events into a laminate

level (mesoscopic) constitutive framework suited for structural analysis under general

loading. One approach of this nature is Synergistic Damage Mechanics (SDM) that

retains the Continuum Damage Mechanics (CDM) framework at the mesoscopic level

of a representative volume element (RVE) while incorporating microscopic cracking

through tensor-valued internal damage variables. Previous chapter focused on ply

cracks in two symmetrically placed orientations in [0m/ ± θn/0m/2]s laminates; the

present work treats the more general case of [0m/ ± θn/90r]s and [0m/90r/ ± θn]s

configurations where cracks are additionally present in the 90◦-plies.

The literature in damage mechanics of composite materials is extensive, as cov-

ered in the first two chapters. Rather than cite all approaches, we shall outline

those developments that are of direct relevance to treating ply cracking in multi-
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ple off-axis orientations. The complexity of cracking in general off-axis orientations

has been documented in several experimental studies, e.g. [60, 107–109]. Analytical

methods for estimating elastic properties of laminates with distributed off-axis cracks

are mostly accurate for transverse cracks in cross ply laminates. More general lam-

inates with cracks require a three-dimensional stress analysis, and efforts to address

these situations have typically resorted to either computational methods, e.g. the

finite element method [94], or to different approximate methods, e.g., the equivalent

constraint method [114] and its combination with modified shear lag theory [116]

or the first-order shear deformation laminate plate theory [113]. More recently, a

modified two-dimensional shear lag approach has also been attempted [168] for anal-

ysis of obliquely crossed cracks. Semi-analytical methods, such as based on Fourier

series expansion to represent the displacement and stress fields, have also been sug-

gested [141,169]. The accuracy of such approximate solutions is difficult to assess in

all cases, and most of studies compare their predictions with cross-ply laminates or

similar variations (e.g.,[±θ/90]s) with cracks only in 90◦ plies, which is just a limit-

ing case of general off-axis ply cracking. Besides, their incorporation in a structural

analysis scheme has not been addressed.

The CDM framework, although quite general and well suited for structural anal-

ysis, needs, in its conventional form determination of material coefficients for each

laminate configuration. The SDM methodology was proposed [142] to alleviate this

problem by determining these coefficients for a reference configuration (typically a

cross ply laminate) and deriving the coefficients for other cases via a “constraint”

parameter that is given by relative crack surface displacements evaluated numerically

by a finite element model of an appropriate representative volume. The micro-level

evaluation of the constraint parameter, which carries the effect of the plies neighbor-

ing the cracking plies on the crack surface displacements, provides a convenient way
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of incorporating the essential effect of cracks on changing the laminate response.

The previous work [170] on [0m/± θn/0m/2]s laminates with cracks in +θ and −θ
plies showed successful prediction of stiffness coefficients by the SDM methodology

(see the previous chapter for further details). The crack density and the constraint

to crack surface displacements in the two orientations were the same in that laminate

configuration. Thus, taken together the two sets of cracks acted effectively as one

mode of damage. In the current work, the [0m/ ± θn/90r]s and [0m/90r/ ± θn]s

configurations analyzed contain cracks additionally in the 90◦-plies, providing a truly

multimode damage scenario and rendering the generalization of the previous work

nontrivial. In the following sections, we shall first present the formulation of stiffness-

damage relationships for multimode damage and specialize it to the case of ±θ-ply

damage and 90◦-ply damage as the two damage modes in the selected configurations.

The constraint parameters appearing in these relationships will be defined in terms

of the crack opening displacements (CODs) in a given damage mode. A 3-D finite

element (FE) based procedure for calculating the CODs in a representative unit cell

will be described next. The SDM methodology will be described and its predictions

of elastic moduli for increasing crack densities will be compared with the moduli

computed independently by the FE model. The experimental data for the case of a

quasi-isotropic [0/90/ ∓ 45]s laminate will be compared with the SDM predictions.

Finally, the effect of ply thickness in cracked versus uncracked plies will be illustrated

by a limited parametric study.

B. Experimental Observations of Damage in Quasi-isotropic Laminates

An interesting layup sequence utilized in the design of composite laminates is so

called “quasi-isotropic” laminates. They usually have a mix of plies in 0◦, 90◦,+45◦
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and −45◦ orientations with respect to the laminate longitude, e.g., [0/ ± 45/90]s,

[0/90/±45]s etc. such that the extensional stiffness matrix (A-matrix according to the

CLPT) is directionally uniform, thereby approximating an in-plane isotropic material

behavior. Hence, the extensional-twisting coupling terms are zero, and the Young’s

modulus measured in all in-plane directions is same. Because of this interesting

property, these laminates are commonly used in structures to provide a good mix of

longitudinal, transverse and shear properties.

For the case of multidirectional composites with damage in multiple orientations,

the experimental data is limited to [0/ ± 45]s [37], [0/ ± θ4/01/2]s [109], and quasi-

isotropic laminates [41, 60, 108]. The damage in [0/ ∓ θ4/01/2]s laminates has been

dealt in the previous chapter. Here, we concentrate on the [0m/ ± θn/90r]s and

[0m/90r/± θn]s laminates. The special case with θ = 45◦ will give us predictions for

a quasi-isotropic laminate.

The experimental observations cited above have shown some details regarding the

damage development in quasi-isotropic laminates. Some of these studies concentrated

on quasi-static loading while others focused on fatigue loading. Some interesting

observations are summarized below:

1. As expected, the matrix cracking pattern in the quasi-isotropic laminates is

more complex than in the cross-ply laminates. Microscopic observations [108]

suggest that the ±45◦ cracks may be irregularly spaced, erratic or curved in

shape, small in size, and partially grown through lamina thickness.

2. Almost always the matrix cracking initiates first in the 90◦ plies (see Fig. 39(a)).

These cracks quickly traverse thickness and width of the lamina. They multiply

somewhat stably upon increase in applied loading. Thus, the 90◦-cracks are

usually straight, fully grown and periodic. The ±45◦-cracks, in contrast, may



106

grow slowly through lamina thickness and width, as suggested in experimental

observations by Tong et al. [108]. However, the data suggested that they multi-

plied very quickly. Thus, they become numerous while remaining small in size.

The laminates failed by delamination before ±45◦-cracks could grow through

lamina thickness and width, or become periodic.

3. The cracks in an off-axis ply grow from the point of intersection of these plies

with the 90◦ ply. For example, in [0/90/ ∓ 45]s laminates [108], cracks are

observed to initiate in the −45◦ ply at the point of intersection at the 90◦/ −
45◦ interface and extend slowly both across the ply thickness and parallel to

the fiber direction (Fig. 39(b)). On further increase in applied loading, the

−45◦-cracks may become numerous while remaining small and may never grow

completely across the width of the specimen. Eventually +45◦ cracks can form

at some locations where the −45◦ cracks meet the −45◦/ + 45◦ interface (Fig.

39(c)). These then can grow relatively rapidly across the (double thickness)

+45◦ ply and then grow slowly across the width of the specimen in the +45◦

fiber direction.

4. The microscopical observations in the cited experimental program showed that

the cracks in 90◦ plies spanned the thickness of the ply and were arrested by the

fibers in the adjacent plies. On the contrary, the −45◦ cracks usually initiated

at the edge of 90◦ cracks along the 90◦/ − 45◦ interface and tended to grow

slowly across the thickness, such that some of them did not extend across the

thickness of the ply by the end of the test. Cracking appeared to follow the

fiber/matrix interface with signs of crack blunting and resin flow. There were

also some indications of limited local delamination in the vicinity of −45◦ cracks

at the 90◦/− 45◦ interface.
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5. The initiation strain for transverse cracks in 90◦ ply was observed to be more

less the same in both [0/90]s and [0/90/ ∓ 45]s laminates [108]. However, the

evolution of crack density was much faster initially in the cross-ply laminate.

Also, the crack densities for 90◦-cracks for both laminate sequences seemed to

reach a saturation level, but with a higher value at saturation in the quasi-

isotropic laminate than in the cross-ply laminate.

6. In terms of the stiffness property changes, a larger reduction and an even more

pronounced reduction in Poissons ratio were observed for the cross-ply laminates

than for the quasi-isotropic laminates. For quasi-isotropic laminates, the 90◦

damage mode causes more sever degradation in the stiffness properties than the

±45◦ damage modes. Thus, 90◦ is more dominating than other damage modes.

It is important to keep these things in mind while modeling stiffness degradation and

predicting damage evolution in multidirectional laminates. For example, the initiation

of off-axis ply cracks from the points of intersection between off-axis and 90◦ plies can

be attributed to the higher stress concentration at the interface, and hence interaction

between different cracking modes is an important consideration while modeling a

multiple damage mode scenario. The interaction between stress perturbations due to

cracks of different orientations not only affects the crack initiation strain in other off-

axis plies, but also the overall stiffness changes in the damaged laminates. Generalized

plane strain FE modeling by Tong et al. [94] seems to support this inference. These

aspects will be discussed in detail in the discussion section of this chapter.

C. Stiffness Relations for [0m/± θn/90r]s and [0m/90r/± θn]s Laminates

Consider a laminate with a mix of on-axis and off-axis plies loaded axially, i.e. along

the direction of fibers in the on-axis plies. Such a laminate is illustrated in Fig. 9 on
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Fig. 39. Schematic representation of the matrix cracking sequence in quasi-isotropic

[0/90/∓45]s laminate. Stage I: ply cracking in 90◦ ply, Stage II: Initiation and

progression of small cracks in −45◦ ply, Stage III: Initiation and Progression

of cracks in +45◦ ply. The figure is reproduced from [108].
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page 9. Let the off-axis ply orientations be denoted by θ1, θ2, etc. The in-plane stress

state in each of these plies with respect to the principal (material) axes is displayed in

the figure. This stress state can attain a critical value for matrix cracking in one of the

off-axis plies at an applied load, and with further increase of the load, multiple matrix

cracking can ensue by the so-called shear-lag process. Similarly, the crack initiation

and multiplication process in other off-axis plies can occur at different applied load

values. Defining the set of intralaminar multiple cracks of a given orientation (θ1, θ2,

etc.) as a damage mode, a load-induced multi-mode damage scenario can develop.

To be sure, such a scenario is also possible under thermal loading (e.g. cooldown from

curing temperature) or under a combined thermal and mechanical loading.

Since laminates are often designed to have plies aligned with the anticipated ma-

jor load direction in order to sustain that load, while the off-axis plies are placed to

provide the needed shear and transverse stiffness, the choice of [0m/ ± θn/90r]s and

[0m/90r/ ± θn]s laminates for damage analysis presented here is intended to address

many practical situations. Figure 40 illustrates the development of multiple dam-

age modes in these laminate configurations under an axial tensile load. As indicated

there, cracking initiates first in the 90-plies at an overall strain ε90
0 , and on increasing

the load, this cracking multiplies. At the strain εθ10 the θ1-plies begin cracking and

with further increase in the imposed load, an interactive cracking process continues in

both ply orientations. Eventually, all off-axis plies can conduct the multiple cracking

process. In the special case where two ply orientations have the same, or nearly the

same, conditions (constraints) for cracking, two cracking modes can occur simulta-

neously. In earlier works [109, 170] it was found that in [0m/ ± θn/0m/2]s laminates

the crack densities in the +θ and −θ orientations could be assumed to be the same

and their combined effect could be represented by a single equivalent damage mode.

For the [0m/ ± θn/90r]s and [0m/90r/ ± θn]s laminates, we shall show later that the
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cracking of the ±θ-plies also here with good approximation can be represented by one

damage mode. Thus the total damage description in these laminates would require

adding the 90◦-ply cracking as a separate damage mode. Assuming that there are N

damage entities of a given damage mode α in the RVE, the normal part of damage

tensor is taken as [87,89]

D
(α)
ij =

1

V

∑
kα

[∫
S

aninj dS

]
kα

(5.1)

where ni = (sin θ, cos θ, 0) are components of the unit vector normal to a matrix crack

plane in the off-axis ply of orientation θ with respect to laminate longitudinal axis,

V is volume of RVE and kα = 1, 2, ..., N . The surface area of a crack, S, and the

influence vector magnitude, a, are specified as

S =
tc.W

| sin θ| (5.2)

a = κ.tc (5.3)

where κ, called the constraint parameter, is an unspecified constant of (assumed)

proportionality between a and the crack size tc (also cracked-ply thickness), and W

is the laminate width (Fig. 9). Assuming a to be constant over the crack surface, one

gets from Eq. (5.1)

D
(α)
ij =

κt2c
sθt sin θ

ninj (5.4)

where sθ is the axial crack spacing in the cracked ply. The elastic stiffness tensor of

the damaged laminate for in-plane response can be expressed as (see the derivation

in previous chapter)

Cpq = C0
pq +

∑
α

C(α)
pq (5.5)

where p, q = 1, 2, 6, C0
pq is the stiffness coefficient matrix of the virgin laminate and
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∑
α

C(α)
pq represents the total stiffness change due to all modes of matrix cracking

averaged over the RVE.

The above relations have already been derived in the previous chapter, wherein

[0m/± θn/0m/2]s laminates were considered. There were two damage modes: +θ and

−θ cracking modes. In the present scenario, we have the following three damage

modes,

Damage Mode 1 ⇒ α = 1, cracks in +θ plies

Damage Mode 2 ⇒ α = 2, cracks in −θ plies

Damage Mode 3 ⇒ α = 3, cracks in 90◦ plies

For two symmetric damage modes (±θ), it was established in the previous chapter

that the stiffness matrix of a thin laminates loaded in its plane can be written as

C(1)
pq + C(2)

pq = Dθ


2a1 a4 0

2a2 0

Symm 2a3

 (5.6)

where

Dθ =
κθt

2
c

sθnt
(5.7)

where sθn is the normal crack density, and tc and t are thickness of the cracked ply

and of the whole laminate, respectively.

Considering now that additionally, we have cracks in the 90◦-plies for which the

damage mode α = 3 has the following components

D
(3)
1 =

κ90t
2
90

s90t
,D

(3)
2 = D

(3)
6 = 0 (5.8)

where a
′
i, i = 1, 2, 3, 4 are material constants. The integrity bases, Eq. (4.15), has

an additional term D
(3)
1 , and the free energy function gets the following additional
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terms,

ρψ (α = 3) = a
′
1ε

2
1D

(3)
1 + a

′
2ε

2
2D

(3)
1 + a

′
3ε

2
6D

(3)
1 + a

′
4ε1ε2D

(3)
1 (5.9)

Following the steps taken above, we get

C
(3)
11 = 2a

′
1D

(3)
1 , C

(3)
22 = 2a

′
2D

(3)
1

C
(3)
12 = a

′
4D

(3)
1 , C

(3)
66 = 2a

′
3D

(3)
1

C
(3)
16 = C

(3)
26 = 0

(5.10)

It is noted here that for [0m/± θn/90r]s laminate, ±θ-modes occur twice (below and

above the laminate mid-plane) whereas the central 90◦-mode occurs only once. Thus,

the total stiffness change ∆Cpq with all the three modes active is given by

∆Cpq = 2
{
C(1)
pq + C(2)

pq

}
+ C(3)

pq

= 2Dθ


2a1 a4 0

a4 2a2 0

0 0 2a3

+D90


2a
′
1 a

′
4 0

a
′
4 2a

′
2 0

0 0 2a
′
3

 (5.11)

where

D90 = D
(3)
1 =

κ90t
2
90

s90t
(5.12)

Now consider θ = 90◦ in the [0m/± θn/90r]s laminate. Let the normal crack spacing

be the same in all cracked plies, i.e., sθ
+

n = sθ
−
n = s90. Then, the terms of ∆Cpq matrix

become, as illustrated by ∆C11 as

∆C11 = 2
{
C

(1)
11 + C

(2)
11

}
+ C

(3)
11 = 4Dθ|θ=90a1(90) + 2D90a

′
1

=
4κθ=90(t0.2n)2

s90t
a1(90) +

2κ90(t0.2r)
2

s90t
a
′
1 (5.13)

=
8t20
s90t

[
2n2κθ=90a1(90) + r2κ90a

′
1

]
(5.14)

where t0 is a single ply thickness. We can consider this stiffness change to be the
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same as that for a [0m/902n+r]s laminate with a single mode of damage given by

D1 =
κ904n+2rt

2
0. {(4n+ 2r)}2

s90t
(5.15)

where the sub-subscript on κ90 denotes the crack size. The stiffness change ∆C11 will

then be

∆C11 = 2a
′
1D1 =

8t20
s90t

(2n+ r)2κ904n+2ra
′
1 (5.16)

Equating ∆C11 from Eq. (5.13) and Eq.(5.16), we have

2n2κθ|θ=90a1(90) + r2κ90a
′
1 = (2n+ r)2κ904n+2ra

′
1 (5.17)

Solving the above equation, we obtain

a1(90) =

[
(2n+ r)2κ904n+2r − r2κ90

2n2κθ|θ=90

]
a
′
1 (5.18)

Thus, the inter-relation between ai and a
′
i constants is given by

ai =

[
(2n+ r)2κ904n+2r − r2κ90

2n2κθ|θ=90

]
a
′
i (5.19)

Substituting (5.19) into (5.11), we obtain ∆Cpq for damaged [0m/±θn/90r]s laminate

as

∆Cpq = 2
{
C(1)
pq + C(2)

pq

}
+ C(3)

pq =
4t20
t

[
2n2κθ

sθn
[ai] + r2κ90

s90
[a
′
i]

]
=

4t20
t

[
1

sθn

κθ
κθ|θ=90

{
(2n+ r)2κ904n+2r − r2κ90

}
+ r2κ90

s90

]
[a
′
i] (5.20)

where [ai] and [a
′
i] represent the coefficient matrices, appearing as multiplying factors

to 2Dθ and D90, respectively, in Eq. (5.11).
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Thus, the entire stiffness matrix is given by

Cpq =


E0

1

1−ν0
12ν

0
21

ν0
12E

0
2

1−ν0
12ν

0
21

0

E0
2

1−ν0
12ν

0
21

0

Symm G0
12

+ D̄


2a
′
1 a

′
4 0

2a
′
2 0

Symm 2a
′
3

 (5.21)

where

D̄ =
4t20
t

[
1

sθn

κθ
κθ|θ=90

{
(2n+ r)2κ904n+2r − r2κ90

}
+ r2κ90

s90

]
(5.22)

where t0 is the thickness of a single ply, sθn and s90 are the normal crack spacings in

±θ and 90◦-plies, respectively, and the constraint parameters are defined as

κθ =

(
∆uy

)
±θ2n

2nt0
; κ904n+2r =

(
∆uy

)
904n+2r

(4n+ 2r)t0
; κ90 =

(
∆uy

)
902r

2rt0
(5.23)

where subscript denotes a particular damage mode (orientation of cracked plies) and

sub-subscript represents the number of cracked plies corresponding to that damage

mode. ∆uy is the crack opening displacement (COD) averaged over thickness of the

cracked ply, and is defined as

∆uy =
1

tc

∫ tc/2

−tc/2
∆uy(z) dz (5.24)

where ∆uy represents the separation of crack planes in the direction normal to the

crack face with the local coordinate system (x, y, z) placed on the crack as shown in

Fig. 21. Since the 90◦ cracks are centrally placed along the laminate thickness, the

crack size for 90◦ damage mode is 2nt0. The corresponding crack size for the ±θ
damage mode is 2nt0. The central mode occurs once in the damaged laminate, while

the non-central mode occurs twice (on either side of the laminate mid-plane).

The stiffness-damage relationships for [0m/90r/± θn]s laminates can be obtained

by following the same steps as described above. It must be noted that unlike [0m/±
θn/90r]s laminates, ±θ damage mode in this case is centrally placed, thereby the
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corresponding equivalent crack size is 4nt0. On the other hand, the crack size for the

90◦ damage mode is rt0. Analogous to the Eq. (5.11), for this case ∆Cpq is given by

∆Cpq =
{
C(1)
pq + C(2)

pq

}
+ 2C(3)

pq

= 2Dθ


2a1 a4 0

a4 2a2 0

0 0 2a3

+D90


2a
′
1 a

′
4 0

a
′
4 2a

′
2 0

0 0 2a
′
3

 (5.25)

and ∆C11 is given as

∆C11(90) =
8t20
s90t

[
n2κθ=90a1(90) + 2r2κ90a

′
1

]
(5.26)

Equating this to ∆C11 for reference laminate [0m/902n+r]s laminate, Eq. (5.16), we

obtain the following inter-relationships between ai and a
′
i constants for [0m/90r/±θn]s

laminates,

ai =

[
(2n+ r)2κ904n+2r − 2r2κ90

n2κθ|θ=90

]
a
′
i (5.27)

Substituting (5.27) into (5.25), the entire stiffness matrix for damaged [0m/90r/±θn]s

laminate is given by

Cpq =


E0

1

1−ν0
12ν

0
21

ν0
12E

0
2

1−ν0
12ν

0
21

0

E0
2

1−ν0
12ν

0
21

0

Symm G0
12

+ D̄


2a
′
1 a

′
4 0

2a
′
2 0

Symm 2a
′
3

 (5.28)

Clearly, the derived stiffness-damage relationships retain the form of equation (5.21).

However D̄ in this case is given by

D̄ =
2t20
t

[
1

sθn

κθ
κθ|θ=90

{
2(2n+ r)2κ904n+2r − r2κ90

}
+ r2κ90

s90

]
(5.29)
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with the corresponding constraint parameters given as

κθ =

(
∆uy

)
±θ4n

4nt0
; κ904n+2r =

(
∆uy

)
904n+2r

(4n+ 2r)t0
; κ90 =

(
∆uy

)
90r

rt0
(5.30)

From stiffness-damage relationships (Eq. (5.21)), the engineering moduli for the

damaged laminate can now be derived using the following relationships

E1 =
C11C22 − C2

12

C22

; E2 =
C11C22 − C2

12

C11

; ν12 =
C12

C22

; G12 = C66 (5.31)

Thus,

E1 =
E0

1

1− ν0
12ν

0
21

+ 2D̄a
′
1 −

[
ν0
12E

0
2

1−ν0
12ν

0
21

+ D̄a
′
4

]2

E0
2

1−ν0
12ν

0
21

+ 2D̄a
′
2

(5.32)

E2 =
E0

2

1− ν0
12ν

0
21

+ 2D̄a
′
2 −

[
ν0
12E

0
2

1−ν0
12ν

0
21

+ D̄a
′
4

]2

E0
1

1−ν0
12ν

0
21

+ 2D̄a
′
1

(5.33)

ν12 =

ν0
12E

0
2

1−ν0
12ν

0
21

+ D̄a
′
4

E0
2

1−ν0
12ν

0
21

+ 2D̄a
′
2

(5.34)

G12 = G0
12 + 2D̄a

′
3 (5.35)

In the above expressions, the constants a
′
i, i = 1, 2, 3, 4 are material constants rep-

resenting the effect of cracking on laminate stiffness properties. The usual way to

obtain them is through experimental data for a selected reference laminate, e.g. a

cross ply laminate (θ = 90◦), at a certain crack density. However, an alternative and

more general way is by numerical simulation, which will be discussed later.

The flow chart in Fig. 41 describes the procedure for multiscale synergistic

methodology for multimode damage assessment. Computational micromechanics in-

volves analysis of a representative unit cell to determine the COD values and the

constraint parameters. In a separate step, the material constants a
′
i appearing in Eq.

(5.32)-(5.35) are determined from experiments or numerical simulations carried for a
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COMPUTATIONAL MICROMECHANICS

Determine average COD (∆uy) and constraint

parameters κθ, κ90 and κ902n+r from the

FE model of a representative unit cell

Structural scale: Micro

EXPERIMENTAL/
COMPUTATIONAL

Evaluate damage constants a
′
i

using experimental or computational
results for reference laminate
configuration [0m/902n+p]s

SYNERGISTIC DAMAGE MECHANICS

Use SDM to determine stiffness reduction in
present laminate configuration [0m/± θn/90r]s

Structural scale: Meso

STRUCTURAL ANALYSIS

Analyze overall structural response to external
loading using the reduced stiffness properties

Structural scale: Macro

Fig. 41. Multi-scale synergistic methodology for analyzing damage behavior in a gen-

eral symmetric laminate [0m/ ± θn/90r]s with matrix cracks in +θ, −θ, and

90◦ layers.

reference laminate, specifically, [0/903]s. These relations are then employed to pre-

dict stiffness degradation with constraint parameters and material constants obtained

from experiments (or FE simulations) as inputs. In the final step, the overall struc-

tural behavior in response to external loading can be analyzed based on the degraded

stiffness properties for the damaged laminate.

D. FE Modeling

As described in Section 2, SDM uses micromechanics modeling to evaluate the con-

straint effects of undamaged plies over cracked plies. Three-dimensional FE analysis

is performed here as a micromechanical tool to calculate the constraint parameters.

A representative unit cell of the RVE for [0m/± θn/90r]s laminate configuration with
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imposed symmetry boundary conditions is shown in Fig. 21 on page 57. In FE analy-

ses, the cell size is taken sufficiently large so as to avoid significant interaction between

adjacent cracks in an individual ply. Each ply in the laminate is 0.125 mm thick. The

ply material is glass- epoxy (HyE 9082Af, Fiberite) with in-plane properties E11=44.7

GPa, E22=12.7 GPa, G12=5.8 GPa and ν12=0.297. To obtain the remaining proper-

ties for use in the 3-D model, the unidirectional ply is assumed transversely isotropic

in the cross-sectional plane. Thus, E33 = E22 = 12.7 GPa; G13 = G12 = 5.8 GPa;

ν13 = ν12=0.297; G23 = E22

2(1+ν23)
=4.885 GPa. The Poisson’s ratio ν23 in the isotropic

cross-sectional plane is taken as 0.3.

Separate 3-D FE models were constructed for ply orientations, θ = 25, 40, 55,

70, 80 and 90◦, accounting for the mid-plane symmetry. As noted earlier, the matrix

cracks were taken to have grown across the entire width of the specimen. ANSYS

SOLID45 (eight-noded isoparametric) elements were used. Each FE model contained

10,000-50,000 elements to ensure sufficient accuracy of FE computations. A smooth

flow of mesh through the thickness was obtained using mapped meshing. Aspect ratio

of elements near the crack surfaces was kept close to 1.0 for better accuracy. Linear

Elastic FE analyses were carried out on unit cells using ANSYS 10.0 at 0.5 % axial

strain. More details on the 3-D FE methodology can be found in chapter III.

Due to presence of cracked surfaces in three directions (+θ,−θ and 90◦), it is not

possible to construct a fully periodic unit cell for the cracked laminate. Since there is

no periodicity in the width direction, the width of the unit cell is chosen large enough

such that the errors due to effects from the free edges are negligible. Thus the cell

used is not a unit cell, but a “representative” unit cell.

In a real scenario (experiments), the crack spacing may be different in different

plies. To account for this, two extreme situations are modeled here. The first case

refers to the scenario when cracks in all cracked layers intersect at the same X1
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location and hence there is maximum interaction between cracks. The other extreme

is when the cracks in different cracked layers are far apart and do not interact. The

real behavior will be between the two extremes. The unit cell shown in Fig. 21 on

page 57 actually refers to the first scenario.

E. Results and Discussion

1. FE Simulations Methodology

As can be seen from the flowchart in Fig. 41, SDM requires determination of ma-

terial constants a
′
i from the results for a reference laminate. For the present case of

[0m/±θn/90r]s laminates, we choose [0/903]s, i.e., θ = 90◦ and m = n = r = 1, as the

reference laminate. The stiffness-damage results for this cross-ply laminate can be

obtained in a variety of ways. The most obvious way would be by using experimental

data. However, although experiments reflect the real material behavior, they can be

performed for limited cases. An alternative and more general way is to use a numer-

ical tool such as an FE model to simulate stiffness degradation. FE simulations are

in fact easier to carry out and have no scatter other than the accuracy of computa-

tions that may depend on mesh density and implementation of boundary conditions.

Moreover, they can also be used to predict stiffness changes in other laminate layups.

Thus, in what follows next, we will compare SDM predictions with independent FE

simulations.

To gain confidence in the above approach for cracked off-axis laminates, we first

validated the FE simulations methodology with the experimental data. Using an FE

model, stiffness degradation in [0/ ± θ4/01/2]s glass-epoxy laminates was simulated.

The crack density along X1 direction (or equivalently, the crack spacing) was varied

by changing the length of the unit cell considered. Linear FE analyses using ANSYS
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10.0 were conducted for crack spacing, sθ = 16, 8, 4, 3, 2, 1.5, 1.25, 1, 0.75, 0.6 and 0.5

mm. The FE simulations compared well with the published experimental data [109]

for [0/908/01/2]s and [0/±704/01/2]s laminate configurations. The details have already

been covered in chapter III.

2. SDM Predictions

Following the SDM flowchart (Fig. 41), stiffness prediction entails three main steps:

1. Using FE computations, evaluate constraint parameters for each damage mode

and the effective damage parameter D̄, given by Eq. (5.22) and (5.23).

2. Determinate damage constants a
′
i appearing in Eq. (5.21) using the stiffness

degradation data for a pre-selected reference laminate, viz. [0/903]s.

3. Predict stiffness changes for [0m/±θn/90r]s laminates using the stiffness-damage

relations (Eq. (5.32)-(5.35)).

We will describe these steps in the following paragraphs.

a. CODs and interaction between damage modes

As seen from Eq. (5.23), the constraint parameters are given as average COD (∆uy)

normalized by crack size (or thickness of the cracked layer). To estimate ∆uy numer-

ically (Eq. (5.24)), ∆uy is determined from nodal y-direction (normal to the crack

plane) displacements averaged over the entire crack surface. CODs in two symmetric

modes (+θ and −θ-cracks) are added together to get ∆ (uy)±θ based on an obser-

vation in our previous paper [170] that these two symmetric damage modes can be

added together to yield one equivalent damage mode.

For [0m/± θn/90r]s laminates, three cracking modes are present in the damaged

material. Due to similarity in the constraining nature and the influence on material
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response of the cracks in +θ and −θ layers, these cracking modes can be coupled

together to yield one effective ±θ-damage mode (see Appendix). However, ±θ and 90◦

cracking modes can interact and influence the stress pattern around cracks in cracked

as well as in un-cracked layers, thereby affecting the overall stiffness properties of the

cracked laminate. Thus, one needs to incorporate this interaction between different

cracking modes into the damage model.

The stiffness-damage relations derived in the present work do not explicitly ac-

count for the interaction between different damage modes because the polynomial

used for Helmholtz free energy function does not contain terms involving product of

D
(α)
ij terms, e.g., D

(1)
1 D

(2)
1 , D

(1)
2 D

(2)
2 , etc. However, the SDM approach provides an

indirect means of dealing with intra-mode interaction through calculation of COD

using FE model with multi-mode cracks. Let us consider the following two cases

1. No interaction between damage modes: This scenario will exist when the cracks

in different damage modes are far apart and thus their mutual interaction is

not significant. This can be simulated in the FE model by considering two

damage modes separately and then adding (superposing) their effects. Thus,

for [0m/ ± θn/90r]s laminate, we carry out COD calculations in two different

cracking conditions. In the first case, cracks are present only in ±θn layers,

while in the second case cracks are present only in the 90r layers.

2. Maximum interaction between damage modes: This scenario will occur when

the cracks in different damage modes are sufficiently close to cause additional

perturbation in the stress fields on top of that due to individual damage modes.

The total perturbation effect can be captured in the SDM technique indirectly

in the calculated COD when both ±θn and 90r layers are cracked. The in-

teraction effect is actually observed in experiments, e.g., for [0/90/ − 45/45]s
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laminates, Tong et al. [108] observed that −45◦ cracks grew from the points

of intersection of the 90◦ cracks at the 90◦/ − 45◦ interface, and +45◦ cracks

initiated at the locations where −45◦ cracks met the −45◦/ + 45◦ interface.

Hence, while modeling multi-mode damage scenario, one should consider these

interaction effects.

It is noteworthy here that the two cases represent extremes and the real material

behavior is expected to be somewhere in between.

The normalized average CODs for various laminate layups are given in Table II.

The average CODs are nondimensionalized by the cracked-ply thickness (103 ∆uy
tc

) to

give the constraint parameters. The first and the second halves in the table refer to

the two cases described above. The columns in the table give the normalized average

CODs for layers in this order: +θ, −θ, their average (i.e., for the combined ±θ damage

mode), and then 90◦. [0/±90/90]s is just a hypothetical case where cracks are in ±90

layers. This is done in order to get κθ|θ=90 (see Eq. (5.22)-(5.23)). From the table,

it can be observed that the influence of crack interaction is the least for +θ-cracking

mode, and the highest for 90◦ mode. As θ in [0m/ ± θn/90r]s laminates increases,

this interaction becomes increasingly significant. It can also be observed that the

interaction is not influential for ply orientations away from 90◦. Figure 42 depicts the

variation of average normalized COD (
(
û = 103 ∆uy

tc

)
) for ±θ and 90◦ cracking with

increase in θ. It can be seen that the interaction between stress perturbations due to

different damage modes affects the average COD significantly. It should, however, be

pointed out that the FE analysis performed here assumes same crack density in 90◦

and ±θ plies, which is more severe situation than in reality. Experiments on quasi-

isotropic laminates show that ±45◦ cracks initiate much after 90◦ cracks, and their

crack density will be lower. Moreover, unlike cracks in 90◦ layers, ±45◦ cracks do
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not grow fully. Hence, the intra-mode crack interaction will be lower than predicted

here. The influence of crack interaction on stiffness changes will be discussed in the

following sub-sections.

b. Calculation of damage constants a
′
i

In the second step, we obtain damage constants a
′
i using the degradation results for

the reference laminate configuration [0/903]s. Although these results can be taken

from experimental data or an analytical model, we use FE for calculation of stiffness

changes for this reference laminate configuration as per the discussion above. Using

Eq. (5.21) with θ = 90 and a preselected sθn = s90 = s0, we obtain
E0

1

1−ν0
12ν

0
21

ν0
12E

0
2
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12ν
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1 a4

′ 0

2a
′
2 0

Symm 2a
′
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1−ν12ν21
ν12E2

1−ν12ν21 0

E2

1−ν12ν21 0

Symm G12


(5.36)

where D̄0 = D̄|sθn=s90=s0,θ=90◦ , and the right-hand side of the equation represents the

stiffness matrix of the damaged laminate expressed in terms of E1, E2, G12, ν12 and

ν21 evaluated at crack density sθn = s90 = s0. Solving this equation the material

constants of interest can be written as

a
′
1 =

1

2D̄0

[
E1

1− ν12ν21

− E0
1

1− ν0
12ν

0
21

]
a
′
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12ν
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1

D̄0

[
ν12E1

1− ν12ν21

− ν0
12E

0
1

1− ν0
12ν

0
21

]
(5.37)

For the present study, we have calculated the constants a
′
i with FE data for the

reference [0/903]s laminate with s0 = 1 mm, given as: E1 = 0.675 E0
1 , E2 = E0

2 , ν12 =

0.464 ν0
12. Fig. 43 shows the variation of longitudinal Young’s modulus and the



126

 0

 2

 4

 6

 8

 10

 12

 20  30  40  50  60  70  80  90

N
o

rm
a

liz
e

d
 C

O
D

Ply orientation, θ (deg)

Interactive modes
No interaction      

(a)

 0

 2

 4

 6

 8

 10

 12

 20  30  40  50  60  70  80  90

N
o

rm
a

liz
e

d
 C

O
D

Ply orientation, θ (deg)

Interactive modes
No interaction      

(b)

Fig. 42. Variation of normalized average COD
(
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Fig. 43. Stiffness reduction for [0/903]s laminate by FE simulations. These results

form the basis for computation of CDM constants.

Poisson’s ratio with respect to the crack density for the reference [0/903]s laminate.

The moduli values shown in the figure are normalized with the corresponding virgin

state values. These FE results form the basis for computation of CDM constants,

a
′
i. It is noted that the shear modulus for the cracked laminate can in principle be

treated using Eq. (5.35) independent of the other moduli. But it needs evaluation

of constant a
′
3, which would require setting up a boundary value problem different

from that needed to determine the other moduli. Hence, we shall not treat the shear

modulus here.

c. Predicted stiffness changes for [0/± θ/90]s laminates

Finally, Eq. (5.32)-(5.34) are used to predict the stiffness degradation in [0/± θ/90]s

laminates for different ply orientations. The comparison of SDM predictions and FE
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simulations for θ = 70, 55 and 40◦ are shown in Figs. 44-46. SDM predictions are

made using CODs determined for interacting damage modes (i.e., both ±θ and 90◦

cracks present) as well as non-interacting damage modes. For θ = 70◦ and 55◦, SDM

predictions agree reasonably well with FE simulations. However, for θ = 40◦, SDM

procedure predicts less severe degradation in axial modulus and in-plane Poisson’s

ratio than FE computations. This appears to be because the assumption in Eq.

(4.34) is expected to limit the accuracy of the procedure to θ-angles greater than

60◦. However, the experimental studies (e.g., [108, 109]) have also shown that for

axially loaded laminates, transverse cracks do not grow fully for ply orientations

below θ = 55◦ and the failure in laminates is actually induced by delamination.

It is important to note that in the present study, we have not considered the

degradation of shear modulus due to shear deformation in off-axis plies. This is still a

less-understood topic. However, one can include shear deformation effects indirectly

into SDM by using shear modulus variation with respect to applied loading as shown

by Varna et al. [109].

d. Predictions for quasi-isotropic laminates

The experimental data available for stiffness degradation in off-axis laminates in-

volving cracks in multiple ply orientations under quasi-static loading are limited to

quasi-isotropic laminates. Here we compare our predictions with the work by Tong et

al. [108], who carried extensive measurements of stiffness degradation in [0/90/∓45]s

glass-epoxy laminate. They observed partially initiated cracks in ∓45◦-layers and

plotted stiffness changes of the whole laminate as a function of 90◦-cracking density.

For stiffness predictions using the SDM approach, the corresponding material

constants a
′
i are evaluated from experimental data for [0/90]s laminate, shown in

Fig. 47. The individual ply thickness for this laminate is 0.5 mm. This laminate
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Fig. 44. Stiffness reduction for [0/± 70/90]s laminate compared with FE simulations.

The crack density is along X1 direction.
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Fig. 45. Stiffness reduction for [0/± 55/90]s laminate compared with FE simulations..

The crack density is along X1 direction.
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corresponds to the [0m/90r/ ± θn]s configuration for which the stiffness-damage re-

lations are given in Eq. (5.32)-(5.34), D̄ is given in Eq. (5.29), and the constraint

parameters are defined in Eq. (5.30). The normalized average CODs were again

determined using FE analysis. The corresponding constraint parameters are calcu-

lated as: κ904n+2r = 6.1e-3, κθ|θ=90 ≈ κ90 = 5.4e-3, κθ+ = 3.97e-3, κθ− = 3.35e-3, κθ =

1
2

(κθ+ + κθ−) = 3.66e-3.

In experiments [108] ∓45◦-cracks did not grow fully and laminates failed by

delamination. However, in FE analysis, we have assumed all cracks to be fully grown

through laminate width. Now, the degradation effects due to cracks in a given layer

(i.e., given crack size) should be directly proportional to the surface area of all the

existing cracks. Thus, to account for partially grown cracks, we can reduce the crack

density for that layer by a “relative density factor”, defined as

ρr =
Actual surface area for partial cracks

Surface area for full cracks
(5.38)

To find the actual surface area of partial cracks, the information regarding their actual

length (along lamina width) is necessary. Since such data was not reported in the

above experimental study [108], we consider two cases. We assume that the ∓45

cracks grow to half the laminate width in the first case and to 1/4th in the latter, i.e.,

ρr = 0.5, 0.25, respectively.

SDM predictions for these cases using the FE computed CODs are shown against

cracks density in 90◦-ply in Fig. 47. The cracks in −45◦-ply initiate at a cracks density

of about 0.7 cracks/mm in 90◦-ply, whereas the cracks in +45◦-ply initiate about 0.8

cracks/mm. The dotted line for [0/90/ ∓ 45]s laminate represents damage in 90◦-

ply only. The SDM predictions for the two cases of partial cracks are shown for

ρr = 0.5 and ρr = 0.25 by dashed and solid lines, respectively. The results for both

axial modulus and Poisson’s ratio are in very good agreement with the test data.



133

The prediction with reduced crack density approaches a more realistic magnitude of

stiffness degradation. The exact evaluation will, however, require the knowledge of

crack length, their densities and evolution in each cracked layer with applied strain.

3. Comparison of Stiffness Degradation in [0m/± θn/90r]s and [0m/90r/∓ θn]s

Laminates

It will be quite interesting to know how the layup sequence affects the stiffness degra-

dation. This can be very useful while designing structures made of composite lam-

inates. Property tailoring through optimization of layup sequence is an important

design activity to make stronger and more durable structures. For example, the in-

plane extensional stiffness properties of [0m/±θn/90r]s and [0m/90r/∓θn]s laminates

will be very similar. In fact, CLPT will result into identical properties, for the order

of ply orientation does not matter for in-plane stiffness (A-matrix). However, when

it comes to transverse cracking induced damage effects, the behavior of the struc-

ture could be different. This is because, in [0m/ ± θn/90r]s laminates, 90◦ plies are

centrally placed, i.e., they have double the thickness of 90◦ plies in [0m/90r/ ∓ θn]s

laminates. SDM provides an appropriate way to account for this ply layup. As an

example, predictions for stiffness changes due to transverse cracking in quasi-isotropic

laminates in these two cases is shown in Fig. 48. As expected, [0/±45/90]s laminates

depict more severe stiffness reductions for both the longitudinal Young’s modulus and

Poisson’s ratio than those for [0/90/ ∓ 45]s laminates. The difference is mainly due

to nearly double stiffness reduction due to 90◦ ply cracking in [0/ ± 45/90]s than

in [0/90/ ∓ 45]s laminates. The laminate theory, when applied to virgin laminates,

suggests identical in-plane stresses (σXX , σY Y , σXY ) for both of above laminate se-

quences. The through-the-thickness normal stress (σZZ), however, is quite different

for these two laminates.
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The effect of ply cracking in these laminates is quite different. In fact, some

experimental data [60] indicate that [0/ ± 45/90]s and [0/90/ ± 45]s laminates de-

veloped two distinctly different cracks patterns, and the saturation crack density in

two laminates were found to be different. Of course, due to the difference in 90◦ ply

thickness in two cases, the crack initiation strain and rates of increase in crack density

in that ply are very different in the two cases. These damage evolution aspects will

be discussed in the next chapter.

4. Parametric Study

To seek further validation of the SDM procedure and to gain insight into the effects of

relative thickness and stiffness of cracked vs. uncracked plies, we conduct a parametric

study. The key again is numerical computation of constraint parameters. This can be

attained by performing a suitable study of COD changes due to variation in material

and geometry parameters of the laminate. Here, we carried out the study by varying

the relative thickness of cracked and un-cracked layers for laminates in the class

of [0m/ ± θn/90r]s layup. The constants a
′
i are taken from previous analysis for the

reference [0/903]s laminate. The comparison of SDM predictions for m = 2, n = 2 and

p = 2 with numerical computations for a representative ply orientation, θ = 55◦, are

shown respectively in Fig. 49-51. Except for the axial Poisson’s ratio for [0/±552/90]s,

the results show good agreement with FE simulations. Obviously, stiffness changes are

most severe for p = 2 and least severe for m = 2. In fact, there is negligible difference

in results form = 1 andm = 2. Also, the interaction between damage modes increases

as the thickness of cracked layer(s) increases. The general observation is that the

thickness of cracked layer(s) has a significant impact on stiffness changes whereas

increasing thickness of supporting plies has small effect on overall properties of the

cracked laminate. The same observation was made for [0m/ ± θn/0m/2]s laminates
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in [170]. Similar parametric studies can also be used to evaluate stiffness changes

with varying degree of relative material stiffnesses of un-cracked and cracked layers,

e.g., if 0◦-layer is made of different material than off-axis plies. These parametric

studies enable efficient computations during design of laminated structures.

5. Discussion and Assessment of the SDM Approach for Multi-mode Damage

The stiffness-damage relationships (5.21), or equivalently, in engineering moduli form,

Eqs. (5.32)-(5.35), provide the basis for predicting RVE-averaged stiffness properties

for [0m/ ± θn/90r]s laminates with simultaneous cracks in +θ and −θ-plies, as well

as in 90◦-plies. These relationships, which are for an initially orthotropic laminate,

state that the laminate is orthotropic also with ply cracks present. The procedures for

calculating the damage parameter D̄ and the damage-material constants a
′
i appearing

in these equations have been described above. As noted above, we have treated the

three coupled equations (5.32)-(5.34), while Eq. (5.35), which involves shear response

has been left for future work.

While the predictions by the SDM approach can be viewed as satisfactory for

changes in E1 and ν12 for the class of laminates considered, as evidenced by compar-

isons in Figs. 44-51, it must be noted that the prediction of damage induced stiffness

for multi-mode damage in general laminates is still a challenge. The previous work

for [0m/ ± θn/0m/2]s laminates [170], and the current effort for [0m/ ± θn/90r]s and

[0m/90r/± θn]s laminates, taken together, show a path forward to meeting that chal-

lenge. However, to proceed further, we must note the limitations in what has been

accomplished in the present work. Firstly, the evaluation of the constraint parame-

ters, as discussed in Section 4.2.1, requires calculating the average CODs from an FE

model of the representative unit cell. The FE model shown in Fig. 21, page 57 is for

an imposed uniform displacement in the axial direction. The CODs from this model
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Fig. 49. Stiffness reduction for [02/±55/90]s laminate compared with FE simulations.

The crack density is along X1 direction.
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Fig. 50. Stiffness reduction for [0/±552/90]s laminate compared with FE simulations.

The crack density is along X1 direction.
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Fig. 51. Stiffness reduction for [0/±55/902]s laminate compared with FE simulations.

The crack density is along X1 direction.
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allow evaluation of the constraint parameters that successfully lead to predictions of

axial properties E1 and ν12. Note that the assumption made in deriving Eq. (4.33),

namely, ai ≥ bi, is likely valid only for the case of axial loading of the laminate with

damage. More work is needed to investigate the lateral loading case and to examine

the associated prediction procedure for E2 and ν21.

On the limitations side of the current SDM approach, we also note that the

stiffness-damage relationships (Eq. (5.21)) are linear in the damage parameter as a

consequence of restricting the polynomial expansionto linear terms in damage. This

restriction can be easily relaxed at the cost of requiring more data for prediction of

stiffness changes. It turns out, however, that the predictions by the linearized equa-

tions is quite satisfactory in most cases for crack densities of up to 1.0 cracks/mm, as

seen in Figs. 44-51. In practical design one would seldom exceed such high crack den-

sities, particularly when most cases examined experimentally show that delamination

sets in when plies are cracked extensively. One more implication of the linearization

is in evaluating the damage-material constants a
′
i. As seen from Eq. (5.37), eval-

uation of these constants requires knowing changes in E1, E2 and ν12 for a selected

cross ply laminate (here [0/903]s), at one fixed crack density, as described in Section

4.2.2. Because of the linearization, while the actual stiffness dependence on damage is

approximately linear, at least until reasonably high crack densities, the choice of the

fixed crack density would affect the values of the a
′
i constants. It turns out however,

that a prudent choice of 1.0 cracks/mm gives fairly accurate stiffness predictions,

except perhaps for θ = 70◦ as seen in Fig. 44.
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F. Summary

The previously developed synergistic damage mechanics approach for [0m/±θn/0m/2]s

laminates in [170] has been extended here for [0m/ ± θn/90r]s and [0m/90r/ ± θn]s

laminates with cracks in 90◦-plies in addition to the cracks in +θ- and −θ-plies. The

extension is far from trivial, as the new case considered here has two distinct damage

modes while in the previous case the two θ crack arrays could be treated equivalently

as a single damage mode.

The stiffness-damage relationships derived for the current case for simultaneous

presence of two damage modes show orthotropic symmetry for in-plane loading, lead-

ing to four new damage related constants. A procedure for determining three of the

constants, corresponding to axial loading, has been presented. Evaluation of these

constants can be done from known stiffness changes of a cross ply laminate at a fixed

crack density. These known stiffness values can be obtained experimentally, or, as

demonstrated here, from a finite element model. A damage parameter representing

the two simultaneous damage modes has been evaluated from a finite element model

of the representative unit cell of the laminate containing damage by calculating the

crack-surface averaged opening displacements. The stiffness predictions of indepen-

dent cases using the evaluated material constants and the damage parameter show

good agreement with directly calculated values by finite element models. Further

validation of the prediction procedure comes from a parametric study of cracked and

uncracked ply thicknesses.

Although the methodology developed here is still not fully general, the limitations

being in linearization of the stiffness-damage relationships and in not considering shear

loading, it is the first such treatment for multi-mode damage. Further work in the

direction pursued is thought to provide further advance in treating damage of general
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laminates.
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CHAPTER VI

DAMAGE EVOLUTION

A. Introduction

Multidirectional composites, which contain multiple plies with different orientations,

are useful for applications requiring shear, multi axial and other complex loading

scenarios. When subjected to tensile loading, they can develop ply cracks in multiple

orientations. Although the approaches to analyze damage in single orientation, e.g.,

for cross-ply ([0/90]s) laminates, have gained maturity, there has been little success

in developing analysis methods which can work well for multidirectional composites.

The usual analysis methods fail for multidirectional composites due to complexity of

stress state, multiplicity of damage orientations and their interactions. Experimental

investigations [108, 109, 127] have shown that cracking in off-axis plies may involve

mixed mode of fracture and interactions between cracks of multiple orientations.

Damage analysis of composite laminates entails solving two inter-dependent prob-

lems. In the first problem the effect of transverse cracks on material stiffness is ana-

lyzed and stiffness properties as a function of crack density are predicted. The second

problem caters to the prediction of increase in crack density as a function of applied

load. Combining the two, the overall stress-strain response is obtained. For off-axis

laminates, the first problem is dealt in detail by the authors in the previous chapters,

published in [170,171]. The present study aims at predicting the evolution of off-axis

ply crack density as a function of applied loading.

To analyze the damage progression, two different approaches are commonly uti-

lized. The first one, known as “strength-based” approach uses the solution to stress

analysis problem to form a cracking criterion. According to these models, ply cracks
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form when the stress reaches the transverse strength or of the ply material or some

multi-axial stress state criterion is met [22]. On the other hand, the second approach

known as “energy based” approach [22] predicts formation of new crack based on

energy considerations. A comprehensive study by Nairn et al. [43] on cross-ply lam-

inates has shown that none of the strength models gives consistent results and an

energy-based failure criterion is the only acceptable option. Variational method cou-

pled with a probabilistic energy criterion is found to match well with experimental

results for cross-ply laminates [102].

For off-axis laminates, the only available approach is the modified shear lag anal-

ysis, used for predicting crack initiation in angle-ply laminates [119] and for obliquely

crossed cracks [125]. However, all shear models involve approximate stress analysis

rendering inaccurate predictions for multidirectional laminates.

In the present work, an energy based approach to predict evolution of ply cracks

in multidirectional laminates is developed following the notions of fracture mechanics.

The cracks in a given off-axis ply initiate and propagate when mixed mode fracture

criterion is met. The critical energy release rate in normal mode (GI) is determined

by fitting the damage model with the experimental data for a reference cross-ply

laminate. On the other hand, GII (shear mode) is assumed to be 1500 J/m2. The

approach needs determination of average crack opening displacement (COD) and crack

sliding displacement (CSD) as a function of crack spacing. This task is performed

through a suitable 3-D finite element (FE) analysis. Then the proposed damage

model is used to predict the evolution of crack density with applied loading for other

laminate layups with the same material properties. The predictions are compared

with experimental data for [0/ ± θ4/01/2]s and [0/90/ ∓ 45]s laminates [108, 109]. A

parametric study coupled with suitable FE computations is carried out to predict

damage evolution in [0m/90n/∓ θp]s laminates with varying layer thicknesses.
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B. Experimental Observations

The experimental studies on initiation and growth of intralaminar cracking in com-

posite laminates has been extensive in the literature. Most of the work has focused on

90◦ ply cracking in cross-ply laminates, and quasi-isotropic laminates. An excellent

book chapter by Nairn [22] provides a good overview of essentials and effects of ply

cracking damage. Some interesting observations are as follows:

1. Crack initiation: Crack initiate from the sites of material defects, such as voids,

inclusions, etc., and preferably from the free edges of the laminate. For mul-

tidirectional laminates containing 90◦ plies, the cracking often begins in those

plies. The crack initiation strain for 90◦ plies is about 0.4 -1.0 %, depending

upon the material, laminate sequence, and ply thickness, and it increases as ply

orientation decreases. For 45◦ plies, for example, it could easily be more than

1.0%.

2. Tunneling cracks: Most experimental studies point out that once the ply cracks

have grown through the lamina width, they often grow unstably along the fiber

direction through the laminate width, and are thus called “tunneling cracks”.

Some studies [94, 125, 126], however, also show that for multidirectional lami-

nates, cracks in plies other than 90◦ may not grow fully before laminate fails by

delamination.

3. Damage evolution curve: Once the ply cracking has initiated, more and more ply

cracks start appearing in between existing cracks, and the crack density rises

quickly. As the crack spacing between adjacent cracks keeps decreasing, the

cracks start interacting and the rate of cracking slows down and finally reaches

a saturation asymptotically. Thus a typical damage growth curve consists of
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three stages: initial rapid rise, slowing down, and saturation. The initial rapid

rise and saturation crack density depend on the material type, the laminate

sequence, and also the laminate fabrication process. For example, well-made

carbon/epoxy laminates typically have a rapid rise in ply crack density.

4. Effect of ply thickness: The thickness of the cracked ply plays a significant role

in changing the start of the multiple matrix cracking, as well as the rate of

increase in crack density [14–21, 26]. As thickness of 90◦ ply, in a [0m/90n]s

laminate, is decreased, required strain to induce initiation of matrix cracking

increases (see Fig. 6). For very thin plies (e.g., less than 0.1 mm thick), the ply

cracks may be suppressed entirely and the laminate may fail before initiation

of cracking.

5. Effect of stacking sequence: The layup sequence may affect the cracking process

appreciably. For example, the experiments overwhelmingly show that the strain

to initiate ply cracking is lower for laminates with surface 90◦ plies than for

laminates with the central 90◦ plies [22, 43]. For [0/90] laminates, the outer 0◦

plies provide support and constrain the development and opening of cracks in

90◦ plies, whereas no such constraint is available for surface 90◦ plies from the

outer-side. The damage evolution curves for [0m/90n]s and [90n/0m]s laminates

are compared in Fig. 52, reproduced from [22]. [90n/0m]s laminates clearly show

a higher stiffness degradation than the [0m/90n]s laminates. For multidirectional

laminates, the situation is more complex and has to be studied on a case to case

basis.

6. Laminate material matters: For instance, the laminates made from carbon/epoxy

show a higher resistance to multiple matrix cracking than those made from
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glass/epoxy. Correspondingly, the stiffness degradation in carbon/epoxy lami-

nates is much less severe than the glass/epoxy laminates.

7. Complexities of off-axis ply cracking: Off-axis ply cracks may initiate at much

higher strains than 90◦ plies, may not grow fully and may sometimes show

curved patterns (see, e.g., [172,173]). A 3D stress analysis study [103] on [0/∓θ]s
laminates showed that the principal stress trajectories in the off-axis, θ plies may

not be straight and may account for the development of curved matrix cracks.

8. Contiguous ply cracking: As mentioned above, an off-axis ply adjacent to a 90◦

ply shows numerous partial cracks, which may or may not join to form through

cracks on increase in applied loading. The cracks in the contiguous ply almost

always start from its interface with the 90◦ ply. A picture shown in Fig. 16

on page 42 shows numerous partial cracks in 60◦ ply of a [0/602/90]s laminate,

growing from the 90/60 ply interface. Experiments by Yokozeki [125, 126] on

[0/θ2/90]s laminates also point out that the angle of intersection between 90◦

and θ plies, and thickness of the θ ply may have a significant impact on the

initiation and growth of ply cracking in that ply.

9. Loading and environmental affects: Most experiments are performed using uni-

axial tension, but ply cracks will also form under other loading conditions, such

as fatigue, biaxial or shear loading. In the case of bending, ply cracks will form

on the tension side [41, 174], and analysis for such loading situation analyses

need to account for the different stress state in laminates undergoing bending

than undergoing tension [41,73,135,136]. Biaxial loading of [0m/90n]s laminates

may show cracks in both 0◦ and 90◦ plies. On thermal loading, the differential

shrinkage between the 0◦ and 90◦ plies may also induce biaxial loading [175–180].

The residual stresses due to thermal effects or moisture etc. may also affect the
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cracking process [181,182].

C. Energy Based Criterion for Transverse Cracking

Consider a generally symmetric composite laminate loaded in axial tension (Fig. 26).

The in-plane stress state in off-axis plies with respect to material axes is displayed in

the figure. When this stress state in a particular ply reaches a critical value, matrix

cracking initiates in that ply. On further increase in loading, multiple cracking ensues

by the so-called shear lag process. In a similar way, other off-axis plies may also

develop multiple cracks at different load values. Experimental studies have shown

that for plies transverse to the loading axis, the ply cracks grow instantly through

the laminate width. However, for lower off-axis angles, cracks may not fully develop.

At angles lower than 45◦, ply cracks may not even initiate before material fails due

to delamination.

Now assume that on some applied load, one off-axis ply has developed a periodic

array of N fully grown cracks (Fig. 53). On further increase in load to σ0, a new

crack appears midway between two existing cracks, increasing the total number of

cracks in the layer to 2N . During this process, the spacing between two adjacent

cracks decreases from ‘s’ to ‘s/2’. The released energy due to these N new cracks is

equal to the work needed to close them [104]. If we denote this work by W2N→N , and

the work to close all cracks at once by W2N→0, we have, by energy balance

W2N→0 = W2N→N +WN→0 (6.1)
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Fig. 52. Comparison of ply cracking in [0m/90n]s and [90n/0m]s laminates (source:

[22]).
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Using the crack closure technique, WN→0 can be determined as

WN→0 = F.u = Fn.un + Ft.ut

= 2.N. 1
sin θ

.1
2

∫ tθ/2
−tθ/2 σ

θ
20un(z)dz + 2.N. 1

sin θ
.1
2

∫ tθ/2
−tθ/2 σ

θ
120ut(z)dz

= N. 1
sin θ

.tθ.
[
σθ20.ū

θ
n (s) + σθ120.ū

θ
t (s)

]
(6.2)

where tθ is the thickness of the cracked ply, and ūθn(s) and ūθt (s) represent average

COD and CSD for the cracked layer with crack spacing equal to s, and σθ20 and σθ120

represent the far away normal and shear stresses in the lamina coordinate system for

undamaged material. Therefore, σθ20 and σθ120 are responsible for opening and sliding

of the cracked surfaces, respectively. Since the average COD and CSD depend on the

applied stress (strain) level and the crack size (or equivalently the thickness of the

cracked layer), we normalize these quantities with respect to the applied load and the

thickness of the cracked layer as

ũθn = ūθn
tθ(σθ20/E2)

= 1

t2θ(σθ20/E2)

∫ tθ/2
−tθ/2 un(z)dz

ũθt =
ūθt

tθ(σθ120/E2)
= 1

t2θ(σθ120/E2)

∫ tθ/2
−tθ/2 ut(z)dz

(6.3)

where E2 is transverse modulus for virgin unidirectional lamina, un = δuy = u+
y −u−y ,

and ut = δux = u+
x − u−x , respectively represent the normal (opening) and tangential

(sliding) displacement of the crack surfaces. They are determined using FE calcu-

lations for nodal displacements in the local crack plane coordinate system (x, y, z),

as shown in Figs. 20, and 21 shown on pages 56 and 57 for two and three damage

modes, respectively. Using the normalization in Eq. 6.3, the work required to close
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N -cracks with spacing s is given by

WN→0 = N
1

sin θ
(tθ)

2 .
1

E2

[(
σθ20

)2
.ũθn (s) +

(
σθ120

)2
.ũθt (s)

]
(6.4)

Similarly, the work required to close 2N cracks with spacing s/2 is given by

W2N→0 = 2N
1

sin θ
(tθ)

2 .
1

E2

[(
σθ20

)2
.ũθn

(s
2

)
+
(
σθ120

)2
.ũθt

(s
2

)]
(6.5)

Using Eqs. (6.1), (6.4) and (6.5), W2N→N can be written as

W2N→N = N
1

sin θ
(tθ)

2 .
1

E2

[(
σθ20

)2
{

2ũθn

(s
2

)
− ũθn (s)

}
+
(
σθ120

)2
{

2ũθt

(s
2

)
− ũθt (s)

}]
(6.6)

Following fracture mechanics, the transverse cracks will form in the matrix if the

energy released is greater than the critical energy release rate of the matrix for the

given laminate layup and material, i.e., if

W2N→N ≥ N.Gc.
1

sin θ
tθ (6.7)

where, Gc = 2γ, with γ representing the energy required to form a unit area of

new material surface [183]. The factor 2 refers to the two new material surfaces

formed during crack multiplication. The equation (6.7) represents the mode I fracture

criterion for multiple matrix cracking in a given off-axis ply. However, if the critical

energy release rate for the matrix for the given laminate system is different in the

normal and shear modes, the above criterion needs to be modified. Separating the

Mode I and Mode II work in Eq. (6.6), the fracture criterion (6.7) can be rewritten

as (
WI

GI

)a
+

(
WII

GII

)b
≥ 1 (6.8)

where WI and WII represent the energy released per unit surface area in the opening

(Mode I) and sliding (Mode II) of the crack surfaces, respectively, GI and GII are
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State 1: N cracks, crack spacing =s State 2: 2N cracks, crack spacing =s/2

s
s/2

Fig. 53. Progressive multiplication of transverse cracks.

the critical energy release rate in these modes, and the exponents a and b depend on

the material system, for example, for glass/epoxy system, a = 1, b = 2 [119,184]. WI

and WII are given by

WI =

(
σθ20

)2
tθ

E2

[
2ũθn

(s
2

)
− ũθn (s)

]
, WII =

(
σθ120

)2
tθ

E2

[
2ũθt

(s
2

)
− ũθt (s)

]
(6.9)

It is important to note here that Mode I refers to the opening of crack surfaces whereas

Mode II refers to an out-of-plane displacement and is actually referred to as Mode

III in the conventional fracture mechanics.

To simulate the randomness in crack spacing and material resistance to cracking,

the whole laminate specimen along the longitudinal direction is divided into small

intervals of length δX such that only one transverse crack appears in a given length

interval. Here X represents the global (laminate) axial direction. δX is chosen to

be equal to length scale at the initiation of ply cracking, i.e., the fiber diameter. In

the present paper it is assumed to be δX = tθ/10. During simulation of progressive

cracking, the first ply crack appears in a random length interval. Once the transverse

crack appears in a given length interval, it is taken out of consideration for further

ply cracking.

The lamina stresses in an initially orthotropic laminate are found using the lam-
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Divide specimen into small length intervals, δX = tθ/10.

Evaluate crack initiation strain, ǫX0 (Eqn. 6.13)

Increase applied strain: ǫX = ǫX + ∆ǫX .

Choose a length interval

Increase crack density,
# of cracks: N = N + 1

YesNo
Is

criterion (6.8)
satisfied?

Fig. 54. Flowchart for implementation of transverse cracking simulation using frac-

ture-mechanics based energy method.

inate theory as follows
σθ10

σθ20

σθ120

 =


Q11 Q12 0

Q12 Q22 0

0 0 Q66




εθ10

εθ20

εθ120

 (6.10)

where the strains in the off-axis ply resolved in the material directions, are given in

terms of applied strains, as
εθ10

εθ20

εθ120

 =


m2 n2 2mn

n2 m2 −2mn

−mn mn m2 − n2




εX

εY

εXY

 (6.11)

where m = cos θ;n = sin θ, and the elements of the stiffness matrix are given in terms

of engineering moduli as

Q11 =
E0

1

1− ν0
12ν

0
21

; Q22 =
E0

2

1− ν0
12ν

0
21

; Q11 =
ν0

12E
0
2

1− ν0
12ν

0
21

; Q66 = G0
12 (6.12)
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Using equations (6.2)-(6.8), with N = 1 and a = 1, b = 2, we obtain

A2ε4X0 +Bε2X0 = 1 (6.13)

with

A =
ũθt |s→∞ tθ
E2GII

[Q66.2mn. (1 + ν120)]2

B =
ũθn|s→∞ tθ
E2GI

[
Q12

(
m2 − ν120n

2
)

+Q22

(
n2 − ν120m

2
)]2

(6.14)

The solution of equation (6.13) provides us the strain at ply crack initiation in an

off-axis ply.

The complete procedure to implement the described energy model for the ply

crack initiation and evolution in an off-axis ply of a general symmetric laminate is

outlined below (also see Fig. 54).

1. Determine/Assume GI , GII by fitting experimental data for reference laminate.

For example, for predicting damage evolution in [0/ ± θ4/01/2]s laminates, we

have chosen [0/908/01/2] as the reference laminate.

2. From FE simulations, determine COD and CSD variation with crack spacing.

3. Predict damage evolution in other off-axis laminates:

(a) Divide specimen length in small intervals of length δX = tθ/10.

(b) Find strain at crack initiation using Eq.(6.13). What we need for this step

is geometry and material properties for the laminate configuration, and

normalized COD/CSD at a sufficiently large crack spacing (corresponding

to nearly no cracks).

(c) Assume a very small initial crack density.
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(d) Choose a random length interval and check for cracking. A new crack

forms when criterion set in Eq.(6.8) is satisfied. Increase crack density

and eliminate the cracked length interval from further consideration for

transverse cracking.

(e) Choose another length interval and repeat previous step till fracture crite-

rion is satisfied.

(f) Increase applied strain. Repeat (c)-(d) at this strain value.

D. FE Modeling

As would be clear from the previous section, the prediction of transverse cracking

using Eq.(6.8) requires normalized average COD (ũθt ) and CSD (ũθt ) as a function of

crack spacing s. To evaluate average COD and CSD for various laminate configura-

tions and crack densities, separate 3-D FE models were constructed for [0/±θ4/01/2]s,

[0m/ ± θn/90p]s and [0m/90p/ ∓ θn]s laminates. Representative geometric models

(RVE) for the two laminate configurations along with symmetry boundary conditions

are shown in Figs. 20 and 21 on pages 56, and 57, respectively. In FE analysis, the

RVE size is varied to determine CODs and CSDs at varying crack density. More

details on FE modeling are given in chapter III.

The ply material properties are shown in Table III. To obtain the remaining prop-

erties for use in the 3-D model, the unidirectional ply is assumed transversely isotropic

in the cross-sectional plane. The Poisson’s ratio in the isotropic cross-sectional plane

ν23 is taken as 0.42. The mid-plane symmetry of the laminate was accounted for in

the FE models.
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Table III. Ply properties

Material 1: Fiberite [109] Material 2: glass/epoxy [108]

Laminate layup [0/± θ4/01/2]s [0/90]s, [0m/± θp/90n]s

& [0m/90n/∓ θp]s
Ply thickness 0.125 mm 0.50 mm

E1 44.7 GPa 46.0 GPa

E2 12.7 GPa 13.0 GPa

G12 5.8 GPa 5.0 GPa

ν12 0.297 0.3

E. Analysis Results

To illustrate the fracture mechanics based energy model for transverse cracking in

off-axis laminates developed in the section 2, we compare our predictions with the

available experimental data. Two laminate configurations are considered here: [0/±
θ4/01/2]s and and quasi-isotropic ([0/90/ ∓ 45]s) laminates. The experimental data

for the two configurations were published by Varna et al. [109], and Tong. et al. [108].

We, then, will predict damage evolution for more general case of [0m/± θn/90p]s and

[0m/90p/ ∓ θn]s laminates and finish with a limited parametric study of changes in

layer thicknesses.

From FE simulations at a fixed crack spacing, the average COD and CSD are

calculated as

ūθt =
1

tθ

∫ tθ/2

−tθ/2
∆ux(z) dz; ūθn =

1

tθ

∫ tθ/2

−tθ/2
∆uy(z) dz (6.15)

where ∆ux and ∆uy represents the separation of crack planes in the direction normal

and parallel, respectively, to the crack face. The coordinate x, and y are along the
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Fig. 55. Determination of fitting parameter f and critical energy release rate Gi using

experimental data for [0/908/01/2]s laminate [109].

fiber and transverse to the fiber, respectively, in the local lamina coordinate system.

Numerically, ∆ux and ∆uy are determined from nodal x and y-direction displacements

averaged over the entire crack surface.

1. [0/± θ4/01/2]s Laminates

Each ply in the laminate is 0.125 mm thick. The ply material is glass- epoxy (HyE

9082Af, Fiberite).

Normalized COD and CSD values calculated using FE analysis are shown in

Table IV for different laminate layups. As the crack spacing decreases, COD and

CSD decrease due to interaction between nearby cracks in a given layer. The values

shown in the table are at discrete values of crack spacing s. To enable representation

of COD and CSD as a continuous function of s, polynomial fits were used in numerical

simulations while predicting damage evolution.
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Fig. 56. Comparison of crack initiation strains with experimental data reported in

[109].

It is important to note that at low crack densities, the energy release rate is

almost constant. However, on development of sufficient cracks with a distribution in

inter-crack spacing, it will be a function of this spacing. To account for this behavior,

Liu and Nairn [44] suggested that Eq. (6.9) be modified, by introducing the concept

of an effective crack spacing, as follows

WI =

(
σθ20

)2
tθ

E2

[
2ũθn

(
fs

2

)
− ũθn (fs)

]
; WII =

(
σθ120

)2
tθ

E2

[
2ũθt

(
fs

2

)
− ũθt (fs)

]
(6.16)

where f is the average ratio of the size of the crack interval in which a ply crack forms

to the average crack spacing. For cross-ply laminates, they found that 1.2 < f < 1.5

fits well with experimental data. However, for [0/ ± θ4/01/2]s laminate we find that

f = 0.8 predicts damage evolution plot closest to the experimental data. Fig. 55 forms

the basis for calculation of GI . In literature, different investigators have used different

values of critical energy release rate even for the same material. This is because for
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predictions of transverse cracking phenomenon, GI is not a material constant and not

equal to the fracture toughness of the matrix material, especially when the laminate

layup changes. Another reason is that fracture toughness predicts the crack path

and rate of progression for a single crack and not evolution of crack density. Hence,

transverse cracking is a quite different phenomenon than crack propagation, although

the basic concepts hold true. As a pragmatic solution, we propose that use GI as

a calibration parameter and determine it based on experimental data for a specific

reference laminate. This reference laminate could be a cross-ply laminate with the

same material properties. We determine GI = 212 J/m2 by calibrating crack density

evolution for [0/908/01/2]s laminate. Also, we assume GII = 1500 J/m2 based on the

literature [119].

Fig. 56 shows the comparison of crack initiation from experimental data [109]

and predicted by the energy model. The figure depicts that for ply orientations close

to 90◦, the strain to initiate crack increases almost linearly as θ decreases. However,

for θ < 55◦, this strain increases almost exponentially and below 40◦, there are no

cracks in the laminate system, because the strain to initiate crack is more than 1.5%.

Moreover, below 55◦ transverse cracks usually do not cover the laminate width, i.e.,

they are non-tunneling cracks. These predictions are consistent with the experimental

results on off-axis laminates [108,109,127].

Once we have determined Gi, we can now predict damage progression in other

off-axis laminates following the procedure described in the Section 2. Using f = 0.8,

the plots of crack density evolution for [0/±704/01/2]s and [0/±554/01/2]s laminates,

are shown in Fig. 57 and 58, respectively. The predictions agree very well with

the experimental data. In case of θ = 70◦, the damage model does not match with

experimental measurements at high crack densities because the experimental data

could be spurious due to initiation of delamination in the laminate specimen. For
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Fig. 57. Damage evolution in [0/ ± 704/01/2]s laminates. The experimental data is

from [109].

θ = 55◦, the experimental data showed huge coupon-to-coupon variation [109], and

thus two sets of experimental data are shown.

2. Quasi-isotropic ([0/90/∓ 45]s) Laminates

The ply properties for this case are: ply thickness = 0.5 mm, E11=46 GPa, E22=13

GPa, G12=5 GPa and ν12=0.3. The CODs and CSDs for [0/90]s and [0/90/ ∓ 45]s

laminates are shown in Table IV. The corresponding GI value, determined by cali-

brating the experimental data for [0/90]s laminate, is 232 J/m2.

The damage progression plots for [0/90]s and [0/90/∓45]s glass-epoxy laminates

are shown in Fig. 59. In general, the model predictions are in good agreement with

the experimental data. The important point to consider is the transverse cracking

process in quasi-isotropic laminates in comparison to cross-ply laminates. The cracks

initiate always first in 90◦ layer at about 0.4 % applied strain for both cross-ply and
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ũ
θ n

(m
m

)
(m
m

)
(m
m

)
(m
m

)
(m
m

)
16

.0
0

1.
50

2
16

.0
0

1.
47

5
1.

62
5

16
.0

0
1.

41
6

1.
48

9
8.

00
2.

61
4

8.
00

1.
85

9
8.

00
1.

42
3

7.
93

1.
43

7
1.

58
3

10
.2

4
1.

39
7

1.
47

0
4.

00
2.

53
0

4.
00

1.
82

2
4.

00
1.

28
7

5.
43

1.
40

3
1.

54
6

7.
28

1.
37

7
1.

44
9

2.
00

2.
26

5
3.

00
1.

79
0

2.
80

1.
19

0
4.

44
1.

38
0

1.
52

1
5.

13
1.

35
1

1.
42

1
1.

50
2.

01
5

2.
00

1.
68

8
2.

00
1.

07
8

3.
60

1.
35

1
1.

48
8

4.
04

1.
32

7
1.

39
6

1.
25

1.
82

2
1.

60
1.

58
6

1.
60

0.
98

8
2.

87
1.

31
2

1.
44

6
3.

58
1.

31
0

1.
37

8
1.

00
1.

56
9

1.
20

1.
40

4
1.

20
0.

85
2

2.
26

1.
25

6
1.

38
4

3.
16

1.
28

8
1.

35
5

0.
75

1.
25

5
0.

80
0.

64
2

1.
98

1.
21

5
1.

33
8

2.
79

1.
24

7
1.

31
2

0.
58

3
1.

01
2

1.
73

1.
15

9
1.

27
6

0.
50

0.
88

2



163

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2  2.5  3

C
ra

c
k
 d

e
n

s
it
y
 (

1
/m

m
)

% Axial Strain

Experimental Data 1

Experimental Data 2

Model: f = 0.8

Fig. 58. Damage evolution in [0/ ± 554/01/2]s laminates. The experimental data is

from [109].

quasi-isotropic layups. However, the crack density at saturation is higher in the quasi-

isotropic laminate than in the cross-ply laminate. The dotted line in the figure shows

the evolution of ply cracks in 90◦ layer when there are no transverse cracks in −45◦

and +45◦ layers. This is true initially during the loading process. However, on high

levels of loading, cracks appear in −45◦ and +45◦ layers also. During experiments,

Tong et al. [108] observed that the transverse cracks initiate in −45◦ layer at the

interface where 90◦ cracks meet the −45◦ layer. Later, cracks develop in +45◦ layer

at the intersection of developed −45◦-cracks and -45/+45 interface. These cracks,

however, do not progress fully in the laminate width before other damage modes

(delaminations etc.) appear. As reported in our previous paper [171], cracks in −45◦

and +45◦ layers cause only a small degradation in the stiffness of the whole laminate.

In order to further understand the cracking behavior in [0/90/∓ 45]s laminates,

a detailed 3-D stress analysis was performed with and without −45◦ and +45◦-cracks.
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Fig. 59. Damage evolution in [0/90]s and [0/90/ ∓ 45]s laminates. The experimental

data is from [108].

As can be seen in Fig. 60, these cracks perturb the stress state around 90◦ cracks

also and the maximum principal stress in the laminate increases from 265 MPa to

392 MPa (a 48% increase). The maximum stress in the case without ∓45-cracks

occurs at the edge interface of 90◦-ply, whereas in the other case, it occurs at the

intersection of 90◦ and −45◦ cracks. As a result of this stress concentration, the

normalized average COD for 90◦ cracks increases by 10%. The resulting evolution

curve is shown by a solid line in Fig. 59. There is an instantaneous increase in density

of 90◦-cracks on development of −45◦ as well as of +45◦-cracks. In reality, however,

this increase would not be so rapid because FE modeling did not assume growth of

−45◦ and +45◦-cracks through the laminate width. The huge scatter in experimental

data after formation of −45◦-cracks is due to non-uniform size and propagation of

these cracks and interactions with 90◦-cracks.
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Fig. 60. Principal stress profiles for [0/90/ ∓ 45]s laminates: (a) without ∓45-cracks,

(b) with ∓45-cracks.
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3. [0m/90n/∓ θp]s Laminates

As discussed in the previous sub-section, the damage in the case of quasi-isotropic

laminates is primarily due to 90◦-cracking mode. However, for [0m/90n/∓ θp]s lami-

nates with θ close to 90◦, ∓θ-modes could also be significant and consequently there

could be important interactions between the two damage modes. Please note that

this interaction between damage modes is appreciable only when θ is close to 90◦ as

then the cracked surfaces for ∓θ and 90◦-plies are closer to each other.

The initiation and progression of cracking in these damage modes can be pre-

dicted by computing CODs and CSDs when both form of crack systems are present

in the laminate FE analysis. The applied axial strain to initiate cracking in differ-

ent plies of [0/90/∓ 60]s and [0/90/∓ 75]s laminates are tabulated in Table V. The

corresponding damage progression predictions with applied axial strain for these lam-

inates are shown in Figs. 61-62. For θ = 60◦, 90◦-cracks were predicted to form first.

90◦-cracks then help in initiation and progression of ∓60◦-cracks from the interface

between ∓60◦ and 90◦-layers. Hence, initially in the simulation only 90◦-mode is

active till ∓60◦-cracks form. However, for θ = 75◦, both damage modes are found to

initiate at almost the same applied strain; hence all modes are active initially in the

FE simulation.

Table V. Crack initiation strains (%) in [0m/90n/∓ θp]s laminates.

Case θ = 45◦ θ = 60◦ θ = 75◦

90◦ ply 90◦ ply −60◦ ply +60◦ ply 90◦ ply −75◦ ply +75◦ ply
m=n=p=1 0.665 0.773 0.964 0.898 0.781 0.796 0.752

m=2, n=p=1 0.667 0.776 0.967 0.9006 0.785 0.796 0.755
n=2, m=p=1 0.472 0.520 0.952 0.886 0.522 0.793 0.750
p=2, m=n=1 0.673 0.778 0.650 0.643 0.821 0.535 0.533
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Fig. 61. Damage evolution in [0/90/∓ 60]s laminates.
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Fig. 62. Damage evolution in [0/90/∓ 75]s laminates.
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2) layup configurations.

4. [0m/± θp/90n]s vs. [0m/90n/∓ θp]s Laminates

It is interesting to observe that the actual layup may matter for transverse crack

initiation and progression. Fig. 63 illustrates this aspect by comparing damage

evolution in [0/90/∓ 60]s and [0/± 60/90]s laminates. It is notable here that most of

the present techniques have no clear way of differentiating the damage progression in

these two laminates. The present approach, however can model this aspect through

determination of CODs and CSDs, which are different for the two sets of laminates.

Although the difference in the overall stiffness behavior for these laminates may turn

out to be small, the crack initiation strains and the rate of progression are different

in some plies, e.g., internal ply at the laminate mid-plane (being of a larger size)

develops cracks much earlier than other plies of same orientation.
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5. Shape of Damage Evolution Curve

Fig. 64 depicts the actual and predicted shape of the damage evolution curve. The

transverse cracking phenomenon usually comprises three distinct stages. The first

stage corresponds to the formation of initial ply cracks and their propagation though

the specimen thickness and width. In most cases, transverse ply cracks initiate at

the surface of the specimen and quickly traverse the thickness direction. However,

depending upon the ply orientations, these cracks may or may not propagate instan-

taneously through the whole laminate width. For cross-ply laminates, this through-

width propagation is facilitated by the fact that propagation direction is normal to the

loading direction and as a result, they do propagate almost instantaneously (at the

experimental time scale), and are called tunneling cracks. This instant propagation

of cracks in the laminate width direction may not occur for other ply configurations

and material. It also depends upon how well made the coupons are. If specimens

are well prepared, they will have less variability in flaws and show a more rapid rise

in crack density just after first ply crack formation [22]. The stage II and III in the

plot refer to increase in density of transverse cracks. In the beginning of stage II,

these cracks are not equally spaced due to randomness of the material resistance to

fracture. However, in the later part of stage II, these cracks form roughly periodic ar-

rays. The stage III represents higher crack densities and there is a shielding effect due

to adjacent cracks, resulting in slowing down leading to saturation of cracking pro-

cess. Since the damage model discussed here does not account for crack propagation

through laminate width, it does not predict the stage I of the curve correctly. Also,

the damage model will predict axial strain at first crack formation close to starting of

stage II. Thus, the damage model predicts crack propagation strain instead of crack

initiation strain. However, Stage II and Stage III are predicted well by the damage
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model.

6. Parametric Study of Layer Thickness

The same procedure can be handy in predicting damage progression of other laminates

of the class [0m/90n/∓θp]s. With change in cracked/uncracked ply thicknesses, CODs

and CSDs computed from FE simulation also change and they affect the damage

initiation and progression accordingly. As the thickness of a cracked layer is increased,

the applied strain to initiate cracking in that layer, as well as other cracking layers,

decreases. On the other hand, increase in thickness of uncracked supporting plies

increases the crack initiation strain. Table V lists the predicted crack initiation strains

for different m,n and p values for [0m/90n/∓ θp]s laminates. It can be observed that

the change in thickness of a cracked layer have the maximum influence in crack

initiation in that ply; whereas the influence of change in thickness of other layers
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fairly small.

The first case considered here is [0m/90n/ ∓ 45p]s laminate. For this laminate

configuration, fully grown cracks are assumed only in 90◦ layer. Predicted damage

evolution curves for 90◦-cracking for different values of m,n and p are shown in Fig.

65. It is clearly seen that the crack initiation strain are almost same for m = n =

p = 1,m = 2, and p = 2, whereas for n = 2, crack initiation strain decreases to below

0.5% as compared to 0.66% for m = n = p = 1. Also, the shape of evolution curve

is influenced by the relative no. of plies in a specific orientation. As the thickness of

90◦-layer is doubled, the saturation crack density decreases to almost half. However,

change in thickness of other layers does not change crack density at saturation much.

The second case refers to [0m/90n/ ∓ 60p]s laminates. In this situation, cracks

usually initiate in 90◦ first and then in ∓60◦ layers. Thus, initial simulation assumes

only 90◦ cracks; whereas after the initiation of ∓60◦ cracks, a multi mode scenario

is used in FE modeling. As described earlier, ∓60◦ cracks influence the damage

progression in 90◦ layer. The predictions for different m,n, p values are shown in Fig.

66 (a)-(c) for 90◦,−60◦ and +60◦ layers, respectively. For p = 2, the model predicts

that cracks in ∓60◦ layers will initiate earlier than 90◦ layer.

The final case caters to damage progression in [0m/90n/ ∓ 75p]s laminates. In

this scenario, cracks can initiate in all cracking layers almost at same applied strain.

Hence, all modes of damage could be present simultaneously. The predictions for

this laminate are shown in Fig. 67 (a)-(c) for 90◦,−75◦ and +75◦ layers, respectively.

Observations similar to the above can be made with regards to crack initiation strain,

shape of evolution curve and the saturation cracks density.
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Fig. 65. Damage evolution for 90◦-cracking in [0m/90n/∓ 45p]s laminates.

F. Summary

In this chapter, an energy based approach was developed and implemented to predict

initiation and progression of damage due to transverse cracking in a multidirectional

laminate. The developed multimode criterion predicts formation of new cracks when

the total energy supplied by loading exceeds the energy required to close these cracks.

A reference laminate is selected to calibrate the energy release rates in the opening and

sliding modes. Based on the cracking criterion, initiation of ply cracks in different off-

axis plies, and increase in their densities as a function of applied loading are predicted

for two classes of multidirectional laminates: [0/± θ4/01/2]s containing cracks in +θ,

and −θ plies, and [0m/ ± θp/90n]s containing cracks in 90◦, +θ, and −θ plies. The

predictions for selected laminate sequences show good agreement with the published

experimental data.

In previous chapters, we predicted stiffness degradations for these laminate layups

as a function of crack density, whereas this chapter focused on predicting increase in



173

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.5  1  1.5  2

C
ra

c
k
 d

e
n

s
it
y
 (

1
/m

m
)

% Axial Strain

m=n=p=1

m=2, n=p=1

m=p=1, n=2

m=n=1, p=2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2

C
ra

c
k
 d

e
n

s
it
y
 (

1
/m

m
)

% Axial Strain

m=n=p=1

m=2, n=p=1

m=p=1, n=2

m=n=1, p=2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.5  1  1.5  2

C
ra

c
k
 d

e
n

s
it
y
 (

1
/m

m
)

% Axial Strain

m=n=p=1

m=2, n=p=1

m=p=1, n=2

m=n=1, p=2

(a)

(b)

(c)

Fig. 66. Damage evolution in [0m/90n/∓60p]s laminates: (a) 90◦ layer, (b) −60◦ layer,

(c) +60◦ layer.
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Fig. 67. Damage evolution in [0m/90n/∓75p]s laminates: (a) 90◦ layer, (b) −75◦ layer,
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crack density as a function of applied load. Combining the two solutions, we obtain

the effect of damage on structural performance as a function of loading, and this will

be covered in the next chapter.
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CHAPTER VII

OVERALL LAMINATE BEHAVIOR

A. Laminate Stress-Strain Response

From the mechanics view point, the most important characteristic of a structure is

its stress-strain response. Considering the case of displacement controlled loading,

i.e., the strain applied at the boundaries of the laminate, we are interested in

σij = Cijkl (εkl) εkl (7.1)

where, Cijkl represents the stiffness matrix of the damaged laminate. To get stress-

strain response, we need to express Cijkl in terms of applied loading εij. In damage

analysis of composite laminate there is no direct way of predicting the stiffness tensor

Cijkl as a function of the applied strain. Rather, the usual practice is to solve two

interdependent sub-problems to arrive at the overall stress-strain behavior:

1. Describe stiffness changes as a function of crack density: In this step Cijkl is

expressed in terms of some damage characteristic, such as the ply crack density,

Cijkl = Cijkl
(
ρ(α)
)

(7.2)

where ρ(α) is the crack density of damage mode α.

2. Describe the evolution of crack density as a function of applied loading: This

step refers to the determination of damage initiation and its progression. Here,

ρ(α) is determined as a function of applied loading, i.e.,

ρ(α) = ρ(α) (εkl) (7.3)
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Combining the solution to above two sub-problems, we obtain

Cijkl = Cijkl
(
ρ(α) (εkl)

)
(7.4)

The solution to first sub-problem was covered in chapters IV and V, for [0m/ ±
θn/0m/2]s, and [0m/ ± θn/90r]s and [0m/90r/ ± θn]s laminates, respectively. Chapter

VI concentrated on the second sub-problem for both layups.

1. [0m/± θn/0m/2]s Laminates

This is the case with two damage modes referring to the cracks in +θ and −θ layers.

The crack density in each of θ layers, and their effects on laminate response are

assumed to be the same. Thus, they are lumped into a single effective damage mode.

The predictions of stiffness changes for this laminate layup are shown in Figs. 32, 33,

and 34 on pages 92, 93, and 94, for θ = 90◦, 70◦, and 55◦, respectively. The evolution

of crack density with applied strain for these laminates are correspondingly shown in

Figs. 55, 57, and 58 on pages 158, 161, and 163. The ply material is Fiberite, for

which the properties are given in Table III on page 157 (see properties for Material

1).

Combining the two solutions, according to Eq. (7.4), the stress-strain response

for these laminates is determined, as shown in Fig. 68. The solid lines represent

the actual non-linear response of the damaged laminate, whereas the dotted lines are

shown to depict the assumed behavior if the laminate was not cracked arrived using

the Young’s moduli for the virgin laminates, which are: 18.995, 17.879, and 17.841

GPa for θ = 90◦, 70◦, and 55◦, respectively. They are calculated by the classical

laminated plate theory [147]. The laminates are assumed to be stress free initially,

i.e., no residual stresses due to thermal cooldown, or chemical shrinkage, etc. are

considered.
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As expected, the off-axis ply in [0/908/01/2]s laminate starts cracking earlier

than that for other ply angles, and its effect on the stress-strain response is also the

highest. The nonlinearity in the stress-strain curve is thus depends on the laminate

material as well as the off-axis ply orientation. The variations of effective longitudi-

nal modulus and Poisson’s ratio with applied longitudinal strain for [0/ ± θ4/01/2]s

laminates are shown in Fig. 69. Although the longitudinal modulus in virgin state is

practically same for θ = 90◦ and 70◦, the reduction in its magnitude is much severe

for 90◦. At a longitudinal strain of 2.5%, the longitudinal modulus reduce to about

63%, 48%, and 36% of their initial magnitude, for θ = 55◦, 70◦, and 90◦, respectively.

Correspondingly, the Poisson’s ratios decrease upto 77%, 56%, and 17% of the initial

values. These reductions are quite high from a practical view point. This is partially

because the SDM model is linear with respect to crack density, and thus predicts a

more severe degradation than what would be actually observed in experiments. From

the figures, it is also evident that the degradation in the longitudinal modulus and

Poisson’s ratio is appreciable in the beginning of the cracking process, and both of

them seem to attain asymptotic saturation values at high strain values.

2. [0m/± θn/90r]s and [0m/90r/± θn]s Laminates

These laminates can undergo cracking in three damage modes: +θ, −θ, and 90◦. From

the stiffness changes and damage evolution curves, covered in the previous chapters, it

can be realized that the 90◦ cracking represents the most dominant damage mode for

these laminate configurations. In a practical scenario it means that when subjected to

tensile loading in the longitudinal direction, 90◦ plies will start cracking first and cause

significant stiffness degradation before ±θ cracks may even start to initiate. Also, as

observed in several experimental studies (e.g., [108]), cracks in ±θ plies may not even

develop fully before the laminate fails by delamination. As a result, the degradation
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Fig. 68. Stress-strain response for [0/± θ4/01/2]s laminates: (a) θ = 90◦, (b) θ = 70◦,

(c) θ = 55◦. For θ = 55◦, the damage due to shear deformation is not

considered (see chapter IV for more details).
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tio. For θ = 55◦, the damage due to shear deformation is not considered (see

chapter IV for more details).
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in the overall stiffness properties of these laminates is mostly contributed from the 90◦

cracking. This is specially true for laminates with θ < 45◦. However, for laminates

with θ ≈ 90◦, ±θ plies may also crack at lower loading levels, and thereby contribute

significantly to the stiffness changes. The different cracks systems may even interact

and cause further stress perturbations. To illustrate these two cases, we first consider

a quasi-isotropic laminate with a dominant 90◦ cracking. Next, [0/±60/90]s laminate

will be considered to illustrate a truly multi-mode damage scenario. The ply material

is glass/epoxy (Material 2 in Table III shown on page 157).

a. Quasi-isotropic laminate

Here, we consider the laminates experimentally studied in the reference [108]. The

SDM predictions for the stress-strain response for the cross-ply and quasi-isotropic

laminates considered in that study are shown in Fig. 70. Similar to what was observed

in the experiments, SDM predicts 90◦ cracking to begin at about 0.4% applied strain

in both the cross-ply and quasi-isotropic laminates. ±45◦ cracks appear in the quasi-

isotropic laminate at about 1% applied strain, and do not grow fully through the

laminate width. The nonlinearity due to a degradation in the longitudinal modulus

is predicted to be of a larger magnitude in the cross-ply than that in the quasi-

isotropic laminates. This is because in a quasi-isotropic laminate the constraint to

90◦ ply cracking from supporting plies is much higher than in a cross-ply laminate:

the quasi isotropic laminate has three supporting plies (+45◦, −45◦ and 0◦) on each

side of cracked 90◦ ply, whereas the constraint in a cross-ply laminate is available only

from 0◦ ply.

For a quasi-isotropic laminate, three cases for stress-strain response are shown in

Fig. 70. The first case considers that only 90◦ ply is cracked and the resulting pre-

dictions are shown by a solid line. Two dotted lines representing nonlinear responses
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refer to the case in which ±45◦ cracks are also present in the laminate, with a = 0.25,

and a = 0.5. Here, a refers to the assumed ratio between the surface area occupied by

90◦ and ±45◦ cracks at a given loading (it is the same as ρr in chapter V, Eq. (5.38)

on page 132). In this way, we can model partially grown cracks. A more accurate

determination of a would require observation of cracked laminates to see the extent

of ±45◦ crack size and growth.

The changes in the longitudinal modulus and the Poisson’s ratio for the cross-

ply and quasi-isotropic laminates are shown in Figs. 71 and 72, respectively. As

mentioned above, multiple lines in plots for quasi-isotropic case signify cases with 90◦

cracking only, 90◦ as well as ±45◦ cracking with a = 0.25, and a = 0.5.

b. [0/90/∓ 60]s laminate

To illustrate the capability of the SDM approach for interacting multimode damage

scenario, [0/90/∓ 60]s glass/epoxy laminate is chosen here. As discussed in the pre-

vious chapter, 90◦ ply in this case begins cracking at about 0.77% applied strain,

whereas +60◦, and −60◦ plies develop cracks at about 0.9, and 1.0 % strain, respec-

tively. Although −60◦ plies are adjacent to 90◦ plies, and have more interaction effects

from them, +60◦ ply cracking is predicted to occur before −60◦ cracking, probably

because the +60◦ plies are centrally placed and their thickness is double of individual

−60◦ plies on either side of the laminate mid-plane. For this laminate, the constraint

parameters are calculated from FEM as: κ904n+2r = 7.11e-3, κθ|θ=90 = 11.44e-3, κθ =

6.45e-3, andκ90r = 9.11e-3. The stiffness changes are obtained using Eq. (5.28) on

page 116. Initial value for the longitudinal modulus and the Poisson’s ratio for the

laminate using CLPT are calculated as E0
1 = 21.354 GPa, and ν0

12 = 0.2098, respec-

tively.

The predicted stress-strain response for the laminate is shown in Fig. 73. While
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calculating stiffness changes as a function of applied loading for a multimode scenario,

one should add changes caused by the active modes only. For example, for this

laminate, the stiffness changes as a function of applied longitudinal strain can be

expressed as

Cijkl = C0
ijkl, εX < ε90

X0

Cijkl = C0
ijkl + C

(90)
ijkl

(
ρ(90)

)
, ε90

X0 ≤ εX < ε+60
X0

Cijkl = C0
ijkl + C

(90)
ijkl

(
ρ(90)

)
+ C

(+60)
ijkl

(
ρ(+60)

)
, ε+60

X0 ≤ εX < ε−60
X0

Cijkl = C0
ijkl + C

(90)
ijkl

(
ρ(90)

)
+C

(+60)
ijkl

(
ρ(+60)

)
+ C

(−60)
ijkl

(
ρ(−60)

)
εX ≥ ε−60

X0 (7.5)

This is reflected in the stress-strain curve as well. For comparison, the stress-strain

curve assuming only 90◦ cracking is also in the figure by a solid line. The nonlinearity

in the stress-strain curve due to all cracking modes is much higher than that due to

only 90◦ cracking. This is because of contribution from ±60◦ cracking modes, as well

as due to the intra-mode interactions, which increase the rate of stiffness reduction.

The plots for the longitudinal modulus, and the Poisson’s ratio with respect to the

applied loading are shown in Fig. 74. In these graphs also, the reduction due to all

modes active is observed to be quite severe as compared to only 90◦ cracking. For

[0m/ ± θn/90r]s and [0m/90r/ ± θn]s laminates, these intra-mode interaction effects

will be quite extensive as θ is chosen closer to 90◦ as the region of interaction be-

tween cracked surfaces becomes larger. For θ < 45◦, however, they might not be as

appreciable.
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B. Multiscale Modeling

The damage in materials occurs due to dissipative mechanisms which usually occur at

lower length scales, like microns or sometimes even sub-microns. To fully understand

the underlying phenomena, and characterize its affect on material performance, it is

essential to link the two scales: the length scale at which these processes take place

(the micro scale), and the length scale at which we use the material ( the ‘structural’

or ‘macro’ scale). These two scales, in reality may be orders of magnitude different

from each other, and may require consideration of “in-between” scales (also known

as ‘meso’ scale). The process of linking material behavior at these different scales

is termed as the “multiscale modeling”. The area of multiscale materials modeling

is becoming manageable due to improvement in computational power, as well as

advancement in understanding of material behavior at lower length scales.
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The scale at which dissipative processes manifest themselves could be dependent

on the size of the heterogeneities, or the manufacturing defects. For example, in a

composite material, matrix cracking may initiate by debonding at the fiber/matrix

interface. Hence for this phenomenon, the fiber diameter may be the characteristic

length scale governing damage due to matrix cracking. From a theoretical view point,

the most fundamental scale is the atomic scale. Multiscale modeling using atomistic

descriptions, like “molecular modeling” or “atomistic modeling”, choose to describe

material behavior in the most fundamental way by modeling of inter-atomic forces

and potential. This, however, is not only very difficult computationally, but some-

times even irrelevant and unwarranted. Therefore, from a practical consideration,

the fundamental length scale depends upon our capacity to observe, i.e., the scale at

which damage effects are seen, and thus it is more useful to define it as the first sig-

nificant scale (manifesting behavior of lower scales, if any) that governs the property

of interest, preferably, the scale of observable entities, e.g., for plasticity nano-meters

is the length scale at which dislocations appear. The choice of length scale, thus,

must depend upon the “purpose” at hand. For example, if we are modeling stiffness

changes due to transverse cracking, the characteristic length scale is the crack size,

i.e., the thickness of the cracked ply.

Figure 75 describes the hierarchy of all possible length scales involved in multi-

scale materials modeling. A careful observation of the figure deliniates two big issues

that arise in developing an accurate and physics-based multiscale model:

1. The difference in “macro” and “atomistic” scale is extremely large, and

2. The difference in material behavior at different scales and difference in ap-

proaches required to model them. For example, at atomistic scale, quantum

mechanics and molecular dynamics may be able to describe material behavior
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accurately. However, on the macro-scale, we need continuum-mechanics type

approaches.

Hence “bridging” of different length scales is the major consideration in multiscale

modeling.

For damage modeling of composite materials, our basic purpose is to predict

properties and performance of the material, or to design its properties for a selected

performance. This requires that we account for the scale of inhomogeneities (fibers,

particles, plies, etc.) because damage entities are often initiated by inhomogeneities,

and evolve under their influence. Hence, the scales lower than micromechanical are

un-necessary (except if the entities are of nano-size).

Another issue, particular to multiscale damage modeling, is that the total damage

may be due to multiple damage mechanisms, whose length scales might be quite

different from one another. Moreover, these length scales may “evolve” as loading is

increased. Consider the example of matrix cracking. It may initiate from debonding

of fibers, thereby making the ‘fiber dia’ as the length scale. But when matrix cracks

have grown fully through the ply thickness and width, they start multiplying, and for

this process the appropriate length scale is the ‘ply thickness’. Hence, a “hierarchical”

multiscale methodology, based on the notion that ’modeling of the basic laws at the

lowest length scale, and then going up the length scales would ascertain accurate

modeling’ is not appropriate in damage modeling. As observed by Talreja [157], “the

microstructural configuration and driving forces for damage initiation and progression

determine the length scales of damage”. Thus, the length scales of damage and their

hierarchy are not fixed but are subject to evolution as a function of loading.

A more suitable approach for multiscale modeling of composite materials would

rather be the synergistic damage mechanics (SDM). As illustrated in earlier chapters,
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SDM combines CDM and MDM to characterize response function in terms of fields

variables (stress, strain etc.) and internal variables representing the smeared-out field

of evolving damage entities. Fig. 76 (adapted from [185]) illustrates the multiscale

SDM approach considering the substructure to be region of potential criticality. This

substructure is first analyzed to determine the loading on its boundary. In the next

step, damage induced from this loading is characterized using the CDM in terms

of internal variables. To characterize the microstructure using MDM, we zoom-in

this region and perform micromechanics calculations over a representative unit cell

to obtain constraint like parameters. Thus, unlike in the hierarchical approach, we

move “top-down” upto the lowest length scale of interest to us. This ensures accurate

representation of the processes at the lowest length scales, and also allows us to link

it to the macro-scale in an easier way. For a more thorough discussion of multiscale

damage analysis using synergistic approach, the reader is referred to [157,185].

C. Multiple Damage Mechanisms

Although only intralaminar cracking is considered in this study, damage in composite

materials can take place by a variety of damage mechanisms, such as delamination,

fiber/matrix debonding, interfacial sliding, fiber fracture among others. The struc-

tural performance when the material is undergoing more than one of these mechanisms

simultaneously is given by the total sum of individual effects, along with any interac-

tion between them that may be important. This requires consideration of all active

damage mechanisms in a common framework. Each of these requires a somewhat

different treatment, but they can be appropriately described in the same SDM frame-

work. Talreja [186] considered four distributed damage configurations (see Fig. 77)

for ceramic matrix composites (CMCs), where the interfacial damage and debonding
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Fig. 75. Hierarchy of structural scales in damage modeling of composite materials.

Fig. 76. Multiscale synergistic methodology (adapted from [185]).
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can occur in conjunction with matrix cracking [187, 188]. Following the logical ap-

proach used in SDM with multiple damage modes, the free energy for a composite

undergoing damage due to multiple mechanisms can be written as

ψ = ψ
(
εij, D

(α)
ij , Kmn, δ

(β)
rs

)
(7.6)

where εij = 1
2

(ui,j + uj,i) is the strain tensor, D
(α)
ij is the damage mode tensor for

matrix cracking in orientation α = 1, 2, 3.., Kmn is the slip damage tensor, and

δ
(β)
pq , β = 1, 2, 3... is the damage tensor describing debonding. Consequently, the

stiffness tensor of the damaged body is given by

Cijkl = ρ
∂2ψ

∂εij∂εkl

= C0
ijkl +

∑
α

C
(α)
ijkl + CK

ijkl +
∑
β

C
(β)
ijkl (7.7)

where C0
ijkl represents the stiffness tensor for the virgin laminate,

∑
α

C(α)
pq represents

the stiffness change brought about by matrix cracking in all orientations, CK
ijkl is the

stiffness change due to interfacial slip, and
∑
β

C
(β)
ijkl represents the stiffness change

brought about by debonding in all directions. For more details, please see [186].

D. Failure Analysis and Design of Composite Materials

Although numerous failure models are available for predicting lamina failure, there is

no consistent model for laminates. These failure criteria are more empirical in nature

and can at the most describe the failure of a unidirectional lamina to a reasonable

accuracy. For laminates, however, damage or failure of an individual lamina does not

cause structural failure. Depending upon the application, a composite laminate may

have developed significant amount of transverse cracking and still perform satisfac-

torily according to the design specifications. Although the final failure of a laminate
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Fig. 77. Multiple damage mechanisms in CMCs (source: [186]).

may occur from fiber breakage, substantial delamination in the laminate may also be

considered to signify its failure based on the design function. Hence, it is necessary

to account for progressive sub-critical damage while predicting the failure of the lam-

inate. For example, one can make use of the changes in stiffness properties and the

nonlinearity in the stress-strain response due to transverse cracking while designing

the component. Consideration of effects of other damage mechanisms will depend on

the actual scenario and the design criteria.

E. Assessment of Structural Integrity and Durability

Based on the discussion above, the whole procedure for analyzing the integrity and

the durability of the composite structure can be outlined as shown in Fig. 78 (source:

[145]). The first step is to carry out stress analysis of the component under the

prescribed service loading using initial deformation models. This step may ignore

any consideration of damage, i.e., use initial constitutive relation for the material,
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Fig. 78. Procedure to assess the integrity and durability of a composite structure,

reproduced from [145].

while focusing on arriving at basic stress and temperature histories in the structure.

This information then can be used to predict mechanisms and modes of damage

which will be operative in the life cycle of the structure. Next, the damage mechanics

concepts should be used to evaluate the growth and effects of progressive damage on

the stiffness and strength properties of the structure. Finally, these effects will be

used to modify the constitutive behavior and re-assess the stress and temperature

fields, which can then form the basis for assessing the integrity and durability of the

structure.

F. Summary

This chapter focused on providing an overall picture how the SDM methodology and

the results developed in this dissertation can be used for composite structural design.

The stress-strain responses of selected multidirectional laminates were predicted based
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on the results of the previous chapters. The effect of cracking in multiple damage

modes on the overall stress-strain response was discussed. In general, a multi-mode

cracking involves interaction between different modes not only affects the stiffness

properties detrimentally, but also increases the rate of damage progression. This

typically results into increased nonlinearity in the stress-strain response.

To characterize the microstructural effects, the developed SDM approach can be

easily incorporated in a multiscale modeling framework. Unlike the commonly used

hierarchical approach, it follows a “top-down” approach, while focusing mainly on the

macro-response and going down to the scale of damage entities as and when needed.

The SDM approach can also be easily used for the comprehensive assessment of the

structural integrity and its durability.
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CHAPTER VIII

CONCLUSIONS AND FUTURE DIRECTIONS

The primary goals of damage analysis of composite materials are to determine the

conditions for initiation of the first damage event, its evolution with increase in load-

ing, and describe the resulting thermomechanical response. This information can then

aid in determining the failure or criticality of damage and aid into overall structural

analysis and design.

The significant developments in understanding of the basic damage processes and

their effects on the material behavior have gained some maturity for simple cases of

laminate layups, such as the cross-ply laminates. We are still far from being able

to predict damage in a general multidirectional laminate under a complex loading

situation. The resulting boundary value problem for multidirectional laminates is too

complicated to achieve any reasonable elastic solution, and the common strategy has

been to use computational tools. Hence, there has been a need to develop a simpler

approach, which could be used for predicting the damage behavior of such laminates,

and could also be integrated easily into a multiscale analysis model. The SDM ap-

proach developed in this study can fill this gap. It bypasses solution of a complex

BVP and rather focuses on the overall constitutive behavior of the damaged laminate.

In this study, we have developed and implemented a multiscale synergistic damage

methodology to characterize the effects of intralaminar cracking in multidirectional

laminates on their stiffness properties. The approach, termed as “synergistic dam-

age mechanics” (SDM), combines the micro damage mechanics and the continuum

damage mechanics. The approach has been verified in this work against experiments

as well as independent computational simulations for two complex off-axis laminate

configurations.



198

The main benefit of the SDM approach is that it does not need complex stress

analysis calculations unlike many of other analytical and numerical tools. Moreover,

evaluation of CODs is more accurate than the determination of stress state around

matrix crack through FEM, as it is a displacement based approach. It is also shown

that we do not always need experimental results for SDM to work. Accurate pre-

dictions from numerical simulations or through an applicable analytical method, e.g.,

variational method, for the reference cross-ply configuration can be used to determine

damage constants, and feed into SDM for prediction of stiffness changes in other lam-

inate configurations.

SDM equations are simple and easy to implement in a general FEM based mul-

tiscale analysis framework because it directly gives meso-level stiffness changes in the

laminate in terms of a constitutive law, which are just like constitutive laws through

the laminate theory. The consitutive law incorporates the microstructural changes

brought about by damage processes through constraint-like parameters. SDM frame-

work, thus, effectively treats the multiscale nature of damage processes.

The composites which are used in extreme environments may require additional

considerations. For example, the polymers used in composites for high temperature

applications such as in engines and launch vehicles for spacecraft can display time-

dependent (visco-elastic) response. Damage due to ply cracking can further alter the

material response. Using the correspondence principle, the visco-elastic boundary

value problem can be converted to an equivalent elasticity problem in the Laplace

domain and then inverting the solution to the time domain gives us the required

solution for the viscoelastic problem. SDM approach can be easily extended to analyze

viscoelastic composites in presence of damage, as shown in some earlier works [144,

189] for the case of cross-ply laminates.

Although the basic framework to analyze multidirectional laminates in presence
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of intralaminar damage has been developed, there are some unresolved issues which

should be focused in future research. For instance, the present work has focused

only on a quasi-static loading. For fatigue loading, more comprehensive research

is required to understand effects of damage in a multiple damage mode scenario.

The usual approach in fatigue of composites is to use the theory of metal fatigue,

although its relevance to composite materials such as glass or carbon fiber reinforced

polymers is questionable. Thus, fatigue induced damage in composite laminates is

still somewhat less understood, and the area needs to gain maturity before we can

convincingly model fatigue damage in multidirectional laminates.

Any structure made of composites in a practical scenario can undergo complex

loading, which may be truly three dimensional. Damage assessment in such cases

is presently not possible. There have been some recent developments to account for

triaxial loading for cross-ply configurations, e.g. [73,74], and the knowledge developed

from these works can be incorporated in the SDM framework in the future.

While using SDM stiffness-damage relationships, the inherent damage constants

were assumed to be independent on the ply orientation. This assumption is reason-

ably valid for the longitudinal loading case, where cracks will only form in off-axis

plies which are placed in orientations close to the direction transverse to the loading

direction. For the case of biaxial loading, generated due to actual mechanical load-

ing or by a differential thermal shrinkage, this is not true, and even the plies in the

longitudinal direction may develop cracks. The above assumption will be invalid in

such complex loading scenarios. Further work is needed to understand the variation

of damage constants in biaxial, and triaxial loading states.

The future research in the field should also concentrate on the implementation of

the synergistic methodology in a multiscale procedure to enable solution to structural

problems. Final goal should be to incorporate the constitutive and damage evolution
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relationships developed in this work in a computational scheme, such as a finite

element code, capable of carrying out a complete structural analysis and design.
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