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ABSTRACT 

Ethnopalynological Applications  

in Land and Water Based Archaeology. (December 2007)  

Dawn Marie Marshall, B.S., University of Wisconsin, Madison; 

M.A., Texas A&M University 

Chair of Advisory Committee: Dr. Vaughn M. Bryant 
 
 

Ethnopalynology is a specialty within palynology that centers specifically on past 

and present palynological data related to humans.  Palynological data may be a 

significant tool to archaeologists if the applications and limitations are clearly 

understood.  The following is a compilation of historical references, information on the 

processing procedures used in pollen research, the types of samples that are appropriate 

for palynological analysis within the discipline of archaeology, and examples of how 

palynological data can answer some questions regarding diet, the environment, building 

materials and chronological data.  An extensive literature review was performed and 

revealed incongruities and areas that could be improved upon.  This dissertation is a 

result of that research.  Experimentation with palynological processing procedures 

indicate that commonly used methodologies may be flawed and should be reviewed 

regularly.  New methodologies in the dissolution of resins, or plant exudates, is a 

relatively new application for pollen research and an area where there is a potential for 

future growth.  Palynological applications to archaeology are beginning to expand in 



 
 
 

 

iv 

previously unknown directions.  The extrication of pollen from plant exudates or resin is 

only one new area of research.  This and other avenues are still waiting to be explored.   
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CHAPTER I 

INTRODUCTION 

Palynological applications to archaeology are myriad depending on the research 

question(s), the context of the samples and the research methodologies employed.  Thus 

far no practical text exists for consultation on the uses of palynology for archaeological 

applications.  One text was written in the 1980s, by Dimbleby (1985) to address 

palynology in archaeology, however, his scope was limited, it failed to discuss all of the 

many applications of pollen data in archaeology, and it does not discuss many of the 

current views and techniques that are in use today.  Unfortunately, in the United States, 

and to a more limited degree elsewhere, there are a number of misleading and inaccurate 

studies and reports that have become part of the published archaeological literature.  In 

some cases this seems to result from the need to include pollen data to comply with 

certain mitigation laws or the inability and/or failure to find competent palynologists 

willing to do the required work.  What is needed to correct some of these problems is a 

comprehensive guide designed to inform, educate, and enable archaeologists to collect 

needed samples and then find appropriate personnel to do the needed analysis.   

Correct methodologies need to be employed in the planning stages of any 

excavation, as well as during the collection, storage and analysis phases.  The person 

selected to do the pollen analysis needs to be competent and knowledgeable.  The lab  

facility processing the pollen samples should have a processing area free from 
_____________________________ 
This dissertation follows the style of American Antiquity. 
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contamination, adequate equipment, and procedures clearly outlined with justifications 

for their use.  Finally, archaeologists need to understand the basic uses of pollen, the 

applications, and the statistics involved, the history of the discipline, why and how 

pollen preserves in various environments, how to collect pollen samples, and how to 

evaluate the pollen results.  

The purpose of this dissertation is to examine many of the areas related to the 

proper collection, laboratory applications, and the analysis and interpretation of pollen 

data from archaeological sites.  The objective is to examine these essential areas of 

archaeological pollen research, to summarize the existing problems, propose useful 

solutions, and finally to provide a guide or check-list for archaeologists so that they will 

be able to determine the types and potentials of collecting pollen data at their sites and 

then be able to critically examine the resulting data to determine the validity of the 

conclusions based on the resulting pollen data.  To accomplish these goals, it is essential 

to familiarize archaeologists with the basics of the discipline of palynology and the 

background of how it became one of the techniques now being frequently used by 

archaeologists. 

Terminology 

In terms of anthropology, plants are an important component in any analysis, 

whether that analysis is from a current or ancient source.  Currently there are several 

terms used to describe which facet of research is being performed.  Palaeoethobotany 

and Archaeobotany have both been used to describe research of plants from past 

contexts; usually from an archaeological setting (Ford 1979).  However, there are some 
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who will separate these two terms and others who will use them interchangeably causing 

confusion and errors.  For example Archaeobotany, Palaeoethnobotany, Palaeobotany, 

Archaeoethnobotany, Aboriginal Botany, and Archaeological-botany are all terms that 

have been used to describe the study of plants in an archaeological or ancient setting.  

Unfortunately, the uses of these terms results in confusion, contradictions and 

inconsistencies (Magid, 2004). Although these terms have generally been used to 

describe macrofossil plant remains (i.e., seeds, wood, stem, fruits, leaves etc.), in many 

cases they have also been used to refer to microbotanical remains (i.e., pollen, 

starchgrains, and phytoliths). 

Quaternary Palynology, Archaeopalynology, Archaeological Palynology, 

Stratigraphic Palynology, Environmental Palynology, and Paleopalynology are terms 

that have been used at times by various authors to describe pollen research associated 

with anthropological data.  Adding further confusion is the use, or misuse, of various 

additional pollen terms such as palynomorphs (Tschudy 1961), cryptogams, 

palynodebris (Manum 1976) and palynofacies (Combaz 1964; Traverse 1988; Cramer 

and Diez de Cramer 1972).   

History of palynological applications to archaeology 

Although the study of microscopic pollen began when the co-developers of the 

microscope, Sir Robert Brown and Anton von Leeuwenhoek, both chose to examine 

pollen as some of the first specimens for their new inventions, it was not until the early 

1900’s that the related field of pollen analysis was developed and then applied to solving 

problems in archaeology.  Although the intent behind the development of pollen 
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analyses was to find a way to date geologic deposits, it was soon being utilized for other 

purposes as well (Davis 1976). The earliest application of palynology to archaeology is 

that of Lennart von Post. Von Post would, on occasion, analyze pollen samples in 

conjunction with archaeological samples to determine relative dates, however, he would 

only look at samples from Sweden. The first and best known of these sites is the dating 

of a Bronze Age mantle found at Gerumsberg, in Västergötland (Von Post 1925).    

One of the important drawbacks to conducting studies of archaeological deposits 

during the early 1900’s was the inability to concentrate the fossil pollen found in various 

types of archaeological sediments.  This problem was solved by a series of events that 

focused on the development of new extraction techniques using various acids to remove 

associated matrix materials (i.e., carbonates, silicates, cellulose, hemicellulose, etc.), but 

leaving the fossil pollen undamaged.  Early experiments with the use of KOH 

(potassium hydroxide) showed that it was useful for removing humic acids.  Holm 

(1890, 1898) discovered that HF could be used to digest silicates, Assarson and 

Granlund (1924) applied this technique to palynology in 1924. In 1934, Gunnar Erdtman 

(1934) introduced the acetolysis processing procedure to remove cellulose.   

Few other attempts to examine archaeological deposits occurred until the 

landmark study by Johs. Iversen (1941).  Iversen was a Danish geologist who, dated 

precisely the introduction of agriculture in Europe and demonstrated how plant species 

were introduced and changed by prehistoric clearing of forests (Iversen 1941). 

Palynological applications to archaeology became more widespread during the 

expanded interest in archaeology during the 1960’s (Martin 1963) in the United States. 
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Nevertheless, as interdisciplinary methodologies were employed, analyses of plant 

remains at sites were then, and to some degree even now, often more of an after thought 

than a planned expenditure.   Prior to the 1960’s most palynological applications to 

archaeology were completed in the Old World.  Exceptions to this are the early studies 

of Sears (1932) and Deevey (1944).   The usefulness of palynology to archaeology was 

not recognized as early in the New World as it was in the Old World.  

Plants 

The most important aspects of palynology, as it applies to anthropology are those 

aspects that contribute to the interpretation of archaeological sites and cultures past and 

present.  Plants are used for many purposes including subsistence, trade, decoration, 

clothing, watercraft, weapons, tools, social stratification and for shelter.  Interpretations 

regarding this information rely on accurate sampling, storage of samples, accurate 

processing procedures, the ability to confidently identify pollen, extensive knowledge of 

the indigenous plant families, and their potential uses.   

It is essential for individuals, who need to understand the interpretation of pollen 

from archaeological sites, to have knowledge and an understanding of vegetation from 

many ecological contexts.  It is not uncommon for a palynologist to focus on very 

specific regions of the world due to the complexities of ecological contexts, yet many 

plants, and thus their pollen are pandemic.  Therefore, most palynologists are able to 

identify the morphologies or types of many pollen found throughout the world.  
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Pollen sources 

Ecological research in the last century has concentrated on the effects people had 

on the landscape.  “Many botanists seem to share the popular belief in an unbroken 

virgin forest and to assume that human interference with natural succession commenced 

with white settlement. They appear to overlook or dismiss as unlikely the possibility of 

significant disturbance by the Indians.  The claims of some foresters and ecologists, 

notably Maxwell (1910), Hawes (1923), Bromley (1935, 1945), and Gordon (1940; 

1969), constitute a challenge to them and call attention to the fact that a fundamental 

question is still unsettled.  Therefore, it seems desirable to examine the evidence further 

in order to improve our estimate of the Indian as an ecological fact” (Day 1953:2).     

The expansion of ecological theory from a science concerned mainly with 

quantifying plant systems to one in which external factors are a consideration is a recent 

inclusion.  Bertrum Wells’s work in the 1920’s and 1930’s was one of the first ecologists 

to extend beyond the confines of accepted ecological boundries.  “He was interested not 

merely in describing the compositions of plant communities, but also in relating their 

distributions through space and time to factors of their habitats” (Troyer 1986:4).   For 

example in the study performed by Wells and Shunk (1931) of a savannah community a 

micro-vegetation component consisting of anthills, earthworms and crayfish were found 

and the possible effects these would have on soil properties. (Troyer 1986).   In relation 

to using pollen to understand the ecology Tauber (1965) points out that there are three 

important sources of pollen to consider when examining any type of fossil or modern 

record; pollen from those plants which  release pollen in the canopy zones located at the 
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tops of trees and directly above them in a forest, the trunk space zone consisting of or 

those plants that release their pollen closer to the ground, and the rain out pollen that is 

scoured from the air during precipitation.   

The oldest means by which pollen is dispersed is referred to as anemophilous 

pollen or pollen that is carried by the wind.  Depending on the evolutionary history of 

the plant, the pollen will either be dispersed by the wind (anemophilous), by insects 

(entomophilous), by animals (zoophilous), self pollination (autogamous) or a 

combination of these (Regal 1982; Bryant 1990).  Those plants that are pollinated by 

insects or animals evolutionarily have limited the amount of pollen they produce because 

the entomophilous system is highly efficient (e.g., wind-pollinated plants need to 

produce prodigious amounts of pollen to insure their survival whereas the insect and 

animal pollinated ones do not).   

Other considerations are: the amount of pollen each plant species produces, the 

percentage of sporopollenin (a condensed fatty acid polymer) found in the wall of the 

pollen grain, which affects the preservability of the pollen (Havinga 1964, 1971, 1984), 

and the sinking speed of pollen, which refers to the mass and shape of a pollen grain and 

thus how far the grain will probably travel on wind currents (Jackson and Lyford 1999) 

Potential for fossil pollen recovery 

The potential for fossil pollen recovery is dependent on many factors.  Besides 

pollen rain issues, location of deposition is another consideration.  Pollen rain “refers to 

pollen sedimentation from the air” (Traverse 1988:379), however, the deposition of 

pollen can be complex and dependent on many factors (Erdtman 1954; Maher 1964; 
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Tauber 1965; Heusser 1969; Tsukada 1982; Jackson and Lyford 1999; Brayshay et al. 

2000).  When the pollen is deposited into a soil matrix, preservation is dependent on the 

taphonomy (e.g., what happens to the pollen from the time of it’s dispersal until it is 

observed under a microscope) and the processes that created the soil.  In general terms 

the properties most conducive to pollen preservation are acidic conditions (low pH) 

(Dimbleby 1957), a negative Eh potential (oxidation/reduction) (Tschudy 1969), lack of 

frequent changes in soil moisture levels (Holloway, 1989; Bryant and Dering 1992; 

Campbell and Campbell 1994;), low microbial activity (Moore 1963; Elsik 1966, 1971; 

Havinga 1971) and ideally, anoxic conditions. 

Anoxic conditions are found in a variety of water environments, at varying 

depths depending on currents and other factors.  Pollen deposition in water environments 

is dependent on a number of factors.  In lake settings it is important to note streams 

and/or rivers that flow exposed deposits into and run out of a lake, ecological and 

geological settings surrounding the lake (e.g., terraces, vegetation), and human impact 

on the area (i.e., earthworks, fire, and building projects etc).  Other water depositional 

environments include: deltaic deposits (i.e., mouth of a river), alluvial/fluvial deposits 

(i.e., river deposition due to meandering), ocean deposits, and bog deposits.   

Once the mode of deposition is determined, the depositional environment needs 

to be   taken into consideration.  Pollen deposited into a water medium may originate 

from a number of sources: air currents, water run-off, local vegetation surrounding the 

water, erosion, water currents or other mechanisms such as emptying the bilge on ships 

(Weinstein 1992).  Experiments have shown that there are “significant differences…in 



 
 
 

 

9 

pollen composition of sediments at different compass directions within large water-

storage tanks” (Potter 1967:1041).  Other factors in lake deposition include: wind 

direction (Hafsten 1960; Johanson and Hafsten 1988; Johansen 1991; Hjelmroos 1991; 

Hjelmroos and Franzen 1994; Cabezudo et al. 1997; Gassman and Perez 2006) sediment 

turnover, and sediment focusing (a process by which water turbulence moves 

sedimented material from shallower to deeper zones of a lake (Blais and Kalff 1995), 

and the origin of the pollen deposited.  Other water contexts include: rivers (Chmera and 

Liu 1990) and river stream deltas (Hofmann 2002; Traverse 1992), terraces and alluvium 

(Traverse and Ginsburg 1966; Grichuk 1967; Mehringer 1967; Hunt 1987), ocean 

deposits (Groot and Groot 1966; Horowitz 1979; van der Kars and De Deckker 2003) 

and bogs (Auer 1927, 1930; Damman and French 1987; Newnham and Lowe 1999).    

The amount of degradation and taphonomic processes will depend in part upon 

where the pollen originated, the age of the pollen, and the depositional matrix.  It is also 

important to understand that pollen will, and does, oxidize above 400-500 degrees 

Fahrenheit/260 degrees Celsius even in low oxygen conditions (Rehder 2000; Kingdom 

Drilling Co. 2005). Above this temperature pollen is carbonized and is no longer a viable 

source of information.  What this translates into for the archaeologist is that as a general 

rule, the center of hearths usually will not produce any pollen in any ethnographic 

context.  In terms of macrofossils, the exact opposite is true.  Carbonized plant remains 

are ideal for preservation and identification; hearths should be screened for carbonized 

plant remains.  Exceptions to this rule are the pollen grains that have been heated or been 

under pressure as a result of geologic processes or human activity.  In some cases pollen 
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from the edges of or near a hearth may survive if the fires were at a low enough 

temperature to the extent that the pollen is not carbonized even though some color 

change is present.  In a geological context Kerogen studies are used to describe the color 

of pollen and other organic plant remains.  The colors are compared with Kerogen Color 

Charts and the resulting data gives information regarding pressure and/or heat that has 

been exerted upon the pollen and other plant remains during geological events such as 

faulting. 

Sampling: terrestrial vs. water sites 

 In simplistic terms pollen sampling consists of collecting samples from a matrix, 

packaging it and sending it off to a lab for analysis.  For an accurate analysis certain 

sampling steps should be observed to ensure an accurate representation of past 

vegetation.   Different matrices or different deposition mediums require different 

considerations before sampling should be undertaken.  The areas of sampling that is 

covered here include: terrestrial sites - open sites such as –kill sites; covered sites such as 

– caves (Anderson 1955; Erdtman 1969; Burney and Burney 1993); rock shelters (Leroi-

Gourhan 1967), and archaeological floors (Hevly 1968; Cully 1979; MacPhail 2004);  

Submerged, waterlogged or shipwreck sites (Weinstein 1996; Robinson 1987; Muller 

2004) – bog cores (Turner 1964; Moore  and Webb 1978), lake cores, ocean/marine 

cores,  Artifact sampling – grinding stones, projectile points, ceramic vessels (Shafer and 

Holloway 1979; Bryant and Morris 1986), including: amphora (Jones et al. 1998; 

Jacobson and Bryant 1998; Gorham and Bryant 2001) and other vessels;  

baskets/weaving/rope, caulking (Diot 1994; Muller 2004), sun-baked bricks (O’Rourke 
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1983) and resin (Pons 1961; Arobba 1976; Muckelroy 1978, 1980; Jacobsen and Bryant 

1998; Langenheim 2003; Broughton 1974). 

     The first and most basic type of archaeological site is the open site or a site 

where there is no permanent structure present nor was there one in the past.  Sampling 

techniques vary from person to person, however, any sampling procedures should take 

into consideration: contamination, stratigraphy, formation processes (taphonomic 

processes of the site), type of soil (e.g., clay, silt, gravel etc.), current vegetation at or 

near the site, ecological zone, and human influences or modifications in the present and 

in the past (e.g., earthworks or construction not natural) (Fraught 2003; King and 

Graham 1981).  The second type of land site is the covered site such as: caves, rock 

shelters, floors of existing structures or structures from the past (such as the adobe 

pueblo structures in the southwest) (Hill and Hevly 1968).  

Sampling for pollen is slightly different than sampling for archaeological 

artifacts.  Since pollen is an organic material care needs to be taken to ensure that 

contamination is not an issue.  There are three types of sampling methodologies: 1) 

profile, 2) spot, and 3) blanket.  In the profile method samples are taken from the 

exposed profile in a site.  The samples taken from the profile are also referred to as spot 

samples, or that a sample is taken from one place along the profile of the wall.  The 

second type referred to as spot samples may be a sample collected from a burial, hearth 

or a pit etc.  The third methodology to collecting samples is called blanket sampling.  

With this type of sampling many samples from one surface are collected and combined 

to form one average sample from a particular area or similar to a control sample.  Cores 
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as applied to terrestrial sites are not a common methodology unless the site in question is 

from a wet site such as a bog.  Collecting samples from a wall is faster and less labor 

intensive from the archaeologist’s perspective, nevertheless, the best way to sample a 

land site is during the excavation of the site (i.e., sampling as you go).  If the sampling is 

from an archaeological floor, then the methodology usually followed is the pinch method 

(Cully 1979).  This method allows for a concentrated area to be sampled or for the area 

as a whole to be sampled such as blanket sampling and is one way to insure accurate 

pollen representation from an area.  Other terrestrial sites such as covered sites as caves 

or rock shelters may represent more direct human interaction but sampling is similar to 

other terrestrial sites.  It is also common to sample features and burials.  Conversely, 

waterlogged sites pose several interesting challenges.   

Water sites, including prehistoric houses found in Switzerland which were built 

over shallow waters of a lake, will have good preservation providing the level of oxygen 

is low or absent (Groot 1966).  If, however, oxygen is present other microorganisms may 

also be present and potentially cause degradation or loss of pollen completely (Sangster 

and Dale 1961, 1964; Havinga 1964).  Water sites such as bogs usually have good 

preservation due to the rapid inundation of the samples, and minimal microbial activity 

or acidic conditions.  Damman and French (1987) define a bog as; "a nutrient-poor, acid 

peatland with a vegetation in which peat mosses, ericaceous shrubs, and sedges play a 

prominent role" (Damman and French (1987:1).  Bogs are natural collectors of pollen 

and plant material and as a result they are extremely helpful in elucidating ecological 

conditions that affected human occupations in the past.  Whereas terrestrial sites may 



 
 
 

 

13 

have poor preservation, peat deposits from bogs are usually very rich in organic 

materials due to the anaerobic conditions and water (Belyea and Clymo 2001).  Some 

bog sites are excavated such as the Lindow Man site in Great Britain (Connolly 1985).  

At other sites samples are often collected using a borer or coring device.  There are any 

numbers of different types of samplers available depending on personal preferences and 

monetary resources.   Some sites are located in lakes or around lake margins (as in sites 

found in Switzerland and Denmark).  In such cases, the ideal and correct way to sample 

a lake is to take several cores if you can; first probing the lake to determine the various 

depths in the lake.  Sampling lakes present an array of potential problems.  First, some 

type of floating platform is needed as a base for securing a core.  Second the depth of the 

lake may require special types of coring equipment.  Third, the type of sediment in the 

lake bottom may require using a special sampling technique.  For example, if the bottom 

sediments are very loose, freezing a core while sampling is the method that should be 

employed (Shapiro 1958; Swain 1973). Fourth, determining where to core and how 

many cores to collect are also important aspects that need careful forethought and 

planning.  Fifth, determining when to sample a lake site is also essential.  In cold regions 

where lakes freeze in winter, then this may be the ideal time to sample the lake in 

question.  Also, one should avoid sampling during periods of lake turnover when 

sediment mixing would be at its highest.  There are any number of coring devices that 

may be utilized including: the Hiller auger, the Livingston borer, and if possible a 

vibracorer.  The Hiller auger is different than most augers.  Instead of a screw thread the 

tube is sharpened at the end, usually, with a slot cut into the side of the tube to allow for 
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ease of sediment penetration.  This type of sampler is useful for deep deposits of soft 

material and may also be used to sample fibrous peats (Traverse 1988).  The Livingston 

borer or sampler is the most common type of piston corer.  It usually consists of a metal 

tube, a moveable piston, and a Square rod to move the piston.  This type of corer is 

typically used for non-fibrous sediments such as lake muds, clays and silts.  The one 

disadvantage with this type of corer is that the length of the core is usually confined to 

one meter long sediment cores (Birks and Birks 1980).  A vibracorer as the name 

suggests vibrates the coring device as it is placed in the sediments.  This vibration allows 

the corer to more smoothly enter the sediments to decrease compaction and increase the 

ease of use.   

The number of samples to collect from any site location is always an important 

consideration.  Factors such as: sediment type (e.g., clay, peat, sand etc.), goal of the 

investigation (e.g., stratification, dating, paleoenvironmental reconstruction, diet 

reconstruction etc.), monetary constraints, time constraints, and availability of tools and 

materials will influence sample collecting.   One rule of thumb is to collect as many 

samples as possible; there are never too many samples!  Later, not all samples need to be 

analyzed but once a site excavation is over it is rarely possible to return for needed 

additional samples.  Another consideration is the amount of sediment to collect.  Usually 

most palynologists require only ~20 grams or less of sediment, nevertheless, collection 

of ~50-100 grams of sample should be considered the minimum (i.e., about enough to 

fill a sandwich-size zipper-loc bag).    
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Once the archaeological samples have been collected it is imperative that control 

samples be collected as well.  One way palynologists correct for contamination and other 

problems with samples is to check what the current vegetation is comprised of and their 

present day levels.  These control samples should be collected at roughly 5-10 meter 

increments in all directions from the site; especially if there is a change in vegetation 

(Adam and Mehringer 1975).  With submerged sites core samples should be directly 

associated with the site.  Water column samples from marine sites are prudent including 

samples from any nearby land forms, unless the wreck is far out to sea.  With any 

sampling the main concern is contamination.  It is important to follow protocols 

specifically designed for each type of collection situation 

Another resource for pollen sampling is from archaeological artifacts.  Artifacts 

such as: ground stones, lithics, ceramic vessels, basketry, rope, caulking, sun-baked 

bricks and  resin provide natural collecting agencies for pollen.  Resin is a relatively new 

avenue of research for pollen extraction that has the potential to assist in identifying 

sources of food goods, identifying climate change, diet changes and identification of 

amphora contents. 

Other areas of interest for sampling include human remains sampling.  This 

includes coprolite studies (Callen 1963; Bryant and Dean 1975), human digestive tracts  

from mummies (Reinhard et al. 1992), and phytoliths sampled from the plaque found on 

teeth (Fox et al. 1996). 
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Extraction  procedures 

Once a site has been sampled for pollen and the samples have been protected 

against contamination and degradation (e.g., the samples were stored correctly and the 

preservation was relatively good) the next step is to process and analyze the samples.  

Pollen processing procedures differ between analysts and labs (Gray 1969; Doher 1980; 

Eshet and Hoek 1996; Wood et al. 1996; Smith 1998; Coil et al. 2003).  Procedures will 

include both mechanical and chemical methodologies.  Again, depending on where the 

samples originated from will determine the steps required to process for pollen.  

Mechanical methodologies include screening the samples through mesh screen usually at 

increments of 200 and 150 microns, however, different sized mesh may be implemented 

depending on the research question.  The screens will separate the pollen from other 

organic and inorganic remains.  Most pollen range in size from about 10 microns to 100 

microns depending on the plant family and genus (Faegri and Iversen 1989); however, a 

few pollen taxa produce grains in the 100-150 micron size range.  The second 

mechanical processing step is swirling.  This consists of placing the sample into a 

beaker, adding a liquid and rotating the liquid, and then holding the beaker at a ~45 

degree angle, waiting for the heavier sediment to settle (usually 5-10 sec) and then 

pouring off the liquid portion (Lentfer et al. 2003).  The theory is that the pollen is 

lighter and will remain in suspension (Funkhouser and Evitt 1959; Pohl 1937).   

Various chemical treatments include the use of acids and bases to digest the 

extraneous materials and concentrate the pollen for analysis (Wood et al. 1996; Gray 

1965).  Heavy density separation procedures rely on the specific gravities of the various 
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materials found in a sample to separate out the pollen from the rest.  It should be noted 

that it is important to know how the processing procedures are being completed.  

Procedures that are utilized incorrectly may result in only partial fossil pollen recovery, 

an erroneous analysis, and incorrect conclusions (Jemmett and Owen 1990).   

Once the processing is completed, then the pollen needs to be identified and 

counted (Barkley 1934; Martin and Mosimann 1965; Traverse 1988).  Pollen 

identification is a highly specialized skill; a skill that requires experience and a good 

reference collection.  If the processing and identification steps are completed accurately, 

then the task of counting the pollen, compiling the data and forming an interpretation 

may begin.  There have been many discussions related to the number of pollen grains 

one should count to obtain accurate relative frequencies the pollen represented.  Some of 

the more recent studies include (Traverse 2007; Jones and Bryant 1995, 2001).  Other 

types of analysis include large fraction counting, which are useful to answer specific 

questions concerning only certain pollen types; especially economic pollen from 

domesticated plants (Dean 1998; Gish 1994).  The accuracy of data interpretation 

depends on the previous steps and the skill of the analyst.   

Analysis 

The data, once generated, may be displayed in tabular form and are usually 

represented by some type of specialized histogram called a pollen diagram.  These are 

graphic representations to display the data in a way that displays trends in a visible 

format.  These representations often display the data in two ways NAP and AP.  NAP 

refers to the non-arboreal pollen; those types of pollen produced by grasses, herbs, and 
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undergrowth, but not from tree sources. Conversely, AP is arboreal pollen and represents 

those pollen types coming from trees.  Pollen is considered nominal data and is 

represented as relative frequencies, however, care must be taken when interpreting raw 

pollen data.  When raw data is converted to relative frequencies, it allows for 

comparison between sites.  Nevertheless, any and all analyses should always include the 

raw data.  Pollen concentration values are important tools used by palynologists to 

determine whether the data are valid or whether the data have been skewed due to 

preservation, deposition, or overrepresentation of certain pollen taxa.  Pollen influx is 

another tool often used and is calculated as the number of grains of a certain pollen type 

deposited in a certain known area over a certain amount of time. Influx values are 

usually displayed as grains per cm -2 year -1  rather than as a relative frequency or 

percentage of pollen by weight or volume (Davis 1976).  The influx value is usually 

different for each plant species due to differences in pollen production and dispersal 

(Andersen 1974; Davis 1969; Pennington and Bonny 1970; Hicks 1985, 1986, 1991, 

1992a, 1992b, 1993, 1994; Hicks and Hyvärinen 1986; Janssen 1967).   

  Pollen zones on a diagram are simply divisions created by the analyst to aid in 

interpretation.  Zonation of pollen diagrams should be biostratigraphic units or units that 

are determined based on the pollen content data alone.  A definition of a pollen zone 

according to Birks (1972) is, “a body of sediment with a consistent and homogeneous 

fossil pollen and spore content that is distinguished from adjacent sediment bodies by 

differences in the kind and frequencies of its contained fossil pollen and spores” (Gordon 

and Birks 1972:962).  Early zonation diagrams created by Jessen (1935) and Godwin 



 
 
 

 

19 

(1940) were based on climate and vegetation change through a span of time, however, 

Cushing (1967) later standardized the use of pollen zones.  Today computer programs 

are often used to assign pollen zones more accurately.  Nevertheless, pollen zonation 

should be viewed with caution as interpretations may be affected negatively.  The 

interpretation of the pollen information is composed of two steps.  The first is 

establishing the composition of the vegetation or a reconstruction, and second inferences 

should be drawn from the vegetation back to the agents that caused the vegetation to 

exist (e.g., climate, ecology, human intervention) or the interpretation from applying the 

data collected (Faegri and Iversen 1989). 

Most if not all pollen studies will include a pollen diagram for pictorial 

representation and simplicity (Faegri and Iversen 1989).  It is a way to view the salient 

information quickly and easily, nevertheless, some diagrams do not fulfill this objective 

and in some cases display information erroneously.  Things to look for in a pollen 

diagram include: chronostratigraphic, lithostratigraphic, and biostratigraphic 

information. The chronostratigraphic is the display by either depth or carbon-14 dates, 

the lithostratigraphic is the graphic representation of the type of sediments the pollen 

came from, and the biostratographic information is a graphical representation of the 

pollen counts usually presented as relative frequencies or percentages.  

Palynological statistics 

Prior to the 1910s and 1920s qualitative analyses prevailed.  After that time 

quantitative analyses using statistics began to develop.  Statistics are usually applied to 

pollen data in two main ways: palynological data and palaeoecological data.  
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Palaeoecological applications include reconstructions showing changes in the past  

vegetation.  As in archaeological interpretations of tool use, or in cultural actions, or 

other aspects of human behavior, “[i]nterpretations of Quaternary pollen analytical data 

are derived almost entirely from the extrapolation of present-day ecological observations 

backwards in time” (Birks and Gordon 1985:2).  It is through the use of modern-day 

analogs and known ecological communities that interpretations of past ecologies may be 

accomplished (Walker 1978).  Inherent in these interpretations is the assumption that 

present day plant communities behave in similar ways that plant communities behaved 

in the past.  This assumption is referred to as methodological uniformitarianism or 

actualism.   

The use of statistics is based on the question being asked.  In the case of 

palynology the types of questions that are important include:  1.) nominal vs ordinal 

data, 2.) which tests should be used and why, 3.) applications for different studies, 4.)  

which tests are valid, and  5.) what is important for the archaeologist.  Statistical models 

have been attempted and applied to modern-day studies of pollen production, pollen 

distribution, and the amount of fossil pollen recovered (Adam and Mehringer 1975; 

Davis 1969).  Vegetational reconstructions of plant communities in the past are not 

easily derived and a number of models have been proposed such as the indicator-species 

approach (Janssen, 1967, 1981; H.J.B. Birks and H.H. Birks 1980).  

Only a few published articles deal specifically with statistics as they are applied 

to archaeological palynology (Mosimann 1962; Martin and Mosimann 1965).  The 

majority of articles that focus on statistics are especially interested in plant community 
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reconstructions as they pertain to ecology, geology or biology, or fields such as plant 

taxonomy.  For example, the two main approaches using modern pollen data are the 

comparative approach and the representation-factor approach” (Birks and Gordon 1985).  

The comparative approach is concerned with finding similarities between modern and 

fossil spectra in order to make interpretations in the past.  The representation-factor 

approach attempts to find correction factors “to estimate the abundance of individual 

taxa in the past” (Birks and Gordon 1985:143). While these studies are useful, and many 

of their methodologies contribute, archaeological palynologists are usually more 

interested in the recent past, specifically the late Quaternary (i.e., 1.8 mya) and how 

humans interacted with their environment. 

If palynology is to continue to contribute to archaeology in a positive manner and 

expand in its contributions, a symbiosis between the two fields must continue to develop.  

Palynologists must learn to understand the needs of the archaeologist and the 

archaeologist must learn to understand the types of questions that should be asked and 

can be answered using pollen data.  Only through an exchange of information can this 

relationship be maintained and grow to the benefit of both.  
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CHAPTER II 

TERMINOLOGY 

 

Terminology used in palynology 

Although palynological research is of interest in archaeologists, the scope of 

palynology spans many disciplines besides archaeology.  As pollen analysis is applied to 

other disciplines research-specific nomenclature becomes essential for clarification.  

Nevertheless, when specific terms are poorly defined or are used interchangeably the 

resulting confusion and errors can be detrimental to attaining the research objectives. For 

example some terms imply a palynological component, other terms exclude a 

palynological component, and other terms do not specify whether a palynological 

component is including or excluded.  The terms palaeoethobotany and archaeobotany 

have both been used to describe studies of plants from past contexts, usually from an 

archaeological setting (Ford 1979).  However, there are some who will differentiate 

between these two terms and others who will use them interchangeably.   For example 

archaeobotany, palaeoethnobotany, palaeobotany, Quaternary palaeoethnobotany, 

Quaternary plant ecology, archaeoethnobotany, and archaeological-botany are all terms 

that have been used to describe the study of plants found in an archaeological site or 

used in an ancient setting.  Although these terms have generally been used to describe 

macrofossil plant remains (i.e., seeds, wood, stem, fruits, leaves, etc.), in many cases 

they have also been used to refer to microbotanical remains (i.e., pollen, starch grains, 

and phytoliths) depending on the author’s specific interpretation of the terms utilized.  
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Even the terms ‘macrofossils’ and ‘microfossils’ are poorly understood. The prefixes 

macro- and micro- refer to those remains that may be seen either without the aid of a 

microscope or remains that must be examined with the add of a microscope, 

respectively. According to Magid (1989) the term ‘fossil’ is assigned by some to a 

specific and ancient geological time period (i.e., the Tertiary) while others are more 

liberal and are willing to expand the definition to include all those remains “which have 

been dug from the earth regardless of their age or the state in which they are found (e.g., 

petrified). The modern usage extends the application of the term fossil to inorganic 

matter, (e.g., fossil lake, fossil landscape, etc.)” (Magid 1989:65). 

Other botanical nomenclature 

Any organic remains found in an archaeological context that originate from a 

plant source including, but limited to, pollen and spores, starch grains, phytoliths, wood, 

charcoal, basketry, seeds, leaves, could legitimately fall within the scope of the field of 

botany.  As such, palynology would be considered a botanical discipline.  However, as 

in most disciplines, sub-fields are developed not only for descriptive purposes but to 

legitimate and clarify a certain area of study.  Botany has been defined as “the branch of 

biology, which deals with the structure, physiology, reproduction, evolution, diseases, 

economic uses, and other features of the plant” (Fuller and Richie 1967:1).  This differs 

from archaeological applications, which are concerned with economic uses of plants by 

people in the past, the past being the operative term. The terms most often used to 

describe the study of plants from an archaeological context are archaeobotany and/or 

palaeoethnobotany. 
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According to Ford (1979),  

  …archaeobotany is the study of plant remains derived from 
archaeological contexts. These remains may be examined from a number of 
perspectives, including paleoethnobotany, and they may solve problems unrelated 
to human activities and volition, notably biological evolution and 
paleoclimatology.  Archaeobotany refers to the recovery and identification of 
plants by specialists regardless of discipline; paleoethnobotany implies their 
interpretation by particular specialists (Ford 1979:299).  
 
 
 The work of most researchers working with the plant remains at archaeological 

sites falls within the latter term, making interpretations in addition to collecting data. 

Therefore, palaeoethnobotany is a more inclusive term and better describes the work 

conducted by most archaeological researchers.  Many researchers contend that 

archaeobotany also encompasses interpretation as well as recovery and identification of 

plant remains. Nevertheless, the term paleoethnobotany, by the very construction of the 

word, suggests that it is related to human activity while archaeobotany refers to nothing 

more than the collection and analysis of plant remains.  According to Ford 

archaeobotanical remains can be “classified into three categories: macroremains, 

microremains, and chemical evidence” (Ford 1979:301).   

Another term commonly used by palynologists and archaeologists is 

ethnobotany. According to Jones (1941) ethnobotany is concerned with  “economic 

botany, plant lore, properties and value of economic plants, the origins of cultivated 

plants, plant rests in archaeological sites, and plant names and plant knowledge of 

primitive peoples” (Jones 1941:219).  Although he does not clarify what economic 

botany entails, Jones’s definition does provide some clarification of the term 
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ethnobotany.  As a side note and for clarification, a plant rest is presumed to be some 

structure that was used to place plants onto.  The word “rest” does include definitions 

such as “a device used as support”, to place, lean or lay”, and “to be supported or based” 

(American Heritage Dictionary 1985:1053).  No other reference could be found for 

“plant rest.”   

The term ethnobotany was originally suggested by Harshberger in 1895.  He first 

makes mention of this term in a newspaper article in reference to his suggestion that “ a 

public ethno-botanic garden be established...” at what was then the new University of 

Pennsylvania Museum buildings (Harshberger 1895:5).  According to Harshberger, 

ethnobotany is the study of plants used by primitive and aboriginal people (Harshberger 

1896).  He surmised that the study of economic plants used by the Native Americans 

required cultivation and access to the plants that they used.   However, as Ford points 

out, pioneering research in ethnobotany preceded Harshberger by 50 years in Western 

Europe with the works of de Rochebrune (1879). Rochebrune defines the study of plant 

use by indigenous people as ethnographie botanique or botanic ethnography.  A few 

years earlier, Alphonse de Candolle (1855) recognized the contributions of archaeology 

as it regards the history of crops in an article titled Géographie Botanique Raisonée or 

Geographic Botany Rationalized (Ford 1979).  Harshberger’s definition, by today’s 

standards, is limited and not wholly representative of the myriad aspects of the present 

day discipline.  A more encompassing definition is the one given by Volney Jones 

during the early 1940s in which he defines ethnobotany as: “the study of the 

interrelations of primitive man and plants” (Jones 1941:220).  Ethnobotany, as a 
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discipline, is linked to anthropology irrevocably by the above definition and through the 

etymology of the word itself, ethno (meaning people) and botany (the science or study of 

plants). 

Palaeoethnobotany is a term first used by Hans Helbaek in 1959 when he said it 

referred to the study of any domesticated plant, which by definition means it has been 

manipulated in some way by humans (Helbaek 1959). 

The term Quaternary palaeoethnobotany is a broader term than those previously 

introduced because it includes all studies of human plant use during the last 1.3 million 

years or more (the Pleistocene and the Holocene).  In this application the two terms 

‘Quaternary’ and ‘palaeo’ suggest past time periods and, therefore, the use of both terms 

is redundant.   The term ‘Quaternary plant ecology,’ which has sometimes been used, 

suggests the study of plant ecology during the Quaternary Period, but it does not imply 

interactions of plants with humans.  

Palynology is study applicable to archaeology but because of the many 

applications that are derived from the discipline of palynology, it is not always linked 

with archaeology.  Therefore, to distinguish those applications specifically associated 

with archaeology, and ultimately anthropology, I propose the use of a new term: 

ethnopalynology.   

Palynology/ethnopalynology 

Quaternary palynology, archaeopalynology, archaeological palynology, 

stratigraphic palynology, environmental palynology, and paleopalynology are terms that 

have been used at times by various authors to describe pollen research associated with 
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anthropological data.  Adding further confusion, there have been other words that have 

been used, or misused such as palynomorphs (Tschudy 1961), cryptogams and 

palynodebris (Manum 1976), and palynofacies (Combaz 1964; Traverse 1988; Cramer 

and Diez de Cramer 1972).  “Ideally, a definition of a scientific term is meant to leave 

nothing to contention as it states and clearly explains the scope, applications and exact 

limits of the term in question. In other words, each scientific term should have its own 

well defined scope and limits leaving nothing to contention. Therefore, applying one 

definition on two different terms obviously calls for an explanation of the philosophy 

behind such usage. Until an explanation is provided, such dual applications of these 

terms will keep creating a great deal of confusion (particularly among students)” (Magid 

2005a).  

Although nomenclature is necessary, it should not be confusing.  

Ethnopalynology is simplistic and self-explanatory and follows the examples set by 

other similar words such as ethnobotany.  The term ethnobotany, however, suffers from 

the problem that some might think it is a subfield of the botanical sciences rather than a 

specific area of research independent from botany.  For example, Margaret Towle states 

that “ethnobotany, [is] a term applied to the study of the relationship between man and 

the plant world, without limits to time or to the degree of his cultural development” 

(Towle 1961:1).    In my opinion, terms such as palaeopalynology are too vague and 

may be interpreted to include geological time frames as well as more recent time lines, 

nor does this term exclusively include human interactions with the environment to the 

exclusion of climate changes, or stratigraphic changes that are not necessarily impacted 
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by human activity.  

Pollen terms such as palynomorphs (Tschudy 1961), cryptogams, palynodebris 

(Manum 1976) and palynofacies (Combaz 1964; Traverse 1988; Cramer and Diez de 

Cramer 1972) may not be confusing for the professional palynologists and 

archaeologists, but these terms can be confusing for non-professionals in both fields.  

Although nomenclature is necessary in any discipline, if the terms are not defined and 

used systematically and consistently, then the ultimate purpose of clarification and 

dissemination of information has failed.  For example, the term palynomorph was first 

introduced by Tschudy in 1961, but according to Jansonius and McGregor (1996) the 

term was originally coined by R.A. Scott.  According to the current definition, 

palynomorphs include “any microscopic specimen resistant to hydrochloric acid (HCl), 

hydrofluoric acid (HF), nitric acid (HNO3), ...and similar corrosive chemicals...” 

(Jansonius and McGregor 1996:1).  Essentially, palynomorphs are those microscopic 

specimens that are resistant to acids (these specimens include types of microfossils other 

than pollen).  In addition palynomorph is a close synonym and includes all entities found 

in a palynological sample (e.g., pollen, dinoflagellates, acritarchs, etc.) except for those 

particles that are dissolved by acids (e.g., diatoms).  Phytoclast and palynodebris are 

terms for a plant-derived, chemical resistant microscopic specimen (Punt et al. 2007).  

Cryptogams (from botany) are non-vascular plants or ‘plant-like’ organisms (e.g., blue-

green algae, fungi etc.) that reproduce by spores or, in other words, do not produce 

flowers. The types of plants found in this category include algae, mosses, liverworts, 

fungi and ferns.  Palynodebris is a term suggested by Manum (1976) and is defined as, 
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“that component of a palynological preparation residue made up of recognizable 

fragments of plant cuticles and of wood tissue or tracheidal matter, whether carbonized 

(mineral charcoal, fusinit particles) or not” (Manum 1976:899).  (As a side note Manum 

(1976) is using the German nomenclature ‘fusinit’ which simply refers to coal like 

particles).  It is interesting to note that in his 1976 article, which was specifically 

concerned with dinocysts, Manum qualifies this definition stating that “palynodebris is 

basically water transported...” although, today this qualification is not readily employed 

(Manum 1976:899).  Palynofacies is a term coined by Combaz in 1964 to describe debris 

in samples though this term did not gain wide acceptance in the scientific community.  

Today it is still confusing because the term palynofacies is still used in certain contexts. 

Nevertheless, the more common term is palynodebris. or simply organic matter.  Most of 

these terms are used by geologists or palynologists working in pre-Quaternary geological 

time, however, it is important to define the potential terminology that many 

palynologists working within the Quaternary might utilize (whether erroneously or not) 

in many publications.   

Information regarding archaeological sites, and pertaining to the palynological 

interpretation, may be found in several different periodicals that do not share, nor use 

synonymous nomenclature.  As a result it is essential that the archaeological palynologist 

understand the intended meaning for the various terminology.  This is important for the 

archaeologist because any or all of these types of fossil remains may show up in 

archaeological deposits and could be identified and discussed by the ethnopalynologist 

working on the samples. This is especially true when the samples come from a water or 
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marine source.  Other terms that I include here are dinoflagellates, hystrichospheres, 

microforaminifers, silicoflagellates, radiolarians, acritarchs, algae, aquatic ferns, and 

spores.  These plants and organisms are generally used by researchers studying 

geological time scales from the earliest record of plant life dating to the Precambrian Era 

(~2.3 billion years ago) through the recent past for  interpreting past environments. 

Dinoflagellates are organisms that live in saline or brackish water as-well-as 

fresh water depending on the genus and species.  As defined by Taylor (1987),  

  The habitats in which dinoflagellates may be found are also very varied.  
The majority (nearly 90%) are marine planktonic [free floating] or benthic forms 
[or those types that live on the sea floor], with the greatest diversity in tropical 
waters.  Dinoflagellates can be found in polar waters, in sea ice and even in snow 
but other groups, such as diatoms or green algae, are more successful in these 
cold environments.  The photosynthetic members are restricted to illuminated 
water, although many can survive under very dim light conditions, whereas the 
heterotrophs can extend into non-illuminated depths, both in the water and in 
sediment (Taylor 1987:399).  
 

Dinoflagellates range in size from 2 micrometers (Fm) to 2.0 millimeters (mm) in 

diameter. They may be photosynthetic (autotrophic) or heterotrophic (eat other 

organisms) and are considered the base of the oceanic food chain.  Comparison of the 

number and types of dinoflagellates found between time periods may indicate changes in 

salinity and shifts in temperature which sheds light on past environmental states and 

changes.  Hystrichospheres occur in both salt and fresh water environments but are 

found more commonly in salt water.  According to Tschudy (1961), these may be found 

in standing water, open oceans and at the mouths of rivers.  However, today 

Hystrichospheres are considered nothing more than a class of dinoflagellate cysts.  This 

cyst stage allows dinoflagellates to survive for long periods of time when the ecological 
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environment is disadvantageous.  Among living dinoflagellates there are three types of 

cysts: 1) resting cysts, 2) temporary cysts, and 3) vegetative cysts.  Some types of 

dinoflagellates, “under adverse conditions...form a temporary cyst” (Fensome et al. 

1996: 109).  Dinoflagellates are very sensitive to ocean salinity, temperature and nutrient 

levels.  When the environmental conditions are not ideal, it is believed that the 

dinoflagellate will revert to a cyst form; as a result cyst identification may be used to 

determine the environment at the time of deposition.  A similar process may be used to 

determine environmental conditions in sediments containing dinoflagellate cysts.  

The term microforaminifera refers to a group of foraminifera that are smaller in 

size.  The term microforaminifera was originally coined in 1952 by Wilson and 

Hoffmeister (Wilson and Hoffmeister 1952).  This term was originally created to refer to 

foraminifera that are less than 177 Fm in size, however, confusion with this term is also 

evident as this term has been used to refer to foraminifera which are resistant to 

chemicals used to process samples (Echols and Schaeffer 1960).  The foraminifera and, 

thereby, the microforaminifera are single cell protists (which are part of the Kingdom 

Protista, a Kingdom of organisms that are neither plant, animal nor fungus but have a 

nucleus and are eukaryotic).  The composition of foraminifera shells gives information 

regarding the chemistry of the water in which the organism developed and most 

importantly, the ratio of stable oxygen isotopes found in the shells.  These ratios depend 

on the temperature of the water.  These data give information of how climates from the 

past have changed in the past and could indicate future trends (Wetmore 1995).  

Radiolarians, as with foraminifera, are found in geographical regions including arctic, 
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subtropical, and tropical water.  As with many other ocean organisms, their abundance in 

a geographical region is related to variables such as temperature, salinity, reproduction 

levels and available food sources (Anderson 1983).  Silicoflagellates are similar to 

radiolaria with smaller and less complex skeletal systems, however, not much is known 

of these organisms.  Algae, specifically blue-green algae also contain a sporopollenin-

like material (see chapter IV for a full discussion of sporopollenin), allowing some of 

these algae to be preserved.  Different algae live in different water conditions ranging 

from oceanic environments to tide pools, and brackish water, including fresh water 

sources (Guy-Ohlson 1996).  According to (Strother 1996) Acritarchs are fosillized, 

organic walled cysts of unicellular protists that cannot be assigned to known groups of 

organisms with most in the resting cyst stage.  Although acritarchs are not useful 

indicators for depth, they are useful in combination with other land palynomorphs to 

determine proximity to the shoreline (Strother 1996).   

Cryptogams produce spores and have a rich history in palynological research.  

The study of cryptogams dates back to the early 1900's.  A major focus of palynology 

studies that were undertaken in the first half of the 20th century focused on the search for 

and discovery of coal and later petroleum.   Initially, coals were examined and found to 

contain spores.  Later stratigraphic correlations could be made once the technique of 

recovering the spores and other microfossils from coals and sedimentary rocks was 

discovered.   

 After World War II the petroleum industry realized the potential that pollen and 

spores represented in the subsurface exploration of petroleum (Hopping 1967).  
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Nevertheless, it became evident that these microfossils, when buried under different 

conditions of temperature, exhibited different colors (Batten 1996).  This is termed the 

“kerogen fraction.”  When viewed under a light microscope the changes in colors 

indicate potential areas heat and pressure, which lead to petroleum maturation.   

Ecology vs. palaeoecology 

Palaeoecology is the ecology of the past (Birks and Birks 1980).  Nevertheless, 

the past is extensive and could encompass millennia rather than just the time period 

known as the Quaternary, which is the time period of interest for most archaeologists.   

To understand these terms, one needs to understand the definition of each word and how 

these terms will affect the interpretations by archaeologists.  For the most part these 

terms are self explanatory. However, once interpretations are made based on these 

definitions, care needs to be taken to understand what these terms specifically mean and 

what is being included or excluded from these definitions.  For example, one definition 

for Palaeoecology is the study of the relationships between past organisms and the 

environments from the past in which they lived (Birks and Birks 1980).  This seems like 

a simple and straight forward definition until one realizes that palaeoecology is largely 

concerned with the reconstruction of “past ecosystems” (Birks and Birks 1980).  

Ecology and ecosystem are two different concepts.  In ecology we are concerned 

with organisms and how they relate in their environment.  Ecosystems, by contrast, are 

the exchange of energy and matter between organisms and the environment (Cutter and 

Renwick 1999).   According to Stiling (1992) the term ecosystem was originally coined 

by the British plant ecologist Tansley (1935) to include the community of organisms in 
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an environment and the physical factors around them (Stiling 1992).  In other words an 

ecosystem is found within an ecology.  The difference between the two definitions is 

simply whether the definition includes connection with the larger environment.  

As illustrated, it is essential that the terminology or “jargon” within any 

discipline be understood and used correctly.  Nevertheless, until terms are universally 

agreed upon and are used consistently to mean the same things, then there will continue 

to be confusion within the research community.  It is the responsibility of the researcher 

to use terms clearly to specify the meaning and scope of the studies; nevertheless, the 

reader must be knowledgeable enough to understand the terminology so that he or she 

can and mitigate the potential confusion. 
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CHAPTER III 

HISTORY OF PALYNOLOGICAL APPLICATIONS TO ARCHAEOLOGY 

 The microscope 

The invention of the microscope initiated several different areas of scholarship, 

including the field of palynology.  Although precursors to the microscope occur before 

the 1600's, the basic microscope begins with Anton von Leeuwenhoek.  He found that 

when glass is polished in a certain way it results in a curvature allowing for increased 

magnification.  Robert Hooke working with Leeuwenhoek=s design made changes and 

improved it.  As a result of these early microscope pioneers, research at the microscopic 

level began in earnest.  Two names are known to be associated with the earliest 

applications of microscopy to botany and specifically to palynology.  Nehemiah Grew of 

England and Marcello Malpighi from Italy are considered the co-founders of pollen 

morphology and the initiators of the study of pollen (Wodehouse 1935).  Nevertheless, it 

was not until the late 1800’s that routine studies in botany and pollen begin. 

History: archaological applications of pollen in Europe 

The earliest applications for the study of pollen found in sediments were to date 

geologic deposits. It was soon realized that pollen could be utilized for other purposes as 

well (Davis 1976). The earliest known application of palynology to archaeology is the 

study of a Swedish archaeological site by Lennart von Post et al. (1925).  Von Post was 

not the first to identify and study pollen, nor was he the first to establish the basic 

principles of pollen research; however, he was the first to realize the potential 

importance of pollen studies to archaeological research. Von Post, a geologist by 
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profession, would, occasionally analyze pollen samples in conjunction with 

archaeological samples to determine relative dates.  However, he would only look at 

samples from Sweden. The first and best known of these sites is the dating of a Bronze 

Age mantle found at Västergötland (Von Post et al. 1925).  Essentially von Post used 

palynological evidence to date a woven cloak found in a bog near Gerumsberg, in 

Västergötland.  “The cloak was found in a small bog near the eastern shore of the 

Hjortmossen swamp in the foothills of Västergötland” (von Post 1925:2).   Von Post 

attempted to use palynological evidence to date the stratigraphic layers within the 

swamp.  He was, unfortunately, not entirely successful.   He states that the analysis was 

conducted according to the following research plan: “1) Integration of the environment 

into the layering series of the location in which the cloak was found, 2) Connection of 

the layering series with a stratigraphically significant layering series within the 

Hjortmossen [Swamp], 3) Attempt to create a meaningful time line based on pollen 

spectra from bogs in the region, [and] 4) Discover a temporal connection between the 

regional stratigraphy and the stratigraphy of the discovery location” (Von Post 1925:10).  

At no point did von Post attempt any type of environmental reconstruction, paleodiet 

determination or any other analysis not directly linked to determining a time sequence of 

the stratigraphic layers.  Nevertheless, he did succeed in correlating some of the pollen 

he found with the natural flora for the Hjortmossen Swamp.  He suggested that, “The 

ability to date the various layers of the bog to specific time periods is somewhat limited” 

(Von Post 1925:10).  



 
 
 

 

37 

Von Post and most palynologists of the early 20th century utilized pollen data 

exclusively as a technique for dating strata.  However, in a later publication (Von Post et 

al. 1939), archaeological information regarding everyday life is discussed.  The major 

difference between the Västergötland study (1925) and this later study is the discovery 

of Humulus (hops) pollen.  Von Post never considered any pollen other than arboreal or 

tree pollen important.  As a result, pollen applications to archaeology came later than 

would have been expected, especially with the later research emphasis on cultigens. 

Additional studies conducted in Europe advanced the study of pollen in 

archaeological settings.  Some of the most important ones include: 1) the introduction of 

pollen staining  (Faegri 1936), which enabled finer details of exine morphology to be 

examined and a distinction between pollen grains to be established; 2) Erdtman’s 

acetolysis processing procedure, which aided in pollen identification and removed more 

organic debris in samples [Erdtman and Erdtman 1933]; 3) the application of the 

Assarson Granlund [1924] HF procedure to removes silicates, 4) the availability of more 

technologically sophisticated microscopes; and 5) the development of the electric 

centrifuge.   

Before 1940, with the exception of von Post’s study in 1925, few attempts to 

examine samples in an archaeological context using pollen data were conducted until the 

landmark study by Johs. Iversen (1941).  Iversen was a Danish geologist who is best 

well known for dating the introduction of agriculture in northern European, but he also 

found evidence of plants introduced to the study area and the effects of land clearing due 

to human intervention (Iversen 1941).  Iversen is one of the first to correlate 
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palynological data to cultural events revealed in archaeological setting.  Although Firbas 

(1934) first emphasized the importance of non-arboreal pollen (NAP) or pollen from 

plants other than trees, Iversen used both arboreal and non-arboreal pollen data to 

interpret: 1) climate, 2) cultural events, and 3) the introduction of cultigens into 

Denmark.  Iversen used data to determine the native flora at the time of deposition.  He 

then inferred the climatic conditions by classifying these plants as either warm vs cold 

weather and wet vs dry tolerant weather species. The pollen types that Iversen identified 

as indicators of culture include Chenopodiaceae (goosefoot),cereal pollen types from the 

Poaceae/Gramineae family (grass family) such as wheat and barley, and  Ulmus (Elm).  

As a result of these investigations Iversen successfully dated introduction of the 

Neolithic into Denmark  

History: archaeological applications of pollen in the Near East 

Initial applications of palynology applied to archaeological sites began with von 

Post in Sweden in the 1920’s, however, archaeological applications of pollen data in the 

Middle East did not begin until the 1950’s.  According to Warnock (1998), the Near East 

is an area consisting of three regions, Syro-Palestine or the Levant (now including 

Israel); Anatolia or most of Asian Turkey; and Mesopotamia including the western 

slopes of the Zagros Mountains or what Braidwood refers to as the “Hilly Flanks” of the 

Fertile Crescent (Warnock 1998; Braidwood and Braidwood 1950).  The Fertile 

Crescent is an area defined by the founder of the Oriental Institute and Egyptologist 

James Breasted and includes the plains of the Tigris, the Euphrates and the Nile 

(Braidwood 1952). Braidwood expanded this definition to include the slopes of the 
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surrounding mountains as these areas did not require irrigation as the winter rains would 

result in a crop in the spring (Braidwood 1952).   

To some scholars the term palaeothnobotany is synonymous with palynology, 

having grouped palynology with macrobotanical plant remains, charcoal and wood 

remains, seeds, and phytoliths, all under the heading of palaoethonobotany.  The original 

definition for palaeoethnobotany is by Hans Helbaek, who first coined the term in 1959, 

stating that any domesticated plant is a product of human manipulation (Helbaek 1959).  

Today areas of plant studies from the past are so numerous as to require separate terms 

and definitions to be able to determine which aspect of plant research is being explored.  

Historically, in the Near East palynology, as it is applied to archaeology, lagged 

significantly behind Europe and the United States.   Although Warnock states (1998) 

that palynological studies parallel paleoethnobotanical studies as applied to archaeology, 

I have found no indications that pollen analysis in the Near East began as early as the 

palaeoethnobotany studies in the area.  In the early days of botanical analysis from 

archaeological remains, especially in the Near East, studies routinely included vegetation 

history, climate changes, and the impact of humans to the vegetation.  Although these 

three aspects were not applied anthropologically, as Warnock states, I believe that the 

question of domestication is anthropological by it’s very nature.  The domestication 

question has been and is being intensely studied.  The best known early researcher to 

investigate this question was Gordon V. Childe, followed by Robert Braidwood and his 

“hilly flanks” of the fertile crescent. Nevertheless, Gordon Childe’s Oasis Theory may 
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be traced back to Raphael Pumpelly (Pumpelly 1904, 1908) and to C.E.P. Brooks in his 

Climactic Determinism theory (Brooks 1936). 

In his 1928 book “The Most Ancient Near-East” Gordon V. Childe postulates the 

Oasis Theory or what has also been termed the Propinquity Theory or the Desiccation 

Theory (Phillips 1979).  This theory attempts to explain how and why people initially 

grouped together and ultimately domesticated animals and plants.  In his explanation as 

the climate became drier, people and animals grouped together in areas that could 

sustain food.  Animals became domesticated by the humans inhabiting these oases and 

people domesticated plants to feed themselves and their domesticated animals. This 

Oasis Theory or the theory of environmental determinism (climatic determinism) may be 

traced back to Raphael Pumpelly, a geologist by training.  When Pumpelly was working 

at the site of Anau in 1904, he postulated that as a result of the climate and 

physiography, animals became domesticated because they sought refuge on the oases, 

during the dry times, before human settlement (Pumpelly 1908). Pumpelly was not an 

academically trained archaeologist but he had the foresight to self educate himself and to 

realize his limitations.  His initial interest in archaeology stemmed from a curiosity 

regarding the origins of the Aryan language and people (what is today Indo European).  

Although not successful in this venture, he did organize and execute the first 

multidisciplinary archaeological expedition and excavation which included 

archaeologists (Hubert Schmidt and Langdon Warner), a geographer (Ellsworth 

Huntington), a physical geographer (William Davis -who pioneered the field of 

geomorphology), and Pumpelly himself as geologist. Another aspect of his excavations, 
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which was considered unusual for the time, was his willingness to excavate a site but not 

keep any of the artifacts found (Pumpelly 1918).  Unfortunately, as so often happens in 

academia it is the prolific writers, not always the originators who are associated with 

new innovations.  In this instance it was Gordon V. Childe who developed and 

popularized the idea of environmental determinism through the synthesis of the available 

ideas and theories of plant and animal domestication.  In  The Most Ancient East, Childe 

had followed Brooke's speculations on climate as a force resulting in domestication of 

plants and animals (Braidwood 1958). Brooks was a climatologist whose main concern 

was changes in glacier levels, ocean circulation patterns, sun radiation, temperatures, 

cloudiness, mountains and other geological features that affected the climate and 

ultimately the weather, however, he also appreciated the consequences of climactic shifts 

to prehistoric and historic peoples.  From his Climate through the ages (1926) Brooks 

states that he believed that even variations in rainfall amounts from one century to the 

next would determine where people would settle (Brooks 1936; Childe 1928).  With 

regards to Childe’s theory Braidwood found a gap or hiatus in his time sequence 

between the first settlements and the first evidence for domestication.  In 1945 

Braidwood produced “the gap chart.”  This was a chronological diagram demonstrating a 

significant gap in the time between the last mobile Paleolithic hunter-gatherers, and the 

appearance of the earliest agropastoral villages (Braidwood 1949; Watson 2006).  This 

discovery directly refutes Childe’s post-Pleistocene revolution and fuels further research 

into the domestication question.  All of these theories have in common the original 

research completed by J.R. Mucke in 1898 in which he concludes that the peoples that 
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originally domesticated animals could not be nomadic hunters but agriculturalists who 

first domesticated plants (Mucke 1898).  These early agriculturalists, he theorized, 

attracted ruminants in search of food due to the change in climate that resulted in the 

scarcity of food and this resulted in the domestication of animals.  The earliest 

publication of cultivation centers lies with Alphonse de Candolle’s in his1882 book 

Origine de Plantes Cultivées.  This book describes those areas or regions where plant 

domestication may have occurred.  Candolle’s potential domestication centers included, 

China, Southwest Asia including Egypt, and Tropical Asia. Later Vavilov (1935) in his 

book The Phytogeographical Basis for Plant Breeding, identifies eight centers of 

potential domestication zones based on the number of varieties of domesticated plants 

found. 

What these early expeditions and theories lacked was accurate plant data in an 

archaeological context.  While many of these early excavations report plant remains and 

some even attempt to interpret the findings, in reality the botanical remains found were 

accidental rather than planned attempts.  As a result these plant remains do not represent 

all of the possible information available, making any reliable interpretation impossible 

except for ubiquity studies.  In many cases food cultivation was inferred from tools (i.e., 

sickles and axes), and botanical remains considered “nonartifactual” (Braidwood and 

Braidwood 1952).  In the Middle East as in Europe the traditional pollen expert was 

botanically trained and utilized the data primarily for environmental reconstructions 

(Warnock 1998; Bottema and van Zeist 1981; van Zeist and Bottema 1982; van Zeist 

and Wright 1963; van Zeist and Bottema 1977; Bottema 1986; Baruch and Bottema 
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1991; Leroi-Gourhan and Darmon 1991; Zohary 1935).  Pollen analyses were completed 

and dated absolutely after the introduction of carbon-14 dating in the late 1940’s and 

early 1950’s, yet these pollen data continued to be utilized for climate reconstructions, as 

they had been prior to this time (Libby 1947, 1949, 1955; Arnold and Libby 1951). In 

fact it wasn’t until the 1950’s that Robert Braidwood invited Hans Helbaek and his 

flotation methodologies to study macroremains such as carbonized seeds, which were 

explored as an independent potential methodology for additional cultural information 

(Braidwood 1952, Braidwood and Braidwood 1953; Hopf 1969; Miller 1991; Bottema 

1995, Frey 1955; Jarman et al. 1972; Pearsall 2000).  By the 1990’s palynological 

investigations of Near East archaeological sites became more equal in research goals 

found earlier in Europe and the New World.  Topics such as human impact on the 

vegetation (Barach 1991) and anthropogenic indicators (Bottema and Woldring 1991) 

began appearing with Near East sites.  The greatest challenge to palynology in the Near 

East has been and still is the preservation of pollen.  While some success in extracting 

sufficient concentrations of pollen from fossil samples has been reported in Israel 

(Schoenwetter and Geyer 2000), many early attempts to extract pollen from 

archaeological sediments proved unsuccessful. Although dry conditions do tend to 

preserve artifacts, arid lands also tend to have alkaline soils which may result in a 

decrease of pollen preservation. There is still controversy surrounding different 

processing methodologies and whether or not all pollen records from sites, such as those 

found in Israel, may be considered valid (Bryant and Hall 1993; Schoenwetter and Geyer 

2000).  
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One of the earliest attempts to use pollen data from an archaeological site in the 

Near East for a cultural interpretation comes from the site of Shanidar Cave in Iraq.  It 

was at this site that sediments associated with a Neanderthal burial were analyzed and 

found to contain high concentrations of insect-pollinated flower pollen (Leroi-Gourhan 

1975).  This was interpreted to indicate cultural, if not religious, burial practices and was 

further evidence suggesting that Neanderthals were intelligent, and capable of abstract 

thinking. Prior to the 1970’s the only other reference found regarding pollen analysis of 

an archaeological site in the Near East is found in Echegary (1966).  In this publication 

the botanist van Zeist attempts a pollen analysis from the sediments of a terrace at El-

Khaim in the Judean Desert (Horowitz 1979). Although this attempt was not successful 

due to a lack of preserved pollen, it still remains a turning point in ethnopalynology. 

History: archaeological applications of pollen in North America 

The earliest use of in North America were for dating strata and was conducted in 

1927 by the Finnish Palynologist Väinö Auer.  Auer studied the bogs of southeastern 

Canada and, although this study was not archaeological in nature it marks the 

introduction of palynology to the New World. The earliest palynological study by an 

American was conducted by several years later Patricia Draper (1929). Davis (2004) lists 

other early studies including: Ivey F. Lewis and E. C. Cocke (1929), Paul B. Sears 

(1930, 1931), Lane (1931), Bowman (1931) and John E. Potzger (1932).  The first Ph.D. 

dissertation on Quaternary palynology was that of Leonard Richard Wilson (University 

of Wisconsin - Madison) (1935).  Although these initial studies did not apply directly to 

archaeology, they set the framework for other studies to follow.   
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The first palynological application to archaeological sites in North America is a 

study completed by Paul B. Sears (1931).  In his 1931 article Sears reviewed the pollen 

analyses being conducted throughout North America at the time, (Auer 1930, 

Huntington 1922, Lewis and Cocke 1929) and suggested that the human settlement 

patterns fall along what he called the “corn belt of post-glacial times.”  Although 

antiquated and misinterpreted, Sears’s theories about the rise and fall of the Hopewell 

civilization are based on the integration and application of palynological data to 

archaeology.  In a 1932 article Sears attempts to explain the movement of native peoples 

as a result of climatic shifts.  Although this 1932 study and his subsequent study in 1939 

yielded limited success, he and others (i.e., Deevey 1944, Sears and Clisby 1952, Clisby 

and Sears 1956, Anderson 1955) conducted some of the first New World archaeological 

studies utilizing palynology.  Most of these studies were conducted on sites in the 

Southwest United States.   

 The American Southwest has always intrigued travelers who visit the many 

abandoned pueblos.  Even during the colonization period many detailed descriptions of 

these pueblos may be found as these early settlers began to wonder who had created 

these vast structures.  As time progressed and the area became influenced more by the 

invading “anglos”, replacing the earlier Mexican occupation by the 1830's and 1840's 

new interests in the area, combined with the newly formed and government controlled, 

Smithsonian Institute, resulted in funded exploration parties to the region (Dupree 1957). 

According to Wissler (an American anthropologist associated with the American 

Museum of Natural History from 1902-1942) the period that ran from 1860 to 1900 was 
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the "Museum Period," which saw the growth of eastern institutions, under such leaders 

as Frederick W. Putnam, that sent out collecting expeditions to areas like the 

Southwest”(Schuyler 1971). As a result of the increased interest from the museums and 

the government, both money and archaeologists infused into the American Southwest.  

Paul Schultz Martin, historically a prominent scientist working in the Southwest, 

was a herpetologist by training, but became interested in pollen data as a way to explain 

how certain plant and animal species could be found in Mexico  and southwestern  

United States but were absent from in between  

Years earlier researchers such as Lucy Braun hypothesized that the southeastern 

forests of the United States once extended through Texas and parts of the Southwest in a 

continuous area down as far as the highland of Mexico. Unfortunately, Braun (1955) had 

no data to support her theory other than the presence of identical species of plants in 

both areas but not inbetween.  Her ideas were rebuked by other scientists namely Frey 

(1955), a geologist working with pollen data. Other studies at this time in the American 

southwest were also trying to find the answer to the disparate placement of plants and 

animals.  Martin learned palynology and began a long career studying palynological 

applications in the American Southwest and archaeology.   

By the first half of the 20th century the archaeology in the American Southwest 

was in the middle of a renaissance and many archaeological projects were carried out in 

the ensuing years.  Because of good preservation created by the dry conditions, the 

American southwest represented a unique environment that resulted in the remarkable 

preservation of many different types of artifacts.  Because of the initial efforts of Paul 
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Schultz Martin and others, palynological applications to archaeology in the United States 

began in earnest in the American Southwest.  There are two Paul S. Martins who spent 

their careers working in Southwestern archaeology.  The first, already mentioned is Paul 

Schultz Martin, the other is Paul Sidney Martin.  The latter was an archaeologist who 

worked for the Chicago Field Museum and spent his career working on the Anasazi and 

Mogollan complexes.  

 Palynological applications to archaeology in the American Southwest were not 

the only ones.  Applications elsewhere included pollen studies at sites such as the Boyles 

Street Fishweir (Benninghoff 1942; Knox 1942a).  Because of ideal preservation, this 

study demonstrated the capabilities of pollen data and by 1944 was considered the only 

reliable evidence of early humans in the eastern United States (Deevey 1944).  

In addition to the initial “museum effect”, the later antiquity laws and the 

implementation of federal legislation requiring extensive reports of archaeological sites 

on federal lands fueled the application of palynology to archaeology.  Unfortunately, 

many of these early palynological investigations during the 1960s, 1970s, and 1980s 

became simply appendices added out of legal neccessity rather than being integrated into 

the overall archaeological site study. Many archaeologists were not trained to understand 

the implications of palynological research; a problem that is reflected in the initial lack 

of pollen studies and the location of these studies being relegated to appendices (Hall 

1983). 
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The right word: history of the word palynology 

 Until the early 1940's there was a lack of consensus among researchers as to what 

the discipline, which ultimately became known as palynology, should be called.   Ernest 

Antevs, known for his work in the development of the field of geomorphology and his 

work with his mentor Gerard De Geer, the creator of the Swedish varve chronologies, 

posed the question, “The Right Word?.”  As written in the March 15, 1944, issue of P. B. 

Sears' Pollen Analysis Circular (no. 6, p. 2) Antevs states: 

 Is pollen analysis' the proper name for the study of pollen and its 
applications? The word ‘pollen analysis’ (meaning, I suppose, analysis of 
peat for pollen) was from the beginning used in Sweden to signify the 
identification and percentage-determination of the pollen grains of the 
principal forest trees in peat bogs and lake beds. However, its inadequacy 
was soon obvious, as shown for instance by Gunnar Erdtman's titles 
‘Literature on pollen-statistics...’ and, beginning in 1932, ‘Literature on 
pollen-statistics and related topics’. Even the combination ‘statistical 
pollen analysis’, refer only to the method of getting certain data which in 
itself has little purpose and which does not apply to or cover all the 
branches of the pollen studies, much less the application of the direct 
results to climatic conclusions, etc. It is the knowledge gained from the 
pollen studies, be these statistical of morphological, or be they concerned 
with pollen-induced diseases as hayfever, etc., that has purpose and 
significance. 
 In this case the international combining form -logy (English 
spelling) can hardly be used to denote this science, for the name would be, 
I suppose, “pollinilogy” (cf. polliniferous, pollinization), which is bad.  To 
me “pollen science” (Swedish, “pollenvetenskap’”; German 
“Pollenwissenschaft” and “pollen scientific” sound better. Would “pollen 
science” be preferable to “pollen analysis”? (Ernst Antevs, Feb. 18, 1944).  
 

It is in a rebuttal to this publication that the term palynology was first coined.  In the 

Pollen Science Circular. 1944. no. 8, p. 6, Hyde and Williams proposed: 

THE RIGHT WORD. - The question raised by Dr. Antevs: “Is pollen 
analysis the proper name for the study of pollen and its applications?” and 
his suggestion to replace it by “pollen science” interests us very much. We 
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entirely agree that a new term is needed but in view of the fact that pollen 
analysts normally include in their counts the spores of such plants as ferns 
and mosses we think that some word carrying a wider connotation than 
pollen seems to be called for. We should therefore suggest palynology 
from Greek  A"80 (paluno), to strew or sprinkle; cf. A"8b<T (pal-), fine 
meal; cognate with Latin pollen, flour, dust): the study of pollen and other 
spores and their dispersal, and applications thereof. We venture to hope 
that the sequence of consonants p-l-n (suggesting pollen, but with a 
difference) and the general euphony of the new word may commend it to 
our fellow workers in this field. We have been assisted in the coining of 
this new word by Mr. L. J. D. Richardson, M..A., University College, 
Cardiff (H. A. Hyde and D. A. Williams, July 15, 1944. Wales). 
 

 
Paul Sears (who was responsible for this circular) obviously found the term 

“Pollen Science” satisfactory since the title of his circular soon changed from “Pollen 

Analysis Circular” to “Pollen Science Circular.”  However, it is the term palynology that 

has became widely accepted. 

History of the processing methodology 

 In the early years of palynology, pollen samples were collected exclusively from 

bog environments.  Bogs are ideal for pollen preservation; however, bog samples also 

contain a high concentration of organic matter.  The greatest challenge to palynology 

during the early 1900's was (and continues to be) the separation and ultimate 

concentration of pollen grains from the surrounding matrix.  This problem is solved by a 

series of processing methodologies that focus on the destruction and dissolution of 

matrix materials (i.e., carbonates, silicates, cellulose, hemicellulose, etc.) using acids and 

bases, which, when used appropriately, will leave the fossil pollen undamaged.  Early 

experiments with the use of aqueous KOH (potassium hydroxide) show that it is useful 

for removing humic acids, especially from bog samples.  Nevertheless, applications of 
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this technique, which employs a strong base, is not always practical for archaeological 

samples because of the susceptibility of partially degraded pollen to further degradation 

by KOH.  

Holm (1890, 1898) discovered that aqueous hydofluoric acid (HF) could be used 

to digest silicates (quartz or sand).   In 1924 Assarson and Granlund (1924) introduced 

HF digestion to palynological processing as a way to remove the sand, which tended to 

occlude pollen grains, from bog samples.  In 1934, Gunnar Erdtman (1934) introduced 

the acetolysis processing procedure to remove cellulose and lipids from the surface and 

interior of the pollen grains exposing the acid-resistant wall.   This technique involves 

mixing two acids (acetic anhydride and sulfuric acid) to produce an exothermic (heat 

creating) reaction that dissolves cellulose.  An additional procedure to remove remaining 

silicates and other inorganic materials takes advantage of the relatively high density of 

these materials with respect to pollen.  The theory behind the use of heavy liquids is 

fairly simple.  Water has a specific gravity of 1.0, the pollen wall has a specific gravity 

of around 1.4 (Traverse 2007).  The ideal heavy liquid is one in which all particles 

heavier than pollen sink, and pollen, and other material with a lighter density similar to 

pollen floats.  The first mention of a differential heavy liquid separation technique, as it 

is applied to pollen, is found in Knox (1942).  Although the heavy density material 

mentioned is an acetone/bromoform solution with a specific gravity of 2.3 rather than 

the current zinc chloride or zinc bromide solution in use today, it was effective in 

separating the heavy particles from pollen.  An earlier article that describes a similar 

technique was written by F. Hustedt (1927).  In this publication the author discusses a 
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separation methodology that employs Thoulet solution (a combination of mercuric 

iodide and potassium iodide), as the heavy liquid solution.  Although this solution has an 

acceptable specific gravity, it is also described as being extremely poisonous and 

corrosive (Knox 1942).  Knox also states that he did not find any other reference to the 

use of heavy density liquids for separation; nevertheless another publication does exist 

espousing the uses of Thoulet solution to separate out minerals.   As a result to an 

intensive geological study of the native copper deposits of the Keweenaw Peninsula, in 

Michigan, two methods were used to separate minerals for study (Palache and Vasser 

1925). The first consisted of screening samples and the second consisted of using 

Thoulet solution because fluorite floated and was used to remove quartz and calcite 

(Palache and Vasser 1925).  Later articles that mention heavy density separation include 

Deevey (1944) and Waterbolk (1954), in which bromoform is recommended as the 

heavy liquid solution.  An article by Funkhauser and Evitt (1959) makes mention of a 

heavy density methodology using aqueous zinc chloride.  Currently, zinc bromide is the 

solution of choice for many pollen labs although the cost can often be prohibitive.  When 

evaluating the proper processing procedure for a given sample it is generally best to 

select the procedure with the fewest steps required to remove the majority of the matrix 

material because any procedure has the potential to lose pollen.  The ideal processing 

procedure is one that is tailored to the matrix material. 

Today, processing methodologies are varied and require the use of acids, bases, 

and alcohols in various strengths combined with a myriad of other procedures including 

heating, settling, deflocculation, screening, heavy density and suspension steps; all with 
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the purpose of separating the pollen from its surrounding debris.  In addition, some 

report differences in pollen recovery depending on the order in which different 

extraction procedures are performed (Smith 1998). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

 

53 

CHAPTER IV 

CHEMICALS AND BASIC POLLEN PROCESSING 

Palynological laboratory setting 

  In palynology it is essential that the processing procedure be completed 

competently in a well stocked, organized, and ventilated laboratory (Traverse 2007).  

Proper procedure include contamination control, acceptable and safe storage facilities, 

correct applications of pollen extraction methodologies, documentation of lab steps and 

results, photographic documentation, light microscopes that are capable of 40x through 

1000x minimum and ideally with digital photographic capabilities.  In addition, an 

extensive comparison collection and/or a library of pertinent extant images for 

comparison is necessary.  Depending on the required analysis, additional equipment such 

as a microscope with phase contrast capabilities, a Normarsky phase option, and if the 

specimens include starch granules a microscope that utilizes polarized light.  Additional 

microfossil specimens such as phytoliths may also be viewed under basic light 

microscopy. 

Laboratory 

 The basic laboratory materials will include a wet lab equipped with proper 

ventilation equipment, preferably a fume hood, however, these tend to be costly.  

Depending on the size requirement or the area of working surface required, table top 

fume hoods may sometime suffice as a substitute to the larger more expensive fume 

hoods. Fume hoods are necessary to exhaust corrosive fumes, protect personnel from 

inhaling dangerous fumes, and to neutralize the fumes with air scrubbers before being 
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exhausted to the atmosphere.   A wet lab for palynological work should be an isolated 

space equipped to handle corrosive and otherwise toxic chemicals.  Ideally, it should 

have a chemical resistant counter or table top, hardwood tiles or linoleum floors, 

adequate lighting and storage space for equipment, chemicals and samples, a slop sink, 

which is either stainless steel or fiberglass and has a deep basin with a trap to collect 

sediment.  Safety is of utmost importance in a lab of this design because of the 

potentially-dangerous chemicals necessary for these types of procedures.  Safety 

showers and eye washes are basic OSHA requirements as are fire extinguishers 

specifically for chemicals and a steel cabinet for flammable chemicals. If using 

hydrofluoric acid, a supply of calcium gluconate to neutralize hydrofluoric acid (HF) 

burns is essential.   

Of all of the acids used in pollen extraction, HF is the most dangerous. 

Hydrofluoric acid is commonly referred to as a weak acid, however, this does not in any 

way refer to its toxicity, it can cause death from improper exposure.  For example, as 

noted by Greenwood and Earnshaw (1984:946),  

 
 
 

The highly corrosive nature of HF and aqueous hydrofluoric acid 
solutions have already been alluded (923-928) to and great caution must be 
exercised in their handling. The salient feature of HF burns is the delayed onset 
of discomfit and the development of a characteristic white lesion that is 
excruciatingly painful. The progressive action of HF on skin is due to 
dehydration, low pH, and the specific toxic effect of high concentrations of 
fluoride ions: these remove Ca2+ from tissues as insoluble CaF2 and thereby 
delay healing; in addition the immobilization of Ca2+ results in a relative excess 
of K+ within the tissue, so that nerve stimulation ensues. Treatment of HF burns 
involves copious sluicing with water for at least 15 min followed by (a) 
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immersion in (or application of wet packs of) cold MgSO4, or (b) subcutaneous 
injection of a 10% solution of calcium gluconate (which gives rapid relief from 
pain), or (c) surgical excision of the burn lesion. Medical attention is essential, 
even if the initial effects appear slight, because of the slow onset of the more 
serious medical symptoms. 
 
 
 

Equipment 

Although laboratory procedures and equipment vary between locations and 

researchers, there is some equipment that is standard and is needed for this type of 

analysis.   Because pollen is found in a variety of matrices, several pieces of equipment 

are essential to recover pollen efficiently and accurately.  Centrifuges capable of 

accommodating 15 ml centrifuge tubes and 50 ml centrifuge tubes respectively and 

spinning samples in a horizontal plane are useful and essential  Settling is useful in some 

instances throughout the processing procedures to remove excess liquid but it is usually 

not practical with large numbers of samples and limited time.  Siphoning is also useful 

and for many of the steps some researchers consider this technique more accurate than 

decanting after centrifugation, however, this is also much more time consuming.  If a 

centrifuge is employed, a vortex mixer is useful to thoroughly mix sediments before and 

after centrifugation.  A vortex mixer has a base and a concave rubber attachment in 

which the centrifuge tube sits and vibrates to mix the sample.  Other items of essential 

equipment includes glassware or specialized plastic containers consisting of beakers of 

various sizes, calibrated cylinders, centrifuge tubes, and waste containers to dispose of 

chemicals.  Mesh screens/sieves and nylon mesh with different sized grids help to 

separate pollen from smaller or larger pieces of detritus, which obviates the addition of 
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larger amounts of chemicals intended to digest the extraneous detritus (Caratini 1980; 

Bowler and Hall 1989; Cwynar et al. 1979). When processing for pollen, acid-resistant 

rubber gloves, lab coats, and face shields should be used for protection.   

One type of specialized equipment that is very useful, especially when 

processing samples with high clay or colloidal contents, is a sonicator.  This may be 

attached to a larger stainless steel container filled with water or it can be a probe type of 

hand held unit.  The sonicator is a device that emits sound waves to break apart fine-

grained, colloidal materials in which pollen may be trapped.  A sonicator should be used 

with great caution.  Using an incorrect oscillating frequency or sonicating samples for 

more than a few seconds can cause breakage and fragmentation of some types of pollen 

and spores, especially fragile ones. Depending on the morphology and ornamentation, 

some pollen types are much more susceptible to destruction during sonication than are 

other pollen taxa. Other type of useful equipment include heating blocks used to heat 

samples suspended in chemicals, (e.g., the heat will speed up chemical reactions), a 

warming plate, and a weighing scale calibrated in tenths of a gram.   

Contamination 

 Each palynology lab should be free from outside contaminants. There are several 

different methods to accomplish this.  Initially the lab should be monitored for airborne 

contaminants. A simple method is to use glycerin covered slides placed in various lab 

areas, which are checked for contamination, cleaned and then replaced.  If contamination 

is evident, then steps should be taken to correct this. Some steps include: 1) changing 

clothes and shoes or using sterile overalls before entering the lab; 2) conducting all 
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processing in the fume hood area especially if a sample needs to be crushed (e. g. some 

forms of geologic samples); and 3) maintaining positive air pressure so air leaves the lab 

rather than entering when the doors are opened; and 4) having an air conditioning and 

heating system with adequate filtering systems to prevent pollen and spores from 

entering with the air. Ideally a pollen lab should be built within the interior of a building. 

That type of location would require a person to pass through two or more doors before 

entering the lab thus decreasing the likelihood of fresh pollen being blown in.  Flowering 

plants of any kind or exposed herbarium sheets should never be carried into a pollen lab 

and collected flowers or pollen for modern reference samples should always be in sealed 

containers while in the lab and should only be opened under a fume hood or in a clean 

bench (e.g., contamination free hood used for forensic sampling).  If fresh pollen 

collected from anthers or purchased from an allergy supply company is being processed, 

the containers should be opened outside of the lab and samples extracted and then placed 

in either a sealed container or placed in a liquid medium to prevent pollen from 

potentially becoming airborne in the lab.  Regardless of the safety precautions, it is 

always possible that some type of pollen contamination may occur.  The lab walls and 

floor should be washed thoroughly and frequently as a way of reducing contamination 

potential. If possible Hepa-type air filter units should be placed in various locations 

within the lab to remove dust, including any potential airborne spores or pollen. 

Chemicals used in a palynology laboratory  

Some of the chemicals used to process fossil pollen samples may differ from one 

lab to another, however, many chemicals that are used tend to be standard in all 
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laboratories (Smith 1998).  The most common chemicals used include: acetic acid, acetic 

anhydride, hydrochloric acid, nitric acid, hydrofluoric acid, sulfuric acid, potassium 

hydroxide, potassium chlorate, and ethyl alcohol (see Table 1). 

 

Table 1.  Chemicals frequently used in basic palynological processing. 

 

Chemical 

Name 
Chemical 

Formula 
Type of 

Chemical: 

acid/base 

Use 

Acetic Acid CH3COOH Acid Remove water; 
neutralize bases. 

Acetic Anhydride (CH3CO)2O Acid Part of the 
Acetolysis 
solution - digest 
extraneous 
organics. 

Hydrochloric 
Acid 

HCl Acid Digest 
carbonates, 
separate clay 
particles 
(deflocculate). 

Nitric Acid HNO3 Acid Digest organics. 

Hydrofluoric 
Acid 

HF Acid Digest silicates 
(sand). 

Sulfuric Acid H2SO4 Acid Part of the 
Acetolysis 
solution - digest 
extraneous 
organics. 
 

Potassium 
Hydroxide  

KOH Base Oxidant, 
removes humic 
acids; reduce 
acidity. 
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Chemical 

Name 
Chemical 

Formula 
Type of 

Chemical: 

acid/base 

Use 

Potassium 
Chlorate 

 KCLO3 Base Part of the 
Schultz solution 
- digest organic-
rich samples; 
geological 
samples; coals 
and  lignites. 

Sodium 
Chlorate 

NaCLO3 Base 
 
 
 

May be used in 
place of 
Potassium 
Chlorate – a 
stronger 
oxidant. 

Ethanol/Ethyl 
Alcohol 

CH3CH2OH/ 
ETOH 

Alcohol Dehydration, to 
reduce specific 
gravity in 
rinses. 
. 

  
 
 
 

Acids vs. bases 

The use of acids and bases in pollen processing succeeds in concentrating the 

palynomorphs and eliminating much of the extraneous materials that tends to obscure 

the pollen grain morphology.  This includes material that is found in and on the pollen 

grain itself (i.e., waxes, lipids, protoplasm and cellulose) and the matrix the pollen is 

trapped within (e.g., humates, colloidal materials, silicates, etc.).  The most important 

factor in the use of acids vs. bases is the consideration of the environment in which the 

pollen is found.  For example, the best preservation conditions are usually those in which 

the pH is acidic, below a pH of seven, which is neutral.  When the pH is basic, or above 

seven, the preservation of pollen tends to be reduced.  At some higher pH levels the 

Table 1. continued. 
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condition of pollen is deteriorated to a point that most grains are no longer recognizable 

(Dimbleby 1957).  Nevertheless, in some arid regions of the American Southwest with 

alkaline sediments as high as pH of 8.9, some pollen can remain preserved.  However, 

what pollen spectra remain are often compromised by differential levels of pollen 

preservation  (Martin 1963;  Bryant et al. 1994; Bryant and Hall 1993).   

The condition of fossil pollen in a sample will determine the types of chemical 

and/or mechanical processing techniques that can be used safely and effectively.  In 

terms of acids and bases, acids are used mostly to digest carbonates and remove silicates.  

The removal of carbonates is an essential step because carbonates result from the 

formation of precipitate salts in the silica removing stage or the hydrofluoric acid step.  

Hydrofluoric acid (HF) is considered a weak acid but that does not mean it is not 

effective or dangerous.  HF specifically digests any silicates; nevertheless, it is 

extremely dangerous.  This particular procedure was discovered in 1924 by Assarson 

and has proven invaluable in processing pollen samples containing silicates.  Silicate 

particles can obscure pollen grains during analysis and makes it difficult to identify and 

count pollen grains. Abundant silicates also means that the pollen can become widely 

dispersed in the matrix thereby requiring the examination of many slides before an 

adequate pollen count can be reached.   

After using HF, hydrochloric acid (HCl) should be used to wash the samples to 

remove potential colloidal forms of silicon dioxide (SiO2) and colloidal silico-flourides 

(Erdtman 1943; Faegri and Iversen 1950).  Early extraction procedures recommended 
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heating the HCl to boiling to speed the reaction time; however, experiments reveal that 

some fragile pollen grains might be lost when using hot HCl (Faegri and Iversen 1975), 

but not using cold HCl.    

Some of the usual extraction techniques (see Table 2) should be avoided if 

certain types of pollen might be present in an archaeological sample. When possible, 

field archaeologists should mention potential types of plants that they suspect may be 

found in the pollen record (if known) before the palynologist begins the processing.  If 

there is a potential for the presence of certain fragile pollen types, such as avocado 

(Persea) pollen, or other pollen types from the Lauraceae plant family, then the 

acetolysis procedure should be avoided.   The exine wall of the avocado pollen grain is 

very thin, fragile, and easily destroyed by any type of oxidation, including the acetolysis 

procedure.  According to Erdtman (1969), other plant families which produce pollen that 

could be lost during the use of acetolysis include: the Juncaceae, Rapataceae, and 

Musacaceae.  The pollen exine of some species in the Orchidaceae and Asclepiadaceae 

plant families lack sporopollenin and thus will be destroyed during acetolysis (Chardard 

1958, Zavada 1983, Schill and Dannenbaum 1984). 

The use of a base such as sodium hydroxide (NaOH) or potassium hydroxide 

(KOH) is usually one technique used in samples that contain high amounts of organic 

matter, such as the human coprolites and sediments recovered from bogs and fens.  

Bases are also used to neutralize samples that contain acids or to desegregate colloidal 

materials prior to using a deflocculant.  The use of bases was initially used for 
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processing geologic samples; nevertheless, caution should be practiced with using any 

type of base on archaeological samples. 

 

Table 2. Solutions used in palynological processing. 

Procedure Name Chemicals Type of 

Procedure 
Use 

 

Acetolysis 
Solution 

Acetic Anhydride 
and Sulfuric Acid 

Digestion 
technique. 

Removes cellulose 
and extraneous 
organic materials. 

Heavy Linquid 
Solution 

Zinc Bromide  
(ZnBr2) 

Specific gravity 
separation 
technique 

Separates pollen 
from other 
materials. 

Schultze’s 
Solution 

Potassium 
Chlorate (KCLO3) 

or Sodium 
Chlorate (NaClO3) 

with concentrated 
Nitric Acid 

(HNO3).  

Digestion 
technique. 

Removes cellulose 
and extraneous 
organic materials; 
especially useful 
with high organic 
samples. 

 
 
 
 

Pollen can be deposited in many different types of matrices, including but not 

limited to:  bog and lake sediments, shale and slate deposits, soils, limestone, lignites 

and other types of coals, and various types of marine sediments.  Early pollen studies 

focused on trying to recover pollen from deposits that contain high quantities of organic 

material such as peat bogs.  This emphasis began because pollen analyses began in 

Scandinavia where most of the early pollen samples were collected from bogs. This 

represented an early challenge to find a way to remove organic material from a pollen 

sample without damaging the fossil pollen present. 
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The first major shift in emphasis for pollen extraction came during the 1950's 

when it was discovered that spores and pollen could be used as stratigraphic markers to 

indicate the location of oil and gas deposits. Thus, the new emphasis for pollen recovery 

shifted from removing pollen from highly organic materials to removing pollen from 

geological sediments such as shale (Thiessen and Voorhees 1922; Hopping 1967; 

Chepikov & Medvedeva 1960; De Jersey 1965; McGregor 1996). To process the wide 

variety of geologic sediments, different processing techniques, none of which were 

previously standardized, needed to be developed and refined.  Soon geologists and 

palynologists within the petroleum industry began working with chemists and skilled 

laboratory personnel in an effort to develop new and effective extraction techniques. 

Many of these experiments and developments were never reported because they were 

considered industrial secrets yet a few early reports summarized some of these 

techniques (Brown 1960; Gray 1969) 

Screening 

One of the primary mechanical methodologies used in processing pollen is 

screening.  Screening is used to separate the microscopic pollen and spores from larger 

fragments of organic matter and various types of large, inorganic remains.  Most pollen 

ranges in size from about 5 microns to 200 microns (µm or micrometers) in diameter, 

depending on the plant family and genus (Faegri et al. 1989).  For most samples from 

archaeological sediments, using a screening size with openings of 150 µm is adequate 

for allowing all important pollen types to pass freely through the screen while trapping 
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large organic and inorganic particles that can be excluded from further processing.  

Some palynologists recommend using very fine nylon (NITEX) screens with openings of 

7-10 um to remove some of the very fine tiny debris particles in samples (Cwyner et al. 

1979).  Although this can be useful, yet time-consuming, our own experiments 

demonstrate that a few plant taxa that produce very tiny pollen grains (e.g., Myosotis, 

Mimosa, Salix, Castanea, Echium, etc.) can occasionally pass through this type of 

screening process and thus would be lost from the final analysis process. 

Decanting and swirling 

The concept behind the use of swirling is that the pollen and spores are lighter 

than many forms of debris and thus they should remain in suspension while the heavier 

particles will migrate toward the center of a watch glass and then sink to the bottom of 

the swirling dish (Funkhouser and Evitt 1959; Pohl 1937). Although this technique has 

proven effective for certain types of geologic sediments, it is often impractical or too 

time-consuming for use with most archaeological samples where larger volumes of soil 

and matrix materials are often processed for each sample.  

Another application is called settling and decanting.  During this procedure a 

sample is placed in a large beaker and water is added to fill the beaker approximately 

one-third full. The beaker is then swirled in various directions to thoroughly mix the 

material but not to produce a vortex. Then the samples is allowed to settle before the 

liquid is poured off. Although this is a frequently used technique, we have found through 

laboratory testing different “settling” times can cause various amounts of pollen loss. In 
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one of our experiments we used two different archaeological samples selected from an 

archaeological site with sediments containing a high clay content. The first step was to 

weigh each sample, add tracer, or marker, spores (Lycopodium), and then dissolve any 

carbonates by using 20% cold HCl.  Both samples were allowed to sit until all reaction 

with the HCl ended.  Then water was added to dilute the HCl.  The samples were then 

“screened and swirled.”  

During the screening step, a 150 µm screen was placed on top of a 600 ml 

(milliter) beaker and the liquid sample was slowly washed through the screen using first 

water and then ethanol.  This removed the larger detritus and allowed the smaller 

particles, including pollen, to be caught in the beaker.  The samples were then swirled 

and the beaker was tilted at an approximate 45 degree angle and the debris in the liquid 

was allowed to settle. For the first experiment, both samples were allowed to settle for 

30 seconds. The resulting supernatant of lighter particles was poured into a clean beaker 

and the heavier particles that sank to the bottom of the beaker were then centrifuged and 

the debris was examined at 100x magnification. The supernatant was also centrifuged 

and it was examined as well at 100x magnification. After the examination, all material 

was returned to the original beaker and the experiment was repeated.  However, during 

the second experiment the liquid was allowed to settle for only 15 seconds. Again, both 

the supernatant and the debris were examined before both fractions we returned to the 

original beaker.  This exact procedure was repeated twice more, one for 10 seconds and 

once for 5 seconds.   
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The results indicated that the 10 second interval was the optimum settling time 

for decanting.  If the sample was allowed to settle for only 5 seconds, a large number of 

heavier particles remained in the supernatant resulting in too much remaining debris.  At 

the 15 and 30 second intervals some pollen and spores sank and was trapped in the large 

fraction portion in the bottom of the beaker.  At 10 seconds no pollen was visible in the 

large fraction and the majority of coarser, heavier particles had settled to the bottom, 

sufficiently separating the pollen from the larger particles.    Although this was a 

preliminary study it demonstrates the necessity for careful processing techniques and 

further refining of methodologies.  Lentfer et al. (2003) provide a detailed discussion of 

settling times for various types of liquids and notes which ones ensure that pollen is not 

lost.  

Centrifugation 

Another mechanical separation method used is centrifugation.  This method 

employs a centrifuge and uses settling times based on Stokes Law as recorded by Lentfer 

et al. (2003).   Stokes Law, generally is the time it takes for a particle to free fall a given 

distance in a liquid medium (Lentfer et al. 2003).  The time needed for a particle to be 

centrifuged to the bottom of a centrifuge tube in a given liquid medium is an important 

component to any pollen processing methodology, as noted in experiments by Jones and 

Bryant (2003). Centrifuge speed, type of centrifugation (horizontal vs. angled), length of 

centrifugation, and type of sample being processed are all essential components that 
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need to be considered when using this type of pollen concentration and matrix separation 

method (Jemmett and Owen 1990). 

Sonication 

For soil samples that consist of high colloidal materials or fine grained materials 

that tend to clump, sonication is often a useful step to use during processing.    

Sonication is the use of an ultrasonic bath that uses sound waves in water to break apart 

particles that adhere to one another.  Sonication is usually used in conjunction with a 

non-foaming soap or other deflocculating agent and centrifugation to remove colloidal 

materials or fine-grained materials such as clays.  Although effective, sonication must be 

used with great caution. Sonication at the wrong wavelength frequency, or sonication 

using an oscillating wave frequency, or sonication for too long a period can often destroy 

fragile pollen grains. Our experiments note that sonication for periods longer than 15 

seconds can frequently cause damage to some fragile types of pollen grains such as 

genera in the Brassicaceae and Malvaceae, and it can often rupture or detachment of 

bladders on some species of conifers.   McIntyre and Norris (1964) note that prolonged 

sonication can damage pollen grains with thin exines such as those found in the Poaceae 

(grass) and the Chenopodiaceae (goosefoot) families. 

Cellulose digestion by acetolysis  

The technique of pollen analysis becomes an effective tool when the pollen is 

well preserved and when processing techniques can remove sufficient quantities of 

matrix and permit the pollen to be concentrated and examined.  In highly organic 
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samples, an effective method of concentrating the pollen is to remove the unwanted 

organic material consisting mostly of cellulose.  The acetolysis procedure, which was 

first developed and used by Gunnert Erdtman (1933), is recognized today as one of the 

most effective methods to achieve this goal without much damage to pollen grains.  

The acetolysis procedure accomplishes two important things: 1) removes 

cellulose and other organic materials inside and surrounding the pollen grain allowing 

for surface details and ornamentation to be seen clearly during microscopy, and 2) 

dissolves extraneous plant materials from the surrounding matrix and thus permits pollen 

grains to be concentrated for examination.  

The acetolysis solution, as described by Ertdtman, is a mixture of acetic 

anhydride and sulfuric acid.  The recommended ratio of acetic anhydride to sulfuric acid 

is a 9:1 mixture (Erdtman 1933).  Different ratios of these two acids may be created as 

needed, especially for samples that are high in organic contents.  Our experiments have 

demonstrated that a mixture of 7:1 seems to work faster and removes more cellulose 

debris in samples that have a high organic matrix .   

The first step in the procedure is to use acetic acid to dehydrate the sample before 

adding the acetolysis solution. The acetolysis solution reacts violently with water if 

present in the sample.  Erdtman originally recommended this step in his acetolysis 

procedures but later he recanted this stating that “washing with acetic acid is entirely 

unnecessary” (Erdtman 1969:214).  Nevertheless, most processing labs continue to use 

the acetic acid rinse before and after acetolysis. Some processing manuals recommend 
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using a weak solution of KOH to stop the acetolysis reaction;  however, the acetic acid 

wash after actolysis, followed by several water washes will sufficiently neutralize and 

stop the acetolysis reaction. 

Normally, there should not be a problem if a processing lab wishes to use a weak 

base solution such as KOH (potassium hydroxide), to stop the acetolysis process. 

Nevertheless, the use of a base solution at this point in the procedure should be 

reconsidered, especially if pollen preservation may be an issue, or if the sample consists 

of a very small amount of material. Basic solutions are a form of oxidant that can affect 

the preservation potential of some pollen grains.  Regardless of which processing 

procedures one wishes to use, frequent microscopic checks of samples during each 

processing step is essential to ensure that pollen and/or marker grains are not being 

altered or destroyed.   

The difference between acetolysis and acetylation 

The word and procedure known as “acetolysis” was initially published by 

Gunnert Erdtman in 1933, in Swedish, and later in English in 1935.  Subsequent versions 

were also published in later articles. One question that has been raised in recent years 

focuses on whether the name “acetolysis” is an accurate reflection of the procedure, or if 

the correct term should instead be “acetylation”?   

Acetolysis seems to be a word reflecting a combination of the two chemical 

processes: one is the “lysis” (as in hydrolysis) and the other is acetylation.  

Hydrolysis is the process of splitting a large molecule into two separate 
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molecules with the corresponding incorporation of a water molecule into the molecular 

structure.   The term hydrolysis can be split into two parts: the “hydro” part and the 

“lysis” part.   “Hydro” refers to the incorporation of a water molecule.  “Lysis” refers to 

the splitting of a molecule.   Acetolysis, similarly, is a process that will also split a 

molecule but instead of the incorporation of a water molecule, an acetyl group of atoms 

is added.  An acetyl group is defined as a molecule that consistently contains C2H3O2 

with one open bond to attach to an additional molecule.   Acetylation conversely is a 

process by which acetyl (CH3CO) groups are substituted for the hydrogen in the 

hydroxyl (OH) group of a cellulose molecule (Gray 1965).  In other words part of the 

acetolysis process is the incorporation of the acetylation process. 

Cellulose is a polymer containing six carbon “hexoses” of simple sugars.  The 

sugars are linked together by a bridging oxygen atom; the bonds of which can be broken 

in a solution of acetic anhydride and sulfuric acid (acetolysis solution). The result is the 

formation of acetic acid and either/or the component of simple sugars or short chain 

sugar polymers, which will easily dissolve.  Initially, it was believed that to remove the 

short polymer chains of cellulose, or the simple sugars, it was necessary to add glacial 

acetic acid after heating during the acetolysis procedure.  Although the addition of a 

solution, such as acetic acid, with a low amount of water would be beneficial, acetic acid 

is not the only solution that can fulfill these criteria.  The ideal solution is one that will 

absorb the excess H + ions but will not produce other by-products or stable compounds 

that will react with large amounts of heat.  Acetic acid has historically been added to the 
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acetolysis solution because of its similarity to acetic anhydride and the low water content 

found in glacial acetic acid.  However, ethanol should react similarly as acetic acid and 

thus could be used in its place.  In addition, it is important to realize that the acetolysis 

chemical reaction will continue to digest cellulose until no more cellulose is available 

and/or until there is enough added solution to bond with the excess H+ ions.  The 

acetolysis solution will not stop reacting until it has been rinsed several times with water.  

During rinsing, the H+ ions will bond with water molecules forming H3O + ions which 

are stable and relatively non-reactive. 

How acetolysis works 

The usual mixture of acetolysis is a nine to one ratio of acetic anhydride and 

concentrated sulfuric acid (Erdtman 1933).   The 9:1 ratio is a rule of thumb but some 

researchers will reduce the amount of acetic anhydride, thereby increasing the 

percentage of sulfuric acid.  Increasing the amount of sulfuric acid will result in doubling 

the number of protenated acetic anhydride molecules, which in turn will affect the 

reaction rate and cause the reaction time to double or shorten.  Protenation refers to 

converting a neutral compound (i.e., one that does not have a charge) to a charged 

compound by adding a hydrogen ion (see Fgures 1 and 2).  It is important to note that 

protenation is an extremely common process and that all reactions conducted in acidic 

solutions involve protenation.  
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By increasing the sulfuric acid concentration in acetolysis, the reduction potential 

is actually doubling.  In this reaction there is a side reaction which is characteristically a 

reduction reaction, which competes with the desired reaction.  The way to minimize this 

undesirable side reaction is to minimize the sulfuric reaction as much as possible without 

reducing the desired effects from the reaction itself.   Over time, the protenated acetic 

anhydride molecules will react with each other and cause the reactive reagent to be 

removed faster.  This reaction is a solid-solution reaction which means it will only occur 

on the surface of the solid.  By its very nature it is a slow reaction.  As a result, adding 

heat to the reaction results in a faster digestion time.   

Once the solution is added to the sample, the chemical process of cellulose 

digestion begins (see Fgures 3 and 4).  Initially, the -OH functional groups attached to 

the cellulose are acetylated by the protonated acetic anhydride.   
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Figure 1.  Non-protenated acetic 
anhydride , neutral.  

Figure 2. Protenated acetic 
anhydride, charged. 

Figure 3.  Cellulose molecule. Figure 4.  Protonated acetic anhydride molecule. 
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Protonated acetic anhydride is an extremely strong electrophile (a compound that 

accepts electrons from other compounds) which will react with the lone pair of electrons 

on the oxygen atoms of the cellulose.  This is what is referred to as a reactive 

intermediate.  When acetic anhydride is in the presence of concentrated sulfuric acid 

(90-98% or 18 N) hydrogen ions bond with the oxygen of the carbonyl group.   A 

carbonyl group consists of a carbon atom double bonded to an oxygen atom leaving two 

open bonds and two lone electron pairs.  In addition, the linking oxygen atoms within the 

simple sugar rings of the cellulose and the links of the simple sugars bonded together are 

acetylated in a similar process.  This secondary process forms highly unstable centers 

around the positively charged oxygen atoms, which results in the cleavage of the 

bridging C-O bond and the formation of simple and short-chained acetylated sugars. 

This process removes cellulose in pollen grains and exposes the sporopollenin 

containing structures.  Sporopollenin is not digested by this process.   

Sporopollenin 

 Sporopollenin is the term used to define the material found within the structure of 

the pollen wall that is resistant to chemical oxidation.  It is because of sporopollenin that 

most pollen (and spores) remain preserved for thousands or millions of years.  The 

composition of sporopollenin is not entirely known. Several studies have been conducted 

to determine the chemical composition of sporopollenin, but each has had limited 

success.   Earlier researchers of sporopollenin include John (1814), Braconnot (1829), 

and Zetzche and Huggler (1928).  More recent researchers include Shaw and Yeadon 
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(1964), Southworth (1969), and Van Gijzil (1971).  These studies demonstrate that 

sporopollenin is a conglomerate of many chemical compounds and the percentage of 

each is determined by the type the species of pollen.  Initially, it was believed that 

sporopollenin was a formation of simple dicarboxylic acids. Later, it was shown that 

simple monocarboxylic acids formed both straight and branched chains (Shaw 1971).  

Other components believed to constitute a portion of what is included in sporopollenin 

include, lignin, carotenoids, carotenoid esters (the carotenoids are the precursors to the 

mono- and dicarboxylic acids), and lipids such as cutin and suberin.  The difficulty in 

identifying the components of sporopollenin comes from the separating, by digestion, 

the constituent parts from each other.  Several attempts were made to digest 

sporopollenin to discover the chemical nature of the molecule, however, Zetzsche 

discovered the best method of degrading degrading the sporopollenin structure without 

destroying the components was to use ozone followed by hydrogen peroxide (Shaw 

1971; Zetzsche and Vicari 1931).  Following this procedure the molecule may be broken 

down into simple organic compounds and then identified.  Although Zetzsche was not 

able to identify all of the components, he did find a methodology that would oxidize it 

enough to break the sporopollenin molecule apart and discover the relative amounts of 

sporopollenin found in different pollen grains.  For example he found the relative 

frequencies of sporopollenin to other compounds varied such as 8.5%  in Corylus 

avellana, and 1.8% in  Equisetum arvense.  Later, Brooks and Shaw (1968, 1972, 1978), 

and Shaw (1971) using Zetzsche’s methodology and other oxidizing methods reported 
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that sporopollenin contained complex biopolymers formed by the polymerization of 

carotenoids and carotenoid esters. They reported relative percentages of sporopollenin in 

Lycopodium clavatum to be 23.4%, Alnus glutinosa 10.7%, Rumex acetocella 6.3%, 

Populus balsaminifera 1.4%, and Pinus montana 23.7%, among others.   

Sporopollenin can cover both the outermost layer of the pollen or spore wall and 

it can also be found in the inner surface of the wall.  Sporopollenin is a complex 

structure that has yet to be fully understood.  It has a basic chemical formula of 

C90H142O36 but the structural formula is variable (e.g., that it is connected in different 

ways – the pattern is different for the different types of pollen) (Fawcett et al. 1970).   

Sporopollenin is similar to lignin and cutin as reported by Flenley (1971) who 

discovered that it has a specific gravity around 1.4.  According to Juvigné (1973), the 

specific gravity of the sporopollenin in pollen grains can increase slightly over time and 

Riding and Kyffn-Hughes (2004) assert that these changes in specific gravity are in part 

an effect of the geothermal gradient found in fossil pollen 

Heavy density separation 

A mechanical method that helps to separate pollen from the extraneous matrix 

materials found in samples is heavy density separation.  Zinc bromide is one of the 

heavy liquids that can be modified into a range of densities greater than 1.0, which is the 

the specific gravity of water.  This procedure relies on the various specific gravities of 

certain materials in relation to water and pollen.  Specific gravity is defined as, the ratio 

of the mass of a body to the mass of an equal volume of water at 4 degrees Celsius or 
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other specified temperature (Weast and Astle 1981).  Water has a specific gravity of 1.0 

and pollen has a specific gravity ranging between 1.4-1.6.  Most pollen researchers will 

use a liquid that can be adjusted between 1.6 to 2.5 to accommodate pollen and phytolith 

extraction, nevertheless most heavy density liquids work similarly; the heavy density 

solution is lighter than heavier particles including metals and silica, which settle to the 

bottom of the test tube during centrifugation.  Meanwhile, the lighter particles, including 

spores and pollen will float (for a complete discussion of different heavy density 

solutions see Coil et al. 2003). Historically, heavy density solutions were used to 

separate various minerals from one another (Walker 1922; Vasser 1925; Reed 1924; 

Ross 1926; Hanna 1927; Knox 1942).  As the field of palynology progressed, many of 

the methodologies used in geology and petrology were applicable to the processing of 

pollen.  The most common three heavy density solutions in use at the beginning of the 

20th century were: bromoform, methylene iodide and Clerici solutions.  Most if not all of 

these solutions were very hazardous, dangerous, and expensive.  Today, the common 

choice for heavy density solutions include zinc chloride, zinc bromide, or polytungstate.  

The least expensive of the three is zinc chloride but most prefer to use zinc bromide or 

polytungstate. Of the three, polytungstate is chemically safer and less hazardous and can 

be reused.  

Charcoal and charcoal removal 

Charcoal, even in small quantities can become a significant problem during the 

processing and later analysis of pollen samples.  Charcoal is often found in terrestrial 
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archaeological sites as part of hearth features or in the soils of caves or rockshelter sites. 

Charcoal flecks and ash are also present in other types of site features where wood has 

been oxidized or burned.  Charcoal flecks and ash in pollen samples present three 

primary problems: 1) charcoal is inert and therefore is not easily digested through using 

various types of chemical procedures, 2) charcoal fragments tend to break into smaller 

pieces during various processing procedures including screening and centrifugation, and 

3) much of the charcoal in samples occurs in the same size range and in the same 

specific gravity range as pollen thereby making both screening and normal heavy density 

separation procedures ineffective for its removal .  In other words it is virtually 

impossible to remove significant amounts of charcoal from some archaeological samples 

to permit successful pollen analyses.   

Historically, some palynologists have tried using various techniques to remove 

charcoal, but none of them proved effective.  One method sometimes used to remove 

charcoal is to soak the sample in household bleach (5.25% sodium hypochlorite). 

Bleach, however, is a base and a strong oxidizing agent and although it is somewhat 

effective in removing charcoal, bleach also destroys pollen.  Ulf Hasten (1959) 

concluded that when bleach is used in pollen processing, in conjunction with heated HCl 

and acetolysis, fossil pollen destruction occurs.   Although boiling HCl does damage 

pollen, in these experiments I believe that the HCl heated by Hasten was simply heated 

to a high temperature, but was not actually boiling HCl. Regardless, some of the initial 

recommendations for processing noted a difference in pollen loss when bleach was used 
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vs. not used (Faegri and Iversen 1950).  More recently, Traverse (1990) has also noted 

that hollyhock (Althea rosea) pollen will be greatly affected by the use of bleach 

resulting in the external layer of the exine being destroyed. An argument could be made 

that the heated HCl weakens the pollen wall allowing the bleach to further destroy the 

pollen wall. Nevertheless, current experiments that we have conducted at Texas A&M 

University reveal that bleach can, and will, damage pollen.  The amount of damage 

caused to pollen by using bleach depends on a number of factors including: 1) the 

amount of sporopollenin in the wall of a pollen grain, 2) the depositional environment in 

which the pollen was recovered, 3) the amount of decay already affecting the pollen 

wall, 4) the combination of extraction procedures being used to separate the pollen from 

the surrounding matrix and 5) the strength of the bleash as-well-as the amount of time 

the sample is exposed to bleach.  

Another method used to remove excess amounts of charcoal is the swirling 

procedure that was first perfected prior to the 20th century by geologists and was later 

modified to separate pollen from other materials; mainly carbon particles including 

charcoal (Pohl 1937; Funkhouser and Evitt 1959).  While this procedure has proven 

somewhat successful, it has not been widely accepted.  This procedure uses a watch 

glass, which is a specialized concave glass with 2 mm deep depressed ridges at right 

angles to the center. Samples are placed in this glass and then the glass is gently rotated 

on a hard surface in a circular manner.  This action causes the liquid to vortex allowing 

the pollen and lighter materials to remain in suspension along the outer margins of the 
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vortex while heavier debris particles are drawn toward the center and become trapped in 

the depressed ridges. Although somewhat effective, the process is time-consuming and it 

is not entirely successful because a large portion of the charcoal flecks are too light to be 

trapped and removed.  

Screening has also been used in an effort to remove charcoal from samples.  

However, that technique is no entirely effective either. Some palynologists recommend 

using a small-opening sieve (10 µm or smaller) at the end of all processing steps to 

remove tiny flecks of charcoal and other debris.  They (Cwynar et al. 1979) claim this 

will remove thousands of tiny flecks of charcoal from a completed sample. In various 

experiments Cwynar et al. (1979) noted that sieving with nylon, (NITEX) screens having 

openings of 7 µm (microns or micrometers) did not result in pollen loss and that it was 

effective in removing tiny pieces of debris such as charcoal flecks. However, our 

experiments at Texas A&M University using this technique with 7 µm NITEX screens 

resulted in the screen’s openings clogging rapidly with tiny charcoal flecks, which 

required extensive efforts to flush and clean the screens repeatedly with ETOH (ethanol 

or ethyl alcohol.  We also found that if the sieving is used in conjunction with 

sonication, in an effort to prevent clogging, then some pollen loss usually occurs. 

Regardless, even without using sonication, our sieving experiments reveal that some 

small pollen grains (i.e., Salix, Castanea, Mimosa, Echium, Urtica, Myosotis, etc.), can 

pass through small-mesh sieves with openings of 7 or 10 µm.  Therefore, we found that 

all debris that passes through these screens must be checked carefully for pollen loss. 
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Our effort to find a suitable method of removing excess charcoal flecks from 

samples has resulted in finding one technique, using heavy density separation, which we 

believe will successfully eliminate a large percentage of charcoal from pollen samples. 

The initial step in this long procedure requires a sample to be sonicated.  We use a 5-

gallon metal tub filled with water and a Delta D-5 sonicator, which produces constant 

vibrations at a frequency that does not damage pollen during brief sonications.  This 

initial step is very important because it will dislodge tiny charcoal flecks that are trapped 

in the reticulate pattern of pollen grains and it will break up any clumps of material 

debris in the sample and free pollen from that debris.  The fluid in the centrifuge tube 

containing the pollen sample during sonication should be a mixture of 1:1 concentrated 

glacial acetic acid and water.  The acidic solution seems to prevent clumping and 

provides proper ionic balance. 

This initial sonication procedure should be followed by the first heavy density 

separation using zinc bromide with a specific gravity of 2.0. Before centrifuging the 

sample in zinc bromide, it is essential to mix the sample and zinc bromide solution 

thoroughly. We have discovered that this charcoal-removal process will work, but some 

of the larger and heavier flecks of charcoal can sometimes “trap” a few pollen grains as 

they sink to the bottom of the test tube during centrifugation.  This initial heavy density 

separation will remove some of the charcoal but often it will not remove enough 

charcoal to permit a thorough microscopic analysis. Therefore, when samples contain 

high amounts of charcoal, we perform an initial zinc bromide separation and then follow 
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that with a second one on the same samples.  We also carefully examine all materials 

that settle to the bottom during each centrifugation process to ensure that no pollen or 

spores are trapped in the debris.  If some are found, then we will repeat the procedure 

using the material that sank to the bottom of the test tubes during the initial procedure. 

Our experiments have also shown that if the initial amount of processed material in a 12 

or 15 ml centrifuge tube (before the first heavy density separation) is more than 1-1.5 ml, 

then this charcoal removal procedure will not work effectively without pollen loss. In 

these situations, we find it is essential to reduce the amount of sediment in the tube by 

splitting the sample into two or three separate centrifuge tubes. 

After the initial heavy density separation mixture has been mixed thoroughly, we 

follow a three step procedure to complete the process. First, we allow the mixed material 

in the centrifuge tubes to sit in a rack for five minutes. This initial period allows some of 

the heaviest materials in the solution to slowly settle to the bottom. Second, we 

centrifuge the sample at 20,000 RPM (revolutions per minute) for five minutes.  This 

slow speed centrifugation allows heavier materials to settle slowly to the bottom, which 

usually does not trap pollen as the particles sink. Third, we continue the centrifugation at 

a higher speed of 100,000 RPM for an additional five minutes.  This higher speed 

completes the final separation of heavier particles from the pollen and other lighter 

debris, which floats on the surface of the solution. At the end of this three-step 

procedure, there will normally be a narrow band at the top of the solution.  That band 

contains the pollen and can be removed with a pipette.  Once removed, it must be diluted 
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with ETOH to ensure that the resulting solution is no greater than 1.0 specific gravity 

before it can be centrifuged.  

We have discovered that most charcoal-rich samples will often trap some pollen 

at the bottom of the centrifuge tubes during the initial heavy density separation; 

therefore, we find it necessary to do a second heavy density separation on the residue 

that sank during the initial separation.  To complete this second separation we add 

additional zinc bromide that has a specifici gravity of 2.0 to the centrifuge tube to 

replace the amount removed during the first separation. After adding more zinc bromide 

we thoroughly stir the contents before continuing the separation process.  For each step 

of the separation process, after thoroughly mixing the solution, we use a light spray of 

ETOH (ethanol) on the inside walls of the centrifuge tubes. That process will ensure that 

all zinc bromide and pollen that might be adhering to the inside walls will be subject to 

the centrifugation and subsequent separation process. Once the samples have been 

mixed, we again follow the three stage centrifuging sequence mentioned earlier. During 

this second separation process we find that whatever pollen and tracer spores may have 

been trapped during the initial procedure seem to be released and will float on the 

surface during this second separation procedure.  

After completing the second procedure, and removing the pollen from the surface 

of the zinc bromide, we rarely find any additional pollen in the remaining matrix 

material at the bottom of the centrifuge tube.  Nevertheless, it is essential that all 

material at the bottom of each centrifuge tube be checked again to ensure that no 
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additional pollen or tracer spores remain trapped in the debris after the second 

procedure.  If some pollen or spores are found, then we recommend repeating the 

procedure a third time using a density of 2.0. 

After completing two separations using zinc bromide with a specific gravity of 

2.0, the sample still contained a large amount of remaining charcoal. Even though those 

initial separations will often remove some charcoal, it is generally not sufficient to 

concentrate the pollen and permit an accurate pollen analysis. The charcoal remaining in 

the sample can be further reduced by additional heavy density procedures following the 

double procedure process for each subsequent separation attempt.   

Once all of the recovered pollen from both of the initial procedures has been 

diluted with sufficient ETOH and then concentrated by centrifugation, we will repeat all 

of the steps of the initial heavy density process again.  However, during this next 

separation sequence we will use zinc bromide with a specific gravity of 1.9 instead of 

2.0.  After that, we will repeat the process a third time using zinc bromide with a specific 

gravity of 1.8.  During each of the three different heavy density processes, we repeat all 

of the individual steps outlined for the first procedure using zinc bromide with a 2.0 

specific gravity. 

After the end of the procedure using zinc bromide with a specific gravity of 1.8, 

we examine the sample carefully to determine if sufficient charcoal has been removed so 

that an accurate pollen count can be obtained.  If large amounts of charcoal remain in the 

sample, we will repeat the heavy density separation one final time using a specific 
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gravity of 1.7. We do not use any heavy density fluid separations that have a specific 

gravity lower than 1.7 even though the petroleum industry routinely uses pollen and 

spore separation techniques with zinc bromide at a specific gravity of 1.65.  From more 

than 50 years of testing various extraction procedures, the various extraction laboratories 

used by the petroleum industry have assured us that they do not lose any pollen or spores 

using separations at a specific gravity of 1.65. 

The complete charcoal removal process mentioned above is very time-consuming 

and requires the use of a large amount of very expensive zinc bromide. In addition, our 

repeated experiments have demonstrated that skipping any of the above steps, skipping 

the initial sonication, or beginning the heavy density separation procedure using a 

solution of zinc bromide with a specific gravity of less than 2.0 will usually result in 

moderate to significant pollen and/or tracer spores being loss.  That, in turn, will 

compromise the final pollen count and results. 

We have also noted that this procedure works much better when the majority of 

the charcoal flecks are >40 µm in diameter.  When the charcoal in a pollen sample 

consists of various sizes with the majority < 40um, then the charcoal removal procedure 

does not work nearly as well. I also want to caution that we have found that for some 

samples, which contain very high amounts of charcoal, nothing seems to work 

effectively.  

Schultze’s solution and nitric acid 

 The use of both of these solutions was initially developed to recover pollen from 
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coals, lignites, shale, and slate deposits.  The use of both of these solutions are effective 

in digesting plant materials quickly and enabling palynologists to recover and identify 

pollen from various types of geologic deposits.  However, we have not found either of 

these solutions safe to use on archaeological samples dating from the Late Pleistocene or 

Holocene.   

Plant exudates (resin) and pollen 

The extraction of palynomorphs from resin, pitch, tar and other plant exudates in 

an archaeological context presents a unique challenge because of the insolubility of these 

materials in water-miscible solvents (McNair 1932; Frondel 1968).  Accepted 

palynomorph processing procedures employ the use of such water-miscible to remove 

palynomorphs from their surrounding matrices and prepare them for identification.  

 Resin is an amorphous term that has been used in the past to define various plant 

exudates including: waxes, oils, mucilages, and latex (Langenheim 2003).  

Compounding this confusion is the chemical structure of the various exudates, their 

solubility, structure and physical characteristics which change through time.  If the 

resinous material is old enough, (i.e., of a geological age) then that material is defined as 

amber.  It is dependent on the actual chemical structure of the material or plant of origin.  

A more inclusive term is “plant exudates” as resin usually refers to specific plant 

chemistry, secretory structures and functions (Langenheim 2003).  This chapter is 

specifically concerned with resin and its by-products (i.e., pitch and tar from the pine 

family) and how to dissolve this resin to release palynomorphs, specifically pollen.  
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Once a reliable methodology is implemented then a reliable palynological study can be 

conducted.  The resin most frequently found thus far seems to originate from the 

Pinaceae family and although some preliminary work has been completed on the 

dissolution of this type of plant exudate, established procedures are not sufficient to 

completely dissolve most resinous materials (Robinson et al. 1987). 

Resinous materials are those compounds that are composed of lipid-soluble 

elements with a mixture of volatile and nonvolatile terpenoid and/or phenolic secondary 

compounds (Langenheim 2003).  Nevertheless, there may be other chemicals present in 

lesser amounts such as, alcohols, esters and other nonsaponifiable, substances called 

resenes (Langenheim 1969). 

In this instance the non-volatile and volatile components consist of hydrocarbons 

or organic molecules usually soluble in other organic/hydrocarbon compounds.  

Terpenoids and/or phenoloic compounds are those types of compounds found in nature 

that are classified as lipids.  There are, however, many different types of these 

compounds distinguished from each other by their structure, the number of carbons that 

make up the structure, and the various other ‘R’ or functional groups that are attached. 

Terpenoids occur in all living organisms, in plants where they tend to be more 

diversified, their function is as a protective mechanism against insects, fungus and other 

vectors that tend to attack plants. According to Langenheim (2003) there have been 

approximately 30,000 terpenoids that have been identified.  The word terpenoids derives 

from the German word terpentin which was the first group of chemicals to be isolated.  
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Terpenoids have also been referred to as isoprenoids.  Phenolic compounds are those 

that have as part of their structure an aromatic ring with at least one hydroxyl group (-

OH) attached.  These types of compounds are used in plants in addition to those by the 

terpenoids for structural support and pigmentation.   Modern resin has also been studied 

in conjunction with amber research to determine the mechanisms by which inclusions of 

insects, flowers and more specifically pollen are deposited and preserved in amber 

(Langenheim and Bartlett 1971).  Experiments to determine the chemical structure of 

modern resin and amber include: mass-spectrometry, gas-chromatagraphy, infrared 

spectroscopy, high resolution solid state carbon-13 nuclear magnetic resonance (NMR) 

spectroscopy and x-ray diffraction (Broughton 1974; Lambert et al. 1995; Langenheim 

1995).  In general those plants that have a high percentage of the volatile fraction 

contained in their resin are those plants most sought after economically and are 

consequently those resins most often found in archaeological contexts.  

Of economic importance, whenever referring to ship building, resins are referred 

to as naval stores.  Historically, this term refers to the products produced from oleoresin, 

which is a fluid substance that contains a high proportion of volatile terpenes, usually 

extracted from the pine family or Pinaceae.  Other terms that necessitate a definition 

include pitch and tar.  Sometimes used synonymously, pitch is a plant exudate that has 

been processed through heating resulting in a black color.  Tar, conversely, is derived 

from a distillation process and is the resultant substance from the making of pine 
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charcoal (Langenheim 2003).  Both pitch and tar have a long history of use by seafarers 

in the Mediterranean and other seafarers around the world.  

 Because of the active and various nature of the activities performed on a ship 

when it is in service, there are various avenues by which materials arrive at shipwreck 

sites (e.g., materials washed in, spilled cargo etc.).  As a result, samples taken from such 

areas as the bilge and caulking, for example, are usually an amalgamation of pitch, tar, 

and various other resinous materials; all in different states of decomposition as the 

volatile portions are released. The ideal solvent for the removal of these various plant 

exudates must satisfy the following criteria: 1) it must dissolve and remove a wide 

variety of resinous materials, 2) it must be non-destructive to organic materials [i.e., 

palynomorphs], 3) it must be easily removed from the sample once dissolution is 

complete, and 4) it must be relatively inexpensive and easily available.  Anisole is one 

solvent that satisfies all of these critieria. 

Although some preliminary work has been completed on the dissolution of resins 

found in an archaeological context (Jacobsen et al. 1998), established procedures are not 

sufficient to provide data on how to dissolve most resinous materials completely.  For 

some plant sources methodologies will work to dissolve the resinous substance.  For 

example if the sample is derived from terebinth resin (from the Pistachia tree), then 

procedures utilizing xylene in conjunction with 5% sodium hydrochloride and 95% 

distilled water in the dissolution will be sufficient.  If, however, the sample is pine based 

this techinique will not sufficiently dissolve the resinous material, if at all. 
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Resin: a definition 

The term resin has been used to describe many different types of plant exudates 

because the chemical structures of the various plant exudates have been relatively 

unknown and/or unstudied.  The earliest attempt to define the various resins found in 

nature is in On the Constitution of the Resins by Johnston (1839).  Johnston was a 

professor of chemistry and mineralogy at the University of Durham, UK who, through 

chemistry and experimentation, attempted to determine the chemical formula of select 

resins.  Although he was not entirely successful, this is the first publication found that 

deals specifically with exploring the exact chemical nature of plant resins.  Tschirch 

(1906), a German scientist working with a spectroscope and spectrum spectroscopy, 

applied these concepts to the problem of the resin question.  Tschirch and Stock later 

(1933-1936) published a compilation of chemical structures of resins, mostly aimed at 

the burgeoning resin industry.   

According to McNair (1930) plant exudates are broken down into several 

categories including gums, tannins, resin, and oils.  He further separates out resins into 

classes.   He states, that seven principal groups of resins have been recognized: 1) tannol 

resins, esters of aromatic phenols; 2) resene resins; 3) resinolic acid resins; 4) resinol 

resins; 5) fatty resins; 6) pigment resins; and 7) glucosidal resins (McNair 1930).  In his 

concluding remarks  and due to the results of his analysis McNair states that most plants 

containing tannol resins have no tannin or gum, although they may possess both; resene 

resins may be found in plants that have both tannin and gum, only tannin or only gum; 



 
 
 

 

90 

resinolic acid resins are in plants that have both tannin and gum, only tannin; resinol 

resins come from plants that have neither tannin nor gum; fatty resins are in some 

tropical plants that contain either both tannin and gum or only tannin; pigment resins are 

found in plants which have tannin only; and glucosidal resins are found in plants that 

have gum or tannin (McNair 1930).  The main importance of this and previous articles is 

the discovery of actual constituents found in the resins that may aid in the dissolution of 

the resin.   

Experiments in infrared spectroscopy to identify which plant is associated with 

which amber (fossilized resin) may result in potential applications of this methodology 

to archaeological resins and, quite possibly, the accurate identifications of the parent 

plant material to younger plant exudates (Langenheim and Beck 1965).   

Experiments 

Previous samples taken from shipwreck sites (e.g., the Pepper Wreck) that were 

"resinous" are normally processed using a variety of substances.  Procedures were 

attempted following previously prescribed methodologies, specifically those established 

by Jacobsen et al. (1998).  The most obvious difference between the Uluburun samples 

and Tektas Burnu samples is the use of a GC Mass Spectrometer which determined that 

the plant of origin from Uluburun was Pistachia or what is more frequently referred to as 

terebinth.  Nevertheless, since the samples from Tektas Burnu did not dissolve using 

these methodologies it was assumed that the resin was not terebinth or at least not only 

terebinth.  Using small pieces (less than .1 gram) I experimented with different solvents 
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to attempt to dissolve the amber-like resin material.  The resin appeared hard and glassy 

and varied in color from black to a light amber color.  Reagents tested included: 

terpentine, dichloromethane, ether, benzene, kerosene, tert-butyl alcohol, xylene, 

ethanol, acetone, hydrochloric acid, acetolysis solution, and potassium hydroxide.  Other 

types of products tested included: dawn dish washing liquid, cheer laundry detergent, 

soft soap, goo gone and orange cleaner.  The samples had an odor of pine but terpentine 

did not dissolve the resin.  Nevertheless, as Loewen (2005) states “pine sap or resin is 

approximately 10% water, turpentine and fugitive rosin spirits, 20% viscous, essential 

oils and, 70% heavy, solidifying rosins” (Loewen 2005:241).  With these samples it 

became apparent that if any water was present, dissolution was not possible.  The ideal 

solvent  would be one in which water was not a component, had an organic base, would 

possess a specific gravity as close to water as possible, and could be washed out with 

another common chemical to carry the excess resin away.  Anisole or 

methoxybenzene/methylphenylether has a specific gravity of 1.0 or the same as water, is 

an aromatic ether or an organic based solvent and can be mixed with ethanol if the 

ethanol is at least 10:1 to the anisole.  Once anisole was added to the sample the resin 

material started to dissolve almost immediately.  Through further experimentation it was 

found that the anisole could be washed out without loss of sample with ethanol. This 

would place the sample back into a water based state and allow for other water based 

processing procedures to be completed for pollen analysis.  Unfortunately, I discovered a 

problem similar to the one Jacobsen et al. (1998) encountered.  Upon examination of the 
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pollen samples I soon found that minute amounts of resin still remained in the sediment 

portion after the implementation of the zinc bromide procedure.  Resin clung to pollen 

grains and especially to Lycopodium marker grains.  More research and testing is needed 

to fully explore the validity of using Anisole to dissolve pine exudates and other resins. 

Methodology 

 Initially, I crushed the sample but found that using a mortar and pestle resulted in 

the material sticking in the mortar.  I eventually found that crushing the sample with a 

hammer while inside a thick plastic bag worked well enough.  The sample was placed in 

a 50 ml glass beaker and 10 ml of anisole was added.  The solution was swirled until the 

sample appeared to be dissolved.  The time needed was dependent on the amount of 

sample.  Usually most were dissolved within an hour at the most. The sample was then 

placed in a 15 ml centrifuge tube and centrifuged for one minute.  The supernatant was 

poured off and 95% ethanol was added.  The sample was vortexed for even mixing and 

centrifuged once again.  This was repeated until all of the anisole was washed away.  

Lycopodium marker grains were dissolved in hydrochloric acid and placed in centrifuge 

tubes to get rid of the acid.  These were then washed with ethanol two to three times to 

make sure the acid was removed and then the Lycopodium marker grains were added to 

the samples.  The samples were then placed in zinc bromide solution to separate the 

larger particles from the pollen grains.  Because the organic content was not high the 

samples did not undergo acetolysis. 
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Plant exudates (resinous) materials/artifacts 

Resinous plant exudates have been found in many applications and contexts from 

all over the world. Nevertheless, because of the heightened interest in water associated 

sites such as shipwreck sites, and the preservation of underwater sites in the 

Mediterranean, much of the resin research has reflected this area more frequently.  

Various plant exudates have been used to water proof and decorate ceramic vessels all 

over the world.  They have been used to create pieces of artwork, embalm mummies and 

in association with burials.   Resin (i.e., plant exudates) is also known to act as a natural 

pollen trap (Trevisan Grandi et al. 1986). The potential in this area of research as it 

relates to pollen has been overlooked and should be explored more fully.     

In Muller (2004) it was found that ancient ships were sewn with plant ligatures 

while later ships were secured with tenons and mortises.  Muller re-establishes the 

validity of using pollen data to acquire information that would otherwise be unattainable, 

such as the location of shipyards, where the various ships were manufactured.  

Nevertheless, and with many of these studies of resinous plant materials, sampling and 

processing methodologies are never discussed in much detail.  Muller’s study of three 

shipwreck sites off the coast of southern France is very detailed in how and where the 

samples originated (e.g., the specific location on the ship where the sample was taken).  

His discussion of why and which areas would be more likely to contain pollen that is 

contemporaneous with the date the ship was built rather than contamination due to 

substantial caulking episodes in the life of the ship is insightful and correct.  
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Nevertheless, at no point does Muller discuss his sampling or processing procedures.  It 

is imperative that these methodologies be explained fully, especially in terms of pollen 

resin retrieval.  

 I have experimented with several chemical agents and there is no single way that 

will dissolve everything, nor will many of these methodologies dissolve different 

resinous materials completely.  If the resinous material is not dissolved completely, how 

can the processor be confident that all of the pollen types that were present in the sample 

were released and thus are represented in the resultant microscope study?  Sampling a 

site for pollen requires rigorous procedures to be maintained to ensure pollen recovered 

can be assigned to the context of the archaeological site and not to contamination from 

surrounding areas.  In light of this argument, control samples are imperative to resolve 

contamination issues.   

Resin from a mummy burial 

Within a coffin of a mummy a small piece of resin was found as a means to 

elevate the head of the mummy (Mariotti Lippi and Mercuri 1992).  This article is in 

contrast to the later Muller article in that not only do the authors give the size of the 

sample but the methodology and process used to dissolve the resin for pollen are 

discussed. Resin has also been used as an embalming material in a 2,600 year old 

Egyptian mummy (Lynn and Benitez, 1974).   
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Resin coated ceramics 

The practice of coating pottery with resinous material either on the inside or the 

outside of the ceramic vessel has been reported widely.  As Messing (1957) comments 

“Resin-coating of simply-made pottery, in order to achieve some measure of 

waterproofing, is not limited to Oceania.  I observed, photographed, and brought 

samples of this process from the pottery-makers among the Amhara of Ethiopia” 

(Messing 1957:134).  He goes on to describe that in the high plateaus the leaves of the 

ketketa or hop bush (Dodonea viscosa) are used on the pottery and that at the lower 

elevations the resin is collected from Euphorbia candelabrum and painted on the pottery.  

Another method is to use the oil collected after pressing the nug seed (Guizotia 

abyssinica). In the northern part of Bolivia similar resin covered pottery was noted by an 

ethnologist visiting the Cavinefia indigenous tribe on the Beni River.  After the pottery is 

fired and painted, a piece of hard resin is rubbed on the inside of the top of the warm 

vessel and then rubbed over the entire outside of the vessel resulting in a red, shiny glaze 

(Key 1964).  Stern (1957) also reports the use of resins on ceramics in Burma.  While 

visiting the Falam subdivision in the Northern Chin Hills in the village of Lente, Stern 

(1957) observed the application of resin by using a hardened piece of resin and rubbing 

it on the still warm pottery.  He notes that in Lente the resin is applied to the lip and rim 

of the ceramic vessel only, but in the Kamhau Chiln village of Tonzang, in the Tiddim 

subdivision he observed that this type of resin application was placed on water and beer 
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vessels in their entirety.  He does not state whether the application is on the outside or 

the inside but the general understanding is that resin is applied to the whole vessel. 

Throughout Southeast Asia the practice of coating still warm pots with a type of 

resinous substance was recorded.  In this particular article the author uses the term 

“damar” to describe the resin used.  Unfortunately, this term, while used by many 

residents in Malay to describe resin, is a form of resin that is mainly used for torches 

(Langenheim 2003).  The term may be spelled “dammar” or “damar” depending on who 

is using it, and although it usually refers to those resins originating from the plants in the 

Dipterocarpaceae family, it has also been used synonymously with those resins from the 

Burseraceae plant family, as well as a few other genera from other plant families.  In this 

instance the author is discussing the process by which native peoples in Tiwi, a 

principality of Albay Province on Luzon Island, applied a resin called “almaciga” while 

the pottery was still hot.  This results in giving the pottery a shiny, reddish crude glaze 

(Foster 1956).  It is not known which tree this refers to although the author states that a 

previous analysis performed by Jenks (1905) indicates that the almaciga used in Samoki, 

in the Mountain province northwest of Tiwi, indicated it was from an undetermined 

species of Dipterocarpus or Shorea, as opposed to other Philippine almacigas which 

come from the trees of the genus Agathis (Foster 1956). 

Chemical analysis of resin 

Rarely is resin identified through chemical means in an archaeological context.  

Nevertheless, a comprehensive study was performed by Regert and Rolando (2002) with 
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the specific goal of identifying the various types of resinous plant exudates that are 

found in an archaeological setting.  The types of resins tested were those found in or on 

pottery, on various tool implements, and weapons from a variety of time periods.  The 

types of resins tested included birch bark, pistachia, pine, and beeswax, all types that are 

typically found in archaeological contexts.  Evidence supports their claim of use of birch 

bark resin and beeswax in ancient times. Through their experiments they found that 

these two agents were mixed together intentionally.   Regert and Rolando (2002) further 

states as a result of distinctive bio-markers in the various resins, mass spectrometry is 

indispensable in identifying different botanical sources. For example pine resin will have 

a very distinctive marker of the presence of abietic acid.  The abietic acid increase is a 

direct result of heating the pine resin during the processing procedure that forms the 

various substances such as terpentine, pitch and tar (Portugal et al. 1996).  Regert and 

Rolando (2002) also suggests that the methodology of analysis of direct inlet electron 

ionization mass spectrometry is desirable because of its effectiveness in identifying not 

only the different plant resins but also the changes in those same resins that occur as a 

direct result of anthropogenic factors.  
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  CHAPTER V 

PLANTS, POLLEN, SAMPLING AND INTERPRETATION  

Angiosperms and gymnosperms: a brief overview  

 

Within the discipline of archaeology those plants that may be connected to some 

economic use by indigenous peoples, are the most useful in providing an interpretation 

for the presence of plant materials present in an archaeological context.  In the area of 

ethnopalynology, those plants that produce pollen (flowering plants) are the main focus 

of this research.  Nevertheless, nonflowering plants which produce spores are also 

important.  The field of botany is immense and, unfortunately, cannot be covered in 

great detail here.  Rather what is presented is a brief overview of those plants and 

theories that mainly impact ethnopalynology.  What follows are some definitions and a 

brief discussion of some of the more important historical developments in the study of 

plant taxonomy. 

Flowering plants or angiosperms are defined as a plant that flowers and one in 

which the seed(s) are enclosed within an ovary. Angiosperms are estimated to have first 

appeared approximately 130 million years ago during the early Cretaceous from some 

unknown progenitor/transitional gymnosperm (Sun et al., 2002; Crane et al., 2004; Soltis 

and Soltis, 2004).  Although advances in genetic and taxonomic research have been 

made and some likely candidates do exist, currently there has not been any plant taxon 

discovered from the fossil record with indications that it is, with certainty, the 
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transitional plant from the Gymnosperms to the Angiosperms (Crepet, 1998; Crepet, 

2000; Crepet et al. 2004; Scutt, 2007; Theissen and Melzer, 2007; Traverse 2007). 

Gymnosperms by contrast are flowerless, seed-bearing land plants in which the seeds are 

naked or not encapsulated in any special chambers.  Some of the more common 

gymnosperms include the cycads (Cycadaceae), ginkgos (Ginkgoaceae), Ephedra 

(Ephedraceae) and the pines (Pinaceae).  In terms of palynology both angiosperms and 

gymnosperms produce pollen, which may be identified and useful for 

ethnopalynologists.   

A further distinction or division is made within the angiosperms.  Initially, these 

were divided into two primary groups based on the presence of a single cotyledon 

(monocot) or two cotyledons (dicots) (a cotyledon being the originating point of the 

initial leaf or leaves that emerge from the seed). Although monocots do constitute a 

clade (a grouping distinction, see below), phylogenetic analyses based on morphology, 

nuclear, plastid, and mitochondrial DNA sequences suggest that the group “dicots” can 

be further separated (Judd and Olmstead 2004).  Through pollen analysis a similarity can 

be found for the majority of the angiosperms with two dicotyledons or what is now 

termed the eudicots to distinguish this group from the other dicots.  This clade was 

initially called the tricolpate clade by Donoghue and Doyle (1989), but was changed to 

eudicots by Doyle and Hotton (1991).  Tricolpate is a term that describes the number of 

apertures or openings (usually resembling a cut in the pollen wall) in a pollen grain, in 

this case three.  Judd and Omstead (2004) suggest that this group also includes the 
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tricolporates (pollen grains that have three colpi – what resembles a cut in the pollen 

wall and three pores –openings in the pollen wall that are usually round but can be 

elongated) or derivatives from these two.  In any case it is sufficient for our purposes 

here to acknowledge the presence of the different clades.   

Other land plants include the ferns and mosses. These are plants that are seedless 

and produce spores rather than pollen. The ferns and the mosses are considered to be 

separate categories. The ferns are considered to be part of the Division Pterophyta and 

the mosses are found in the Division Bryophyta. The main separating classification is the 

internal structures found in each type as a result of different evolutionary paths. 

Botany, as in many other fields changes, adapts and generally remains in a very 

dynamic state. Plants originally classified and placed into one family are sometimes re-

named and re-classified into another as additional information is discovered. The 

classification system that we still use today (in part) is the Linnaeus system. Carl von 

Linné or Carolus Linnaeus as he preferred to be called, devised a classification system in 

the 18th century that has irreversibly influenced taxonomy up to and including today 

(Linnaeus 1756). The main components of his system that are important today are his 

hierarchical classification system and his binomial nomenclature. His system, like many 

of the other taxonomic systems, is what some might refer to as unnatural. In other words 

it does not group animals or plants based on many features but instead only on very 

specific features. For Linnaeus his methodology was the classification of the stamens 

and pistils of a plant. The 'class' of a plant was based on particular plants stamens, or the 
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male reproductive system, and the 'order' was based on the female reproductive system 

or the pistils. As a result, many of the plants were grouped together unnaturally.  

Linnaeus organized nature into three Kingdoms - mineral, vegetable, and animal.  He 

then classified organisms into five ranks - class, order, genus, species, and variety.  

Today the classification system we still use reflects the original work by Linnaeus, with 

some modifications (see Table 3 for an example).  

 

Table 3.  The eight major ranks in bold type are those more commonly used (Note: there are other 
divisions and ranks that will not be mentioned here). 

 

RANK Example: PEA PLANT 

   Domain Eukaryota 

    Kingdom   Plantae 

     Phylum or Division      Magnoliophyta 

       Subphylum or Subdivision        Magnoliophytina 

         Class           Magnoliopsida 

           Subclass              Magnoliidae 

             Order                 Fabales 

               Suborder                   Fabineae 

                 Family                     Fabaceae 

                   Subfamily                        Faboideae 

                     Genus                           Pisum 

                       Species                              P. sativum 

 

The conventions used in determining new plant names usually follows one of the 

international codes for nomenclature (i.e., The International Code of Nomenclature for 

Cultivated Plants (ICNCP), International Code of Botanical Nomenclature (ICBN), 
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International Association for Plant Taxonomy (IAPT) depending on the criteria used).  

Most names will follow what is referred to as the type genus and then end the word with 

standard suffixes or standard terminations depending on the rank name (see Table 4).  

 

Table 4.  Commonly used standard terminations or suffixes for plant, algae and fungi names. 

Rank  Plants Algae Fungi 

Division/Phylum  -phyta  -mycota  

Subdivision/Subphylum  -phytina  -mycotina  

Class  -opsida  -phyceae  -mycetes  

Subclass  -idae  -phycidae  -mycetidae  

Order  -ales  

Suborder  -ineae  

Family  -aceae  

Subfamily  -oideae  

 

 

Before Linneaus the naming of plants often followed a polynomial naming system.  His 

binomial naming system simplified the naming process, making it easier to remember 

the latin plant names and because of this was adapted readily.  By the eighteenth century, 

with the increase in the number of plants discovered, taxonomy became more 

complicated. The turning point in the field of taxonomy occurred with the introduction 

of the concept of evolution.  For the first time botanists could approach the task of 

classification within a new frame of reference, mainly time.  Before evolution the central 

biological concept of homology (sameness) referred to a similarity in the structure or the 
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function of a plant or plant part.  After the introduction of evolution, homology was used 

to define two organisms that were structurally similar and came from a common 

ancestor.  Today taxonomists are usually split into two groups, the Evolutionary 

(traditional) group or the Phylogenetic (cladistic) group.  Phylogenies are usually based 

on common ancestries which are inferred from fossil, morphological, and molecular 

evidence (Campbell 2004).  Phylogenetic systematics began with the construction of 

phylogenetic trees (a diagram called a cladogram) based on shared characters 

(characteristics) rather than on time.  When there are shared characters between 

organisms then they are said to be homologous (share a common ancestry). The resulting 

cladogram represents the basis for the phylogenetic tree.  The individual branches of this 

tree are clades (monophyletic, a group of organisms that share characteristics and by 

extrapolation, a common ancestor) and the analysis that groups species together is called 

cladistics.  Cladistics was introduced by the entomologist Willi Hennig in the 1950’s as a 

way to group evolutionary relationships based on ancestry and descent rather than time, 

and, gave taxonomists a methodology in which to classify, define, and group plants.  

This methodology, using a series of test of hypotheses, gave taxonomists a way to group 

species in different ways.  The three groups consist of the monophyletic (see above), the 

paraphyletic (a group of plants that are unrelated that may descend from more than one 

ancestor) and the polyphyletic (a group of plants which does not include the common 

ancestor of all of the different plants classified into a group).  Some plant family names 

have been changed to conform to the International Code of Botanical Nomenclature.  
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While the new names conform to the new standards, the older names of long usage are 

still considered valid and publishable (See Table 5).   

Table 5. List of old and new family plant names. 

Old New 

Compositae Asteraceae 

Cruciferae Brassicaceae 

Gramineae Poaceae 

Guttiferae Clusiaceae 

Labiatae Lamiaceae 

Leguminosae Fabaceae/Papilionaceae 

Palmae Arecaceae 

Umbelliferae Apiaceae 

 

In the case of Leguminosae if the plant in question can be considered 

Papilionaceae and as a distinct plant separate from Leguminosae then the name 

Papilionaceae is observed. 

Plants and pollen in archaeology  

Although the presence of plants may be determined by pollen analysis, their 

subsequent use or purpose is not inherently known. If the ethnopalynologist is also an 

archaeologist and/or anthropologist the interpretation of plant use from the pollen data is 

potentially more inclusive and useful. Data compiled from ethnographical information 

and/or previous palynological data should be considered (if available) in any 

interpretation. Although ethnographic information is typically from the historic contact 

period rather than from an ancient or pre-contact context, the assumption is that the 
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characteristics, and consequently the intended use, of any plant may not change rapidly, 

especially when dealing with economic food plants. 

Economic plants may be defined as: those plants people utilize to their 

advantage; whether that advantage is for food or subsistence, shelter, trade, decoration, 

watercraft, weapons, tools, social stratification, medicine, clothing, rituals and/or 

religious purposes.  

Economic plant examples 

Economic plants are not necessarily plants that are cultivated.  Some are gathered 

plants and through this act of gathering a few eventually become domesticated. “Of all 

the plants used, cultivated ones provide the best evidence of human development” 

(Cutler and Blake 2001:5).  “During the time a plant is being grown and spread by 

human activity, the plant is being affected and channeled by mutation, environmental 

selection, hybridization with wild and weedy plants and with other selections of the 

same species, by seed selection, seed storage techniques, and other factors. Thus, a 

farmer’s harvest always differs from the seed originally planted. Cultivated plants 

become dependent upon people, and human life patterns often are governed by 

attachment to the crops” (Cutler and Blake 2001:5). Cultigens and/or domesticated plant 

remains at archaeological sites are evident in the form of: plant fragments, charcoal, 

starch, seeds, pollen, and/or phytoliths. Two of the economic cereal plants found in 

archaeological sites native to the New World include corn or maize (Poaceae Zea mays),  

and wild rice (Zizania) (Aiken et al. 1988; Hayes et al. 1989). A few of the other 
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important economic food plants include: squash (Curcurbitaceae Curcurbita), beans 

(Fabaceae Phaseolus), and quinoa and amaranths (Chenopodiaceae 

Chenopodium/Amaranthaceae Amaranthus). Interpretations of the data beyond the initial 

pollen analysis includes identification of economic types and uses, ecological 

environments (e.g., which type of plants were available and subsequent climate), and 

temporal climate shifts which in turn will be visible in plant communities. For example: 

the Chenopodiaceae family includes grains such as Chenopodium hircinum, C. 

neomexicana, C. watsonii, C. berlandieri, C. nuttalliae and Chenopodium quinoa (which 

tends to have larger seed size due to the long period of cultivation, in this case South 

America) (Sauer 1993). The most interesting species from this genera are C. berlandieri, 

C. hircinum, and C. quinoa. Chenopodium quinoa is a cultigen of the higher altitudes in 

the Andes of South America. It is closely related to the wild species C. berlandieri; 

found extensively throughout North and Central America but which also seems to have 

originated in the United States between two other diploid plants from the genera 

Chenopodium indigenous to the United States (Heiser 1985). For interpretation purposes 

this information becomes relevant if large amounts of Chenopodium pollen are 

recovered from an archaeological site in the Eastern or Central United States prior to 

maize cultivation (or at any location prior to cultivation if the evidence supports this). It 

is apparent from archaeological investigations that at one time this plant was important 

as a grain cultigen in the central and eastern portions of the United States, but as maize 

became the primary grain, the domesticated variety that is assumed to have been 
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developed from C. berlandieri became extinct (Wilson and Heiser 1979; Wilson 1981; 

Sauer 1993). Other Chenopodium cultigens and domesticates are native to other regions 

of the Old World and were imported to the United States mostly in the 18th and 19th 

centuries. This includes the sugar beet (Chenopodiaceae Beta vulgaris).  

In some instances higher concentrations of Chenopodium/Amaranthus found at 

archaeological sites will be indicative of disturbed soil or land that at one time may have 

been cultivated, either prehistorically or historically (Fritz 1984; Sauer 1969).  Iversen 

(1941) discovered in his research of stone age land occupation in Denmark that “the 

fluctuations in the agricultural intensity in antiquity are better reflected in the curves for 

weed pollen, as four of the most important weeds (Plantago, Rumex, Artemisia, and 

Chenopodiaceae) are wind pollinators” (Iversen 1941:49). He found that where 

agriculture was practiced these weed types were evident and could conversely be 

indicators of agriculture. In addition it is nearly impossible to distinguish 

Chenopodiaceae Chenopodium from Amaranthaceae Amaranthus at the light microsope 

level and some care is needed in the interpretation if these types are found.  

Although it was neither cultivated nor domesticated in the past, wild rice 

represents an important economic plant. Northern wild rice, or Zizania, is related to the 

old world rice (Oryza) through three species: Z. latifolia in eastern Asia, Z. texana from 

Texas and Z. aquatica, a widely dispersed annual found throughout the continental U.S. 

Nevertheless, there are two species that dominate the northern portion of the U.S.: 

Zizania aquatica (southern wild rice) and Zizania palustris (northern wild rice) (Lee et 
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al. 2004).   According to Sauer (1993) Zizania grows in shallow lakes and slow moving 

streams and is usually found with cattails and water lilies (Sauer 1993). Nevertheless, 

Lee et al. produce an in depth discussion of Zizania and state that wild rice does not 

coexist with Typha (or cattails) and Sparganium (or burreed), because it is found in 

deeper water and is an annual (Lee et al. 2004). Although wild rice is an important 

economic plant, it does not lend itself easily to cultivation nor domestication. In fact the 

first known attempt to cultivate wild rice did not occur until 1960. Today as a result of 

research and introduction of rice into non-indigenous areas, wild rice is a modern day 

economic crop in the United States.  

New World beans or Fabaceae Phaseolus were at one time included with 

approximately 200 species native to both the Old and the New World. Recently, many of 

these species have been redefined to approximately 30 New World species. Of these 

only four were prehistorically domesticated in the New World.  The most important 

prehistoric economic bean is Phaseolus vulgaris (common, kidney, string, and wax bean 

also referred to as frijol; a Spanish derivative) and Phaseolus lunatus (sieva, butter and 

lima bean) (Sauer 1993). The other two species P. acutifolius (tepary bean) and P. 

coccineus (scarlet-runner bean) are indigenous to contained areas in Mexico and 

Guatemala (Heiser 1965). The bean appears to have originated in Mexico and South 

America, however, by the time of the contact period, beans had spread throughout the 

New World (Carter 1945). 
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Pollen and seeds: domesticated vs.wild  

Pollen and seeds from domesticated plants will often become larger in size 

(Gilmore 1931, Whitehead 1965, Jones 1991).  Gilmore (1931) found giant ragweed 

(Ambrosia trifida) seeds at the Ozark Bluff Dwellers site that differed distinctly from 

other ragweed plants that did not appear to be cultivated.  The seeds found in collection 

vessels at this archaeological site, located in the Ozark Mountains of Missouri and 

Arkansas, were larger, lighter in color and uniform in color, unlike the variegated colors 

of the non-cultivated seeds. These morphological changes in plants can result in size 

increases in pollen making it possible to determine wild plants from the cultivated 

varieties (e.g., maize or corn pollen and squash) (Whitehead 1965, Jones 1991).  Recent 

studies, however, by Holst et al. (in press) indicate that separating maize from teosinte 

pollen based on morphological features and size is not possible in those areas where both 

types of plants are found.  There is a need for more studies that compare pollen size or 

pollen morphological differences between plant domesticates and/or cultivars and the 

wild forms of the same plant and/or the development of new techniques such as starch 

grain analysis to distinguish between plant types (Piperno 1998; Piperno and Holst 

1998).  Nevertheless, several economically important domesticated plants from both the 

Old and New World either do not change dramatically with domestication or they have 

never been compared.  One economic plant is Gossypium (cotton).  Different species of 

Gossypium have been identified both in archaeological sites in the Old World and the 

New World simultaneously (or also referred to as independent domestication), yet no 
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study has been found that compares the pollen of the domesticated varieties to those 

precursors found in the wild. In the New World the two domesticated species of cotton 

are G. hirsutum and G. barbadense. In recent years genetic research has indicated a 

common link between the Old World and the New World species.  According to 

Simpson and Orgosaly (1995) there was an ancient long-distance colonization of the 

new world by an unknown Gossypium which is found within the same group as G. 

arboreum and G. herbaceum, both indigenous to south-central Asia. The bottle gourd 

(Laegenaria siceraria) is another example of prehistoric genetic transmission. It was 

identified in the New World prior to the Old World contact but is additionally found in 

Thailand and Africa (Pickersgill 1972; Whitaker and Cutler 1965).  Unfortunately, there 

has been no comparison or study between the pollen of these different species, although 

cultivation would imply a higher ploidy number.  

Central to the discussion of domesticated plants is the question of the ploidy 

number of a plant.  Ploidy refers to the number of sets of homologous chromosomes in a 

cell or the genome size.  When a gamete contains more than the one haploid (n) set of 

chromosomes they are said to be polyploidy.  Domesticated plants can involve a genetic 

change due to human manipulation which may result in a polyploidy (Emshwiller 2006), 

however, previous studies comparing the proportion of wild polyploidy plants to those 

that are domesticated indicate no significant differences (Hilu 1993; Vamosi and 

Dickinson 2006).   Although, there is no clear connection between domesticated plants 

and a higher ploidy number, which results in a larger genome size, most domesticated 
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plants do produce larger plants and in some cases larger seeds and pollen grains.  For 

example, differences have been noted in the size of pollen between the proposed 

progenitors and the modern domesticated corn plant (Fedorova 1955).  This 

phenomenon of larger diameter pollen grains with a higher ploidy number as a result of 

domestication, has been explored further in a few domesticated plant types that could 

exhibit this trend. Nevertheless, in each instance research has indicated that size alone is 

not always an accurate indicator of plant cultivation.  The assumption that pollen size is 

constant within a species, a particular plant within that species, or even between species 

in a genus is inherently flawed (Mack 1971).  For example in the genus Lythrum, 

Schoch-Bodmer (1940) report a correlation between pollen size and the amount of 

moisture available to the parent plant.  Conversely, investigations between the pollen 

size of cultivated rice, Oryza sative and Oryza glaberrima indicated that these species 

are larger than their wild counterparts (O. minuta and O. Eichengeri), however, other 

considerations such as nutrients, moisture, genetics, and temperature were not taken into 

consideration, although all of these have been shown to influence pollen size in various 

plant genera (Sampath and Ramanathan 1951; Bell 1959).  

Cotton or bottle gourd pollen may not have changed dramatically with the 

increased ploidy number, however, the only way to determine whether size is a valid 

identification methodology is to study each species to see if the proposed progenitor and 

the modern plant version differ in their pollen characteristics. For example, Phaseolus 

(the genus of various beans) exhibits increased seed size with the increase in the number 



 
 
 

 

112 

of paternal donors and conversely an increase in ploidy level (Nakamurra 1988; Iberra-

Perez et al. 1996).  In fact experiments suggest that larger plant size can result in a larger 

seed. Seed size may also correlate into an advantageous situation such as germinating in 

a competitive environment. Again, with the increase in plant and seed size it would be 

interesting to note if an increase in pollen size had resulted in a heterotic effect or if the 

increase in pollen size would not be favorable. Unfortunately, studies to verify 

relationships between pollen size and pollen production have been inconclusive and 

mixed and cannot be used as a general assumption (Vonhof and Harder 1995; Stanton 

and Preston 1986; Mione and Anderson 1992; Cruden and Miller-Ward 1981; Plitman 

and Levin 1983). Such studies are potentially helpful in identifying economic pollen 

types. Other studies include: size frequency differences in fossil pine pollen compared 

with herbarium-preserved pollen (Buell 1946), variations of polyploidy as a result of 

natural cross pollination (Iiyama and Grant 1972), and variations in the size of pollen 

from the same species but collected from different flowers (Harris 1956).  Although 

pollen size alone cannot by itself indicate cultivated plants as opposed to wild types, 

these types of studies and others exemplifies the importance of understanding the 

transmission and domestication processes in the interpretation of pollen within the 

archaeological record.  
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Identification of pollen grains  

New World maize and palynology  

Once collection and processing is completed correctly, there still remains the 

accurate identification of the pollen grains and the interpretation of the pollen data. For 

example, maize pollen is relatively easy to identify only if the parameters to the 

identification are fully understood. In the instance of maize it is very important to 

understand the history of the development of it and the various mutations, hybrids and 

cross fertilizations that have occurred throughout time. Identifying maize pollen is 

problematic for several reasons. Maize and its wild relatives, Teosinte and Tripsacum, 

and various hybrids derived from cross-fertilization between the different species, all 

have spherical pollen grains with a single pore, however, there is considerable overlap in 

the size of the maize pollen, the progentors of maize and common grasses (Eubanks 

1997). Other factors to consider when making an identification for maize pollen or other 

economic types in the grass or Poaceae family are the potential changes in pollen size 

caused by processing, mounting media, and/or method of mounting of the pollen on a 

microscope slide and the number of pollen grains actually recovered from an 

archaeological site (Cutler and Cutler 1954; Dunn 1978; Andersen 1960; Cushing 1961; 

Tsukada and Rowley 1964, Whitehead and Sheehan 1971; Whitehead 1972; Whitehead 

1965; Bryant and Hall 1993). Other features for identifying maize pollen include the 

ratio of the length of the pollen grain to the width or diameter of the pore (Barghoorn et 

al. 1954; Irwin and Barghoorn 1965; Grant 1972; Tsukada and Rowley 1964; Whitehead 
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and Langham 1965), and the columnella pattern under the tectum (the pattern found on 

the surface of the pollen grain) (Eubanks 1995; Grant 1972; Tsukada and Rowley 1964). 

In addition, Old World cereal pollen grains will look nearly exactly like the New World 

maize pollen except for the size. In the Old World, as in the New World, distinguishing 

between what pollen is considered a cereal cultigen as opposed to an endemic grass is 

fraught with difficulties.  

Old World cereals and palynology  

One of the early applications of palynology to archaeology was the study of 

cultigens, specifically cereals (Van Zeist and Bottema 1983).  Old World cereals are 

composed of different genera in the grass family. The taxonomic name for the grass 

family is Poaceae (also called Gramineae). Within this large family of plants are the 

cereals such as wheat, barley, rye etc., nevertheless, non-cultigen grasss are also found 

within this family. The differentiation between these cultigen types from the non-

cultigen types is an important area of research that has progressed to the point that 

certain cultigen pollen types may be separated from each other. Wodehouse (1935, 

1959) studied pollen grains from the grass family and observed differences in size and 

various morphological features within this family, nevertheless, it was the study by 

Firbas in 1937, that conclusively showed that cultivated cereal pollen grains were 

consistently larger than their non-cultivated relatives.  Firbas states: Adass ein ganz 

vereinzeltes Vorkommen eines dem Getreidyp zurechnenden keinerlei brauchbare 

Auswertung gestattet@ Firbas (1937:462). Translated verbatim the sentence reads, Athat a 
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completely isolated incidence or source of one of the cereal types assigned to the pollen 

by no means permits a useful interpretation@. Another way to say this is that it was not 

worth the effort to try and distinguish the cereals from other grasses because of the 

overlapping size range of non-cereal pollen to cereal pollen.  Iversen (1941) noted it was 

difficult because wheat pollen from (Triticum monococcum) is less distinctive of the 

>cereal type=, and thus could be mistaken for pollen of wild grasses, whereas some wild 

grasses (e.g., Agropyrum repens) sometime produce pollen approaching the size of 

cereals. At the time of his publication in 1937, Firbas believed that cultivated cereal 

pollen grains were generally larger than 35 microns. Today, as a result of genetic 

manipulation and continued cultivation of these plants, the accepted standard for cereals 

is larger than 40 microns (Bottema 1992b; Mercuri in press). However, it should be 

noted that Bottema based his size standard on the previous study completed by Beug 

(1961).  Beug used 37 microns as the demarcation between non-cereal and cereal types, 

or as Bottema describes them, “cerealia-type” pollen grains and “generic” grass pollen 

grains.  According to Bottema the term “cerealia-type” suggests that taxa other than 

cerealia could be included in the count. (Bottema 1992b). It seems as though the term 

Acereal Type@ that Iversen uses in his 1941 study and Bottema=s Acerealia-type@ are 

synonymous and interchangeable. Both terms imply that for the most part pollen grains 

sometimes listed in the counts as cereal cultigens may include a few wild grass grains 

that are deviations from the norm or visa-versa. In areas, such as northwestern Europe, 

pollen grains larger than 37- 40 microns, are thought to be produced almost exclusively 
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by cereals, although a subdivision on the basis of the sub-tectatal  columellae is also 

possible but usually not practical (Bottema 1992b). The type of analysis that Bottema is 

referring to with regards to the Korber-Grohne (1957) article is a type of microscopy 

called phase-contrast.  Although the phase-contrast technique was revolutionary in the 

field of microscopy for viewing details (Frits Zernicke received the Noble Prize for 

physics in 1953 inventing the phase contrast technique), the time required to find and 

count columellae (morphological features found in the wall of pollen grains) can be time 

consuming and impractical for many pollen studies. Unless the grain is perfectly round 

or if there is a portion that has been flattened, then the columellae are nearly impossible 

to see distinctly. 

Additionally, differences exist between the mounting media used by Beug and 

Bottema (glycerin vs silicon) which could account for the difference in the reported size 

range of 37 microns established by Beug and the 40 microns used by Bottema. Bottema 

(1992a) found that a wild grass type of pollen grain refers to those species with a pollen 

grain smaller than 37 microns in size and the cerealia-type is defined as larger than 37 

microns.  In practice 40 microns is used as the lower limit in defining cerealia-type 

grains (Bottema 1992b). Although Bottema may simply have Arounded up@ to 40 

microns there is confusion as to the use of the 40 micron lower limit. Initially, Bottema 

refers the reader to Beug 1961, and then later discusses the study by Andersen (1978). 

Nevertheless, there are differences in the way that each author derives the acceptable 

minimum size for a cereal grain. Whereas, Andersen (1978) measured the diameter of 



 
 
 

 

117 

the annulus (a ring that forms around a pore’s circular opening in the wall of the pollen 

grain) to the size (diameter) of the grain, he viewed surface sculpturing as a secondary 

consideration, Beug completed an extensive study and concluded that size could be used 

as a guide to the identification of cereal grains if the diameter exceeded 37 microns. 

Bottema suggests that Andersen’s method will include a pollen grain size that is too 

small when using the largest diameter of a grain. If this is the case then pollen grains that 

are not from cereals could theoretically be included and thus overly inflate the cultigen 

pollen counts. Additionally, there is evidence to show that glycerin, over time, may 

artificially enlarge pollen grains. Several studies exist that espouse the validity of using 

either silicone oil or glycerine; the consensus is that both have limitations, and both are 

valid if used within their known parameters of usefulness (Faegri and Iversen 1989). 

However, Bottema states the 40 micron limit includes both those samples mounted in 

glycerin and silicon oil. Bottema is working in the Middle East where he does encounter 

slightly different types of cereal pollen grains, yet, this still does not satisfactorily 

explain why the 40 micron limit was established.  

Today the expansion of genetic engineering, increased productivity of cereal 

grains and increased size of cereal plants, has resulted in the increased size of the pollen 

grain. This is especially true with New World maize. Currently, it is believed that  

genetic engineering will result in a further increase in the size of maize plants over time. 

Early attempts to discriminate between cereal pollen grains and non-cereal (grass) pollen 

grains include: size measurements of the total diameter of the grain (Wodehouse 1935; 
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Firbas 1937; Anderson 1955; Bottema 1992b), the measurement of the annulus of the 

grain (Andersen 1978), the ratio of the axis to the pore (Barghoorn et al. 1954), and the 

collumella in the subtectum (Ertdman 1944; Korber-Groehne 1957; Rowley et al. 1959; 

Rowley 1960; Beug 1961; Faegri and Iversen 1964). The following are other studies that 

relate to cereal pollen (Faegri and Iversen 1989; Cushing 1961; Whitehead and Sheehan 

1971; Faegri and Deuse 1960; Beug 1961; Firbas 1937; Praglowski 1970; Erdtman and 

Praglowski 1959; Andersen 1960; Andersen 1978; Piperno 1998; Holst et al. in press; 

Mercuri in press).  

Pollen production, dispersal and deposition  

The limiting factors of pollen dispersal and deposition include: the size of the 

pollen grain, the number of pollen grains that are produced by a given plant, the mass 

and shape of the pollen, the ground topography, weather, the depositional environmental 

conditions, and the mode of pollen transport. Depending on the evolutionary history of 

the plant, the pollen will either be dispersed by the wind (anemophilous), by insects 

(entomophilous), by water (hydrophilous), by animals (zoophilous), self pollination 

(autogamous) or a combination of these (Regal 1982; Bryant 1990). Those plants that 

are pollinated by insects or animals evolutionarily have limited the amount of pollen 

they produce (e.g., wind-pollinated plants need to produce prodigious amounts of pollen 

to insure their proper distribution). Other considerations are: the total amounts of pollen 

each species produces, the percentage of sporopollenin found in the wall of the pollen 

grain (e.g., a preservability factor of the pollen) (Havinga 1964, 1971, 1984), and the 
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sinking speed of pollen, which refers to the size and mass of the grain, its shape, which 

will determine how fast and how far the grain will travel on wind currents (Jackson and 

Lyford 1999). The size of pollen is not proportional to the weight of the pollen grain. For 

example, pine pollen is large but light; because of its structure it can travel long 

distances and be a major component of a pollen assemblage even when no pine trees are 

close by (Mack and Bryant 1974).  Generally, wind-pollinated plants will produce large 

amounts of pollen while insect-pollinated plants will generally produce smaller amounts 

of pollen. For example: red clover (Trifolium pratense) will produce approximately 220 

pollen grains per anther, rye (Secale cereale) produces approximately 19,000 pollen 

grains per anther, pine (Pinus) produces approximately 160,000 pollen grains per anther, 

and juniper (Juniperus) produces approximately 400,000 pollen grains per anther 

(Erdtman 1969). These are important numbers but are not useful without other vital 

information. Clover (Trifolium) is an insect-pollinated pollen type and may be found in 

high concentrations in honey samples but not necessarily in archaeological sites. 

Although true clovers from the genus Trifolium are important legumes that were foraged 

in the Old World and planted for use as pasturage or cut for hay in the United States 

historically, according to Simpson and Ogorzaly (1995) it was not present in North 

America prehistorically.  Zohary and Heller (1984) contradict this statement and say that 

the endemic species of Trifolium include nine distributed in California, two in Oregon 

and one in Washington. While some of these species have dispersed as far east as 

Missouri and the Appalachians, the majority (26%) of the species originate in the 
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Western part of North America.  Zohary and Heller (1984) continue and state that more 

than 75% of the American Trifolium species and approximately 87% of the African 

species grow in mountain regions.  In Eurasia only about 50% are found in mountain 

regions. Obviously, some species of clover are not indigenous to the United States and 

were introduced with the initial colonization. Other genera that are considered to be 

closely related and are also commonly referred to as clovers are Melilotus (sweet clover) 

and Medicago (alfalfa or calvary clover). Although these are both genera in the Fabaceae 

family, they are not considered “true clovers.”  Because clover was an early economic 

plant utilized in a historical context, any clover pollen found associated with a historical 

site would be significant, especially if the clover species were determined.  

Production rates of pollen are important to consider. In pollen spectra, wind-

pollinated types often tend to be over-represented (i.e., Oak [Quercus], Pine [Pinus] and 

Juniper [Juniperus]), while insect-pollinated types tend to be under-represented. Juniper 

(Juniperus) is a high pollen producer. Nevertheless, it is not commonly found in 

archaeological deposits in large numbers because it is thin-walled, fragile and has a low 

amount of durable sporopollenin in the pollen wall (Duhoux 1982).  Other similar pollen 

grains that do not preserve well are cedar (Thuja) and cypress (Taxodium). Often juniper 

pollen found in the fossil record will be cracked, broken, or folded making it difficult to 

differentiate from other non-porate grains, unless preservation is ideal. Autogamous or 

self-pollinated plants may produce even smaller amounts of pollen than insect-pollinated 

types (Faegri and Iversen 1989).  
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Ecological research in the last century has looked at the effects people have had 

on the past and present landscapes. During the 1950's ecologists such as Day (1953) 

reviewed earlier studies and also the misconceptions many maintained of the North 

American “virgin forests” without fully considering the effects that the First Americans 

had on this country. The misconception that prehistoric peoples lived in perfect harmony 

with their environments is especially evident when examining oceanic islands.  Island 

studies reveal that after the arrival of humans, the island’s indigenous plant and animal 

population are exploited (Diamond 1994, 2005).  According to Diamond, Easter Island is 

one example of over exploitation of natural resources or what some refer to as “ecocide” 

(Peiser, 2005).  Peiser (2005) and others dispute Diamond’s self extermination theory 

and cite previous research which asserts that the fall of Easter Island was a result of 

European disease, slavery and genocide (Métraux 1957; Bellwood 1978). It is believed 

that when the Polynesians arrived at the island in approximately A.D. 400 the island was 

covered in palm trees and shrubs.  Pollen analysis and carbon dating has indicated that at 

one time the island did support palm trees (Flenley, 1998).  However, it is still unclear 

when the deforestation of Easter Island began and ended, and what, ultimately, caused 

the disappearance of the native Polynesians and native plant life.               

Throughout North America and the world there are prehistoric earthworks, 

archaeological sites and fields, including irrigation structures that have altered the 

landscape. Thus it becomes obvious that these past lifestyles do exist as an ecological 

fact and may be identified through pollen analysis and research.  
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Pollen preservation  

The preservation of pollen depends on the environment and the taphonomic 

processes the pollen grains undergo before it is sampled (Sangster and Dale 1961). The 

geographical location and the soil/sediment in which the pollen is found are necessary 

information to determine if differential preservation has occurred. Soils may be defined 

as “…a natural body consisting of layers (horizons) of mineral and/or organic 

constituents of variable thicknesses, which differ from the parent materials in their 

morphological, physical, chemical, and mineralogical properties and their biological 

characteristics” (Birkeland 1999:2).  Frequently, differences in the preservation ability 

between different pollen taxa is obvious, however, if those types of soils that are known 

to be problematic are identified early, a great deal of time and effort may be saved. 

Generally the environments that are more likely to contain fossil pollen are those soils 

and/or sediments that are slightly acidic (low pH), have low moisture content, low 

oxygen levels, and have low intrusions of roots, water flow or percolation, and high 

organic contents.   

Soil types  

There are 12 major soil orders: alfisols, entisols, histosols, oxisols, inceptisols, 

mollisols, alfisols, utisols, aridisols, vertisols, spodosols, and gelisols.  Alfisols are 

moderately leached soils with a subsurface horizon of clays; usually these are formed 

under forest or savanna environments.  Entisols are soils of recent origin.  Many entisols 

contain sandy and are sometimes shallow in depth.   Histosols are soils that contain 
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mostly organics in areas with limited drainage.  These commonly consist of bogs, moors, 

peats or muck. Oxisols are soils that are highly weathered and often rich in iron and 

aluminum oxides; most soils of this type form under tropical forest vegetation.  

Inceptisols are soils of recent origin but older than entisols.  They usually are found in 

climates with low temperatures and low precipitation.  Mollisols are soils that derive 

from grassland ecosystems and contain dark horizons of organics from roots.  These 

types of soils usually have high alkalinity, with most of them forming under grass or 

savanna vegetation.  Utisols are strongly leached, acidic soils and most are formed under 

forest vegetation.  Aridisols are soils that contain calcium carbonate and some 

subsurface horizon development with depositions that may contain: gypsum, clay, 

silicates, calcium carbonates and/or salts.  Vertisols are soils that contain high contents 

of clay that tend to shrink and swell with available moisture.  Vertisols are usually soils 

that are found on slickensides or smooth, polished surfaces of a fissure or seam.  These 

usually develop deep, wide cracks when dry.  Andisols are soils that are formed in 

volcanic ash, while spodosols are acidic soils which contain layers of humus with 

aluminum and iron.  These soils usually form under forest vegetation. Gelisols are soils 

found near polar regions and at high elevations with permafrost within the first two 

meters of the surface.  These soils consist of mineral, organic soil materials or a mixture 

of the two (USDA 1999). With these definitions in mind the following soil types would 

generally be most conducive for pollen preservation: alfisols, entisols, histosols, 

inceptisols, mollisols andisols, and spodosols (although in mollisols the presence of roots 
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could indicate problems of pollen mixing and a potential for pollen intrusions). Utisols, 

while they do fulfill the criteria for an acidic environment, the leaching can promote 

problems with wet and dry episodes and in some cases changes in pH. If intact organics 

are present in the oxisols then some pollen may have become trapped and protected but 

if there is a high degree of weathering then pollen preservation would be unlikely. Pollen 

preservation may be found in some aridisols that do not contain calcium carbonate. 

Calcium carbonate is a type of material that generally creates higher pH levels, which 

can be detrimental to pollen preservation; although some claims have been made 

regarding positive pollen recovery in higher pH environments in Israel (Schoenwetter 

and Geyer 2000). The best soil type for good pollen preservation is histosol, which 

include bogs.  Another important factor for successful pollen recovery is the Eh 

potential.  

Eh potentials  

Eh potentials, or what may also be called oxidation-reduction reactions (redox), 

are significant as these types of reactions occur in soils, which in turn can impact pollen 

preservation (Tschudy1969, Dimbleby 1984; Dimbleby 1985). Oxidation-reduction 

reactions are a type of chemical reaction that occurs due to the loss or gain of electrons 

to the reactants in a chemical equation.   Originally the terms oxidation and reduction 

simply meant chemical change though the loss and gain of electrons from oxygen.  In 

subsequent years this definition has become more inclusive to other reactions in which 

oxygen is not present (Pearsall 1938).  In nature most of these redox reactions do contain 
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oxygen and it is an important component to understanding the Eh potential or rather the 

practical limitations of it. Theoretically, Eh potentials are a useful construct in 

determining whether an environment is oxidizing or reducing. However, in practice Eh 

potentials can be difficult to determine unless the measurements are taken using an Eh 

meter in the field. 

Once a sample is taken and exposed to the atmosphere the Eh potential will shift 

especially if the redox reaction originally contains oxygen. When discussing Eh 

potentials for pollen preservation the ideal is a reducing environment or an environment 

that contains little or no oxygen. The more oxygen available to sediments the more 

microbial activity will be present including earth worm activities (Ray 1959; Walch et 

al. 1970; Shakir and Dinal 1997). If the soil contains low amounts of organic material, 

pollen preservation may be poor.  Nevertheless, with high organic levels microbial 

activity may destroy pollen and thus impact pollen frequencies. Differential pollen 

preservation is usually evident by the types of pollen found and the level and type of 

degradation (Cushing 1967; Bryant and Hall 1993). Once the oxygen is depleted most 

microbial activity will decrease and eventually stop as the microorganisms use up the 

available oxygen. Not all microbes exist exclusively in aerobic environments. There are 

anaerobic bacteria specifically that will flourish in reducing environments including a 

low pH, resulting in pollen preservation.  
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Soil pH  

The pH is a measurement of acid and alkaline levels. On a continuum from one 

to fourteen, “one” would be the most acidic and “fourteen” would be the most alkaline 

with neutral at seven. For pollen to be preserved, experimentation (Havinga 1967, 1984; 

Holloway 1981) and extensive sampling show that the range for the best preservation 

lies below a pH of seven (Dimbleby 1957, 1985). Dimbleby states that although some 

pollen preservation may be found in alkaline soils the number of grains found will be 

low resulting in added efforts to attain a 200 fossil pollen grain count. Horowitz et al. 

(1981) suggested that collecting more soil to process and counting more slides in these 

types of environments will result in sufficiently high pollen counts.  Others reporting 

questionable fossil pollen interpretations from highly alkaline sediments include 

Schoenwetter (1996) and Schoenwetter and Geyer (2000).  However, their data remain 

questionable.  For high pH sediments the question remains as to how valid these studies 

might be due to differential pollen loss (Bryant et al. 1994; Bryant and Hall 1993).  

Soil microbiology  

By definition soil microbiology is the study of organisms that live in the soil.  A 

more complete definition is the study of microbes in the soil and the interaction that 

exists between the physical and chemical matrix within which they survive (Tate 2000). 

Soil microbiology can also be viewed as soil biochemistry and as a result can greatly 

impact the condition of the soil and, ultimately, the preservability of pollen grains.  It is 

essential to understand the mechanisms occurring in the formation and interrelationships 
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between the soil matrix, organisms, and organic matter to better understand how these 

factors impact pollen preservation.  Soils, as discussed earlier, are composed of materials 

such as mineral particles and organic matter in varying degrees of size, amount and 

type.  Nevertheless, it must be emphasized here that the most important factors that 

control microbial activity and soil turnover is soil aggregation.  According to Paul and 

Clark (1989) the structure of the soil is a result of physical pressures such as wetting and 

drying, freeze-thaw, root growth, animal movement and compaction of these various 

components into an aggregate.  The many interactions between the environmental 

factors such as temperature, moisture, soil pH, soil aeration, redox potential, and soil 

type are virtually impossible to describe without a computer simulation.  Nevertheless, 

what can be said is that in almost every combination of these environmental factors, 

there exist, to some degree, some form of microbial activity because microbes have 

adapted to different stressors to fill a niche (Bunnell and Tait 1974).  

The effects of wetting and drying on pollen grains 

Until recently, speculation on the level of degradation in pollen grains as a result 

of wetting and drying, have tended to be more theoretical than actual.  Although 

experiments such as those performed by Campbell and Campbell (1994) and 

Holloway (1989) do address what happens when pollen is exposed to differences in 

moisture and temperature, these are controlled laboratory experiments and do not take 

into consideration the surrounding organic matrices.  Holloway did demonstrate that 

pollen will degrade with changes in moisture (e.g., Holloway used only 25 wet/dry 
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cycles to test for degradation and used only a small selection of pollen types in the 

experiment). Thus, if there are repeated episodes of wetting and drying, the experiments 

do suggest that these cycles do impact the preservation of pollen grains. 

Degradation of pollen grains  

In general, and to reiterate the properties most conducive to pollen preservation, 

they are acidic conditions or low pH (Dimbleby 1957), low Eh potential or 

oxidation/reduction (Tschudy 1969), no rapid changes in moisture levels (Holloway 

1989; Campbell and Campbell 1994; Bryant and Dering 1992), low microbial activity, 

(Moore 1963; Elsik 1971; Havinga 1971; Lichti-Federovich and Ritchie 1965; Davis and 

Goodlett 1960; Goldstein 1960; Sangster and Dale 1961, 1964; Campbell 1999; Rowley 

and Gabaraheva 2004), and ideally, anoxic conditions. Nevertheless, the mechanisms of 

degradation are infinitely more complex and are affected by the location, type of pollen, 

the type of microorganisms present, and the amount of time the pollen grains have spent 

in the soil matrix. The susceptibility of pollen grains to chemical, mechanical or 

biological agents are especially dependent on many factors.  According to Elsik (1971) 

the amount of degradation of microspores (pollen and spores) varies from species to 

species and even within the same species dependent on which microorganism is present 

(e.g., phycomycetes or bacteria).  However, Campbell (1999) and others (e.g., Cushing 

1967; Havinga 1984; Chmura et al. 1999; Fall 1987; Pennington 1996) have found that 

there are a considerable number of factors (e.g., water transport, percentage of 
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sporopollenin present in the pollen wall, oxidation etc.) when evaluating the relative 

frequencies of pollen types in deposits.  

Pollen concentration values 

Concentration values are derived by dividing the number of pollen grains 

counted times the number of exotic grains added to a sample by the number of exotic 

pollen/spore grains counted multiplied by the amount of sediment processed. (See Figure 

5).  

 

 

Figure 5. Concentration value equation. 

 

If fossil pollen concentration values are low this might indicate that preservation 

is poor, which would imply differential pollen preservation may have occurred.   

According to Dimbleby, any soil with a pH above 6 will result in poor preservation 

conditions for pollen (Dimbleby 1957). Other studies conducted in the American 

Southwest by Martin (1963), Bryant (1969), and Hall (1981, 1995) indicate that a soil 

pH as high as 8.9 can produce some pollen preservation. Nevertheless, differential 

preservation is usually unavoidable with these types of sediments, especially if there is 

any moisture available (Bryant and Hall 1993). According to Tschudy (1969) alkaline 

conditions combined with the presence of moisture will produce a highly oxidizing 

 
Concentration Value = # of Marker Grains Added    X  # of Fossil Pollen Grains counted 
                                       # of Marker Grains Counted   X  Amt. of Sediment Processed 
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environment. The American Southwest, due to its general aridity, should have good 

pollen preservation, but due to the alkalinity in many areas differential fossil pollen 

preservation is also prevalent.   The high number of degraded pollen grains, is often a 

good clue that preservation is poor or differential.  If there is poor preservation then the 

interpretation of pollen data becomes problematic.  For example, if only the very hardy 

pollen grains and those that are easy to recognize are found, then generally there is a 

problem with the overall preservation (Bryant and Hall 1993).  Some researchers have 

attempted to establish criteria (such as if the number of pollen types is less than 20 or if 

the total pollen sum is less than 100) to determine whether a sample is reliable (e.g., 

Sanchez-Goni 1994).  Nevertheless, it depends on the research question and the area 

sampled. Concentration values become important in an archaeological context when the 

pollen concentration values for individual pollen types cannot be explained by natural 

means (Dimbleby 1985).  Irregular concentrations may be indicative of human activity, 

animal activity or both (Dimbleby 1985).  Concentration values can vary widely due to 

different sediment rates (e.g., river terrace sites) and from natural or cultural (e.g., 

human occupation sites) events. 

Changes in pollen concentration values may predict and identify geological 

and/or geographical changes in the landscape (Dapples 2002).  For example, in the Swiss 

Alps landslides occur frequently due in part to climatic changes. Nevertheless, landscape 

changes such as forest clearing and the introduction of agriculture, for example, can be 
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clearly seen in the pollen record as some pollen types are replaced with other types, 

resulting in deforestation and ultimately, land slides (Dapples et al. 2002).   

Pollen influx 

Pollen deposition is the number of grains of a certain pollen type that are 

deposited in a certain known area over a certain amount of time. Pollen influx is the rate 

at which pollen enters a sampling area in units of grains per cm 2 per year (Faegri and 

Iversen 1989; Davis 1976).  The distinction between the two is that not all pollen found 

in sampled sediments are produced outside of the sampled area.  Only those pollen gains 

which are produced outside of the sample area and are transported into the sample area 

by means of rain, wind, etc. are subject to the process of influx.  Influx values can help 

palynologists estimate the distance pollen has traveled from the source plant, 

presence/absence of certain taxa, and the density of a plant species. The expected influx 

is usually different for each species due to differences in pollen preservation, production, 

and dispersal (Andersen 1974; Davis 1969; Pennington and Bonny 1970; Hicks 1985, 

1986, 1992, 1993, 1994). Influx values are frequently used more often in 

paleoenvironmental reconstructions than at archaeological sites.  Pollen influx can only 

be used when there are carbon remains that may be dated in conjunction with the pollen 

samples.  This is needed due to differing sedimentation rates in different areas of the 

same site (Traverse 2007).  Because of the level of dating required, influx is not practical 

for most archaeological sites.   
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Historically, the convention used is to represent pollen data in terms of relative 

frequencies.  The major drawback to this method is that if there is a pollen type that is 

overrepresented (i.e., pine or oak) which produce prodigious amounts of pollen, then, the 

relative frequency of other pollen types found will become weaker and may appear to be 

insignificant when the opposite may  true.  Techniques to overcome this type of 

misrepresentation include exclusion of over-producing pollen types and the use of 

marker grains.   

When a known amount of a certain pollen or spore is added (i.e., Lycopodium 

spores) and the volume/weight of initial sample is measured, then the number of pollen 

grains or spores per unit of measurement may be determined.  In this way a 

concentration value for each pollen type may be determined that is independent of the 

fluctuations in the amounts of other pollen types counted (Traverse 2007).  Nevertheless, 

the amount of pollen or spores per gram is affected by different sedimentation rates.  

Davis (1967) and later Davis et al. (1971) developed what she referred to as pollen 

accumulation rates.  Pollen accumulation rates, are calculated in a similar manner to 

pollen influx.  The only difference between the two is that pollen accumulation rates 

include pollen types that are produced and deposited all within the sample area in 

addition to those that enter the sample by physical transport or influx.  An additional 

term that has been in use is absolute pollen deposition and/or absolute pollen analysis.  

This is the calculation of the number of pollen grains in a particular sample.  It is not 

corrected for sample volume or mass and therefore, has little practical application.   
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 Other methodologies include fine resolution pollen analysis or FRPA, a term, 

according to Green (1983) coined by Donald Walker (although no reference could be 

found to substantiate this).  Fine resolution pollen analysis or FRPA, is a method by 

which samples are taken in very small intervals on a core or a stratigraphy to determine 

ecological changes in as small an interval as fifty years (Green 1983; Traverse 2007).  

Intensive carbon dating is required to establish a chronology and a sedimentation rate.  

Besides the immense time and monetary commitment, to accomplish a fine degree of 

accuracy it is necessary that the sediments or sedimentation rate in question be relatively 

constant and somewhat rapid (Green 1983).  For the purposes of archaeology, 

concentration values with the use of marker grains are a better way to measure pollen, in 

addition it is faster and more useful. 

Sampling for pollen in archaeological settings 

 

The types of areas that may be sampled for fossil pollen include: terrestrial sites 

(Iversen 1941) or open sites such as kill sites (Bryant 1969) covered sites such as caves 

(Anderson 1955; Erdtman 1969; Burney and Burney 1993), rock shelters (Leroi-

Gourhan 1967), and archaeological floors such as those found in enclosed pueblo sites 

(Hill and Hevly 1964, 1968; Cully 1979; Cummings 1983; Bryant and Morris 1986; 

Cummings 1998; MacPhail 2004), submerged, waterlogged or shipwreck sites 

(Weinstein 1996; Robinson 1987; Gorham and Bryant 2001; Muller 2004), bog cores 

(Turner 1964; Moore  and Webb 1978), lake and ocean/marine cores (Muller 1959; 

Traverse and Ginsburg 1966).  In addition artifacts can be sampled for fossil pollen 



 
 
 

 

134 

including, grinding stones, projectile points, and ceramic vessels (Shafer and Holloway 

1979; Bryant and Morris 1986; Jones 1994; Jones et al. 1998), including amphora and 

any other container or artifact that may contain fossil pollen (Jones et al. 1998; Jacobson 

and Bryant 1998; Gorham and Bryant 2001).  Other contexts that may be sampled 

include baskets/weaving/rope, caulking (Diot 1994; Gorham and Bryant 2001; Muller 

2004), sun-baked bricks (O’Rourke 1983) and resin (Pons 1961; Arobba 1976; 

Muckelroy 1978, 1980; Jacobsen and Bryant 1998; Langenheim 2003; Broughton 1974).  

Sampling for pollen will require different strategies depending on the archaeological 

setting.  

For each type of artifact that is to be sampled, a different methodology may be 

necessary.  Generally, artifacts to be tested should not be washed until pollen samples 

are taken.  The ideal method is to remove the artifact with the surrounding matrix intact 

and immediately (if feasible) place it in a bag or some container that is sealed until 

samples can be collected in a sterile environment.   

Open land archaeological sites: profile sampling 

Pollen sampling from archaeological sites mostly depends on the time and budget 

constraints for the principle investigator. Open sites are those sites where sampling for 

pollen is relatively easy and useful if potential contamination problems are addressed.  In 

addition, sample more than you believe you will need.  Once an excavation is completed 

there will be no opportunities to get more.  Since pollen is an organic material, care 

needs to be taken to ensure that contamination is not an issue.  There are three primary 
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sampling procedures for land archaeological sites for fossil pollen.  The first is column 

or profile sampling.  With this method, samples can be taken from the wall of the pit, 

ideally, as the archaeologist is excavating the pit initially or after the pit has been 

excavated completely.  If the profile is sampled after the pit has been completely 

excavated, it will be necessary to clean the areas sampled for pollen before the sample is 

collected to reduce contamination.  This is usually done by cutting back into the wall an 

inch to two inches.  If contamination does occur this will not be evident in the samples 

and it can skew results.  

Depending on the size of the archaeological site and the excavation goals, one 

should take at least one sample from each stratum, ideally take several from the same 

stratum at different lateral locations because each may reflect different activity areas at a 

site.  It is always better to sample as you go or collect samples from each level or 

location as the excavation progresses.  Sampling at a site should include: 

1. Map the location where each sample is taken  
2. Record the elevation 
3. Collect surface samples (see separate discussion) 
4. Perform a releve (see separate section)  
5. Make a note as to the type of vegetation that is immediately surrounding the site 
6.  Collect 50-100 grams of material, more if you want to conduct additional tests 

such as phytoliths and starch analysis (see separate section).  
 

When taking samples with an implement such as a trowel, it is important to prevent 

contamination.  Suggested procedures include: 

1. Always wash the tool to be used in clean, distilled water and then dry it between 
samples  
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2. If sampling a wall profile, there are several additional steps that need to be taken  

3. Cut back into the wall a few inches at every level starting at the bottom.  

4. Starting at the bottom of the column, or the lowest stratum, carefully take each 
sample and place it into your bag of choice closing it immediately.  

5. Clean the trowel or sampling implement and dry it between samples. 

 

Open land archaeological sites: features and spot sampling 

 The second type of fossil pollen sampling from land-based archaeological sites is 

described as spot sampling.  Features discovered during an excavation such as, hearths, 

burials, pits or any other area that is dissimilar to the surrounding matrix can be sampled 

for fossil pollen.  A feature should be sampled when it is identified or removed.  Care 

should be taken to collect samples immediately adjacent to any feature that is targeted 

for pollen analysis.  The other adjacent samples will allow the ethnopalynologist to 

identify any differences between the fossil pollen spectrum found in the feature and the 

fossil pollen found in the area outside of the feature area but still within the context of 

contemporaneous samples.  Hearths can be sampled, however, the samples surrounding 

the hearth often will be more productive for pollen analysis.  Charcoal interferes with 

pollen analyses and should be avoided whenever possible, in addition pollen in the 

hearth may have been destroyed.  The amount of sediment to collect should be a 

minimum of 100 grams, however, this will depend on the type of feature. 

Open land archaeological sites: blanket samples 

 The third way to sample land-based archaeological sites is similar to blanket 

sampling for macrofossils.  This type of sampling is suggested by Pearsall (1989) in 
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reference to flotation samples.  It basically suggests that samples should be taken from 

all excavation contexts.  Her reasoning is that during the course of an excavation, it is 

impossible to predict which sediments will contain more organic materials, therefore, 

sample all of them.  This strategy can result in trends and comparisons that would 

otherwise be lost.  A similar approach, which could also be considered blanket sampling 

are the methodologies employed collecting pollen samples from pueblo floors.  Cully 

(1979) and Cummings (1983; 1998), suggest one should collect samples from grid 

Squares and in essence “blanket sample” inside the structure (see next section).  As with 

other types of contexts a minimum of 50-100 grams of material for pollen analysis is 

needed. 

Pueblo or enclosed sites 

When excavating and taking samples from pueblos, it is essential to take several 

samples from different areas within one living area.  Hill and Hevly (1968), at the 

Broken K Pueblo, established intrasite pollen comparisons, differentiating room use 

areas within the site as a whole.  Pollen sampling supported the existing evidence in 

establishing cooking or food preparation rooms and eating areas, and also the location of 

storage rooms.  Cully (1979) further experimented with pueblo sites in Chaco Canyon 

and determined that to sample any enclosed living space similar to a living floor from a 

pueblo, one pollen sample was not sufficient to identify all flora nor would it assist in 

differentiating different use areas within the same room.  Cully (1979) later simplified 

this by implementing a 16- place grid system on pueblo living floors and took pinch 
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samples within each of the boxes of the grid. In addition Cully tested the amount of 

contamination that occurred after the floor had first been excavated and after a period of 

time that had passed.  Her conclusions and findings indicate that newly exposed floor 

samples, even after a period of 12 hours of exposure, were contaminated with modern 

pollen.  This finding confirms the importance of sampling pollen from a site as it is 

being excavated rather than after the excavation has been completed but prior to back 

filling. As Cummings states, “structures are activity areas bounded by walls” 

(Cummings 1998:35).  A well-planned and executed sampling strategy is essential to 

interpret pollen data and translate it into prehistoric behavior.  Cummings (1983) 

expounded on Cully’s research and at the Dolores Project, an Anasazi Pueblo I pithouse 

in southwestern Colorado, and divided the floor into one meter Squares and then quarter-

meter Squares.  The quarter-meter Squares were sampled and analyzed for pollen.  

Because Cully noted exposed floors can become contaminated, Cummings (1983; 1998) 

sampled immediately after the floor had been exposed.    

Pits, features and packrat middens  

Features are those types of deposits that are frequently present and may or may not 

have artifacts associated with them (Shott 1987).  Feature types include but are not 

limited to: postmolds, pits, caches, and pack-rat middens.  Pits may include cache of 

tools, religious artifacts or other material considered important.  Pollen may be adhered 

to these artifacts or in the soil surrounding the artifacts.  Postmolds are areas where holes 

were dug to place a post in the soil to support a structure such as drying racks, houses or 
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storage facilities.  These posts could have been temporary or semi-permanent depending 

on the archaeological contexts found in conjunction with them.  Postmold features can 

be potentially helpful to represent the time of habitation as soil from the living surface 

will usually be mixed with removed dirt used to secure the posts.  The soil color change, 

which represents the post-mold will be evident.  Although no articles may be found 

regarding postmolds, it does not necessarily mean that samples should not be taken.  

Fossil pollen from pack-rat (also called wood-rat) middens have been used to reconstruct 

seasonality, available resources and climatic changes in the past, however, those aspects 

have been challenged by others who claim this cannot be done adequately from those 

deposits (Hall 1997).  The significance of middens are evident from Wells and Jorgensen 

(1964), Wells and Berger (1967), King and Van Devender (1977) and Packrat Middens: 

The last 40,000 years of biotic change (Betancourt et al. 1990).   A more recent work has 

been completed by Holmgren et al. (2003).  

Spot sampling midden features for pollen and other materials such as, animal 

remains including bones, hair, desiccated muscle or other tissue, feathers, scales, fecal 

pellets, insects and other anthropod remains can be invaluable for information (Rhode 

2001).  Usually woodrat middens will reflect approximately a 2.5 acre radius around the 

nest and as a result are very area specific (Rhode 2001).  Other research by Cole et al. 

(2001) illustrate the usefulness of using similar types of fossil Hyrax (shrew mouse) 

middens found in the southern Arabian highlands, in present day southern Yemen. 
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Burials and mummies 

Burials represent a unique type of feature.  The type and location of the burial (e.g., 

bundle burial, bog burial etc.), and the level of preservation will depend on how it should 

be sampled for pollen.  A sampling strategy should include control samples and samples 

taken at intervals as well as in specific areas (Reinhard and Bryant 2007).  A few of 

these important areas include, intestinal and stomach areas.  For example if preserved in 

situ, fossilized feces or the stomach contents can give information about seasonality and 

the health of the individual especially if samples are processed for parasitic intestinal 

worm eggs (Reinhard 1992; Reinhard and Bryant 1996; Reinhard and Bryant 2007).  

Other sampling strategies include sampling the nasal passageways (Szibor et al. 1998), 

sediments directly over and under the body (Leroi-Gourhan 1975; Bryant and Weir 

1986) and any areas that would have protected pollen grains such as folds in clothing (if 

still intact) (Von Post 1925).   Containers can be potential repositories of fossil pollen, 

especially if the containers are still sealed (Leroi-Gourhan 1975; Hevly 1970; Weinstein 

1992).  Other artifacts such as beads or tools, should also be sampled using an 

appropriate methodology designed for that type of artifact.  For example copper artifacts 

preserve organic materials and could be an ideal location if pollen becomes trapped 

between layers of metal (King 1975).  

Coprolites 

 Areas of human waste are useful for reconstructing direct diet information, 

especially if the sample is a human coprolite.  A coprolite is fossilized feces.  All 
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samples believed to be a possible coprolite should be collected and sent to a laboratory 

to be examined and processed.  Martin and Sharrock (1964) collected, processed and 

performed the first pollen analysis using relative percentages of the pollen in feces that 

allows the ethnopalynologist access to pollen deposited directly from a digestive tract 

and by extrapolation the pollen and/or plant resources that can be connected to an 

individual from the past.  Previous work by Callen and Cameron (1955) and Callen 

(1963) in Peru using trisodium phosphate for reconstitution heralded in a new technique 

in the study of past plant use reconstruction.  According to Bryant and Holloway (1974) 

and Reinhard and Bryant (1992), Reinhard and Bryant (1996), and Reinhard and 

Warnock (1996), data from coprolites can be used to reconstruct diet patterns, predict the 

season a site is occupied, distinguish between the pollen from a plant eaten versus pollen 

inhaled, and assist in paleoenvironmental determinations.  In addition the health of an 

individual or population may be assessed with coprolites using parasite analysis 

(Reinhard, DNA (Poinar et al. 1996; Poinar et al. 2001; Hofreiter et al. 2001) and 

steroids (Lin et al. 1978; Sobolik et al. 1996).  Other macro remains which may be 

present include: fibers, hair, insects, feathers and bone fragments (Reinhard and Bryant 

1992; Reinhard and Bryant 1996; Reinhard and Warnock 1996).  Coprolites may be 

present in those types of sites that are typically protected from the elements such as, 

frozen sites in the arctic, those sites located in dry pueblos, caves, and rock shelters or 

are sometimes found in mummified remains from areas that are dry such as deserts.  If 

feasible the coprolite in its entirety should be collected and sent to a lab for analysis. 
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Latrine areas, cesspits, and privies 

 Latrine areas are somewhat more difficult to correspond to a specific culture or 

time depending on the latrine or privy being researched.  If the latrine area is one that 

has not been cleaned out periodically, then a stratigraphic sequence of time may be 

established, however, if, as in the case of some historic privy, the receptacle is 

periodically cleaned out, then the only information available will be the last interval of 

use which would need to be dated and corroborated with artifacts (Marshall 1999).  In 

addition some of these areas would not preserve pollen well if lye or ashes had been 

added to the deposits.  Nevertheless, parasitic studies, pollen (if preserved), bone 

fragments, plant remains and more recently DNA and chemical studies would be viable 

(Reinhard and Warnock 1996; Matheson and Loy 2001; Pruvost and Geigl 2004).  As 

with most of the other contexts a minimum of 50-100 grams of sediment is mandatory.  

It is advised with these types of samples a minimum of 100 to 150 grams should be 

collected to have enough sample material to conduct additional tests. 

Midden debris and garbage areas 

 Midden and garbage areas may be sampled either with a profile or as a separate 

area depending on the research question.  If a midden or garbage area is identified and 

the boundries are known, pollen can be sampled as the midden becomes unearthed.  It 

would be important to sample the midden using a grid from every Square at specified 

intervals with depth if feasible.  Over time refuse may be deposited non-uniformly, 

creating differences in the amount at any one time in the past. Demarcations in 
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stratigraphic profiles delineating different time frames are useful but not always 

available.  For example, if the midden is large it may not be possible to get a 

stratigraphic column that would represent all deposits from every time it was used. 

Pollen has the potential to discover seasonal depositions from different areas of the 

refuse midden.  A minimum of 50-100 grams per sample should be collected. 

Grinding tools and bedrock mortars 

Grinding tools such as manos and metates should, if possible, be taken to a lab 

and sampled for pollen.  Frequently, these implements will indicate economic plants that 

were ground for use by prehistoric peoples (Bohrer 1968; Schoenwetter 1962; Hevly 

1964; Hill and Hevly 1968; Bryant and Morris 1986).  The most frustrating prospect for 

an ethnopalynologist is receiving an implement for pollen analysis that has been cleaned 

on site.  Whenever possible these artifacts should be wrapped with adhering soil intact.  

Ideally, pollen pinch samples should be taken from soil above and below the artifact, 

including samples surrounding the artifact.  In this way contamination from surrounding 

matrices may be determined.  Nevertheless, if the artifact does have trapped or 

embedded pollen as a result of grinding, it will become evident in the pollen analysis 

itself.  Bryant and Morris (1986) conducted experiments with manos and metates and 

showed that if corn was ground on these artifacts, included corn pollen which is often 

torn and fractured in a way very similar to the corn pollen found on metates at Antelope 

house archaeological site (Bryant and Morris 1986).  If the artifact to be sampled cannot 

be moved (e.g., bedrock mortars) then the artifact will need to be washed in-situ.  Linda 
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Scott Cummings (2007) provides a methodology to sample from an in-situ mortar.  

Although her procedure is designed specifically for protein collection, it is not that 

dissimilar to pollen sampling.  The best way to collect for pollen is to complete a pollen 

wash of the inside of the mortar.   Using distilled water mixed with sodium triphosphate 

brush a portion of the inside wall with a tooth brush.  Rinse the side of the mortar with 

distilled water and collect the resulting liquid with a pre-cleaned syringe (e.g., a bulb 

syringe).   The container used to store the wash material should be clean, sealable and 

air-tight.  If the sample will not be processed immediately, ethanol or some other 

antimicrobial agent that does not affect the pollen should be added.  An 

ethnopalynologist should be consulted before sampling for pollen. 

Cutting tools and other artifacts 

Any prehistoric or historic artifact has the potential to have pollen either adhering 

to it or embedded in it.  Stone tools, for example may have materials from when it was 

last used.  Residues such as blood (Loy et al. 1990; Loy and Dixon 1998), DNA from 

hair and nails (Gilbert et al. 2007), bone or plant remains such as wood fibers, phytoliths, 

starch and pollen (Briuer 1976; Piperno 1988, 1998; Piperno et al. 2004), which are 

embedded in the artifacts may still be adhered to the cutting edge of the tool.  Other 

types of artifacts include grass or reed mats or baskets in which soil can become trapped 

between the weave and may indicate the types of plants that were once stored or placed 

on those items (Greaves and Helwing 2001). 
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Adobe bricks 

In the American Southwest and other arid areas, building materials include adobe 

or mud bricks.  Adobe refers to natural clay that is mixed with organic material and 

usually baked in the sun, which results in material that is somewhat durable as a building 

material.  Adobe was additionally used as a mortar, as plaster over wood walls and used 

to construct walls in situ (O’Rourke 1983).  According to O’Rourke (1983) pollen 

recovered from adobe material can distinguish different building phases, identify 

introduced plant species, and determine different source areas of building materials.  She 

also determined that each brick is usually homogeneous for pollen content and as a result 

one sample from each brick would suffice to give a reasonable representation of pollen 

present.  Although, adobe bricks can give valuable information, caution is suggested 

before any interpretation is presented.  For example, the raw material may differ and 

may consist of mud mixed with manure or different pollen types may be included from 

water sources.  It is always better to coordinate the pollen data from adobe with other 

avenues of data. 

Garden and field areas 

Many palynologists and archaeologists have concentrated on searching for data 

in bogs and lakes to study past agriculture due mostly to the better level of preservation, 

stratigraphy and reflection of regional plant distributions (see previous chapters).  

However, potential agricultural fields and garden areas should also be sampled for pollen 

in conjunction with other archaeological and botanical evidence (Jones 2003).  
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According to Berlin et. al. (1977) the presence of pollen in and around fields can indicate 

potential patterns of use.  For example in the Sinagua (central Arizona) agricultural 

fields, corn and squash pollen were found, but the amount varied depending on whether 

the sample was taken from the swale or ridge portion of the field (Berlin et al. 1977).  

Pollen can provide an independent means of investigation by identifying what was 

grown in potential agricultural and garden plots (Berlin et al. 1990).  The first step is 

identifying where garden or agricultural areas are present.  In the instance of the Berlin 

et al. (1977, 1990) investigations, they were carried out utilizing aerial thermography in 

areas with past volcanic episodes.  According to Berlin et al. (1990) soil samples should 

be collected for pollen analysis in any area that may have the potential of being used for 

cultivation and where feasible, samples should be collected along parallel transects and 

from differing depths to find the extent of the agricultural plot.  According to Fish 

(1994) modern surface samples for comparison should be collected first, especially from 

sediments directly above where the ancient fields are potentially located.  Fish (1994) 

further states that care should be taken to sample for all contingencies.  Taphonomic 

events may differ in open agricultural fields that are located on the side of a hill where 

terraces were utilized (Fish et al. 1984; Martin and Byers 1965) versus fields that were 

enclosed by a wall (O’Connell 1986).  Pollen samples from prehistoric buried fields in 

regions, where the pollen was exposed, wetted and dried by rain, and aerated by plowing 

are the least ideal.  If a plan for sampling is prepared before excavation, questions such 
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as when the farming was initiated, plant succession, and a general time frame and 

sequence of farming in the area may be answered. 

Ceramic vessels and containers 

Ceramic vessels include any container made of clay, whether from an underwater 

or terrestrial context.  Ceramic vessels are found all over the world and are mainly used 

for food storage, cooking, burials, ceremonial uses, and transporting materials (Kelso 

and Good 1995).  According to Jones et al. (1998) pollen may be found in abundance in 

pottery vessels, usually adhering to residues inside of the container.  With a ceramic 

vessel, samples should be collected under and around the in-situ site of the artifact 

always washing and drying the tool (with clean water and towels) used to collect the 

samples between different samples (Bryant and Morris 1986).  In addition, samples can 

be taken from inside a container.  One way to do this without damaging the vessel is to 

remove the remaining matrix from inside and outside of the vessel, leaving only a thin 

layer in contact with the side of the vessel.  After the extra material is sampled and 

removed from the vessel, use soapy water to wash the inside of the vessel and then 

collect the soapy water for analysis in a sealable container.  This last procedure is best 

done in a sterile laboratory setting.  If the vessel was sealed with resinous materials, or 

carried plant resins, this too can contain pollen and should be sampled by scraping the 

insides with an implement that has been cleaned first. In some cases special tools will 

need to be designed to accommodate the container. 
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Some searches for pollen in amphora found on underwater shipwreck sites 

(Bryant and Murray 1982) have not been as successful.  Nevertheless, sampling 

ceramics and other containers can indicate the contents, time of year (i.e., the season), 

and/or the place of origin (Jones et al. 1998; Gorham 2000).  Other containers include: 

boxes, baskets, glass bottles or anything that was used to store food or materials 

(Weinstein 1992).   

Lake deposits and bodies of water    

Extensive research has been conducted in the dispersion, distribution, and 

collection patterns of pollen found in lake sediments including: Davis (1969), Davis and 

Brubaker (1973), Pennington (1979), Bunting and Middleton (2005),Wilmshurst and 

McGlone (2005), Beaudoin and Reasoner (1992), Traverse (1994; 2007), Holmes 

(1994), and Tauber (1965).  Nevertheless, as Frey (1954) points “pollen of all the 

vegetational components of a region do not turn up in a pollen diagram, at least in 

frequencies corresponding to the actual occurrence of the plants.  One, therefore, must 

seek out any bits of evidence which seems to indicate trends” (Frey 1954: 86).   

Ocean and open water sites 

“There are no [underwater archaeological] sites on which sampling for 

environmental or scientific analysis is not relevant” (Dean et al. 1992:200).  

Unfortunately, until recently this has not included palaeoethnobotanical remains 

specifically pollen analysis.  Strides have been made towards the inclusion of pollen 

sampling from underwater shipwreck sites but many sites continue to be excavated 
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without sampling for pollen.  Underwater sites include any site covered by water.  To the 

uninitiated, terms such as underwater archaeology, maritime archaeology and nautical 

archaeology may seem synonymous.  Nevertheless, there are distinctions between these 

terms that should be defined.  According to Muckelroy (1978) maritime archaeology is a 

subdiscipline of archaeology and defines it as the scientific study of material remains 

from the sea. Muckelroy (1978) continues by stating that he considers nautical 

archaeology to be a specialty closely connected with maritime archaeology but devoted 

to the study of the technology of ships, ship building and all of the accoutrements 

associated with a ship, including harbor facilities.  The confusion with these terms is the 

interconnectiveness of the three specialties.  Although maritime archaeology does 

encompass shipwrecks and underwater sites, it also includes those items that are not 

underwater as well (e.g., ships buried on land or in tombs) and suggests sites must be 

located in oceans or seas only.  Underwater archaeology does include ships but it does 

not include land based shipwreck sites (e.g., shipwreck sites no longer in a body of 

water).  Nautical archaeology does include underwater and land based sites, however, it 

does not include any material remains that are not part of a ship.  As with any discipline, 

distinctions are made for clarification and to separate out specializations.  Nevertheless, 

a subdiscipline heading to cover all three aspects of this field would help with the 

confusion.  Currently, these terms are often used synonymously but unless they are all 

grouped under one heading I believe that the confusion will continue.  For clarification 

and for the remainder of this section all sites pertaining to any of these three specialty 
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fields will be referred to as water associated sites (see Figure 6).  A definition for this 

subheading is any artifact of human manipulation that may be associated with 

preservation due to water inundation, whether the artifacts are located on land or in a 

body of water or any artifact created to be used in a water setting regardless of location. 

 

 

 

Figure 6.  Diagram of sub-disciplines of water associated archaeology. 
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Sampling a lake  

Sampling lake sediments should include one or more core(s) at various locations 

where sedimentation may differ. Cores are easily collected from lakes that freeze in 

winter, because it allows the researcher uninhibited surface access. If the lake is not in a 

cold region, then boats or ships (depending on the size of the lake) will be needed. 

Criteria for choosing a lake to be sampled should include whether it is a high energy 

(i.e., many rivers, streams etc. flowing in and out of the lake) or a low energy lake, the 

relative distance from nearby archaeological sites, the size with regards to the limits of 

expenditures (e.g., the number of samples that are budgeted) and whether correlations 

with carbon dating is feasible (Tauber 1977). Small lakes tend to represent vegetation 

immediately adjacent to it.  The closer the archaeological sites are to a lake being 

sampled, usually the better the correlation. In lieu of proximity and if there are several 

bodies of water nearby, correlations could be made within the several bodies of water, 

depending on availability and expenditure limitations. Rivers and/or creeks tend to be 

high energy environments and usually result in low preservation conditions; they are 

also likely to be contaminated from further areas upstream. As a result these types of 

water sources should be avoided. Lakes act as a natural collector of pollen and can often 

provide information regarding palaeoenvironmental changes. Lakes should be sampled 

according to size, depth, and the general shape of the basin. For example, if the lake has 

steep sides, sediments may slough off those near shore areas into the deeper areas of the 

lake.  This type of sedimentation is referred to as “sediment focusing.”  It is caused by 
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the process by which pollen types settle differently and in different ratios depending on 

where in the lake conditions and sediment input from areas surrounding the lake (i.e., 

streams, vegetation, prevailing winds) (Davis and Brubaker 1973; Davis et al. 1971; 

Davis et al. 1984) have contributed to the deposits.  When sampling a lake it is prudent 

to take as many cores as feasible from as many different locations as possible. If a 

palaeoenvironmental reconstruction is the goal, then carbon dating or other dating 

technique may help correlate the data to any nearby, dated archaeological sites.  The 

greater the number of cores examined the higher the potential accuracy of the 

reconstruction.  

A common type of instrument utilized for lake coring is a piston sampler. The 

basic theory and construction of this type of sampler or corer is an external tube with a 

metal tube liner and a piston inside that creates a vacuum with the sediments to keep 

them in place during extraction. Other types of samplers such as vibracorers or corers are 

also available.  Nevertheless, some samplers are better suited for one type of sediment 

over another (e.g. clay vs unconsolidated sediments). For lake sediments the type of 

sampler is usually determined by the depth of the lake (Wright et al. 1965; Aaby and 

Digerfeldt 2003). According to McAndrews (2005), while studying Crawford Lake, 

Ontario, geese fecal remains found in lake core sediments, contained cereal pollen from 

plant species known to have been domesticated prehistorically.   The significance of this 

finding was that McAndrews was able to demonstrate why there was an unusually high 
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percentage of corn pollen in the lake sediments after the Native Americans had cleared 

the site.   

 Prehistoric sites located near lakes and underwater sites either in a lake 

environment or marine environment may be connected with samples from water sources 

near the archaeological site (Galili 1988; Burden et al. 1986). For a more complete 

history of coring archaeological sites see Stein (1986, 1991).                            

Shipwreck sites 

A recent study regarding sampling for microfossils at underwater shipwreck sites 

is Gorham and Bryant (2001).  The following is a summation of that work. 

Areas to be sampled: 

• Bilge mud 

• Areas between or under artifacts 

• Amphora sealed and unsealed, barrels, boxes and any other recovered container 
found 

• Sediments directly underneath the shipwreck 

• Sediments near the shipwreck for comparison 

• Control samples – collected from the water column and from nearby shore areas. 

 

Once the area(s) to be sampled has been determined, a collection procedure to ensure 

the least amount of contamination needs to be implemented.  For any amphora or 

container collected for sampling, ideally it should be raised from the bottom in the exact 

orientation that it was found.  In this way any sediments that settled inside the container 

will, ideally, not mix with the pre-depositional sediments.  All containers, when feasible, 
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should be sealed within sterile, plastic material when found in order to maintain integrity 

before examination and to decrease the chance for contamination during the transport to 

the surface.  With amphora (or any similar type of container), the opening should be 

covered with a plastic bag and sealed with a rubber band before transport to the surface.  

On shore sampling strategies may be employed to increase accuracy and decrease 

contamination of the samples.   

Amphora and other containers 

According to Gorham and Bryant (2001), sampling of amphora may be done 

with a spoon or a small coring device, especially when the opening of the ceramic vessel 

is small.  Initially, any liquid in the container should be poured into a sterile, sealable 

container and kept for analysis.   If the container cannot be sampled immediately, then a 

plastic bag or some other sterile material should be placed over the opening to prevent 

ambient pollen from entering the vessel.   If possible the ceramic vessel should be lifted 

to the surface in the same orientation in which it was found to reduce mixing of the 

sediments.  If the container no longer has a stopper, it may be possible to separate the 

sediments that were deposited after the stopper was removed if care is taken when 

removing the artifact.  Each situation is unique and must be evaluated on site to 

determine the best sampling strategy.  Although, it may not be possible to distinguish 

between the original and later use deposits, control samples will help solve this problem.  

Sampling from shipwreck sites provides a unique challenge for the ethnopalynologist.  

Ideally, the ethnopalynologist is either on site or consulted before excavation begins.  In 
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both terrestrial and underwater archaeological sites it is essential that contamination be 

kept to a minimum. Detailed accounts of where the artifact was found in relation to 

nearby water currents, the shoreline and the shipwreck itself provide additional 

information for the ethnopalynologist to consider in any interpretation of the pollen data.   

Sampling a bottle  

 Glass bottles are sometimes found associated with shipwrecks (Weinstein 1992).  

These should be collected for pollen in a similar way as ceramics.  If the cork is still 

present in the bottle, ideally the entirety of the liquid in the bottle should be sampled for 

pollen including any sediments present.  Any liquid or sediment in a sealed container 

from a shipwreck should be poured into a sterile container with a bacteria/fungi 

deterrent, sealed and sent to a lab for analysis.  If DNA or other chemical analyses are to 

be performed, do not add a bacteria/fungi deterrent.  According to Weinstein (1992) 

when possible the bottles should be brought to the surface in the same orientation it was 

in when found with the tops of the bottles sealed with a plastic bag and a rubberband.  If 

the bottle is still sealed, then in addition to the orientation and plastic bag, the bottle 

should be sampled within an enclosed system using a syringe (see Weinstein 1992). 

Sampling sediments  

To sample the sediments at underwater sites similar protocols to protect against 

contamination should be observed.  Gorham and Bryant (2001) suggest using a large 

(20cc) medical syringes that have had the front ends cut off (needle and port where the 
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needle is inserted).  Using syringes will not only collect a known volume of loose 

sediment but with the syringe sampling tends to be easier.  If there are large volumes to 

be sampled a basting syringe is more effective to collect and measure the materials.  The 

open end can be placed in direct contact with the sediment to be collected, thus avoiding 

contamination.  Once the sample has been collected they suggest placing the syringe 

with the sample into a sterile plastic bag and then sealing the bag before transportation to 

the surface.  This will reduce the introduction of ambient pollen into the sample and will 

keep the sample clean before and after it is transported to the appropriate laboratory for 

analysis.  Sediments should be sampled anywhere there is potential for valuable 

information and preservation such as the bilge mud along the keel, sediments or 

materials found between rib timbers, underneath decking and floor boards, between or 

underneath cargoes or other areas where artifacts that may have trapped during the time 

the ship sank or shortly thereafter. 

Other potential areas to sample for pollen 

Other areas to collect and sample from underwater sites include any botanical 

remains such as dunnage, or areas where dunnage was held.  Ropes and caulking are 

especially rich in information.  Ropes were usually treated with naval stores or a form of 

pine pitch which could have trapped pollen within the fibers from the time they were 

treated.  In addition, microscopic analysis can often identify the plant fibers used to 

make the rope.  Caulking made from plant materials, with the help of pine exudates, is a 

rich source of pollen, plant fragments and fibers. Containers such as woven baskets and 



 
 
 

 

157 

mats can trap pollen in-between the weave with dirt or resin and should be washed 

and/or teased out.  These bits of information can indicate seasonality, a spatial 

orientation of where and when the ship was built or caulked and the type of cargo or 

supplies utilized on the ship for the crew (Weinstein 1992; Gorham 2000).  Still another 

area of research for pollen retrieval is from plant exudates or resins.  Varieties of plant 

resins were often utilized to seal containers, protect ropes and seal the hull.  During use 

these plant exudates would eventually drift into the bilge where a plethora of other 

debris may be found (see Chapter IV).  

For the most part other sites that are water associated can be sampled and treated 

similarly to shipwreck sites.  In many cases water-inundated sites or sites that are now in 

a land context will need methodologies used in both terrestrial sites and water sites.  

These types of sites are frequently old harbor areas that were filled to provide new land 

areas.  Other sites include lakes that were later drained or riverbeds and deltas that 

became dry land where the river changed course. 

Control samples: underwater  

Ambient water column samples   

An essential sampling procedure is to collect samples from the surrounding water 

at different depths to determine the type of pollen that could have mixed with the 

archaeological samples, or those pollen types that may have washed in from other areas 

(e.g., river washout, wind pollinated pollen types and other pollen types from a modern 
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context).  To accomplish this either single samples of water may be taken at one time or 

ideally samples could be taken over a period of time.  Because most water sources 

contain sparse amounts of pollen, each control sample of water should consist of at least 

20 gallons (Traverse 1990).  Traverse (1990) suggests using a 20 gallon container to 

collect surface water samples but employing a weighted hose with a pump to collect 

deeper samples.  The samples can then be set aside for a period of eight hours to allow 

the sediment and the suspended pollen to settle to the bottom.  At the end of this time the 

top portion of water may be removed using a suction tube, but leaving two to three 

centimeters of water to remain on top of the sediments.  Alternatively, Traverse (1990) 

also suggests letting the samples evaporate and collecting the resultant sediments.  

However, because of pollen degradation issues related to wetting and drying the first 

method would be preferred.   

Ambient pollen from nearby land sources 

Taking nearby terrestrial surface samples from the nearest land source, such as 

the shoreline and areas where the vegetation changes dramatically, can help in two ways.  

It can reveal those pollen types that may have been utilized or were present in the past as 

well as those pollen types that may have contributed to the sunken site post-depositional 

versus pollen types that are found only in the context of the underwater site.  

Additionally, it should be noted if the shipwreck site is within an alluvial delta or other 

alternate water source, those sources also could have transported pollen from areas 

farther inland. 
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Seabed cores 

Control samples in the form of sediments collected from around the shipwreck, 

including cores from within and outside of the site should be collected.  According to 

Gorham (2000) if the underwater vegetation, topography and sedimentation are 

comparable, then cores and/or samples can be taken approximately 500 meters away 

from the archaeological site at each of the four cardinal directions.  Comparisons 

between the ratios of pollen types found from the two contexts should be completed to 

determine if there are any pollen types or concentration values that cannot be explained 

by the ambient pollen.  If the pollen associated with the shipwreck is different from the 

control samples, then the pollen found could be interpreted to be from the time of the 

shipwreck deposition and interpretations may be drawn. 

Control samples: terrestrial 

Control samples should be taken approximately at 3 to 10 meter intervals 

walking away from the archaeological site in a straight line creating a transect, although 

the exact direction and interval may vary depending on the size and terrain of the land 

surrounding a site. At each selected interval pinch samples should be taken. A pinch 

sample is the amount of soil which can be picked up with the index finger and the thumb 

(Adams and Mehringer 1975). At each new control sampling location along a transect 

the researcher should collect no less than eight to twenty pinch samples and combine all 

of them into one sample.  In addition, at each new control sample collecting point, a new 

bag should be used. The bags should indicate the relative location either through a grid 
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or GPS including an elevation. Another way to collect samples, in lieu of a transect, is to 

collect pinch samples in random areas near a site, creating new samples (i.e., start a new 

bag) whenever the vegetation changes, but recording the coordinates and elevation of 

each sample. Only with careful collecting can accurate information be derived from 

control samples. In addition, as an aid to fossil pollen interpretations, it is essential for 

the researcher to have information about the vegetation at each control sampling 

location.  For each sample, a minimum of 100 grams of sediment should be collected. 

Storage of soil samples for pollen analysis 

Before collecting samples decide whether plastic bags or paper bags should be 

used; also identify the type of soil, and what research question you want to answer. If 

you decide to use paper bags then double bag them and roll the bag up and secure it with 

a rubber band when finished. In this way it will prevent rips in the bag and avoid 

contamination.  The advantage of using paper bags is that the bags can be dried in the 

sun or in an oven under low heat.  That process will evaporate any moisture in the 

sample and thus retard any further microbial damage to the pollen.  If plastic bags are 

used, keep your samples dry to prevent potential pollen degradation by fungi and 

bacteria.   If this is not possible make sure that you add approximately one ounce of 

alcohol, preferably an alcohol with a low water content. The alcohol will inhibit 

microbial activity.  In lieu of adding alcohol, the collected samples could be frozen.  The 

freezing will not damage (Holloway 1989) the pollen and it will prevent microbial 

activity until processing begins. 
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Dry samples 

Terrestrial samples should ideally be collected and stored in containers/bags that 

will allow air to circulate but keep ambient pollen out.  Paper bags will work well for 

this as long as the samples are not large and are not wet.  Samples are safe to store 

indefinately if, the samples are completely dry, there are no infestations of insects and 

the bags or containers remained sealed and do not deteriorate.  Unfortunately, paper bags 

do tend to deteriorate through time and other archival alternatives will need to be 

implemented if samples are to be kept for an extended duration of time. 

Wet samples 

Containers that will be used to store wet samples should be clean of any ambient 

pollen, sealable and durable.  Although many samples are collected in plastic bags, when 

dealing with water samples it is important that these samples remain wet but free of 

microbial or fungal growth.  Collected wet, these samples should be kept wet and sealed 

in containers with a small percentage of ethanol, or some other agent that is anti-

microbial/fungal, and yet will not damage fragile pollen.  These bags will usually have 

to be taped closed for transport and to protect them against leakage during transport.  

Placing these in an additional plastic bag or a sturdy plastic container is usually prudent.  

If feasible the samples should be refrigerated close to freezing to help retard microbial 

activity.  If there is a potential to perform DNA or other chemical tests on the samples 

then alcohol or other agents to prevent microbial and fungi growth should not be added.  
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If this is the case, it becomes even more important to refrigerate or freeze the samples as 

soon as it is feasible. 

Releve  

A releve should be conducted at each control sample location to determine the 

floral composition in the vicinity of the sample. It is through controlled sampling and 

vegetational observations that the pollen data can be used effectively as a reference 

points for the interpretation of environments and nearby archaeological pollen samples 

(Williams et al. 2007).  

The releve is a quantitative method used to estimate the percentage of 

vegetational composition in a particular area.  Originally developed by Braun-Blanquet 

(1932) as a way to classify the diversity of vegetation over a large area, the releve 

methodology is not purely quantitative because it relies on personal observations rather 

than actual counts of each particular type of plant (Sawyer and Keeler-Wolf 1997; 

Barbour et al. 1987). When a releve is to be completed, usually a basic physical unit of 

some specified size and shape is sampled. Two such units include vegetational stands 

and vegetational plots. A stand is a physical unit or area in a landscape that has 

compositional and structural integrity. In other words, a stand is an area in which similar 

plant species are found and the areas within which these species are found have 

undergone similar changes. For example, if the entire side of a hillside was similar in 

vegetation or would have compositional unity, but one-half of the hillside had been 

burned by a fire, then this hillside could be separated into two different structural units 
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and, therefore, two different stands.  In other words, a stand should be fairly 

homogenous.  A vegetational plot is a sub-sample of a vegetational stand.  The size of 

the plot is user defined and should be based on a comparison with other plots (i.e., the 

plot size should be the same in all plots to be compared).  The size of the plot and 

therefore, the releve will depend on the size of the area that is to be sampled and the 

relative distance and composition of the surrounding vegetation that could impact the 

area to be collected. With pollen surface samples the size of the plot or the number of 

plots really depends on the researcher and the various constraints of budget and time. 

Ideally, a releve is detailed and includes the location of the vegetation by use of GIS, 

GPS, and the classification of soils; including elevations among other features. In 

ethnopalynology additional important information includes the distance from the 

archaeological site.  

How to estimate plant cover using releve  

According to the California Native Plant Society’s releve protocol (2003) there 

are five methods to estimate plant coverage. These include 1) the invisible point-

intercept transect, 2) subdivision of sample plot into quadrants, 3) compact all plants into 

a continuous cover in one corner of the plot, 4) estimate tree cover, and 5) the process of 

elimination technique. For archaeological purposes the traditional releve technique of 

using cover classes to estimate tree cover is most often used. However, it is essential to 

consider and report all vegetation in the releve plot, not just the tree cover.  This 
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technique establishes cover classes and defines each class as a range of percentages. An 

example of classes found in the California releve protocol (2003) is as follows:  

Cover Class 1: the taxon covers < 1 % of the plot area  

Cover Class 2: the taxon covers >1% - 5% of the plot area  

Cover Class 3: the taxon covers >5 - 25 % of the plot area  

Cover Class 4: the taxon covers >25 - 50 % of the plot area  

Cover Class 5: the taxon covers >50 - 75 % of the plot area  

Cover Class 6: the taxon covers > 75% of the plot area  

Transporting samples  

Soil samples within the United States are relatively easy to ship by mail.  Any 

soil samples originating from outside of the U.S. may require permits due to U.S.D.A. 

Federal regulations. Currently, any soil sample received from outside of the U.S., 

especially from those countries that pose a risk of soil pathogens and/or other forms 

contamination of unwanted plant species and plant diseases, must gain an import permit 

and the samples must be sent to a certified agency. The laboratory or agency must 

possess methods to dispose of the excess soil competently. In addition many countries 

require the researcher to obtain official export papers for soil.  
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CHAPTER VI 

STATISTICS FOR ETHNOPALYNOLOGY 

Higher level statistics is not commonly performed with most archaeological 

palynology studies because of their inherent complexities.  Even with the assistance of 

computers and statistical software, a non-parametric statistical analysis is a daunting 

undertaking, frequently pushing the limits of today’s personal computers.  Most 

archaeologists and palynologists have a limited understanding of statistics.  In fact many 

do not have a strong mathematical background.  Statistics is a specialized field that does 

not necessarily overlap with conventional use of mathematical theory in archeology and 

palynology.  Although statistics is considered a mathematical probability science, 

generally, mathematicians do not readily embrace statistical theory.  In fact statistical 

theory is so myriad with multiple applications, possessing many sub-specialties, 

decreasing the likelihood of finding a statistician who fundamentally understands what is 

necessary to analyze pollen data.  Without a suitable statistician, the non-mathematical 

researcher will often perform the minimal statistical analysis which may or may not be 

properly utilized.  Even with the use of a good statistical program, if the researcher does 

not understand how the program works, bad assumptions may be made and erroneous 

results obtained.  This chapter was create to elucidate some of the problems an 

ethnopalynologist may encounter as well as well as programs and procedures that should 

allow statistical analyses to be applied to pollen data in an archaeological setting.   
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Before beginning 

To competently run the analysis and interpret the results, the researcher must 

understand what types of research questions can be answered.  By answering these 

questions, then, those tests and procedures which are most applicable may be 

determined.  The process outlined in this chapter focuses primarily on regression.  The 

goal of this regression is to be able say if these conditions exist and are met, the pollen 

count should be this.  

Research questions that can be answered using statistics are composed of three 

types: ‘is there a difference’, ‘is this greater than that’, or ‘is this less than that’. 

Selecting the software 

When selecting statistical software, an avenue often overlooked is colleagues.  

Ask colleagues concerning their experience with any software for consideration.  While 

every effort has been made to make this guide as complete as possible, things do change.  

Most statistical packages are not user friendly, especially for the uninitiated.  Most 

researchers know their material intimately but not statistics.  The statistics required for 

pollen analysis are not usually found in basic statistics courses due to the difficulty of the 

material and time constraints.  As it is virtually impossible to do these calculations by 

hand, a software package must be utilized.  Even with a statistical program, finding and 

using the correct test can be trying.  Nevertheless, there are procedures and programs 

that can be used to statistically analyze pollen data, with a minimum of frustration.  

What follows is compilation of procedures that are useful and applicable for pollen 
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analysis.  While this list is not exhaustive, it covers the procedures and tests needed for 

most pollen analyses.  In many ways the procedures outlined challenges many current 

methodologies.  While offering insights not commonly found in many pollen analyses.  

This guide is not meant to be a primer on the equations and mathematics of statistics but 

rather a resource of definitions and procedures needed to enable the majority of pollen 

researchers to statistically analyze their data. 

Preparing the data 

Before any statistical test may be performed, it is essential that the data be in a 

format acceptable to the program being used.  Most statistical programs will accept data 

from a spreadsheet or data base such as Microsoft Excel, Access, or Corel Quattro Pro.  

Nevertheless, it is important to make sure that the data is in the form supported by your 

statistical program, SPSS for instance requires that the data be in columns.  Usually, it is 

not difficult to convert from one format to another but it is much easier and prudent to 

use a format supported by your statistical program.  The best advice is to read the 

manual of any program destined to become the workhorse for the analysis.   

The data 

All pollen data derived from archaeological origins will be nominal (i.e., pollen 

counts) which require nonparametric statistics to analyze the raw data.  Nominal data is 

categorical data in which the order of the categories does not matter.   In other words, it 

does not matter whether oak or pine is counted first.  Generally, with counts, there will 

be an uneven or skewed distribution.  This means that the data on a graph will be 
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clumped on one side or the other as seen in Figure 7.   

 
 

 
 

Figure 7.  Examples of Bell Curve and skewed distributions. 

 
 
 

If, however, the data resembles a “Bell Curve”, then the data is normal.  In which 

case, it will be possible to analyze the data using normal proportions.  With pollen data, 

a normal distribution is not likely, so as part of the process the data will have to be 

“normalized.”  Normalization means finding some mathematical function that will make 

the clumped graph look like a “Bell Curve”. 

Definitions 

Chi-Square 

Chi-Square is useful for pollen data because it does not require that the data be 

normal, i.e., the graph of the pollen does not have to look like a “Bell Curve”.   In fact 

the Chi-Squared test is generally the best choice when the data is skewed (i.e., most of 

the data is on one side of the graph as seen previously in Figure 7.  Because skewness is 

allowed, this is called a non-parametric test.  A parametric test for pollen data requires a 

normal distribution.  This generally requires more data than is commonly collected. 

The Chi-Squared test for association will be able to tell if there is a relationship 
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between the pollen types but not what kind of relationship.  If the researcher has a 

particular model in mind and wants to know if the available data fits that model then the 

Chi-Squared Goodness of Fit would be the appropriate test.  There are two restrictions 

when using Chi-Square: 1) the expected frequency is at least one, and 2) 20% of the 

counts cannot be less than five. 

If these restrictions are not met there are three alternatives.  These are 1) combine 

pollen types until the restrictions are met, 2) multiply all of the data by a constant to 

raise frequency (this only works for marginal pollen data), or 3) get more data.  For 

example, pollen types may be combined to meet the restrictions (i.e., combining three 

samples of pine pollen).    

ANOVA 

ANOVA, which is the analysis of variance, is used to determine if the average or 

mean of various samples is the same or not. The way the ANOVA determines this is to 

compare the variances of the samples.  If the variances for the samples are about the 

same then the means of the samples are also the same.  Variance is how much the 

individual points vary up and down from the mean or expected value when looking at a 

chart of the data.  While the deviation (deviation= variance ) is basically how much the 

points vary up or down from the mean, as seen in Figure 8.  
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Figure 8. Illustration of deviation and variance. 

 
 
As an example, the mean, variance, and deviation for a small sample of 

Zanthoxylum (a flowering plant in the family Rutaceae) may be found on Table 6. 

 
 

Table 6. Small sample for Zanthoxylum. 

 
Sample Zanthoxylum 

1 11 
2 7 
3 21 
4 3 
5 20 

 
 

Finding the average or expected value: 

E(x)= the sum of the sample counts

number of samples

x

n
=

∑  =
11 7 21 3 20 62

12.4
5 5

+ + + +
= =  

 

Finding the variance: 

V(x)=E(x2)-[E(x)]2=

22
x x

n n

 
−   
 

∑ ∑
= 

2
the sum of the square of the sample counts the sum of the sample counts

number of samples number of samples

 
−  
 

=
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( )
2 22 2 2 2 2

211 7 21 3 20 11 7 21 3 20 1020 62
204 12.4 50.24

5 5 5 5

+ + + + + + + +   
− = − = − =   
   

 

Finding the deviation (only positive values are used): 

S = ( )V x = 50.24 =7.08   

The variance used for the ANOVA is based on the residuals.  Residuals, also 

known as the error, are the difference between the actual sample values and the 

expected, as seen in Figure 9.  This is very similar to the deviation but unlike the 

deviation, which is for a sample, the residual is for a single point (i.e., a type of pollen 

found in several samples) and which spans multiple samples. 

 
 

 
Figure 9. Residuals illustrated. 

 
 

 
The ANOVA requires that the data be normal (“Bell Curve”) and independent.  

Independent means that when one sample is collected this will not affect the next sample 

(e.g., when the trowel is washed off  between sampling).  To be able to apply the 

ANOVA to pollen data, it should first be tested for normality.    The easiest way to test 

for normality is to use a normality plot, also known as a pp plot.  What this does is plot 

the residuals about a 45o line.  The sample(s) are normal if the points are either 
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symmetric about the line or on the line, as seen in Figure 10.  If normality is not 

satisfied, then the ANOVA as well as the regression will yield misleading results.   

 

 
 

Figure 10. Graph of the test for normality using plot of residuals (pp or normality plot). 

 
 

Generally, pollen data is not normally distributed.  Nevertheless, if the researcher 

requires the ANOVA and the data is not normal then the data needs to be normalized.   

To normalize the data it is necessary to find a function/equation that will make it normal.  

For example, one possible transformation is to use the logarithm, log(x).  However, there 

are any number of functions that can be tried to normalize data.  Realistically, any 

attempt to normalize data should utilize some statistical software package as this is a 

process of trial and error.  

Other definitions 

Mean  

The expected value or average, for a normal distribution, will have a probability 

of .5. 

R-Value 

The R-Value which is the linear correlation ranges in value from -1 to 1.  If the 

value is negative then the graph is going down and up if it is positive.  On the SPSS 
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output the R-Value is labeled as the Correlation of Parameter Estimate.  If the value is -1 

or 1 then the data is linear or follows the function currently being run.  While if it is 0, 

the pollen types do not have a relationship of the type being tested.  Ideally, a value as 

close to |1| as possible is desired.  Typically for pollen data an R-Value of |.5| is 

acceptable, 

Regression  

This will determine what model or equation that best describes the data. The goal 

of the regression described herein is to be able say “if I have these conditions, my pollen 

count should be this”.    

R-Squared or the coefficient of determination 

R-Squared which is the coefficient of determination is the proportion of error 

from the regression to the total error.  Since the error or residual term from the graph, see 

Figure 9, could be positive or negative this term is squared.   The total error comes from 

two sources: 1) random error and 2) error from the method.  R-Squared varies from 0 to 

1 or to think of it another way the value is from 0-100%.  Since it is not possible to have 

more than 100%, then the value will not be greater than one.  A value of one is the most 

desirable because all of the possible error is then from the method.  This would mean 

that the regression or ANOVA is perfect because there would no random error.  An R-

Squared of 0 means your error is totally random.  In terms of a regression or ANOVA, 

an R-Squared of 0 means that the trial was a failure.  Typically an R-Squared of 0.5 to 

0.8 which are moderate and strong correlations respectively are expected. 
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Multinomial  

This will determine where the transition points are and give a relationship 

between pollen types and the marker grains (i.e, Lycopodium).  Transition points are 

where the dominant force (i.e., weather, decay rate, etc.) changes.  The primary 

weakness with this methodology is that only a limited number pollen types at a time may 

be used;  assuming that the pollen types are fundamentally similar and that the 

relationship will fit a known basic function type.  A multinomial regression has the 

advantage in that it will explore the possible ANOVA’s in finding the best fit (i.e., the 

equation) for the data and the various regressions.   

Poisson  

This is the distribution for time or rate of rare occurrences.  For example, if the 

rate of pollen production is known or if the sedimentation rate is known this distribution 

could be useful.   

Horvitz-Thompson  

This theorem states that samples can be taken in batches.  This means that the 

samples do not have to all be collected at the same time.  For example, samples may be 

collected on a Tuesday and then on the following Friday.  While some transitory 

environmental factors may have changed (i.e., dew on the pollen, wind changes etc.), 

this will not adversely affect the data collected if there are enough samples to draw from. 

Bernoulli trials  

These are a series of events with only two possible outcomes.  In the case of pollen, 
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either the pollen is present or not.  These events must have a constant probability of 

occurring.  In addition these events are mutually independent (e.g., the count for oak will 

not affect the count for pine). 

Cluster analysis  

This is useful for grouping similar pollen type distributions in reference to a 

topological map of the archaeological site.  For example, this is useful in comparing 

archaeological pits within a site. 

Pattern matching  

Using the various patterns (i.e., logarithmic, linear, polynomial, exponential, 

etc.), to find best fit for the data. 

Weighting  

After finding the pattern(s) that best fits your data then weighting may be 

explored.  For example if you have a small sample, it is possible to use a 

predictive/corrective model.  In other words, to make a prediction of the next sample and 

then correct it when the sample is statistics are run.  In this way the next prediction will 

be more accurate.  A sample can be weighted based on the correction value of the 

predictive/corrective model.  This would allow one to take many of the smaller 

predictions to make more meaningful models.  That can give information on individual 

components such as the individual strata at a site.  These individual strata from separate 

sites or pits within a site can then be combined and weighted to correct problems within 

strata.  Allowing real time predictions and comparison between the different sites or pits 
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based on the same strata.   

The programs 

The best known statistical programs include: SAS, SPSS, and MINITAB.  A 

lesser known software package is NCSS.  The reason NCSS is lesser known is the price.  

This program at the time of this writing was selling for approximately $500.  

Nevertheless, it is by far the better program but it must be mentioned that no one 

statistical program will do everything and that each of these programs will most likely 

run the various statistical tests differently but with more or less the same accuracy.  The 

first step with all of these programs (as outlined in Figure 11) is to run a Chi-Square test 

to find associations between the pollen types and then choose the those pollen types that 

have the highest degree of association.  For example, if spruce pollen is found then it 

may be assumed that similar plants that thrive in cooler biomes will also be found such 

as maple.  In this tutorial only NCSS and SPSS are explored.  Nevertheless, SAS and 

MINITAB do have their place in statistical analysis. 
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           Figure 11. Basic statistical flowchart. 
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NCSS 

With this program after the Chi-Squared, NCSS will perform the transformations 

needed to satisfy the normality requirement for regression.  The ability to perform the 

transformation is a somewhat unique feature. Most programs, as demonstrated for SPSS, 

it is necessary to first normalize the data then apply the tests for multinomial/polynomial 

regressions.  

Working with pollen data inside NCSS 

Once the pollen data is collected and entered into an acceptable format for NCSS 

then the analysis can begin.  In this tutorial the process from start to finish of 

determining a relationship or equation between major pollen types in your sample and 

Lycopodium or concentration values will be explored.  Additionally, this program has 

the capability to expose relationships that were not evident in the raw data. Marker 

grains such as Lycopodium or Eucalyptus are utilized because they are consistently 

present throughout the sample and marker grains allows for comparisons and predictions 

between samples.  For example, if the concentration value is known for a specific pollen 

type in a sample then unknown concentration values for additional pollen types may be 

predicted. 

The first step is to look for any problems with the data.  The type of problems 

that the computer would have in analyzing data consists of, notations such as letters or 

punctuation placed in the data when the data was entered into the spreadsheet, as seen in 

Figure 12. 
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Figure 12. Text that needs to be removed before analysis. 

 
 
 

In this tutorial the process of determining a relationship or equation between 

major pollen types in your sample and Lycopodium or concentration value will be 

demonstrated.  Generally, Lycopodium counts or the concentration value(s) are used for 

comparison because they are consistently present throughout the sample. 
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Figure 13. Pollen data in NCSS expressed as a worksheet. 

 

  Notice that the data in Figure 13 above is in columns; this is because it is easier 

to work with columns inside NCSS than rows. Do not select those pollen types such as 

those in Figure 14 (see Figure 14).  In these pollen types, there is not enough data to run 

an analysis that will produce meaningful results. 
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Figure 14. Choosing the pollen types most promising. 
 
 
 

The next step is to select the pollen types that have the best values.  In this case, 

the best values are those pollen types with the highest counts such as those highlighted in 

Figure 15 (see Figure 15).  In order to satisfy the Chi-Squared test, 20% of the data 

cannot be less than five. Although in this exampled the interpretation is that 20% of the 

data cannot be 0.  If we can use a constant to raise the values to five, then this criteria is 

met.  Another way to fulfill the criteria is by combining types of pollen from the same 

genus or family.   



 
 
 

 

182 

 
 

Figure 15.  Selecting the pollen types to be analyzed. 

 
 
 

First a list of pollen types needs to be selected.  If there is a particular pollen type 

of interest, select it as well.  If possible, do not select those pollen types that have limited 

data (see Figure 15, Bauhinia example,).  

After the best data is compiled and selected, those pollen types that have the 

strongest relationship need to be identified.  Once these are identified, a regression 

analysis may be run to find an equation that best fits the data.  

Opening the Chi-Squared (See Figure 16) 

• From the menu select Analysis, then Descriptive Statistics, then Cross 
Tabulation. 

• From the new menu, select File, then New Template (this will clear out any 
leftover settings from previous work and return to the basic settings). 
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Figure 16.  Opening the Chi-Square in NCSS. 

 
 
 

Next, specify the pollen types (see Figure 17). 

• From Cross Tabulation window that is opened, select Variables I tab. 
• Double click on the Discrete Variables under Table Columns.  
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Figure 17. Opening screen for the pollen types to be compared. 

 
 
 

• From the Variable Selection window highlight the pollen types that were chosen; 
selecting individual pollen by pressing Ctrl before clicking on them. 

 
• In the Discrete Variables selection window (see Figure 18), highlight the pollen 

types chosen in the Variables Selected window, then right click and copy. 
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Figure 18. Discrete variables. 

 
 
 

• Double click on Discrete Variables under Table Rows (see Figure 19); right click 
in the Variables Selected box and paste. 
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Figure 19.  Discrete variables selection. 

 
 
 
When completed, the form should look like Figure 20 (see Figure 20). 
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Figure 20. Completed form for the pollen types to be compared. 

 
 
• Select the Variables II tab for comparisons (see Figure 21). 
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Figure 21.  Cross tabulation. 

 
 
 

Getting the report 

• Select the reports tab (see Figure 22), omitting all the reports except for “Chi-Sqr 
Stats” and press play.  The reason for omitting the other reports is to make it 
easier to find the desired information. 
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Figure 22. Running the cross tabulation function. 
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This should look similar to Figure 23 below. 

 
Cross Tabulation Report 
Page/Date/Time 54    11/30/2006 8:42:20 AM 
Database C:\POLLEN DATA\POLLEN DATA.S0 
Combined Report 
Counts 

 Cyperaceae 
 71 74 Total 
Up To 0 1 1 47 
1 To 1 0 0 1 
Total 1 1 48 
The number of rows with at least one missing value is 0. 
Chi-Square Statistics Section 
Chi-Square 48.000000 
Degrees of Freedom  25 
Probability Level 0.003730           Reject Ho 

 

Figure 23. Desired cross tabulation results. 

 

Of interest are the Chi-Square number and the Reject Ho term or the null 

hypothesis.  Reject Ho shows that Cyperaceae pollen is associated, meaning it would be 

a good candidate for a regression analysis to find an equation to describe the pollen site. 

If the pollen type chosen was not a good candidate, then it would look similar to 

Figure 24. 

 
 

Page/Date/Time 46    11/30/2006 8:42:20 AM 
Database C:\POLLEN DATA\POLLEN DATA.S0 

 
Chi-Square Statistics Section 
Chi-Square 769.840000 
Degrees of Freedom  850 
Probability Level 0.976846 Accept Ho 
WARNING: At least one cell had an expected value less than 5. 

 
Figure 24. Chi-Square statistics print out. 



 
 
 

 

191 

Accepting Ho indicates that the pollen is independent, meaning it is not a good 

candidate for regression. 

If four good candidates for regression cannot be found and the program gives a 

warning, as seen above, there is a solution.  One option is to combine similar pollen 

types to increase their frequency.  Additionally, the entire pollen set may be multiplied 

by 100 before re-running the test.  This will not change the data but it may increase the 

counts sufficiently to find some good candidates for regression. 

If the pollen set is multiplied by some factor, first it either needs to be divided by 

100 before the regression is run or remember that the data will refect a factor of 100 

when interpreting the results. 

Additionally, if there are more than 4 “good” pollen types, use the ones that have 

the highest values for the Chi-Squared as they should have the greatest association. 

Now that the “good” pollen types have been determined, it is time to run the regression. 

• Go to Analysis, Curve Fitting, Many Independent Variables, then Ratio of 
Polynomials Search (See Figure 25). 
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Figure 25. Curve fitting for polynomials. 

 
 
 

• Double click on Y Variable and select Concentration or Lycopodium (as that is 
what is being used as a reference) from the Variable Selection List and click Ok 
as seen in Figure 26. 

• Double click on U Variable and select the first “good” pollen type. Use the Chi- 
Squared process from the Variable Selection List and click Ok. 

• Do the same thing for V, W, and X. 
• Because the form of the relationship is unknown,  check on all the options (i.e., 

1/Y^2). 
• Press play. 
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Figure 26. Ratio of polynomials search with many variables. 

 
 

At the top of the report will be something that looks like Figure 27. 
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Regression Clustering Report 

 
 

Page/Date/Time 1    11/30/2006 10:04:56 AM 
Database C:\POLLEN DATA\POLLEN DATA.S0 
Dependent (Y) Concentration_Value 
 
 

Iteration Detail Section 
Number of Replication R-Squared R-Squared 
Clusters Number Value Bar 
2 1 0.912467 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
2 2 0.916242 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
2 3 0.912064 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
2 4 0.916978 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
2 5 0.912558 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
3 1 0.965129 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 
3 2 0.965574 |IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 

 
 

Figure 27. Regression clustering report. 

 
 
The one that has the highest R-Squared value will most accurately represent the 

pollen data; since the R-Squared value represents the error accounted for by the method.  

In the Regression Coefficient Section (see Figure 28), select the Cluster that had the 

greatest R-Squared term.  In Figure 28, Cluster 3 has the greatest R-Squared term and so 

the last column will be used. 

 

                               Regression Coefficient Section 
Variable Cluster 1 Cluster 2 Cluster 3 
 Intercept 35798.61 13473.71 80266.86 
 Cyperaceae -220.397 -153.4452 -3708.241 
 cf_Symplocos_sp_ -16036.02 -1366.039 -26535.71 
  Tsuga_sp_ -12343.86   13676.42 -11400.56 

Urtica_sp_ 276694.4 32510.01 263919 

 
Figure 28. the coefficients of regression. 
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If all of the pollen type curves follow the same function (i.e., the curves have the same 

shape), then the number of equations needed is reduced to one. However, more realistically the 

pollen types will follow different functions and different curves.  In the NCSS program there are 

seven different types of functions.  These are listed below in Figure 29. 

 
 

Y=x 

Y=x2 

Y=sqrt of x 

Y=1/x 

Y=1/x2 

Y=1/sqrt of x 

Y = lnX 

 
Figure 29. Function types. 

 
 

Once the model that the data follows is determined, then it is necessary to find the 

corresponding equation and enter the constant or the weighted value that the program 

calculated.  The way to do this is to use the following format with the constant being the 

coefficient.   

 
 
Concentration Value = the constant a (pollen type 1 count) + 

                                                      …..+ d (pollen type 4 count) + the intercept 
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Then the equation to describe the sample is, from this example: 

 
 

Concentration = -3708.241 Cyperaceae 2 – 26535.71 Symplocos2 -11400.56 Tsuga2 

 + 263919 Urtica2 + 80266.86 
 

  
          This equation will give an estimation of what the concentration should be based on four 

pollen types.  The equation may also be used to predict the value of specific pollen type, such as 

Symplocos, based the other three pollen types and the concentration.   

NCSS is capable of identifying the “transition points”, or where the dominant effect 

changes.  This could indicate a seasonal change, the introduction of a new species, or something 

as yet unknown.  

At this point the polynomial is an estimate and can be further refined.  This is done by 

selecting different functions for the pollen types. 

Refining the regression: 

• Go to Analysis, Curve Fitting, Many Independent Variables, then Ratio of 
Polynomials Fit (See Figure 30). 
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Figure 30. Ratio of polynomials fit with many variables. 

 
 
 
• Double click on Y Variable and select Concentration or Lycopodium (as this is 

the reference) from the Variable Selection List and click Ok. 
• Select the Y Transformation from the drop down list that had the highest R-

Squared term from the individual comparisons run. 
• Do the same thing for U, V, W, and X. 
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Once this has been run and the output produced then the researcher needs to look 

at the data and find the pollen type(s) that has the lowest error value.  To refine it, select 

the options individually (i.e., 1/Y^2), running them one at a time, and make note of 

which ones have the best values.  Eventually, it will be possible to write the equation as: 

( )  
Symplocos

1
-ln274.3708 CyperaceaeionConcentrat −=  

                             86.80266
1

263919
1

56.11400 ++−
UticaTsuga

 

 
 

When the polynomial fit is run, the function with the lowest error is the one 

chosen for each pollen type and then inserted into the equation.  It is at this point that 

models may be determined for the other pollen types in the sample.  Now the process 

can be repeated for other pollen types.  Ideally, only one pollen type would be 

introduced, making the relationship between the current equation and the new one as 

strong as possible.  Unfortunately, this is not practical; instead keep one of the pollen 

types while including three additional pollen types.   In this way a relationship between 

the different pollen types can be expanded upon.  Eventually, this can be used to answer 

questions, such as whether one pollen is dependent on another, what is the dispersion 

patterns of the pollen types for a given area at specific time, was there unusual events 

such as weather changes, new growth, geological processes, and generally find trends 

that are not obvious from relative frequencies alone.   
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Additional information that can be found using pollen data 

Once equations have been found for the good pollen types, these equations can be used 

to find suitable models for the marginal pollen.  This is done using the Chi-Squared goodness of 

fit test.  Basically, this test will find relationships within the marginal pollen data that is similar 

to what was found using the good pollen data.  These similar relationships will not be as strong 

as the initial relationships because there is inherently less data for the marginal pollen types.  

Nevertheless, it will yield additional information which could prove useful in terms of exploring 

research questions.    

Some of the marginal pollen data may correspond to a transition point.  A transition 

point is a point at which the predominant force changes (e.g., environmental change or 

introduction of a new plant).  When looking at the output for the polynomial fit, the best 

equation chosen (i.e., the one with the lowest lambda (λ) error) will also have a corresponding 

transition point under “Model Estimation Section” in the last column (confidence interval) on 

the output.  If it is believed that this transition is significant, it may be interesting to reexamine 

between transition points (i.e., re-run the regression using only the data between these points). 

The options described above depend on the underlying assumptions on the nature of 

the pollen sampled and its environment remaining constant.  It is through the 

examination of transition points where these assumptions that change can be determined.  

An example would be looking at the degradation of pollen grains and whether or not the 

same chemical/physical degradation process is predominant for all pollen grains.  If it 

can be assumed that the same degradation process is predominant, the statistical analysis 
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is significantly stronger because there would be no transition points.  Given the analyses 

of pollen degradation to date, it cannot be assumed that the same degradation process is 

predominant, so the second option utilizing transition points is recommended.   

Some drawbacks to NCSS 

While the program will run ANOVA, regression analysis, Chi-Squared, binomial 

and other tests simultaneously, there is a complication with the Chi-Squared test.  NCSS 

will not perform a free form analysis on its own.  In other words, the test will have to be 

run multiple times to make sure that all possible associations are found.   

Working with pollen data inside SPSS 

In this tutorial the process of determining a relationship or equation between 

major pollen types in your sample and Lycopodium or the Concentration Value is 

reviewed.   Lycopodium or concentration values are used because they are consistently 

present throughout the sample.  To open the data file go to File�Open�Data from the 

explorer window and select the pollen type data file as shown in Figure 31(Field 2005). 
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Figure 31. Finding and opening your data in SPSS. 

 
 

The first step is to look for any problem with the data.  In other words these are 

problems with the data that the computer would have in analyzing the data.  For 

example, notes that were made inside the data, such as those highlighted in Figure 32 

will have to be removed.   

 
 
 
 



 
 
 

 

202 

 
 

Figure 32. Things that need to be removed from data. 
 
 

 
 SPSS requires that the data be in columns rather than in rows (see Figure 32).  If 

the data is in a row format, it will need to changed.  

The next step is to select those pollen types that have the best values (i.e., the 

ones with the highest counts).  This is to try to meet one of the requirements for the Chi-

Squared test, (i.e., 20% of the data cannot be less than five).  Although in the example 

this is interpreted to mean 20% of the data cannot be zero because a constant may be 

used to raise low values to five. 
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Figure 33. Selecting those columns or pollen types of interest in SPSS. 

 
 
 

Make a list of the pollen types that are selected. From Figure 33 above, 

Asteraceae Low spine would be considered a good choice while Asteraceae High spine 

would be considered a marginal one.  If possible, do not select pollen types like 

Bauhinia, as it is almost entirely zero.  

The next step is to normalize the data which requires transformation.  After a 

transformation is conducted the normality test should be run again in SPSS.  The next 

step is to run a regression multinomial/multivariate test.  This test will give information 

on which pollen types in a sample are the strongest or which ones have the most data 

available.  Since pollen data is usually filled with zeros, finding enough data can be 
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problematic.  Once that is accomplished the Chi-Square is run to find any associations.  

The equation models that the data may or may not follow are as follows: 

• Quadratic: y= ax2 + bx + c 

• Cubic: y = ax3 + bx2 + cx1 + d 

• Linear: y = ax + b 

• Inverse: y = 1/ax + b 

• Power: y = axn (n being some integer) 

• Exponential: y = aex (e = exponential which is the inverse of the natural log). 

Natural log is expressed as ln(x) 

• Compound = y = abx 

• S: y =e(a+bx) 

 

The format needed to enter into SPSS is as follows: x = the pollen name, y = 

concentration value.   For example: 

• Quadratic: y = b1**x + b2*x + constant 
• Cubic: y = b1**x*x + b2**x+ b3** + constant 
• Linear: y = b1*x + constant 
• Inverse: y = 1/(b1*x + constant) 
• Power: y = b1*x*x*……. 
• Exponent: y = b1*EXP(x) 
• Compound: y = (constant)*b1^(x) or ln(y) = ln (constant) + (x)*ln(b1) 
• S: y = EXP (constant + b1 * x) 
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Once the best data is compiled, the pollen types that have the strongest 

relationship needs to be determined before any regression analysis and consequently an 

equation may be obtained. 

Opening and running the Chi-Squared (see Figure 34). 

• From the menu select Analyze�Nonparametric Tests�Chi-Square. 
• From the new menu, select “good” pollen types by double clicking on them from 

the list to the left (limit it to 10 pollen types at a time to make it easier to read the 
report). 

• If an incorrect type is selected, either double click on it from the list on the left 
or highlight it and press the back arrow. 

• Notice that when a pollen type is selected, it is removed from the list available 
• When finished selecting pollen types, press OK. 

 
 

  
 
 

Figure 34.  Running the Chi-Square. 
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The report 

• After the OK is pressed, an output window will open (See Figure 35). 

 

•  

 
Figure 35.  The report generated. 

 
 
 
The desired output is exemplified at the bottom of the report as seen in Figure 36. 
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Figure 36. Chi Squared results in SPSS. 

 
 
 

Determining if the pollen types are related to one another (i.e., if they are good 

candidates for regression) requires a comparison of the p-values; listed above in Figure 

36 as Asymp. Sig.  If this value is less than the required significance level (significance 

level is 1 minus the confidence level) then they are associated and a good candidate for 

regression. 

Notice that all of the pollen types selected have a warning saying that 100% of 

the data have frequencies less than five.  This means that the numbers in the pollen 

types, or the pollen counts, were not large enough to satisfy SPSS.  It may be necessary 

to either select different pollen types or “condition” the data by either combining similar 

pollen types or using a number (a constant) to make it more acceptable to SPSS. 
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If at least four good candidates for regression cannot be found and the above 

frequency warning may still appear, it could be possible to run the regression test by 

multiplying the entire pollen set by 100 and then re-running the test.  This will not 

change the data but other good candidates for regression may be discovered.  Once the 

Chi-Squared value is determined it will be easier to find the pollen types that are related 

to one another.  If the pollen set is multiplied by 100, before the regression test is run,  

either the data will have to be divided by 100 before the regression or remember that we 

have a factor of 100 when looking at the results.  Additionally, if there are more than 

four “good” pollen types, the Chi-Squared test should be run with those pollen types that 

have the highest values for the Chi-Squared because these should have the greatest 

association. 

Once the pollen types are determined, it is time to run the regression.  It will consist 

of two parts, the first part is called the “Curve Estimation.”   This test will find what 

form or curve the graph of the pollen types chosen will most likely have. The second 

part consists of the Non-linear Regression. 

• Go to Analyze�Regression�Curve Estimation (See Figure 37). 
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Figure 37.  Curve estimation steps. 

 
 

• The Dependent will be either Concentration or Lycopodium spores (as these are 
consistent bench marks).  

• The Independent will be the first of our “good” pollen types. We will be 
repeating this for each of our pollen types. 

• As it is not know what form the pollen could take, all of the tests should be 
checked except the Logistic for the Models. (Since the transition points are not 
know the Logistic test cannot be run at this time). 

• Click Ok. 
 
 
Near the bottom of our report, is the summary, as seen in Figure 38. 
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Figure 38. Output of data to find the correct model. 

 
 
 

According to the Model Summary, the most likely form for Asteraceae Low 

Spine is Cubic with the highest R Square of 0.101. So if we were looking at Low Spine  

by itself the cubic equation would be used which is: 

Concentration value = b1(pollen count type a)3 + b2(pollen count type a)2  
+ b3(pollen count type a)1  
+ the constant which in this case is the constant for the cubic. 

Concentration value = -1749.978 (raw pollen data of Asteraceae__Low_spine)3  
+ 99.536 (raw pollen data of Asteraceae__Low_spine)2  
– 1.264( raw pollen data of AsteraceaeLow_spine)1 + 26906.393 

 
 

Even though this model has the highest R Square term, it is not a likely candidate 

as an R Square because 0.101 indicates this is a weak relationship.  Remember R Square 

ranges from 0 to 1, with 0 being no relationship between the variable (Concentration and 

Low Spine) and 1 being a perfect relationship. 

This is particularly evident when looking at the graph (just below the Summary) 

as seen in Figure 39. 
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Figure 39.  Graph of possible patterns. 

 
 
 

Repeating this procedure with Myrica the most likely form it would take is the 

“Cubic” (with the highest R Square of 0.066).  So that Myrica by itself would refect the 

equation and would take the form of: 

 
 
Concentration = -1298.921 (Myrica)3 + 70.865(Myrica)2 – 1.434 (Myrica)1 + 27726.299 
 
 
 
For the next step go to Analyze�Regression�Non-linear as seen in Figure 40. 
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Figure 40.  Pull down menus to find non-linear in SPSS. 

 
 

Notice that the expression has been simplified from a cubic to a quadratic 

(Square).  This is because in SPSS getting convergence (meaningful answer) is 

sometimes quite difficult.  

Enter the expression:  

 
b0+b1*Asteraceae__Low_spine+b2**Asteraceae__Low_spine+c0 

+c1*Myrica_sp0+c2**Myrica_sp0 
 
 

For clarification, in this equation * means multiply once, ** multiply twice 

(Square the term), ^ and means to the power of.  The terms b0, b1, b2 and c0, c1, c2 are 
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the “Parameter Estimates” (“Constant”, b1,b2,b3) from the “Curve Estimation Model 

Summary” as seen in Figure 41. 

 

 
 
 

Figure 41.  How to input data to establish dependent and independent variables. 

 
 

 
Then click on “Parameters” and begin entering the values from the “Model 

Summary” from the “Curve Estimation.”  It is necessary to press “Add” when adding 

each term.  When finished entering the terms, press Continue. 
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Figure 42.  The non-linear regression parameters window. 

 
 
 

The Non-linear Regression window as seen above in Figure 42, should be visible.  

Press OK to go ahead and run the regression. 

Warnings may appear indicating that during the process SPSS came up with 

values that were either too big or too small.  This is because much of the pollen type data 

fluctuates from 0.  This warning is to be expected.  Near the bottom of the report is the 

Correlation of Parameters.  These are the revised values for our estimates for a combined 

equation of Asteraceae Low spine and Myrica pollen types for the Concentration Value. 

 
 
 
 
 



 
 
 

 

215 

 
 

Figure 43. Output for parameter estimates. 

 
 
 

Notice in Figure 43 above that the b1 term is blank and that c1 is 0, meaning 

SPSS didn’t think that the b1 and c1 terms should have been there.  From our starting 

estimated form of: 

b0+b1*Asteraceae__Low_spine+b2**Asteraceae__Low_spine+c0+ 
c1*Myrica_sp0+c2**Myrica_sp0 

 
 

The relative equation for the concentration value is:  
 
 

Concentration value = 1-.122 (Asteraceae Low_spine)2+.122-.487(Myrica)2. 

 
 

Which is actually: 
 

 
Concentration value = (1-.122 (Asteraceae Low_spine)2 

+.122-.487(Myrica)2)b0estimate 
 

or 
 

Concentration value =  
(1-.122 (Asteraceae Low_spine)2+.122-.487(Myrica)2)7.7E99 
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Which is from the Parameter Estimates as see in Figure 44.  

 

 
 

Figure 44.  Parameter estimates. 

 
 

 
The significant thing to notice here is the level of the estimate (this Figure is 

found just above the Correlations of Parameters table in the report).  They are 

inordinately large.  SPSS uses less complex regression equations and, as a consequence, 

it results in less accurate computations than those found in NCSS.  Nevertheless, SPSS is 

easier to set up and run than the NCSS program and much easier to find associations.  

Because the options are limited and there is no model design choice the tests are limited, 

however, useful information may still be derived.   

Some drawbacks to SPSS 

An important thing to consider with SPSS is that if the Chi-Square test is run 

only the strongest pattern is reported.  For example, the Chi-Square will analyze one 

pollen type to another and report if there is an association.  If there is a strong correlation 

between two pollen types, this does not necessarily mean that there are no other 
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associations between other pollen types.  Another problem with SPSS is that it will not 

automatically find the associations, it must be told which pollen types to compare.  

NCSS in contrast will not only give the strongest associations but also weaker 

associations that can be run separately and as a result gives a much more exact 

representation of the data. 

Interpreting the pollen data 

Pollen diagrams  

The first pollen diagrams were created by Lennart von Post and presented at the 

Sixteenth Scandinavian Meeting of Natural Scientists in Kristiania (now Oslo), Norway 

in 1916. This lecture series was then published in 1918 (without the diagrams), however, 

since it was published in Swedish the importance of the lecture went overlooked until 

later that same year when von Post gave a lecture in Stockholm. It was this second 

lecture that became widely publicized (Fries 1967).  Von Post created and presented 

diagrams for the various pollen types from his samples. This series of diagrams were 

published 10 years later but with some changes by Von post in 1926 (Fries 1967). The 

first diagrams to be produced using and representing pollen data was by H. Witte in 

1905 (Stratiotes aloides L. funnen i Sveriges postglaciala avlagringar. Geol. F6ren.). 

Stockholm Forh., 27(7): 432.  Since that time, creation and demarcation of the pollen 

data has changed into modern diagrams. In general terms this consists of a type of 

specialized histogram plot that minimally includes pollen data frequencies or 

percentages of the pollen types found, and location of the pollen sample or depth.  Other 
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demarcations may include NAP or non-arboreal pollen, AP arboreal pollen, economic 

pollen types, cultivated pollen types (e.g. versus collected types which can be included 

in the economic sum), carbon-14 dates or time scales, soil types, and pollen sums,  

Interpretation of data may be trusted only if the previous steps have been 

completed accurately and the analyst has sufficient experience. The data, once 

generated, may be in tabular form and are usually displayed in a type of specialized 

histogram called a pollen diagram. These are graphic representations to display the data 

in a way that trends are more readily visible. These representations display the data in 

two types NAP and AP. NAP refers to the non-arboreal pollen or that type of pollen 

considered undergrowth and not from tree source. Conversely, AP is arboreal pollen and 

represents those pollen types from trees. Pollen is considered nominal data and usually 

represented as relative frequencies. Care must be taken when interpreting raw pollen 

data, while useful in the counting and identification stages, no interpretation should be 

made without first converting the raw data into relative frequencies. Once the data has 

been converted into relative frequencies this then allows for comparison between 

samples and between pollen types. Nevertheless, any and all analyses should also have 

the raw data available. Concentration values are important to the palynologist to 

determine whether the data is valid or whether the data has been skewed due to 

preservation problems or overrepresentation of certain pollen types. Other problems 

consist of overrepresentation of certain pollen types.  If overrepresented types are not 

excluded from pollen sums, trends in other pollen types may be missed. 
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Pollen zones on a diagram are simply divisions created by the analyst to aid in 

interpretation. Zonation of pollen diagrams should be biostratigraphic units or units that 

are determined based on the pollen content data alone. A definition of a pollen zone is “a 

body of sediment with a consistent and homogeneous fossil pollen and spore content that 

is distinguished from adjacent sediment bodies by differences in the kind and 

frequencies of its contained fossil pollen and spores” (Gordon and Birks 1972:48).  Early 

zonation diagrams created by Jessen (1935) and Godwin (1940) were based on climate 

and vegetation through a span of time, however, Cushing (1967) standardized pollen 

zones. Today computer programs are used to place pollen zones more accurately. 

Nevertheless, pollen zonation should be viewed with caution as interpretations may be 

affected negatively. The interpretation of the pollen information “…comprises two steps: 

(1) establishing the composition of the vegetation that delivered the pollen rain 

registered: reconstructing; (2) drawing inference from the vegetation data back to the 

agents behind them: climate, ecology, human interference, etc.:….[and] 

interpretation…or application of the data” Faegri and Iversen 1989:115).  

Most if not all results will include a pollen diagram. According Faegri and 

Iversen (1989) these diagrams are for visualization and simplification. It is a way to view 

the salient information quickly and easily. Nevertheless, some diagrams do not fulfill 

this objective or more importantly some display information erroneously. Things to look 

for in a pollen diagram include: chronostratigraphic, lithostratigraphic and 

biostratigraphic information. The chronostratigraphic is the display of either depth or 
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carbon-14 dates, the lithostratigraphic is the graphic representation of the type of 

sediments the pollen came from and the biostratographic information is a graphical 

representation of the pollen counts usually presented in relative frequencies or 

percentages. When trends are not evident then statistical analysis may elucidate any 

trends that are obscured and/or support the existing trends. 

  How to choose a palynologist  

As with any profession there is a period of time to take various classes, an 

apprenticeship and experience learned in the application of one’s education. Palynology 

is similar except that there are no tests that a palynologist must take to prove they have 

learned their field to the point of mastery. In many fields the only way to find someone 

competent is by word of mouth and Palynology is one such field. Nevertheless, a review 

of publications is useful to determine if the person is a competent ethnopalynologist. 

Someone who is analyzing samples without sufficient experience is relatively easy to 

spot if one knows what to look for. Some things to look for is if the entire analysis is 

based only on a few or one pollen grain. For example if an ethnopalynologist bases an 

entire theory of the use of economic plants by people who lived at a particular 

archaeology site based on one corn or a Zea mays pollen grain is certainly out on a limb 

unless they address the paucity of their samples. Another thing to look for is if all of the 

pollen types found are all very hardy grains, (or those grains that have a high percentage 

of sporopollenin in the pollen wall), but the ethnopalynologist does not mention 

differential preservation. For example some pollen types that are usually preserved when 
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other pollen types disappear include, Asteraceae family pollen (i.e. ragweed, dandelions) 

and Chenopodiaceae/Amaranthus (pigweed, amaranthus).  Although amaranthus is 

considered a grain in some areas of the southwest United States, sometimes these simply 

represent weeds or in some cases a disturbance.  Other types include, Quercus (Oak 

trees), Carya (Hickory), and Ephedra (mormen tea). Sometimes in publications and/or 

reports the ethnopalynologist will identify a certain pollen type to species. While there 

are some pollen grains that it is possible to do this (if the preservation is pristine), most 

pollen grains cannot be identified to species. Any ethnopalynologist that has one-third or 

more of their identifications identified to species is probably guessing. Other clues to 

finding a competent ethnopalynologist are whether the pollen grains that are identified 

are indigenous to the study area or not. A competent researcher should always back up 

their claims either through other evidence or statistical analysis or both. Most 

palynologists are not botanists but any good palynologist will have a better than average 

understanding of the plants found in the study area. For example a competent 

palynologist will know which plants are self pollinating, wind-pollinated, insect-

pollinated, animal-pollinated, or a combination. If, for example, an ethnopalynologist 

reports that there was a significant amount of pollen from a plant that produces low 

pollen counts, then this data is suspect. One such plant is larch (Larix). From 

experiments it has been found that samples collected from sediments in the middle of a 

larch forest will only be represented by 2% of the sample. This also illustrates the 

importance of knowing which plants produce prodigious amounts of pollen which plants 
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do not. Although larch would rarely be found in samples that are not near a larch forest, 

for an accurate interpretation the ethnopalynologist should be able to identify the 

significance of finding any larch pollen grains.  

Identifications are, therefore, important to the eventual analysis and 

interpretation. The best way an ethnopalynologist can verify a pollen grain is through 

comparing the fossil sample to a fresh sample of the pollen grain type in question. In this 

way the ethnopalynologist can move the grain to different views. However, this is the 

ideal and not always practical. Most reputable labs will have a comparison collection of 

pollen types that have been taken from herbarium voucher specimens (i.e. plants that 

have been identified by a competent plant taxonomist). If the ethnopalynologist has 

sufficient experience reference books will suffice if the pollen type in question is not 

accessible any other way. Pictures of pollen are also increasingly found on the internet. 

Nevertheless, the pictures found on the internet and in books need to be good to be 

useful. The pictures should be clear with several angles for each grain represented, 

including pictures from the different planes of a pollen grain. The identifying 

morphology or features the ethnopalynologist is looking for are apertures or openings in 

the pollen grain, size and shape of the pollen grain and of the apertures, the number of 

apertures and the surface morphology of the pollen grain. If these different aspects are 

not represented in photographs then any identifications made from these will be 

inherently faulty. In today’s digital photographic age it is becoming increasingly more 

accessible to take pictures to accompany any study and is a good check and balance 
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system to make sure the correct identifications are being made. Always question an 

analysis that does not have photographs and the raw pollen counts accompanying the 

report, especially if the pollen counts are represented statistically and/or by percentages. 

An experienced ethnopalynologist will also have a good grasp on which pollen grain 

taxa are available in different areas and environments. For example if an 

ethnopalynologist were to identify Eucalyptus pollen from any area in the United States 

prior to the 1800's it would be suspect. The Eucalyptus tree was not imported to the 

United States until about the 1830's and the initial port of call was California. Knowing 

where plants are indigenous and when a plant has been imported is crucial. Most 

ethnopalynologists that are skilled will have an intimate knowledge of ethnobotanical 

reports, dates of exportation of the various plants from their origination point and the 

various uses that were or are prescribed to them. At the very least they will know where 

to look for the information. 
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    CHAPTER VII 

      SUMMARY 

 

Although the science of palynology has been in existence in some form for over 

100 years, new innovations and applications for this area of study are continually 

emerging.  From the earliest applications to date sediments to the newest in archaeology 

and most recently the contributions to forensic science, palynology still has many things 

to tell us.  Ethnopalynological applications in archaeology are still relatively new and not 

completely accepted by the anthropological community.  It is because of this that this 

dissertation is devoted to this topic.  It is through the process of dissemination of 

information and education that there be will acceptance and understanding of new 

procedures furthering exploration into what was previously believed to be impossible.  It 

is imperative that doctrines be dynamic and the people behind these doctrines willing to 

try new ideas.  Palynology is not new but its full potential has yet to be reached. 
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