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ABSTRACT

Universality for Multi-terminal Problems

via Spatial Coupling. (August 2012)

Arvind Yedla, B.Tech., IIT Madras

Co�Chairs of Advisory Committee: Dr. Henry P�ster
Dr. Krishna Narayanan

Consider the problem of designing capacity-achieving codes for multi-terminal

communication scenarios. For point-to-point communication problems, one can opti-

mize a single code to approach capacity, but for multi-terminal problems this trans-

lates to optimizing a single code to perform well over the entire region of channel

parameters. A coding scheme is called universal if it allows reliable communication

over the entire achievable region promised by information theory.

It was recently shown that terminated low-density parity-check convolutional

codes (also known as. spatially-coupled low-density parity-check ensembles) have

belief-propagation thresholds that approach their maximum a-posteriori thresholds.

This phenomenon, called �threshold saturation via spatial-coupling�, was proven for

binary erasure channels and then for binary memoryless symmetric channels. This

approach provides us with a new paradigm for constructing capacity approaching

codes. It was also conjectured that the principle of spatial coupling is very general

and that the phenomenon of threshold saturation applies to a very broad class of

graphical models.

In this work, we consider a noisy Slepian-Wolf problem (with erasure and binary

symmetric channel correlation models) and the binary-input Gaussian multiple access

channel, which deal with correlation between sources and interference at the receiver
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respectively. We derive an area theorem for the joint decoder and empirically show

that threshold saturation occurs for these multi-user scenarios. We also show that

the outer bound derived using the area theorem is tight for the erasure Slepian-Wolf

problem and that this bound is universal for regular LDPC codes with large left

degrees. As a result, we demonstrate near-universal performance for these problems

using spatially-coupled coding systems.
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CHAPTER I

INTRODUCTION

Coding theory deals with the problem of reliable transmission of data from one point

to another through an unreliable medium (known as the channel). This is accom-

plished by adding redundancy to the data in a systematic manner at the transmitter.

The receiver uses this redundancy to recover the transmitted data, which has been

distorted by the channel. Roughly speaking, the rate of transmission is the normalized

amount of information transmitted using the coding scheme. In his seminal paper

in 1948, Shannon showed the existence of a maximal rate of transmission, called the

channel capacity, for a given channel [1]. Since then, much research has been focused

on designing coding schemes in order to achieve the channel capacity. We review

some preliminary concepts for point-to-point communication in Section A.

In this dissertation, we are interested in designing codes which perform well for

multi-terminal problems. Multi-terminal communications involve the communication

scenarios which have multiple transmitters and multiple receivers. The focus of this

work is in the case when there are multiple transmitters and a single receiver. We

consider two important multi-terminal problems which are described in Sections 1

and 2. A notion of universality naturally arises in this context, which is not present

in point-to-point communication scenarios. This is discussed in Section C. The aim

of this dissertation is to design practical coding schemes which are universal.

This dissertation follows the style of IEEE Trans. on Information Theory.



2

A. Point-to-Point Communication

The simplest communication model is that of point-to-point communication. This

problem is modeled as shown in Fig. 1. The encoder output alphabet is the same

Source Encoder
U

Channel
X

Decoder
Y

Destination
Û

Fig. 1. A simple block diagram of a point-to-point communication system.

as the channel input alphabet (without loss of generality). We de�ne the di�erent

blocks used in Fig. 1.

De�nition I.1 (Source). The source is modeled as a discrete time random process.

As we are concerned with channel coding, we assume that the source outputs are

independent and uniformly distributed over the source alphabet. The source output

alphabet used throughout this work is X = F2.
1

De�nition I.2 ((n, k) Binary Code). An (n, k) binary (block) code C is a subset of

X n, with |C| = 2k. The elements of the code are called codewords and n is called the

block-length.

De�nition I.3 (Rate). The rate of an (n, k) binary code C is de�ned to be R = k
n
.

De�nition I.4 (Encoder). An encoder is a bijective map from X k to C. The encoder

maps k source bits into a codeword of length n, which is transmitted over the channel.

Note that an encoder speci�es the code completely and we say that the rate of an

encoder is R = k
n
.

1Sometimes it is convenient to let the alphabet be {±1} instead of F2, with the
map 0 7→ +1 and 1 7→ −1, with addition over F2 replaced by standard multiplication
on {±1}. We shall use these alphabets interchangeably throughout this dissertation.
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De�nition I.5 (Channel). A channel is a triple (X ,Y , pY |X), where X is the input

alphabet of the channel and Y is the output alphabet. Here, pY |X is the conditional

density of the channel output Y ∈ Y given the inputX ∈ X . The triple (X n,Yn, pY|X)

is used to denote n uses of the channel. A channel is said to be memoryless, if

pY|X(Y|X) =
n∏

i=1

pY |X(Yi|Xi),

where X = (X1, · · · , Xn) ∈ X n and Y = (Y1, · · · , Yn) ∈ Yn. A binary memoryless

channel is said to be symmetric if there exists an involution ı : Y → Y such that

pY |X(y|+ 1) = pY |X(ı(y)| − 1).

De�nition I.6 (Log-Likelihood Ratio). Consider a binary memoryless channel given

by (X ,Y , pY |X). The log-likelihood function is de�ned by

l(y) = ln
pY |X(y|+ 1)

pY |X(y| − 1)
.

Let L be the associated random variable, de�ned as L = l(Y ), and a be the conditional

density of L, given X = 1 (called the L-density). Any binary memoryless symmetric

channel (BMSC) can be equivalently represented by its L-density, denoted by aBMSC.

De�nition I.7 (Su�cient statistic). Consider a channel (X ,Y , pY |X) and a function

f(·). We say Z = f(Y ) is a su�cient statistic for X given Y , if X is independent of

Y given Z. For a binary memoryless channel, the log-likelihood ratio L is a su�cient

statistic for decoding [2].

De�nition I.8 (Decoder). The decoder is a map x̂ : Yn → X n. The output of the

decoder is used to make an estimate of the source output. The bit-wise maximum a
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posteriori (MAP) decoder is given by x̂ =
(
x̂MAPi (y)

)n
i=1

, where

x̂MAPi (y) = argmax
xi=±1

∑

∼xi

(∏

j

pY |X(yj|xj)
)
1{x∈C}. (1.1)

We write
∑
∼xi to indicate summation over all components of x except xi. This

decoder is optimal in terms of minimizing the probability of bit error at the receiver.

Note that the output of this decoder need not be a codeword.

De�nition I.9 (Entropy). Let X be a discrete random variable with probability

mass function pX(x). The entropy of X is a measure of uncertainty in the random

variable and is given by

H(X) = −
∑

i

p(xi) log p(xi).

For continuous random variables with a PDF pX(x), the di�erential entropy is given

by

h(X) = −
∫ ∞

−∞
p(x) log p(x)dx.

We also de�ne the binary entropy function h2(p) = −p log p− (1− p) log(1− p).

De�nition I.10 (Mutual Information). Let X and Y be two random variables. The

mutual information between X and Y , denoted by I(X;Y ) is given by

I(X;Y ) = H(X)−H(Y |X).

De�nition I.11 (Channel Capacity). The capacity of a channel (X ,Y , pY |X) is the

maximal rate at which information can be transmitted reliably through the channel.

In other words there exists an encoder/decoder pair, using which reliable transmission
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is possible at rates up-to the channel capacity. It is denoted by C and is given by

C = sup
p(X)

I(X;Y ),

where I(X;Y ) is the mutual information between X and Y . For channels that depend

on a single parameter, we denote the capacity by C(α).

De�nition I.12 (Channel degradation). Consider two memoryless channels speci-

�ed by transition probabilities pY |X and pZ|X respectively. We say that the pZ|X is

degraded with respect to the �rst channel if

pY,Z|X(y, z|x) = pY |X(y|x)pZ|Y (z|y).

A through discussion of channel degradation can be found in [2, p. 204].

Throughout the sequel, we consider families of channels which are character-

ized by a single parameter α. This implies that given a rate R there exists an en-

coder/decoder pair for which reliable transmission is possible for all channel param-

eters {α|C(α) ≥ R}. If the channel is degraded with respect to α, we can de�ne a

threshold on the channel parameter, denoted by α∗(R) = C−1(R), such that reliable

communication is possible over all channels which are better than α∗ using codes

of rate R. This set is known as the set of achievable channel parameters (ACP).

The goal of channel coding is to design low-complexity encoding/decoding schemes

which enable transmission at channel parameters close to α∗, with an arbitrary low

probability of error.

Example I.1 (Binary Erasure Channel - BEC(α)). This channel models the situation

where the transmitted bits may be lost (erasures) but never corrupted. The channel

model is shown in Fig. 2. Here α denotes the probability of erasure and Y = {0, 1, ?}.

The capacity of this channel is given by C(α) = 1 − α and the L-density associated
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1−α

1−α

α

α

0

?

1

0

1

Fig. 2. A model of a BEC is shown above. The channel input is erased with probability

α. This channel does not make any errors.

1−α

1−α

α

α

0

1

0

1

Fig. 3. A model of a BSC. The input bits are �ipped with probability α.

with this channel is given by aBEC(α)(x) = α∆0(x) + (1− α)∆+∞(x), where ∆a(x) is

the Dirac delta function at x = a.

Example I.2 (Binary Symmetric Channel - BSC(α)). This channel is a generic model

for binary-input memoryless channels where hard decisions are made at the receiver

front end. The channel model is shown in Fig. 3. Here α denotes the crossover

probability and Y = {0, 1}. The capacity of this channel is given by C(α) = 1−h2(α),

where h2(·) denotes the binary entropy function. The L-density associated with this

channel is given by aBSC(α)(x) = α∆− ln 1−α
α

(x) + (1− α)∆ln 1−α
α

(x).

Example I.3 (Additive White Gaussian Noise Channel - BIAWGNC(α)). This chan-

nel adds an additive noise to the transmitted data i.e., Y = X + Z, where Z is a

Gaussian random variable with zero mean and variance σ2. The L-density of this

channel is given by N (2/σ2, 4/σ2). The noise variance is the unique value σ2 such
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that

∫ ∞

−∞
aBAWGNC(x) log2(1 + e−x)dx = α.

Here X = {±1} and Y = R. The channel model is shown in Fig. 4. The capacity

of this channel cannot be expressed in elementary form.

B. Multi-user Communication

Many real world communication scenarios involve multi-user communication (wireless

sensor networks, cellular systems, peer-to-peer networks etc.). Communication prob-

lems with more than one user require additional design considerations when compared

to point-to-point communication strategies. This is due to the additional constraints

of correlation between the sources and interference at the receiver. To better under-

stand the additional design constraints, we consider the problems of sensor reachback

and uplink in cellular systems, which deal with correlation between sources and in-

terference at the receiver respectively.

1. Sensor Networks

Wireless sensor networks have become very popular in recent years and are being

increasingly used in many commercial applications. A good survey of the problems

involved with designing sensor networks can be found in [3, 4]. A sensor network

X + Y

Z ∼ N (0, σ2)

Fig. 4. The binary input AWGN channel is shown in the �gure. The channel adds

Gaussian noise to the input. The input alphabet is {±1}.
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typically has several transceivers (also called nodes), each of which has one or several

sensors. The task of these sensor nodes is to collect measurements, encode them, and

transmit them to some data collection points. The topology of sensor networks varies

widely with the application, but typically the data from all the nodes is transmitted to

a central node, also known as a gateway node, before further processing is done on the

data. The implied communication problem is often referred to as the sensor reachback

problem [5]. There are many constraints on the size and cost of the networks, so the

nodes have limited computational capabilities, communication bandwidth etc. Hence

the nodes have to perform distributed encoding, despite having to transmit correlated

data. One of the main goals in the area of wireless sensor networks is to reduce

the amount of transmitted data by taking advantage of the correlation between the

sources. In many cases, there is generally a medium access control protocol in place,

that eliminates interference between the di�erent nodes. In this case, one can assume

that each node transmits through an independent channel, from the same channel

family. This problem is a noisy version of the celebrated Slepian-Wolf problem.

The SW problem was introduced and solved in the landmark paper [6] for noise-

less channels, and shows that the optimal coding scheme su�ers no loss in perfor-

mance (in terms of rate) even in the absence of communication between the various

encoders. The �rst practical SW coding scheme was introduced by Wyner and is

based on linear error-correcting codes [7]. Chen et al. related the SW (distributed

source coding) problem to channel coding via an equivalent channel describing the

source correlation [8,9]. Using this observation they used density evolution to design

LDPC coset codes that approach the SW bound. Distributed source coding using

syndromes (DISCUS) also provides a practical method to transmit information for

this problem when the encoding rates are restricted to the corner points of the rate

region [10].
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For transmision over noisy channels, separation between source and channel cod-

ing is known to be optimal when the channel state is known at the transmitter [5].

When the channel state is unknown, it is still desirable to take a joint source-channel

coding (JSCC) approach (via direct channel coding and joint decoding at the receiver).

The main reason is that separate source and channel coding requires compression of

the sources to their joint entropy prior to channel encoding. After that, the varia-

tion in one channel's parameter cannot be o�set by variation in the other channel.

Further advantages of JSCC, over separated source coding and channel coding, are

discussed further in [11]. The performance of concatenated LDGM codes has been

studied in [12] and that of Turbo codes in [11]. Serially concatenated LDPC and

convolutional codes were also considered in [13], where the outer LDPC code is used

for distributed source coding.

Another interesting line of research in the area of sensor networks is the sensor

location problem. The sensor locations are optimized in order to collect the most

relevant data. A possibility of using moving sensors is present in a variety of ap-

plications, including air pollution estimation, tra�c surveillance etc. [4]. A natural

consequence of this is the variation in channel conditions as a result of sensor mobil-

ity. As a result, it may be unreasonable to assume that transmitters have detailed

channel state information.

2. Cellular Systems

An important development in the past few decades in communications has been the

evolution of cellular systems. There has been an abundance of scienti�c research

in developing schemes for e�cient bandwidth utilization and increasing the system

capacity. A common multiple access scheme is direct sequence code-division multiple-

access (DS-CDMA). Iterative multiuser detection (MUD) for CDMA systems using
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forward error control coding has gained a lot of popularity in recent years (see [14�17]

and the references therein). By studying the interaction between the MUD and the

error-control code, transmission schemes that achieve a signi�cant portion of the

multiple-access channel capacity have been introduced [14, 18�22]. Many low com-

plexity interference cancellation (IC) schemes have also been proposed as alternatives

to the optimal MUD. A uni�ed framework based on the factor graph representation

was introduced in [16] to study the performance of the IC schemes using density evo-

lution (DE) [23]. The DE analysis (using Gaussian approximation) was used to study

the performance of IC schemes with convolutional codes, turbo codes and LDPC

codes [16, 17]. The CDMA system load is shown to have a threshold and the system

spectral e�ciency is discussed in [24].

A crucial aspect of these systems is the design of the MUD to combat the inter-

ference at the receiver. To understand the aspects of code design for this problem,

we look at the simple case of two users transmitting over a multiple access chan-

nel (MAC). When the received signal is corrupted by Gaussian noise, this channel

is known as the Gaussian MAC. This channel can be characterized by a capacity

region [25], and has been extensively studied in the literature. Many optimization

schemes have been proposed to design good codes for this problem.

The corner points of the capacity region are known to be achievable by combining

successive cancellation at the decoder with single-user codes [26]. This method can

also be leveraged to achieve any point on the dominant face by time sharing or rate

splitting [27]. The problem of designing good LDPC degree distributions was studied

in [28] using density evolution (DE), where the authors design good LDPC codes for

a few points in the achievable region (in terms of rate). Another approach was shown

in [29] for the case when both users have the same transmit power, using EXIT charts.

These optimization procedures exploit knowledge of the channel gains to design
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good codes. However, in practical scenarios the channel gains cannot be known non-

causally at the transmitter (for example, a fading channel). So, it is desirable to �x

the rate pair for transmission and view the capacity region in terms of the achievable

channel gains for that rate pair.

C. Universality

Another interesting demarcation between multi-user communication and point-to-

point communication is in the notion of channel degradation. Loosely speaking, a

capacity achieving code designed for a particular channel condition is able to perform

well for all channel conditions which are better. For point-to-point communications,

this set is also the ACP set for that rate. This is no longer true for multi-user

communication problems. This is seen in Fig. 5 (here we assume that a bigger α

means that the channel is better). For �xed user code rates, reliable communication

is theoretically possible over a wide range of channel conditions [25] and we note

that the ACP set extends to a ACP region (ACPR) in this case. In the context

of communication over parallel channels, the ACPR was called the reliable channel

region [30].

De�nition I.13 (Universal codes). A code is called universal if it provides good

performance for all system parameters that do not violate theoretical limits.

Remark I.1. This designation neglects the fact that the receiver is assumed to have

channel state information and is based on the standard assumption that the receiver

can estimate the channel state with negligible pilot overhead.

While irregular LDPC codes can be optimized to approach capacity for any par-

ticular channel condition, their performance can deteriorate markedly as the channel

conditions change. So, codes which are robust to variation in channel conditions are
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α

R

α∗(R)

α1

α2

(R1, R2)

α∗(R1, R2)

Fig. 5. An illustration of channel degradation in point-to-point communication and

multi-user systems. Here we assume that bigger α implies a better channel.

The ordering for this multi-user case is given by (α1, α2) � (β1, β2) i� α1 ≥ β1

and α2 ≥ β2.

desirable because they minimize the outage probability for quasi-static channels (e.g.,

when a probability distribution is assigned to the set of possible channel parameters).

Thus, universal codes can be expected to provide performance gains when used

in sensor networks. Due to fading in wireless channels, the problem of unknown

channel state at the transmitter naturally arises in this context, motivating the use

of universal codes.

D. Outline

This dissertation is organized as follows. In Chapter II, we present a review of the

background material for this dissertation. We �rst review linear codes which can be

represented by sparse graphs and the belief-propagation algorithm, which is used for

decoding. We then brie�y review density evolution (DE), which presents a power-

ful analysis tool to characterize the performance of graph based codes. Generalized

EXIT curves, which present an important connection between BP decoding and MAP

decoding via an Area Theorem, are then introduced . The remainder of Chapter II

introduces the multiple-terminal problem models used throughout this work and ex-

tends DE for these problems.
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Chapter III discusses the MAP performance of LDPC codes for these channels

and discusses a performance bound by extending the notion of GEXIT curves for

these problems. Chapter IV reviews spatially-coupled codes and discusses the per-

formance of spatially-coupled codes for multi-terminal problems in Chapter V. Some

conclusions are provided in Chapter VI.
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CHAPTER II

BACKGROUND

We describe the various terms and notation used in this work. We liberally use

notation and de�nitions from [2].

A. LDPC Codes

LDPC codes are a class of linear codes introduced by Gallager in [31]. The message-

passing rules which later became belief propagation was also introduced. Tanner

generalized the notion of representing linear codes in terms of a bipartite graph [32].

Mackay rediscovered LDPC codes in [33] and noticed the advantages of sparse block

codes. Since then many tools and analysis techniques have been introduced to un-

derstand and improve the performance of LDPC codes. Of particular note is the

introduction of irregular LDPC codes by Luby et al. in [34, 35] and the density

evolution (DE) algorithm introduced by Richardson et al. in [36].

EXIT charts were �rst introduced by ten Brink [37] as a visualization of BP

decoding. For the BEC, these charts accurately represent the DE analysis. GEXIT

functions were introduced in [38] as a natural generalization of EXIT charts to general

channels. These functions ful�ll the so-called Area Theorem, thereby giving an upper

bound on the MAP performance of iterative decoding systems. This upper bound

can be shown to be tight for the case of the BEC [2, Theorem 3.120]. We now proceed

with some basic de�nitions and examples. In this chapter, all vectors are assumed to

be column vectors.

De�nition II.1 (Binary Linear Code). A binary linear code of length n is a subspace
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of Fn2 , with dimension k. So, we can write

C = {x|Hx = 0,x ∈ Fn2},

for some H ∈ Fm×n2 , such that rank(H) = n− k, m ≥ n− k. Note that the rows of H

need not be linearly independent. The matrix H is called the parity-check matrix of

the code C. Note that the parity-check matrix of a code is not unique. Henceforth,

we shall refer to a binary linear code C in terms of an associated parity-check matrix

H. Alternately the code C can be represented in terms of a generator matrix G as

C = {xTG,x ∈ Fk2}.

De�nition II.2 (Tanner Graph). The tanner graph associated with a parity-check

matrix H is a bipartite graph. It has n variable nodes corresponding to the compo-

nents of the codeword (which correspond to the columns of H) and m check nodes

corresponding to the rows of H. A check node j is connected to variable node i if

Hji = 1. We use the notation ∂i to denote the set of neighbors of i. We can also

associate a Tanner graph with a generator matrix G. The rows of G correspond to

the information nodes and the columns correspond to the generator nodes.

Example II.1 (Tanner Graph). The Tanner graph corresponding to a parity-check

matrix H is shown in Fig. 6.

H =




1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1




1 2 3 4 5 6 7

1 2 3

Fig. 6. The Tanner graph associated with the parity-check matrix of a Hamming code

is shown above.
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De�nition II.3 (Degree Pro�le). Consider the Tanner graph associated with a

parity-check matrix H. The degree of a node is de�ned to be the number of edges

connected to that node. Let Li (Ri) denote the fraction of variable (check) nodes of

degree i. The normalized degree distributions from the node perspective are de�ned

by

L(x) ,
lmax∑

i=2

Lix
i, R(x) ,

rmax∑

i=2

Rix
i,

where lmax and rmax are the maximum variable and check node degrees respectively.

De�ne the degree pro�les from the edge perspective:

λ(x) =
lmax∑

i=2

λix
i−1 ,

L′(x)

L′(1)
, ρ(x) =

rmax∑

i=2

ρix
i−1 ,

R′(x)

R′(1)
.

Note that λi (ρi) is the fraction of edges that connect to a variable (check) node of

degree i. The inverse relationship is given by

L(x) =

∫ x
0
λ(z)dz

∫ 1

0
λ(z)dz

, R(x) =

∫ x
0
ρ(z)dz

∫ 1

0
ρ(z)dz

,

and the design rate is given by

R(λ, ρ) = 1−
∫ 1

0
ρ(z)dz

∫ 1

0
λ(z)dz

= 1− L′(1)

R′(1)
.

De�nition II.4 (Low-Density Parity-Check Code). A linear block code is called a

low-density parity-check (LDPC) code if it admits a sparse parity-check matrix. A

generic Tanner graph representation of LDPC codes is shown in Fig. 7.

De�nition II.5 (Low-Density Generator-Matrix Code). A linear block code is called

a low-density generator-matrix (LDGM) code if it admits a sparse generator matrix.

A generic Tanner graph representation of LDGM codes is shown in Fig. 8.

De�nition II.6 (The Ensemble LDPC(n, λ, ρ)). The bipartite graph has n variable



17

permutation π

ρ(x)

λ(x)

Fig. 7. A generic Tanner graph representation of regular LDPC codes is shown above.

permutation π

ρ(x)

λ(x)

Fig. 8. A generic Tanner graph representation of regular LDGM codes. The white

circles represent the punctured information bits of the LDGM code. The gen-

erator bits are represented by squares.

nodes. There are a total of nL′(1) edges in the graph. So, the number of check nodes

in the graph is m = nL
′(1)

R′(1)
. A node of degree i has i sockets from which the i edges

emanate. Label the sockets on each side from the set [nL′(1)] in an arbitrary but �xed

way and let σ be a permutation on [nL′(1)] (We use the notation [n] , {1, · · · , n}).

The i-th socket on the variable side is connected to the σ(i)-th socket on the check

side. De�ne a probability distribution on the set of graphs generated this way by

placing a uniform distribution on σ. We can associate a code with each such bipartite

graph through the corresponding parity-check matrix H (Hji = 1 if the i-th variable

node is connected to the j-th check node an odd number of times). This ensemble of

bipartite graphs is called LDPC(n, λ, ρ). The ensemble LDPC(λ, ρ) is the asymptotic

version of LDPC(n, λ, ρ) (as n tends to in�nity).
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1. Belief Propagation Decoder

The belief propagation (BP) decoder is an iterative message-passing decoder. The

decoder proceeds in rounds of message passing between the variable nodes and check

nodes. The incoming messages at the check nodes are processed and forwarded to the

variable nodes. The messages are then processed at the variable nodes and transmit-

ted to the check nodes. This is one round of message passing. The incoming message

to each node is the log-likelihood ratio of the conditional probability of that bit, and

nodes process the messages as they were independent of all the other messages. The

BP decoder employs a locally optimal processing rule at the variable and check nodes.

This decoder is optimal (it performs the marginalization given in (1.1)) if the Tanner

graph is a tree. It is sub-optimal when the Tanner graph has cycles. A more through

discussion can be found in [2, Section 4.2]. The message passing rules at iteration `

for a check (variable) node of degree l (r) are summarized below:

Check Node Update

Φ(`)(µ1, · · · , µr−1) =





0 ` = 0

2 tanh−1
(∏

r−1
i=1 tanh µi

2

)
` > 0

. (2.1)

Variable Node Update

Ψ(µ0, µ1, · · · , µl−1) = µ0 +
l−1∑

i=1

µi. (2.2)

Following [2], µ0 is used to represent the message from the channel, µ1, · · · , µl−1 to

denote the incoming messages for a variable node of degree l and µ1, · · · , µr−1 to

denote the incoming messages for a check node of degree r.

Assume that transmission takes place over a BMS channel using a code C. Let

the received vector be y. The channel message for bit i is given by the log-likelihood
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ratio l(yi) and all other messages are initialized to 0. The decoder iterates using

(2.1) and (2.2) until a prede�ned stopping criteria is reached. The BP decoder then

outputs the a-posteriori log-likelihood ratio for each bit, given by

li = l(yi) +
∑

j∈∂i
µj→i,

where µj→i denotes the message from check node j to variable node i.

2. Density Evolution

The transformation of the densities of the incoming messages under the operations

in (2.1) and (2.2) are denoted by � and � respectively (see discussion in [2, p. 181]).

Also, if a is an L-density, we denote

a�n , a � a � · · ·� a︸ ︷︷ ︸
n

,

and likewise for a�n. To study the performance of the BP decoder, one can simplify

the analysis by making the following key observations [2, Section 4.3]:

1. For any BMS channel, the error probability of the BP decoder is independent

of the transmitted codeword. So, without loss of generality, we can assume that

the all-zero codeword (0 ∈ Fn2 ) is transmitted. This implies that one needs

only to track one density (conditioned on the all-zero codeword) to study the

performance of an LDPC code with BP decoding.

2. The performance of any code chosen uniformly at random from the ensemble

LDPC(n, λ, ρ) concentrates around the ensemble average for large block-lengths.

This enables us to analyze the ensemble average (averaged over all possible

channel realizations and over LDPC(n, λ, ρ)).
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Making these simpli�cations, in the limit of in�nite block-lengths, the following equa-

tion captures the performance of the ensemble LDPC(λ, ρ), for transmission over a

channel described by aBMSC:

a(`) = aBMSC � λ(ρ(a(`−1))), ` ≥ 1, (2.3)

with a0 = aBMSC, λ(a) =
∑

i λia
�(i−1) and ρ(a) =

∑
i ρia

�(i−1). The density of the

messages emanating from the variable nodes (assuming that the all-zero codeword

was transmitted) at iteration ` is given by a(`). The above equation is known as the

density evolution (DE) equation.

Example II.2. The DE equation for the BEC(α) case simpli�es to a one-dimensional

recursion

a(`+1) = αλ(1− ρ(1− a(`))),

where λ(x) =
∑

i λix
i−1 and ρ(x) =

∑
i ρix

i−1.

The error functional is de�ned by

E(a) ,
∫ 0−

−∞
a(x) dx+

1

2

∫ 0+

0−
a(x) dx. (2.4)

The expected residual error probability after ` iterations for the ensemble LDPC(λ, ρ)

is given by E(aBMSC � L(ρ(a(`−1))).

3. GEXIT Curves and MAP Performance

This section is an informal introduction to GEXIT curves and a bounding technique

on the MAP threshold. A formal discussion can be found in [2, Section 4.12]. GEXIT

curves were introduced as a generalization of EXIT curves. An upper bound on the

MAP threshold can be computed using GEXIT curves, by means of an area theorem.
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Consider transmission over a BMS channel (X n,Yn, pY |X) which is characterized by

a parameter α. Throughout this section, we assume that a smaller α implies a better

channel and that α ∈ [0, 1]. To emphasize the dependence on the channel parameter,

we denote the output by Y (α). The GEXIT function is de�ned as

g(α) = lim
n→∞

1

n

∂

∂α
E [H(X|Y (α))] .

This function satis�es an area theorem by de�nition i.e.,

∫ 1

0

g(α)dα = lim
n→∞

1

n
E [H(X|Y (α))] = R.

The MAP threshold is de�ned as

αMAP = inf
{
α : lim inf

n→∞
E [H(X|Y (α))] > 0

}
,

from which one can obtain

∫ 1

αMAP

g(α)dα = R.

The GEXIT function is hard to compute in general and hence one typically uses the

BP-GEXIT function denoted by gBP, which can be computed using the �xed points

of density evolution [39].

Example II.3. For transmission over a BEC(α), the BP-GEXIT function is given

in parametric form for regular ensembles (λ(x) = xl−1, ρ(x) = xr−1) by

gBP(α) =





(α, 0) α ∈ [0, αBP)

(α(x), L(1− ρ(1− x))) x ∈ (xBP, 1]

,

where α(x) = x/λ(1− ρ(1− x)) and xBP is the unique minimum of α(x) and αBP =

α(xBP).
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∫ 1

ᾱ g
BP(α)dα = 1

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
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1

α

gB
P

Fig. 9. The BP-GEXIT curve for the regular LDPC(3, 6) ensemble for transmission

over erasure channels. The MAP upper bound is given by ᾱ ≈ 0.4881. This

upper bound can be shown to be tight for erasure channels.
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It can be shown that the BP-GEXIT function is a pointwise upper bound on the

GEXIT function. So, we can upper bound the MAP threshold by ᾱ, where ᾱ is the

largest positive number such that

∫ 1

ᾱ

gBP(α)dα = R.

The BP-GEXIT curve and the upper bound on the MAP threshold using this tech-

nique is shown in Fig. 9. These bounds can be shown to be tight for erasure-type

channels.

B. The Noisy Slepian-Wolf Problem

Consider the problem of transmitting the outputs of two discrete memoryless cor-

related sources,
(
U [1], U [2]

)
, to a central receiver through two independent discrete

memoryless channels with capacities C [1] and C [2], respectively. The system model

is shown in Fig. 10. We will assume that the channels belong to the same channel

family, and that each channel can be parametrized by a single parameter α (e.g., the

erasure probability for erasure channels). The two encoders are not allowed to com-

municate. Hence they must use independent encoding functions, which map k input

symbols (U [1] and U [2]) to n1 and n2 output symbols (X [1] and X [2]), respectively.

The rates of the encoders are given by R1 = k/n1 and R2 = k/n2. The decoder

receives (Y [1],Y [2]) and makes an estimate of (U [1],U [2]).

The problem we consider is to design a graph-based code, for which a joint

iterative decoder can successfully decode over a large set of channel parameters. For

simplicity, we assume that both the encoders use identical codes of design rate R

(i.e., R = k/n, n1 = n2 = n). Reliable transmission over a channel pair (α[1], α[2]) is



24

Source 2

Source 1

Encoder 2

R

Encoder 1

R

Channel 2
C2

Channel 1
C1

Decoder

U2

U1

X2

X1

Y
2

Y
1

Correlated
Sources

Fig. 10. System Model

possible as long as the SW conditions (2.5) are satis�ed.

C [1](α[1])

R
≥ H

(
U [1]
∣∣U [2]

)

C [2](α[2])

R
≥ H

(
U [2]
∣∣U [1]

)

C [1](α[1])

R
+
C [2](α[2])

R
≥ H

(
U [1], U [2]

)
(2.5)

For a given pair of rate-R encoding functions and a joint decoding algorithm, a

pair of channel parameters (α[1], α[2]) is achievable if the encoder/decoder combination

can achieve an arbitrarily low error probability for the asymptotic limit as k → ∞.

We de�ne the achievable channel parameter region (ACPR) as the set of all channel

parameters which are achievable. Note that the ACPR is the set of all channel

parameters for which successful recovery of the sources is possible for a �xed encoding

rate pair (R,R). We also de�ne the SW-ACPR as the set of all channel parameters

(α[1], α[2]) for which (2.5) is satis�ed. The SW-ACPR for the erasure channel family

is shown in Fig. 11.

1. Correlation Models

In this dissertation, we consider the following scenarios:

1. The channels are erasure channels and the source correlation is modeled through
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α[1]

α[2]

1−H(U [1]|U [2])R1−H(U [1])R

1−H(U [2]|U [1])R

1−H(U [2])R

Fig. 11. The SW-ACPR for erasure channels, for a �xed rate pair (R,R)

erasures.

2. The channels are additive white Gaussian noise (AWGN) channels and the

source correlation is modeled through a virtual correlation channel analogous

to a binary symmetric channel (BSC).

These models might appear restrictive, but we believe they provide su�cient insight

for the design of codes that perform well for arbitrary correlated sources and channels.

Our analysis in Section 2 admits general correlation models and memoryless channels.

a. Erasure Correlation Model

The erasure system model is based on communication over binary erasure channels

(BECs) and the source correlation is also modeled through erasures. Let Z be a

Bernoulli-p random variable and X,X ′ be i.i.d. Bernoulli-1
2
random variables. The
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sources U [1] and U [2] are de�ned by

(
U [1], U [2]

)
=





(X,X ′) if Z = 0

(X,X) if Z = 1

.

We have H
(
U [1]|U [2]

)
= H

(
U [2]|U [1]

)
= 1 − p and H

(
U [1], U [2]

)
= 2 − p. This corre-

lation model can be incorporated into the Tanner graph (see Fig. 12) at the decoder

with the presence or absence of a check node between the source bits depending on

the auxiliary random variable Z. Note that the decoder requires the realization of

the random variable Z, for each source bit, as side information. Because of this re-

quirement, one might consider this a toy model that is used mainly to gain a better

understanding of the problem. Still, a very similar model was used recently to model

internet �le streaming from multiple sources [40].

This model can also be thought of as having two types of BSC correlation between

the source bits (as described in the next section), one with parameter 0 and one with

parameter 1. The correlation parameter p determines how many bits are correlated

with parameter 1. The receiver knows which bits are correlated with parameter 1.

For a BEC correlation with probability p, there is a parity-check at the correlation

node with probability p and with probability 1 − p there is no parity-check. Let

ζ(·) be the density transformation associated with these correlation nodes. Then

ζ(a) = (1− p) + pa.

b. BSC Correlation Model

A more realistic model is the BSC/AWGN system model, where communication takes

place over a binary-input additive white Gaussian-noise channel (BAWGNC) and

the symmetric source correlation is de�ned in terms of a single parameter, namely

p = Pr(U [1] = U [2]). It is useful to visualize this correlation by the presence of an
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auxiliary binary symmetric channel (BSC) with parameter 1−p between the sources.

In other words, U [2] is the output of a BSC with input U [1] i.e., U [2] = U [1] +Z. Here

Z is a Bernoulli-(1− p) random variable and can be thought of as an error. Let h2(·)

denote the binary entropy function. Then, H
(
U [1]|U [2]

)
= H

(
U [2]|U [1]

)
= h2(p) and

H
(
U [1], U [2]

)
= 1 + h2(p).

This correlation model can be incorporated into the Tanner graph at the de-

coder (described in Section 2) as check nodes between the source bits, with a hidden

node representing the auxiliary random variable Z (which outputs the constant log-

likelihood ratio ln 1−p
p
) attached to the check node. For this scenario, the decoder

does not require any side information i.e., it does not need to know the realization of

the auxiliary random variable Z.

The symmetry of the problem allows one to, without loss of generality, assume

that user 1 transmits the all-zero codeword and the second user transmits a typical

codeword (i.e., the fraction of ones equals the fraction of zeros as k → ∞). Due

to the constraints imposed by the correlation, the fraction of ones in the systematic

part of the codeword is 1− p. Density evolution proceeds with two types of messages

(those connected to a variable node with transmitted value +1 and those connected

to a variable node with transmitted value −1). By symmetry of the message passing

rules [2, p. 210], we can factor out the sign for the messages connected to variable

nodes with transmitted value −1. This sign can be factored into the correlation

node (once again by the symmetry condition). The fraction of correlation nodes

which are �ipped is 1 − p. So, we introduce a parity-check at the correlation nodes

which evaluates to a Bernoulli-p random variable. Then the density transformation

operator associated with these correlation nodes is given by ζ(a) = aBSC(p) � a. This

simpli�cation enables us to proceed with density evolution assuming the transmission

of an all-zero codeword for both the users.
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λ(x)

p
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λ(x)
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ζ(·)

a`

b`

Fig. 12. The Tanner graph of a punctured systematic LDPC code with source corre-

lation nodes is shown above.

2. Density Evolution

Assume that the sequences U [1] and U [2] are encoded using LDPC codes with a

degree distribution pair (λ, ρ) and a punctured systematic encoder. Let the fraction

of punctured (systematic) bits be γ = R(λ, ρ). The rate pair of the two codes after

puncturing is (R,R), where

R =
R(λ, ρ)

1− R(λ, ρ)
. (2.6)

The Tanner graph [2] for the joint decoder is shown in Fig. 12. Codes 1 and

2 correspond to the bottom and top half of the graph. The codes are connected

by correlation nodes attached to the punctured bits. The joint iterative decoder

proceeds in rounds, by alternating one round of decoding for code 1 with one round

of decoding for code 2. Let a(`) and b(`) denote the LLR density1 of the messages

1Assuming that the transmission alphabet is {±1}, the densities are conditioned
on the transmission of a +1.
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emanating from the variable nodes at iteration `, corresponding to codes 1 and 2.

The density evolution equations [2] can be written as follows

a(`+1) =
[
γζ
(
L
(
ρ(b(`))

))
+ (1− γ)aBMSC

]
� λ(ρ(a(`)))

b(`+1) =
[
γζ
(
L
(
ρ(a(`))

))
+ (1− γ)bBMSC

]
� λ(ρ(b(`))),

(2.7)

where λ(a) =
∑

i λia
�(i−1), L(a) =

∑
i Lia

�(i−1), ρ(a) =
∑

i ρia
�(i−1), aBMSC and

bBMSC are the densities of the log-likelihood ratios received from the channel. The

function ζ at the correlation nodes depends on the equivalent channel corresponding

to the correlation model, as described in [8]. Although one cannot assume that the

all-zero codeword is sent simultaneously by both users, one can show that this DE

recursion su�ces for typical message pairs as de�ned previously. The �xed points of

DE are the tuples (aBMSC, bBMSC, a, b) which satisfy

a =
[
γζ
(
L (ρ(b))

)
+ (1− γ)aBMSC

]
� λ(ρ(a))

b =
[
γζ
(
L (ρ(a))

)
+ (1− γ)bBMSC

]
� λ(ρ(b))).

(2.8)

The residual error probability at iteration `, (e
(`)
1 , e

(`)
2 ), is computed using the

error functional E(·) de�ned in (2.4):

e
(`)
1 = E

([
γζ
(
L
(
ρ(b(`−1))

))
+ (1− γ)aBMSC

]
� L(ρ(a(`−1)))

)

e
(`)
2 = E

([
γζ
(
L
(
ρ(a(`−1))

))
+ (1− γ)bBMSC

]
� L(ρ(b(`−1)))

)
.

For two residual error probabilities (e1, e2) and (ẽ1, ẽ2), we de�ne (e1, e2) � (ẽ1, ẽ2) i�

e1 ≤ ẽ1 and e2 ≤ ẽ2.

Consider the line α[2] = θα[1], for some θ ∈ [0,+∞). The BP threshold along the
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Fig. 13. The DE boundary for the punctured LDPC(4, 6) ensemble is shown above for

the SWE problem. The channel parameters are erasure probabilities.

line is de�ned by

αBP(λ, ρ, θ) = inf
{
α : The �xed point equation (2.13) has a solution

(a, b) 6= (∆+∞,∆+∞)
}
.

The set of all points (α, θα) such that α ≤ αBP(λ, ρ, θ) is called the BP-ACPR and its

boundary is called the DE boundary. The DE boundary for the punctured LDPC(4, 6)

ensemble is shown in Fig.s 13 and 14 for the SWE problem and the BSC correlation

model respectively.
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Fig. 14. The DE boundary for the punctured LDPC(4, 6) ensemble for the BSC cor-

relation model is shown above. The �gure is plotted with respect to the

signal-to-noise ratio and not the parameter α.
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Y

Fig. 15. The Gaussian MAC

C. The Gaussian Multiple-Access Channel

Consider the problem of transmitting the outputs of two independent discrete mem-

oryless sources,
(
U [1], U [2]

)
, to a central receiver through a multiple access channel

(MAC). One of the simplest models is the binary-input Gaussian MAC. The 2-user

binary-input Gaussian MAC has been extensively studied in the literature and is

de�ned by

Y = α[1]X [1] + α[2]X [2] +N. (2.9)

The system model is shown in Fig. 15. The channel inputs are binary i.e., X [1], X [2] ∈

{±1} and the variation in channel gains α[1], α[2] ∈ [0,∞) can be explained either by

fading or by di�erent power constraints for the two users. The noise N is a zero-mean

Gaussian random variable, with �xed variance of 1. The capacity region is de�ned as

the set of all achievable rate tuples (R[1], R[2]), given by the equations

R[1] ≤ I
(
X [1];Y |X [2]

)

R[2] ≤ I
(
X [2];Y |X [1]

)
(2.10)

R[1] +R[2] ≤ I
(
X [1], X [2];Y

)
.

In this work, we �x the rate pair for transmission and view the capacity region
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Fig. 16. The MAC-ACPR for the rate pair (0.5, 0.5) is shown above.

in terms of the achievable channel gains for that rate pair.2 In other words, the

capacity region is the set of all channel gains (α[1], α[2]) that are achievable, i.e.,

satisfy (2.10). We call this region as the MAC achievable channel-parameter region

(MAC-ACPR), to illustrate that the capacity region is de�ned in terms of achievable

channel parameters. The MAC-ACPR for the rate pair (0.5, 0.5) is shown in Fig. 16.

2To simplify notation, we assume that both users employ codes with design rate
R, chosen independently from the same ensemble.
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1. Density Evolution

To simplify notation, we assume that the transmission is bit-aligned. The factor graph

of the joint decoder (see Fig. 17) consists of two single user Tanner graphs, whose

variable nodes are connected through a function node [2, p. 308]. Codes 1 and 2

correspond to the bottom and top half of the Tanner graph. The variable nodes that

are connected via the function node are chosen at random.3 Let Xi =
(
X

[1]
i , X

[2]
i

)

andX =
(
X [1],X [2]

)
. Without loss of generality, we can label the elements of {±1}2

by integers X , {0, 1, 2, 3} using the map π : X → {±1}2, de�ned by

0 7→ (+1,+1), 1 7→ (+1,−1), 2 7→ (−1,+1) and 3 7→ (−1,−1).

Let π1, π2 : X → {±1} be the projections onto the �rst and second coordinate

respectively. Then, the canonical representation of the channel output is given by

νxi(yi) = pY |X[1],X[2](yi|π1(xi), π2(xi))

=
1√

2πσ2
exp

[
−(yi − α[1]π1(xi)− α[2]π2(xi))

2

2σ2

]
.

Let µ
[j]
i,v→f and µ

[j]
i,f→v denote the �variable node to function node� and �function node

to variable node� messages4, respectively, for variable node i of the jth user. Here

j ∈ {1, 2} and i ∈ {1, 2, . . . , n}. The message passing rules at the function node are

given by

µ
[1]
i,f→v = log

ν0(yi)e
µ
[2]
i,v→f + ν1(yi)

ν2(yi)e
µ
[2]
i,v→f + ν3(yi)

, (2.11)

µ
[2]
i,f→v = log

ν0(yi)e
µ
[1]
i,v→f + ν2(yi)

ν1(yi)e
µ
[1]
i,v→f + ν3(yi)

. (2.12)

3Other matching rules result in a di�erent performance in general.
4Here, the messages are in the log-likelihood domain.
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In general, this function node operation is not symmetric with respect to the users.

The operation is symmetric only for the case of the same fading coe�cients i.e., when

α[1] = α[2].

One cannot use the all-zero codeword assumption for this problem. Instead, one

may assume that both users transmit codewords of type one-half, which occurs with

high probability (a more thorough discussion can be found in [2, p. 296]). We use

the notation aBAWGNMA , aBAWGNMA(α[1],α[2]) to denote the density of the received

random variable Y . Let ζ1→2(·, aBAWGNMA) (resp. ζ2→1(·, aBAWGNMA)) be the density

transformation operator corresponding to a message from user 1 to user 2 (resp. user

2 to user 1) via the function node. More precisely,

ζ1→2(a, aBAWGNMA) ,
∑

x∈X
pX(x)ζ12(a(π1(x)u), νx(u))

ζ2→1(b, aBAWGNMA) ,
∑

x∈X
pX(x)ζ21(b(π2(x)u), νx(u)),

where ζ12(·, ·) and ζ21(·, ·) are density transformation operators corresponding to (2.11)

and (2.12). In this case, pX(x) = 1/4,∀x ∈ X . Here, a(u) (respectively b(u)) is the

density of the messages m
[1]
i,v→f (m

[2]
i,v→f ). These operators can be computed numer-

ically for discretized densities following the procedure outlined in [41]. Using the

notation described in Section A, the DE equations for the joint decoder are given by

a`+1 = ζ2→1

(
L (ρ(b`)) , aBAWGNMA

)
� λ(ρ(a`))

b`+1 = ζ1→2

(
L (ρ(a`)) , aBAWGNMA

)
� λ(ρ(b`)).

These equations accurately represent the evolution of densities at the decoder due to

the symmetry of the variable and check node operations. The �xed points of density
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Fig. 17. Tanner graph of the joint decoder. The variable nodes of each code are con-

nected through function nodes, which receives the channel outputs. The joint

decoder iterates by passing messages between the component decoders.

evolution are the triples (aBAWGNMA, a, b) that satisfy

a = ζ2→1

(
L (ρ(b)) , aBAWGNMA

)
� λ(ρ(a))

b = ζ1→2

(
L (ρ(a)) , aBAWGNMA

)
� λ(ρ(b)). (2.13)

Consider the line α[2] = θα[1], for some θ ∈ [0,+∞]. The BP threshold along the line

is de�ned by

αBP(λ, ρ, θ) = sup
{
α : The �xed point equation (2.13) has a solution

(a, b) 6= (∆+∞,∆+∞)
}
.

The set of all points (α, θα) such that α ≥ αBP(λ, ρ, θ) is called the BP-ACPR and

its boundary is called the DE boundary.
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CHAPTER III

THE MAP DECODING THRESHOLD

Analogous to point-to-point communication, we can de�ne a GEXIT function for

multi-terminal problems by taking the gradient of the residual entropy with respect

to the channel parameters. There is an area theorem associated with the line integral

of the GEXIT function. In this chapter we introduce GEXIT functions for the noisy

SW problem and the Gaussian MAC and discuss the associated area theorem in

Sections 1 and 1. Using this area theorem, we can construct an upper bound on the

MAP performance of LDPC codes for these channels. This upper bound is discussed

in Sections 2 and 2. In Section 3, we show that this upper bound is tight under

some conditions, for the SWE problem, by considering an analytic extension of the

BP-GEXIT curve.

A. The Noisy Slepian-Wolf Problem

Consider the noisy SW problem with channel parameter (α[1], α[2]). Suppose we use

di�erent codes from the ensemble LDPC(n, λ, ρ) for each user, using a punctured

systematic encoder. The following discussion applies to the two users using di�erent

LDPC ensembles. Let X
[1]
i and X

[2]
i denote the ith bit of user 1 and 2 respectively.

Let Xi =
(
X

[1]
i , X

[2]
i

)
, X =

(
X [1],X [2]

)
, Yi =

(
Y

[1]
i , Y

[2]
i

)
and Y =

(
Y [1],Y [2]

)
.

Also, we denote Y (α[1], α[2]) =
(
Y [1](α[1]),Y [2](α[2])

)
to emphasize the dependence

on the channel parameter. We use the notation [X]k2k1 to denote the sub-vector

(Xk1 , Xk1+1, · · · , Xk2). The bits [X]nn−k+1 are systematic bits and are not transmitted,

and hence [Y ]nn−k+1 are considered to be erasures and do not depend on the channel.
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We de�ne the GEXIT function

g(α[1], α[2]) ,
1

2(n− k)
∇E

[
H(X|Y (α[1], α[2]))

]
.

By de�nition, the line integral of the GEXIT function is path independent. As seen

in the next section, it is instructive to consider line integrals along monotonic curves.

The projection of the GEXIT function along such curves satis�es a natural area

theorem, enabling us to obtain a bound on the MAP performance, along the lines of

Section 3.

1. GEXIT Curves

In this section we consider projections of the GEXIT function along monotonic curves

in parameter space, to �nd a simple characterization of the GEXIT function. Here

monotonicity is de�ned with respect to the partial order implied by channel degra-

dation. Suppose that Xi is transmitted via a channel with parameter (α
[1]
i , α

[2]
i ).

Consider a curve C in [0, 1]2(n−k), parametrized by α i.e., α 7→ c(α) ,
[
(α

[1]
i , α

[2]
i )
]n−k

1
.

We assume that C is smooth and that the channel is degraded with respect to α.

Further, α
[j]
i (0) = 0 and α

[j]
i (1) = 1 for j = 1, 2 and i = 1, · · · , n− k. The projection

of the GEXIT function along the curve C is de�ned by

gC(α) ,
1

2(n− k)
∇H(X|Y ) · ∇c(α) (3.1)

=
1

2(n− k)

n−k∑

i=1

∂

∂α
[1]
i

H(X|Y )
∂α

[1]
i

∂α
+

∂

∂α
[2]
i

H(X|Y )
∂α

[2]
i

∂α
︸ ︷︷ ︸

,gC,i(α
[1]
i ,α

[2]
i )

.

Let y
[j]
∼i = y\y[j]

i ,

φ
[j]
i (y

[j]
∼i) = log p

X
[j]
i |Y

[j]
∼i

(+1|y[j]
∼i)− log p

X
[j]
i |Y

[j]
∼i

(−1|y[j]
∼i)
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and Φ
[j]
i , φ

[j]
i (Y

[j]
∼i) be the corresponding random variable, for j = 1, 2 and i =

1, · · · , n. Note that φ
[j]
i (·) is the extrinsic MAP estimator of X

[j]
i , for j = 1, 2, and

i = 1, · · · , n.

Lemma III.1. Suppose that all bits are transmitted through the same channel i.e.,

α
[j]
i (α) = α[j](α), for j = 1, 2 and i = 1, · · · , n− k. Then, the ith GEXIT function is

given by

gC,i(α
[1], α[2]) =

∂α[1]

∂α

∫

u

ai(u)κ(aBMSC(α[1]), u)du

+
∂α[2]

∂α

∫

u

bi(u)κ(aBMSC(α[2]), u)du,

where ai(u) (resp. bi(u)) is the distribution of Φ
[1]
i (resp. Φ

[2]
i ) given X

[1]
i = +1 (resp.

X
[2]
i = +1) and the GEXIT kernel is given by

κ(aBMSC(α), u) =

∫

v

∂

∂α
aBMSC(α)(v) log2(1 + e−u−v)dv. (3.2)

Proof. The proof is given in Appendix A. �

The GEXIT function is hard to compute and hence we use the BP-GEXIT func-

tion instead. The BP-GEXIT function is obtained by replacing the MAP extrinsic

estimator with the corresponding BP estimator. Let ΦBP,`,n
i denote the BP extrinsic

estimate of Xi after ` iterations of the joint decoder. The BP extrinsic estimate is

computed using the computation graph of depth ` for function node i. De�ne the

BP-GEXIT function at the `th iteration gBP,`,nC (α) in a similar manner to [39] (taking

an expectation over all possible computation graphs) and the asymptotic BP-GEXIT

function is de�ned as gBPC (α) = lim`→∞ limn→∞ gBP,`,nC (α). For �xed `, in the limit

of n → ∞, the computation graph of each function node becomes tree-like with

high probability. This implies that the computation graphs of the two variable nodes
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(which themselves become tree-like) connected to the function node do not overlap

with high probability. The extrinsic estimate of Xi can then be computed via the

extrinsic estimates of X
[1]
i and X

[2]
i . The asymptotic BP-GEXIT function can be

computed through the �xed points of density evolution (aBMSC(α[1]), aBMSC(α[2]), a, b)

which satisfy (2.8) and is discussed in the following lemma.

Lemma III.2. Consider a monotonic curve C and transmission over the channel pair

(α[1](α), α[2](α)) and let (aBMSC(α[1]), aBMSC(α[2]), a, b) be a �xed point of DE. De�ne the

BP-GEXIT value of the �xed point by

GBPC (aBMSC(α[1]), aBMSC(α[2]), a, b) ,
∂α[1]

∂α

∫

u

a(u)κ(aBMSC(α[1]), u)du

+
∂α[2]

∂α

∫

u

b(u)κ(aBMSC(α[2]), u)du.

The GEXIT kernel κ(·, ·) is de�ned as in (3.2). The BP-GEXIT curve gBPC (α) is

given by (α,GBPC (aBMSC(α[1]), aBMSC(α[2]), a, b)), α ∈ [0, 1].

Proof. The proof follows immediately from the de�nition of the BP-GEXIT curve. �

2. MAP Upper Bound

The GEXIT kernel preserves degradation (see [2, Chapter 4]) and hence the BP-

GEXIT curve always lies above the GEXIT curve, allowing one to bound the MAP

threshold. Consider transmission using codes from the ensemble LDPC(n, λ, ρ). For

a �xed curve C, we de�ne the MAP threshold as

αMAPC = inf

{
α : lim inf

n→∞
1

n
E[H(X|Y (α, C))] > 0

}
,

where the expectation is taken over all codes in the ensemble. The set of parameters
⋃
C(α

[1](αMAPC ), α[2](αMAPC )) is called the MAP boundary and the set of all channel
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parameters which are degraded with respect to the boundary is called the MAP-

ACPR. By de�nition of the GEXIT function, this gives

∫ 1

αMAPC

gC(α)dα =
1

n

∫ 1

αMAPC

dH(X|Y (α, C))
dα

dα

=
1

n
H(X|Y (1))

=
γH(U1, U2)

2(1− γ)
.

The above equation gives us a procedure to compute an upper bound on the MAP

threshold, using GEXIT curves. For a �xed curve C, let ᾱC denote the largest positive

number such that

∫ 1

ᾱC

gBPC (α)dα =
γH(U1, U2)

2(1− γ)
.

Then the MAP threshold αMAPC ≤ ᾱC and the MAP boundary is degraded with respect

to the set
⋃
C(α

[1](ᾱC), α[2](ᾱC)). This set is indeed equal to the MAP boundary for

some cases (as shown in the next section) and we conjecture that this is true in general

for the noisy SW problem. Henceforth, we shall use the term MAP boundary loosely

to denote this outer bound.1 The BP-GEXIT curve and the MAP threshold for the

punctured LDPC(4, 6) ensemble are shown in Fig. 18 for the erasure case and the

MAP threshold for symmetric channel conditions is αMAP ≈ 0.6245. The BP-GEXIT

curve and the MAP threshold for the punctured LDPC(4, 6) ensemble are shown in

Fig. 19 for the BSC case and the MAP threshold for symmetric channel conditions is

αMAP ≈ 0.6324.

1For computation of the upper bound, it is easiest to consider straight lines passing
through (1, 1) with di�erent slopes.
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Fig. 18. The BP-GEXIT function for the SW problem with erasures (SWE) along

the curve α[1] = α[2]. The upper bound on the MAP threshold is given by

ᾱ ≈ 0.6425. The correlation parameter is p = 0.5.
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Fig. 19. The BP-GEXIT function for the SW problem with BSC correlation along

the curve α[1] = α[2]. The upper bound on the MAP threshold is given by

ᾱ ≈ 0.6324. The correlation parameter is p = 0.9.
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3. Tightness of the Upper Bound

In this section, we rigorously analyze the upper bound on the MAP threshold for the

erasure SW case and show that the bound is tight. The discussion closely follows the

proof in [2]. Throughout this section, �xed points refer to both stable and unstable

�xed points of DE. First consider a monotonic curve through parameter space C as

de�ned above, which is di�erentiable and degraded with respect to α. For simplicity

of notation, we omit the dependence of the various quantities on C throughout this

section. Let (α, a, b) , (α[1](α), α[2](α), a, b) be a �xed point of density evolution and

de�ne g(x) = 1− ρ(1− x). For the case when there is a unique α such that (α, a, b)

is a �xed point of DE, we write α(a, b) to denote the channel parameter associated

with the �xed point (α, a, b).

The extended belief propagation (EBP) GEXIT function can be computed by

also considering the unstable �xed points of density evolution. These unstable �xed

points can be computed numerically by running density evolution at �xed entropy

as discussed in [39, Section VIII]. The the EBP-GEXIT curve, which is an analyt-

ical extension of the BP-GEXIT curve, gEBP(a, b), is given in parametric form by

(α(a, b),GEBP(a, b)), where GEBP is an analytic extension of GBP.

Lemma III.3. The trial entropy for the SWE problem, which is obtained by integrat-

ing the EBP-GEXIT function, is given by

P (a, b) = − pγ

1− γL(g(a))L(g(b))

+
1

1− γ

(
L(g(a))

a

λ(g(a))
− L′(1)

R′(1)
[1−R(1− a)− aR′(1− a)]

)

+
1

1− γ

(
L(g(b))

b

λ(g(b))
− L′(1)

R′(1)
[1−R(1− b)− bR′(1− b)]

)
.

Proof. The proof is given in Appendix A. �
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The following Lemma enables us to compute the expected residual degree dis-

tribution for the erasure SW problem. This can then be used to compute the MAP

threshold along any curve C as described above.

Lemma III.4. Assume that we run the iterative decoder until it reaches a �xed point.

At the �xed point (α[1], α[2], a, b), the expected degree distribution of the residual graph

has the form

R̃(z) ∝ R(1− a+ za)−R(1− a)− zaR′(1− a)

+R(1− b+ zb)−R(1− b)− zbR′(1− b)

L̃(z) ∝ (1− γ)
[
α[1]L(g(a)z) + α[2]L(g(b)z)

]

+ γ(1− p) [L(g(a)z) + L(g(b)z)] +
γp

2
L(g(a)z)L(g(b)z).

Proof. The proof is given in Appendix A. �

Theorem III.5. Consider the parametrization of the �xed point (a, b) by a(x) and

b(x) along the curve C as de�ned in Appendix A. Let xMAP be the unique non-zero

solution corresponding to P (x) = P (a(x), b(x)) = 0. Then, αMAP = α(xMAP) is the

MAP threshold along the curve C.

Proof. We �rst show that, at α = αMAP, the design rate of the residual ensemble is

zero. The design rate of residual graph

R(L̃, R̃) ∝ L̃(1)− L′(1)

R′(1)
· R̃(1)

=
1

1− γ

([
(1− γ)α[1](xMAP) + γ(1− p)

]
L(g(a(xMAP))) + γp

L2(g(a(xMAP)))

2

− L′(1)

R′(1)

[
1−R(1− a(xMAP))− a(xMAP)R′(1− a(xMAP))

])

+
1

1− γ

([
(1− γ)α[2](xMAP) + γ(1− p)

]
L(g(b(xMAP))) + γp

L2(g(b(xMAP)))

2

− L′(1)

R′(1)

[
1−R(1− b(xMAP))− b(xMAP)R′(1− b(xMAP))

])
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− pγ

1− γ

(
L(g(a(xMAP)))− L(g(b(xMAP)))

)2

2

= P (xMAP)

= 0,

by assumption. Thus, the design rate of the residual graph at αMAP is zero. It remains

to show that the actual rate is zero. To see this, one observes that the residual graph

is a two-edge LDPC ensemble and the numerical technique in [42, Theorem IV.9]

(which is a generalization of [2, Lemma 3.22]) can be applied. From this, it follows

that αMAP is indeed the MAP threshold. �

Theorem III.6. Consider transmission using regular (l, r) LDPC codes of rate r

for the erasure SW problem. Then, for any curve C through the parameter space as

described above

lim
l,r→∞
1− l

r
=R

αMAP
C = αSWC

where αSWC corresponds to the SW conditions (2.5) along the curve C.

Proof. First, we observe that x = 0 implies g(x) = 0, L(g(x)) = 0, R(1 − x) =

1, and R′(1 − x) = 1. Also, in the limit l, r → ∞ with 1 − l

r
= R constant, g(x) =

1, L(g(x)) = 1, R(1 − x) = 0, R′(1 − x) = 0 if x 6= 0. Based on this observation and

the fact that P (x) = 0 at the MAP threshold, the result follows by considering three

di�erent cases namely a = 0, b 6= 0, a 6= 0, b = 0 and a 6= 0, b 6= 0 for �xed points

(a, b) of density evolution. The exact case to be considered depends on the curve C

and the three cases give the three boundaries of the SW region. �

Remark III.1. From this, we see that the MAP boundary of regular LDPC codes with

large degrees approaches the SW boundary. Hence regular LDPC codes with large
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degrees are universal under MAP decoding for the SWE problem. We conjecture that

this observation holds for the SW problem with BSC correlation.

B. The Gaussian Multiple-Access Channel

Consider the Gaussian multiple-access channel with channel parameters (α[1], α[2]).

Suppose each user uses a code chosen independently from the ensemble LDPC(n, λ, ρ).

The following discussion is easily extended to the case where the users use di�erent

LDPC ensembles. Let X
[1]
i and X

[2]
i denote the ith bit of user 1 and 2 respectively.

Let Xi =
(
X

[1]
i , X

[2]
i

)
, X =

(
X [1],X [2]

)
, Yi =

(
Y

[1]
i , Y

[2]
i

)
and Y =

(
Y [1],Y [2]

)
.

Also, we denote Y (α[1], α[2]) =
(
Y [1](α[1]),Y [2](α[2])

)
to emphasize the dependence

on the channel parameter. We de�ne the GEXIT function

g(α[1], α[2]) ,
1

2n
∇E

[
H(X|Y (α[1], α[2]))

]
.

By de�nition, the line integral of the GEXIT function is path independent. As seen

in the next section, it is instructive to consider line integrals along monotonic curves.

The projection of the GEXIT function along such curves satis�es a natural area

theorem, enabling us to obtain a bound on the MAP performance, along the lines of

Section 3.

1. GEXIT Curves

We consider projections of the GEXIT function along monotonic curves, where mono-

tonicity is de�ned with respect to the partial order implied by channel degradation, in

parameter space. For the binary-input Gaussian MAC de�ned by (2.9), rays through

the origin characterized by a parameter α ∈ [0,∞), with α[1] = α and α[2] = θα

are monotonic curves for some �xed θ ∈ [0,∞). The following approach can be ap-
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plied to any binary-input MAC characterized by a single parameter, whose density is

di�erentiable and degraded with respect to that parameter.

Now, suppose that the ith bit is transmitted through a channel with param-

eter αi and that each αi is a di�erentiable function of α. The GEXIT curve is

de�ned by (3.1). A more convenient expression for the GEXIT curve can be de-

rived following the procedure given in [43] for non-binary codes. Let y∼i = y\yi,

φi(y∼i) = {pXi|Y ∼i(x|y∼i), x ∈ X} and Φi , φi(Y ∼i) be the corresponding random

variable. Note that φi(·) is the extrinsic MAP estimator of Xi.
2

Lemma III.7. Suppose that all bits are transmitted through channel with parameter

α. Then, the ith GEXIT function is given by

gi(α) =
∑

x∈X
p(x)

∫

u

ax,i(u)κx(u)du,

where ax,i(u) is the distribution of Φi given Xi = x and the GEXIT kernel is given by

κx(u) =

∫
∂

∂α
p(y|x)log2

∑
x′ u[x′]p(y|x′)
u[x]p(y|x)

dy, (3.3)

where u[j] denotes the jth component of u.

Proof. This proof is given in Appendix A. �

As discussed in Section 1, the asymptotic BP-GEXIT function can be computed

through the �xed points of density evolution (aBAWGNMA(α), a, b) that satisfy (2.13)

and is discussed in the following Lemma.

2To see this, write

pY ∼i|Xi(y∼i|xi)=
pXi|Y ∼i(xi|y∼i)

pXi(xi)
pY ∼i(y∼i)=

φi · e[xi]
pXi(xi)

pY ∼i(y∼i),

where e[xi] is the standard basis vector with a 1 in the xi-th coordinate and use the
result in [2, p. 29] regarding su�cient statistics.
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Lemma III.8. Consider transmission over the multiple-access channel aBAWGNMA(α)

and let (aBAWGNMA(α), a, b) be a �xed point of DE. De�ne the BP-GEXIT value of the

�xed point by

GBP(aBAWGNMA, a, b) ,
∑

x∈X
p(x)

∫
Fx[a, b](u, v)κx(u, v)dudv. (3.4)

The GEXIT kernel κx(·, ·) is de�ned as in (3.3) and the operator Fx[·, ·] (de�ned in

(A.3)) computes the density of the extrinsic BP estimate ΦBP given X = x. The

BP-GEXIT curve gBP(α) is given by (α,G(aBAWGNMA(α), a, b)), α ∈ [0,∞).

Proof. The proof is given in Appendix A. �

2. MAP Upper Bound

It can be shown that the BP-GEXIT function is a lower bound on the GEXIT func-

tion (see the discussion in [2, p. 206]). Consider transmission using codes from the

ensemble LDPC(n, λ, ρ). For a �xed θ, we de�ne the MAP threshold as

αMAP(θ) = sup

{
α : lim inf

n→∞
1

n
E[H(X|Y (α, θ))] > 0

}
,

where the expectation is taken over all codes in the ensemble. By de�nition of the

GEXIT function, this gives

∫ 0

αMAP(θ)

g(α)dα =
1

n

∫ 0

αMAP(θ)

dH(X|Y (α))

dα
dα

=
1

n
H(X|Y (0))

= 2R(λ, ρ).
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The above equation gives us a procedure to compute the MAP threshold, using the

GEXIT curve. Let ᾱ denote the smallest positive number such that

∫ 0

ᾱ

gBP(α)dα = 2R(λ, ρ),

where R(λ, ρ) is the design rate of the ensemble LDPC(λ, ρ). Then the MAP threshold

αMAP ≤ ᾱ. The set of all points (α′, θα′) such that α′ ≥ αMAP(θ) form the MAP-

ACPR and its boundary is called the MAP boundary. The BP-GEXIT curve and

the upper bound on the MAP threshold for the LDPC(3, 6) ensemble is shown in

Fig. 20, for θ = 1. Using this procedure, we can compute an outer bound to the MAP

boundary by considering di�erent values of θ.
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Fig. 20. The BP-GEXIT curve for the regular LDPC(3, 6) ensemble and the upper

bound on the MAP threshold is shown above for θ = 1. GEXIT curves in

literature are typically parametrized by the channel entropy and the channels

get worse as the entropy increases. However, the channel gains are a natural

parameterization for this problem and the channel gets better by increasing

the channel gains. So the GEXIT values are negative for this parametrization.
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CHAPTER IV

THRESHOLD SATURATION AND SPATIAL COUPLING

The phenomenon of threshold saturation was introduced by Kudekar et al. [44] to

explain the impressive performance of convolutional LDPC ensembles [45, 46]. They

observed that the belief-propagation (BP) threshold of a spatially-coupled ensemble is

very close to the maximum-a-posteriori (MAP) threshold of its underlying ensemble;

a similar statement was formulated independently, as a conjecture in [47]. This phe-

nomenon has been termed �threshold saturation via spatial coupling�. Kudekar et al.

prove in [44] that threshold saturation occurs for the binary erasure channel (BEC)

and a particular convolutional LDPC ensemble. For general binary-input memoryless

symmetric (BMS) channels, threshold saturation was empirically observed �rst [48,49]

and then shown analytically [50]. It is known that the MAP threshold of regular

LDPC codes approaches the Shannon limit for binary memoryless symmetric (BMS)

channels with increasing left degree, while keeping the rate �xed (though such codes

have a vanishing BP threshold) [44]. So, spatial coupling appears to provide us with

a new paradigm to construct capacity approaching codes for BMS channels.

From the observation in Section 3, spatially-coupled codes are potential candi-

dates for universal codes, for multi-terminal problems.

A. Spatially Coupled Codes

This section describes spatially-coupled codes and is included here for completeness.

The material closely follows the description in [44].



53

2L+ 1

Fig. 21. The protograph of the (3, 6, L) ensemble is shown above.

1. The (l, r, L) Ensemble

Consider ensembles with parameters (l, r), where l ≤ r is odd. Choose M such that

l

r
M is an integer. Place variable nodes at positions [−L,L] , {−L,−L + 1, · · · , L},

such that there are M variable nodes at each position. De�ne l̂ = l−1
2
. Place check

nodes at positions [−L − l̂, L + l̂], with l

r
M check nodes at each position. Each of

the l edges of a variable node at position i is connected to exactly one check node

at position i − l̂, · · · , i + l̂. For each check node position in [−L − l̂, L + l̂], there

are l

r
Mr = Ml sockets. The probability distribution on the ensemble is de�ned

by choosing a random permutation on the edges at each check node position. The

protograph is shown in Fig. 21. The BP-GEXIT curves are shown for the (4, 6, L)

ensemble for transmission over erasure channels in Fig. 22. As seen in Fig. 22 the
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Fig. 22. The BP-GEXIT curves for the spatially coupled (4, 6, L) are shown above

for transmission over the BEC. We observe that the BP threshold of the

spatially-coupled codes saturates towards the MAP threshold of the (4, 6)

ensemble.

GEXIT curves exhibit wiggles which prevent it from saturating to the MAP threshold

of the underlying ensemble. It turns out that the size of these wiggles does not decay

with L [44].

2. The (l, r, L, w) Ensemble

This ensemble is de�ned to simplify the analysis of the (l, r, L) ensemble and overcome

the gap due to the wiggles. Although this ensemble loses the protograph structure,

the analysis is much simpler and its BP threshold does saturate towards the MAP
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threshold of the underlying ensemble. As before, the variable nodes are placed at

positions [−L,L], with M nodes at each position. The check nodes are placed at

positions [−L,L+ w − 1] (w can be thought of as a �smoothing� parameter).

Each of the l connections, of a variable node at position i, are uniformly and

independently chosen from [i, i + w − 1]. De�ne the type of a variable node by a

w-tuple t = (t0, t1, · · · , tw−1) of non-negative integers such that
∑
tj = l. This means

that the variable node has tj edges that connect to a check node at position t + j.

Note that these edges are not ordered. Assume that we �x an arbitrary order for

the edges of each variable node. We can then de�ne the constellation of a variable

node by an l-tuple c = (c1, · · · , cl), with elements in [0, w− 1], which means that the

k-th edge is connected to a check node at position i + ck. Note that there are many

constellations for a given type (permute the elements of c). Let τ(c) denote the type

of a constellation. A uniform distribution is imposed on the set of all constellations

(due to the requirement that each edge is chosen independently). This induces a

probability distribution on the types, given by

p(t) =
|{c|τ(c) = t}|

wl
.

Choose M so that Mp(t) is an integer for all t. For each position i ∈ [−L,L], pick

Mp(t) variable nodes of type t. A random permutation is chosen to map the type to

a constellation.

For each check position i, away from the boundary, the number of edges that

come from variable nodes at position i− j, j ∈ [0, w− 1] is M l

w
i.e., it is a fraction 1

w

of the Ml sockets at position i. These edges are mapped to the sockets by choosing

a uniform random permutation of size Ml.
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Fig. 23. A portion of a generic SC system. The f -node at position i is coupled with

the g-nodes at positions i−w+1, . . . , i and, by reciprocity, g-node at position

i is coupled with the f -nodes at positions i, . . . , i+w− 1. Here, πi and π
′
i are

random permutations.

The design rate of this ensemble is given by [44]

R(l, r, L, w) =

(
1− l

r

)
+

l

r

[
(w + 1)− 2

∑w
i=0

(
1−

(
w−i−1
w

)
r
)]

2L+ 1
.

Note that this is a lower bound on the true rate of the code. This construction can

be extended to irregular LDPC(Λ, P ) codes as shown in Fig. 23. The f -nodes at

each position are replaced by M copies of the node degree pro�le Λ(x) =
∑

i Λix
i,

where Λi is the number of bit nodes of degree i. The g-nodes at each position are

replaced by M copies of the node degree pro�le P (x) =
∑

i Pix
i, where Pi is the

number of check nodes of degree i. For su�ciently large M , these nodes can be

coupled uniformly using an averaging window of length w in a manner similar to the

(l, r, L, w) ensemble de�ned above.
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3. Density Evolution of the (l, r, L, w) Ensemble

Let a
(`)
i denote the density of the messages emitted by a variable node at position i

at iteration `. Set ai = ∆+∞, if i /∈ [−L,L]. For i ∈ [−L,L], we can write down the

density evolution equations

a
(`+1)
i = aBMSC � λ

(
1

w

w−1∑

j=0

ρ

(
1

w

w−1∑

k=0

a
(`)
i+j−k

))
. (4.1)

It is observed in [44] that the size of the wiggles reduces with w.

B. A Simple Proof of Threshold Saturation

In this section, we provide a simple proof of threshold saturation via spatial-coupling

for a broad class of vector recursions over erasure-type channels. The main tool is

a potential theory for vector recursions that extends naturally to coupled systems of

vector recursions.

1. Notation

The following notation is used throughout this section. We let d ∈ N be the dimension

of the vector recursion, X , [0, 1]d be the space on which the recursion is de�ned,

and E , [0, 1] be the parameter space of the recursive system. We also use X◦ and E◦
to denote X \ {0} and E \ {0} respectively. Vectors are considered to be row vectors

and are denoted in boldface (e.g. x). For two vectors x, y ∈ X , the partial orders

x � y and x � y are de�ned by xi ≥ yi for i = 1, . . . , d and xi ≤ yi for i = 1, . . . , d,

respectively. We use lower case (e.g., f(x)) to denote scalar functions of a vector

argument and lower case bold (e.g., f(x) = [f1(x), · · · , fd(x)]) to denote a vector

function of a vector argument. The gradient of a scalar function is denoted by an

apostrophe and is de�ned by f ′(x) , [∂f(x)/∂x1, · · · , ∂f(x)/∂xd], and the Jacobian
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of a vector function is de�ned by

f ′(x) =
∂f(x)

∂x
,




∂f1(x)
∂x1

· · · ∂f1(x)
∂xd

...
. . .

...

∂fd(x)
∂x1

· · · ∂fd(x)
∂xd



.

If X is a matrix, we use the notation xi or [X]i to denote the i-th row of X and xi,j

to denote the (i, j)-th element ofX. Abusing notation, we also allow vector functions

to take matrix arguments and de�ne f(X) via [f(X)]i = f(xi). We use the notation

vec(X) to denote the transpose of the vector obtained by stacking the columns of X

together. The Jacobian of a matrix function is de�ned by

f ′(X) =
∂vec(f(X))

∂vec(X)
,

and the Hessian of a vector function is de�ned by

f ′′(x) =
∂vec(f ′(x))

∂x
.

2. Single System Potential

First, we de�ne potential functions for a class of vector recursions and discuss thresh-

old parameters associated with the potential.

De�nition IV.1. An admissible vector system (f , g) parametrized by ε ∈ E , is

de�ned by the recursion

x(`+1) = f(g(x(`)); ε), (4.2)

where f = [f1, · · · , fd] and g = [g1, · · · , gd]. Here, fi : X × E → [0, 1] is strictly

increasing in all its arguments for x ∈ X◦, ε ∈ E◦, and gi : X → [0, 1], i = 1, · · · , d,

satis�es g′i(x) � 0 for x ∈ X◦. We also assume that f(0; ε) = g(0) = f(x;0) = 0,
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and that f , g have bounded and continuous second di�erentials w.r.t. all arguments.

De�nition IV.2. Suppose there exist functionals F : X × E → R, G : X → R such

that F ′ = f and G′ = g. Then, the single-system potential function U(x; ε) of an

admissible vector system (f , g) is de�ned by

U(x; ε) ,
∫ x

0

[g′(z) (z − f(g(z); ε))] · dz

= x · g(x)−G(x)− F (g(x); ε). (4.3)

De�nition IV.3. For x ∈ X , ε ∈ E , we have the following terms.

• For �xed ε, x is a �xed point (f.p.) i� x = f(g(x); ε).

• For �xed ε, x is a stationary point (s.p.) if U ′(x; ε) = 0.

Lemma IV.1. The potential function of an admissible vector system has the following

properties:

1. U(x; ε) is strictly decreasing in ε, for ε ∈ E◦.

2. An x ∈ X◦, such that xi > 0,∀ i, is a f.p. i� it is a s.p. of the potential.

Proof. These properties hold because the potential function is the scaled line integral

of the DE update g′(z) (z − f(g(z); ε)), which is strictly decreasing in ε, for ε ∈ E◦,

and zero i� z is a �xed point of the recursion. �

De�nition IV.4. Let x ∈ X and x(0) = x. Denote by x∞(x; ε), the limit (if it

exists) of x(`+1) = f(g(x(`)); ε).

Lemma IV.2. Consider the recursion (4.2), with x(0) = 1. Then x(`) converges to

x∞(1; ε).

Proof. Note that x(1) = f(g(x(0); ε) � 1 = x(0) as 1 is the greatest element of X . It

follows by induction on ` that x(0) � x(1) � · · · � x(`) � · · · � 0. Hence the sequence

has a limit x(∞) = x∞(1; ε). �
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De�nition IV.5. The single-system threshold is de�ned to be

ε∗s = sup {ε ∈ E |x∞(1; ε) = 0} ,

and is the ε-threshold for convergence of the single system recursion to 0.

Remark IV.1. The recursion (4.2) has no f.p.s in X◦ i� ε < ε∗s. For DE recursions

associated with BP decoding, the threshold ε∗s is called the BP threshold.

De�nition IV.6. The basin of attraction for 0 is de�ned by

Ux(ε) = {x ∈ X |x∞(x; ε) = 0} .

Notice that this equals X if ε < ε∗s but it is a strict subset of X if ε ≥ ε∗s.

De�nition IV.7. We de�ne the energy gap ∆E(ε) = inf {U(x; ε) |x ∈ X \ Ux(ε)}

and the potential threshold

ε∗ = sup {ε ∈ (ε∗s, 1] |∆E(ε) > 0} . (4.4)

Since ∆E(ε) is strictly decreasing in ε, this is well de�ned and ε < ε∗ implies

∆E(ε) > 0. For DE recursions associated with BP decoding, the potential threshold

is analogous to the threshold predicted by the Maxwell conjecture [51, Conj. 1].

Example IV.1. For the standard irregular ensemble of LDPC codes (e.g., see [2]),

the DE recursion,

x(`+1) = ελ(1− ρ(1− x(`))),

is an admissible scalar system with d = 1, f(x; ε) = ελ(x) and g(x) = 1 − ρ(1 − x).

In this case, the single system potential is given by (4.3) and shown in Fig. 24 for the

(3, 6)-regular LDPC code ensemble de�ned by (λ, ρ) = (x2, x5).
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Fig. 24. The potential function of the (3,6)-regular LDPC ensemble is shown for a

range of ε. Here ε∗s ≈ 0.4294, ε∗ ≈ 0.4881, and the stationary points are

marked. Notice that, for ε < ε∗s, U(x; ε) has no stationary points.

3. Coupled System Potential

Now, we extend our de�nition of potential functions to coupled systems of vector re-

cursions. In particular, we consider a �spatial-coupling� of the single system recursion,

(4.2), that leads to the recursion (4.5) and a closely related matrix recursion (4.6).

For the matrix recursion of the coupled system, we de�ne a potential function and

show that, for ε < ε∗, the only �xed point of the coupled system is the zero matrix.

De�nition IV.8 (cf. [44]). The basic spatially-coupled vector system is de�ned by

placing 2L + 1 single systems at positions in the set L = {−L,−L + 1, . . . , L} and

coupling them with w systems on one side as shown in Fig. 23. Let x
(`)
i be the input

to the g-function in the i-th position after ` + 1 iterations and de�ne x
(`)
i = 0 for

i /∈ L , {−L,−L+ 1, . . . , L+w− 1} and all `. For the coupled system, this leads to
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the recursion

x
(`+1)
i =

1

w

w−1∑

k=0

f

(
1

w

w−1∑

j=0

g(x
(`)
i+j−k); εi−k

)
, (4.5)

where x
(0)
i = 1 for i ∈ L and x

(`)
i = 0 for i /∈ L and all `. Also εi = ε for i ∈ L0 and

εi = 0 for i /∈ L0.

De�nition IV.9 (cf. [44]). Let i0 ,
⌊
w−1

2

⌋
. The one-sided spatially-coupled vector

system is a modi�cation of (4.5) de�ned by �xing the values of positions outside

L′ = {−L,L + 1, . . . , i0}. It �xes the left boundary to zero by de�ning x
(`)
i = 0

for i < −L and all `. It forces the right boundary to a �oating constant by setting

x
(`)
i = x

(`)
0 for i ≥ 1 and all `.

De�nition IV.10 (cf. [52]). Let the matrix one-sided SC vector recursion be

X(`+1) = Aᵀf(Ag(X(`)); ε), (4.6)

where X=[xᵀ−L−w, · · · ,xᵀ2w+i0
]ᵀ and A is the (L + 3w + i0 + 1)× (L + 3w + i0 + 1)

matrix given by

A =
1

w




1 1 · · · 1 0 · · · 0

0 1 1 · · · 1
. . .

...

...
. . . . . . . . . . . . . . . 0

0 · · · 0 1 1 · · · 1

0 0 · · · 0 1
. . . 1

0 0 · · · 0 0 1
...

0 0 · · · 0 0 0 1




.

Remark IV.2. The right hand side of (4.6) accurately represents a single iteration of

the one-sided SC system update for i ∈ L′, but cannot be used recursively because
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the boundary condition x
(`)
i = x

(`)
0 for i ≥ 1 is not preserved after the �rst step.

Lemma IV.3 (cf. [44, Lem. 14]). For both the basic and one-sided SC systems, the

recursions are component-wise decreasing with iteration and converge to well-de�ned

�xed points. The one-sided recursion de�ned in Def. IV.9 is also a component-wise

upper bound on the basic SC recursion for i ∈ L and it converges to a non-decreasing

�xed-point vector.

Sketch of Proof. The proof follows from the monotonicity of f , g. For the one-sided

SC system, the right boundary condition is also needed to show this result. �

De�nition IV.11. The coupled system potential for general matrix recursions, in the

form of (4.6), is given by

U(X; ε) = Tr(Xᵀg(X))−G(X)− F (Ag(X); ε),

where G(X) =
∑

iG(xi) and F (X; ε) =
∑

i F (xi; ε).

Remark IV.3. A key observation of this work is that a potential function for coupled

vector systems can be written in the simple form given in Def. IV.11. Remarkably, this

holds for general coupling coe�cients because of the A,Aᵀ reciprocity that appears

naturally in SC.

Lemma IV.4. Let X ∈ X n be a matrix with non-decreasing columns generated by

averaging the rows of Z ∈ X n over a sliding window of size w. Let the down-shift

operator Sn : X n → X n be de�ned by [SnX]1 = 0 and [SnX]i = xi−1 for i = 2, . . . , n

. Then, we have the bounds ‖vec(SnX −X)‖∞ ≤ 1
w

and ‖vec(SnX −X)‖1 =

‖xn‖1 = ‖X‖∞.

Proof. The bound ‖vec(SX −X)‖∞ ≤ 1
w
follows from

|xi,j − xi−1,j| =
∣∣∣ 1
w

∑w−1

k=0
zi+k,j − 1

w

∑w−1

k=0
zi−1+k,j

∣∣∣ ≤ 1
w
.
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Since the columns of X are non-decreasing, the 1-norm sum telescopes and we get

‖vec(SX −X)‖1 = ‖xn‖1 = ‖X‖∞. �

Lemma IV.5. For the vector one-sided SC system, a shift changes the potential by

U(SX; ε)− U(X; ε) = −U(xi0 ; ε).

Proof. First, we rewrite the potential as the summation

U(X; ε) =
∑2w

i=−L−w
[g(xi) · xi −G(xi)− F ([Ag(X)]i; ε)] .

Since the �rst w rows of X are 0 and the last 2w + 1 rows of X equal x0, it can be

shown that
∑2w+i0

i=−L−w F ([Ag(SX)]i; ε)−F ([Ag(X)]i; ε) = F (g(0); ε)−F (g(xi0); ε).

Thus, we have

U(SX; ε)− U(X; ε) = U(0; ε)− U(x2w; ε) = −U(x0; ε).
�

Lemma IV.6. The norm of the Hessian U ′′(X; ε) of the SC potential is bounded by

a constant independent of L and w and satis�es

‖U ′′(X; ε)‖∞ , ‖g′‖∞ + ‖g′‖2
∞‖f ′‖∞ + ‖g′′‖∞,

where ‖h‖∞ = supx∈X maxi |hi(x)| for functions h : X → R. We also de�ne Kf ,g =

‖g′‖∞ + ‖g′‖2
∞‖f ′‖∞ + ‖g′′‖∞.

Proof. First note that

U ′′(X; ε) =
∂vec(U ′(X; ε))

∂vec(X)
.

By direct computation, we obtain

‖U ′′(X; ε)‖∞ ≤ ‖g′‖∞+ ‖g′‖2
∞‖f ′‖∞+ ‖g′′‖∞.

�
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We now state the main result of this chapter. Roughly speaking, it says that, if

ε < ε∗ and w is su�ciently large, then one can always decrease the coupled potential

of a non-zero matrix by down shifting. Since this implies that the next step of the

recursion must reduce some value, the only valid �xed point is the zero matrix.

Theorem IV.7. Consider an admissible vector system (f , g). If ε < ε∗ and w >

dKf ,g/∆E(ε), then the only �xed point of the spatially-coupled system, de�ned by

(4.5), is X = 0.

Proof. Using Lem. IV.3, let X be the unique �xed point of the one-sided recursion

de�ned in Def. IV.9. This �xed point upper bounds the �xed point of the basic

SC system de�ned in Def. IV.8. If X 6= 0, then x0 /∈ Ux(ε) because the system

has no �xed points with xi ∈ Ux(ε) for all i. From Lemma IV.5, we have ∆U ,

U(SX; ε) − U(X; ε) < −U(xi0 ; ε). Expanding U(SX; ε) in a Taylor series (with

remainder) around X, we get

vec(U ′(X; ε)) · vec(SX −X) = U(SX; ε)− U(X; ε)

−
∫ 1

0

(1− t)vec(SX −X)ᵀU ′′(X(t); ε)vec(SX −X) dt

≤ ∆U +

∣∣∣∣
∫ 1

0

(1− t)vec(SX −X)ᵀU ′′(X(t); ε)vec(SX −X) dt

∣∣∣∣

≤ ∆U + ‖vec(SX −X)‖1 max
t∈[0,1]

‖U ′′(X(t); ε)‖∞ ‖vec(SX −X)‖∞

≤ −U(xi0 ; ε) +
‖xi0‖1

w
max
t∈[0,1]

‖U ′′(X(t); ε)‖∞

≤ −U(xi0 ; ε) +
dKf ,g

w

< −U(xi0 ; ε) + ∆E(ε) ≤ 0,

where the last steps hold because w > dKf ,g/∆E(ε) and ‖xi0‖1 ≤ d and U(x; ε) ≥

∆E(ε) for x ∈ X \ Ux(ε).
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Now, we observe that SX −X � 0 (i.e., the �xed point is non-decreasing) and

[SX −X]i is zero for i /∈ L′. So, U ′(X; ε) is positive in at least one entry of one

row (i.e., there exists i ∈ L′ such that [U ′(X; ε)]i > 0). Since [U ′(X; ε)]i = (xi −

[Aᵀf(g(AX); ε)]i)g
′(xi), it follows that [g′(xi)]j > 0 and [Aᵀf(Ag(X); ε)]i,j <X i,j.

Therefore, one more decoding iteration must reduce the value of the i-th component

for some i ∈ L′. This contradicts the fact that X is a �xed point and shows that the

only �xed point of the one-sided SC system is X = 0. Since the �xed point of the

basic SC system is upper bounded by this, we conclude that it must also be zero. �
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CHAPTER V

APPLICATIONS OF SPATIAL COUPLING*

A. The Noisy Slepian-Wolf Problem

Spatial coupling is most easily described by the (l, r, L) ensemble interms of pro-

tographs [44, 53]. We brie�y review the protograph structure at the joint decoder

here. Consider the protograph of a standard LDPC(4, 6) ensemble. There are two

check nodes and three variable nodes. For each user, take a collection of (2L + 1)

protographs at positions L , {−L, · · · , L} and couple them as described in [44].

One variable node at each position i ∈ L from the �rst user is punctured and con-

nected to a punctured variable node at the same position of the second user. The

resulting protograph, shown in Fig. 25, is then expandedM times to form the parity-

check matrix of the joint system. This structure is fundamental to the phenomenon

of threshold saturation observed at the joint decoder. It is simply not su�cient to

use spatially-coupled codes with random connections between the information nodes.

Such a coupling will only result in pushing the threshold of the component codes

to the MAP threshold, but may have little e�ect on the BP threshold of the joint

system.

*Copyright 2011 IEEE. Reprinted, with permission, from A. Yedla, H. D. P�ster,
and K. R. Narayanan, �Universality for the noisy Slepian-Wolf problem via spatial
coupling,� in Proc. IEEE Int. Symp. Inform. Theory, St. Petersburg, Russia, July
2011, pp. 2567�2571, and A. Yedla, H. D. P�ster, and K. R. Narayanan, �Universal
Codes for the Gaussian MAC via Spatial Coupling,� in Proc. 49th Annual Allerton
Conf. on Commun., Control, and Comp., (Monticello, IL), Sept. 2011. For more in-
formation, go to http://thesis.tamu.edu/forms/IEEE\%20permission\%20note.
pdf/view.
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2L+ 1

Fig. 25. The protograph of the joint decoder for the (4, 6, L) ensemble is shown above

for the noisy SW problem.

1. The (l, r, L, w) Ensemble

The (l, r, L, w) spatially-coupled ensemble can be described as follows: Place M

variable nodes at each position in [−L,L]. The check nodes are placed at positions

[−L,L + w − 1], with l

r
M check nodes at each position. The connections are made

as described in [44]. This procedure generates a Tanner graph for the (l, r, L, w)

ensemble.

For this work we consider codes of rate 1/3, punctured to a rate 1/2. Two such
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graphs (generated by the above procedure) are taken and 2M/3 variable nodes (M/3

from each graph) at each position are connected by a random (uniform) permutation

of size M/3 via correlation nodes. This procedure ensures that all the variable node

positions are symmetric (as opposed to Fig. 25) with respect to puncturing and cor-

relation, enabling us to write down the density evolution (DE) equations as described

in the following section.

2. Density Evolution of the (l, r, L, w) Ensemble and GEXIT Curves

Let a
(`)
i and b

(`)
i denote the average density emitted, after ` iterations of decoding, by

variable nodes at position i, at iteration `, for codes 1 and 2 respectively. Let ∆+∞

denote the delta function at +∞ and set a
(`)
i = b

(`)
i = ∆+∞ for i /∈ L. The channel

densities for codes 1 and 2 are denoted by aBMSC(α[1]) and aBMSC(α[2]) respectively.

All the above densities are L-densities conditioned on the transmission of the all-

zero codeword (see Section A). We consider the parallel schedule for each user (as

described in [44]) and update the correlation nodes before proceeding to the next

iteration. Let us de�ne

g(xi−w+1, · · · ,xi+w−1),


1

w

w−1∑

j=0

(
1

w

w−1∑

k=0

xi+j−k

)�(r−1)



�(l−1)

,

Γ(xi−w+1, · · · ,xi+w−1),


1

w

w−1∑

j=0

(
1

w

w−1∑

k=0

xi+j−k

)�(r−1)



�l

.
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The DE equations for the joint spatially-coupled system can be written as

a
(`+1)
i =

[
γζ
(

Γ(b
(`)
i−w+1, · · · , b(`)

i+w−1)
)

+ (1− γ)aBMSC(α[1])

]
�

g(a
(`)
i−w+1, · · · , a(`)

i+w−1),

b
(`+1)
i =

[
γζ
(

Γ(a
(`)
i−w+1, · · · , a(`)

i+w−1)
)

+ (1− γ)aBMSC(α[2])

]
�

g(b
(`)
i−w+1, · · · , b(`)

i+w−1),

for i ∈ L. For a further discussion of the DE equations for the (l, r, L, w) spatially-

coupled ensembles on BMS channels, see [49]. Let a = (a−L, · · · , aL) and b =

(b−L, · · · , bL). The �xed points of SC DE are given by (aBMSC(α[1]), aBMSC(α[2]), a, b).

De�ne

G(aBMSC(α[1]), aBMSC(α[2]), a, b) =
1

2L+ 1

L∑

i=−L
G(aBMSC(α[1]), aBMSC(α[2]), ai, bi).

The BP-GEXIT curve is the set of points (α,G(aBMSC(α[1]), aBMSC(α[2]), a, b)). The

resulting curves for the erasure channel with erasure correlated sources are shown in

Fig. 26 and those for the AWGN channel with BSC correlated sources are shown

in Fig. 27. These curves are very similar to the single user case and demonstrate

the phenomenon of threshold saturation at the joint decoder, for symmetric channel

conditions. For channel parameters not on the symmetric line, this implies threshold

saturation towards the MAP boundary.

Consider the SWE problem and a monotonic curve C parametrized by ε i.e., let

ε1 = ε1(ε) and ε2 = ε2(ε). In this case, the DE recursion can be written as (4.2),
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Fig. 26. EBP-EXIT curves of the (4, 6, L, w) and (4, 6) ensembles for transmission over

erasure channels with erasure correlated sources.

where

f(x; ε) , [ψ(L(x2); ε1(ε))λ(x1), ψ(L(x1); ε2(ε))λ(x2)],

ψ(x; ε) = (1− γ)ε+ γ(1− p+ px),

g(x) , [1− ρ(1− x1), 1− ρ(1− x2)].

From this, we can compute

F (x; ε) =
ψ(L(x1); ε2(ε))ψ(L(x2); ε1(ε))

γpL′(1)
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Fig. 27. EBP-GEXIT curves of the (4, 6, L, w) and (4, 6) ensembles for transmission

over AWGN channels which BSC correlation between the sources.

and

G(x) =

∫ x

0

g(y) · dy = (x−R(1− x)/R′(1)) · 1.

Let P (x) be the trial entropy de�ned in Section 3 and let ε(x) (see Appendix A) be

di�erentiable. Also de�ne ε(x) = [ε1(ε(x)), ε2(ε(x))]. Then, we have

U(x; ε) =
1− γ
L′(1)

((ε(x)− [ε1(ε(x)), ε2(ε(x))]) · L(g(x))− P (x))

Lemma V.1. Consider the potential threshold ε∗ de�ned by (4.4). Let εMax be the
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Maxwell threshold de�ned by

εMax = min {ε(x) |P (x) = 0,x ∈ X} . (5.1)

Then, ε∗ = εMax for this problem.

Proof. Let xMax be the x-value that achieves the minimum. Then, U(xMax; εMax) =

U(xMax; ε(xMax)) = −P (xMax)(1 − γ)/L′(1) = 0. From Def. IV.7, we know ε∗ ≤

ε(xMax). Also, it can be shown that P (x∗) = 0, and thus, εMax ≤ ε∗. Therefore, we

have equality. �

Corollary V.2. Applying Theorem IV.7 shows that, if ε < εMax and w > Kf ,g/∆E(ε),

then the SC DE recursion must converge to the zero matrix. This shows the uni-

versality of spatially-coupled codes for the SWE problem, along with the results in

Section III.3.

B. The Gaussian Multiple-Access Channel

We �rst describe the (l, r, L) ensemble through a protograph. The protograph struc-

ture at the joint decoder is shown in Fig. 28 for a LDPC(3, 6) base code. The proto-

graph is generated as follows: Consider the protograph of a (3, 6) regular LDPC code.

It has two variable nodes of degree 3 and one check node of degree 6. Connect both

the variable nodes to the variable nodes of another protograph via function nodes.

The resulting protograph represents the joint decoder when both users are using (3, 6)

regular LDPC codes for transmission over the 2-user binary-input Gaussian MAC.

Place 2L + 1 protographs at positions −L, · · · , L. Each of the 3 edges of a variable

node at position i is connected to exactly one check node at position i− 1, i, i+ 1, for

each user.

As noted in Section A, we use the (l, r, L, w) ensemble for the remainder of this
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2L+ 1

Fig. 28. Protograph of the joint decoder. Shown above are 2L+ 1 copies of the proto-

graph of the joint decoder for a (3, 6) regular LDPC code. The bottom graph

shows the protograph of the joint decoder for the corresponding spatially cou-

pled code.

work.

1. The (l, r, L, w) Ensemble

Two single-user graphs, which are generated by the procedure described in Section 2,

are taken and the variable nodes (of each graph) at each position are connected by

a uniform random permutation of size M via channel nodes. This procedure ensures

that all the variable node positions are symmetric and enables us to write down the

density evolution (DE) equations in a simple manner, as described in the following

section.
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2. Density Evolution of the (l, r, L, w) Ensemble and GEXIT Curves

Let a
(`)
i and b

(`)
i denote the average density emitted by the variable node at position

i, at iteration `, for codes 1 and 2 respectively. Set a
(`)
i = b

(`)
i = ∆+∞ for i /∈ L.

The channel density is denoted by aBAWGNMA. All the above densities are L-densities

conditioned on the transmission of the all-zero codeword (see Section 1). We consider

the parallel schedule for each user (as described in [44]) and update the correlation

nodes before proceeding to the next iteration. Let us de�ne

g(xi−w+1, · · · ,xi+w−1) ,


1

w

w−1∑

j=0

(
1

w

w−1∑

k=0

xi+j−k

)�(r−1)



�(l−1)

,

Γ(xi−w+1, · · · ,xi+w−1) ,


1

w

w−1∑

j=0

(
1

w

w−1∑

k=0

xi+j−k

)�(r−1)



�l

.

The DE equations for the joint spatially-coupled system can be written as

a
(`+1)
i = ζ2→1

(
Γ(b

(`)
i−w+1, · · · , b(`)

i+w−1), aBAWGNMA
)

�

g(a
(`)
i−w+1, · · · , a(`)

i+w−1),

b
(`+1)
i = ζ1→2

(
Γ(a

(`)
i−w+1, · · · , a(`)

i+w−1), aBAWGNMA
)

�

g(b
(`)
i−w+1, · · · , b(`)

i+w−1),

for i ∈ L. For a further discussion of the DE equations for the (l, r, L, w) spatially-

coupled ensembles on BMS channels, see [49]. Using the notation a , (a−L, · · · , aL),

the �xed points of DE are given by (aBAWGNMA, a, b). De�ne the GEXIT value of a

�xed point (aBAWGNMA, a, b) by

G(aBAWGNMA, a, b) ,
1

2L+ 1

L∑

i=−L
G(aBAWGNMA, ai, bi),
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where G is de�ned in (3.4). For a �xed θ, the BP-GEXIT curve g(α) is given by the

set of points (α,G(aBAWGNMA(α), a, b)). The resulting curves for the spatially-coupled

(3, 6, 16, 2) and (3, 6, 32, 4) ensembles are shown in Fig. 29 for symmetric channel

conditions. These curves are very similar to the single user case and demonstrate

the phenomenon of threshold saturation at the joint decoder, for symmetric channel

conditions. For channel parameters not on the symmetric line, this implies threshold

saturation towards the MAP boundary.

C. Summary

The density evolution ACPRs for the two scenarios considered in this work are shown

in Figs. 30, 31 and 32. These �gures show that spatially coupled ensembles are near

universal for these problems.
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Fig. 29. BP-GEXIT curve and an upper bound on the MAP threshold (computed

using the area theorem) for transmission over a 2-user binary-input Gaussian

MAC, for A = 1, of the (3, 6) regular LDPC ensemble. GEXIT curves in

literature are typically parametrized by the channel entropy and the channels

get worse as the entropy increases. However, the channel gains are a natural

parameterization for this problem and the channel gets better by increasing the

channel gains. So the GEXIT values are negative for this parametrization.

Also shown are the BP-GEXIT curves of the (3, 6, L, w) spatially-coupled

LDPC ensembles.
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Fig. 30. DE ACPR of the spatially coupled punctured (4, 6, 64, 10) LDPC and the reg-

ular punctured LDPC(4, 6) ensembles for transmission over erasure channels

with erasure correlated sources.
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with BSC correlated sources.
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Fig. 32. BP-ACPR of the (3, 6, 64, 5) and (4, 8, 64, 5) spatially-coupled LDPC en-

sembles for the 2-user binary-input Gaussian MAC. Also shown are the

BP-ACPRs for the (3, 6) and (4, 8) regular LDPC ensembles. The BP-ACPR

of the (4, 8, 64, 5) spatially-coupled LDPC ensemble is very close to the

MAC-ACPR, demonstrating the near-universal performance of spatially-cou-

pled codes.
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CHAPTER VI

CONCLUDING REMARKS AND FUTURE WORK

A. Results

The noisy Slepian-Wolf problem and the 2-user Gaussian MAC were considered in

this work. The GEXIT functions for these problems are computed and their natural

area theorems are derived. By projecting the GEXIT functions along monotone

curves, we are able to obtain an upper bound on the MAP decoding threshold. This

bound is shown to be tight for the SWE problem for some cases. Based on the

observation that regular LDPC codes with large left degrees behave like random

codes and the fact that random codes are universal under MAP decoding, we are also

able to show that increasing the left degree (keeping the rate constant) will push the

MAP boundary towards the boundary of the SW-ACPR for the SWE problem. We

also conjecture that increasing the left degree (keeping the rate constant) will push

the MAP boundary towards the boundary of the SW-ACPR/MAC-ACPR for more

general noise distributions.

We considered spatially-coupled codes for the noisy Slepian-Wolf problem and

the Gaussian MAC and observed that spatial coupling boosts the BP threshold of

the joint decoder to the MAP threshold of the underlying ensemble. The density

evolution ACPRs for the two scenarios considered in this work are shown in Figs. 30,

31 and 32. These �gures show that spatially-coupled ensembles are near universal

for these problems. We are able to show an analytic proof of this result for the SWE

problem. The analytic proof of this result remains an open problem for other general

models. Such a proof would essentially show that it is possible to achieve universality

for the noisy Slepian-Wolf problem and the MAC channel under iterative decoding.
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B. Future Work

This work can be extended in a variety of ways. For example, it is straightforward

to dispense with AWGN and compute the ACPRs of any suitably parameterized

2-user binary-input MAC. One can also generalize these results to m-user MACs,

larger input alphabets, and multiple-input multiple-output (MIMO) systems. In these

cases, the increase in computational complexity makes discretized DE infeasible and

Monte Carlo methods must be used to evaluate the DE and GEXIT functions. We

conjecture that threshold saturation will continue to occur for all these extensions

and that spatially-coupled codes will achieve near-universal performance.
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APPENDIX A

PROOFS

Proof of Lemma III.1

Consider the term

H(X|Y ) = H(Xi|Y ) +H(X∼i|Xi,Y )

= H
(
X

[1]
i |Yi,Φi

)
+H

(
X

[2]
i |X [1]

i ,Y ∼i
)

+H(X∼i|Xi,Y ∼i) .

Note that only the �rst term of the decomposition depends on the �rst channel at

position i. A similar decomposition can be done while taking the derivative with

respect to the second channel at position i. So, we get

gi(α
[1]
i , α

[2]
i ) =

d

dα
[1]
i

H
(
X

[1]
i |Y [1]

i ,Φ
[1]
i

)
+

d

dα
[2]
i

H
(
X

[2]
i |Y [2]

i ,Φ
[2]
i

)

=
∂α

[1]
i

∂α

∂

∂α
H
(
X

[1]
i |Y [1]

i ,Φ
[1]
i

)
+
∂α

[2]
i

∂α

∂

∂α
H
(
X

[2]
i |Y [2]

i ,Φ
[2]
i

)
.

Following the standard procedure for single user channels, we have

H
(
X

[1]
i |Y [1]

i ,Φ
[1]
i

)
=

∫

u,v

ai(u)a
BMSC(α

[1]
i )

(v) log2(1 + e−u−v)dvdu.

So,

gi(α
[1]
i , α

[2]
i ) =

∂α
[1]
i

∂α

∫

u

ai(u)κ(a
BMSC(α

[1]
i )
, u)du+

∂α
[2]
i

∂α

∫

u

bi(u)κ(b
BMSC(α

[2]
i )
, u)du.
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Proof of Lemma III.3

From Lemma III.2, the GEXIT value can be simpli�ed to

GBP(a, b) = L(g(a))
∂α[1]

∂α
+ L(g(b))

∂α[2]

∂α
. (A.1)

Since α[1] and α[2] are functions of α, from (2.8) a and b must be functions of some

common parameter x and we write α(x) = α(a, b), a(x) and b(x). For example when

a, b 6= 0, we have a(x) = x and b(x) = ψ−1(x/λ(x)), where

ψ−1(x) = g−1

(
L−1

(
ζ−1

(
1

γ

(
x− (1− γ)α[1](α)

))))
.

All the above functions are well de�ned for x 6= 0. Noting that α(x), a(x) and b(x)

are di�erentiable, we de�ne the trial entropy along the curve C by

P (x) =

∫ x

0

gBP(t)dα(t).

We do not require an explicit characterization of the functions a(x), b(x) and α(x).

We �rst note that

dα[1](x) =
∂α[1]

∂α
dα(x), dα[2](x) =

∂α[2]

∂α
dα(x), and

dζ

dx
(x) = p.

So, P (x) =
∫ x

0
L(g(a(x)))dα[1](x) +

∫ x
0
L(g(b(x)))dα[2](x). From (2.8), we have

α[1](x) =
1

1− γ

[
a(x)

λ(g(a(x)))
− γζ(L(g(b(x))))

]
and

α[2](x) =
1

1− γ

[
b(x)

λ(g(b(x)))
− γζ(L(g(a(x))))

]
.
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After integration by parts and some algebra, this can be simpli�ed to

P (x) = − pγ

1− γL(g(a(x)))L(g(b(x)))

+
1

1− γ

(
L(g(a(x)))

a(x)

λ(g(a(x)))
− L′(1)

R′(1)
[1−R(1− a(x))− a(x)R′(1− a(x))]

)

+
1

1− γ

(
L(g(b(x)))

b(x)

λ(g(b(x)))
− L′(1)

R′(1)
[1−R(1− b(x))− b(x)R′(1− b(x))]

)
.

Consider the case when a = 0, b 6= 0. We then have the parametrization b(x) = x,

α(x) such that

α[2](x) =
1

1− γ

[
b(x)

λ(g(b(x)))

]
.

The trial entropy in this case is given by

P (x) =

∫ x

0

L(g(b(x)))dα[2](x)

=
1

1− γ

(
L(g(b(x)))

b(x)

λ(g(b(x)))
− L′(1)

R′(1)
[1−R(1− b(x))− b(x)R′(1− b(x))]

)
.

Similarly, for the case when a 6= 0, b = 0, we have

P (x) =

∫ x

0

L(g(a(x)))dα[1](x)

=
1

1− γ

(
L(g(a(x)))

a(x)

λ(g(a(x)))
− L′(1)

R′(1)
[1−R(1− a(x))− a(x)R′(1− a(x))]

)
.

Putting this together, the trial entropy at a �xed point (a, b) is given by

P (a, b) = − pγ

1− γL(g(a))L(g(b))

+
1

1− γ

(
L(g(a))

a

λ(g(a))
− L′(1)

R′(1)
[1−R(1− a)− aR′(1− a)]

)

+
1

1− γ

(
L(g(b))

b

λ(g(b))
− L′(1)

R′(1)
[1−R(1− b)− bR′(1− b)]

)
.
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Proof of Lemma III.4

The expected check node degree distribution R̃ε(z) can be derived similarly to the

BEC case.

For the degree distribution of bit nodes, the fraction of unpunctured bits is 1−γ.

For these bit nodes to remain in the residual graph, the messages from the channel as

well as the from the corresponding check nodes must be erasures. This happen with

probability α[1] ·L(y(a)) and α[2] ·L(y(b)). The fraction of punctured bits is γ. Among

these, for bits which are not connected by correlation nodes (w.p. 1− p) to remain in

the residual graph, the messages from corresponding check nodes must be erasures.

This happens with probability (1− p)L(y(a)) and (1− p)L(y(b)). Meanwhile, every

two bits which are connected by a correlation node (this happens with probability p)

are merged into a larger bit node with twice the degree. For these larger bit nodes

to remain in the residual graph, the messages from check nodes in both sources must

be erasures. This happens with probability p
2
L(y(a))L(y(b)). The results follows

immediately.

Proof of Lemma III.7

Suppose that each bit is transmitted through a channel with parameter αi and con-

sider the term

H(X|Y ) = H(Xi|Y ) +H(X∼i|Xi,Y )

= H(Xi|Yi,Φi) +H(X∼i|Xi,Y ∼i) .
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Note that the second term of the decomposition does not depend on the channel at

position i. So, we get

gi(αi) =
d

dαi
H(Xi|Yi,Φi) .

We have,

H(Xi|Yi,Φi) = −
∫∫

y,φ

∑

x

p(x, y, φ)log2

p(x, y, φ)∑

x′

p(x′, y, φ)
dydφ

=
∑

x

p(x)

∫

φ

p(φ|x)



∫

y

p(y|x)log2

∑

x′

p(x′|φ)p(y|x′)

p(x|φ)p(y|x)
dy


dφ,

which follows from the fact that

pXi,Yi,Φi(x, y, φ) = p(y|x)p(φ|x)p(x),

since Yi → Xi → Φi. Taking the derivative and noting that p(xi|φi) = p(xi|y∼i), we

obtain1

gi(αi) =
∑

x

p(x)

∫

φ

p(φ|x)

(∫

y

∂

∂α
p(y|x)

log2

∑

x′

p(x′|φ)p(y|x′)

p(x|φ)p(y|x)
dy

)
dφ

=
∑

x

p(x)

∫

u

ax,i(u)κx(u)du,

and the result follows by setting αi = α.

1The terms obtained by di�erentiating with respect to the channel inside the log
vanish.
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Proof of Lemma III.8

Let ΦBP = u. Then,

u = φ(y∼i) = {p(xi|y∼i), xi ∈ X}

= {p(π1(xi)|y∼i) · p(π2(xi)|y∼i), xi ∈ X}.

If we de�ne

u , log
p(X

[1]
i = +1|y∼i)

p(X
[1]
i = −1|y∼i)

, v , log
p(X

[2]
i = +1|y∼i)

p(X
[2]
i = −1|y∼i)

,

then

u=

(
εu

1 + εu
εv

1 + εv
,
εu

1 + εu
1

1 + εv
,

1

1 + εu
εv

1 + εv
,

1

1 + εu
1

1 + εv

)

, f(u, v). (A.2)

Let a(u) denote the density of U conditioned onX
[1]
i = +1 and b(v) be the density of V

conditioned on X
[2]
i = +1. Then, a(−u) is the density of U conditioned on X

[1]
i = −1

and b(−v) is the density of V conditioned on X
[2]
i = −1. In the limit n → ∞ and

taking expectation these densities are given by the �xed point (aBAWGNMA(α), a, b).

Let Fx[a, b](u, v) be the density of ΦBP

i conditioned on (X
[1]
i = π1(x), X

[2]
i = π2(x)).

Then,

Fx[a, b](u, v) = a (π1(x)u) b (π2(x)v) . (A.3)

For example F0[a, b](u, v) = a(u)b(v),F1[a, b](u, v) = a(u)b(−v) and so on. The result

follows by the de�nition of the GEXIT curve. The kernels κx(u, v) are de�ned in the

sense of (A.2).
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APPENDIX B

LDGM CODES FOR THE ESW PROBLEM*

In this appendix, we consider the design of LDGM codes for the SWE problem.

Assume that the sequences U1 and U2 are encoded using LDGM codes with a degree

distribution pair (λ, ρ). Since the encoded variable nodes are are attached to the check

nodes randomly, the degree of each variable node is a Poisson random variable whose

mean is given by the average number of edges attached to each check node. This

mean is given by m = R′(1), where R′(1) is the average check degree. Therefore, the

resulting degree distribution is L(x) = em(x−1). Throughout this section, we consider

the erasure correlation model described in Section a.

The Tanner graph for the code is shown in Fig. 33. Code 1 corresponds to the

bottom half of the graph, code 2 corresponds to the top half and both the codes are

connected by correlation nodes at the source variable nodes. One can verify that

the computation graph for decoding a particular bit is asymptotically tree-like, for a

�xed number of iterations as the blocklength tends to in�nity. This enables the use

of density evolution to compute the performance of the joint iterative decoder.

Let x` and y` denote the average erasure probability of the variable nodes at

iteration ` for users 1 and 2 respectively. The density evolution equations in terms of

*Copyright 2009 IEEE. Reprinted, with permission, from A. Yedla, H. D. P�s-
ter, and K. R. Narayanan, �Can iterative decoding for erasure correlated sources be
universal?� in Proc. 47th Annual Allerton Conf. on Commun., Control, and Comp.,
Monticello, IL, Sept. 2009. For more information, go to http://thesis.tamu.edu/
forms/IEEE\%20permission\%20note.pdf/view.
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permutation π1

permutation π2

ε1

ρ(x)

λ(x)

p

ε2

ρ(x)

λ(x)

Fig. 33. Tanner Graph of an LDGM (LT) Code with erasure correlation between the

sources

the variable-node to check-node messages can be written as

x`+1 = [(1− p) + pL (%(ε2, y`))]λ (%(ε1, x`))

y`+1 = [(1− p) + pL (%(ε1, x`))]λ (%(ε2, y`)) ,

where %(ε, x) = 1 − (1 − ε)ρ(1 − x). Notice that, for LT codes, the variable-node

degree distribution from the edge perspective is given by λ(i)(x) = L(i)(x) because

λ(x) , L′(x)/L′(1) = L(x), when L(x) is Poisson. With this simpli�cation, the

density evolution for symmetric channel conditions (ε1 = ε2 = ε) can be written as

x`+1 =
[
(1− p) + pλ

(
1− (1− ε)ρ(1− x`)

)]
λ
(
1− (1− ε)ρ(1− x`)

)
. (B.1)
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This recursion can be solved analytically, resulting in the unique non-negative ρ(x)

which satis�es

x =
[
(1− p) + pλ

(
1− (1− ε)ρ(1− x)

)]
λ
(
1− (1− ε)ρ(1− x)

)
.

The solution is given by

ρ(x) =
−1

α(1− ε) · log

(√
(1− p)2 + 4p(1− x)− (1− p)

2p

)

=
1

α(1− ε)
∞∑

i=1

∑i−1
k=0

(
2i−1
k

)
pk

i(1 + p)2i−1
xi,

which is not a valid degree distribution because it has in�nite mean. To overcome

this, we de�ne a truncated version of the check degree distribution via

ρN(x) =
µ+

∑N
i=1

∑i−1
k=0 (2i−1

k )pk
i(1+p)2i−1 xi + xN

µ+GN(p) + 1

GN(p) =
N∑

i=1

∑i−1
k=0

(
2i−1
k

)
pk

i(1 + p)2i−1
,

(B.2)

for some µ > 0 and N ∈ N. This is a well de�ned degree distribution as all the

coe�cients are non-negative and ρN(1) = 1. The parameter µ increases the number

of degree one generator nodes and is introduced in order to overcome the stability

problem at the beginning of the decoding process [54].

Theorem VI.1. Consider transmission over erasure channels with parameters ε1 =

ε2 = ε. For N ∈ N and µ > 0, de�ne

GN(p) =
N∑

i=1

∑i−1
k=0

(
2i−1
k

)
pk

i(1 + p)2i−1
, and m =

µ+GN(p) + 1

1− ε .

Then, in the limit of in�nite blocklengths, the ensemble LDGM
(
n, λ(x), ρN(x)

)
, where
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λ(x) = em(x−1) and

ρN(x) =
µ+

∑N
i=1

∑i−1
k=0 (2i−1

k )pk
i(1+p)2i−1 xi + xN

µ+GN(p) + 1
, (B.3)

enables transmission at a rate R = (1−ε)(1−e−m)
µ+1−p/2 , with a bit error probability not ex-

ceeding 1/N .

Proof. We will use the following Lemma to show that the density evolution equations

converge to zero at the extremal symmetric point.

Lemma VI.2.

ρN(x) >
µ+ ρ(x)

µ+GN(p) + 1
, for 0 ≤ x < 1− 1

N
.

Proof. For 0 ≤ x < 1− 1
N
, we have

ρN(x) =
µ+

∑N
i=1

∑i−1
k=0 (2i−1

k )pk
i(1+p)2i−1 xi + xN

µ+GN(p) + 1

=
µ+ ρ(x) + xN

µ+GN(p) + 1
−
∑∞

i=N+1

∑i−1
k=0 (2i−1

k )pk
i(1+p)2i−1 xi

µ+GN(p) + 1

>
µ+ ρ(x)

µ+GN(p) + 1
. (B.4)

(B.4) follows from the fact that

∞∑

i=N+1

∑i−1
k=0

(
2i−1
k

)
pk

i(1 + p)2i−1
xi <

∞∑

i=N+1

xi

i
<

1

N + 1

∞∑

i=N+1

xi =
1

N + 1
· x

N+1

1− x < xN .

The last step follows from explicit calculations, taking into account that 0 ≤ x <

1− 1
N
. �

From (B.1), the convergence criteria for the density evolution equation is given
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by

x >
[
(1− p) + pλ̄N(ε, x)

]
λ̄N(ε, x),

where λ̄N(ε, x) = λ
(
1− (1− ε)ρN(1− x)

)
. Therefore, we have

λ̄N(ε, x) = e−m(1−ε)·ρN (1−x)

≤ e
−m(1−ε) µ+ρ(1−x)

µ+GN (p)+1 , if x ≥ 1

N
(B.5)

< e−µ ·
√

(1− p)2 + 4px− (1− p)
2p

<

√
(1− p)2 + 4px− (1− p)

2p
,

where (B.5) follows from Lemma VI.2. The polynomial f(y) = py2 + (1− p)y − x is

a convex function of y, with the only positive root at y =

√
(1−p)2+4px−(1−p)

2p
. So, if

y <

√
(1−p)2+4px−(1−p)

2p
, then f(y) < 0. Hence,

[
(1− p) + pλ̄(ε, x)

]
λ̄(ε, x)− x < 0 and

the density evolution equation converges, as long as x ≥ 1
N
. So, the probability of

erasure is upper bounded by 1/N .

Note that
∫ 1

0
ρ(N)(x) dx is a monotonically increasing sequence, upper bounded

by 1− p
2
. So, in the limit of in�nite blocklengths the design rate is given by

R = lim
N→∞

∫ 1

0
λ(x) dx

∫ 1

0
ρ(N)(x) dx

=
(1− ε)(1− e−α)

µ+ (1− p
2
)

. �

From Theorem VI.1, we conclude that the code ensemble LDGM
(
n, λ(x), ρN(x)

)

can achieve the extremal symmetric point of the capacity region. Unfortunately, one

can show (e.g., see Theorem VI.3) that this ensemble cannot simultaneously achieve

both the extremal symmetric point and the corner points of the SW region. In Fig. 34,

this can also be observed numerically via the density evolution ACPR (DE-ACPR)

of this ensemble for N = 2048.
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Theorem VI.3. LT codes cannot simultaneously achieve the extremal symmetric

point and a corner point of the Slepian-Wolf region, under iterative decoding.

Proof. A corner point is given by the channel condition

(ε1, ε2) = (1− (1− p)R, 1− (1− p/2)R) .

The density evolution equations are

xi+1 =
[
(1− p) + pλ̄N(ε2, yi)

]
λ̄N(ε1, xi)

yi+1 =
[
(1− p) + pλ̄N(ε1, xi)

]
λ̄N(ε2, yi),

(B.6)

where λ̄N(ε, x) = λ
(
1− (1− ε)ρN(1− x)

)
. To analyze the convergence of the ensem-
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Fig. 34. ACPR (Density Evolution threshold) of the optimized (erasure channel) LT

Code with N = 2048
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ble LDGM
(
n, λ(x), ρ(N)(x)

)
, consider the functions

f(x, y) =
[
(1− p) + pλ̄N(ε2, y)

]
λ̄N(ε1, x)− x

g(x, y) =
[
(1− p) + pλ̄N(ε1, x)

]
λ̄N(ε2, y)− y.

The condition for convergence of the density evolution equations are given by f(x, y) <

0 and g(x, y) < 0. When ε1 < ε2, we can approximately characterize the convergence

by analyzing the condition g(0, y) < 0. We have

g(0, y) = [(1− p) + pλ(ε1)]λ
(
1− (1− ε2)ρN(1− y)

)
− y

< [(1− p) + pλ(ε1)]λ (1− (1− ε2)ρ(1− y))− y

= k
(√

1 + ay − 1
)β
− y,

where

k =

(
e−µ(1− p)

2p

) 1−ε2
1−ε0 [

(1− p) + pe−α(1−ε1)
]
,

β =
1− ε2
1− ε0

and a =
4p

(1− p)2

The �xed point of g(0, y) can be found by solving

y = k
(√

1 + ay − 1
)β
, i.e.,

√
1 + ay = 1 + k−1/βy1/β

This equation is of the form

k−2/βy(2/β−1) + 2k−1/βy(1/β−1) − a = 0,

the root of which is approximately equal to the root of the quadratic

k−2/βz2 + 2k−1/βz − a,
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where z = y(1/β−1/2). The positive root of the quadratic is given by z = −1+
√

1+a
k−1/β .

So, the �xed point of density evolution is y ≈
(

2p
(1−p)k−1/β

) 2β
2−β

=
(

2p
(1−p)k−1/β

)2(1−p)
=

(
e−µ

[
(1− p) + pe−α(1−ε1)

])2(1−p)
> 0.

Due to the presence of a constant �xed point, which does not approach 0 even

in the limit of in�nite maximum degree, the residual erasure rate is always bounded

away from 0. So, the ensemble LDGM
(
n, λ(x), ρ(N)(x)

)
cannot converge at a corner

point of the capacity region. �
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APPENDIX C

LDPC CODE DESIGN FOR THE SW PROBLEM*

In this appendix, we present a way to construct near-universal codes, without using

spatial-coupling.

Staggering

It is well known that single-user codes perform well at the corner points of the SW

region. Although single-user codes do not perform well for symmetric channel condi-

tions, they can be used to construct staggered codes that perform well at the corner

points and for symmetric channel conditions. Consider 2 sources with Lk + (1− β)k

bits each. Without loss of generality, add βk zeros at the beginning for source U [1] and

add βk zeros at the end for source U [2], to get (L+ 1)k bits. We call β the staggering

fraction. Next encode each block of k bits using a punctured (n− k, k) LDPC code.

The rate loss incurred by the addition of βk zeros can be made arbitrarily small by

increasing the number of blocks L. At the decoder, one has the following structure:

The performance of this staggered structure can be understood by considering the

erasure case in the limit L→∞.

Theorem VI.4. Consider transmission over erasure channels with erasure rates

(ε[1], ε[2]) using capacity approaching punctured (n− k, k) LDPC codes. The staggered

*Copyright 2010 IEEE. Reprinted, with permission, from A. Yedla, H. D. P�ster,
and K. R. Narayanan, �LDPC code design for transmission of correlated sources
across noisy channels without CSIT,� in Proc. Int. Symp. on Turbo Codes & Iterative
Inform. Proc., Brest, France, Sept. 2010, pp. 474�478. For more information, go to
http://thesis.tamu.edu/forms/IEEE\%20permission\%20note.pdf/view.
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n− k
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permutation π2
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1
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Fig. 35. Decoder structure for staggered codes

block code (with staggering fraction β) allows reliable communication for channel pa-

rameters

ε[1] ≤ min{1−R(1− β), 1−R(1− pβ)}, and

ε2 ≤ 1−R(1− p(1− β)),

where R = k/(n− k) is the design rate of the code.

Proof. Consider the �rst block for source U [1]. The parity bits see a BEC(ε[1]) channel

and the source bits see an e�ective BEC(1 − β) channel (assuming no information

comes from the decoder on the other side). So the e�ective erasure rate at the �rst

block is (1− R′)ε1 + R′(1− β) (R′ = k/n is the rate of the code before puncturing).

The code can decode as long as R′ ≤ 1−((1−R′)ε1+R′(1−β)) i.e., ε[1] ≤ 1−R(1−β).



106

Suppose the �rst block of U [1] can decode successfully, then the source bits in the �rst

block of U [2] see an e�ective channel of (1 − β)(1 − p) + β. The parity bits see a

channel with erasure probability ε[2]. So, the e�ective channel seen by the �rst block

of the second code is (1 − R′)ε[2] + R′(1 − p(1 − β)). So this block can be decoded

as long as ε[2] ≤ 1− R(1− p(1− β)). Now proceed to the second block of U [1]. The

e�ective channel seen by the source bits of this code is β(1− p) + (1−β). The parity

bits see a channel with erasure probability ε[1]. So, the e�ective channel seen by the

second block of the �rst code is R′(β(1− p) + (1− β)) + (1−R′)ε[1]. This block can

be decoded as long as ε[1] ≤ 1 − R(1 − pβ). The decoding continues by alternating

between blocks of U [1] and U [2]. This proves the claim. �

Corollary VI.5. Consider transmission over erasure channels using capacity ap-

proaching punctured (n− k, k) LDPC codes. The staggered block code (with stagger-

ing fraction β = 1/2) allows reliable communication at both the corner points and the

symmetric channel condition.

Proof. The proof follows by matching the conditions of the previous theorem to a cor-

ner point and the extremal symmetric point of the SW region. Consider the extremal

symmetric channel condition in the Slepian-Wolf region. The channel parameters are

given by (ε[1], ε[2]) = (1 − (1 − p
2
)R, 1 − (1 − p

2
)R). For successful decoding at the

extremal symmetric channel condition, we obtain the condition β = 1/2. A corner

point of the Slepian-Wolf region is given by (ε[1], ε[2]) = (1 − R, 1 − (1 − p)R). Suc-

cessful decoding at this point requires that 0 ≤ β ≤ 1. So, for β = 1/2, the above

staggered structure allows successful communication at both the corner points and

the symmetric channel condition. �

Remark VI.1. Note that staggered capacity-approaching codes can be used to com-

municate at a corner point and any other point on the dominant face of the SW region
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(using di�erent values of β).

For general channels we can analyze the performance of the staggered code using

density evolution. Let i ∈ {1, . . . , L} and a
(i)
` and b

(i)
` denote the density of the

messages emanating from the variable nodes at iteration `, corresponding to codes 1

and 2 in block i. The DE equations can be written as follows:

a
(i)
`+1 =

[
γ
(
βf
(
L
(
ρ(b

(i−1)
` )

))
+ (1− β)f

(
L
(
ρ(b

(i)
` )
)))

+ (1− γ)aBMSC
]

� λ(ρ(a`))

b
(i)
`+1 =

[
γ
(

(1− β)f
(
L
(
ρ(a

(i)
` )
))

+ βf
(
L
(
ρ(a

(i+1)
` )

)))
+ (1− γ)bBMSC

]

� λ(ρ(b`)).

(C.1)

Here, a
(i)
` , b

(i)
` = ∆+∞ (the delta function at ∞) for i /∈ {1, . . . , L}.

Di�erential Evolution

Throughout this section, we use x to denote an element of Rn for some n ∈ N, and

xi to denote its ith component. Let V = {i |λi 6= 0} and P = {i | ρi 6= 0} be the

support sets of the variable and parity-check degree distributions respectively, which

are assumed to be known. The correlation parameter p is �xed. We design LDPC

codes for this scenario using di�erential evolution [55], for a design rate Rd. In an n-

dimensional search space, a �xed number of vectors are randomly initialized and then

evolved over time, exploring the search space, to locate the minima of the objective

function. Let

∆n−1 =

{
x ∈ Rn

∣∣∣∣∣
n∑

i=1

xi = 1, xi ≥ 0, i = 1, · · · , n
}

denote the unit simplex and nv = |V|, np = |P|. Then, the search space for all

variable (check) degree pro�les is ∆nv−1 (∆np−1). The optimization is performed over
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the search space S = ∆nv−1 × ∆np−1, with parameter vectors x = [xλ, xρ],
2 where

xλ ∈ ∆nv−1, xρ ∈ ∆np−1. In our optimization procedure, we expand the search space

to S ′ = {x ∈ Rnv+np ,
∑

i(xλ)i = 1,
∑

i(xρ)i = 1}, for simplicity in the crossover stage.

We generate an initial population of trial degree distributions by uniformly sampling

the degree distributions from the unit simplex.

For the optimization to work well, di�erential evolution requires an initial popu-

lation of trial vectors which are spread out uniformly across the search space. To

obtain a sample x uniformly from ∆n−1, we generate uniform random variables

ui ∼ U [0, 1], i = 1, 2, · · · , n− 1. De�ne u0 = 0, un = 1 and let πu be the permutation

that sorts (ui) in ascending order i.e., if i ≤ j, then uπu(i) ≤ uπu(j). For i = 1, · · · , n,

de�ne xi = uπu(i) − uπu(i−1), and x = (xi). Then x has a uniform distribution over

∆n−1.

Let C be a �nite subset of channel parameters (α[1], α[2]) that correspond to the

sum rate constraint of the SW conditions for a design rate Rd. Let Γ : S ′ × C →

[0, 1] × [0, 1], (x, α[1], α[2]) 7→ (e1, e2) be the function that gives the residual error

probability3 (using joint density evolution as described in Section 2) for each decoder,

for a pair of codes with degree distribution x (i.e., (xλ, xρ)), when transmitted over

channels with parameters (α[1], α[2]). We use discretized density evolution [41]4 to

compute the performance of an ensemble.

For our design, we want the code to achieve an arbitrarily low probability of error

on C and we want the rate of the code R(x) to be as close to the design rate Rd as

2(xλ,V) and (xρ,P) correspond to the variable and parity node degree pro�les
respectively.

3We set the maximum number of iterations to 100 for all the designs considered in
this paper. Density evolution is stopped when the maximum number of iterations is
reached or the di�erence in the residual error probability between successive iterations
is less than 10−8.

4A 9 bit linear quantization is used over a likelihood ratio range [−20, 20]
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possible. So, we de�ne the cost function,

F(x) = a ·


 ∑

(α1,α2)∈C

(
1− 1{(α1,α2)|Γ(x,α1,α2)�(τ,τ)}

)

+ b · (Rd −R(x)),

if x ∈ S and F(x) = ∞, if x ∈ S ′\S. The rate of the code R(x) = R(xλ, xρ) is

computed as in (2.6). The constants a and b are chosen through trial and error. The

parameters chosen for the designs considered in this paper are τ = 10−5, a = 10 and

b = 30. The optimization is then setup as minx∈S′ F(x).

We use a variant of di�erential evolution, with the mutation and recombination

scheme given in [56]. The resulting codes are then staggered as described in Section C.

Results

The design was performed to maximize the ACPR, in contrast to previous work. For

the erasure correlation model, the optimization was performed for a design rate of

Rd = 0.57 after puncturing and source correlation p = 0.5. The resulting degree

pro�le

λ(x) = 0.3633x+ 0.2834x2 + 0.2315x6 + 0.1217x19,

ρ(x) = 0.531776x3 + 0.468224x5,

has a design rate of 0.3308 and transmission rate 0.4962. The ACPR for this code is

shown in Fig. 36 along with the SW region for the rate pair (0.4962, 0.4962). This

shows optimized ensembles can achieve a large portion of the SW region.

The BSC source correlation parameter was p = 0.9 and the optimization was
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performed for a design rate Rd = 0.5 after puncturing. The resulting degree pro�le

λ(x) = 0.26725x+ 0.26823x2 + 0.07557x3 + 0.212x6 + 0.027898x7+

0.0061593x8 + 0.0011654x14 + 0.14173x19,

ρ(x) = 0.37856x3 + 0.56211x5 + 0.0080803x9 + 0.028448x14 + 0.0095319x19+

0.013267x24,

has a design rate of 0.323 and transmission rate 0.476. The ACPR for this code is

shown in Fig. 37 along with the SW region for the rate pair (0.476, 0.476). These

results show that ensembles optimized using di�erential evolution can achieve almost
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Fig. 36. ACPR (Density Evolution threshold) of an optimized (erasure channel) LDPC

Code of rate 0.3308 is shown in blue. The grey area is the ACPR after

staggering.
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Fig. 37. ACPR (Density Evolution threshold) of an optimized (AWGN channel) LDPC

Code of rate 0.323 is shown in blue. The grey area is the ACPR after stag-

gering.

the entire SW region.
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