
  

SIMULATION AND ECONOMIC SCREENING OF IMPROVED OIL 

RECOVERY METHODS WITH EMPHASIS ON INJECTION PROFILE 

CONTROL INCLUDING WATERFLOODING, POLYMER FLOODING AND A 

THERMALLY ACTIVATED DEEP DIVERTING GEL 

 

 

A Thesis 

by 

TOBENNA DANIEL OKEKE 

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

 

May 2012 

 

 

Major Subject: Petroleum Engineering 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simulation and Economic Screening of Improved Oil Recovery Methods with Emphasis 

on Injection Profile Control Including Waterflooding, Polymer Flooding and a 

Thermally Activated Deep Diverting Gel 

Copyright 2012 Tobenna Daniel Okeke  



  

SIMULATION AND ECONOMIC SCREENING OF IMPROVED OIL 

RECOVERY METHODS WITH EMPHASIS ON INJECTION PROFILE 

CONTROL INCLUDING WATERFLOODING, POLYMER FLOODING AND A 

THERMALLY ACTIVATED DEEP DIVERTING GEL 

 

A Thesis 

by 

TOBENNA DANIEL OKEKE  

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

Approved by: 

Chair of Committee,  Robert H. Lane 

Committee Members, Hisham A. Nasr-El-Din 
 Yuefeng Sun 
Head of Department, Stephen A. Holditch 

 

May 2012 

 

Major Subject: Petroleum Engineering 



 iii 

ABSTRACT 

 

Simulation and Economic Screening of Improved Oil Recovery Methods with Emphasis 

on Injection Profile Control Including Waterflooding, Polymer Flooding and a 

Thermally Activated Deep Diverting Gel. 

 (May 2012) 

Tobenna Daniel Okeke, B.S., Drexel University 

Chair of Advisory Committee: Dr. Robert H. Lane 

 

The large volume of water produced during the extraction of oil presents a 

significant problem due to the high cost of disposal in an environmentally friendly 

manner. On average, an estimated seven barrels of water is produced per barrel of oil in 

the US alone and the associated treatment and disposal cost is an estimated $5-10 billion. 

Besides making oil-water separation more complex, produced water also causes 

problems such as corrosion in the wellbore, decline in production rate and ultimate 

recovery of hydrocarbons and premature well or field abandonment.  

Water production can be more problematic during waterflooding in a highly 

heterogeneous reservoir with vertical communication between layers leading to 

unevenness in the flood front, cross-flow between high and low permeability layers and 

early water breakthrough from high permeability layers. Some of the different 

technologies that can be used to counteract this involve reducing the mobility of water or 

using a permeability block in the higher permeability, swept zones.  



 iv 

This research was initiated to evaluate the potential effectiveness of the latter 

method, known as deep diverting gels (DDG) to plug thief zones deep within the 

reservoir and far from the injection well. To evaluate the performance of DDG, its 

injection was modeled, sensitivities run for a range of reservoir characteristics and 

conditions and an economic analysis was also performed. The performance of the DDG 

was then compared to other recovery methods, specifically waterflooding and polymer 

flooding from a technical and economic perspective.  

A literature review was performed on the background of injection profile control 

methods, their respective designs and technical capabilities. For the methods selected, 

Schlumberger’s Eclipse software was used to simulate their behavior in a reservoir using 

realistic and simplified assumptions of reservoir characteristics and fluid properties. The 

simulation results obtained were then used to carry out economic analyses upon which 

conclusions and recommendations are based. These results show that the factor with the 

largest impact on the economic success of this method versus a polymer flood was the 

amount of incremental oil produced. By comparing net present values of the different 

methods, it was found that the polymer flood was the most successful with the highest 

NPV for each configuration followed by DDG.  
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NOMENCLATURE 

 

    mass per unit surface density accumulated during the current time step,   ; 

F, net flow rate into neighboring grid blocks; 

Q, net flow rate into wells during the current time step; 

     non-linear residual error for each fluid component 

      volumetric flow rate of phase p in grid block, j, 

    , transmissibility factor of the grid block which is a function of the wellbore radius, 

skin, and the x- and y- dimensions and directional permeabilities of the grid block, 

    , the mobility of the phase and is a function of its relative permeability, viscosity 

and formation volume factor in the grid block, 

  , nodal pressure in the grid block, 

  , bottom hole pressure of the well, and  

   , wellbore pressure head between the grid block and the bottomhole datum depth 

  is the block pore volume 

  , water saturation 

  , water saturation 

  ,   , are the rock and water formation volumes 

  ,     rock formation and water densities 

     water relative permeability 

     oil relative permeability 



 vii 

      is the effective viscosity of the water or polymer when a = w or a = p 

  , relative permeability reduction factor for the aqueous phase due to polymer retention 

  , water pressure 

g, acceleration due to gravity 

  , the cell center depth 

    water production rate 

    liquid production rate 

    polymer concentration in the aqueous phase and, 

  
 , polymer adsorption concentration 

 , porosity 

    , dead pore space within each grid cell 

  (  )  mixture polymer concentration in solution 

    polymer concentration in solution 
 
 , Todd-Longstaff mixing parameter 
 
HL, High Perm Layer on top of Low Perm Layer 

LH, Low Perm Layer on top of High Perm Layer 
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I INTRODUCTION 

1.1 Problem Description 

 

 Highly permeable layers within a heterogeneous reservoir can distort the flood 

front of a waterflood. These layers, often referred to as thief zones, essentially divert 

injection water causing early breakthrough at the production well and reducing the 

effectiveness of the waterflood project with regards to oil recovery. The high volumes of 

water produced present an expensive challenge in light of the need for environmentally 

friendly methods of disposal, cost of equipment needed for separation and treatment and 

reduction in oil production, ultimate recovery and field life. On average, an estimated 

seven barrels of water is produced per barrel of oil in the US (three barrels of water per 

barrel of oil worldwide) with the annual cost of its treatment and disposal estimated at 

between $5 – 10 billion (Seright et al. 2003). 

Currently, waterflooding is responsible for over 50% of all oil recoveries in the 

world oil fields, for instance 60% of BP’s oil production in 2007 came from water floods 

and this was set to increase to 80% by 2010. (Morgan 2007) Typically by the time this 

method reaches its economic limit, which usually occurs at some predetermined water-

cut, roughly half to two-third of the original oil in place is still left in the ground (Brown 

et al. 2003). 

 
 
 
 
_______________ 
This thesis follows the SPE Style Guide. 
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 Some of the methods used to address this problem have included the use of 

mechanical plugs, cement squeezes and polymer gels at the injection and production 

wells to shut off the thief zones. These methods are limited though because their 

effectiveness is restricted to the near-wellbore region with little or no effect on the 

injection profile deep within the reservoir in those reservoirs where cross-flow is 

possible. One promising method that has yielded consistent sound results has been the 

use of polymer floods. 

 Polymer floods work by increasing the viscosity of the injected water and 

reducing its mobility with respect to the oil it is displacing. This in turn reduces the 

effect of highly permeable zones on the flood front and allows for a more efficient 

sweep. While this method is technically sound, its cost-effectiveness is often an issue 

due to the quantities of polymer needed, capital costs of polymer blending equipment 

and decreased injectivity (thereby decreasing drive fluid throughput and reservoir 

pressure support).  

 An alternative approach that requires much less chemical and equipment 

investment was developed based on the concept of forming a permeability block in the 

thief zones at some distance from the injection wellbore. The block would then divert 

flow into lower permeability unswept areas to mobilize previously bypassed oil. The 

early technology to form the block was through the use of a low viscosity polymer 

solution containing aluminum citrate as cross-linker which was designed to set and form 

a diverting gel far from the injection well.  

This class of gel was called a Deep Diverting Gel (DDG), and the specific system 

just described was called the Colloidal Dispersion Gel. (Mack et al. 1994) More 
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recently, a different approach to applying DDG has been developed as evidenced by 

patents and work done by the referenced authors. (Chang 2006, 2007; Frampton et al. 

2004; Pritchett et al. 2003) This system is an internally cross-linked polymer consisting 

of sub-micron sized particles. Some of the internal cross-links are relatively permanent, 

while others contain ester groups that can hydrolyze. This arrangement allows the 

particles to swell to many times their initial size when the ester cross-linking groups 

hydrolyze. The expansion is triggered over time and accelerated by increased 

temperature.  

A number of articles have been published on the successful application of this 

type of DDG (Fethi et al. 2010; Husband et al. 2010; Mustoni et al. 2010; Ohms et al. 

2009; Yanez et al. 2007) but to our knowledge, it has as yet not been comprehensively 

compared with polymer flooding and waterflooding in terms of recovery and economics 

in any open literature. 

1.2 Research Objectives 

 

 The primary question being addressed by this research is to determine whether 

in-depth profile modification using a thermally activated deep diverting gel is a better 

alternative to polymer flooding both technically and economically when faced with 

excess water production. This was done by modeling the DDG injection process as well 

as a polymer flood using a reservoir simulator, Schlumberger’s Eclipse (Schlumberger 

2010). 

An outline of the objectives of this research is listed below: 
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   Model the injection and application of thermally activated Deep Diverting Gels 

(DDG) in a heterogeneous reservoir to predict performance using 

Schlumberger’s Eclipse simulation software. 

   Build simulation models of water and polymer flooding methods using the same 

base conditions as in the DDG model to compare performance. 

   Run sensitivities for a range of conditions such as permeability contrast between 

layers, varying fluid viscosities and permeability drop at DDG activation site. 

   Perform an analysis comparing economics and recoveries due to the use of 

DDG versus continued water flood and polymer flood. 
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II LITERATURE REVIEW 

 

This chapter examines the existing methods of reservoir sweep improvement 

during waterflooding and reduced water production through the use of polymer floods 

and gel placement with a view of giving the reader a better understanding of the 

processes. 

2.1 Water Production 

 

The reasons for reduced sweep efficiency and increased water production will be 

presented and typically include mechanical problems usually as a result of casing 

integrity issues, completion problems – most commonly channels behind the casing, 

coning and poor frac jobs – and finally reservoir heterogeneity-related problems. This 

last includes dual porosity problems such as naturally fractured and karstified reservoirs, 

and heterogeneous matrix problems (the subject of this study). 

In reservoirs with permeability variations between contacting layers, channeling 

can occur between an injector and a producer when hydrocarbons are swept faster from 

the high permeability layer and subsequently, injected water gets preferentially 

transported through it without sweeping the layers with lower permeability.  

Other factors such as depleted hydrocarbon reserves and coning due to vertical 

pressure gradients near the wellbore drawing water from lower zones toward the well 

can contribute to excessive water production (Seright et al. 2003). 
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2.2 Injection Profile Modification Methods 

 

As mentioned in the introduction, various methods have been employed to 

address the thief zone problem in waterfloods, with the focus here being on the use of 

polymers to modify flow profiles.  

Attempts have been made to control the injection profile in the near wellbore 

region with mechanical plugs, cement squeezes and injecting polymer gels but because 

their area of influence is fairly limited, typically no more than 15 feet (5 meters), these 

methods are unable to exert much control over reservoir flow. 

2.2.1 Gel Placement 

 

Research has also been done on the use of polymer gels to reduce flow through 

high permeability zones while diverting injected fluids into the lower permeability 

hydrocarbon-bearing layer(s). The low-viscosity gels are added to the injected water at 

some point after early breakthrough and designed such that gelation occurs farther in the 

layer with higher permeability than in the lower permeability zone thereby improving 

areal and vertical sweep efficiencies. This way the injected water gets diverted to the 

lower permeability layer. This of course depends on the presence of vertical 

communication, that is, cross-flow between the layers. (Sorbie et al. 1992) Where such 

communication does not exist, the gels may be successfully placed closer to the injection 

well and in only the high permeability layer (Bai et al. 2004). 

These gels are often referred to as deep diverting gels due to their ability to go 

deep into the reservoirs in highly permeable zones and only a shallow distance into the 
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lower permeability zones before gelling and creating resistance to flow. In the past, they 

have generally consisted of a polymer solution cross-linked with chromium acetate or 

aluminum citrate. In one of the early forms of this gel, the Colloidal Dispersion Gels 

(CDG), the concentrations of both components are kept low by design to retard their 

reaction kinetics enough that they gel in-situ at some distance from the point of injection.  

However, this process has been controversial with the accuracy of presented lab 

and field results called into question. Claims of successful application of CDG by Tiorco 

in the Daqing Field in China (Chang et al. 2006) and Argentina’s Loma Alto Sur  Field 

(Muruaga et al. 2008) among others, have been refuted and found inconclusive. In his 

work, Seright concluded that the benefits attributed to CDG could be explained by other 

more plausible concepts and that the claims by Tiorco and other supporters of this 

process are untenable. (Sorbie et al. 1992) Further lab studies on the propagation and 

gelation of CDG were also ambiguous with findings suggesting results similar to those 

obtained by polymer floods. (Ranganathan et al. 1998) Variables like gelling time, gel 

strength and depth of penetration are too easily influenced by factors such as shear 

stresses, the geochemical characteristics of the reservoir as well as adsorption and the 

subsequent dilution of the gel during placement. Some other limitations are the limited 

range of effectiveness whereby sweep efficiency is restricted to the region penetrated by 

the gel and no further. The applicable viscosity and resistance factors must also be small 

enough for the gelant to stay within the highly permeable zones without penetrating the 

lower permeability layers.  

One misconception about these gels and blocking agent was that they exclusively 

targeted and penetrated highly permeable zones in a reservoir. More research has 
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however shown that penetration does occur in the lower permeability layers with an 

accompanying permeability reduction that may sometimes be even greater than in the 

highly permeable layers. (Seright et al. 2011) Viscous fingering in the high perm zone 

has also been shown to occur when water is injected after the gel has formed. This is 

because as the gel penetrates the less permeable layers, it hardens and creates a barrier to 

flow thus forcing injected water to create pathways through the gelant bank in the highly 

permeable layer. 

A proposed correction involves reducing the viscosity and resistance factor of the 

gelant being used and adding a water injection step between its injection and when 

gelation occurs. This intermediate step is to ensure that there is room between the rear of 

the gelant bank being formed in the high permeability layer and the front of the bank 

formed in the adjacent lower permeability zones. The lowered viscosity and resistance 

factors minimizes gel penetration from the high permeability zone into the adjacent 

layers while the spacing created by the water post-flush creates a pathway for water to 

flow into the less permeable zones. This process is shown below in Figures 1 – 4 in 

which the higher permeability layer is above the low permeability layer.  
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Figure 1: Injection of a low viscosity gel 
 
 
 

 

Figure 2: Injection of water post-flush to create pathways 
 
 
 

 

Figure 3: Gelation 
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Figure 4: Water Injection after gelation 
 
 
 
            Gelant   Water   Oil  Gel 
 
 

2.2.2 Polymer Flooding 

 

Polymer flooding is another process designed to provide technical advantages 

over waterflooding. The advantage which is of particular relevance to this study is its 

improvement in areal and vertical sweep efficiency and more efficient oil displacement. 

(Mungan 1970) These can be attributed to two fundamental concepts of polymer 

flooding which control the effect it has on the mobility ratio of the injected water and 

recoverable oil and the penetrated depth.  

The first effect is that the efficiency of oil displacement increases as the viscosity 

of the displacing agent (here polymer-treated water) increases leading to the lowering of 

its mobility ratio. This lowering can be particularly beneficial when the reservoir is 

highly heterogeneous in the vertical direction with cross-flow between layers (Akanni 

2010).  

The second is that for a given distance of viscous fluid penetration into a high 

permeability zone, the distance of penetration into less permeable zones becomes greater 
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with increased viscosity of the injected fluid. With this then, vertical sweep efficiency 

becomes more uniform across layers with different permeabilities. (Seright 2010) While 

in-depth permeability reduction is not achieved with polymer flooding, the method does 

result in greater volumetric sweep efficiency and oil recovery.  

Among the limitations of the polymer flooding process are the sensitivity of 

polymer to salinity, temperature, shear and biological degradations and the high 

production costs associated with attempts to circumvent these shortcomings. Injectivity 

issues are also a major concern at high viscosities and it is typical for the maximum 

usable viscosity to be limited to between three and ten times that of the injected water, 

with a maximum resistance factor of about 10 (Frampton et al. 2004). 

In 1996, the cost of the incremental oil was estimated at between $8 to 10 per 

barrel with more recent estimates from the Daqing Field in 2002 putting this cost at 

$9.34 per barrel for polymer flooding versus $9.42 for continued waterflooding. This 

lower cost was due to the high incremental recovery of 12% OOIP, a production rate that 

was four times higher than with the waterflood and a five-fold reduction in the water oil 

ratio (Demin et al. 2003). 

2.2.3 Deep Diverting Gels 

 

The deep diverting gel that will be studied and compared to waterflooding and 

polymer flooding was the result of a research project undertaken in 1997. This was a 

joint venture between Mobil, BP and ChevronTexaco, also known as MoBPTeCh who 

agreed to share the costs of the research and development of an effective DDG. Their 

primary objective was to develop a time-delayed, highly expandable polymer-based gel 
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to improve reservoir sweep efficiency of waterflooding. (Pritchett et al. 2003) Nalco 

Exxon (later Ondeo Nalco) Energy Services was brought on at some point during the 

development phase as their associate manufacturing company.  

The gel is characterized as a specially designed, long-chain, temperature-

sensitive polymer that is formulated by its manufacturers to produce sub-micron size 

particles made up of tightly-bound tangles of polymer. Its behavior has been likened to 

that of popcorn in that it would move freely through the rock matrix along with the 

injection water until a reservoir trigger causes some of the particles’ internal crosslink 

bonds to break, thus allowing the particles to absorb water and swell in size to block the 

thief zone pore throats. 

This material, with the commercial product name Bright Water™, is a highly 

cross-linked, sulfonate-containing poly-acrylamide micro-particle whose conformation is 

constrained by labile and stable internal cross-links. The particles, called kernels, are 

applied in the constrained state but at a designed temperature, de-crosslinking occurs and 

they expand. These kernels are prepared using an inverse emulsion polymerization 

process and have diameters ranging from about 0.1 to 3 microns. The temperature 

required for activation depends on the chemical structure of the cross-linker, and its 

stability gives the particles conformational integrity even after expansion. These polymer 

particles can also be prepared by the cross-linking achieved during the ester formation 

between the polymer’s pendant carboxylic acid and hydroxyl groups. The esterification 

process could be through azeotropic distillation or thin film evaporation. After 

preparation, these particles can then be individually dispersed into the injection water in 

a high shear environment and using surfactants (Frampton et al. 2004). 
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The thermal front caused by the temperature differences between injected water 

and the reservoir is the basis of this DDG’s activation. The thermal front generally lags 

behind the waterflood injection front; the characteristics and location of this front can be 

computed from heat transfer equations or modeled with a computer simulator that 

contains a thermal function. In addition to the thermally-triggered particles, systems that 

rely primarily on time without major temperature changes were also developed although 

these are not the focus of this research. Figures 5 and 6 below illustrate the DDG 

treatment process.  

 
 

 

Figure 5: Reservoir before DDG Treatment 

Water into injection 
well 

Water/oil mixture from 
production well 
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Figure 6: DDG Activation showing diversion of water 
 
 
 

After the laboratory stage of preparation was completed, a series of field trials 

were carried out with the first being in Chevron’s Minas Field in Indonesia. This field 

trial was run with the objectives being to assess the application of the DDG and verify 

that significant volumes could be injected at a viscosity close to that of water and 

penetrate deep within the reservoir before expanding at a pre-designed interval. 

(Pritchett et al. 2003) This was done by conducting injection tracer studies before and 

after treatment as well as bottom hole pressure fall off tests. These objectives were 

satisfied without raising the injection pressure or blocking the injection well bore. 

Other trials have been completed both offshore and onshore, and in reservoirs 

with different permeabilities, porosities and temperatures, proving the versatility of this 

 

 

 

Water into injection 
well 

Oil from 
production well  
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material. The trials have yielded varying levels of technical and economic success 

(Husband et al. 2010; Ohms et al. 2009).  

While it can be concluded that this DDG can be successful in some cases, it has 

not been conclusively compared to polymer flooding. This research will try to find out 

which of the methods is the better alternative, either in terms of recovery or economics 

and how reservoir characteristics such as permeability contrast between layers, viscosity 

of fluids or cost of materials used affects the outcome.  
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III RESERVOIR MODELING 

 

3.1 Simulator 

 

 Schlumberger’s Eclipse 100 was used for all simulations in this research. This 

choice was in part due to its use in previous attempts to address this topic (Akanni 2010; 

Seright et al. 2011) and the desire to ensure that a similar approach with regards to 

software used was taken. In this way, any differences in results would be due to the 

assumptions made by the user and not the underlying algorithms and calculations 

employed by the software. Eclipse 100 is described as “a fully-implicit, three phase, 

three dimensional, general purpose black oil simulator” which uses non-linear equations 

in material balance equations during simulation runs. The underlying equations used in 

the software are presented in the relevant sections below with the purpose being to aid in 

understanding how the results were derived. 

3.1.1 Black Oil Fully Implicit Solutions 

 

 In this method, the non-linear residual error for each fluid component,     in the 

mass balance equations is computed in each grid block as a function of pressure and 

saturations at each time step and is given as; 

    
  

  
     

where, 

dM is the mass per unit surface density accumulated during the current time step, dt; 

F is the net flow rate into neighboring grid blocks; 
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Q is the net flow rate into wells during the current time step; 

and       

3.1.2 Well Inflow Performance 

 

 The inflow performance relationship used by Eclipse is given in terms of 

volumetric flow rate of each phase in the production fluid, i.e. oil, water, polymer etc. at 

stock tank conditions. It is written as: 

                           

where 

     is volumetric flow rate of phase p in grid block, j, 

     is the transmissibility factor of the grid block which is a function of the wellbore 

radius, skin, and the x- and y- dimensions and directional permeabilities of the grid 

block, 

     is the mobility of the phase and is a function of its relative permeability, viscosity 

and formation volume factor in the grid block, 

   is the nodal pressure in the grid block, 

   is the bottom hole pressure of the well, and  

    is the well bore pressure head between the grid block and the bottom hole datum 

depth 
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3.1.3 Polymer Flood Model 

 

The polymer option was enabled in Eclipse for polymer flood simulations and 

implements a fully implicit, five component model that includes, oil, water, gas, polymer 

and brine. In this model, there is no gas as mentioned above and brine was assumed to be 

absent as well. The equations for the flow of a standard waterflood with polymer added 

are given below as: 

       
 

  
(
   

    
)  ∑[

    

          

           ]     

        
 

  
(
      

    
)  

 

  
(     

 
   

 
)

 ∑[
    

          

           ]         

                  

where 

  is the block pore volume 

   is the water saturation 

  ,    are the rock and water formation volumes 

  ,    are the rock formation and water densities 

  is the transmissibility 

    is the water relative permeability 

       is the effective viscosity of the water or polymer when a = w or a = p 

   is the relative permeability reduction factor for the aqueous phase due to polymer 

retention 
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   is the water pressure 

g is the acceleration due to gravity 

   is the cell center depth 

   is the water production rate 

   is the polymer concentration in the aqueous phase and, 

  
  is the polymer adsorption concentration 

  is the porosity and 

     denotes the dead pore space within each grid cell 

This model includes representations of increases in the viscosity of the injectant 

upon addition of polymer as well as the losses in polymer solution viscosity that occurs 

as a result of non-Newtonian shear at high flood velocities. The effective viscosity of a 

fully mixed polymer solution is given as a function of mixture polymer concentration in 

solution,   (  ), the Todd-Longstaff mixing parameter,   and the polymer 

concentration in solution,    and is written as: 

         (  )
 

   
    

The effective water viscosity is also calculated in an analogous manner. 
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3.2 Reservoir Description 

 

 The reservoir conditions used in generating the base case model are listed below. 

Some of these assumptions such as well spacing are based on commonly observed 

practice while others are to reduce complexity such as the use of two layers instead of 

three or more.  

 The field under study is fictitious. A base case model was developed first and 

used in the waterflooding component of this research. Changes were then made 

to this model and used in modeling the DDG and the polymer flood. 

 A quarter of a 5-spot well spacing, as is commonly used with waterflooding, was 

used with one producer and one injector placed diagonally on opposite corners of 

the square. 

 The reservoir has two layers of equal thickness and porosity penetrated 

completely by both wells and with vertical communication between layers. The 

layers have different permeabilities. 

 The only fluids present are oil and water with no aquifer support. 

 The effects of capillary pressure are negligible. 

 Each layer as modeled is homogeneous. 
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3.2.1 Base Reservoir Model 

 

The Black-Oil, fully implicit solution method was used in Eclipse 100 to model 

the performance predictions and solve the governing equations for the simulation’s 

results of the three recovery methods. The grid blocks describing the XYZ-directions 

were 44 x 44 x 16 and described a 10-acre area of dimensions 660 ft x 660 ft by 60 ft. 

This grid configuration was chosen to accurately represent the regions under 

consideration while keeping resource allocation of time and processor requirement 

manageable. 

 The injection well was placed in the cell (1, 44, 1) and the producer in cell (44, 1, 

1) with both perforated in all grid blocks in the vertical (Z) direction to ensure direct 

contact with the entire thickness of the reservoir as shown in the figure below. Both 

wells are controlled by assigned liquid rate and bottomhole pressure limits. 
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Figure 7: Reservoir model grid 

 
 
 Table 1 below shows the input data used to describe the base case reservoir 

model’s initial conditions and PVT properties. This base model will be modified for both 

the polymer flood and the DDG cases with any changes stated when made. 

 
 
Table 1: Reservoir Model Input Data 

Start Date 1/1/2000 

Reservoir thickness, ft 60 

Reservoir length, ft 660 

Depth, ft 8000 

Areal extent, acres 10 

XY High Permeability, md 1200 

XY Low Permeability, md 100 
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Table 1 Continued 
Z High Permeability, md 100 

Z Low Permeability, md 10 

XYZ Porosity, fraction 0.25 

Oil API 34.2 

Oil viscosity, cp 2.0 

Oil formation volume factor, rb/stb 1.01 

Oil saturation, fraction 0.8 

Water viscosity, cp 0.7 

Water formation volume factor, rb/stb 1.0 

Connate water saturation, fraction 0.2 

Rock Compressibility, psi-1 5.00E-06 

Water Compressibility, psi-1 3.03E-06 

Water injection rate, bbl/day 500 

Liquid production rate, bbl/day 500 

Number of grid blocks 44 x 44 x 16 

Production well location 44, 1, 1-16 

Injection well location 1, 44, 1-16 

Economic limit 0.95 WCT 

Reservoir Temperature, F 210 

Injected water temperature, F 70 

Rock specific heat, btu/ft3.F 25 
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Table 1 Continued 
Oil specific heat, btu/lbm.F 0.5 

Water specific heat, btu/lbm.F 0.95 

 
 
 
3.2.2 Polymer Flood Model 

 

 The polymer viscosity was specified as a function of polymer concentrations in 

the injected water by applying a multiplier to the water viscosity that ranged from 1 to 

100 for concentrations from 0 to 0.70 pounds per barrel. Polymer adsorption was kept 

low to maximize effectiveness of the flood. A Todd-Longstaff mixing parameter was 

used to model the degree of segregation of the polymer solution and the injection water 

at the trailing edges of the slug with 1.0 being used to indicate that the polymer and 

water in the relevant grid cells are fully mixed. This also helps minimize polymer loss 

which typically occurs at the leading edges of the polymer slug where stripped water 

banks are created when there is poor mixing. 

 The polymer flood was timed to commence when the base case water flood 

reached a water-cut of 85%. Polymer injection was performed for a period of time that 

closely approximated breakthrough time and its injection rates were calculated by 

applying an upper limit on the allowable bottom-hole pressure at the injection well. This 

was done to accommodate the drop in injectivity during the period the polymer is being 

injected due to the increased viscosity of the drive fluid (Seright 2010).  

 At low flow rates, polymer floods typically exhibit Newtonian or near-

Newtonian characteristics and viscosity remains relatively constant and depends only on 
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polymer concentration. This behavior has been supported by Seright’s findings in the 

paper above. As flow rates increase however, polymer molecules begin to break up and 

viscosity reduces, first reversibly and then irreversibly as rates further increase. The 

default model Eclipse uses focuses on the shear thinning of polymer and calculates 

polymer viscosity based on shear rates which it assumes is proportional to flow 

viscosity.   

3.2.3 DDG Model 

 

The development of the model used to simulate the performance of the DDG was 

based on the mechanism of its treatment which can be separated into three different 

steps: 

1. The particles are injected into the formation with the injection water. As with the 

polymer flood, this was set to commence when a watercut of 85% was reached in 

the base case waterflood. In this step, the particles are inert and still sub-micron 

sized. This was the basis for assigning the same viscosity and injectivity as water. 

2. The sub-micron sized particles are transported through the reservoir in the 

waterflood. Since the particle slurry has the same viscosity as the water, most of 

it is also diverted to the thief zones. To avoid loss of particles during this 

propagation and maximize efficiency, the adsorption and retention of the 

particles onto the rock pore walls was designed to be negligible. 

3. The particles reach the design temperature and ‘pop’, i.e. the internal crosslinks 

break and the particles expand and absorb water, effectively blocking the throats 

of the pores they are travelling through. At this point, the permeability of the 
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cells predetermined to be occupied by the DDG slug are reduced from 1200 to 

40md in the X and Y direction and from 100 to 10 md in the Z-direction. The 

slug was set to form only in the watered out high permeability zone again 

assuming ideal behavior and maximum utility. 

 Eclipse does not currently have the functionality to model the application of the 

DDG in one simulation, i.e. by coupling running the base case simulation to a designated 

water-cut or time-step and seamlessly reducing the permeabilities of specified grid blocks 

then continuing to the project’s economic limit. It does however allow the above 

described scenario to be broken into two steps whereby the DDG simulation can import 

the reservoir conditions such as saturations and pressure as well as the results of the 

previously run base case waterflood from time zero up to a predetermined time-step using 

Eclipse’s RESTART function. In the second step, the modified properties (permeability) 

replace the original values and the run continues to the economic limit. 

 The time-step at which this occurs is determined by first modeling the thermal 

front in the base case waterflood using the simulator’s TEMP keyword. The temperatures 

of the cells are then calculated and outputted as a function of time. Energy balance 

equations are solved after the flow equations at each time-step to calculate the 

temperature in each grid block. The results of these are then used to modify fluid 

viscosities as functions of temperature for subsequent time steps. 

In practice, the transit time and temperature profile between the wells would be 

determined to identify the location the bulk of the DDG would go then it would be 

designed to activate at that temperature. This transit time is then added to the time-step at 
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which 85% water-cut occurs to get the actual time-step at which reservoir parameters 

from the base case are to be imported. For instance, if a water-cut of 85% occurs after 

1000 days of production and it takes 400 days for the waterflood to travel from the 

injection well to the zone of interest, the time step at which the DDG simulation begins 

would be after 1400 days. This approach is of importance in accurately comparing the 

technical performance and economic value of DDG to those of waterflood and polymer 

flood. 
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IV RESULTS AND DISCUSSION 

 

 The simulation results for the three different methods will be presented and 

discussed below from the time the water-flood reaches 85% water-cut. This is of 

particular importance in evaluating the performance of each method from the same 

starting point. The base case will be described and modifications made to its 

configuration and relevant properties within each method as well as the effects these 

changes had on results.  

4.1 Water Flooding 

 

This method served as the base case and will be simulated using two 

configurations; one with the high permeability layer on top (H-L) and the second with it 

on the bottom (L-H). As expected, the high permeability layer watered out quickly 

causing injected water to preferentially flow through it and leading to high water 

production. Figures 8 and 9 below use oil saturation in the reservoir at breakthrough to 

illustrate this. In both cases, the high permeability layer has very little oil left while the 

lower permeability layer still contains a considerable amount yet to be recovered.  

 

Table 2: Results from Waterflood Simulation at 85% Watercut 

 
Oil (MSTB) Water (MSTB) Life (Years) RF 

HL 424 398 4.50 43.13% 

LH 393 398 4.33 40.06% 

 

 



29 
 

 

Figure 8: HL Reservoir Oil Saturation at breakthrough 
 
 
 

 

Figure 9: LH Reservoir Oil Saturation at breakthrough 
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Breakthrough occurs at about the same time in both configurations but as can be 

seen in Figure 10, the project reaches the economic limit of 95% water-cut about 500 

days sooner when the high permeability layer is on top. Table 2 above shows that from 

the start of the waterflood to 85% watercut, oil recovery is higher in the H-L case due to 

gravity causing the denser water to slump into the low permeability layer thereby 

enhancing sweep efficiency. This is also the reason why the watercut in the L-H 

configuration is steeper than in the H-L.  

 Incremental oil production is however about 11,000 barrels lower in the H-L run 

from 85 – 95% watercut due to the fact that there is less oil to recover in its high 

permeability layer so recovery efficiency drops. On the other hand, about 250,000 

barrels more water is produced in the L-H case.  

 
 

 

Figure 10: Waterflood – Watercut 
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4.2 Polymer Flooding 

   

 Polymer was injected into the reservoir starting when the corresponding 

waterflood base cases, i.e. for the H-L and L-H configurations reached 85% water-cut. 

The polymer concentration used in the base case was 1000 ppm (0.35 lb/stb). Injection 

went on until breakthrough of polymer was observed at the production well at which 

point a waterflood post-flush was restarted. 

 As expected, improving the mobility ratio caused better sweep efficiency which 

in turn led to increased oil recovery and a reduction in water production. Due to its 

impact on mobility ratio, an increase in recovery over waterflooding of 121,000 and 

112,000 barrels in the H-L and L-H configurations respectively was observed with 

corresponding reductions in water production of 62,000 and 345,000.  

4.3 Deep Diverting Gel 

   

 The figures below show the incremental oil and water production rates when the 

DDG is used as well as the effect this method has on water-cut. These results are 

compared to those from the other two methods. As can be seen in Figure 11 below, when 

the DDG ‘pops’, there is a sharp decline in water-cut resulting in a decrease in water 

production and an increase in oil recovery. The effect of cross-flow is particularly 

highlighted by the difference in results for the H-L configuration versus the L-H. Oil 

recovery is higher than in the waterflood case with the figures below highlighting the 

increases in recovery of 2.30 % for the HL and 1.80 % for the LH arrangement. Water 

production is also better controlled as can be seen in Figure 20 where the total water 
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produced with this method is lower than in the other two methods for the HL and LH 

configurations respectively. 

 

 

Figure 11: Base Cases – Watercut 
 
 
 

The figures below show the oil saturations of the three methods at different 

watercuts. Figures 13 – 15 show each method at 90% watercut while Figures 16 – 18 

shows the oil saturations at 95% water-cut. As we can see, the DDG treatment and 

polymer flood improve sweep efficiency through the life of the project. Figure 14 shows 

the water being diverted into the low permeability layer over the plug formed close to 

the production well. From Figure 18, due to its more effective piston-like displacement 

of oil, we can conclude that the polymer flood leaves less oil in the less permeable layer 

than the DDG treatment at the end of the project at 95%.  
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Figure 12: Waterflood [LH] – Oil Saturation at 85% Watercut 
 
 
 

 
 
Figure 13: Waterflood [LH] – Oil Saturation at 90% Watercut 
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Figure 14: DDG [LH] – Oil Saturation at 90% Watercut 
 
 
 

 

Figure 15: Polymer flood [LH] – Oil Saturation at 90% Watercut 
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Figure 16: Waterflood [LH] – Oil Saturation at 95% Watercut 
 
 
 

 

Figure 17: DDG [LH] – Oil Saturation at 95% Watercut 
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Figure 18: Polymer flood [LH] – Oil Saturation at 95% Watercut 
 
 
 

 

Figure 19: Base Cases – Incremental Oil Production 
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Figure 20: Base Cases – Incremental Water Production 
 
 
 

 
 
Figure 21: Base Cases – Project Life 
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4.4 Sensitivity Analysis 

 

 In order to assess how polymer flood and DDG performed under different 

conditions, variables such as permeability reduction at the DDG’s activation site, 

polymer concentration and oil viscosity were modified.  

4.4.1 Permeability Reduction 

  

 In this run, the permeability at the plugged site was reduced to 0 from 1200 md in 

the DDG model to simulate an ideal case. Recovery was only slightly improved from the 

case where the permeability was reduced to 40 md in the plugged cells with an increase 

of less than 2000 barrels. Water production was however reduced by about 155,000 

barrels with production time reduced by about 300 days. It is however unrealistic to 

expect the permeability to drop completely to 0 md as no literature was found to support 

this. Work done by Frampton (2004) and Husband (2010) suggests that the reduction can 

be expected to range between 11 and 350 times that of the original value. 
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Figure 22: DDG – Incremental Oil Production with 0 md Block 
 
 
 

 

Figure 23: DDG – Incremental Water Production with 0 md Block 
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4.4.2 Polymer Concentration 

  

 To get a better idea of the effect of the concentrations used on polymer floods 

performance, simulations were performed at concentrations of 285 ppm (0.10 lb/stb), 

600 ppm (0.21 lb/stb) and 1500 ppm (0.525 lb/stb). For both H-L and L-H arrangements, 

oil recovery increased slightly at the higher concentration with more marked reductions 

observed as concentration was reduced. Water production was however more 

substantially reduced at 1500 ppm. 

 
 

 

Figure 24: Polymer Flood – Oil Production at Different Concentrations 
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Figure 25: Polymer Flood – Water Production at Different Concentrations 
 
 
 

 

Figure 26: Polymer Flood – Project Life at Different Concentrations 
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4.4.3 DDG Production Pressure 

  

 One of the assumptions made in the DDG process is that the viscosity of the 

added slurry be as close to that of water as possible. As such the pressure responses at 

the injection and production wells are only slightly different from the base case 

waterflood. To better compare this method to the polymer flood, it was decided to 

artificially increase the pressure drop at the production well in the DDG runs to simulate 

the drop observed during polymer flood. This was done by reducing the injection rate in 

one set of simulations by 100 barrels per day while keeping production rate constant and 

increasing the liquid production rate by the same amount in a second with injection rate 

held constant. 

Oil recovery increased 90 – 96 % in the H-L configuration and by 60 % in the L-

H arrangement compared to the DDG base case results. This was however followed by 

increases in project life of 3 to 4 years and in water production ranging from 60 – 90 % 

for both configurations. 
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Figure 27: DDG – Oil Production with lowered Production Pressure 
 
 
 

 

Figure 28: DDG – Water Production with lowered Production Pressure 
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Figure 29: DDG – Project Life with lowered Production Pressure 
 
 
 
4.4.4 Oil Viscosity 

 

 The oil viscosity in the H-L layer configuration was increased from 2 cp to 10 cp 

and 100 cp in all three methods. The waterflooding model was run first to obtain the 

time at which 85% water-cut was reached. As expected, with an even worse mobility 

ratio, sweep efficiency was poorer and water production started earlier with the water-

cut increasing faster than in the base case. These new times were used to determine the 

new time it would take the DDG to reach the activation site and to begin injection in the 

Polymer flood for the 600 ppm, 1000 ppm and 1500 ppm models. Figures 30 – 32 show 

the results of these runs.  
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Figure 30: Incremental Oil Production for 10 and 100 cp Oil 
 
 
 

 

Figure 31: Incremental Water Production for 10 and 100 cp Oil 
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Figure 32: Project Life for 10 and 100 cp Oil 
 
 

As can be seen in the figures above, DDG performed better in terms of oil 

recovery at higher viscosities when compared to polymer flood than in the base case. 

This however came at the cost of much higher water production relative to polymer 

production. 

4.4.5 Polymer Flood Pressure Control 

 

 Two approaches to polymer flooding are commonly recognized with the first, 

and approach taken here, being to inject and produce at the maximum allowable rates. 

(Wang et al. 2008) The second approach is one involving a strategy of long term 

sustainable development whereby production rate is controlled by reducing injection 

rates to prolong the oil production period.  
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 With this in mind, simulations were carried out where the production rate was 

kept equal to, or as close to the injection rate. This approach also reduces the pressure 

drop observed at the producer well and across the reservoir to more closely simulate the 

pressure profile observed during the DDG treatment. 

 The results show that for this reservoir, matching injection rates to production 

rate besides extending the field life leads to reduced oil production and NPV both of 

which, while lower than the results from the approach that favors maximizing 

production, are still higher than those from the DDG treatment.  

 
 

 

Figure 33: Oil Production when QL = Qi 
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Figure 34: Water Production when QL = Qi 
 
 
 

 

Figure 35: Project Life when QL = Qi 
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4.4.6 Calculation of Polymer Viscosity 

 

 As previously stated, the default model in Eclipse used to calculate polymer 

viscosity in the base case focuses on the shear thinning behavior of polymers. The 

assumption may prove to be invalid in heterogeneous reservoirs such as ours with 

regions of different permeability in that shear rate would be higher in low permeability 

rock than in high permeability rock. Seright also stated that an overly optimistic 

injectivity may be calculated if shear thinning is assumed for HPAM polymer. Results 

were therefore verified using the Herschel-Bulkley model which calculates viscosity as a 

function of rheology, flow rate, pressure drop along a given length, and rock properties 

such as permeability and porosity. 

 The figures below show the results using both models for the LH configuration 

of the polymer flood. Figure 36 shows the calculated polymer viscosities in the low and 

high perm layers at the midpoint between the injection and production well for the base 

case polymer flood. The difference between the viscosities calculated using the two 

methods is negligible and this is also reflected in the production rates and field life with 

slightly higher differences observed with the highest viscosity polymer. 
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Figure 36: 1000 ppm PF Viscosity using Default & Herschel-Bulkley Models 
 
 
 

 
 
Figure 37: PF [LH] Oil Production using Default & Herschel-Bulkley Models 
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Figure 38: PF [LH] Water Production using Default & Herschel-Bulkley Models 
 
 
 

 
 
Figure 39: PF [LH] Field Life using Default & Herschel-Bulkley Models 
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The tables below shows the results, i.e. oil and water production rates, the project 

life and recovery factors of simulations performed. 

 

Table 3: Results from H-L Simulations 

 
Oil (MSTB) Water (MSTB) Life (Years) RF 

WF 80 879 5.25 51.3% 

DDG 103 719 4.50 53.6% 

DDG' (0 md) 105 564 3.67 53.8% 

DDG (↓Qi) 201 1,142 8.25 63.7% 

DDG (↑QL) 195 1,225 7.17 63.0% 

PF (285 ppm) 104 625 4.00 53.7% 

PF (600 ppm) 170 909 5.92 60.4% 

PF (1000 ppm) 201 816 5.75 63.6% 

PF (1500 ppm) 224 461 7.08 65.9% 

PF (1000 ppm) QL = Qi 175 723 6.25 61.0% 

 
 
 
Table 4: Results from L-H Simulations 

 Oil (MSTB) Water (MSTB) Life (Years) RF 

WF 122 1,126 6.83 52.5% 

DDG 139 698 4.58 54.3% 

DDG (↓Qi) 222 1,211 8.83 62.7% 

DDG (↑QL) 221 1,341 7.92 62.6% 

PF (285 ppm) 154 788 5.17 55.7% 

PF (600 ppm) 204 890 6.00 60.8% 

PF (1000 ppm) 234 780 5.75 63.8% 

PF (1500 ppm) 239 605 7.25 65.4% 

PF (1000 ppm) QL = Qi 195 659 6.42 59.9% 

 
 
 
Table 5: Results from 10 cp Oil Simulations 

 
Oil (MSTB) Water (MSTB) Life (Years) RF 

WF 126 1,534 9.08 41.2% 

DDG 161 1,331 8.17 44.9% 

PF (600 ppm) 184 621 4.42 47.1% 

PF (1000 ppm) 224 555 4.50 51.3% 

PF (1500 ppm) 259 649 6.50 54.8% 
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Table 6: Results from 100 cp Oil Simulations 

 
Oil (MSTB) Water (MSTB) Life (Years) RF 

WF 66 772 4.58 21.5% 

DDG 113 1,042 6.33 26.5% 

PF (600 ppm) 112 369 3.33 26.2% 

PF (1000 ppm) 129 333 3.67 27.9% 

PF (1500 ppm) 151 448 4.83 30.1% 
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V ECONOMICS 

 
 In this section, the primary objective is to compare the polymer flood to the DDG 

treatment method in terms of value and economic feasibility using the Net Present Value 

of each configuration as a yardstick. The model used to perform this analysis was 

developed using Microsoft Excel® and kept simple and flexible to allow for any 

modifications that needed to be made.  

The input data, i.e. oil and water production, water injection and quantities of 

DDG and polymer used will be imported starting from the time-step immediately after 

the base case reaches 85% water cut. This assumes then that all activity up to that point 

is a sunk cost. 

To measure the profitability of each method required taking the cost of capital 

into consideration by calculating the Present Value of future cash flows at each monthly 

time-step. This was done by applying a discount factor derived from the annual interest 

rate for the cost of capital to the net cash flow per period after operating costs and taxes 

had been deducted. 

NPV is therefore given by 

    ∑{          [
 

(  
 
  

)
 ]} 

where                                         
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 Revenue was calculated by multiplying the oil produced by the assumed price of 

crude oil. The operating costs included assumed values for a monthly fixed cost, the 

costs associated with injecting water and its disposal, the cost of polymer; here 

Hydrolyzed Polyacrylamide HPAM and the DDG. Table 6 below includes the values 

used for these calculations. The operating costs, except the cost of the DDG, were taken 

from a recent economic analysis on polymer flooding and data from polymer flooding 

operations in the Daqing Oil Field in China. (Alusta et al. 2011; Demin et al. 2003) The 

price of the DDG is a conservative estimate based on industry prices for other similar 

complex polymers. The economics of both methods will be impacted by the price of 

chemicals and water handling costs which, while reasonable estimates based on market 

prices, are still assumptions. Two additional scenarios were considered where the prices 

of polymer and the DDG were changed and these will be discussed below. 

 
 
Table 7: Economic Analysis Input Data 

Effective Starting Date January 2000 
Oil Price ($/bbl) 50 

CAPEX ($) at 85% WCT 
- Waterflooding 
- Polymer Flood 
- DDG 

 
- 0 
- 250,000 
- 25,000 

Production Tax Rate (%) 12.50 
Fixed Operating Costs ($/month) 1750 

Abandonment ($) 50,000 
Water Injection ($/bbl) 2.00 
Water Disposal ($/bbl) 2.00 

Discount Rates (%) 10 
Variable Oil Cost ($/bbl) 0.05 

Polymer Cost ($/lb) 1.50 
DDG Cost ($/lb) 3.00 
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5.1 Waterflooding 

 

 These results are for the two different layer arrangements and constitute the base 

case for each of these configurations as used in the DDG treatment and polymer 

flooding. The monthly incomes and annualized economic variables are presented below. 

The steady decline in cash flow reflects the decreasing production of oil and steady high 

water production. 

 
 

 

Figure 40: Waterflooding – Monthly Income 
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5.2 Polymer Flooding 

 

 The results for the polymer simulations in both the H-L and the L-H arrangement 

are given below for the concentrations under study. These results are compared to those 

obtained from the waterflooding simulations at the end of this section. It should be 

pointed out that the amount of polymer injected is constrained by the polymer 

concentration in the injected solution, given in pounds per barrel of water injected. The 

price of the polymer remained the same at different concentrations because it was 

assumed that the type of polymer being used remained the same with the only change 

being in the concentrations and amount used. 

Injection only starts after a water-cut of 85% is reached with an initial negative 

cash flow when the CAPEX for the polymer flood facilities and equipment are added. 

Income begins to increase as the improvement in sweep efficiency leads to improved oil 

recovery. The accompanying reductions in water injection and production also help to 

increase cash flow. The loss incurred by the cost of the polymer needed was however 

offset by the returns obtained as oil production increased.  
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Figure 41: 1000 ppm Polymer Flood – Monthly Income 

 

5.3 Deep Diverting Gel 

 

 One of the key steps in performing an economic analysis on the DDG treatment 

was estimating the amount of the polymer to be used. This was performed using a rule of 

thumb proposed by the DDG supplier which relates the amount of DDG to the effective 

pore volume of the thief zone to be blocked. A treatment size of 3% of this pore volume 

was recommended and a supply concentration of polymer between 1.5 – 1.7 % 

(Roussennac et al. 2010). 

Therefore in our case where by the time 85% water-cut has been reached, the 

high permeability layer is considered the thief zone with a pore volume of 621,000 

barrels, the amount of treated water to be injected was 18,600 barrels with about 317 
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barrels of the DDG mixed in. A weight conversion factor also from work done by 

Roussennac et al (2010) was used to obtain the mass of this volume in pounds. Care was 

taken to ensure that the cost of this treatment was applied to the economic analysis 

starting from the month injection began and not from the beginning of the project at 

Month 0. Using this cost at the beginning of the project depressed the value of the 

project’s NPV since there was no discounting and it was assumed to be a part of the 

initial sunk cost and capital expenditure. The figures below show the results from these 

runs. 

 
 

 

Figure 42: Deep Diverting Gel – Monthly Income 
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Figure 43: Base Cases – NPV 

 
 
Table 8: Base Case (HL) – Economic Results Summary 

 
Cash Flow ($) NPV ($) 

WF 329,000 98,000 

DDG 905,000 821,000 

PF (1000 ppm) 4,408,000 3,650,000 
 
 
 
Table 9: Base Case (LH) – Economic Results Summary 

 
Cash Flow ($) NPV ($) 

WF 384,000 522,000 

DDG 2,487,000 2,144,000 

PF (1000 ppm) 5,927,000 4,723,000 
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5.4 Sensitivity Analysis 

 

The results from the runs in the sensitivity analyses performed in the section 

above are also shown below.  

5.4.1 Permeability Reduction 

 

Due to the increase in oil recovery and reduced water production observed when 

the permeability at the plugged site was dropped to 0 md, there is a higher return after 

the activation of the DDG in this scenario than in the base case as can be seen in the 

figure below. 

 
 

 

Figure 44: Deep Diverting Gel – Monthly Income 
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Figure 45: DDG – NPV with 0 md Block 
 
 
 
Table 10: DDG (0 & 40 md) – Economic Results Summary 

 
Cash Flow ($) NPV ($) 

DDG (40 md) 905,000 821,000 

DDG (0 md) 1,617,000 1,434,000 

 
 

5.4.2 Polymer Concentration 

 

The same behavior as in the base case was observed at lower polymer 

concentrations although returns were lower due to the lower volumes of oil produced. 

When a polymer concentration of 1500 ppm is used, a period of steady cash flow is 

observed that corresponds to the time it takes for the injected polymer slug to flow 

through the reservoir. It remains steady because although both wells are flowing at their 
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maximum rates, these rates are much lower than the design rates due to the reduction in 

injectivity that occurs because of the increased viscosity of the polymer solution. 

 
 

 

Figure 46: Polymer Flood (HL) – Monthly Income 
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Figure 47: Polymer Flood (LH) – Monthly Income 
 
 
 

 
 
Figure 48: Polymer Flood – NPV at Different Concentrations 
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Table 11: Polymer Flood (HL) – Economic Results Summary 

 
Cash Flow ($) NPV ($) 

PF (285 ppm) 1,430,000 1,186,000 

PF (600 ppm) 2,881,000 2,406,000 

PF (1000 ppm) 4,409,000 3,646,000 

PF (1500 ppm) 6,954,000 5,220,000 
 
 
 
Table 12: Polymer Flood (LH) – Economic Results Summary 

 
Cash Flow ($) NPV ($) 

PF (285 ppm) 2,812,000 2,227,000 

PF (600 ppm) 4,388,000 3,484,000 

PF (1000 ppm) 5,927,000 4,723,000 

PF (1500 ppm) 7,088,000 5,157,000 

 
 

5.4.3 DDG Production Pressure 

 

 The figures below illustrate the increased cash flow of the DDG project when the 

production pressure is forced to reduce. In the first simulation, where the injection rate is 

reduced by 100 barrels per day, the increase in cash flow is due to the reduced operating 

expenses as less water is injected. The second simulations results closely mirror those of 

the first although in this instance the cash flow increases as oil production is ramped up 

by an extra 100 barrels a day.  
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Figure 49: DDG (HL) – Monthly Income with lowered Production Pressure 
 
 
 

 
 
Figure 50: DDG (LH) – Monthly Income with lowered Production Pressure 
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Figure 51: DDG – NPV with lowered Production Pressure 
 
 

5.4.4 Oil Viscosity 

 

In the case of the oil viscosity being changed from 2 cp to 10 and 100 cp, the 

effect of well life and incremental water and oil production can be seen in the figures 

below. The trends shown by the NPV followed those observed in the monthly cash flows 

in the 10 cp and 100 cp oil simulations with the DDG’s NPV lower than those of the 

polymer floods at all concentrations.  
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Figure 52: Monthly Income from simulations using 10 cp Oil 
 
 
 

 
 
Figure 53: Monthly Income from simulations using 100 cp Oil 
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Figure 54: NPV for 10 and 100 cp Oil 
 
 
 
Table 13: 10 cp Oil – Economic Results Summary for All Methods 

 
Cash Flow ($) NPV ($) 

WF (1,141,000) (433,000) 

DDG' 813,000 981,000 

PF (600 ppm) 4,789,000 3,917,000 

PF (1000 ppm) 6,665,000 5,451,000 

PF (1500 ppm) 7,840,000 6,208,000 
 
 
 
Table 14: 100 cp Oil – Economic Results Summary for All Methods 

 
Cash Flow ($) NPV ($) 

WF (483,000) (281,000) 

DDG' (5,000) 233,000 

PF (600 ppm) 2,739,000 2,388,000 

PF (1000 ppm) 3,572,000 3,047,000 

PF (1500 ppm) 4,082,000 3,434,000 
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5.4.5 Polymer Flood Pressure Control 

 

 Although the field life was extended in this run, the choking back of production 

ultimately led to a lower cumulative oil production than in the base case. This is also 

reflected in the NPV. 

 
 

 

Figure 55: NPV when QL = Qi 
 
 

5.4.6 Cost of Polymers 

 

 The effect of the cost of polymer and DDG on cash flow and NPV was examined 

by reducing the price of DDG to $1.50 per pound and for the scenario where the price of 

polymer increases to $3.00 per pound with all other variables held constant. Based on 
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the figures below, the cost of polymer would have to be unreasonably high for the 

economics of both methods to be equal. 

 
 

 

Figure 56: NPV at DDG = $1.50/lb 
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Figure 57: NPV at Polymer = $3.0/lb and DDG = $1.50/lb 
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VI CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

 

Both polymer flooding and the DDG have their limitations, some of which have 

been made obvious in the preceding chapters. The use of deep diverting gels as an 

effective recovery method is constrained by cost, reservoir characteristics such as 

permeability, porosity and temperature, minimal reservoir fracturing to prevent loss of 

the particles, vertical communication between layers, and an injector-producer transit 

time that needs to be more than thirty days. Polymer floods on the other hand are limited 

by injectivity concerns due to the possibility of having viscous slugs forming too close to 

the injection well if improperly designed and the risk of formation damage, maximum 

allowable viscosities, reservoir properties like temperature and salinity. These factors 

and more need to be taken into consideration when evaluating either of these two 

methods as potential candidates for secondary recovery.  

The results and economic analysis presented above however show that a properly 

designed polymer flood program has a decided advantage over the use of the DDG both 

in terms of oil recovery and monetary value. Incremental oil recovery for the DDG 

treatment over waterflooding was 2.3% in the HL configuration and 1.8% in the LH 

configuration while the polymer flood resulted in increments of 12.3 and 11.4% 

respectively. The factors with the largest impact on the economics were the amount of 

oil produced and the extent of reduction in water production and are the main reason 

polymer flooding is more attractive than the DDG treatment. 
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The economic limit of a project is typically determined by excessive water 

production. 95% water-cut was chosen arbitrarily and in reality would depend on project 

specifics. Based on the monthly cash flows for all three methods, it can be deduced that 

a water-cut of 95% which was picked as the economic limit in the simulations may be a 

poor choice because cash flow is negative in the last two years or more in all 

configurations. This has the effect of reducing the Net Present Value of the projects from 

their ideal values if each project was terminated when monthly cash flow became 0. 

6.2 Recommendations 

 

One of the major shortcomings of previous work done on comparing the DDG’s 

performance to that of Polymer flooding has been in the accuracy of the assumptions 

used. This is particularly obvious in the areas of estimating the amount of DDG used in 

any treatment, in pinpointing the exact location of its activation and estimating the area 

and volume plugged.  

In this work it was assumed that the DDG treatment had the same viscosity as 

water to provide an optimal environment although based on work by Pritchett et al 

(2003), the slurry viscosity could actually be two to seven times higher than that of the 

injection water. Akanni (2010) also reported discrepancies between the results obtained 

using a commercial simulator and those based on analytical calculations and attributed it 

to the possible effect of gravity although the reasons for this are still open to 

investigation.  

More precise work could be performed on these areas to more accurately 

simulate the DDG’s performance.  
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APPENDIX 

 

A Waterflooding Data File 

 
-- Area of the pattern is 40 acres. Quarter of 5-spot represents 10 acres.   
-- Two wells, one injector and one producer, on opposite sides of the 10 ac-pattern  
-- Grid dimensions are 660 ft by 660 ft by 60 ft  
-- Grid represents a 110x110x16 Cartesian model of a quarter of a 40 acre 5-spot 
 
RUNSPEC 
 
TEMP 
 
-- Specifies the dimensions of the grid: 44x44x16 
DIMENS 
44 44 16 / 
 
-- Specifies phases present: oil, water 
 
OIL 
 
WATER 
 
-- Field units to be used  
FIELD 
 
-- Specifies dimensions of saturation and PVT tables 
TABDIMS 
1    1   30    30    1   30 / 
 
-- Specifies maximum number of well and groups of wells 
WELLDIMS 
2    16    2    2 / 
 
-- Specifies start of simulation  
START 
1 'JAN' 2000  / 
 
-- Specifies the size of the stack for Newton iterations 
NSTACK 
90 / 
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GRID      
============================================================== 
 
-- Specifies the length of the cell in the X and Y direction: 10 ft 
 
DXV 
2 42*15.61905 2 / 
 
DYV 
2 42*15.61905 2 / 
 
-- Specifies the length of the cell in the X and Y direction: 4 ft 
 
DZ 
30976*4 / 
 
-- Specifies permeabilities in X direction: 100 md on low perm layer and 1200 on high 
perm layer 
 
BOX 
1 44 1 44 1 8 / 
PERMX 
15488*1200 / 
 
BOX 
1 44 1 44 9 16 / 
PERMX 
15488*100 / 
 
ENDBOX 
 
-- Specifies permeabilities in Y direction: 100 md on low perm layer and 1200 on high 
perm layer 
 
BOX 
1 44 1 44 1 8 / 
PERMY 
15488*1200 / 
 
BOX 
1 44 1 44 9 16 / 
PERMY 
15488*100 / 
 
ENDBOX 



80 
 

 
-- Specifies permeabilities in Z direction: 10 md on low perm layer and 100 on high 
perm layer 
 
BOX 
1 44 1 44 1 8 / 
PERMZ 
15488*100 / 
 
BOX 
1 44 1 44 9 16 / 
PERMZ 
15488*10 / 
 
ENDBOX 
 
-- Specifies Porosity 25% 
 
BOX 
1 44 1 44 1 8 / 
PORO 
15488*0.25 / 
 
BOX 
1 44 1 44 9 16 / 
PORO 
15488*0.25 / 
 
ENDBOX 
 
-- Specifies the depth of the top cells: 8000 ft 
TOPS 
1936*8000.0 / 
 
-- Specifies what is to be written in the GRID output file 
RPTGRID 
1 1 1 1 1 0 0 0 / 
 
-- Allows for creating a GRID output file 
GRIDFILE 
2 1 / 
 
-- Allows for creating an INIT output file 
INIT 
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PROPS     
============================================================== 
 
-- Specifies water saturation tables: Water saturation, Water relative permeability, Oil 
relative permeability  
-- and Oil-Water capillary pressure 
 
SWOF 
 
-- Sw   krw         kro       Pcow  
 
0.2 0  1  0 
0.25 0.004346481 0.751314732 0 
0.3 0.013763162 0.545761134 0 
0.35 0.027010896 0.379858861 0 
0.4 0.043581146 0.249999989 0 
0.45 0.063161081 0.152424743 0 
0.5 0.08553019 0.083187501 0 
0.55 0.110520981 0.038106184 0 
0.6 0.138000001 0.012679833 0 
0.65 0.167857295 0.00193272 0 
0.7 0.2  0  0/ 
 
-- Specifies PVT properties of water: Bw = 1.063; Cw = 3.03E-06; watervisc = .8. All 
values at 3480 psia and 280 DegF 
PVTW 
3464  1  3.03E-06  .7  0.0 / 
 
-- Specifies PVT properties of the oil: pressure, Bo and oilvisc 
PVDO 
 
-- Pressure     Bo      Oil visc  
 3480  1.01  2.0 
 3600  1.00  2.0/ 
 
-- Specifies surface densities: Oil API: 34.2; Water spec. gravity: 1.07;  
GRAVITY 
34.2  1.07 / 
 
-- Specifies rock compressibility: 5.0E-06 psi -1 @ 3480 psia 
ROCK 
3480.0  5.0E-06 / 
 
SPECHEAT 
0.0 0.48 0.94 0.5 
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300.0 0.52 0.95 0.5/ 
 
SPECRock 
0.0 25 
300 25 / 
 
RTEMP 
210 / 
 
REGIONS    
============================================================= 
 
-- Specifies the number of saturation regions (only one for this case) 
SATNUM 
30976*1 / 
 
SOLUTION   
============================================================= 
 
-- Specifies initial equilibration conditions. Datum depth = 8060 ft; Reference pressure at 
datum = 3480 psia 
-- WOC depth = 15000 ft (out of the reservoir means no initial contact present) 
-- GOC depth = 0 ft (out of the reservoir means no initial contact present) 
 
EQUIL 
8060  3480  15000  0   0   0   1   0   0  / 
 
-- Specifies parameters to be written in the SOLUTION section of the RESTART file: 
pressure, water saturation 
-- gas saturation and oil saturation 
RPTSOL PRESSURE  SWAT SOIL FIP / 
 
-- Specifies that RESTART files are to written every timestep 
RPTRST 
BASIC=2 / 
 
SUMMARY    
=========================================================== 
 
-- Specifies that a SUMMARY file with neat tables is to be written in text format 
RUNSUM 
 
BTCNFHEA 
1 44 4 / 
1 44 12 / 
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15 30 4 / 
15 30 12 / 
30 15 4 / 
30 15 12 / 
44 1 4 / 
44 1 12 / 
/ 
 
-- Specifies that the SUMMARY file is to be created as a separate file in addition from 
the text file with neat tables 
SEPARATE 
 
-- Specifies that reports are to be written only at the timesteps sepcified in the DATA 
file. Avoids reports to  
-- be created at chopped timesteps (to avoid excessive data and clutter). 
RPTONLY 
 
-- Specifies that a group of parameters specific to ECLIPSE are going to be written in 
the SUMMARY files. 
ALL 
 
EXCEL 
separate 
ALL 
 
FOE 
 
SCHEDULE   
=========================================================== 
 
-- Specifies what is to written to the SCHEDULE file 
RPTSCHED                                         FIELD   16:55 18 APR 86 
   1   0   1   0   0   0   2   0   0   0   0   2   0   0   0   0   0 
   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 
   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   / 
 
-- Define well specifications:  
WELSPECS 
'P'  'G'    44  1  8030  'OIL' 2* SHUT / 
'I'  'G'    1  44  8030  'WAT'  /    
/ 
 
-- Specifies completion data 
COMPDAT 
'P'    44   1   1   16 'OPEN'   1  0   .27 3* z / 
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'I'    1   44   1   16 'OPEN'   1  0   .27 3* z / 
/ 
 
-- Specifies well controls for the producer 
-- Name of the well: P 
-- Status of the well: open to production 
-- Well control mode: reservoir voidage rate 
-- The final record specifies target for the control parameter: 530 reservoir barrels  
 
WCONPROD 
'P' 'OPEN' 'LRAT' 3* 500 / 
/ 
 
-- Specifies well controls for the injector 
-- Name of the well: I 
-- Status of the well: open to injection 
-- Well control mode: reservoir injection rate 
-- The final record specifies target for the control parameter: 1200 reservoir barrels  
 
WCONINJ 
'I' 'WATER' 'OPEN' 'BHP' 4* 3600 / 
/ 
 
WECON 
'P' 2* 0.95 2* WELL YES/ 
/ 
 
WTEMP 
'I' 70 / 
/ 
 
TUNING 
/ 
/ 
50  2  100  1  40/ 
 
-- Specifies the number and length of the timesteps required: 200 timesteps of 20 days 
each 
 
TSTEP 
0.1 0.3 0.6 1 3 5 21 29 31 30 31 30 31 31 30 31 30 31 
31 28 31 30 31 30 31 31 30 31 30 31 
31 28 31 30 31 30 31 31 30 31 30 31 
31 28 31 30 31 30 31 31 30 31 30 31 
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31 29 31 30 31 30 31 31 30 31 30 31 
31 28 31 30 31 30 31 31 30 31 30 31 
31 28 31 30 31 30 31 31 30 31 30 31 
31 28 31 30 31 30 31 31 30 31 30 31 
31 29 31 30 31 30 31 31 30 31 30 31 
31 28 31 30 31 30 31 31 30 31 30 31 
31 28 31 30 31 30 31 31 30 31 30 31 
31 28 31 30 31 30 31 31 30 31 30 31 
31 29 31 30 31 30 31 31 30 31 30 31 / 
--0.1 0.3 0.6 1 3 5 29*10 30*30 40*50/ 
 
END 
 

B DDG Treatment Data File 

 
-- Area of the pattern is 40 acres. Quarter of 5-spot represents 10 acres.   
-- Two wells, one injector and one producer, on opposite sides of the 10 ac-pattern  
-- Grid dimensions are 660 ft by 660 ft by 60 ft  
-- Grid represents a 110x110x15 Cartesian model of a quarter of a 40 acre 5-spot 
 
RUNSPEC 
 
TEMP 
 
-- Specifies the dimensions of the grid 
DIMENS 
44 44 16 / 
 
-- Specifies phases present: oil, water 
 
OIL 
 
WATER 
 
-- Field units to be used  
FIELD 
 
-- Specifies dimensions of saturation and PVT tables 
TABDIMS 
1    1   30    30    1   30 / 
 
-- Specifies maximum number of well and groups of wells 
WELLDIMS 
2    16    2    2 / 
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-- Specifies start of simulation  
START 
1 'JAN' 2000  / 
 
-- Specifies the size of the stack for Newton iterations 
NSTACK 
90 / 
 
GRID      
============================================================== 
 
-- Specifies the length of the cell in the X and Y direction: 10 ft 
 
DXV 
2 42*15.61905 2 / 
 
DYV 
2 42*15.61905 2 / 
 
-- Specifies the length of the cell in the X and Y direction: 4 ft 
 
DZ 
30976*4 / 
 
-- Specifies permeabilities in X direction: 100 md on low perm layer and 1200 on high 
perm layer 
 
BOX       
1 29 5 5 1 8 / 
PERMX       
232*40 /    
       
BOX       
1 31 6 6 1 8 / 
PERMX       
248*40 /    
       
BOX       
1 34 7 7 1 8 / 
PERMX       
272*40 /    
       
BOX       
1 36 8 8 1 8 / 
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PERMX       
288*40 /    
       
BOX       
30 37 9 9 1 8 / 
PERMX       
64*40 /    
       
BOX       
32 37 10 10 1 8 / 
PERMX       
48*40 /    
       
BOX       
34 38 11 11 1 8 / 
PERMX       
40*40 /    
       
BOX       
35 38 12 13 1 8 / 
PERMX       
64*40 /    
       
BOX       
36 39 14 15 1 8 / 
PERMX       
64*40 /    
       
BOX       
37 40 16 44 1 8 / 
PERMX       
928*40 /    
 
BOX       
1 44 1 4 1 8 / 
PERMX       
1408*1200 /    
       
BOX       
30 44 5 5 1 8 / 
PERMX       
120*1200 /    
       
BOX       
32 44 6 6 1 8 / 
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PERMX       
104*1200 /    
       
BOX       
35 44 7 7 1 8 / 
PERMX       
80*1200 /    
       
BOX       
37 44 8 8 1 8 / 
PERMX       
64*1200 /    
       
BOX       
38 44 9 10 1 8 / 
PERMX       
112*1200 /    
       
BOX       
39 44 11 13 1 8 / 
PERMX       
144*1200 /    
       
BOX       
40 44 14 15 1 8 / 
PERMX       
80*1200 /    
       
BOX       
41 44 16 44 1 8 / 
PERMX       
928*1200 /    
       
BOX       
1 29 9 9 1 8 / 
PERMX       
232*1200 /    
       
BOX       
1 31 10 10 1 8 / 
PERMX       
248*1200 /    
       
BOX       
1 33 11 11 1 8 / 
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PERMX       
264*1200 /    
       
BOX       
1 34 12 13 1 8 / 
PERMX       
544*1200 /    
       
BOX       
1 35 14 15 1 8 / 
PERMX       
560*1200 /    
       
BOX       
1 36 16 44 1 8 / 
PERMX       
8352*1200 /    
 
BOX 
1 44 1 44 9 16 / 
PERMX 
15488*100 / 
 
ENDBOX 
 
-- Specifies permeabilities in Y direction: 100 md on low perm layer and 1200 on high 
perm layer 
 
BOX       
1 29 5 5 1 8 / 
PERMY       
232*40 /    
       
BOX       
1 31 6 6 1 8 / 
PERMY       
248*40 /    
       
BOX       
1 34 7 7 1 8 / 
PERMY       
272*40 /    
       
BOX       
1 36 8 8 1 8 / 
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PERMY       
288*40 /    
       
BOX       
30 37 9 9 1 8 / 
PERMY       
64*40 /    
       
BOX       
32 37 10 10 1 8 / 
PERMY       
48*40 /    
       
BOX       
34 38 11 11 1 8 / 
PERMY       
40*40 /    
       
BOX       
35 38 12 13 1 8 / 
PERMY       
64*40 /    
       
BOX       
36 39 14 15 1 8 / 
PERMY       
64*40 /    
 
BOX       
37 40 16 44 1 8 / 
PERMY       
928*40 /    
 
BOX       
1 44 1 4 1 8 / 
PERMY       
1408*1200 /    
       
BOX       
30 44 5 5 1 8 / 
PERMY       
120*1200 /    
       
BOX       
32 44 6 6 1 8 / 
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PERMY       
104*1200 /    
       
BOX       
35 44 7 7 1 8 / 
PERMY       
80*1200 /    
       
BOX       
37 44 8 8 1 8 / 
PERMY       
64*1200 /    
       
BOX       
38 44 9 10 1 8 / 
PERMY       
112*1200 /    
       
BOX       
39 44 11 13 1 8 / 
PERMY       
144*1200 /    
       
BOX       
40 44 14 15 1 8 / 
PERMY       
80*1200 /    
       
BOX       
41 44 16 44 1 8 / 
PERMY       
928*1200 /    
       
BOX       
1 29 9 9 1 8 / 
PERMY       
232*1200 /    
       
BOX       
1 31 10 10 1 8 / 
PERMY       
248*1200 /    
       
BOX       
1 33 11 11 1 8 / 
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PERMY       
264*1200 /    
       
BOX       
1 34 12 13 1 8 / 
PERMY       
544*1200 /    
       
BOX       
1 35 14 15 1 8 / 
PERMY       
560*1200 /    
       
BOX       
1 36 16 44 1 8 / 
PERMY       
8352*1200 /    
 
BOX 
1 44 1 44 9 16 / 
PERMY 
15488*100 / 
 
ENDBOX 
 
-- Specifies permeabilities in Z direction: 10 md on low perm layer and 100 on high 
perm layer 
 
BOX       
1 29 5 5 1 8 / 
PERMZ       
232*10 /    
       
BOX       
1 31 6 6 1 8 / 
PERMZ       
248*10 /    
       
BOX       
1 34 7 7 1 8 / 
PERMZ       
272*10 /    
       
BOX       
1 36 8 8 1 8 / 
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PERMZ       
288*10 /    
       
BOX       
30 37 9 9 1 8 / 
PERMZ       
64*10 /    
       
BOX       
32 37 10 10 1 8 / 
PERMZ       
48*10 /    
       
BOX       
34 38 11 11 1 8 / 
PERMZ       
40*10 /    
       
BOX       
35 38 12 13 1 8 / 
PERMZ       
64*10 /    
     
BOX       
36 39 14 15 1 8 / 
PERMZ       
64*10 /    
       
BOX       
37 40 16 44 1 8 / 
PERMZ       
928*10 /    
 
BOX       
1 44 1 4 1 8 / 
PERMZ       
1408*100 /    
       
BOX       
30 44 5 5 1 8 / 
PERMZ       
120*100 /    
       
BOX       
32 44 6 6 1 8 / 
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PERMZ       
104*100 /    
       
BOX       
35 44 7 7 1 8 / 
PERMZ       
80*100 /    
       
BOX       
37 44 8 8 1 8 / 
PERMZ       
64*100 /    
       
BOX       
38 44 9 10 1 8 / 
PERMZ       
112*100 /    
       
BOX       
39 44 11 13 1 8 / 
PERMZ       
144*100 /    
BOX       
40 44 14 15 1 8 / 
PERMZ       
80*100 /    
       
BOX       
41 44 16 44 1 8 / 
PERMZ       
928*100 /    
       
BOX       
1 29 9 9 1 8 / 
PERMZ       
232*100 /    
       
BOX       
1 31 10 10 1 8 / 
PERMZ       
248*100 /    
       
BOX       
1 33 11 11 1 8 / 
PERMZ       
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264*100 /    
       
BOX       
1 34 12 13 1 8 / 
PERMZ       
544*100 /    
       
BOX       
1 35 14 15 1 8 / 
PERMZ       
560*100 /    
       
BOX       
1 36 16 44 1 8 / 
PERMZ       
8352*100 /    
 
BOX 
1 44 1 44 9 16 / 
PERMZ 
15488*10 / 
 
ENDBOX 
 
-- Specifies Porosity 25% 
 
BOX 
1 44 1 44 1 8 / 
PORO 
15488*0.25 / 
 
BOX 
1 44 1 44 9 16 / 
PORO 
15488*0.25 / 
 
ENDBOX 
 
-- Specifies the depth of the top cells: 8000 ft 
TOPS 
1936*8000.0 / 
 
-- Specifies what is to be written in the GRID output file 
RPTGRID 
1 1 1 1 1 0 0 0 / 
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-- Allows for creating a GRID output file 
GRIDFILE 
2 1 / 
 
-- Allows for creating an INIT output file 
INIT 
 
 
 
PROPS     
============================================================== 
 
-- Specifies water saturation tables: Water saturation, Water relative permeability, Oil 
relative permeability  
-- and Oil-Water capillary pressure 
 
SWOF 
 
-- Sw   krw         kro       Pcow  
 
0.2 0  1  0 
0.25 0.004346481 0.751314732 0 
0.3 0.013763162 0.545761134 0 
0.35 0.027010896 0.379858861 0 
0.4 0.043581146 0.249999989 0 
0.45 0.063161081 0.152424743 0 
0.5 0.08553019 0.083187501 0 
0.55 0.110520981 0.038106184 0 
0.6 0.138000001 0.012679833 0 
0.65 0.167857295 0.00193272 0 
0.7 0.2  0  0/ 
 
-- Specifies PVT properties of water: Bw = 1.063; Cw = 3.03E-06; watervisc = .8. All 
values at 3480 psia and 280 DegF 
PVTW 
3464  1  3.03E-06  .7  0.0 / 
 
-- Specifies PVT properties of the oil: pressure, Bo and oilvisc 
PVDO 
 
-- Pressure     Bo      Oil visc  
 3480  1.01  2 
 3600  1.00  2/ 
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-- Specifies surface densities: Oil API: 34.2; Water spec. gravity: 1.07;  
GRAVITY 
34.2  1.07 / 
 
-- Specifies rock compressibility: 5.0E-06 psi -1 @ 3480 psia 
ROCK 
3480.0  5.0E-06 / 
 
SPECHEAT 
0.0 0.48 0.94 0.5 
300.0 0.52 0.95 0.5/ 
 
SPECRock 
0.0 25 
300 25 / 
 
RTEMP 
210 / 
REGIONS    
============================================================= 
 
-- Specifies the number of saturation regions (only one for this case) 
SATNUM 
30976*1 / 
 
SOLUTION   
============================================================= 
 
RESTART 
'OKEKE_WF_HL_BHP' 69 / 
 
SUMMARY    
=========================================================== 
 
-- Specifies that a SUMMARY file with neat tables is to be written in text format 
RUNSUM 
 
-- Specifies that the SUMMARY file is to be created as a separate file in addition from 
the text file with neat tables 
SEPARATE 
 
-- Specifies that reports are to be written only at the timesteps sepcified in the DATA 
file. Avoids reports to  
-- be created at chopped timesteps (to avoid excessive data and clutter). 
RPTONLY 
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-- Specifies that a group of parameters specific to ECLIPSE are going to be written in 
the SUMMARY files. 
ALL 
 
EXCEL 
separate 
ALL 
 
FOE 
 
SCHEDULE   
=========================================================== 
 
-- Specifies what is to written to the SCHEDULE file 
RPTSCHED                                         FIELD   16:55 18 APR 86 
   1   0   1   0   0   0   2   0   0   0   0   2   0   0   0   0   0 
   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 
   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   / 
 
 
-- Define well specifications:  
WELSPECS 
'P'  'G'    44  1  8030  'OIL'  / 
'I'  'G'    1  44  8030  'WAT'  /    
/ 
 
-- Specifies completion data 
COMPDAT 
'P'    44   1   1   16 'OPEN'   1  0   .27 3* z / 
 
'I'    1   44   1   16 'OPEN'   1  0   .27 3* z / 
/ 
 
-- Specifies well controls for the producer 
-- Name of the well: P 
-- Status of the well: open to production 
-- Well control mode: reservoir voidage rate 
-- The final record specifies target for the control parameter: 530 reservoir barrels  
 
WCONPROD 
'P' 'OPEN' 'LRAT' 3* 500 / 
/ 
 
-- Specifies well controls for the injector 
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-- Name of the well: I 
-- Status of the well: open to injection 
-- Well control mode: reservoir injection rate 
-- The final record specifies target for the control parameter: 1200 reservoir barrels  
 
WCONINJ 
'I' 'WATER' 'OPEN' 'BHP' 4* 3600 / 
/ 
 
WECON 
'P' 2* 0.95 2* WELL YES/ 
/ 
 
WTEMP 
'I' 70 / 
/ 
 
TUNING 
/ 
/ 
2* 100/ 
 
-- Specifies the number and length of the timesteps required: 200 timesteps of 20 days 
each 
 
TSTEP 
0.1 0.3 0.6 1 3 5 21 
31 28 31 30 31 30 31 31 30 31 30 31 
31 28 31 30 31 30 31 31 30 31 30 31 
31 28 31 30 31 30 31 31 30 31 30 31 
31 29 31 30 31 30 31 31 30 31 30 31 
31 28 31 30 31 30 31 31 30 31 30 31 
31 28 31 30 31 30 31 31 30 31 30 31 
31 28 31 30 31 30 31 31 30 31 30 31 
31 29 31 30 31 30 31 31 30 31 30 31 / 
 
 
END 
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C Polymer Flood Data File 

 
-- Area of the pattern is 40 acres. Quarter of 5-spot represents 10 acres.   
-- Two wells, one injector and one producer, on opposite sides of the 10 ac-pattern  
-- Grid dimensions are 660 ft by 660 ft by 60 ft  
-- Grid represents a 110x110x16 Cartesian model of a quarter of a 40 acre 5-spot 
 
RUNSPEC 
 
TEMP 
 
-- Specifies the dimensions of the grid: 44x44x15 
DIMENS 
44 44 16 / 
 
-- Specifies phases present: oil, water 
 
OIL 
 
WATER 
 
POLYMER 
 
-- Field units to be used  
FIELD 
 
-- Specifies dimensions of saturation and PVT tables 
TABDIMS 
1    1   30    30    1   30 / 
 
-- Specifies maximum number of well and groups of wells 
WELLDIMS 
2    16    2    2 / 
 
-- Specifies start of simulation  
START 
1 'JAN' 2000  / 
 
-- Specifies the size of the stack for Newton iterations 
NSTACK 
95 / 
 
MESSAGES 
2000 200 200 200 20 2 1000000 1000000 1000000 100000 10 1 /  
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GRID      
============================================================== 
 
-- Specifies the length of the cell in the X and Y direction: 10 ft 
 
DXV 
2 42*15.61905 2 / 
 
DYV 
2 42*15.61905 2 / 
 
-- Specifies the length of the cell in the X and Y direction: 4 ft 
 
DZ 
30976*4 / 
 
-- Specifies permeabilities in X direction: 100 md on low perm layer and 1200 on high 
perm layer 
 
BOX 
1 44 1 44 1 8 / 
PERMX 
15488*1200 / 
 
BOX 
1 44 1 44 9 16 / 
PERMX 
15488*100 / 
 
ENDBOX 
 
-- Specifies permeabilities in Y direction: 100 md on low perm layer and 1200 on high 
perm layer 
 
BOX 
1 44 1 44 1 8 / 
PERMY 
15488*1200 / 
 
BOX 
1 44 1 44 9 16 / 
PERMY 
15488*100 / 
 
ENDBOX 
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-- Specifies permeabilities in Z direction: 10 md on low perm layer and 100 on high 
perm layer 
 
BOX 
1 44 1 44 1 8 / 
PERMZ 
15488*100 / 
 
BOX 
1 44 1 44 9 16 / 
PERMZ 
15488*10 / 
 
ENDBOX 
 
-- Specifies Porosity 25% 
 
BOX 
1 44 1 44 1 8 / 
PORO 
15488*0.25 / 
 
BOX 
1 44 1 44 9 16 / 
PORO 
15488*0.25 / 
 
ENDBOX 
 
-- Specifies the depth of the top cells: 8000 ft 
TOPS 
1936*8000.0 / 
 
-- Specifies what is to be written in the GRID output file 
RPTGRID 
1 1 1 1 1 0 0 0 / 
 
-- Allows for creating a GRID output file 
GRIDFILE 
2 1 / 
 
-- Allows for creating an INIT output file 
INIT 
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PROPS     
============================================================== 
 
-- Specifies water saturation tables: Water saturation, Water relative permeability, Oil 
relative permeability  
-- and Oil-Water capillary pressure 
 
SWOF 
 
-- Sw   krw         kro       Pcow  
 
0.2 0  1  0 
0.25 0.004346481 0.751314732 0 
0.3 0.013763162 0.545761134 0 
0.35 0.027010896 0.379858861 0 
0.4 0.043581146 0.249999989 0 
0.45 0.063161081 0.152424743 0 
0.5 0.08553019 0.083187501 0 
0.55 0.110520981 0.038106184 0 
0.6 0.138000001 0.012679833 0 
0.65 0.167857295 0.00193272 0 
0.7 0.2  0  0/ 
 
-- Specifies PVT properties of water: Bw = 1.063; Cw = 3.03E-06; watervisc = .8. All 
values at 3480 psia and 280 DegF 
PVTW 
3464  1  3.03E-06  .7  0.0 / 
 
-- Specifies PVT properties of the oil: pressure, Bo and oilvisc 
PVDO 
 
-- Pressure     Bo      Oil visc  
 3480  1.01  2.0 
 3600  1.00  2.0/ 
 
-- Specifies surface densities: Oil API: 34.2; Water spec. gravity: 1.07;  
GRAVITY 
34.2  1.07 / 
 
-- Specifies rock compressibility: 5.0E-06 psi -1 @ 3480 psia 
ROCK 
3480.0  5.0E-06 / 
 
-- Specifies polymer viscosity as function of concentration 
PLYVISC 
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0.0  1.0 
0.35 10.0 
0.7  100.0 / 
 
-- Specifies the polymer-rock properties and includes inaccessible pore volume, residual 
resistance factor, rock mass density, adsorption index and maximum adsorption value 
PLYROCK 
0 1 620.4 1 0.000003 / 
 
-- Polymer adsorption properties 
PLYADS 
0.0  0.000 
0.25 0.000001 
0.50 0.000002 
0.75 0.000003 / 
 
-- Mixing Parameter for miscibility between polymer and water between 0.0 and 
maximum of 1.0 
TLMIXPAR 
1.0 / 
 
-- Specifies maximum value of polymer concentration in solution 
PLYMAX 
1.0 0.0 / 
 
SPECHEAT 
0.0 0.48 0.94 0.5 
300.0 0.52 0.95 0.5/ 
 
SPECRock 
0.0 25 
300 25 / 
 
RTEMP 
210 / 
 
REGIONS    
============================================================= 
 
-- Specifies the number of saturation regions (only one for this case) 
SATNUM 
30976*1 / 
SOLUTION   
============================================================= 
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-- Specifies initial equilibration conditions. Datum depth = 8060 ft; Reference pressure at 
datum = 3480 psia 
-- WOC depth = 15000 ft (out of the reservoir means no initial contact present) 
-- GOC depth = 0 ft (out of the reservoir means no initial contact present) 
 
EQUIL 
8060  3480  15000  0   0   0   1   0   0  / 
 
-- Specifies parameters to be written in the SOLUTION section of the RESTART file: 
pressure, water saturation 
-- gas saturation and oil saturation 
RPTSOL PRESSURE  SWAT SOIL FIP PBLK PLYADS 'FIPPLY=2'/ 
 
-- Specifies that RESTART files are to written every timestep 
RPTRST 
BASIC=2 / 
 
SUMMARY    
=========================================================== 
 
-- Specifies that a SUMMARY file with neat tables is to be written in text format 
RUNSUM 
FCPR 
FCPT 
FCPC 
FCIR 
FCIT 
FCIP 
FCIC 
FCAD 
BEPVIS 
1 1 4 / 
2 1 4 / 
3 1 4 / 
4 1 4 / 
5 1 4 / 
6 1 4 / 
7 1 4 / 
8 1 4 / 
9 1 4 / 
10 1 4 / 
11 1 4 / 
12 1 4 / 
13 1 4 / 
14 1 4 / 
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15 1 4 / 
16 1 4 / 
17 1 4 / 
18 1 4 / 
/ 
RPTSMRY 
1 / 
 
-- Specifies that the SUMMARY file is to be created as a separate file in addition from 
the text file with neat tables 
SEPARATE 
 
-- Specifies that reports are to be written only at the timesteps specified in the DATA 
file. Avoids reports to  
-- be created at chopped timesteps (to avoid excessive data and clutter). 
RPTONLY 
 
-- Specifies that a group of parameters specific to ECLIPSE are going to be written in 
the SUMMARY files. 
ALL 
 
EXCEL 
separate 
ALL 
 
FOE 
 
SCHEDULE   
=========================================================== 
 
-- Specifies what is to written to the SCHEDULE file 
RPTSCHED                                         FIELD   16:55 18 APR 86 
   1   0   1   0   0   0   2   0   0   0   0   2   0   0   0   0   0 
   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 
   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   / 
 
 
-- Define well specifications:  
WELSPECS 
'P'  'G'    44  1  8030  'OIL' 2* SHUT / 
'I'  'G'    1  44  8030  'WAT' 0.0 STD SHUT NO /    
/ 
 
-- Specifies completion data 
COMPDAT 
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'P'    44   1   1   16 'OPEN'   1  0   .27 3* z / 
 
'I'    1   44   1   16 'OPEN'   1  0   .27 3* z / 
/ 
 
-- Specifies well controls for the producer 
-- Name of the well: P 
-- Status of the well: open to production 
-- Well control mode: reservoir voidage rate 
-- The final record specifies target for the control parameter: 530 reservoir barrels  
 
WCONPROD 
'P' 'OPEN' 'LRAT' 3* 500 / 
/ 
 
-- Specifies well controls for the injector 
-- Name of the well: I 
-- Status of the well: open to injection 
-- Well control mode: reservoir injection rate 
-- The final record specifies target for the control parameter: 1200 reservoir barrels  
 
WCONINJ 
'I' 'WATER' 'OPEN' 'BHP' 4* 3600 / 
/ 
 
WECON 
'P' 2* 0.95 2* WELL YES/ 
/ 
 
WTEMP 
'I' 70 / 
/ 
 
TUNING 
/ 
/ 
2* 100/ 
 
-- Specifies polymer viscosity (1000 ppm) 
WPOLYMER 
'I' 0.35 0.0 / 
/ 
TSTEP 
31 28 31 30 31 30 31 31 30 31 30 31 
31 30 14 / 
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WPOLYMER 
'I' 0.0 0.0 / 
/ 
TSTEP 
31 28 31 30 31 30 31 31 30 31 30 31 
31 28 31 30 31 30 31 31 30 31 30 31 
31 28 31 30 31 30 31 31 30 31 30 31 
31 29 31 30 31 30 31 31 30 31 30 31 
31 28 31 30 31 30 31 31 30 31 30 31 
31 28 31 30 31 30 31 31 30 31 30 31 
31 28 31 30 31 30 31 31 30 31 30 31 
31 29 31 30 31 30 31 31 30 31 30 31/ 
 
END 
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