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ABSTRACT 

 

Mechanics of Light Weight Proppants: A Discrete Approach. (May 2012) 

Mandar Chaitanya Kulkarni, B.E., Sardar Patel University, India; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Ozden Ochoa   

 

Proppants are a specific application of granular materials used in oil/gas well 

stimulation.  Employment of hard and soft particle mixtures is one of the many 

approaches availed by the industry to improve fracture resistance and the stability of the 

granular pack in the hydraulic fracture.  Current industrial practices of proppant 

characterization involve long term and expensive conductivity tests. However, the 

mechanics governing the proppant pack response, in particular the effects due to material, 

shape and size of particles on the pack porosity, stiffness and particle fragmentation are 

not understood clearly.     

The present research embodies analytical and experimental approach to model 

hard (ceramic) and soft (walnut shell and/or pure aluminum) proppant mixtures by 

taking into account polydispersity in size, shape and material type of individual particles. 

The hydraulic fracture condition is represented through confined compression and 

flowback loads. The particle interactions clearly illustrate changes in pore space as a 

function of pressure, mixture composition and friction. Single particle compression tests 

on individual particles are carried out to obtain mechanical properties which are 

incorporated into the finite element models and are further correlated with the 

compression/crush response of the mixture. The proppant pack stiffness and particle 

fragmentation depends strongly on the mixture composition as illustrated in the models 

and experiments. The flowback models demonstrated that the formation of a stable arch 

is essential to pack stability. Additional variables that enhance flowback resistance are 

identified as; addition of softer particles to a pack, softer rock surfaces and higher inter-

particle friction. The computational studies also led to the discovery of  better, and more 
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efficient pack compositions such as - short and thin pure Al needles/ceramic and the 

pistachio shells/ceramic mixtures. These analytical results have generated great interest 

and are engaged in the design of experiments to formulate future proppant pack mixtures 

at Baker Hughes Pressure Pumping, Tomball, TX. 
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1  INTRODUCTION 
 
 

1.1  Overview 

 

Granular materials are a conglomeration of discrete solid particles. They are 

large enough so that they do not exhibit Brownian motion.  Their application areas range 

from geophysics, pharmacy, oil & gas, powder metallurgy, polymer technology, casting 

technology, agriculture, construction technology etc.  Proppants are a special application 

of granular materials employed in oil/gas well stimulation.   

  Hydraulic fracturing is a process where a highly pressurized fluid is pumped 

into an oil/gas well at sufficiently high rates to create fractures. Proppants are small 

granules which are delivered to these fractures to ensure that the flow paths remain open 

against the rock pressure.  Proppants settle in either as a closed pack arrangement or as a 

single layer while ensuring sufficient permeability to enable continued/enhanced oil/gas 

production [1].  Historically sand has been the most commonly used proppant material.  

However as the well depths increase, the pressures increase.  Sand is unable to resist the 

high pressures and crushes generating free fines (fragmented pieces of sand particles) 

which reduce permeability by occupying the pore space in the pack [2].  At higher well 

depths synthetic proppant, generally sintered bauxite or ceramic is employed.  Current 

research in the industry is focused on employing ultra light weight material as proppants.  

Some of the different materials considered include polymers, biomaterials like walnut 

shell or pistachio shells and hollow ceramic proppants [3, 4].  Research is also focused 

on employing a mix of soft and hard particles e.g. walnut/polymer particles with sand or 

aluminum fibrils/aluminum pellets with ceramic with the intention of improving the 

pack stability [5]. 

 

 

________________________ 

This dissertation follows the style and format of Composites Science and Technology.  
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Currently according to the industrial practices proppant characterization involves 

long term and expensive conductivity tests [6].  That apart the mechanics governing the 

proppant pack response, in particular the effects of particle fracture and polydispersity 

on the pack porosity are not understood clearly from the tests. 

In the research presented here computational models have been developed to 

model hard and soft proppant mixtures. The finite discrete approach is employed to 

better understand the mechanics governing a proppant pack and help develop a virtual 

parametric test bed capability to screen proppant samples.  To this end models have been 

developed in the software ABAQUS 6.8.3 using the explicit time integration scheme.  

The models simulate the load conditions to which proppants are exposed to in a 

hydraulic fracture.  Proppant mixtures are modeled to take into account polydispersity in 

size, shape and material properties.  Single particle compression tests on individual 

particles have been carried out to obtain mechanical properties to be incorporated in the 

models.  Compression tests on proppant mixtures have been carried out according to 

industry standards [7, 8].  The load vs displacement response of the computational 

models has been compared to the compression tests.  This enables us to better 

understand the mechanics governing the pack response and also helps in 

improving/refining the modeling approach.  

In this section next a brief discussion on granular materials and their 

typical/unique properties is provided.  Further, the computational techniques which are 

employed to analyze granular materials are discussed.  This is followed by an 

introduction to proppants, their different material types, loading conditions and test 

procedures employed to characterize them.       

 
 
1.2  Granular Materials 

 

Granular materials refer to class of materials with size greater than one micron.  

Above this limit particles do not exhibit Brownian motion and physics of motion is 

primarily dependent on external forces and particle interactions and not on thermal 
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agitations [9].  They can be either dry or wet and can be encountered as either particles 

or powders.  Granular materials are typical as they exhibit behavior which is akin to 

solids, liquids and gases. They can withstand shear loads and form heaps, they flow with 

a boundary layer and they also exhibit compressibility [10].  These typical behavioral 

patterns make it extremely difficult to predict the behavior of granular materials. 

Granular heaps are distinct from liquids as they remain stationary until their 

slope exceeds a specific angle, known as the angle of repose.  Beyond this slope grains 

begin to flow.  This flow is what happens in case of an avalanche.  It is observed that 

only the top few layers move while the bulk of the heap remains stationary like a solid.  

Thus a boundary layer is observed in case of the flow of granular materials [11, 12].   

An example of an unusual behavior of granular material is its ability to transmit 

stresses perpendicular to the direction of loading [11, 12].  When a pack of granules is 

compressed it transmits load through interparticle contacts.  The contacts keep on 

changing based on changes in particle position and particle deformation, resulting in a 

non uniform stress distribution in a granular pack in contrast to a homogeneous solid.  

This transfer of loads due to contact results in a vertical load being transmitted along the 

horizontal direction.  In case of fluids the pressure of fluid in a container is dependent on 

the height of the fluid column. The transverse load transfer in case of granular materials 

results in a divergence from this fluid behavior and is generally observed in sufficiently 

tall vessels.  The friction between the wall and the particles is sufficient to withstand the 

load.  The interparticle load transfer and friction also result in a phenomenon known as 

arching.  It is the same phenomenon which enables the construction of arches on 

cathedrals with the appropriate placement of a keystone.  Arches occur naturally in case 

of granular materials and the force between particles provides stability.  Such arches are 

one of the major problems with regards to material handling applications e.g. silos and 

hoppers [13].  Choking is observed while emptying of silos due to the formation of 

arches.  Conversely for the proppants a stable arch has been found to be essential for 

preventing flowback and maintaining a stable pack [14, 15].  Also the linear relation 
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between the filling height and draining time in case of an hourglass filled with fine sand 

is due to interparticle friction.    

The unique aspects of granular materials can be described within the context of 

nonlinearity, dilatancy and compressibility.  The overall response of granular materials is 

characterized by particle movement and particle deformation.  Particle movement is an 

irrecoverable phenomenon.  The load is transferred in granular materials via contact 

which obeys the Hertz’s law of contact and describes a nonlinear relationship between 

load and particle deformation due to a continuous change in the contact patch area [16].  

The combination of these two phenomenon results in a granular bed exhibiting nonlinear 

response to loading.  A granule bed as it is compressed tends to show a stiffening 

response.  The dilatancy principle, which was developed by Osborne Reynolds in 1885 

is an important phenomenon observed in granular materials.  Accordingly, on the 

application of compressive loads granular materials expand.  This is in particular 

observed with strongly compacted materials while in the case of loose materials a 

compressive load causes shrinkage in volume [11].   Another important factor with 

regards to granular materials is segregation.  The Brazil nut effect is the most commonly 

mentioned phenomenon.  On being excited the particles are arranged in a way such that 

the largest particles are transported to the top of the heap while the smallest particles 

settle to the bottom.  The arrangement is such which reduces the potential energy of a 

heterogeneous pile.  The segregation occurs due to vibrations or due to shearing which is 

experimentally simulated in a horizontally rotating drum half filled with granular 

materials.   

A proper understanding of granular material behavior is important due to the 

wide range of applications.  Powder processing is important for pharmaceutical 

companies.  Large manipulation of sand, gravel, cement etc is necessary for construction.  

Agriculture and food processing requires transport and processing of bulk commodities 

like grains, flour.  Also land tilling involves manipulation of granular materials.  The 

design of the equipments employed for material handling in the above mentioned 

applications is dependent on the flow and stress equilibrium properties of granular media 



 5 

[9, 11, 13].  Granular materials also provide vibration isolation or shock absorption [12].  

This apart geological processes like avalanches, landslides and even plate tectonics can 

be considered as effects of granular materials. The interaction of granular media in silos 

or in confined places is fraught with the dangers of explosions due to electrostatics 

wherein charge is generated due to particle impact causing sparks [9].   

 

1.3 Computational Techniques to Model Granular Materials 

 

Computational techniques employed to analyze granular materials can be 

categorized into two broad categories one is continuum approach and the other is 

discrete approach.  Phenomenological continuum models utilize finite element modeling, 

the constitutive material descriptions is obtained from testing.  The discrete approach is 

particularly useful as it allows each particle to be modeled individually.  The interaction 

of particles can then enable the observation of the nonlinear stress-strain response, 

failure envelopes, and transition from brittle to ductile behavior of the granular pack it 

can also capture local particle failure and shear bands [17].  The most commonly 

employed discrete technique is the discrete element method (DEM).  The finite discrete 

approach combines the continuum mechanics approach with the discrete element 

formulation.  In this approach like the discrete approach each particle is modeled 

individually but unlike the DEM approach particle deformation is captured by meshing it 

with finite elements [18].   

 

1.3.1  Continuum Approach 

 

In this approach a granular pack is considered as a porous solid and studied as a 

continuum.  This technique is employed in soil mechanics and geomechanics which deal 

with the problem of soil compression, shear and stability coupled with fluid flow.  

Coupled differential equations are employed which simulate the solid fluid motion.  

These equations are then solved numerically in a finite element code which can be used 

to study problems of soil mechanics [19].  This model is much more economical to solve 
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compared to the discrete model which involves solution of a number of complex contact 

interaction problems.  The governing differential equations can be derived using two 

approaches, first is by considering mixture theory and second is a physical approach.  

The physical/phenomenological approach considers all the interactions between the solid 

and liquid phase.  In case of the physical approach any nonlinearity is specified at the 

skeleton.  Here skeleton refers to the solid structure formed due to interacting granules.  

In case of porous media theory which covers the above mentioned approaches, 

interaction is considered between this solid skeleton and the fluid present in the 

porosities.  The effective stress is considered where the effective compressive stress is 

the external stress minus the pore fluid pressure.   

To specify the nonlinearity requires number of tests on the dry skeleton i.e. no 

pore fluid.  Some of these include confined compression, box shear [20] and triaxial tests 

[20, 21].  The confined compression essentially provides us with a compressive response 

while the triaxial tests provide us with a combined compression and shear response.  The 

data from these tests needs to be analyzed to obtain the coefficients defining the 

plasticity in case of soils or any other granular material [22].  A number of plasticity 

theories are available for soil mechanics e.g. cam-clay, Drucker-Prager cap plasticity [19, 

23].  Such an approach has been employed to model a proppant layer and fracture was 

modeled using only 800 elements.  The model also included nonlinear mechanical 

properties of the proppant layer which were determined by carrying out triaxial tests.  

Also by considering a strain to failure criteria flowback was also simulated [24]. 

In case of the theory of porous media certain phenomenon like shear bands are 

highly dependent on the mesh density.  To overcome this problem the micropolar 

Cosserat theory is employed which considers the angular rotations of the particles and 

also includes the particle orientation influence through the use of fabric tensor [25].   

Reproduction of complex behavior with continuum methods requires complex 

constitutive models containing many parameters and variables [17].  Also the local 

damage like shear band or particle fragmentation which can be observed through 

discrete formulation is difficult to capture through a continuum model which uses a 
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finite element mesh. One more issue with the use of this model is its applicability to 

narrow regions.  Generally continuum approach is valid when the grain dimensions are 

much smaller compared to volume of interest.  In case of the proppant problem for a 

stable pack the thickness of the granular pile is limited to ~ 5-6 particles [14].  Thus the 

applicability of continuum approach is suspect in this case. 

 

1.3.2  Discrete Approach 

 

Broadly the discrete approach can be divided into two approaches, the soft sphere 

and the hard sphere approach.  The approach known as the hard-sphere approximation 

forms the basis of the collisional or the event-driven (ED) models.  It is also the principle 

behind methods like the Monte Carlo and steepest descent [11].  In case of hard spheres 

(hard implies no particle deformation and interpenetration) the loss of linear momentum 

is characterized only on the bases of coefficient of elastic restitution, when rotations are 

neglected.  In these models restitution of elastic energy and friction are completely 

decoupled.  Dry friction is modeled using Coulomb’s friction laws.  Monte Carlo method 

has been employed extensively to model particle segregation.  A particle packing is 

obtained by considering the minimization of the potential energy of the packing [26, 27]. 

In case of the soft-sphere approximation friction and restitution come into picture 

when spheres penetrate each other.  The magnitude of contact forces is dependent on the 

depth of penetration.  Algorithms like molecular dynamics (MD) or distinct element 

methods (DEM) are covered under soft spheres.  In these models the important 

parameters are, duration of contact and particle interpenetration.  The basic principle is 

to solve the equations of change in linear and angular momentum in regular increments.  

DEM was originally developed by Cundall for rock mechanics problems and later 

employed for granular materials by Cundall and Strack [17].  The algorithm of DEM is 

based on conditionally stable explicit time marching scheme and does not require the 

inversion of the stiffness matrix.  The effectiveness of DEM is with its capability to 

model contact interaction between large numbers of particles [28]. In the classical DEM 
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the particles are rigid spheres.  The normal contact forces and tangential slip conditions 

are modeled using a combination of springs and dashpots [11, 25].  The classical DEM 

models are unable to model particle rolling and hence cannot model the shear strength of 

granular soil.  Also spherical particles cannot take into account the effect of angularity of 

soil particles. Several methods have been proposed to model particle angularity [29].  

The contact forces between particles are modeled using springs and dashpots and hence 

to model complicated particle material properties is difficult.  DEM is employed to 

model quasi-static deformation of soils/ granular materials, e.g. triaxial tests, confined 

compression and box shear tests [30-32].  It is also employed to study aspects like 

particle packing, and dynamic problems like flow of granular media through hoppers or 

conveyer systems [33-36].       

 

1.3.3  Combined FEM/DEM Approach 

 

In a number of cases, in particular if the granules are made of highly deformable 

material having a complex nonlinear relationship the overall response of the particle bed 

will significantly differ if the particles are modeled as rigid or linear elastic as is the case 

with the previously discussed ED and DEM approach.  Similarly particle angularity can 

also give significantly different results compared to simulations if particles are modeled 

as spheres.  As stated previously it is difficult to model such aspects in case of DEM.  

Munjiza proposed the combined FEM/DEM technique wherein the particles are modeled 

as a continuum while the contact detections are carried out based on the DEM code [18].  

Because the particles are modeled as a continuum it is possible to introduce large 

deformation, and fracture in the particles.  This method has been applied extensively to 

model powder compaction [37-39].  The dynamic explicit finite element codes like 

ABAQUS and LS-Dyna have been employed to model multiple particle interactions.  

These simulations employ the general contact capability which greatly simplifies the 

definition of contact surfaces.  Zavaliangos modeled powder compaction using 

ABAQUS [40]. The tensile stresses developed in particles which can result into their 
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fracture were observed from the simulations.  The influence of co-ordination number i.e. 

number of surrounding particles for a given particle on its tensile stress distribution is 

observed [41].  Furthermore the particles were also subjected to triaxial loading 

conditions and simulation results were used to develop a cap-plasticity model for the 

particles [42].  Zhang modeled particle interaction with a mixture of hard and 40% soft 

particles [43].  Choi and Gethin modeled powder compaction considering polydispersity 

and different particle shapes.  They also considered the effect of shear load from the 

platen on the response of the pack and the influence of platen surface roughness [44].  

Kabir et el modeled particle flow in a shear cell using explicit FEM and compared the 

results with DEM code [45, 46].  The drawback with the combined FEM/DEM approach 

is the requirement of significant computational resources which has limited the 

application to mostly 2D problems, though 3D problems have also been considered [47, 

48]. 

 

1.4  Hydraulic Fracturing, Proppants, Materials and Test Procedures 

 

Hydraulic fracturing is employed to enhance the productivity of an oil/gas well 

by creating fractures in the rock which create highly conductive fluid flow paths and 

increase the pressure gradient between the well bore and the porous rock. Hydraulic 

fracturing is a part of well stimulation process and the fractures are created when highly 

pressurized fluid is pumped in a well at sufficiently high rates. These fractures provide 

flow paths for oil and orient radially away from the well bores.  When the pressure from 

the fracturing fluids is reduced to begin oil/gas production the fractures tend to close 

under the influence of rock pressures known as closure stresses.  Proppants are mixed 

with the fracturing fluid and are delivered to these fractures to ensure that the flow paths 

remain open while resisting the rock pressure.  Proppants settle in the fractures forming a 

granular pack and prop them open against the closure stresses.  The porosity within the 

packed particles ensures sufficient permeability to enable continued/enhanced oil/gas 

production [1, 2].  A schematic of proppant supporting a fracture is shown in Fig 1.1.  In 
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a hydraulic fracture proppants can be packed either as a single layer (Fig 1.1, right) 

which is termed as a partial monolayer or a full granular pack (Fig 1.1, left) [3, 4]. 

 

 

 
Fig. 1.1. Spherical proppants supporting an open hydraulically induced fracture [1] 

 

 

Hydraulic fracturing employing proppants was introduced in late 1940’s.  The 

first ceramic proppants were sintered bauxite introduced in 1976 [1].  From strength 

perspective proppants are classified as low strength, intermediate strength and high 

strength.  Low strength materials typically include natural quartz sand and can be used at 

closure stress lower than 5000 psi.  Intermediate strength proppant materials include 

alumina silicate (ceramic) proppants which can be applied at pressures of 10000 psi. 

High strength ceramic proppants typically include sintered bauxite and zirconia silicate 

proppant; these are employed up to pressures ranging from 15000-20000 psi.  Materials 

like sand and alumina silicate proppants have specific gravity of 2.6 and are classified as 

light weight.  Sintered bauxite proppants are high density proppants with a specific 

gravity of 3.6 [1].  Beyond its range of applicability ceramic or sand proppants fracture 

into multiple pieces and that results in loss of load bearing capacity as well as reduction 

in the available pore space.  Polymer coating is applied on the proppants to reduce the 

Proppant 
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stress concentration at particle contacts.  Resin coated sand can withstand up to 10000 

psi closure stresses, resin coated sintered bauxite proppants can withstand pressures up 

to 30000 psi [1].  Hollow ceramic proppants with a specific gravity of 1.75 or proppants 

utilizing polymer or biomaterials like walnut shells or pistachio shells with an even 

lower density of 1.25 are termed as ultra light weight proppants [3]. 

Ultra light weight particles like resin coated ground walnut shell, pistachio shells 

or tailored polymers are generally employed with a partial monolayer [3, 4]. When a full 

granular pack is simulated with only light weight particles they tend to deform 

significantly and result into a loss of pack porosity, hence a full proppant pack generally 

employs hard particles like sand or ceramic.  The light weight softer particles are mixed 

with the hard particles in the full pack with an intention of enhancing the pack stability 

[49-51].  The harder particles are generally smaller than the soft particles e.g. the 

ceramic or sand particles generally fall within a 20/40 mesh size (0.4-0.8 mm) while the 

walnut shell particles in Fig. 1.2 have a size within the 16/30 mesh size (0.6-1.2 mm) [5]. 

Furthermore the softer proppants also have different shapes compared to the almost 

spherical ceramic particles, e.g. needle like shape of aluminium compared to a more 

rounded walnut particle. Commercial products also include chopped fibers or 

thermoplastic sheets as the softer proppants [51].  

During oil/gas production a pack of proppants is subjected to two major forces 

one is the compression coming from the rock faces this is due to the depth at which the 

fracture occurs and second is the transverse shear force on the pack due to pressure 

gradient in the fracture and the shear drag force exerted by the flowing fluid.  The 

compressive forces tend to crush the proppants reducing the porosity available for fluid 

flow.  The transverse forces tend to dislodge the proppants from the pack, these free 

proppants flow with the fluid to the surface and are termed as the back produced 

proppants.  Proppant back production presents a safety hazard as it may result into 

erosion of well and surface facilities.  Also remaining proppants in a wellbore can shut 

off production.  Costly and manpower intensive surface handling procedure is necessary 

to handle proppant flowback [52].    
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Fig. 1.2. Photograph of mixture of large soft particles and small hard particles [10]  

 

 

The characterization of proppants involves multiple tests including single particle 

compression, crush analysis tests, sieve analysis, sphericity and roundness 

characterization particle settlement and conductivity tests [3, 4, 6].  The crush analysis 

test measures the percentage of proppant fracturing under confined compression loading 

condition.  This is an indicator of the load bearing capacity of a proppant pack.  For a 

given load if more than 10% by weight proppant particles get fractured then the proppant 

is rejected.  According to the current standards the crush test is performed dry and at 

room temperature.  This test has been employed to study the crush resistance of 

polymer-sand mixtures. It has been reported that addition of softer particles improves 

crush resistance while the pack stiffness reduces [53].  Effect of stress cycling on crush 

resistance of a pack has also been studied and improvement has been reported with the 

mixing of polymer particles with sand [54].  Currently the crush test procedure does not 

account for pack porosity, though modification to the crush cell so that fluid flow 

through the proppant pack can be measured to estimate permeability have been carried 

out [55].  Similarly efforts have also been ongoing to modify the crush tests to account 

for temperature and moisture effects on crush resistance of different proppants [56].  

The long term conductivity tests are conducted with an aim of studying fluid 

flow through a proppant pack under compression [6, 57].  These tests are carried out in a 
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specially designed flow cell. The proppant is placed between two rock platens in the cell 

and pressure is applied gradually, temperature can also be controlled.  Often the pack is 

allowed to stabilize at a particular pressure for 48 hours. The rate of fluid flow though 

the pack as a function of time and pressure, pressure gradient along the flow direction 

and distance between the two platens are the primary parameters which are measured. 

The influence of addition of softer particles to a proppant pack on pack permeability has 

been studied extensively and a reduction in the flow rate has been observed [49-52].  

Research efforts are also on to study the influence of chemical reactions between the 

fracturing fluid and the proppant which is known as proppant diagenesis on pack 

permeability [58].  A modification to the conductivity test wherein an arrangement is 

made to collect loose proppant and measure their flow rate is used to study proppant 

flowback. Several researches have focused on understanding the factors affecting 

proppant flowback and finding ways to reduce it [14, 15, 49-52].  Apart from the DEM 

(discrete element method) simulations by Asgian [14] the rest focus on experimental 

approach.  Some factors which seem to aid reduce proppant back production are softer 

formation i.e. softer rock, more angular proppant, resin coated proppants wherein the 

resin cures once it settles in the fracture and binds particles together and addition of 

softer particles.   

 

1.5  Present Research Focus 

 

The computational modeling of granular packs is a very complex and a 

challenging field where considerable breakthroughs are needed to successfully predict 

response of a pack under dynamic conditions. From an overview of the literature on the 

discrete simulation of particles, most are concerned with quasi-static powder/granule 

compaction and do not consider polydispersity. Furthermore particles are considered to 

be elastic-plastic while the platen is taken as rigid. However in experiments there are 

many instances where the platen deformation mainly due to particle indentations plays a 

significant role in determining the effectiveness of a given granular material application.   
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In our study, we take on select, unique aspects to understand the best practices in 

designing the proppant mixture consistent with its service conditions. The computational 

models are developed in coordination with small scale experiments such as single 

particle compression and crush tests to assists the characterization of pack response.  

This approach will facilitate the screening of proppant samples and reduce the current 

dependency on long term conductivity tests enabling.  

 This study is based on two different compositions of hard and soft particles, 

namely Type A and Type B.  Type-A is a mixture of ceramic and walnut shell particles 

while Type-B is a mixture of ceramic and pure aluminum needles. The ceramic particles 

are the light weight alumina silicate which is commercially known as Econoprop.  In the 

following Chapters 2 and 3, the rationale and the details of the analytical models will be 

presented. Specifically Chapter 2 is dedicated to uniform size particles of Type-A 

mixture to understand the confined compression and flowback load conditions. The 

platens are assigned with nonlinear rock material properties to consider the effect of 

particle indentation on pack stability and conductivity.  Chapter 3 introduces particle size 

and shape as variables in both Type A and Type B compositions.  The compressive 

response is described by the variation of void space in the pack as a function of applied 

load.  The influence of particle material, shape and interparticle friction on compression 

response is demonstrated.  Models are also developed to document the effect of particle 

fragmentation. The experiments of this study are fully described in Chapter 4.  The 

single particle compression tests on walnut, pistachio and ceramic particles as well as the 

crush tests on Type-A and Type-B mixtures are discussed in detail. Finally in Chapter 5, 

a comparison of computational models and crush tests are examined. 
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2  ANALYSIS OF UNIFORMLY SIZED PARTICLES 
 

 
This section introduces the loading conditions and modeling approach employed 

to simulate proppant mixtures.  Models with uniformly sized particles are discussed in 

this section.  Models are analyzed using the combined finite/discrete element technique 

employing the commercial software ABAQUS v 6.8.3 explicit code.  To begin with a 

short discussion on explicit time integration is provided.  For the modeling approach 

three different compositions of walnut-ceramic mixtures have been modeled in confined 

compression.  For the flowback models effect of rock material property, addition of 

softer particles and interparticle friction on flowback resistance is studied.  The models 

discussed in this section are the first set of models developed and provide a base for the 

development of subsequent polydisperse models.   

 

2.1  Explicit Dynamic Analysis Scheme 

 

A detailed discussion on explicit dynamic analysis as employed in FEM is 

available in the ABAQUS 6.8.3 user’s manual section 6.3.3 [23].  Application of this 

approach in the context of finite discrete element method is provided in, Munjiza [18].  

Here a summary of the explicit dynamic scheme is provided.   

Explicit dynamic analysis is computationally efficient for the modeling of highly 

dynamic events like impact, e.g. a car crash simulation.  It is also employed with quasi-

static analysis where complex contact conditions and highly nonlinear deformations 

persist.  Due to these reasons the ABAQUS explicit code is employed in the current 

simulations rather than the implicit code.  The explicit code uses the central difference 

time integration rule; this is a conditionally stable scheme and limits the time increment.  

A large number of small time increments are performed in this scheme.  Compared to 

the implicit analysis the number of increments is significantly high.  The advantage of 

this scheme comes from the fact that it does not require solution of a set of simultaneous 

equations.  In the dynamic equilibrium equations the mass matrix is diagonalized, 
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termed as the lumped mass matrix.  Thus rather than considering the mass as distributed 

over the element, it is assumed to be concentrated at the nodes of the FEM mesh.  With 

the use of a diagonal matrix, the inversion becomes simple to calculate.  The explicit 

procedure also does not require any iterations to achieve convergence and no tangent 

stiffness matrix is needed.  The accuracy of the scheme is controlled by the size of the 

time step.  For the central difference time integration applied in the explicit scheme the 

nodal acceleration (a) at time t, is computed by solving the dynamic equilibrium 

equation.  The velocity (v) at time (t + Δt/2) is computed based on acceleration at time t.  

Further the nodal displacements (u) at time (t + Δt) are computed based on the velocity 

at (t + Δt/2).  In equation form this can be written as: 
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Note that the first equation is the dynamic equilibrium equation where M is the 

diagonalized mass matrix, Pt is externally applied load vector at time t and It is the 

internal force vector calculated from contact interactions and element deformation.  The 

second equation calculates velocity at the next half time increment from acceleration at 

the current time.  The third equation computes displacement at the next time increment 

based on the previously calculated velocity.  Also note that this procedure is repeated for 

every degree of freedom present in the model. 

As mentioned previously the central difference time integration scheme is 

conditionally stable.  The stable time increment is limited by the highest frequency 

(ωmax) of the system, equation 4.  An approximate stable time increment is given by the 

least time taken by a dilatational wave to traverse across an element in the mesh, 

equation 5.  Here Lmin is the smallest element dimension in the mesh and cd is the 

dilatational wave speed.  cd is defined in terms of the elastic modulus (E) and density (ρ) 
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of the material for a linear elastic isotropic material with zero Poisson’s ratio, equation 6.  

The dilatational wave speed at current time increment is computed in ABAQUS explicit 

by calculating hypoelastic material moduli (effective Lame’s constants) from the 

material constitutive response [23].      
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In certain cases a few small elements in the mesh can significantly reduce the stable time 

increments.  In such situations either mass scaling is employed which increases the 

density and reduces the value of the dilatational wave speed or the time period of the 

event can is reduced.  This approach is employed in case of quasi-static analysis.  Mass 

scaling remains the only option in cases where the material response is rate dependent 

and reducing the event duration could result in erroneous results.  At the same time mass 

scaling can result into additional inertial effects, hence the kinetic energy needs to be 

monitored during the analysis.  The kinetic energy with mass scaling should be less than 

10% of the internal energy. 

 

2.2  Confined Compression Models 

 

Confined compression load case simulates proppants deep within a granular pack 

in a hydraulic fracture away from a well bore.  In this condition proppant pack is being 

compressed between the two rock faces, at the same time its transverse motion i.e. 

perpendicular to compression direction is resisted by surrounding particles.  A proppant 

crush test [7, 8] also simulates the same condition, here a given mass of proppant is 
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compressed within a cylindrical crush cell and the transverse motion of the particles is 

resisted by the walls of the cylinder.  The confined compression/ crush test is one of the 

most basic tests conducted on proppants to study the resistance of a proppant pack to 

compressive loading. 

Herein we present models simulating confined compression with a combined 

finite/discrete element method employing ABAQUS 6.8.3 explicit code.   Each particle 

is modeled individually and is meshed with finite elements.  This approach enables us to 

introduce large deformation, and fracture in the particles.  General contact capability is 

utilized to simulate inter-particle interaction.  General contact is used as it significantly 

reduces the effort in defining contact regions.  A detailed discussion on general contact 

and its method of application in the ABAQUS input file is provided in APPENDIX-A. 

 

  

 
 

Fig. 2.1.  Schematic of confined compression model and boundary conditions 

 

 

This model consists of 60 particles placed between the two horizontal rock 

platens that represent the fracture width (fw) as shown in Fig. 2.1.  The initial fracture 

width prior to the load application is 4.5 mm.  Two additional rigid platens are 



 19 

introduced as side enclosures.  The distance between these two rigid platens represents 

the fracture length (fl) in the present model this is limited to 13 mm.  The lower rock 

platen (B) is constrained against any motion and the upper rock platen (A) is constrained 

to undergo motion in Y-direction.  The rock platen (A) consists of two layers where rigid 

elements are assigned to the top layer.  The rock pressure is represented with prescribed 

platen (A) displacement. Maximum compressive displacement of 0.75 mm is introduced 

incrementally at the reference node of the rigid element layer of platen (A).  The loading 

is quasi-static i.e. negligible inertial effects.  Mass scaling is employed to speed up the 

calculations and inertia effects are monitored.  The initial random packing of particles 

and the 3D mesh is generated with the pre-processor Hypermesh9.0.  Three dimensional 

continuum elements, C3D8R, with eight nodes and reduced integration are used to 

model the particles and the rock platens.  Each particle is modeled as a cylinder with a 

diameter of 1m.  The model is simulated under plane strain condition by enforcing 

constraints along the cylinder axis preventing deformation of the cylinders along the 

axial (Z) direction.  The number of elements in the model is 35476 and the number of 

nodes is 58782.   

Mixed pack of soft (walnut) and hard (ceramic) particles is considered with 15%, 

22% and 30% walnut particles by weight.  The schematic in Fig. 2.1 represents a 

mixture with 30% walnut particles by weight.  The specific gravity of ceramic and 

walnut is 3.6 and 1.25 respectively.  Walnut is described with an elastic-plastic 

constitutive behavior obtained from single particle compression tests [59, 60].  The 

elastic modulus of walnut is 3.7 GPa.  From previously conducted tests walnut begins to 

undergo non-recoverable deformation at low compressive loads.  In the current models 

walnuts are assumed to begin to undergo plastic deformation at low stress of 8 MPa, it 

continues to harden till it reaches a stress of 44 MPa.  Ceramic is represented as a quasi-

brittle material where it remains linear-elastic until the tensile stresses reach its bending 

strength.  At this stage micro-cracking is assumed to occur and at subsequent increments, 

the modulus is represented as E = (1-d)E0.  E0 is the undamaged elastic modulus and d is 

the scalar degradation variable which is defined as a part of material strain softening data 
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in the concrete damage plasticity model in ABAQUS [23, 61], a further discussion on 

this model is provided in APPENDIX-B.  Note that in the present model the ceramic 

material property is defined using the strain softening material data for concrete which is 

given in the ABAQUS example problem manual 6.8.3.  Based on this the bending 

strength is defined as 29 MPa.  The strain softening is defined based on the residual 

stress carrying capacity after partial cracking and the crack opening in terms of 

displacement.  Accordingly the material loses its tensile load bearing capacity when the 

crack surfaces separate by a distance of 0.045 mm.  The rock platens are assigned linear 

elastic material properties of shale rock.  The ratio of elastic moduli of ceramic to walnut 

and shale rock to walnut is 80:1 and 4:1 respectively.  Note that the analysis is large 

displacement large strain analysis which is activated by a keyword NLGEOM in 

ABAQUS, further discussion is provided in APPENDIX D.  A discussion on metal 

plasticity is also provided in APPENDIX E. 

The primary parameters of interest are stresses developed in the particles and the 

corresponding void spaces between them.  In particular we are interested in observing 

the stress chains in the particles, the stress chains represent the path through which the 

load is transferred in the pack.  The three models with 15%, 22% and 30% walnut 

particles by weight are compared by their load vs displacement response, the void 

fraction and total mixture weight.  

 

2.2.1  Results and Discussion 

 

The load vs displacement response for the three compositions of the walnut-

ceramic mixture models is presented in Fig. 2.2.  As mentioned previously the loading is 

displacement controlled and hence the load is measured as a reaction force at the 

reference node of the rigid element layer of platen (A).  It is observed that the response 

stiffens with the increase in percent of hard particles, which is expected.  Furthermore, 

the load vs displacement curve is observed to be nonlinear.  This nonlinearity is due to 

the nonlinear inter-particle interaction and the nonlinear material response of the walnut 
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as well as the ceramic particles.  The curve has two distinct phases, the first one is 

observed in the lower load range where for small values of force significant 

displacement is observed, the response later stiffens in the second phase.  The initial 

response is primarily due to particles undergoing rearrangement with little deformation.  

This stage of response could be significantly affected by the initial particle placement.  

For the current simulation the three mixtures have the same initial particle configuration 

and hence their response in the initial low load range closely matches.  The second stage 

is of consolidation where the particles begin to carry significant loads and begin to 

undergo inelastic deformation.  This stage of response is more dependent on the mixture 

composition and it is observed that a stiffer response is observed for the 15% walnut 

mixture compared to the 22% with the 30% walnut mixture being the least stiff. 

Table 2.1 represents the force, void fraction and total particle mass (of the 60 

particles) for the three walnut-ceramic mixtures at 0.75 mm platen displacement. Void 

fraction is computed using an image processing tool (ImageJ [62]) by measuring the 

number of pixels representing the deformed particles and comparing it with the pixels 

representing the entire domain (particles + voids) enclosed between all the platens.  As 

stated previously force here is the reaction force at the reference node of the rigid 

element layer of platen (A).  As the fraction of walnut particles increases, the mass of the 

pack mix decreases.  For the same platen displacement the void fraction remains almost 

constant. Note that the reaction forces are reduced significantly as the weight percent of 

ceramic particles decreases (i.e. increasing walnut percent weight).  For our problem we 

are primarily concerned with the load carrying capacity.  30% model looses ~ 50% load 

carrying capacity compared to 15%.  Corresponding gain in weight reduction is much 

lesser.  The void fraction is primarily dependent on platen displacement.  The 30% 

model has approximately the same void fraction as 15% model but at half the load. 
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Fig. 2.2. The load vs displacement response of the three walnut-ceramic mixture models 

 

Table. 2.1. Force, Void Fraction and total particle mass for the three walnut-ceramic 

mixtures at platen displacement of 0.75 mm 

 

Model Type Force (N) Void Fraction 
Total Particle 

Mass (Kg) 

I-15% 196 0.0726 2.5e-5 

II-22% 161 0.0710 2.3e-5 

III-30% 103 0.0875 2.1e-5 

 

 

Fig. 2.3 and 2.4 show the von Mises stress contours for the 22% and 30% by 

weight walnut models.  The particles which show higher stress are the ceramic particles.  

The force applied from the top platen is transferred to the bottom platen via the ceramic 

particles.  The path of this force transfer is termed as force/stress chain.  Comparing Fig. 

2.3 and 2.4 we can observe how the stress chains deviate based on composition.  This 
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behavior of granular materials is at variance to that observed in homogeneous solids 

which show uniform stress on undergoing uniaxial compression.  Correspondingly 

comparing the equivalent plastic strain contours for the 22% and 30% walnut mixtures, 

Fig. 2.5 and 2.6 it is observed that the walnut particles undergo a much higher 

deformation compared to the ceramic particles.  This also explains the reduction in the 

stiffness of the load vs displacement response for the models with higher percent of 

softer particles. 

 

 

 
 

Fig. 2.3. Von Mises stress contour for 22% walnut model at 0.75 mm platen 

displacement 

 

 

 
 

Fig. 2.4. Von Mises stress contour for 30% walnut model at 0.75 mm platen 

displacement 
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Fig. 2.5. Equivalent plastic strain (PEEQ) contour for 22% walnut model at 0.75 mm 

platen displacement 

 

 

 
 

Fig. 2.6. Equivalent plastic strain (PEEQ) contour for 30% walnut model at 0.75 mm 

platen displacement 

 

 

2.3  Flowback Models 

 

As is discussed previously in section 1.1 flowback is the outflow of proppants 

from the hydraulic fracture along with the flow of oil/gas.  This load case is modeled in 

the vicinity of the well bore.  The proppant flowback is also termed as proppant back 

production and is detrimental to the safety and life of the well and production 

equipments.  There are two primary loads acting on the proppants in this case, one is the 
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compressive load coming from the rock surfaces and second is a transverse force i.e. 

perpendicular to the compressive force which acts on the particles due to fluid flow and 

pressure gradient (also known as drawdown) along the length of the fracture.  The 

transverse forces (drag forces) tend to push the proppants in the flow direction dislodges 

them and impacts the pack stability.   

A detailed discussion on determining the drag forces is presented in Asgian et al 

[14].  To summarize, drag forces have two components, pressure and shear.  The 

pressure component is due to the pressure gradient existing along the fracture length.  

This component is given by the equation FP = (4/3)πr
3(dP/dx).  Here FP is the pressure 

component of the drag force, r is the proppant radius and dP/dx is the pressure gradient 

in the fracture along the flow direction.  For the shear component, an analytic solution 

for laminar flow around isolated spherical particles is applied to the flow in the fracture, 

this gives the shear force as FS = 6πv∞µr.  Here v∞ is the average pore velocity and is 

calculated as Darcy velocity divided by the effective porosity, µ is the dynamic viscosity.  

Further this shear force is written in the form where v∞ is replaced with the pressure 

gradient, effective porosity of the medium φ and permeability, FS = (6π/φ)k(dP/dx)r.   In 

the next step the lower bound and the upper bound for the shear forces are determined by 

comparing it to the pressure drag and then considering the overall force balance on the 

fluid within the pore space.  From this analysis the lower value of the shear component is 

zero while the upper bound is always lesser than the pressure component.  Finally as a 

conservative estimate the overall drag force on the proppant particles is given as F(P+S) = 

(8/3)πr
3(dP/dx).  Note that the upper bound for the shear force is obtained by assuming 

uniform size particles and effective porosity φ of the medium to be less than 50%. 

The current simulation models (Fig. 2.7) accommodate 240 particles, each 1mm 

in diameter, in the fracture width (fw in Fig. 2.1) of 4.5 mm.  The fracture length (fl in 

Fig. 2.1) is 52 mm and accommodates approximately 50 particles.  The load is applied 

over three steps i) to avoid spurious proppant production from the unconstrained end 

which represents well bore opening during the compression process the compressive 

load is applied in the same manner as the confined compression load case, ii) after the 
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pack is under compression one of the rigid side platens is removed, the unconstrained 

end then represents the well bore opening and a few particles at this end then become 

free and start coming out of the fracture finally iii) the transverse load representing fluid 

drag force is applied on the proppants.  The three steps in sequence are represented in 

Fig. 2.8 (a) (b) and (c). The loading is incremental and quasi-static, and the confined 

compression stage is force controlled. The concentrated force is applied at the reference 

node of the rigid top layer of the rock platen.  For the present simulation the confined 

compression load is limited to 250 N, equivalent to 48 MPa pressure.  The transverse 

drag force is applied as uniformly distributed load over the particles; it is modeled as a 

concentrated force on every node of the particles.  In this model the force is equivalent to 

a pressure gradient of 1.686 MPa/m (75 psi/ft).  The flowback resistance of a proppant 

pack is studied by observing the number and distance from the unconstrained end over 

which particles fall out of the pack and the formation of a stable arch.  Two different 

packs are considered; first one has 15% walnut and 85% ceramic particles and the 

second one consists of 100% ceramic particles. Two models with coefficient of friction 

µ = 0 and 0.3 are considered to study the influence of inter-particle friction.   The effect 

of closure stress (compressive load) on flowback is considered by comparing particle 

response at 50 MPa and 100 MPa pressure for both packs without inter-particle friction. 

The influence of rock is addressed by treating shale rock as linear elastic as well as 

elastic-plastic material. 

 

 

 

 
 

Fig. 2.7. Flowback model with 15% walnut particles (blue) by weight 
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(a) 

 

 
 

(b) 

 

 
 

(c) 

 

Fig. 2.8. (a) First step of flowback loading, confined compression, (b) removal of side 

platen and (c) application of transverse load resulting in unstable particles moving out of 

the pack 

 

 
 
 



 28 

2.3.1  Results and Discussion 

 

The results show that friction, nonlinear material behavior, and high closure 

stresses significantly resist particle flowback.  The transverse nodal velocity contours for 

15% walnut mixture subjected to 48 MPa closure stress with µ = 0.3 for elastic (hard) 

and elastic-plastic (soft) rock, are presented in Fig. 2.9a and 2.9b respectively. A stable 

arch which significantly limits proppant flowback is observed (highlighted) in case of a 

plastically deformed rock with ceramic particles embedded in it, Fig. 2.9b. The 

transverse motion of the particles is resisted by the inter-particle and particle-rock 

friction, particle interlocking and particle embedment. In case of elastic rocks, very little 

particle embedment takes place leading to a higher flowback.  A similar result is 

observed for the case with µ = 0, presented in Fig. 2.10a and 2.10b respectively for 

elastic and elastic-plastic rock.  Again comparing Fig. 2.9a with 2.10a (elastic rock) and 

Fig. 2.9b with 2.10b (elastic-plastic rock) the influence of coefficient of friction on 

flowback resistance is evident.  For the case with elastic rock, for µ = 0 condition the 

pack is observed to have collapsed completely while for µ = 0.3 even though we don’t 

clearly observe a stable arch the pack is relatively stable due to interparticle friction.  For 

the case with elastic-plastic rock it is observed that a stable arch is formed at a very short 

distance from the unconstrained end for µ = 0.3.  This is attributed to the combined 

action of particle interlocking, inter-particle friction and particle embedment in the 

deformable rock.  For the same case with µ = 0 we don’t clearly observe a stable arch 

and particles seem to be freely moving over a significantly longer distance from the 

unconstrained end.  Note that only particle interlocking and embedment occur for the 

frictionless condition.  
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(a) 

 
 
 

(b) 
 
 

Fig. 2.9. Transverse nodal velocities: 15% walnut model at 48 MPa pressure for µ = 0.3 

(a) linear elastic rock and (b) elastic-plastic rock 

 
 

Comparing Fig. 2.10b (48 MPa pressure) and Fig. 2.11 (96 MPa pressure) it can 

be concluded that a higher compressive load aids in preventing flowback and results in a 

stable arch, this is primarily due to deeper particle embedment and more particle 

interlocking.  On the other hand at high pressures the pack is highly compressed with 

low porosity and correspondingly results in a loss of fluid flow rate. 
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(a) 
 

 
 

(b) 
 

Fig. 2.10. Transverse nodal velocities: 15% walnut model at 48 MPa pressure for µ = 0, 

(a) linear elastic rock and (b) elastic-plastic rock 

 

 
 

Fig. 2.11. Transverse nodal velocities: 15% walnut model at 96 MPa pressure for µ = 0 

and elastic-plastic rock response   
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Fig. 2.12 shows the transverse nodal velocity contours for the 100% ceramic 

particle pack with elastic-plastic rock at 48 MPa closure stress, µ = 0.3.  The stable arch 

is highlighted in Fig. 2.12.  Comparing Fig. 2.9b and 2.12 it is observed that the distance 

from the unsupported end at which a stable arch is formed is shorter in case of the 

walnut-ceramic mixture.  This is due to larger deformation experienced in walnut 

particles that leads to greater particle interlocking.  It is also noted that the pore space is 

reduced for the 15% walnut mixture compared to the 100% ceramic particle pack which 

can result in a loss of flow rate.  A similar result is observed for the case with µ = 0 at an 

applied pressure of 96 MPa in Fig. 2.11 and 2.13.  We can observe a stable arch formed 

at a shorter distance from the unconstrained end for the 15% walnut-ceramic mixture 

compared to the 100% ceramic pack.  We also observe that the 15% walnut-ceramic 

mixture is compressed to a much higher extent resulting in significant loss of porosity 

compared to the 100% ceramic pack which shows much higher porosity. 

 

 

 

 
 

Fig. 2.12. Transverse nodal velocities: 100% ceramic pack at 48 MPa pressure for µ = 

0.3 with elastic-plastic rock  
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Fig. 2.13. Transverse nodal velocities: 100% ceramic pack at 96 MPa pressure for µ = 0 

and elastic-plastic rock  

 

These results are consistent with the observations reported in literature which 

state that i) Formation of a stable arch is necessary to obtain a stable pack [14], ii) 

Formation of a stable pack is easier with softer rock platens which permits deeper 

particle embedment [15] iii) Presence of softer deformable particles in the pack increases 

flowback resistance, but will result in loss of porosity and subsequent loss of fluid flow 

rate [49-51]. 
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3  ANALYSIS OF POLYDISPERSE PARTICLES 
 

 
This chapter introduces polydisperse particle models and results.  Two categories 

of particle mixtures are considered; Type-A mixture of ceramic and walnut, and Type-B 

mixture of ceramic and pure aluminum (Al).  Particles have non-uniform sizes and 

shapes. The combined finite/discrete element technique in the commercial software 

ABAQUS v 6.8.3 with explicit time integration is exercised.  The section begins by 

elaborating on the procedure to obtain a polydisperse particle pack.  This is followed by 

models of different particle mixtures subjected to confined compression load case.  

Influence of initial particle arrangement on load vs displacement is studied.  The change 

in pack porosity with pack composition, particle shape and inter-particle friction are also 

studied.  Two cases of constitutive ceramic behavior are studied. In the first case, 

ceramic particles are represented with concrete damage plasticity as discussed in section 

2. In the second case, they are assigned to follow the concrete brittle cracking model and 

particle fragmentation behavior is implemented through element deletion technique. 

 

3.1  Initial Particle Placement 

 
The first step to modeling a granular pack is to obtain an initial randomly placed 

particle model with size and shape distribution.  Further, prior to the application of 

compressive load on a granular pack, it needs to be ensured that the pack is stable.   

Before introducing the modeling approach employed, a brief literature survey of 

common techniques to generate the initial particle arrangement is presented. 

 

3.1.1  Literature Survey on Pack Configuration 

 

In practice DEM is used to extensively study the detailed microstructure of 

particle packing.  In this approach an initial random particle arrangement is prepared and 

then allowed to settle while the particles are subjected to excitations, this gives us a 

segregated initial packing arrangement.  Also techniques like computer tomography 
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(CT) and nuclear magnetic resonance (NMR) are used to visualize particle packing [25].  

The porous microstructure captured from micro-CT can be used to generate three 

dimensional mesh of the microstructure.  This method has been employed to model 

porous media like carbon foam [63].  One other approach involves using techniques like 

Monte-Carlo method to generate two or three dimensional particle segregation, this work 

on the principle of minimization of potential energy of the pack [64].  This apart ballistic 

deposition algorithms can be employed to generate an initial particle packing [65, 66].  

The combined FEM/DEM approach along with the ballistic deposition algorithms have 

been used to model particle segregation [67, 68].  In some cases the random number 

generation algorithm in software like MATLAB are utilized to generate an initial 

random loose packing with a pack density of less than 50%.  The particles are then 

modeled in either explicit FEM or DEM and then allowed to fall freely under gravity.  

This free fall results in generation of a packing arrangement which is close to that 

obtained with a ballistic deposition algorithm.  The randomization algorithm can also 

give us random distribution of hard and soft particles in a particle mixture.  During this 

simulation it needs to be ensured that particles don’t undergo significant plastic 

deformation [42, 43].  

 

3.1.2  Generating a Polydisperse Pack 

 

In our research, the random number generation function in MATLAB is invoked 

to generate an initial random particle distribution in a rectangular domain.  This function 

is also used to assign random distribution of hard and soft particles.   Polydispersity of 

particles is incorporated by assigning random numbers for particle radii.  These follow a 

Gaussian distribution and are related with the random numbers which indicate particle 

center.  By limiting the center distance between any two particle centers to be greater 

than the sum of their individual radii particle overlap is prevented.  The MATLAB script 

is attached in APPENDIX C.  The data for particle radii and center co-ordinates is 

incorporated as a macro (Python script) in ABAQUS CAE v 6.8.3 to generate a solid 
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model of polydisperse particle distribution.  Fig. 3.1 shows two such initial low density 

configurations of a mixture of hard and soft particles.  The large particle diameters range 

from ~ 0.8 – 1.2 mm, while the small particles range from 0.4 – 0.6 mm, in this 

particular case the soft particles constitute 15% of the total number of particles.  Note 

that the particle arrangement has a very loose packing and the void fraction is more than 

0.5.  This is not a stable pack and cannot be subjected to compressive loading directly.   

The finite element modeling of the loose configuration is carried out in the 

preprocessing software Altair Hypermesh V9 (Altair Engineering Inc, MI).   Particles 

are enclosed within a rectangular domain and are subjected to gravitational loading 

allowing particles to fall freely in ABAQUS explicit 6.8.3, Fig. 3.2a.  During this step 

particles are treated as linear elastic with a high value of elastic modulus to prevent 

deformation due to impact.  Three dimensional continuum elements, C3D8R, with eight 

nodes and reduced integration are used to model the particles and the rock platens.  The 

spherical particles are represented as cylinders for simplicity.  Plane strain conditions are 

enforced along the cylinder axis.  The largest particles are composed of 1200 elements 

while the smallest particles are described with 150 elements.  Fig. 3.2a shows a 

representative model with 150 particles.  The particle configuration at the end of free fall 

(Fig. 3.2b) is imported into a new analysis employing the *IMPORT keyword and the 

particles are then assigned appropriate linear or nonlinear material properties.  This 

approach removes the need to monitor the plastic strains developed during free fall 

which is required in [42, 43].  The imported configuration is then subjected to 

compressive loading, via the top rock platen.  For confined compression load case the 

boundary conditions are similar to those described in section 2.2.  For the above 

mentioned representative model with 150 particles the compressed pack is shown in Fig. 

3.2c.    
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(a)                                                            (b) 
 

Fig. 3.1. Models with 100 particles (a) and 150 particles (b) showing the initial low 

density particle configuration 

 

 

          
(a)       (b) 

 

Fig. 3.2. (a) Loose particle configuration with a rectangular domain (b) Particle 

configuration at the end of free fall (c) Imported particles in new analysis at the end of 

compressive loading  
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(c) 

 

Fig. 3.2. Continued 
 

 

3.2  Polydisperse Pack Response Studies 

 

Following the procedure described above, further computational models are 

developed to study the influence of mixture composition, soft particle type and inter-

particle friction on the compression response of a granular pack.  Only the confined 

compression load case is documented here.  The first class of models described here is 

simulated by introducing damage into the ceramic particles without allowing particle 

fragmentation 

 

3.2.1  Model Description  

 

The boundary conditions for confined compression case remain same as 

discussed in section 2.2.  For simplicity and reducing the computational cost 2D 

simulation is considered.  The load case is simulated by placing the pack between the 
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two rock platens and two side platens as shown, in Fig. 2.1 section 2.2.  The distance 

between the two rigid platens is limited to 26 mm.  Compressive force (max 150N) is 

applied at the reference node of the rigid element layer equivalent to a pressure of 57 

MPa.  The analysis is quasi-static and mass scaling is employed to speed up the 

calculations.  Inertia effects are monitored to ensure their effects on the results are 

negligible.  Prior to the application of compressive load the randomly arranged particles 

in the sparse packing are subjected to gravitational loading and allowed to undergo free 

fall.  At the end of free fall for each of the different mixtures considered depending on 

particle settlement the fracture width (fw - Fig. 2.1 section 2.2) varies between 4-6 mm.  

Three dimensional continuum elements, C3D8R, with eight nodes and reduced 

integration are used to model the particles and the rock platens.  The model consists of 

400 particles with 113,688 elements and 247,686 nodes.  Two different types of particle 

mixtures are studied, Type-A consists of oddly shaped but rounded walnut and spherical 

ceramic particles.  For simplicity the oddly shaped walnut shell particles are simulated as 

cylinders in 2D as are the ceramic particles.  The randomly distributed particles for 

Type-A mixture of 10% walnut by weight prior to free fall are observed in Fig. 3.3a.  

The configuration of the particles at the end of free fall is shown in Fig. 3.3b.  Type-B is 

a combination of prismatic 99% pure aluminum (Al) and spherical ceramic particles.  Fig. 

3.4 shows the Type-B mixture (25% pure Al by weight) at the end of free fall.  To assess 

the impact of softer material property on the pack response a harder alloy of Al is also 

considered, the response due to hard and soft Al particles are compared. The particle 

elastic material property, shape and size range are summarized in Table - 3.1.  Walnut 

and Al as softer particles are treated as elastic-plastic materials. Walnut data is obtained 

from single particle compression tests on walnut shell specimens [59, 60] this data is 

same as used for the uniform size particle models in section 2.2.  The yield strength of 

Al-pure and a harder Al-alloy is taken as 50 MPa, and 270 MPa respectively [69].  

Ceramic is represented as a quasi-brittle material and simulated with the concrete 

damage plasticity model described in [23, 61], discussed in APPENDIX B.  It remains 

linear-elastic until tensile stresses reach its bending strength (here 180 MPa). 
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(a) 

 

 
 

(b) 

 

Fig. 3.3. Type-A mixture, 10% walnut shell by weight: (a) Randomly generated 

polydisperse particles (b) particles at the end of free fall  

 

 

 
 

Fig. 3.4. Particle configuration after free fall for 25% pure Al, Type-B mixture 
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Table. 3.1. Material properties and particle description 

 

Material 

Elastic 

modulus 

(GPa) 

Poisson’s 

ratio 

Specific 

gravity 

Section 

Shape 

Particle size 

range (mm) 

Ceramic 259 0.25 3.6 Circle 0.35-0.55 

Walnut shell 3.7 0.3 1.25 Circle 0.8-1.2 

Pure Al 70 0.3 2.7 Prismatic (1-2) X (0.35-0.7) 

Al alloy 70 0.3 2.7 Prismatic (1-2) X (0.35-0.7) 

Shale Rock 12 0.22 2.5 - - 
 
 
 

 
 

Fig. 3.5. Particle configuration after free fall for 6% walnut shell, Type-A mixture 

 
 

 
 

Fig. 3.6. Particle configuration after free fall for 18% walnut shell, Type-A mixture 

 



 41 

 
 

Fig. 3.7. Particle configuration after free fall for 25% walnut shell, Type-A mixture 

 

 

Table. 3.2. Models A-B in simulations 

 

Model 

Type 
Mixture 

Loading 

condition 

% Soft 

particles added  

A Walnut, Ceramic Confined 
compression 6, 10, 18, 25 

B Al, Ceramic Confined 
compression 25 

 

 

The pack response is characterized in terms of pressure vs displacement response 

and the change in pack porosity with pressure. Pressure is represented as the ratio of the 

applied force to the platen area while displacement is non-dimensionalized by dividing it 

with the pack thickness at the end of free fall.  To study the effect of mixture 

composition on the pack response, four different Type-A mixtures are considered.  The 

configuration at the end of free fall for the four mixtures is presented in Fig 3.3b, 3.5, 3.6 

and 3.7, note that the larger particles are walnut while ceramic are the smaller ones.   

The influence of particle material and inter-particle friction is illustrated in the 

corresponding von Mises stress contours of Type-A and B mixtures each with 25% soft 

particles by weight and two different coefficients of friction (µ) 0.3 and 0.03.  The 

different models are summarized in Table. 3.2.   



 42 

Another FEM model was developed for the 25% walnut Type-A mixture with 

850 particles.  This model is developed to study the influence of pack thickness and 

number of particles on the response of the computational model.  This model consists of 

298767 C3D8R three dimensional continuum reduced integration elements and 644442 

nodes. The boundary conditions and particle placement procedures are same as those 

employed for the 400 particles models discussed previously.  For this model the 

rectangular domain has 36 mm distance between the two vertical rigid confining platens 

and the pack thickness at the end of particle settlement is 11 mm, compared to 26 mm 

and 6.2 mm respectively for the 400 particle model.  The particle configuration at the 

end of free fall for this model is presented in Fig. 3.8.  The pressure vs non-dimensional 

displacement response of the 850 particle model is compared to the 400 particle 25% 

Type-A mixture.     

 

 

 
 

Fig. 3.8. Particle configuration at the end of free fall for the 25% by weight walnut 

particles mixture (light colored – walnut, dark shade – ceramic), 850 particles pack 

thickness 11 mm, width 36 mm. 
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Fig. 3.9. Type-A mixtures, µ = 0.3, Pressure vs displacement 

 

 

3.2.2  Results and Discussion 

 

Effect of Percent Weight of Soft Particles  

 

The pressure vs non-dimensional displacement response for the four Type-A 

mixtures, µ=0.3 are presented in Fig. 3.9.  The nonlinear response is typical for granular 

materials with an initial particle rearrangement followed by densification and particle 

deformation; this is similar to the response observed for uniform sized particles in 

section 2.2.1.  Notice that in Fig. 3.9 the pack with 10% walnut shows a high overall 

displacement, greater than 18% mixture and almost equivalent to the 25% walnut 

mixture.  This is contradictory to the expectation that the addition of softer particles 

should reduce the overall pack stiffness and result in a larger platen displacement.  Even 

in the small scale models with 60 uniformly sized particles (section 2.2.1) it was 

observed that the response stiffened for packs with a higher fraction of ceramic particles.  
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For the models in section 2.2.1 the initial particle placement prior to compressive 

loading was uniform for each mixture composition.  This is impossible to maintain for 

the polydisperse pack where the initial pack is obtained by allowing the randomly 

distributed particles to fall freely under gravity.  Notice the highly varying particle 

arrangement of the top layer of particle pack for each of the mixtures in Fig 3.3b, 3.5, 

3.6 and 3.7.   

To further elaborate on the effect of top particle arrangement on the pack 

deformation let us consider Fig. 3.10a, 3.10b and 3.10c.  These three figures show the 

von Mises stress contours of the 10 % by weight walnut mixtures at three load 

increments during the analysis at pressures of 0.18, 3.2 and 9.4 MPa respectively.  Also 

note that at these three increments the non-dimensional platen displacements are 0.0392, 

0.11 and 0.161 mm/mm respectively.  It can be observed that for the first two increments 

at even low pressures significant platen displacement is obtained.  Closely observing Fig. 

3.10a and 3.10b we notice that the deformation is limited to the softer walnut particles.  

If we observe the initial configuration we notice that the highest positions of the pack are 

occupied by the softer walnut particles and these particles are the first to come in contact 

with the top platen once compression is initiated.  The initial stages of pressure vs 

displacement response are thus dominated by the compression response of a few walnut 

particles and do not effectively represent the response of the whole pack.  At the third 

increment which is at a pressure of 9.4 MPa we observe that the top layer is now almost 

flattened, also the stress contours now traverse the entire pack thickness indicating that 

the load is now getting effectively transmitted from the top platen to the bottom platen.  

The same observation is repeated as we study the von Mises stress contours for the three 

load increments of the 25% walnut mixture, in Fig. 3.11a, 3.11b and 3.11c.  In this case 

also the applied pressure is 0.18, 3.2 and 9.4 MPa respectively while the non-

dimensional platen displacement is 0.045, 0.0975 and 0.144 mm/mm respectively.  

Again for the first two loads only a few walnut particles seem to deform, while at third 

increment most of the top layer particles are in contact with the top platen and stress is 

transmitted from the top platen to the bottom platen. 
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(a) 

  
(b) 

 
(c) 

 

Fig. 3.10. Von Mises stress contour for 10% walnut – ceramic mixture at (a) 0.18 MPa 

pressure (b) 3.2 MPa pressure and (c) 9.4 MPa pressure 
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(a) 

 
(b) 

 
(c) 

 

Fig. 3.11. Von Mises stress contour for 25% walnut – ceramic mixture at (a) 0.18 MPa 

pressure (b) 3.2 MPa pressure and (c) 9.4 MPa pressure 

 

 

During the confined compression crush tests which are discussed later in section 

4.2, a uniform top layer is maintained and a preload is applied to the pack before the 

actual compression is initiated.  These two steps ensure that during compression the 

effect of just the particles at the top layer is minimized and the load vs displacement 

response represents the overall pack response.  The same approach needs to be applied to 

the computational model.  If we consider the value of preload as the pressure at which 

most of the particles in the top layer are in contact with the platen and stress is getting 
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transmitted to the bottom platen then we get preload pressure as 9.4 MPa.  The plot of 

pressure vs non-dimensional displacement for all the 4 mixtures assuming a preload of 

9.4 MPa is presented in Fig. 3.12.  We now observe that the results are consistent with 

our expectations and the stiffness of the curve reduces as the percentage of walnut in the 

mixture increases. 

As explained in section 2.2 the image of the deformed particle configuration is 

first converted to an eight bit black and white image in the image analysis software 

Image J.  The deformed configuration and a black and white image of the processed 

image for the 10% walnut mixture at 57 MPa pressure are presented in Fig. 3.13a and 

3.13b.  Then the total number of black and white pixels is counted.  Void fraction is 

defined as the ratio of number of black pixels to the total number of pixels in the 

rectangular domain.  The variation of void fraction as a function of pressure for each 

composition is presented in Fig. 3.14.  The hard particles demonstrate larger void 

fractions at the same applied pressure.   
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Fig. 3.12. Type-A mixtures, µ = 0.3, Pressure vs displacement after preload 
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(a) 

 

 

 
(b) 

 

Fig. 3.13. 10% walnut mixture at 57 MPa pressure to calculate void fraction (a) 

Deformed configuration and (b) processed image  
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Fig. 3.14. Type-A mixtures, Pressure vs void fraction 
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    The contour plots for von Mises stress and equivalent plastic strain for the 

25% walnut composition are presented in Fig. 3.15a and 3.15b respectively. It is 

observed that the stress path passes through the harder ceramic particles while plastic 

straining is mostly observed in case of the softer particles.  It can also be observed that 

the deformation of the softer particles fills up the void spaces reducing the effective flow 

area. 

 

   
(a) 

 

 
(b) 

 
 

Fig. 3.15. 25% walnut at 54 MPa pressure (a) von Mises stress and (b) Equivalent plastic 

strain  

 

Effect of Material Type and Shape of Soft Particles  

 

The configuration at end of free fall for Type-B mixture at µ = 0.3 is presented in 

Fig. 3.4.  The effect of soft/deformable particle material property on pack response is 

compared by studying the response of two models with different Al material properties, 

pure Al and a stronger Al alloy.  A significant increase in porosity is observed with the 

use of a harder Al alloy compared to pure Al, Fig. 3.16.  In comparison to walnut-

ceramic mixtures with 25% walnut composition (Fig. 3.14), the void fraction is much 
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higher for Al-ceramic particles.  This is attributed to the higher stiffness and strength of 

aluminum compared to walnut.  Aluminum itself carries significant load as observed in 

the von Mises contour plot in Fig. 3.17a, in contrast to the walnut – ceramic mixtures 

(Fig. 3.15a) where walnut particles do not carry much load. 
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Fig. 3.16. Pressure vs void fraction for Type-B mixture, Al-pure and Al-alloy  

 

 
 

(a) 
 
 

Fig. 3.17. Von Mises stress for 25% by weight Type-B mixture at 57 MPa pressure (a) 

0.091 void fraction, µ = 0.3 and (b) 0.063 void fraction, µ = 0.03    
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(b) 

 
 

Fig. 3.17. Continued 
 

 

Effect of Inter-particle Friction  

 

In both types of mixtures, Type-B and A with 25% soft particles, the particles 

undergo greater rearrangement and deformation when friction is lower as resistance to 

sliding is reduced.  In case of Type-A (walnut – ceramic) mixture at 54 MPa applied 

pressure for the cases with µ = 0.3 and 0.03 respectively, the void fraction reduces from 

0.069 to 0.043 a reduction of 37%, two leftmost curves in Fig. 3.14.  For Type-B (pure 

aluminum – ceramic) mixture at 54 MPa pressure the void fraction reduces from 0.095 

to 0.065 a reduction of 31%, two leftmost curves in Fig. 3.16.  Comparing von Mises 

stress contour plots for Type-B mixture at µ = 0.3 and 0.03 in Fig. 3.17,  it is noted that 

particles are much more evenly stressed when friction is lower while high stress 

concentrations are observed with higher µ.  This is because lower friction allows for a 

greater and easier rearrangement of the pack as it gets compressed thus transmitting the 

stress more evenly through the particles.    

 

Comparison of Number of Particles in Models 

 

The von Mises stress contour for the 25% Type-A 850 particle model at 58 MPa 

is presented in Fig. 3.18.  We can observe the stress path to pass through the ceramic 

particles while the walnut particles show high deformation.  The pressure vs non-
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dimensional displacement response of this model is compared to the 400 particle, Type-

A model in Fig. 3.19.  The response is very similar with the 850 particle model being a 

little stiffer at higher loads.  The time of solution for the 850 particle model was 50 cpu 

hours on an IBM p5-575 Cluster, while the 400 particle model took 20 cpu hours.  As the 

difference in the response of the two models is small and it takes much longer to 

complete the simulation of the larger model we will continue all the future simulations 

with the 400 particle model. 

 

 

 

 

Fig. 3.18. Von Mises stress contour at 58 MPa stress for the 850 particle, 25% walnut 

model 
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Fig. 3.19. Pressure vs Non dimensional displacement plot comparing Type-A, 25% by 

weight walnut response for 400 and 850 particle models 

 

 

3.3  Incorporating Particle Fragmentation 

 

 
In all the models presented so far, ceramic is assigned the concrete damage 

plasticity behavior; i.e. isotropic damaged elasticity combined with isotropic tensile and 

compressive plasticity described in further detail in APPENDIX - B.  We now present 

models where ceramic is considered as a linear elastic material until it reaches its tensile 

strength limit at which point cracking is allowed to occur.  Post cracking, the material 

shows degradation in its tensile behavior while compression remains as linear elastic.  

The brittle ceramic is modeled using the brittle failure material model for concrete in 

ABAQUS v 6.8.3, discussed in detail in APPENDIX – B.  Note that in both these 

approaches a crack does not necessarily mean a discrete single opening, rather a crack is 

replaced by a continuous medium whose tensile properties can undergo degradation [23, 

70].  The models and boundary conditions remain the same as discussed in section 3.2; 
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the only difference here is the material constitutive property definition of ceramic 

particles.  

Further, particle fragmentation is incorporated by removing the degraded element 

from the mesh based on a failure criterion.  With the element deletion approach the 

number of elements and nodes in the model at each increment can vary depending on the 

change in an element’s status.  Contact surfaces also needs to be defined on the newly 

exposed surfaces, this aspect is discussed in APPENDIX – A where general contact is 

discussed.  It is to be noted that even though element deletion method is very widely 

employed in simulations ranging from material forming, machining, impact and vehicle 

crash it is not the best approach [71-73].  According to literature for dynamic crack 

propagation element deletion method is unable to match the performance of certain other 

fracture simulation techniques like interelement method or XFEM (extended FEM) [74].  

Its wide applicability is more due to its ease of implementation.  Furthermore, in certain 

applications even when a crack has been formed the structure can still carry compressive 

loads in such scenarios element deletion can introduce errors in the simulation.  In our 

case we need to implement particle fragmentation as without particles breaking into 

pieces a softening in the load vs displacement curve for the proppant pack cannot be 

simulated.  Such a softening in the pack response is observed from the confined 

compression tests on proppant mixtures, Section 4.2.  Currently ABAQUS does not have 

the capability of implementing XFEM or the interelement method for the explicit solver 

hence element deletion has been employed in our simulations. 

We model the post cracking softening response to have a linear variation by 

specifying the strain (ε0) at which stress reduces to zero.  According to literature a better 

approach in modeling post cracking softening is by specifying the stress vs displacement 

data as this reduces the problem of mesh sensitivity in the results [23, 75].  Here 

displacement means crack opening.  Under tension the crack opens but some bridging 

mechanism exists which ensures that its load bearing capacity reduces gradually.  The 

Mode-1 fracture energy (GI) or in other words the fracture toughness of quasi-brittle 

material like concrete, rocks or certain ceramics needs to be determined experimentally 
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[70, 76, 77].  Mode-1 means a crack opening under tension normal to the crack face.  For 

fracture toughness measurement the most crucial and problematic part of specimen 

preparation is the generation of a sharp crack and measuring its size.  It also requires stiff 

load frames.   

We haven’t conducted any experiments on ceramic samples to study its post 

cracking behavior.  Therefore two values of failure strain, 0.4% and 0.8% are considered 

to observe its influence on the response of the structure.  Note that if the value of GI for a 

certain material is known the failure strain ε0 can be calculated from equation, 

ε0=2GI/(σf*a) [23, 74].  Where σf is the cracking failure stress (180 MPa in our case), a is 

the characteristic element length in the mesh (0.038 mm in our case).  Basically this 

equation enables us to adjust the value of failure strain according to the mesh size and 

provides an approximate mesh insensitive result for the known values of GI.  For our 

models with the failure strains of 0.4% and 0.8% we are actually specifying the Mode-I 

fracture energy as 13.68 N/m and 27.36 N/m respectively.  25% Type-A mixture of 

walnut and ceramic is employed for this study.  

The pressure vs non dimensional displacement responses of the 10% and 25% 

Type-A models with concrete damage plasticity obtained in section 3.2 are compared to 

the response of models with concrete brittle cracking with 0.8% failure strain.  Similar 

comparison is carried out for the 25% Type-B (pure Al needles with ceramic) mixtures.  

The number of particles showing failure is also compared for each of the three models. 

 

3.3.1  Results and Discussion 

 

Effect of Failure Strain on Pack Response 

 

The pressure vs non-dimensional displacement curves for Type-A, 25% by 

weight walnut mixture with 0.4 and 0.8% failure strain for ceramic particles are 

presented in Fig. 3.20.   
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Fig. 3.20. Pressure vs Non dimensional displacement plot comparing Type-A, 25% by 

weight walnut response for 0.4 and 0.8% failure strain, brittle cracking model 

 
 
 

The main effect of changing the failure strain is a change in softening behavior of 

the curve; at the lower loads the response for both cases is similar.  Differences arise at 

larger loads and the 0.8% failure strain model provides a more stable response.  This can 

be attributed to the fact that the 0.8% failure strain element will continue to carry stress 

longer compared to the 0.4% model.  Thus particle fragmentation will occur earlier for 

the 0.4% failure strain model compared to the 0.8% failure strain model which results in 

greater softening in its pressure vs non-dimensional displacement response.  

 

Comparing Response for Concrete Damage and Brittle Cracking Models 

 

The Type-A 25% walnut composition forms the basis for this comparison. The 

0.8% failure strain fracture model is compared to the corresponding concrete damage 

plasticity model in Fig. 3.21.  Recall, as discussed earlier in section 3.2 and 2.2, the 

pressure vs non-dimensional displacement response for models with ceramic damage 
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without particle fragmentation showed two distinct regions, one was initial nonlinear 

response primarily attributed to particle rearrangement and second was continuous 

stiffening in response due to particle consolidation.  With the introduction of particle 

fragmentation we still observe the two regions, but a third section is also observed 

wherein the stiffness of the consolidating curve changes and the response softens.  As 

elements are deleted the load carrying capacity of the remaining particle segments is 

reduced which is reflected in the sudden change in the response which then shows 

divergence from the damage model as more and more particles continue to fragment.  

Similarly, in the simulations with damage once particles begin to carry higher pressures 

and consolidate they do not undergo significant rearrangement.  In the models with 

fracture the remaining fragments can undergo rearrangement which also contributes to 

the observed softening in the response.   Notice in Fig. 3.21 the sudden change in slope 

for the model with fracture between pressures of 30 and 38 MPa, the corresponding 

deformed configuration is displayed in Fig. 3.22a and 3.22b respectively.    
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Fig. 3.21. Pressure vs Non dimensional displacement plot for Type-A, 25% by weight 

walnut, plastic damage and brittle cracking model comparison 
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(a) 

 

 
(b) 

 

Fig. 3.22. Configuration of 25% Walnut, Type-A model at (a) 30 MPa pressure and (b) 

38 MPa pressure 
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Fig. 3.23. Pressure vs Non dimensional displacement plot for Type-A, 10% by weight 

walnut, plastic damage and brittle cracking model comparison 
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Fig. 3.24. Pressure vs Non dimensional displacement plot for Type-B, 25% by weight 

pure Al, plastic damage and brittle cracking model comparison 

 
 

Similar pressure vs non-dimensional displacement plots for 10% Type-A mixture 

and 25% Type-B (pure Al + ceramic) mixture comparing the response due to particle 

fragmentation are presented in Fig. 3.23 and Fig. 3.24 respectively.  As with Fig. 3.21 

we observe a divergence in the fracture models from the damage models with a decrease 

in the stiffness of the curve.   

 

Effect of Composition on Response of Brittle Cracking Models 

 

The pressure vs non-dimensional displacement curves comparing the responses 

for 10% and 25% Type-A (walnut + ceramic) models are presented in Fig. 3.25.  At the 

lower pressures before particle fragmentation assumes significant proportion the 10% 

model provides a stiffer response which is similar to our observations for the concrete 

damage models in section 3.2.2, Fig. 3.12.  For the 10% model particles fracture much 

earlier at lower pressures compared to the 25% model.  This indicates that the softer 
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particles provide cushioning to the ceramic particles and absorb energy while deforming 

and inhibit ceramic fracture.   
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Fig. 3.25.  Comparison of 10% and 25% walnut mixtures with fracture 

 
 
 

We can compare the number of particles fragmenting by observing the element 

status for the two models at pressure of 25 and 30 MPa.  This is represented in Fig. 3.26a 

and 3.26b for both mixtures at 25 MPa and Fig. 3.27a and 3.27b at 30 MPa.  Note that 

the two figures show the undeformed configuration and only the element status is plotted 

with blue indicating deleted element.  It can be observed that a much higher proportion 

of ceramic particle elements are deleted for the 10% model at 30 MPa which 

corroborates the observation in Fig. 3.25 where the slope change occurs much earlier for 

the 10% model compared to the 25% walnut model.  Also notice the significant increase 

in the number of deleted particles as pressure increases from 25 MPa to 30 MPa for the 

10% mixture compared to the 25% mixture.  This matches well with the observation in 
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Fig. 3.25 where at pressure below 30 MPa the former is stiffer compared to the later but 

at higher pressures it loses its stiffness due to particle fracture. 

 

 

 
(a) 

 

 
(b) 

 

Fig. 3.26. Comparison of element status at 25 MPa pressure for (a) 10% walnut ceramic 

mixture and (b) 25% walnut ceramic mixtures 
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(a) 

 

 
(b) 

 

Fig. 3.27. Comparison of element status at 30 MPa pressure for (a) 10% walnut ceramic 

mixture and (b) 25% walnut ceramic mixtures 

 

 

Effect of Deformable Material Type on Response of Brittle Cracking Models 

 

The pressure vs non-dimensional displacement responses for 25% Type-A 

(walnut + ceramic) and Type-B (pure Al + ceramic) models are presented in Fig. 3.28.  It 

is observed that up to a pressure of 42 MPa the Type-B mixture provides a stiffer 

response compared to the Type-A mixture.  This is mainly due to the stronger material 

response of pure Al compared to walnut shell.  At pressures beyond 42 MPa, the pure Al 

mixture shows a sudden change in slope and softens.  Again comparing the element 

statuses at 48 MPa pressure for both the mixtures (Fig. 3.29) we observe that the Type-A 

walnut mixture shows lower fracture compared to the Type-B mixture which explains 

the observed response. 
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Fig. 3.28.  Comparison of 25% Type-A and Type-B mixtures with fracture 

 

 

 
(a) 

 

 
(b) 

 

Fig. 3.29. Comparison of element status at 48 MPa pressure for (a) 25 % pure Al -  

ceramic mixture and (b) 25% walnut - ceramic mixtures 
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4  EXPERIMENTAL APPROACH 

 
 

Single particle compression and confined compression (crush tests) on proppant 

samples are reported in this section.  The single particle tests on two types of ceramic 

particles (light weight and high strength) are conducted to study the mechanical response 

of a single ceramic particle and determine its fracture strength.  This data is then 

incorporated in the FEM models as part of ceramic material property definition.  The 

tests on walnut and pistachios are conducted to compare their mechanical response.  The 

single particle response is also related to the crush test results of proppant mixtures. 

Confined compression (crush tests) have been carried out on different proppant 

mixtures to study the effect on crush resistance and pack stiffness due to the addition of 

deformable particles of different material types and shapes. The deformable particles 

considered are Al needles, Al spheres, walnut shell particles and pistachio shell particles.  

Primarily we have focused on proppant packs with the light weight ceramic proppants 

(LWC) as the base material.  Few crush tests have also been reported with low strength 

(Ottawa sand) and high strength (bauxite) proppants employed as base materials.  The 

comparison of FEM models developed in the previous section with the load vs 

displacement data from the crush tests is presented in section 5.  The crush tests enable 

us to further refine the models. 

 

4.1  Single Particle Compression Tests 

 

Single particle compression tests are conducted on samples of LWC ceramic 

proppants, high strength (HSP) sintered bauxite proppants, polymer coated walnut and 

polymer coated pistachio particles. The chemical constitution of the LWC proppant 

consists of 51% Al2O3, 45% SiO2, 2% TiO2 and 1% Fe2O3, specific gravity 2.6 [78].  The 

chemical constitution of the HSP proppant is Al2O3 - 83%, SiO2 - 5%, TiO2 - 3.5%, 

Fe2O3 - 7%, specific gravity 3.6 [78].   
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Tests are conducted on INSTRON 3345 vertical test bed with a 225 lbf / 1000 N 

load cell.  The tests are displacement control with a loading rate of 0.006 in/min or 

0.00254 mm/s.  The tests are terminated at a maximum load of 150 lbf.  A total of 36 

particles are tested for LWC, 33 for HSP and 12 particles are tested for pistachio and 

walnut samples respectively.  Prior to testing each particle is photographed under a 

microscope and compared with a datum to determine its initial dimensions.  For ceramic 

particles the initial dimension is its diameter as the particles are predominantly spherical.  

The LWC ceramic and the HSP bauxite particle along with the datum sphere are shown 

in Fig. 4.1a and 4.1b respectively.   It has been reported previously that walnut particles 

can be segregated into three categories depending on their shape; the flat top particles 

were observed to show the least scatter in the data and were ideal for comparison 

purposes [59, 60].  As the primary intention of testing walnut and pistachio particles is to 

compare their mechanical response flat top particles were selected for testing.  The 

initial dimension involves cross-section area and thickness, thickness is considered as 

the smallest dimension of a cuboid.  Load is applied along the thickness direction 

perpendicular to the cross-section.  It was observed that pistachios predominantly fell in 

the flat top category.  Fig. 4.2a and Fig. 4.2b show the cross-section and thickness of the 

walnut particles, Fig. 4.3a and 4.3b show the same for pistachio particles. 
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 (a)                                                                           (b) 

 

Fig. 4.1. (a) LWC ceramic proppant and (b) HSP proppant prior to test with the datum 

sphere 

 
 

 

        
(a)                                                      (b) 

Fig. 4.2. (a) Walnut proppant with the datum particle highlighting the thickness (b) Same 

particle along the cross-section highlighting the area 
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(a)                                                           (b) 

Fig. 4.3. (a) Pistachio proppant with the datum particle highlighting the thickness (b) 

Same particle along the cross-section highlighting the area 
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Fig. 4.4. Effective stress vs Effective strain response for single particle compression of 

coated walnut (maroon) and coated pistachio (blue) 
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4.1.1.  Results and Discussion 

 

Walnut and Pistachio Single Particle 

 

The effective stress vs effective strain response for the coated flat top walnut and 

coated pistachio particles is presented in Fig. 4.4.  Response for 4 of the 12 tested 

particles for each type is shown which represents the scatter in the data from least stiff to 

most stiff response. The load as measured from the load cell is non-dimensionalized with 

the cross-section area to obtain the effective stress; the crosshead displacement is non-

dimensionalized with the undeformed particle thickness to obtain the effective strain. 

The particle dimensions show significant variation, the cross-section area for the 

pistachios vary from 2.11 to 1.5 mm2 and thickness varies from 0.54 to 0.8 mm.  

Similarly for walnuts the cross-section area varies from 2.55 to 1.17 mm2 and thickness 

varies from 0.63 to 0.99 mm. It can be observed that overall the pistachios tend to give a 

much stiffer response compared to the walnut particles.  This can be attributed to their 

more uniform cuboid shape while the flat top walnut particles showed a slight surface 

curvature compared to the pistachios. The difference could also be due to different cell 

structure and chemical composition which needs to be investigated.  

 

Light Weight Ceramic Proppant 

 

The load vs displacement response for 12 of the total 36 particles tested is plotted 

in Fig. 4.5a.  The diameters for the particles varied from 0.75 to 0.98 mm.  The response 

is primarily linear elastic in accordance with the Hertz contact description of a sphere 

and a rigid flat.  The load at failure is identified as a break in the load vs displacement 

curve where a sudden steep drop in the force is observed for the displacement controlled 

loading of a ceramic particle, Fig 4.5b.  This behavior is different from the walnut and 

pistachio results where the load increases continuously and a break in the curve is not 

observed.  It has been reported in the literature that brittle failure of spherical particles 
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initiates at the center of the sphere and the crack extends along the diameter oriented 

with the loading axis [79].  Fracture is assumed to initiate when the principle stress in 

tension exceeds the failure stress in tension.  The single particle tests on spherical brittle 

ceramic particles can be used to determine the failure stress for the ceramic material as 

σf = 2.8Ffailure/(πD
2) [58, 79].  Here σf is the failure stress in tension, Ffailure is the load 

measured by the load cell at the point of particle fracture and D is the particle diameter.  

It can also be observed that there is significant variation in the failure load for each 

particle which is not uncommon for brittle material like ceramics.  The Weibull 

statistical analysis is employed to characterize the mechanical response for the ceramic 

particles [58].  

According to the procedure as described in [58] for each of the 36 particles tested 

we get a specific diameter, failure load and hence tensile strength.  These 36 data points 

are then sorted in an ascending order of their strength.  A probability of failure is defined 

for each particle as Pfi = (i-0.5)/N, where i ranges from 1 to 36 and N = 36.  A plot of 

ln(ln(1/(1-Pfi))) vs ln(σf) is then constructed, Fig. 4.6.  By applying a linear fit to this 

plot we can obtain Weibull modulus (m) and characteristic strength (σ0) for the material 

based on the equation ln(ln(1/(1-Pfi))) = m ln(σf / σ0).  A higher value of σ0 points to a 

higher material strength and a higher value of Weibull modulus (m) imply a better 

reliability of the predicted strength data.  For the current 36 single particle tests the 

characteristic strength is obtained as 159.11 MPa while the Weibull modulus is 

calculated to be 4.729.  At the same time the average strength is calculated as 149.39 

MPa with a standard deviation of 24.73 MPa. 
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(b) 

 

Fig. 4.5. (a) Load vs Displacement response for 12 of the 36 LWC ceramic particles (b) 

Load vs Displacement for a single particle highlighting the peak load at failure and drop 

in load after fracture   
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Fig. 4.6. ln(ln(1/(1-Pfi))) vs ln(σf) plot with a linear fit to obtain Weibull modulus for 

LWC proppants 
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Fig. 4.7.  Load vs Displacement response for 12 of the 33 HSP ceramic particles 

 
 

 

 



 72 

High Strength Proppant 

 

The load vs displacement responses for 12 high strength proppants are presented 

in Fig. 4.7.  The diameters for the particles ranged from 0.74 to 0.91 mm.  Here also we 

observed a linear elastic response followed by brittle fracture.  Compared to the LWC 

particles the fracture load is higher.  In this case also Weibull statistical analysis is 

employed to characterize the fracture strength of the particles.  Fig. 4.8 presents the 

ln(ln(1/(1-Pfi))) vs ln(σf) plot.  The characteristic strength of this proppant is calculated 

as 298.94 MPa, the Weibull modulus is 8.054.  Both these values are much higher 

compared to the ISP proppants, indicating a much stronger material and better reliability 

in the prediction of the strength.  The higher strength is primarily attributed to the 

composition of the material with 83% Al2O3 for HSP proppant compared to 51% for the 

LWC proppant. 

 

 

y = 8.0535x - 45.907
R² = 0.9812

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

5.40 5.45 5.50 5.55 5.60 5.65 5.70 5.75 5.80 5.85 5.90

ln
(l

n
(1

/1
-P

))

ln σf

Weibull Modulus

Weibull Modulus

Linear (Weibull Modulus)

 
 

Fig. 4.8. ln(ln(1/(1-Pfi))) vs ln(σf) plot with a linear fit to obtain Weibull modulus for 

HSP proppant particles 
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4.2  Crush Testing 

 

Fines formed due to the crush/fracture of the brittle proppants occupy the inter-

particle porosities and are severely detrimental to oil/gas production.  Crush testing 

conducted in accordance with the API RP 60 standards is a standard industrial test 

procedure to evaluate the strength of a proppant pack.  These tests represent stress state 

on proppants deep within a fracture away from the well bore; they can also be termed as 

confined compression tests.  In case of proppant mixtures the brittle particles fragment 

and form smaller particles.  Crush tests are evaluated based on the weight of sample with 

size less than mesh 40 or 400 microns remaining at the end of the test.  We have also 

obtained the load vs displacement response from the tests to evaluate the effective pack 

stiffness.  In the present study three base materials have been considered LWC, HSP and 

Ottawa sand.  Deformable particles are added to these baseline materials and the effect 

on crush and pack stiffness is evaluated.  The sand + walnut mixtures and the HSP + Al 

needle mixtures are commercial products employed in the industry.  The sand + walnut 

mixtures are generally employed at pressures below 7500 psi while the HSP + Al 

needles mixtures are employed at high pressures of 15000 psi.   

 

4.2.1  Equipment and Materials 

 

The crush cell has a diameter of 2.033 in with a wall thickness of 0.5 in and 

height of 3 in.  The loading piston has a diameter of crush cell diameter minus 0.005 + 

0.001 in.  The height of the piston is 3.5 in.  The piston material is 4340 alloy steel with 

minimum hardness of Rockwell C 43.  These specifications are in accordance with the 

API RP 56 and 60 standards [7, 8].  Tests are conducted on a MTS load frame with a 

load cell capacity of 250,000 lbs calibrated to an accuracy of 250 lbs.  Spherical seats are 

used on the compression platens to ensure proper alignment while loading.  Load is 

applied  hydraulically and is computer controlled.  The crush cell with the loading piston 

mounted on the load cell is shown in Fig. 4.9.  As the granular pack is compressed in the 
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crush cell the piston displacement is measured with an LVDT (linear variable 

differential transducer) calibrated to an accuracy of 0.001 in.   

As stated previously three different proppant types are considered as base 

materials, low strength (Ottawa sand), light weight ceramic and high strength.  The 

chemical constitution of the LWC proppant consists of 48% Al2O3, 48% SiO2, 2% TiO2 

and 1% Fe2O3, specific gravity is 2.6 [78].  The chemical constitution of the HSP 

proppant includes Al2O3 - 83%, SiO2 - 5%, TiO2 - 3.5%, Fe2O3 - 7%, specific gravity is 

3.6 [78].  The bulk density of Ottawa sand and the LWC ceramic proppant is 1.56 g/cm3 

and 41.15 g particles are used in each test, the particle size ranges between sieve # 40 

and 20 or 425 – 850 microns.  For the HSP proppants the bulk density is 2.0 g/cm3 and 

50.0 g particles are used in each test.  These quantities are in accordance with the API 

RP 60 test standards.  The baseline tests are followed by tests on proppant mixtures 

where deformable particles are added to the base proppant.  We have primarily focused 

on the LWC proppant mixtures, the different mixtures considered, particle sizes and 

percent weight of soft particles added are summarized in Table. 4.1. In all cases the total 

weight of particles used in a test is kept constant at 41.15 g. 

For the HSP proppants we have considered 10% and 25% mixtures of Al needles 

and Al spheres, for the tests 50.0 g sample is used.  For the low strength Ottawa sand 

proppants 10% mixtures of walnut and pistachio are considered and sample weight is 

41.15 g for each mixture during the test.    
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Fig. 4.9. Crush cell and loading piston mounted on the load frame 

 
 
Table. 4.1. Material, size range and concentration of deformable particles considered in 

mixtures.  The base material is LWC ceramic proppant. Total sample weight is 41.15 g 

 

No. Material Size range (microns) % weight added 

1 Walnut shells 1180 – 600 6, 10, 18, 25, 33 

2 Pistachio shells 1180 – 600 6, 10, 18, 25, 33 

3 Al needles (3500 – 2500)X(425 – 850) 6, 10, 18, 25, 33 

4 Al spheres 1180 - 600 6, 10, 18, 25, 33 

 

 

4.2.2  Test Procedure 

 

The first step of the test involves sieving the samples to obtain particles in a 

specific size range.  The ceramic particle’s diameter ranges from 425-850 micron (sieve 
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# 40 – 20) while those of the walnut particles range from 600-1180 micron (sieve # 30 – 

16).  Then the particles are mixed evenly and the mixture is poured in the crush cell 

using a funnel.  A loose pack is maintained and the cell is neither jarred nor shaken.  The 

piston is lowered gently on the pack and twisted by 180 degrees to obtain a level surface.  

The particle layer thickness is measured. A preload of ~ 75 lbs is applied on the pack 

prior to actual loading.  Loading is force controlled and applied over three steps i) ramp 

up over 1 minute ii) hold constant for 2 minutes and iii) unloading over 1 minute.  

During the current tests the maximum pressure is maintained at 68 MPa (10,000 psi) for 

LWC mixtures, 103 MPa (15,000 psi) for HSP and 51 MPa (7500 psi) for sand.  At the 

end of the test the contents from the crush cell are transferred to a sieve.  The sieve is 

placed on a shaker for 10 minutes to allow for segregation and the weight of crushed 

particles (diameter smaller than 400 microns) which fall through the # 40 sieve is 

measured.  An LVDT provides the additional displacement data.  Note that the 

displacement data provided from the LVDT does not account for pack deformation 

during the 180 degree twist of the loading piston and preload. 

 

4.2.3  Results and Discussion: LWC Mixtures 

 

A typical pressure vs non-dimensional displacement response obtained from a 

crush test is depicted in Fig. 4.10.  Pressure is obtained by dividing the load with the 

crush cell diameter; the displacement is non-dimensionalized by dividing it with the 

initial loose pack thickness. The figure shows the response obtained during the 1 minute 

load ramp for the LWC ceramic proppants. These tests form the baseline with which the 

mixtures are compared.  As is shown in Fig. 4.10, the response can be divided into three 

distinct phases the initial nonlinear response is mainly due to particle rearrangement.  

The second phase involves consolidation and an approximately linear response, here 

rearrangement is not significant and the particles start carrying significant load.  In this 

stage some particles start fracturing but their overall influence on the response is not 
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significant.  The final stage shows softening which is primarily due to a large number of 

particles fragmenting.   

The percentage weight of proppant crushed (fractured) is obtained by first 

sieving the sample at the end of the test and then weighting the sieved sample with size 

less the 400 microns.  For the baseline tests on LWC ceramic proppants the average 

percentage crush (weight of fractured particles with size less than 400 microns related to 

the original sample weight of 41.15 g) is obtained as 11.906 % with a maximum of 

12.29 % and minimum of 11.23% with a standard deviation of 0.588 %.  Effective pack 

stiffness is obtained by measuring the slope in the linear region of the pressure vs non-

dimensional displacement (between pressures of 14 and 40 MPa).  The average effective 

stiffness for the baseline tests is calculated to be 2408 MPa with a standard deviation of 

54.4 MPa, the minimum and maximum values are calculated as 2382.2 MPa and 2470.5 

MPa respectively. The data for the average percent crush and effective pack stiffness for 

the mixtures is presented in Tables 4.2-4.5 along with the standard deviation. 

 

 

 
 

Fig. 4.10. Pressure vs non dimensional displacement LWC ceramic baseline 
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Table. 4.2. Crush and Stiffness data for walnut ceramic mixture 

 

Walnut + Ceramic 

  
Weight percent crush (%) Effective Stiffness (MPa) 

 Deformable 
particles by 
weight (%) 

Average   Std dev  Average  Std dev  

6 18.05 0.17 1050.06 91.78 
10 16.23 0.68 792.20 45.98 
18 12.77 0.64 591.99 46.79 
25 9.51 0.23 526.66 6.91 
33 6.79 0.22 499.93 7.86 

 
 
 
 

Table. 4.3. Crush and Stiffness data for Al needles ceramic mixture 

 

Al Needles + Ceramic 

  

Weight percent crush 
(%) Effective Stiffness (MPa) 

 Deformable 
particles by 
weight (%) 

Average   Std dev  Average  Std dev  

6 14.42 1.54 1344.42 108.87 
10 16.29 0.30 894.51 36.76 
18 13.57 0.87 595.39 51.65 
25 12.01 0.31 439.38 5.11 
33 9.26 0.38 365.39 14.00 
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Table. 4.4. Crush and Stiffness data for Al pellets ceramic mixture 

 

Al Pellets + Ceramic 

  
Weight percent crush (%) Effective Stiffness (MPa) 

 Deformable 
particles by 
weight (%) 

Average   Std dev  Average  Std dev  

6 13.11 0.28 2056.83 127.69 
10 11.91 0.69 1865.20 63.24 
18 10.53 0.32 1657.60 75.67 
25 8.60 0.23 1434.67 46.63 
33 5.29 0.22 1353.07 73.57 

 
 
 
 

Table. 4.5. Crush and Stiffness data for pistachio ceramic mixture 

 

Pistachio + Ceramic 

  
Weight percent crush (%) Effective Stiffness (MPa) 

 Deformable 
particles by 
weight (%) 

Average   Std dev  Average  Std dev  

6 14.44 0.71 1239.97 49.41 
10 11.14 0.75 1079.00 75.82 
18 11.14 0.53 651.47 6.42 
25 8.53 0.12 600.69 17.54 
33 6.89 0.54 434.95 6.95 
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Fig. 4.11a and 4.11b show the variation of average crush and effective pack 

stiffness for the ceramic – walnut mixtures.  The vertical black lines on each data point 

in the figures represent the variability in the data for each composition which is found to 

be small.  Fig. 4.11c shows the pressure vs displacement data for the walnut – ceramic 

mixture, the curve on the left represents the baseline ceramic response. It is observed 

that stiffness reduces with the addition of deformable particles.  From Fig. 4.11a it is 

also observed that for small concentrations of softer particles in particular 6% and 10% 

the crush is actually higher compared to the baseline ceramic.  This can be attributed to 

the disruption of the packing arrangement. The softer walnut particles are larger 

compared to the ceramic particles and also have a low bulk density of 0.76 g/cm3 

compared to 1.56 g/cm3 for the LWC ceramic which results in an increase in the initial 

pack porosity and reduce the number of ceramic particles surrounding other ceramics 

thus reducing the co-ordination number.  Ceramic is a brittle material and particles 

fracture by breaking along the diameter when the maximum principle stress in tension 

exceeds the fracture strength.  A higher co-ordination number of ceramic particles 

prevent the tensile stresses from growing and keep the particles predominantly in 

compression.  A decrease in co-ordination number results in a larger number of particles 

getting subjected to tensile stresses and strains resulting in their fracturing.  At higher 

concentrations the softer particles provide a cushioning to the harder ceramic particles 

and absorb the applied load by undergoing greater deformation and preventing particle 

fracture. This also explains the observation that with the addition of softer particles the 

stiffness initially reduces significantly but later at higher concentration it plateaus as the 

loss in stiffness due to the addition of softer particles is compensated by the reduction in 

ceramic particle fracture which also causes a loss in stiffness.  Notice that in Fig. 10 the 

curve shows a very distinct “S” shape, with a pronounced change in slope due to particle 

fragmentation.  At higher concentrations this change becomes more subtle.       
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Fig. 4.11. Walnut-Ceramic mixture (a) Crush as a function of weight percent of soft 

particles (b) Effective stiffness as a function of weight percent of soft particles and (c) 

Pressure vs non dimensional displacement  
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Fig. 4.11. Continued 
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Fig. 4.12. Walnut-Ceramic and Pistachio Ceramic mixtures (a) Average percent crushes 

(b) Average stiffness (c) Walnut – Ceramic mixture image and (d) Pistachio – Ceramic 

mixture image  
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Fig. 4.12. Continued 
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(d) 

 
Fig. 4.12. Continued 

 
 
 

A comparison of average crush and stiffness variation with composition for 

walnut – ceramic and pistachio – ceramic mixtures is presented in Fig. 4.12a and 4.12b.  

It is found that the variation of crush and stiffness with composition is similar for the 

two mixtures with pistachios giving better results.  This can be attributed to a more 

uniform particle shape distribution for pistachios and a stiffer response to compression 

compared to walnut.  The two different mixtures are shown in Fig. 4.12c and 4.12d.   

Similarly comparing the average crush (Fig. 4.13a) and average stiffness (Fig. 

4.13b) variation with composition for Al needles – ceramic and walnut – ceramic 

mixtures it is observed that the crush for Al needles at 6% is lower than the walnut 

mixture and then it increases and stays higher for the higher mixture concentrations.  

This can be attributed to the lower bulk density of walnut compared to Al needles.  At 

6% mixture concentration the number of Al needles is not significantly high enough to 

disrupt the packing and hence the number of particles fracturing is not as high as in case 

of walnut.  At higher concentrations the shape of the Al needles which has a high aspect 

ratio (Fig. 4.13c) starts to play a significant role in disrupting the packing and thus 



 85 

increases the percentage crush in comparison to the walnut mixture.  It is also observed 

that the crush is higher than the baseline crush for all the concentrations except 33% for 

the Al needles mixture on the other hand for the walnut-ceramic and pistachio-ceramic 

mixtures the crush is equal to or less then the baseline at concentrations of 18% or higher. 

In the same way we observe that for the 6% and 10% mixtures the Al needles shows a 

higher stiffness compared to walnut mixture which can be attributed to the higher 

strength and elastic modulus of pure Al compared to walnut.  At higher concentrations 

the higher crush observed in Al needle – ceramic mixture results in stiffness reduction 

which eventually reduces below that of the walnut – ceramic mixture for the 25% and 

33% mixtures.   
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Fig. 4.13. Walnut-Ceramic and Al needles-Ceramic mixture (a) Average percent crushes 

(b) Average effective stiffness and (c) Al needles – ceramic mixture image  
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Fig. 4.13. Continued 
 
 

Comparing Al needles – ceramic and Al pellets – ceramic crush and stiffness 

response (Fig 4.14a and 4.14b) it is observed that the crush for Al pellets – ceramic 

mixture is much lower than all the other mixtures considered. This can be attributed to 

the higher bulk density of Al pellets due to their highly uniform spherical shape (Fig 
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4.14c) compared to Al needles resulting in little pack disruption and hence lower crush. 

As in case of the other mixtures crush reduces with increase in concentration of the soft 

particles, also note that for Al pellets apart from the 6% mixture the crush is lower than 

the baseline for all the other concentrations. It is also noticed that the Al pellet – ceramic 

mixture has a much higher stiffness compared to the other mixtures and this is also 

attributed to the higher bulk density which results in less pack disruption and low crush. 

 
 

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40

W
e
ig

h
t 
p

e
rc

e
n

t 
o

f 
c
ru

s
h

e
d

 
p

a
rt

ic
le

s
 (

%
)

Weight percent  of soft particles  (%)

Al pellets - Ceramic 

Al needles - Ceramic

 
(a) 

 

Fig. 4.14. Al pellets – Ceramic and Al needles – Ceramic mixtures (a) Average percent 

crushes (b) Average effective stiffness and (c) Al pellets – ceramic mixture image 
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Fig. 4.14. Continued 
 
 



 89 

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40

W
e
ig

h
t 
p

e
rc

e
n

t 
o

f 
c
ru

s
h

e
d

 
p

a
rt

ic
le

s
 (

%
)

Weight percent  of soft particles  (%)

Al pellets - Ceramic 

Al needles - Ceramic

Pistachio - Ceramic

Walnut - Ceramic

 
(a) 

 
 

0

500

1000

1500

2000

2500

0 10 20 30 40

E
ff

e
c
ti

v
e
 S

ti
ff

n
e
s
s
 (

M
P

a
)

Weight percent  of soft particles  (%)

Al pellets - Ceramic 

Al needles - Ceramic

Pistachio - Ceramic

Walnut - Ceramic

 
(b) 

 
Fig. 4.15. (a) Comparisons of average crush for all mixtures (b) Comparison of average 

stiffness for all mixtures  
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The variation of average crush and average stiffness for all the mixtures is 

compared in Fig. 4.15a and 4.15b respectively.  As stated previously the Al pellets – 

ceramic mixture gives the best response at all the mixtures for the stiffness.  For crush it 

is observed that pistachio – ceramic mixture and Al pellets – ceramic mixtures both give 

a lower crush compared to the other two mixtures.  The Al needles – ceramic mixture 

gives the highest crush for all concentrations except for 6% where the highest crush is 

observed for the walnut – ceramic mixtures.   

It can be stated that the Al pellets – ceramic is the ideal mixture to be employed 

in the hydraulic fractures from a point of view of crush resistance and pack stiffness.  

Also the pistachio – ceramic mixture provides good results for crush resistance but the 

stiffness response is similar to the walnut – ceramic response.  It needs to be stated that 

crush resistance and pack stiffness is only one part of proppant characterization and the 

final acceptability of a mixture is dependent on its effectiveness of maintaining high 

pack porosity and preventing flowback which needs to be investigated. 

 

 

4.2.4  Results and Discussion: HSP Mixtures 

 

For the baseline tests on HSP sintered bauxite proppants the average percentage 

crush at the applied pressure of 103 MPa or 15000 psi (weight of fractured particles with 

size less than 400 microns related to the original sample weight of 50.0 g) is obtained as 

6.03 % with a maximum of 6.37 % and minimum of 5.48 % with a standard deviation of 

0.48 %.   It can be clearly observed that the HSP proppant pack has a much lower crush 

compared to the LWC pack even at a much higher pressure which is consistent with its 

higher stiffness and strength.  Also the crush is less than 10% which means the pack is 

safe to employ at the 15000 psi closure stress.  The average effective stiffness for the 

baseline tests is calculated to be 7943.46 MPa with a standard deviation of 421.74 MPa, 

the minimum and maximum values are calculated as 7459.9 MPa and 8293.8 MPa 

respectively.  The pack stiffness values are also significantly higher than those of the 
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LWC proppants.  Fig. 4.16 shows the load vs displacement response for the HSP 

baseline and the 10% and 25% Al needles mixture.  The trends here are similar to those 

observed with the ISP proppant mixtures with the stiffness reducing with the addition of 

softer particles.   

For the HSP Al needles mixture, Table. 4.6 presents the average and standard 

deviation of percent crush and pack stiffness.  A significant reduction in effective pack 

stiffness is reported with the addition of softer particles compared to the baseline.  

Observations for crush show that the percent crush is still lower than 10% which is the 

safe limit according to the API RP 60 standards but at 9.46% and 7.38% is higher than 

the baseline crush.  Again, similar to the LWC mixtures at 25% mixture strength crush is 

reduced compared to the 10% mixture but here it is still higher than the baseline.  Table.  

4.7 presents the average and standard deviation data for the HSP and Al sphere/pellets 

mixture.  We again observe a significant decline in the effective pack stiffness.  The 

decline is not as large as observed with the Al needles.  The percentage crush is also 

smaller than the baseline, this is similar to what is observed for the LWC mixtures and 

can be attributed to the shape difference.  A comparison of average crush and average 

stiffness of the LWC and the HSP mixtures is presented in Table. 4.8. 

 

Table. 4.6. Crush and Stiffness data for HSP with Al needle mixture 

 

Al Needles + HSP 

  
Weight percent crush (%) Effective Stiffness (MPa) 

Deformable 
particles by 
weight (%) 

Average Std dev Average Std dev 

10 9.46 0.17 1414.90 57.00 

25 7.38 0.12 531.29 5.21 
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Fig. 4.16. Pressure vs non dimensional displacement Al Needles – HSP mixture 

 

 

Table. 4.7. Crush and stiffness data for HSP with Al sphere mixture 

 

Al Spheres + HSP 

  
Weight percent crush (%) Effective Stiffness (MPa) 

Deformable 
particles by 
weight (%) 

Average Std dev Average Std dev 

10 5.56 0.36 4250.90 371.00 

25 4.51 0.12 2044.20 99.88 
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Table. 4.8. Average crush and stiffness comparison of Al needles and Al spheres 

mixtures with LWC and HSP proppants 

 

 LWC (ceramic) HSP (bauxite) 

 Crush (%) Stiffness 
(MPa) Crush (%) Stiffness 

(MPa) 

Baseline 11.9 2408 6.03 7913.46 

10% Al needles 16.29 894.51 9.47 1414.90 

10% Al spheres 11.14 1865.2 5.57 4250.90 

25% Al needles 12.01 439.38 7.38 531.29 

25% Al spheres 8.60 1434.67 4.52 2044.20 

  
NOTE:  Crush for HSP at 15000 psi or 103 MPa, for LWC crush at 10000 

psi or 68 MPa 

 

 

In both cases for LWC as well as HSP addition of 10% Al needles results in 

increase of percent crush, at the same time a steep decline in pack stiffness is observed.  

In particular the decline is much steeper with the HSP particles.  Even with Al spheres 

we observe a significant decline in pack stiffness for the HSP particles while crush 

remains practically unchanged.  Comparing LWC and HSP it can be argued that addition 

of Al needles or spheres is probably more detrimental to the HSP pack response.   

 

4.2.5  Results and Discussion: Ottawa Sand Mixtures 

 

Fig. 4.17 shows the load vs displacement response for the sand baseline and the 

10% walnut and 10% pistachio mixtures.  The trends here are similar to those observed 

with the LWC proppant mixtures with the stiffness reducing with the addition of softer 

particles.  Again as observed previously pistachio mixtures tend to be slightly stiffer 

compared to the walnut mixtures.  The average stiffness and percent crush for the three 
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sets of sand mixtures and a comparison with the corresponding LWC mixtures is 

provided in Table. 4.9. 

At the applied 7500 psi pressure sand shows significant crush average 33.84 %.  

Addition of 10% walnut or pistachio results in the reduction of percent crush to ~ 25%. 

This value is still significantly larger than the limit of 10%.  Similarly effective pack 

stiffness is reduced with the addition of softer particles but the decline is not as steep as 

the LWC mixtures.  If we compare the load vs displacement response for the baseline 

materials in Fig. 4.11c, 4.16 and 4.17 it is observed that for the three materials softening 

which indicates onset of significant crushing of the particles begins at 40 MPa for LWC, 

60 MPa for HSP and 25 MPa for sand.  This is directly attributed to the strength of the 

base material.  

Comparing the mixtures for the three base materials it is observed that for the 

economically feasible range of 10% soft particles improvement in crush resistance is 

obtained only for sand.  For the LWC and HSP addition of small percent of softer 

particles (in particular Al needles) increases particle fragmentation while significantly 

decreasing the effective pack stiffness.  Again as stated previously the final applicability 

of a mixture rests with its economic feasibility and capability of enhancing flowback 

resistance while maintaining sufficient pack permeability.   

 

Table. 4.9. Average crush and stiffness of baseline sand and 10% walnut and pistachio 

mixtures, also compared with LWC mixtures 

 

  Baseline 10% Walnut  10% Pistachio  

  
Crush 
(%) 

Stiffness 
(MPa) 

Crush 
(%) 

Stiffness 
(MPa) 

Crush 
(%) 

Stiffness 
(MPa) 

LWC 
(ceramic) 11.9 2408 16.23 792.2 11.14 1079 

Sand 33.84 1161.35 25.64 638.54 25.55 669.17 
NOTE:  Crush for Sand at 7500 psi or 51 MPa, for LWC crush at 10000 psi or 68 MPa 
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Fig. 4.17. Pressure vs non dimensional displacement baseline, 10% walnut and 10% 

pistachio – Ottawa sand mixture 
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5  COMPARISON OF EXPERIMENTS AND MODELS:  

CONFINED COMPRESSION 

 
 

In this section polydisperse FEM models for confined compression are compared 

with the crush test results.  Two different models, ie with damage and with fracture form 

the basis in these observations of pressure vs non-dimensional displacement response 

and of particle crush.  The models are also compared to each other from the point of 

view of void space available for fluid flow.  Finally, the effect of particle shape and size 

on the pack response is presented by comparing three 25% pure Al needles – ceramic 

models with small needles, large needles and spheres. 

  

5.1  Models with Ceramic Damage  

 
The pressure vs displacement responses for the four Type-A (walnut – ceramic) 

models (Fig. 3.12, section 3.2) are compared to the corresponding crush test responses 

for LWC mixtures in Fig. 5.1.  It is observed that apart from the 6% mixture the rest of 

the models show a stiffer response than the test data.  This is primarily due to the 

absence of particle fragmentation in the models.  In the tests we observe a sudden 

change in slope of the curves with the onset of particle fracture.  This also causes 

additional particle rearrangement to take place which causes a further change in slope.  

Because we are not simulating particle fracture we only obtain the continuously rising 

curves with increasing stiffness and no sudden change in the slope is observed.  Thus to 

better simulate the crush test response it is imperative to incorporate particle fracture 

which is discussed next. 
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Fig. 5.1.  Pressure vs non-dimensional displacement comparison of Type-A models with 

damage and confine compression/crush tests 

 

 

5.2  Models with Ceramic Fracture – 10% and 25% Walnut 

 

 

The pressure vs non-dimensional displacement plots for the 10% and 25% walnut 

– LWC ceramic mixture are presented in Fig. 5.2.  Computational models incorporated 

element deletion algorithm to simulate fracture in the ceramic particles. In these models 

the ceramic specific gravity is 2.6 compared to 3.6 for models discussed in section 3.  

The initial configuration of the two models prior to loading is displayed in Fig. 5.3a and 

5.3b.  It can be observed that at lower pressures, the model and test responses match 

closely.  At higher pressures, the models tend to diverge from the test response.  In 

contrast to the damage models where the divergence is represented as a stiffer response, 

the present fracture models present a softer response.  This can be attributed directly to i) 

weaker material response from the ceramic particles - the failure strain at 0.8% is 

equivalent to 28 N/m fracture energy which may be less than the actual value for the ISP 

ceramic particle and ii) element deletion that introduces spurious weakness in the model 
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as a deleted element is incapable of carrying load in compression.  Moreover the particle 

pack here is modeled with only 400 particles, as the elements are deleted the number of 

ceramic particles which carry load is reduced.  With a larger model this reduction would 

not significantly alter the total number of particles and hence the load carrying capacity 

of the pack.  In case of the tests even when a large number of particles are fractured the 

total number of particles is large enough to carry the load.  Hence the softening is more 

gradual for the tests while it is more sudden for the models.  Furthermore, the models are 

simulated under 2D plane strain conditions rather than the actual 3D for the test which 

may result in a weaker response.    
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Fig. 5.2. Pressure vs non-dimensional displacement comparison of 10% and 25% walnut 

models with fracture and confine compression/crush tests  
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(a) 

 

 
(b) 

 

Fig. 5.3. Initial configuration prior to compressive loading for (a) 25% walnut – LWC 

ceramic model and (b) 10% walnut – LWC ceramic model 

 

 

Notice that the 10% model shows deviation at much lower pressure from the test 

response in comparison to the 25% model.  This is representative of the higher 

percentage of particle fracture experienced in the 10% model and is consistent with the 

particle crush test data.  It is noted that consistency here is only qualitative and a 

quantitative comparison is not possible for the reasons as stated above which result in a 

weaker response for the models compared to the tests.   

At present in the industry, the information on pack porosity and hence 

permeability is obtained only from very expensive long term conductivity tests.  As 

articulated in section 4.2, the current crush tests also don’t have any provision to address 

pack porosity. One of the advantages computational modeling provides us is the ability 

to predict the porosity in the model based on its deformed configuration as illustrated in 



 100 

the ceramic damage models in section 2 and section 3.2.   Herein the variation in 

porosities of the 25% and 10% fracture models with pressure is compared in Fig. 5.4.  It 

can be observed that even though the 10% model shows higher fragmentation of 

particles it still possesses higher porosity.  Note that the porosity is once again computed 

from image processing of the deformed configuration. The non-dimensional metric is 

created as the ratio of the porous area to the original area occupied by the undeformed 

pack.  It can also be observed that around the point where significant particle fracture 

occurs and the model starts deviating from the test, the 10% model shows a sudden loss 

in porosity.  Thus it can be argued that even though at lower pressures the 10% mixture 

maintains higher stiffness and porosity it could lose its porosity at higher pressures with 

an increase in particle fracture.  The von Mises stress contours for the two models at 33 

MPa, the pressure at which significant particle fragmentation is observed in the 10% 

walnut models are presented in Fig. 5.5a and 5.5b for 10% and 25% walnut models 

respectively.  The higher fraction of fractured ceramic particles is easily observable from 

the two figures.  
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Fig. 5.4. Pressure vs non-dimensional porosity comparison of 10% and 25% walnut 

models with fracture  
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(a) 

 
(b) 

 

Fig. 5.5. Von Mises stress contours at 33 MPa pressure for (a) 10% walnut model with 

ceramic fracture and (b) 25% walnut model with ceramic fracture 

 

 

5.3  Models with Ceramic Fracture – 25% Pure Al  

 

To compare the effect of particle shape and size on pack response in terms of 

stiffness, particle fracture and porosity, three different combinations of pure Al particles 

are considered.  The weight composition of pure Al is maintained at 25%.  The initial 

configurations of the three models are presented in Fig. 5.6a, 5.6b and 5.6c.  These are 

classified as large thick needles ((2.5 - 3.2) X (0.4 – 0.8) mm), small thin needles ((1.7 – 

2.25) X (0.3 – 0.6) mm) and pellets (0.8 – 1.2 mm) diameter.  The pressure vs non-

dimensional displacement response of the three models in comparison to each other and 

the 25% pure Al needles crush test response are presented in Fig. 5.7. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 5.6. Initial configuration for the three 25% pure Al – LWC ceramic models (a) large 

needles (b) small needles and (c) pellets 

 

 

The small needles provide the stiffest response as shown in Fig 5.7.  The large 

needles offer the softest response which matches closely with the test at lower pressures 

prior to the onset of significant particle fracture.  Recall from section 4.2 the dimension 

of the pure Al needles range from (2.5-3.5) X (0.425-0.850) mm which matches closely 

with the dimension of the large needles. 
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The pressure vs non-dimensional porous area response for the three pure Al 

models is presented in Fig. 5.8.  The pure Al models are also compared to the 25% 

walnut model.  It is observed that the three models show almost similar porosity at all 

loads, though the small needles model has the highest porosity of all three and the long 

needles has the least.  The pure Al models also show much higher porosity when 

compared to the 25% walnut model.  Again note the sudden change in porosity at 35-40 

MPa due to the increase in particle fragmentation. In this pressure range, we also 

observe the softening in the pressure vs non-dimensional displacement response of Al 

models.   
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Fig. 5.7. Pressure vs displacement response of 25% pure Al models, comparison to test 

results for 25% pure Al needles 
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Fig. 5.8. Pressure vs porosity comparison for 25% pure Al models and 25% walnut 

model 

 
 

The von Mises stress contours for the three pure Al models at 38 MPa pressure 

are displayed in Fig. 5.9a, 5.9b and 5.9c.  It can be observed that most fragmentation 

takes place for the large needles model while least is observed for the small needles.   

 

 

 
(a) 

 

Fig. 5.9. Von Mises stress contours at 38 MPa pressure for (a) 25% pure Al large needles 

model (b) 25% pure Al small needles model and (c) 25% pure Al pellets model 
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(b) 

 
(c) 

 

Fig. 5.9. Continued 
 
 

 
 

Fig. 5.10. Von Mises stress contour at 38 MPa pressure for 25% walnut model 

 

 

As presented in Fig. 5.10 and Fig. 5.9a, the walnut model shows lower particle 

fragmentation compared to the large needles 25% pure Al model at the same pressure of 

38 MPa.  Similarly comparing the pressure vs non-dimensional displacement plots for 

the two models in Fig. 5.11, we observe that the 25% pure Al large needles model begins 

to diverge from the test response at slightly lower pressure than the walnut model. This 
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is attributed to the larger number of particles fracturing in the large needles model.   

Note, even though the 25% pure Al large needles model shows lower stiffness, it still 

maintains higher porosity. The porosities reported here may be artificially higher at 

higher pressures as the fracture is simulated by employing element deletion which 

results in a loss of volume and consequently in an image will appear as porosity, which 

will not be the case in reality.  Thus at higher pressure we may be getting a higher 

porosity for the pure Al models compared to the walnut models primarily due to element 

deletion.  At lower pressures where the element deletion is still not significant, we can be 

relatively confident with the porosity comparisons. 
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Fig. 5.11. Pressure vs non-dimensional displacement comparison of 25% pure Al large 

needle, 25% walnut model with test data 

 

 

From the above simulation we can observe that the small needles model give a 

better response in terms of stiffness, fracture and porosity compared to the large needles 

model and can be considered for further exploration.  The models need to be expanded 
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to simulate flowback and then a better comparison of different mixtures can be obtained 

from point of view of both flowback and compression to enable us to better screen 

proppant samples. 

In conclusion, the models developed offer meaningful and simple comparisons to 

create different mixtures and screen proppants based on porosity, stiffness and particle 

fracture.  Even though the models do not predict exact values of porosity and fracture 

they can be further developed as an effective and efficient analytical tool.  The models 

can be further improved by exploring the influence of model dimensions i.e. models with 

many more particles.  Better fracture simulation techniques like the XFEM methods with 

no element deletion if available in ABAQUS explicit can definitely improve the current 

models and can better predict pack porosities.  Further, better fracture energy values for 

the ceramic models can lead to improved simulations.  In addition the extension to 3D 

simulations is recommended in the future studies. 
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6  CONCLUSIONS 
 

 
Computational models are developed to tailor the composition and the response 

of proppants under realistic hydraulic fracture loads; compression loading from rock 

faces and transverse fluid drag forces. Complementary experiments are designed and 

conducted to bridge our understanding between laboratory and infield responses 

essential for successful predictions. 

The uniformly sized particle models form the base on which the polydisperse 

models with particle size distribution are developed.  Initially three different mixtures of 

walnut and ceramic particles are considered within a sixty particle model. The pressure 

vs displacement response revealed a nonlinear behavior for this granular pack.  The pack 

stiffness is lower for mixtures with higher percent of softer particles.  A corresponding 

reduction in the pack porosity is also observed.  Stress chains clearly demonstrate how 

the load is transferred within a pack through particle interactions. The harder ceramic 

particles carry most of the load while the softer particles undergo considerable 

deformation. The flowback models display that the formation of a stable arch is essential 

to maintain pack stability. The other variables that are found to increase resistance to 

flowback are as follows: addition of softer particles to a pack, softer rock surfaces and 

higher inter-particle friction.   

The polydisperse models, mixtures of hard (ceramic) and soft (walnut and pure 

aluminum) particles under confined compression are studied to assess the influence of 

different materials, shape and size of the particles on the pack response in terms of 

porosity, pressure vs displacement and particle fracture.  A Matlab code employing the 

random number generation function is developed to assign random particle co-ordinates 

and particle diameters to generate the initial pack configuration.  Two main classes of 

constitutive behavior for ceramic particles are considered a) damage without fracture and 

b) damage with fracture.  The pressure vs displacement response for all the compositions 

showed a continuously stiffening nonlinear behavior.  Pack porosity is reduced with an 

increase in the percentage of softer particles.  For the same percent composition of soft 



 109 

particles, the pure aluminum mixture gives a stiffer response and at the same time 

displays higher porosity than the walnut particle mixture.  Particle rearrangement is 

limited for packs with higher friction which results in a stiffer pressure vs displacement 

response and a more porous pack.       

For the models in class (b), fragmentation of ceramic particles leads to a 

softening in the pressure vs displacement curve.  The response of these models diverges 

from the damage models at higher pressures with increase in fragmentation.  The 

response for the 10% walnut models is stiffer than that of the 25% model, but the former 

shows more particle fragmentation.  Similar observations are noted for the 25% pure 

aluminum model when compared to the 25% walnut model. 

Single particle compression tests on light weight (LWC) ceramic particles are 

conducted to obtain material properties to be incorporated in the FEM models.  Single 

particle compression test results on pistachio shells are observed to be stiffer compared 

to walnut.  Pistachio particles are also observed to possess a more cuboidal shape 

compared to the more rounded walnut shell particles.  The confined compression/crush 

tests are conducted for mixtures with LWC, high strength (HSP) and Ottawa sand as the 

base materials.  The pressure vs displacement curves show three distinct phases 

involving particle rearrangement, consolidation and finally softening due to fracture.  It 

is observed that pistachio-LWC ceramic and pure Al pellets-LWC ceramic mixtures 

display the least amount of particle crush for all compositions.  The pure Al pellets-LWC 

ceramic mixture is the stiffest.   The pure Al needles-LWC ceramic mixture is shows 

maximum crush of all the mixtures for compositions with more than 10% soft particles, 

this is attributed to its longer ellipsoidal shape which results into the disruption of the 

pack and introduces stress concentration in the ceramic particles.  The pistachio mixtures 

are consistently stiffer than the walnut mixtures at all compositions primarily due to 

pistachio’s stiffer response and more cuboidal shape as a single particle.  For all the 

mixtures with increase in composition of softer particles the particle crush is reduced, 

except for the 10% pure Al mixture which shows a slightly higher crush than the 6% 

mixture.  Similarly, the pack stiffness also shows a decline with increase in percentage 
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of softer particles.  Similar results are observed for mixtures with both HSP bauxite and 

Ottawa sand as the base material.   

The pressure vs displacement responses for 10% and 25% walnut-LWC ceramic 

and 25% pure Al-LWC ceramic FEM model all with ceramic fracture are compared with 

the experimental results from crush tests. The FEM and experimental results are in 

agreement at lower pressures with divergence observed at higher pressures.  This is 

primarily attributed to a weaker ceramic post cracking material definition which was 

assumed and not determined experimentally and spurious weakness introduced due to 

element deletion.  Higher crush is observed for the 10% walnut mixture compared to the 

25% walnut mixture which is consistent with experimental observations.  Similarly 

higher particle fracture is observed for 25% large needles pure Al mixtures compared to 

25% walnut mixtures which is also consistent with the experimental observations.  The 

stiffness response of the former is also slightly softer compared to the later which is also 

consistent with the experimental observations.  The increased particle fragmentation for 

the pure Al mixture lowers the pack stiffness.  The pack porosity for 25% walnut 

mixture is found to be lower than that of 10% walnut and the pure Al mixtures.  Thus it 

is concluded that higher pack stiffness and lower fracture does not necessarily result in 

higher porosity.  The effect of particle shape on the stiffness and porosity of the mixtures 

is studied by comparing three distinct shapes for pure Al-LWC ceramic mixture.  The 

short-thin needles provide the stiffest response with the long-thick needles provide the 

softest response.  Comparison of pack porosity does not yield a significant difference for 

each of the three cases.   

These results provide a base for further investigations by which better, more 

efficient particle mixtures can be developed.  The short pure Al needles - ceramic and 

the pistachio - ceramic mixtures are two prime candidates for further investigation.  

Polydisperse models with particle fracture to simulate flowback need to be developed to 

further study the influence of different factors like shape, size and material on flowback 

resistance.  Computational modeling provides us with the means to compare pack 

porosity between different mixture types.  The models can be developed further by 
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incorporating better fracture properties for ceramics.  The models can also be improved 

by introducing larger models i.e. many more particles, 3D modeling and employing 

better fracture simulation techniques.    
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APPENDIX A 
 

For the proppant problem which is studied here the modeling of interaction 

between a large number of discrete particles plays an important role.  Contact modeling 

involves two basic aspects a) contact detection and b) contact interaction.  Contact 

detection includes determining possible contact surfaces in a computationally efficient 

manner and tracking their relative motion.  Contact interaction follows contact detection 

and it includes evaluation of contact forces between two surfaces [18, 80].  Here a brief 

summary of contact in ABAQUS explicit and its implementation in the input file is 

provided.   

In case of ABAQUS explicit two algorithms are available to model contact 

interaction.  In case of contact pair algorithm, possible surface pairs which can contact 

each other need to be identified as part of model or history definition.  A second 

algorithm is the general contact algorithm which allows for a much simplified definition 

of contact surfaces.  In case of general contact a single surface can span multiple 

unconnected bodies.  The contact is then defined as a self contact for this single surface, 

self contact of a single surface over multiple unconnected bodies automatically 

incorporates contact between discrete bodies and self contact for a single body.  

ABAQUS explicit allows for two different algorithms for contact detection and tracking, 

a small-sliding algorithm which is available only with the contact pair algorithm and a 

second finite-sliding algorithm which is available in both the algorithms.   

Small-sliding algorithm assumes that there is relatively little sliding of the 

contacting surface against each other.  In case the problem is geometrically nonlinear 

then this tracking approach allows for large rotation, but it is still assumed that a 

designated slave surface node will always interact with the same area of the master 

surface during the entire duration of the analysis.  With a finite-sliding algorithm the two 

contact surfaces are allowed to undergo arbitrary relative separation, sliding and rotation.  

The contact constraints change with tangential motion of the contacting surfaces.   

In case of general contact in ABAQUS explicit, finite-sliding is the default 

algorithm.  The contact discretization of the contact pair surfaces follows a surface-to-
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surface discretization approach.  With this approach contact conditions are enforced in 

an average sense or regions near a slave node which are approximately centered on the 

slave nodes rather than only at an individual slave node.  The contact constraints still 

consider one slave node predominantly but they also consider the adjacent slave nodes.  

With this approach some penetration may be observed but large penetrations of the 

master surface into the slave surface which might go undetected do not occur.  The 

direction of the contact normal is an average of the slave surface in the region around a 

slave node.  From the point of view of contact pressures and stresses surface-to-surface 

discretization provides more accurate results compared to the node-to-surface 

discretization.  A smoothing effect is observed with the former approach as penetration 

is resisted in an average sense over a finite region of the slave surface. 

ABAQUS explicit employs two algorithms to enforce contact constraints and to 

calculate contact forces.  The Kinematic contact algorithm is only available with the 

contact pair approach.  The general contact approach enforces contact constraints using 

the penalty contact algorithm.  With this approach a slight penetration of the master 

surface into the slave surface is allowed.  The algorithm first searches for penetrations of 

nodes into the faces in a given configuration and then an opposing force which is 

dependent on the penetration distance is applied to the slave and master surfaces to 

oppose the penetration.  The force is applied as a distributed load on the nodes forming 

the contact faces.  In case of general contact a balanced master-slave approach is 

employed for contact constraint enforcement.  With this approach the two contacting 

surfaces are alternatively considered as master and slave and contact forces are 

computed twice accordingly.  Finally a weighted average of the two values is applied as 

a resultant contact force on both the surfaces.  The weighting depends on the defined 

weighting factor specified for the surfaces; the default is to weight the two sets equally.  

The penalty parameter can be considered to be as equivalent to that of elastic spring 

stiffness and can be both linear and nonlinear.  This stiffness for general contact is 

chosen automatically by ABAQUS explicit and is dependent on the stiffness of the 

underlying element.  As values of penalty stiffness increase the penetration is reduced 
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but it can lead to a decrease in the stable time increment.  One of the advantages of 

penalty approach over the kinematic contact is that energy is not dissipated for the 

former.  With the kinematic approach for coarse meshes the energy dissipation is 

significant.  The advantage of hard kinematic approach over the penalty approach is that 

no penetration of the slave surface is allowed into the master surface, though the master 

can have some penetration for a coarse slave surface.  General contact considers element 

based surfaces hence it becomes relatively easy to define contact on newly generated 

surfaces because of element deletion.  It also has built in smoothing to for element based 

surfaces for better contact enforcement at corners.  One limitation of general contact is 

its limitation to 3D surfaces for ABAQUS explicit.  From an implementation perspective, 

the keywords necessary to implement general contact as part of model definition and 

their sequence are presented below.  The first set describes the application for non-

eroding surfaces i.e. no particle fracture.  

 

*SURFACE INTERACTION, NAME=FRIC 

*FRICTION 

 0.3, 

*CONTACT 

*CONTACT INCLUSIONS, ALL EXTERIOR 

*CONTACT PROPERTY ASSIGNMENT 

 ,  , FRIC       

 

Note, here the first two lines represent contact property definitions mainly the 

coefficient of friction (here 0.3) which is implemented as a form of Coulomb friction in 

ABAQUS explicit.  The keyword *Contact defines general contact.  All Exterior, as the 

definition includes all the external faces of elements in the domain for contact interaction 

and enforcement.  Finally the contact property defined earlier is assigned to the defined 

contact domain. 
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For the general contact if an appropriate interior surface is defined then the 

contact region can evolve based on the failure of external surface elements which 

exposes the underlying element faces.  General contact considers a face for defining 

contact only if its underlying element has not failed.  Once an element fails, its faces and 

edges are removed from the analysis the contact domain is modified by defining the 

contact surface on the face of the newly exposed element.  The keywords listed below 

first define an interior surface and then define an evolving general contact based on 

element deletion.  Here the interior surface is defined in the interior of element set 

Ceramic and assigned a name surf1. 

 

*SURFACE, TYPE = ELEMENT, NAME = surf1 

 , 

Ceramic, interior 

*SURFACE INTERACTION, NAME = FRIC 

*FRICTION 

 0.3, 

*CONTACT 

*CONTACT INCLUSIONS 

, 

, surf1 

surf1, 

*CONTACT CONTROLS ASSIGNMENT, NODAL EROSION = YES 

*CONTACT PROPERTY ASSIGNMENT 

 ,  , FRIC               

 

 

 

.   
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APPENDIX B 

 

In the research presented in here ceramic particles are modeled using a) concrete 

damage plasticity model and b) concrete brittle cracking model.  Here a brief overview 

of both these models as described in the Abaqus explicit v 6.8.3 user’s manual is 

provided.  Ceramic is generally considered to be a brittle material but in certain cases 

has been reported to show a quasi-brittle response with a rising R-curve [70, 77].  Also 

the Abaqus user’s manual states that though the two models have been developed 

primarily to simulate reinforced and unreinforced concrete they can be used to model 

quasi-brittle material like certain ceramics and rocks.  The response of concrete, rock or 

ceramic type quasi-brittle materials differs from those of the classically brittle materials 

like cast iron or glass which fracture almost immediately as the proportionality limit is 

reached.  For the quasi-brittle materials the stress reduces gradually once the peak is 

reached.  The failure strains are still small generally less than 1% [81].  The onset of 

fracture occurs when the stress strain curve reaches its peak while the gradual reduction 

of the slope represents a reduction in stiffness due to progressive cracking.   

 

Concrete Damage Plasticity 

 

In this model the inelastic behavior of ceramic is modeled using the concepts of 

isotropic damaged elasticity combined with isotropic tensile and compressive plasticity.  

The two main failure modes considered here are tensile cracking and compressive 

crushing of the concrete material. The responses for this model in tension and 

compression are presented in Fig. B1 and B2.  Under uniaxial tension the stress initially 

rises linearly until the failure stress is reached.  From this point onwards the stress 

reduces continuously due to the formation of micro cracks and is represented as a 

softening stress-strain response.  This results in strain localization in the structure.  

Under uniaxial compression the stress-strain response is initially linear until it reaches 

initial yield stress.  From here on we obtain a stress-hardening response in the stress-
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strain curve which is again due to the formation of diffused micro cracks in the structure 

parallel to the loading direction.  Beyond the ultimate stress the compressive response 

displays a softening stress-strain curve.  Note that the reason for stress-strain softening is 

micro cracking which is represented as permanent plastic deformation.    

 

 
Fig. B1. Response of concrete damage plasticity model under uniaxial tension 

 

 
Fig. B2. Response of concrete damage plasticity model under uniaxial compression 
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ABAQUS converts the stress-strain curves above into stress vs plastic strain 

curves.  It can be observed that whenever a specimen is unloaded from a point on the 

softening portion of the stress-strain curve it loses its stiffness.  This degradation of the 

elastic stiffness is represented by two damage variables dc and dt for compression and 

tension respectively.  These are functions of plastic strains, temperature and field 

variables.  The values of the damage variables range from 0 (undamaged) to 1 (complete 

loss of strength).   If E0 is the initial undamaged elastic modulus the stress-strain 

relations under uniaxial tension and compression are given by 

 

σt = (1 – dt)*E0*(εt – εt
pl)     ……………………………………… (b1) 

σc = (1 – dc)*E0*(εc – εc
pl)     ……………………………………… (b2) 

 

The effective compressive and tensile cohesive stresses are defined as follows.  These 

two stresses determine the size of the yield or failure surface.    

 

σte = σt /(1 – dt) = E0*(εt – εt
pl)   ……………………………………… (b3) 

σce = σc /(1 – dc) = E0*(εc – εc
pl)    ……………………………………… (b4) 

 

The post failure behavior for concrete model is defined in ABAQUS in terms of 

post failure stress vs cracking strain data.  Cracking strain (εt
ck) in tension is defined in 

Fig. B1.  Cracking strain is equal to the total strain minus the undamaged elastic strain of 

the specimen (εt
ck = εt – εt0

el).  The undamaged elastic strain is defined as εt0
el = σt/E0.  

The unloading data if available are provided to ABAQUS in terms of tensile damage – 

cracking strain curves, (dt - εt
ck).  ABAQUS then converts the cracking strain value to 

plastic strain using the following relationship.  The plastic strain can then be employed 

to determine the cohesive stresses and yield surface. 

 

εt
pl = εt

ck – [dt/(1-dt)*(σt/E0)]      ……………………………………….. (b5)   
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It has been observed that with unreinforced structures a stress-strain post failure 

data gives spurious mesh sensitivity.  The recommended practice is to define the post 

failure data in terms of fracture energy (Gf).  There are two approaches to this one is to 

define fracture energy directly while the other is to define the data in terms of stress-

crack opening.  This approach eliminates mesh sensitivity as the crack opening is 

independent of specimen size.   

As with the tension data the compressive post failure data is provided in terms of 

stress vs inelastic compressive strains (εc
ck).  Note that positive values are used to define 

the stress strain response in compression.  The inelastic compressive strain is defined as 

a subtraction of total compressive strain and the undamaged compressive strain, (εc
ck = εc 

– εc0
el).  And the compressive undamaged elastic strain is defined as, εc0

el = σc/E0.  As 

with tension the inelastic compressive strain is converted to the plastic compressive 

strain. 

 

Εc
pl = εc

ck – [dc/(1-dc)*(σc/E0)]      ……………………………………….. (b6)       

 

The concrete damage plasticity model assumes nonassociated plastic flow with 

the flow potential being the Drucker-Prager hyperbolic function.  Furthermore the yield 

function employed is the one takes into account the different evolution of strength under 

tension and compression. 

The implementation of this material model in ABAQUS input file for the models 

described in section 3.2 with ceramic damage is presented below.  Note that here we 

have not defined the softening behavior in compression, and the tension softening is 

defined in terms of stress-displacement relationship. 

 

*MATERIAL, NAME=ceramic 
 
*DENSITY 
3.6000E-06,0.0        
 
*ELASTIC, TYPE = ISOTROPIC 
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259000.0    ,0.2      ,0.0 
 
*CONCRETE DAMAGED PLASTICITY 
 36.31 
 
*CONCRETE COMPRESSION HARDENING 
 500.0, 0.000 
 
*CONCRETE TENSION STIFFENING, TYPE=DISPLACEMENT 
 180.0         ,0 
 100.4393     ,0.0066185 
 60.0305     ,0.012286 
 50.73463    ,0.0173427 
 40.855      ,0.022019 
 30.92472    ,0.0264718 
 20.63082    ,0.0308088 
 10.76349    ,0.035105 
 5.1821     ,0.0394138 
 1.792388   ,0.0437744 
 00.531154   ,0.0482165 
 
*CONCRETE TENSION DAMAGE, TYPE=DISPLACEMENT 
 0          ,0 
 0.381217   ,0.0066185 
 0.617107   ,0.012286 
 0.763072   ,0.0173427 
 0.853393   ,0.022019 
 0.909282   ,0.0264718 
 0.943865   ,0.0308088 
 0.965265   ,0.035105 
 0.978506   ,0.0394138 
 0.9867     ,0.0437744 
 0.99177    ,0.0482165 

 

Cracking Model for Concrete 

 

This model is designed for applications where the behavior is primarily 

dominated by tensile cracking.  The compression response is assumed linear elastic.  As 

with the previously discussed model the tensile response rises linearly until it reaches the 

failure stress after which a softening stress-strain response is observed.  The post failure 
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softening is defined by default via a stress vs cracking strain plot.  An important 

distinction from the concrete damage plasticity model is that there is no permanent 

deformation on unloading from the softening region of the stress strain curve.  As before 

a smeared crack approach is used to model the crack and individual crack is not tracked.  

The presence of crack is modeled as stiffness degradation of an element which is defined 

in the post failure material definition.  The crack is assumed to form when the maximum 

principle stress in tension exceeds the failure stress of the material. 

As for the previous model the tension stiffening is defined in terms of stress vs 

cracking strain data.  Again this can lead to mesh sensitivity and hence it is 

recommended to provide the data in terms of either the fracture energy Gf or in terms of 

stress – displacement data.   

One advantage of this model is the ability to specify brittle failure for the model.  

At a particular material point of the model as the displacement or strain reaches a critical 

value the material point is considered to have failed and the stress in that element is set 

to zero.  In certain cases such an element can undergo significant deformation and can 

result in a premature termination of the analysis, to overcome this issue the failed 

element can be removed from the mesh.  This may result in a weaker response for the 

material as a deleted element is incapable of transmitting compressive stresses which is 

possible for an open crack.   

The implementation of this model for the ceramic fracture models is shown 

below.  Note that in our simulations we assumed a linear stress-strain softening response 

with 0.008 as the failure strain. 

 

*MATERIAL, NAME=ceramic 
 
*DENSITY 
2.6000E-06,0.0        
 
*ELASTIC, TYPE = ISOTROPIC 
80000.0    ,0.2      ,0.0 
 
*BRITTLE CRACKING 
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180.0,0. 
0.,0.008 
 
*BRITTLE SHEAR 
1.,0. 
0.,0.008 
 
*BRITTLE FAILURE 
0.008    
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APPENDIX C 
 

 

Here the Matlab code employed to obtain the initial random particle distribution 

is attached.  The code is used to model the walnut-ceramic particle system.   

 
% 2D rectangle 26*8 and starts at (0,0)  

% Particle average diameters (soft)for a total of 400 particles 

% Smaller 

D=0.6; 

% Larger 

DL=1.1; 

% Dimension of the box 

L=26; 

W=8; 

% Specification of diameter range 

fac=0.6*D; 

fac1=0.333*D; 

fac2=0.333*D; 

xmin=(0+fac);% u ca 

xmax=(L-fac); 

ymin=(0+fac);% u ca 

ymax=(W-fac); 

dmin=(D-fac1); 

dmax=(D+fac2); 

dlmin=(DL-0.2*DL); 

dlmax=(DL+0.2*DL); 

min=[xmin;ymin]; 

max=[xmax;ymax]; 

% Total number of particles 

np=400; 

% Defining variables 

X=zeros(1,np); 

Y=zeros(1,np); 

K=zeros(1,np); 

% Specification of diameter variation "rand" function 

d=dmin+(dmax-dmin)*rand(1,1); 

r=d/2; 

K(1,1)=d(1,1); 

% Specifying random variation in co-ordinates 

x=min+(max-min).*rand(2,1); 

X(1,1)=x(1,1); 

Y(1,1)=x(2,1); 

%Calculation for number of small and large particles approximate 

%for a required composition here 10% by weight 

comp=0.1; 

rhocer=2.7; 

rhowal=1.25; 

m1wal=pi*(DL^2)*rhowal/4; 
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m1cer=pi*(D^2)*rhocer/4; 

%number of ceramic particles 

nc=(1-comp)*np*m1wal/((1-comp)*m1wal+comp*m1cer) 

%number of walnut particles 

nw=np-nc 

  

% Generation of particles and check for interference  

i=2; 

k=0; 

while i<=np 

     

    if i<=abs(nw+1) 

    d=dlmin+(dlmax-dlmin)*rand(1,1) 

    r=d/2; 

    K(1,i)=d(1,1) 

    R(1,i)=r(1,1) 

    D1=K' 

    end 

    if i>abs(nw+1) 

        d=dmin+(dmax-dmin)*rand(1,1) 

        r=d/2; 

        K(1,i)=d(1,1) 

        R(1,i)=r(1,1) 

        D1=K' 

    end 

    x=min+(max-min).*rand(2,1); 

    X(1,i)=x(1,1) 

    X1=X' 

    Y(1,i)=x(2,1) 

    Y1=Y' 

    

     

    for j=1:i-1 

        dist=(X(1,i)-X(1,j))^2+(Y(1,i)-Y(1,j))^2; 

        l=(sqrt(dist)); 

        M=((K(1,i)/2+K(1,j)/2)); 

        k=k+1; 

        if l<=M 

            m=1; 

            k1=k; 

             

            break; 

        else 

            m=0; 

        end 

    end 

    if(m==0) 

        i=i+1; 

        k1=k 

        L(1,j)=l(1,1) 

        

        

    end 

end 
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    save 10pcwt_Econoprop_Dia.txt K -ASCII; 

    save 10pcwt_Econoprop_X.txt X -ASCII;  

    save 10pcwt_Econoprop_Y.txt Y -ASCII; 

for i=1:np 

    plot(X(1,i),Y(1,i)) 

    hold on; 

end 

 

%Particle Modeling - writing the ABAQUS macro script based 

%on particle diameters and co-ordinates 

 

file_1 = fopen('10pcwt_Econoprop_400_circ.txt','w') 

a=importdata('10pcwt_Econoprop_Dia.txt'); 

b=importdata('10pcwt_Econoprop_X.txt'); 

c=importdata('10pcwt_Econoprop_Y.txt'); 

 

for i=1:np 

    k=a(1,i)/2; 

    l=b(1,i); 

    m=c(1,i); 

    n=i+1; 

    

    fprintf(file_1,'    s1.CircleByCenterPerimeter(center=(0.0, 0.0), 

point1=(0.0, %g))\n',k) 

    fprintf(file_1,'    s1.move(vector=(%g, %g), objectList=(g[%g], 

))\n',l,m,n) 

     

% Plot randomly generated circles in Matlab 

   

theta = linspace(0,2*pi,100);  

yl = k*sin(theta)+ m; 

x2 = k*cos(theta)+ l; 

 

plot(x2,yl,'b') 

hold on; 

axis equal    

end 

 

Note that, the above code was initially developed by Udaya Bhanu Sunku, of the 

Department of Aerospace Engineering, Texas A&M University for a class project.  The 

original code was modified with changes introduced to model polydispersity, modify 

particle spacing and introduce elliptical particles. 
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APPENDIX D 

 
 

Non-linear geometry condition is related to the change in the stiffness response 

of a model following its deformation in an analysis.  This occurs when magnitudes of 

displacement are large enough to affect the structural response.  The three main causes 

of Geometric nonlinearity as discussed in the ABAQUS/ Standard User’s Manual [23] 

are: 

 Large deflections or rotations. 

 Snap through. 

 Initial stresses or load stiffening. 

An example of Geometric nonlinearity is that of a fishing rod undergoing large 

deflections, buckling of a column or the snap through of a large panel.  In general as per 

ABAQUS/ Standar User’s Manual [23] whenever the strains exceed a value of ~ 5% 

non-linear geometry needs to be incorporated into the analysis.  The Figure 90 below 

shows an example of effect of large deflection on a cantilever beam. 

 

 

 
 

Fig. D. Large deflection in a cantilever beam 
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In this case the tip of the cantilever beam undergoes a considerable axial 

deflection in addition to its transverse deflection.  Thus the effective moment arm of the 

force is reduced (a < L) and hence the beam tends to give a stiffer response to additional 

deflection.  This non-linear response because of change in model geometry under 

loading is an example of Geometric nonlinearity. 

Geometric nonlinearity can be incorporated in an ABAQUS analysis by 

including the NLGEOM parameter with the *STEP option.  This option takes into 

account the higher-order terms in the strain-displacement relations shown below.  With 

this option incorporated the loading is incremental and the element stiffness matrix is 

updated at all the iterations.  All the elements in ABAQUS have the ability to use a non-

linear formulation.  The element output is true stress and logarithmic strain. 
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Note that, the same discussion for geometric nonlinearity is presented in the 

Appendix of [59], which was part of my MS thesis. 
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APPENDIX E 

 

Material nonlinearity arises when the stress/ strain response follows a non-linear 

curve.  In this case the stress response is dependent on strain and does not follow a linear 

relationship.  Nonlinear material properties can be both elastic and plastic.  As discussed 

in ABAQUS/ Standard User’s Manual [23] the non-linear elastic properties include 

hyperelasticity, viscoelasticity, hypoelasticity etc.  The inelastic properties include 

classical metal plasticity, rate dependent yield, anisotropic yield and creep, porous metal 

plasticity, cast iron plasticity, extended Drucker-Prager plasticity and creep, clay 

plasticity, crushable foam plasticity, concrete etc.   

The classical metal plasticity is used to describe the yield and inelastic flow of 

metals at low temperatures where the creep effects are not important and loading is 

monotonic.  The Mises or Hill yield surfaces associated with plastic flow are used in 

ABAQUS.  Two definitions for work hardening are available, perfect plasticity and 

isotropic hardening both of these are described in Fig. E(a) and E(b). 

 

 
(a) Elastic Perfectly Plastic                   (b) Elastic Plastic Hardening 

 

Fig. D. Stress strain relationship for (a) elastic perfectly plastic and (b) plastic with 

hardening 

Stress 
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Perfect plasticity implies that the yield stress is invariant with strain.  With 

isotropic hardening the size of the yield surface changes uniformly in all directions, 

hence the yield stress increases or decreases in all directions uniformly as plastic 

straining takes place.  Isotropic yielding is defined using the Mises yield surface.  

Classical metal plasticity can be incorporated in ABAQUS using the *PLASTIC card 

with the *MATERIAL option.  The data for hardening behavior is incorporated as a true 

stress, and plastic strain data in a tabular format or by defining the yield stress in a user 

subroutine UHARD.   

ABAQUS interpolates linearly between the input data points to obtain the 

material response and assumes that beyond the final data point the response is constant.  

Thus with an elastic perfectly plastic definition, stress in any element cannot exceed the 

yield stress and straining at a constant stress value takes place beyond this point.  PEEQ 

(equivalent plastic strain) which is a scalar variable is used to represent a material’s 

inelastic deformation.  A PEEQ value greater than zero indicates material has yielded.  

PEEQ is defined by the following equation [23]. 

 

0
0

2
:

3

t

pl pl pl pldt                     (D1) 

 

 Here 
0

pl

  is the initial equivalent plastic strain defined by the *INITIAL 

CONDITIONS option. 

Note that, the same discussion for metal plasticity is presented in the Appendix 

of [59], which was part of my MS thesis. 
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