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ABSTRACT 

 

Hot Extrusion of Alpha Phase Uranium-Zirconium Alloys for TRU Burning Fast 

Reactors. (December 2011) 

Jeffrey Stephen Hausaman, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Sean M. McDeavitt 

 

 

 The development of fast reactor systems capable of burning recycled transuranic 

(TRU) isotopes has been underway for decades at various levels of activity. These 

systems could significantly alleviate nuclear waste storage liabilities by consuming the 

long-lived isotopes of plutonium (Pu), neptunium (Np), americium (Am), and curium 

(Cm).  The fabrication of metal fuel alloys by melt casting pins containing the volatile 

elements Am and Np has been a major challenge due to their low vapor pressures; initial 

trials demonstrated significant losses during the casting process. 

A low temperature hot extrusion process was explored as a potential method to 

fabricate uranium-zirconium fuel alloys containing the TRU isotopes. The advantage of 

extrusion is that metal powders may be mixed and enclosed in process canisters to 

produce the desired composition and contain volatile components.  Uranium powder was 

produced for the extrusion process by utilizing a hydride-dehydride process that was 

developed in conjunction with uranium alloy sintering studies.  The extrusions occurred 

at 600ºC and utilized a hydraulic press capable of 450,000 N (50 tons) of force. 
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 Magnesium (Mg) metal was used as a surrogate metal for Pu and Am because of 

its low melting point (648°C) and relatively high vapor pressure (0.2 atm at 725°C).  

Samples containing U, Zr, and Mg powder were prepared in an inert atmosphere 

glovebox using copper canisters and extruded at 600°C.  The successful products of the 

extrusion method were characterized using thermal analysis with a differential scanning 

calorimeter as well as image and x-ray analysis utilizing an electron microprobe.  The 

analysis showed that upon fabrication the matrix of the extruded metal alloy is 

completely heterogeneous with no mixing of the metal particle constituents.  Further 

heat treating upon this alloy allows these different materials to interdiffuse and form 

mixed uranium-zirconium phases with varying types of microstructures.  Image and x-

ray analysis showed that the magnesium surrogate present in a sample was retained with 

little evidence of losses due to vaporization. 
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1. INTRODUCTION 

 

 Nuclear reactors systems generate fission products and activation products within 

the fuel. The activation products include the transuranic (TRU) isotopes of neptunium 

(Np), plutonium (Pu), americium (Am), and curium (Cm). Fast reactor systems, so 

named because of their primary reliance on high energy (“fast”) neutrons, have the 

ability to consume the TRU isotopes to generate energy, but this requires processing. If 

TRU recycling methods and fast reactors are employed, a full-scale fuel fabrication 

method must be developed to generate fuel to supply a full core of TRU-bearing fuel 

rods. 

1.1  METAL FUEL FABRICATION ISSUES 

 The method of fabricating metal fuel elements for fast reactor systems has 

historically been an injection casting method, which was utilized for reactors such as 

Experimental Breeder Reactor II[1].  Molten uranium alloy mix in a crucible at 

approximately 1500°C is drawn up into quartz mold driven by a pressure differential 

between the molten pool and the interior of the mold. After injection, the molds are 

allowed to cool and broken open to produce a cast fuel pin, which is then machined to 

the required specifications[2].  This method has some known issues, specifically the 

material exchange between the quartz mold and the cast alloy.  This results in a ring of 

silicon on the outside of the fuel pin as well as the quartz molds acquiring radioactive 

constituents of the fuel which necessitates their treatment as high level waste[3]. 
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Figure (1-1) Simplified Diagram of injection casting process[4] 

 

In addition to material losses and alloy contamination due to the injection casting 

process, diagrammed in FIGURE (1-1), introducing the transuranic elements americium 

(Am) and curium (Cm) into the casting caused evaporative losses due to the high vapor 

pressure they possess at the temperature that uranium and zirconium melt as well as the 

long periods of time they are maintained in a molten state. A demonstration process 

where uranium alloyed with 2.1 wt% Am and 1.3wt% Np showed a loss of 

approximately 40% of the americium mass during the casting process[5].  These losses 

complicate the fabrication of metal nuclear fuel and generate additional costs and 

overhead to the fabrication facility due to the need to clean and dispose of contamination 

related to vaporized transuranics, making the unmodified injection casting process 

unsuitable for casting fuel pins containing volatile transuranics. 

Modifications have been made to the injection casting method on a bench top 

scale which utilizes a cover gas and a cold trap to minimize americium losses.  The 

cover gas is maintained over the casting crucible at 0.3 atm to resist americium 
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vaporization, and a cold trap prevents any americium which has evaporated from leaving 

the casting apparatus.  A small-scale demonstration was conducted which cast an alloy 

containing 5 wt% Am which showed americium losses on the order of 0.3% without the 

cover gas and a loss of 0.006% with the cover gas, indicating that this may be a viable 

path forward for resolving the americium volatility issue as well[6]. 

 

1.2 PROJECT OVERVIEW 

The research presented here was supported by the US Department of Energy as 

part of a 2007 Nuclear Research Initiative (NERI) grant supporting the goals of the DOE 

program known as the Advanced Fuel Cycle Initiative (AFCI). The main objective of 

this NERI project was to develop low temperature (i.e., below ~650°C) fabrication 

methods for TRU-bearing U-10%Zr alloys. The work is part of a larger project in which 

uranium metal powder production methods and U and U-10%Zr sintering methods were 

also developed[4].  

Powder metallurgy methods were used to fabricate U-Zr-TRU alloys using hot 

extrusion at relatively low temperatures (600°C) with magnesium and manganese used 

as surrogates for TRU elements.  FIGURE (1-2) shows a plot of the vapor pressures of 

four elements of interest; americium, curium, magnesium and manganese versus 

temperature.  These data shows that manganese is more prone to vaporization than 

curium and is similar to the americium curve.  Magnesium has a far higher propensity 

than the rest to vaporize, making it an excellent candidate to use in a test if it can be 

shown that the magnesium would be completely conserved.  Surrogates were necessary 

for this project due to americium and curium being highly radioactive elements.  
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Magnesium has vapor pressures higher than americium and curium, as shown in 

FIGURE (1-2), thus it can be expected that if the hot extrusion process results in full 

retention of the surrogate material it will be a good indication that americium and curium 

would also be retained[6]. The alpha phase uranium-zirconium alloy characteristics and 

hot extrusion properties of these materials are the processes which are being quantified. 

 

 

Figure (1-2) – Comparison of the vapor pressures of americium[7], curium[8], 

manganese[9] and mangnesium[10].  Magnesium is more prone to vaporization than 

both americium and curium, making it the best available surrogate.   

 

The results of this study showed that hot extrusion is a viable means of producing 

TRU bearing alloys.  Section 3 details the equipment and procedures utilized to produce 

the extrusion samples, including the adaptation of the existing uranium powder 
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production apparatus to produce a higher yield. Section 4 details the results of each 

extrusion test.  There were six extrusion tests in total, with tests #3 and #5 yielding 

successful samples.  The two extrusion samples that were produced were analyzed to 

show the microstructural behavior of metal powders fabricated using this method and the 

conservation of the surrogate materials in the process was achieved, this is detailed in 

Section 5.  The characterization consisted of thermal analysis with a differential 

scanning calorimeter and image and x-ray analysis with an electron microprobe. The 

differential scanning calorimetry was able to identify the phase and compositional 

transitions the samples underwent, as well as calculating the heat capacity of the sample.  

The image and x-ray analysis enabled by the electron microprobe was able to identify 

the microstructure of the samples, as well as identify and quantify the elements that 

constituted the sample matrix. 

It was concluded that upon fabrication of the samples the extruded product has an 

extremely heterogeneous structure, with almost no mixing of the constituents.  When 

heated, these constituents mix together and form microstructures and compositions 

characteristic of the composition of the alloy.  Also, although it was difficult to quantify 

precisely due to difficulty in identifying magnesium particles in the extruded sample 

matrix, it was concluded that magnesium was conserved in the sample with no losses 

observed.   
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2.  BACKGROUND 

 

 This section describes background information relevant to the process of hot 

extrusion (Section 2.1), the metallurgy of the materials involved (Section 2.2) as well as 

the process used to convert uranium metal slugs into a fine metal powder (Section 2.3).  

Also, the characterization methods of x-ray spectroscopy (WDS/EDS) and differential 

scanning calorimetry (DSC) processes are discussed in Sections 2.4 and 2.5, 

respectively.  

 

2.1  HOT EXTRUSION 

 Hot extrusion is a process by which a material is forced through a reduction die 

at a temperature above its recrystallization point.  This enables the re-formation of the 

material from without significant work hardening, thus reducing the pressure necessary 

to form the desired piece.  Hot extrusion is a very versatile process, capable of producing 

a wide variety of extruded profiles. When powder metallurgy methods are combined 

with hot extrusion, a high level of control is achieved over the material composition and 

net shape[11]. 

 There are two methods of hot extrusion, direct extrusion and indirect extrusion.  

For direct extrusion, the container and die remain stationary and the ram moves to force 

the billet, the material to be extruded, through the die.  For indirect extrusion, the billet, 

container and ram remain stationary as the die is forced into the billet.  Illustrations of 

either process are shown in FIGURE (2-1). 
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Figure (2-1) Illustrations of direct and indirect extrusion methods[11] 

 

 Direct extrusion is the easiest and least complicated from a design standpoint; 

however it demands higher peak force to drive the ram due to the frictional forces 

generated as the billet moves relative to the container and through the die.  By contrast, 

indirect extrusion is more complex to design but it demands less driving force since the 

billet and container are stationary with respect to each other.  A graph of the force 

profiles of either method is shown in FIGURE (2-2).  Due to this property of either 

method, if extrusion of a given material is proven to be feasible using the direct 

extrusion method, it will likely be feasible for indirect extrusion[11]. 
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Figure (2-2) Comparison of forces encountered for direct and indirect extrusion.[12] 

 

2.2  METALLURGICAL STUDY 

 The metals involved in this research are uranium, zirconium, magnesium and 

manganese.  In addition, the extrusion canisters used to contain the powder mixtures 

were made of copper. 

 Uranium exists as three phases, α, β and γ[13].  The α phase has an orthorhombic 

unit cell and is stable from room temperature to 667°C.  The β phase is a complex 

tetragonal structure with 30 atoms per unit cell and is stable in the 667°C to 772°C 

temperature range.  The γ phase is a body-centered cubic structure and is stable from 

772°C to the melting point of 1132°C.  Pure metallic uranium was once considered as a 

candidate fuel for nuclear reactors, however it was discovered that under irradiation 

uranium would expand asymmetrically, which resulted in tearing and failure of the 

material[14].  As metal fuel technology developed, alloying additions of zirconium, 

molybdenum, or other metals were evaluated and U-Zr and U-Mo alloys were found to 

minimize tearing and reduce anisotropic swelling during irradiation[15]. 
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 Zirconium exists as two phases, α and β.  The α phase has a hexagonal close 

packed structure and is stable up to 862°C.  The β phase zirconium structure is a body-

centered cubic phase and is stable from 862°C until melting at 1855°C[13]. 

 

 

Figure (2-3) – Uranium-zirconium phase diagram, with inset.[16] 
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 According to the binary phase diagram in Fig. 2.3, a uranium – 10 wt % 

zirconium alloy, which is representative of the composition utilized for fast reactor fuel 

pins[1], will undergo several phase transformations from room temperature to melting.  

At low temperatures, α uranium is stable in equilibrium with an intermetallic compound 

referred to as δ phase.  The solubility limit of zirconium in α phase uranium is very low 

(less than ~0.2 wt.%), whereas to the δ phase UZr2 intermetallic is by its very nature rich 

in Zr.  At 617°C the δ phase material transitions into a phase referred to as γ2, which is a 

body-centered cubic structure; gamma phase uranium and beta phase zirconium are 

mutually soluble across the entire composition under higher temperature conditions.  At 

662°C, the α phase transitions into the β phase, and at 693°C the β phase transitions into 

a γ1 phase.  At higher temperatures, the miscibility gap is not present and the alloy exists 

as γ-phase body-centered cubic structure until the solidus line is reached at ~ 1200°C. 

 Magnesium metal only exists as a hexagonal structure and it has a melting point 

at 650°C, as shown in FIGURE (2-4).  Uranium and magnesium are non-reactive and 

immiscible, forming no compounds nor solid solutions[17]. 
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Figure (2-4) – Magnesium-uranium phase diagram.  The two metals remain separate at 

all compositions and temperatures.[17] 

 

 In a similar fashion, magnesium also does not form any alloys with zirconium.  

The exception to this behavior is copper, which magnesium will interdiffuse with. 

 

2.3  URANIUM POWDER PRODUCTION PROCESS 

 In order to obtain the uranium powder necessary to complete this research, a 

method was developed to convert solid pieces of uranium metal into powder as uranium 

hydride (UH3), then that back into uranium metal[4].  When uranium metal converts to 

UH3, its density decreases from 19.04 g/cm
3
 to 10.9 g/cm

3
, this large change in density 

results in the destruction of the solid chunk and a fine uranium hydride powder is 

produced.  The uranium hydride powder produced by this method at 225°C was found to 

range in size from 1µm to 100µm with a volumetric mode of 44 µm[18]. 
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 The uranium hydride process is best conducted at 225°C with acid washed 

uranium pieces[4].  FIGURE (2-5) shows the reaction rate for hydrogen consumption by 

uranium versus temperature, which reaches its maximum at 225°C.  The uranium pieces 

were acid washed using a 50-50 mixture of nitric acid and distilled water to remove 

surface oxidation.  Surface oxidation impedes the diffusion of hydrogen into uranium, 

slowing or completely halting the hydride formation process.  The effect may also be 

overcome by hydriding the uranium at a higher temperature, as temperatures above 

approximately 300°C increase the hydrogen diffusion rate. However at this elevated 

temperature, the uranium hydride powder begins to sinter, which results in larger 

particles and a reduced uranium powder yield[19].   

 

 

Figure (2-5) – Rate of hydrogen consumption in uranium versus temperature.[19] 
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 After the uranium is converted to UH3, increasing the temperature will induce 

thermal disassociation.  This can be done at atmospheric pressure for temperatures in 

excess of 430°C, but uranium sintering bonds the fine particles together creating an 

agglomerated powder.  Exposing UH3 to a rough vacuum (less than 10 millimeters of 

mercury) during the dehydride procedure will induce decomposition temperatures 

around 300°C.  As FIGURE (2-6) shows, the pressure generated by the hydrogen 

decomposing from the uranium hydride increases exponentially with temperature, and at 

300°C exceeds the pressure of a rough vacuum, thus allowing the hydrogen gas to be 

evacuated from the system. 

 

 

Figure (2-6) – Hydrogen pressure from uranium hydride versus temperature.[19] 
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2.4 WAVELENGTH AND ENERGY X-RAY SPECTROSCOPY 

 Wavelength dispersive x-ray spectroscopy (WDS) is a process where x-rays of a 

specified wavelength are diffracted by a crystal into a detector and counted.  The method 

is typically used to detect specific characteristic x-rays generated by materials which are 

being investigated using an electron microprobe[20]. 

 Characteristic x-rays are generated when an electron in a higher energy shell 

drops into a lower energy vacancy, a hole in an electron orbital shell.  These vacancies 

are generated in an electron microprobe by exposing a focused electron beam onto the 

sample which has enough energy to overcome the threshold for ionizing an electron 

from an inner shell.  When the electron transition occurs between orbitals of different 

energy levels, an x-ray is generated which possesses energy equal to the potential energy 

difference between the upper and lower orbital.  The specific energy of these 

characteristic x-rays are unique for every element, and thus are reliable indicators for the 

presence of that element[20]. 

 These x-rays can be detected by a variety of methods, the two most common are 

energy dispersive x-ray spectroscopy (EDS) and wavelength dispersive x-ray 

spectroscopy (WDS).  EDS utilizes a detector which absorbs all of the x-rays emitted 

from the sample and differentiates them by energy, producing a spectrum.  The energy 

dispersive x-ray method has the advantage of being a fast method for sample 

characterization, as well as resolving multiple characteristic peaks simultaneously which 

can quickly distinguish a majority of the elemental components of a sample.  

Disadvantages to EDS include the relatively large background associated with the 

examination of the entire x-ray spectrum arising from bremsstrahlung radiation. This 
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makes EDS relatively insensitive to concentrations of elements that are less than 1% in a 

sample and large errors are possible when used for quantitative analysis[20].   

 The WDS method greatly reduces the background noise and is more effective for 

quantitative analysis of the elemental constituents of a sample because it isolates a modal 

set of wavelengths for the detector to count.  WDS utilizes Bragg’s law to coherently 

scatter x-rays of a selected wavelength into a detector: 

 2 sinn dλ θ=   

where n is an integer, λ  is an x-ray wavelength, d is the lattice spacing in the diffracting 

crystal and θ is the incident angle of the x-ray to the plane of the crystal.  FIGURE (2-7) 

illustrates this process. 

 

 

Figure (2-7) - Illustration of how Bragg’s Law results in coherent scattering of 

wavelengths which meet the criteria (left) and mitigation of those which do not 

(right)[21] 
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 By utilizing a single crystal of a known lattice spacing and adjusting the 

orientation of the crystal in order to obtain the desired incident angle, characteristic x-

rays can be selectively diffracted into the detector[20]. 

  

2.5  DIFFERENTIAL SCANNING CALORIMETRY 

 Differential scanning calorimetry (DSC) is an analytical method where a sample 

is heated through external means and the difference between the energy absorbed or 

released by the sample as compared to an empty reference is recorded.  This data allows 

for the characterization of endothermic and exothermic reactions that the sample 

undergoes, as a function of temperature.  By measuring the heat flux required to keep the 

sample at the same temperature as the empty reference, the enthalpies of the reactions 

may be determined.  Additionally, through the use of a sapphire standard in place of the 

normally empty reference vessel, the heat capacity of the sample can be determined from 

the DSC data.  This data can be used to gain insight into what the microstructure of the 

material being analyzed is doing by observing the energy given off or taken in due to 

different processes occurring at characteristic temperatures.  A diagram of the instrument 

used in this thesis is shown in FIGURE (2-8). 
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Figure (2-8) – Cross section of NETZSCH STA 409 instrument used in this work[22]. 
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3.  EXPERIMENTAL SETUP 

 

3.1  URANIUM POWDER PRODUCTION 

 Uranium metal powder production was accomplished using the hydride-

dehydride method mentioned in Section 2.3. The method developed by Garnetti[4] and 

modified by Helmreich and Sames[18] was further adapted for this project to generate 

larger quantities of powder.  During the course of this research, three different 

production vessel designs were used to generate powder. 

 The initial setup is shown in Fig. 3-1 and is identical to the system used by 

Garnetti. It consisted of an atmosphere and temperature control system installed within a 

2-in diameter furnace well in the floor of an inert atmosphere glovebox.  The setup 

included an aluminum oxide crucible suspended on a steel carriage with thermal shields 

to insulate the system and protect the seal at the top of the furnace well.  The atmosphere 

control equipment was a rubber stopper with an inlet and outlet copper tube; the vessel 

atmosphere was isolated from the glovebox and could be flowing Ar or Ar-5%H2 or a 

rough vacuum.  As the system was initially constructed, the mass of uranium which 

could be converted to powder was smaller than the mass required for an extrusion 

sample.  This led to the establishment of the other reaction vessels described below, but 

a larger method was developed later for the glovebox furnace. 
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Figure (3-1) – Diagram of the hydride assembly used by D. Garnetti (not to scale) [4]. 

 

 The second reaction vessel employed for this study consisted of a large steel 

vessel with copper sealing rings which was placed in a bench-top lab furnace.  The 

chamber was moved into and out of the glove box for loading and unloading.  This 

vessel was initially developed in order to study the hydriding properties of zirconium, 

the design requirements of which were greater than the needs for uranium hydriding.  

Although this vessel yielded more than enough uranium powder for extrusion samples, 
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the seal was unreliable, which resulted in oxidation of the uranium powder.  Due to this 

issue, it was only used for extrusion experiments #1 and #2 before it was abandoned. 

 

 

Figure (3-2) – Larger hydride-dehydride reaction system adapted from R.D. Kelley’s 

zirconium hydride experiment. 

 

 The third reaction vessel was also a bench top apparatus, shown in FIGURE (3-

3), which consisted of a large alumina tube with and alumina vessel suspended inside of 

it.  This system produced uranium powder that had very similar properties to and in 

similar quantities as the glovebox apparatus.  It consisted of an alumina tube assembly 

which internally was structured very similarly to the glovebox well system, suspended 

within a tubular furnace.  The inlet was connected to a Ar-5%H2 supply filtered through 

a moisture and oxygen scrubber system.  The outlet was connected to a roughing oil 

vacuum. 
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Figure (3-3) –Larger-scale hydride-dehydride apparatus developed to produce powder 

for extrusion experiments. 

 

 The procedures for U metal powder production were similar for each of the 

systems noted above.  In general, powder production proceeded in the following 

sequence [4]: 

1. Uranium metal chunks, each approximately 2.5 cm x 2.5 cm x 0.5 cm, were first 

placed in nitric acid at 25% concentration for five minutes; this was performed 
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under argon cover gas inside of a glovebag to remove any oxide layer on the 

metal.   

2. The acid-washed coupons were rinsed with water to remove any nitric acid prior 

to rinsing with ethanol and then moved into an inert atmosphere glovebox.  The 

vacuum generated in the glovebox airlock would dry the ethanol off of the 

coupons. 

3. The mass of the metal pieces was recorded. 

4. The metal pieces were loaded into the hydride-dehydride reaction vessel and the 

system was prepped for processing. 

5. The system was heated to 225°C and exposed to Ar-5%H2 gas for 12 to 24 hours.   

6. The process vessel was evacuated to 10
-3

 atm and heated to 300°C; for 30 

minutes; hydrogen evolution was complete at this point. 

7. The system was cooled down and either disassembled in the glovebox or 

transferred into the glovebox and disassembled to recover the metal powder.  An 

example of the recovered material is shown in FIGURE (3-4). 

 

 The uranium powder was sieved inside the glovebox using a Dual Manufacturing 

Co. D-4326 sieve shaker. The sieved powder was segregated in order to remove particles 

larger than 90 µm in diameter.  This size was selected because the Zr, Mg, and Mn 

powders used in the extrusion experiments were nominally ~42 µm in diameter. The 

mixing process was performed either manually for 30 minutes or in the bottom of the 

sieve shaker, typically overnight.  The choice of method was typically related to when 

the uranium powder was available, since the packing and extrusion process required 
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several hours.  If the powder was ready in the morning it was mixed manually for 30 

minutes through shaking a jar containing the constituent powders continuously.  If the 

powder was ready in the afternoon or evening it was shaken in a jar briefly with the 

other constituent powders, loaded in the base of the sieve shaker for agitation overnight, 

then shaken in a jar briefly once more after removal from the sieve shaker. 

 

 

Figure (3-4) – Example of uranium powder product prior to classification via sieving [4].  

Remains of the original uranium chunks are visible. 
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3.2  EXTRUSION METHOD 

 After the powder mixtures were prepared it was packed into the extrusion 

canister (still inside of the glovebox).  The extrusion canisters were surplus copper 

canisters from previous extrusion studies [23], and the method for sealing those canisters 

utilized in those studies was applied here.  The extrusion canister loading procedure 

proceeded as follows:  

1.  The extrusion canister was placed in a steel container for stability. 

2. The canister was filled to within 3 mm (0.125 in) of the rim with loose 

uranium powder mixture. 

3. The canister was rapidly moved from side to side in order to settle and level 

the powder. 

4. The canister was tapped on the floor of the glovebox, also to settle and level 

the powder. 

5. A steel ram was used in order to lightly compact and perform a final leveling 

of the powder within the canister. 

6. Steps 2-5 were repeated until either the compacted powder was within 3 mm 

(0.125 in) of the rim or the uranium powder mixture was exhausted. 
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Figure (3-5) – An extrusion canister being packed with uranium powder mixture. 

 

 In multiple experiments, there would insufficient volume of the mixed uranium 

powder to fill the canister to the required level to form an effective seal; this extra space 

was filled with zirconium powder.   

 After the canister was filled to the appropriate level, shown in FIGURE (3-5), the 

lid was applied.  The lid fit the inner diameter of the extrusion canister and was made of 

the same material.  A chamfered piece of steel was placed on top of the lid and the entire 

loading apparatus was moved to the hydraulic press (Carver Mini-C) inside of the 

glovebox.  The press was used to apply a compaction force of  4,500 N (0.5 t) for ~1 

min, the chamfered offend of the steel ram would crimp the lid onto the extrusion 

canister, forming a seal. 

 The sealed canister was transferred from the glovebox and into a chemical fume 

hood designated for handling radioactive materials.  In the hood, the sample was spray 

coated with boron nitride, shown in FIGURE (3-6).  The boron nitride coating would 

help lubricate the canister for extrusion and would be stable at the elevated temperatures.  
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After the coating was dried, the canister would then be moved to the extrusion apparatus 

and placed in the die assemble described below.  In later experiments, a copper plug was 

placed on top of the canister and compressed slightly to create an additional barrier 

against oxidation. 

 

 

Figure (3-6) – The sealed sample canister after coating with boron nitride. 

 

 The extrusion apparatus consisted of four pieces of H-13 tool steel, heat treated 

for maxiumum strength at the extrusion temperature for each experiment.  This consisted 

of heating the H-13 parts after machining to 1000°C for 45 minutes, then allowing the 

parts to cool to room temperature under forced convection, then reheating the parts to 
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600°C for 2 hours.  The final reheating step, known as tempering the steel, was repeated 

for additional durability.  The apparatus consisted of a ram, a container, a reduction die, 

and a base, shown in FIGURES (3-7) and (3-8). 

 

 

Figure (3-7) – Extrusion assembly components. 

 

 The ram was designed to snugly fit the hole in the container piece, and bear most 

of the stress generated transferring the force of the extrusion press into the sample.  The 

container was designed to be slightly larger than the sample itself (0.755 in ID), to 

ensure against problems fitting the sample into the apparatus and would be the area 

where the sample would be during the heating phase of the procedure.  The reduction die 

Container 

Base 

Reduction Die 

Ram 



 

 

 

28

was the key component in the extrusion apparatus responsible for reducing the sample to 

the final diameter while tolerating the most heat and stress generated in the system.  

Drawing from observations of previous extrusion studies [23], a reinforced version of 

the reduction die was chosen where after the 45° reduction cone ended a shallower relief 

was incorporated to add strength, while not contributing to additional stress on the 

sample due to friction.  The smallest diameter of the reduction die was 0.25 in, resulting 

in a 10:1 reduction in area that the sample would be extruded through.  The base served 

as a platform to ensure that the extrusion process fit the dimensional constraints of the 

extrusion press, including the available engagement of the press head.  Additionally, the 

base was designed with a notch that could fit a thermocouple which would monitor the 

temperature of the reduction die near the center, enabling precise control over the 

temperatures that extrusions would take place. 

 All of these components were located within the base of a 50 ton Enerpac 

hydraulic press assembly.  The extrusion assembly rested on top of a steel pedestal and 

was surrounded by a Watlow heating furnace, shown in FIGURE (3-9).  The Watlow 

heating furnace controller interfaced with the thermocouple located within the base of 

the extrusion assembly for control of the extrusion temperature.  The press head was 

cooled by a water jacket to avoid overheating the hydraulic oil in the press due to heat 

emitted by the Watlow furnace. 

 



 

 

 

29

 

Figure (3-8) – Rendering of a cross section of the extrusion assembly. 
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Figure (3-9) – View of the extrusion assembly during heating.  The white coating is 

boron nitride lubricant, to decrease resistance due to friction. 

 

 After the sample was heated in the container to the desired extrusion temperature, 

typically 600°C, the extrusion ram was placed on top of the sample and the pedestal 

attached to the press was moved into the position below the press head.  The press was 

activated to extrude the sample by moving the ram to the full engagement designed into 

the extrusion apparatus.  After the extrusion was complete, the press was reversed and 
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reset to its original position, and the pedestal would be moved out from underneath the 

press head to avoid overheating.  The assembly was allowed to cool to ambient 

temperatures before extraction of the extruded sample.   
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4.  RESULTS 

 

 Table 4.1 provides an overview of the extrusions experiments described here. 

The information includes the sample name, composition, process variables and notable 

observations from each test. The following sections describe each experiment in more 

detail. 

 

TABLE (4-1) – List of experiments performed. 

Extrusion Number Composition Successful? 

1 Uranium – 10% Zirconium N 

2 Uranium – 10% Zirconium N 

3 Uranium – 10% Zirconium Y 

4 Uranium – 10% Zirconium N 

5 Uranium – 12% Zirconium 

– 2.5% Magnesium 

Y 

6 Uranium – 12% Zirconium 

– 5% Manganese 

N 

 

 

4.1  EXTRUSION APPARATUS DEMO TEST 

 The extrusion apparatus and method were tested initially with surrogate materials 

prior to extrusions involving uranium.  This was done to demonstrate the performance of 
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the newly-machined extrusion assembly (Fig. 3-7) and extrusion procedures prior to 

performing experiments involving radioactive material.  Copper powder was chosen for 

this demonstration because it is readily available and has a similar melting temperature 

to uranium (1086°C for Cu vs. 1132°C for U). 

 The copper powder was loaded into a copper canister and sealed according to the 

procedure described is Section 3.2.  The sealed canister was loaded into the extrusion 

apparatus, heated to 600°C, and extruded to form a copper rod.  The sample extruded 

with minimal resistance due to the soft and ductile nature of copper.  The extruded pin 

had a slight curvature. 

 

4.2  EXTRUSION 1 – U-10%Zr 

 The uranium powder for this experiment was generated using the second system 

described in Section 3.1 (Fig. 3-2).  A 25 g uranium metal chunk was exposed to Ar-

5%H2 gas at 225°C for 44 hours.  The powder was then dehydrided under vacuum at 

325°C for 20 minutes.  This procedure produced 24.3 g of uranium powder (97% 

conversion).  2.7 g of zirconium powder was added to the uranium powder and mixed 

manually in a sealed jar by shaking for 20 minutes. 

 The powder was then packed into a copper canister but the 27 g of uranium-

zirconium powder did not completely fill the canister.  Therefore, ~4 g of pure zirconium 

powder was added on top of the mixed powders filled the canister to enable effective 

extrusion. The canister was sealed with a force of 4,500 N (0.5 ton) applied to the rim of 

the canister lid. 
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 The loaded canister was loaded into the extrusion apparatus and the loaded 

assembly was heated to 600°C.  Upon reaching 600°C and allowing five minutes for the 

temperature to equilibrate, the extrusion ram was inserted, the heated assembly was 

moved into the press, and force was applied to extrude the sample.  As the system 

pressure increased, indicated by the auditory feedback from the press pump, the press 

began to leak oil so the extrusion was aborted. (After the experiment, the leak was 

repaired and the setup procedures were adjusted to eliminate this problem. 

 The test sample had not reached the point where extrusion  had begun before the 

test was aborted. Even so, the material had been deformed and reduced in volume 

through the compression action of the extrusion ram.  The bottom of the canister formed 

into a cone as it conformed to the shape of the extrusion die and the canister expanded to 

match the diameter of the extrusion container.  The canister was removed and showed no 

breach in containment.  The canister was weighed in order to determine if any material 

was lost, and it was found to have a near identical weight, confirming that all of the 

material was contained. 

 

4.3  EXTRUSION 2 – U-10%Zr 

 The uranium powder used for this experiment was produced the first system 

described in Section 3.1 (Fig. 3-1), which was modified to produce an additional volume 

of powder per run.  The uranium metal was amella at 225 C for 15 hours and 

dehydrided at 325 C for 30 minutes.  Approximately 30 g of uranium powder were 

produced from 85 g of uranium metal.  Although this was a less efficient method of 
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generating uranium powder, the glovebox method was a simpler method that allowed for 

quick repetition and less risk of uranium powder oxidation. 

 The uranium powder was mixed with 3.3 grams of zirconium powder and shaken 

manually for 20 minutes to ensure uniformity.  The mixture was then loaded and packed 

into a copper canister; in this case there was sufficient material such that a layer of 

zirconium powder was not required to make a seal with the canister lid.  The canister 

was sealed with a force of 4,500 N (0.5 ton) applied to the rim. 

 The canister was loaded into the extrusion apparatus and began heating to the 

target extrusion temperature of 600°C.  At around 400°C, the uranium powder 

underwent rapid oxidation which resulted in contamination within the extrusion 

apparatus and the press enclosure.  The test was aborted and the area was 

decontaminated. 

 There was no obvious indication at the time of what caused this particular 

experiment to oxidize, so an adjustment was made to the procedure to incorporate an 

additional barrier to prevent oxygen from reaching the powder.  As a result, all future 

extrusions incorporated an additional copper plug placed on top of the copper canister 

and pressed into place with the extrusion ram to form a seal. 

 The copper plug was a disk of copper, the diameter of the extrusion container and 

6.35 mm (0.25 in) thick.  The objective of this plug would be to seal off the top of the 

canister from the atmosphere by placing the copper plug on top of the canister and 

pressing it with the ram such that it would expand to the diameter of the extrusion 

container, prior to heating. 
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4.4  EXTRUSION 3 – U-10%Zr 

 The uranium powder was prepared by hydriding uranium in the glovebox well.  

For this experiment, since there was sufficient uranium powder available, the powder 

was sieved in order to select for particles 90 microns and lower.  This was done in order 

to have greater control over the particle sizes being extruded and generate a more even 

distribution.  27 g of uranium powder were mixed with 3 g of zirconium powder and 

shaken thoroughly in the trough of the sieve overnight in order to ensure uniformity. 

 The mixed powder was then loaded and packed into a copper extrusion canister.  

The powder was topped with a layer of zirconium powder in order to fill the volume of 

the canister prior to sealing.  The canister was sealed with a force of 4,500 N (0.5 ton) 

applied to the rim of the canister. 

 The copper canister was loaded into the extrusion apparatus with the copper plug 

placed on top of it, followed by the ram.  The extrusion press was used to apply brief 

pressure to the ram, enough for the copper plug to expand and form a seal inside the 

extrusion apparatus.  The extrusion apparatus was then heated up to 600°C and allowed a 

few minutes to equilibrate at that temperature.  The force from the press was applied and 

the sample was extruded.  Partway through the extrusion the press briefly encountered 

increased resistance, indicated by the auditory feedback of the hydraulic press pump, 

then that pressure was relieved and the extrusion then proceeded to completion. 

 After the test, the assembly was taken apart to extract the sample.  The material 

had extruded mostly successfully, however the copper plug had bored through the center 

of the upper part of the canister.  This resulted in enough pressure to separate the fully 

extruded portion of the pin from the top and had extruded the copper plug itself into a 
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long thin rod of copper that was wound up in the collection area, shown in FIGURE (4-

1).  The extruded portion of the pin containing the U-Zr mix, shown in FIGURE (4-2), 

was not adversely affected by the hyper extrusion of the copper plug, but however the 

partially extruded portion of the U-Zr material was exposed to the air and oxidized. 

 

 

Figure (4-1) – The remains of the copper plug after the extrusion. 
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Figure (4-2) – The fully extruded portion of the sample measured two inches long and a 

quarter inch in diameter. 

 

 The sample was sectioned for analysis and further characterization.  The material 

inside had formed a dense metal matrix, with no evidence that it had previously been  

powder.  A 110 mg sample of the U-10%Zr alloy sample was cut from the copper liner 

for analysis in the differential scanning calorimeter (DSC). 
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Figure (4-3) – DSC response when as fabricated sample is heated to 800°C 

 

 The alloy sample was heated at 5 K/min under flowing argon in the DSC up to 

800°C. The sample was then held at 800°C for 3 hours followed by a 5 K/min reduction 

to room temperature.  Upon heating, the DSC recorded very strong peaks at 672°C and 

776°C (FIGURE 4-3), indicating either a chemical reaction or a phase change.  

Additionally, a very wide peak occurred starting at 500°C and peaking at approximately 

730°C.  The peaks were not mirrored on the cooling side of the DSC temperature 

program, indicating that an irreversible process had occurred.   
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Figure (4-4) – DSC response on the second heating of the sample to 800°C 

 

 The same sample was tested through the same temperature profile in order to 

observe any changes which had occurred to the sample. Upon heating, many differences 

were observed in the sample behavior.  Peaks were observed at 599°C, 677°C, 688°C 

and 701°C (FIGURE 4-4).  Additionally, the very wide peak observed in the first 

measurement had diminished in magnitude although the minimum is still evident at 

approximately 730°C.  After holding at 800°C for three hours, the observed peaks were 

mirrored when the sample was cooled, indicating reversible processes. 

 Another measurement was performed where the heat capacity of the matrix was 

analyzed up to 800°C.  The heat capacity measurement, shown in FIGURE (4-5), 

showed a slight decrease as the temperature increases, this is likely due to some 
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oxidation occurring on the sample.  Even though the sample was heated in a controlled 

atmosphere, the small amount of oxygen contamination present in the argon source was 

enough to influence the measurement.  Otherwise, near 50°C the heat capacity recorded 

was 0.152 J/(g-K), which can be compared to a value of 0.132 J/(g-K) calculated from 

literature values.   

 

 

Figure (4-5) – Heat capacity of U-10%Zr  

  

 Three other sections from this alloy were prepared for microstructural 

characterization using an electron microprobe (Cameca SX50) and wavelength 

dispersive spectroscopy.  One of the samples was examined in the as fabricated 

condition, the second sample was heat treated for one hour at 800°C, and the third 
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sample was heat treated at 800°C for five hours.  Each sample was mounted in epoxy 

and polished for examination. 

 

 

Figure (4-6) – Backscattered electron image of the as-fabricated U-10%Zr alloy from 

Extrusion No.3. 

 

 FIGURE 4-6 shows the matrix of sample #3 as it was fabricated after extrusion, 

with no heat treatments.  It shows a highly heterogeneous structure with very little 

interdiffusion between two constituents. 
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 Energy dispersive analysis showed that the dark grey regions were zirconium 

metal and the white regions were uranium metal.  The light grey regions also were 

determined to be uranium metal.  The boundaries between the distinct phases were quite 

sharp indicating that interdiffusion during the fabrication process was minimal. The 

black specks were silicon oxide that are likely polishing artifacts that had embedded 

itself in the matrix. 

 

 

Figure (4-7) – Matrix of extrusion sample #3 after one hour of heat treatment at 800°C 

 



 

 

 

44

 After one hour of heat treatment, shown in FIGURE (4-7) the alloy 

microstructure was altered considerably.  The zirconium and uranium elements had 

migrated into each other.  Remnants from the original boundaries of the zirconium 

particles appear to be observable, possibly due to a thin layer of oxidation on the powder 

surfaces.  The uranium appeared to be in the process of diffusing into the zirconium 

phases.  The zirconium appeared to have diffused outward into the larger uranium phase 

and formed many small precipitates. 

 

 

Figure (4-8) – Backscatter electron image of the matrix of sample #3 after five hours of 

heat treatment at 800°C  
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 After five hours the matrix continued to undergo diffusion, shown in FIGURE 

(4-8).  The concentration of the zirconium precipitates in the uranium phase increased, 

and the penetration of the uranium phase into the zirconium particles had also increased.  

In some particles, a lamellar structure of uranium and zirconium was observed, shown in 

FIGURE (4-9).  This lamellar structure may be related to the intermetallic δ phase, Uzr2. 

 

 

Figure (4-9) – Close up of zirconium particle after five hours of heat treatment at 800 C.  

The grey region within the particle is a lamellar structure consisting of uranium and 

zirconium metal. 
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4.5  EXTRUSION 4 – U-10%Zr 

 Following the success of the previous extrusion, the next extrusion was designed 

as an attempt to duplicate the sample in order to establish a reliable procedure for 

performing experiments.  The uranium powder for this experiment was generated by 

hydriding and dehydriding uranium metal in the glovebox well.  The uranium powder 

was prepared by hydriding a mix of fresh uranium metal pieces with partially amella 

uranium left over from the previous experiment.  The material was amella at 225°C for 

24 hours and dehydrided at 325°C for 30 minutes.  The resulting metal powder was 

sieved to select for powder sizes 90 um and lower. 

 The 27 g of the sized uranium powder was mixed with 3 g of zirconium powder 

and vibrated in the base of the sieve shaker overnight in order to achieve uniformity.  

The mixed powder was packed into a copper canister, topped with zirconium powder, 

and sealed with a force of 4,500 N (0.5 ton) applied to the rim of the canister. 

 The canister was loaded into the extrusion apparatus with the copper plug and the 

extrusion ram placed on top.  Force was applied from the hydraulic press at room 

temperature in order to deform the copper plug and form an additional seal.  The 

extrusion apparatus was heated to 600°C and allowed to equilibrate before the extrusion.  

Force from the hydraulic press was applied and the sample began to extrude.  Midway 

through the extrusion process the ram appeared to slow down and the hydraulic pump 

indicated that it was encountering increased resistance through auditory feedback.  The 

pressure was suddenly relieved as a sudden movement of the extrusion ram occurred 

accompanied by a loud, audible crack.  The extrusion was aborted and the apparatus was 

allowed to cool down for a follow-up inspection. 
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 The canister had suffered a breach after it had extruded roughly a quarter of an 

inch though the die.  As a result, the material inside was completely oxidized. It is not 

clear why the pressure was increasing during the extrusion operation but the extrusion 

ram could not be extracted from the top of the apparatus indicating that significant 

galling and fusion may have occurred. 

 

4.6  EXTRUSION 5 – U-12Zr-2.5Mg 

 The uranium powder for this extrusion was generated in the glovebox well 

through hydriding and dehydriding fresh uranium metal pieces along with some partially 

amella material.  The uranium metal was amella at 225°C for 36 hours and 

dehydrided at 325°C for 30 minutes.  The resulting material after the dehydride 

procedure was selectively sieved in order to obtain uranium powder less than 90 um in 

diameter. 

 For this extrusion, it was desired to simulate a sample that would be 10% 

zirconium and 20% transuranic by weight.  Due to the large difference in the density of 

the magnesium surrogate metal and transuranic elements, it was decided that the atomic 

percentage ratios would be used in order to obtain a representative mix of powders.  The 

mixture consisted of 25.5 g of uranium metal powder, 3.65 g of zirconium metal powder 

and 0.74 g of magnesium powder.  This resulted in a mixture that was 12% zirconium 

and 2.5% magnesium by weight.  The material was then mixed thoroughly by shaking it 

in the base of the sieve shaker overnight. 

 The copper extrusion canister was packed with the mixed powder material.  It 

was found that due to the extra volume provided by the addition of the magnesium 
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powder, there was no need to add a layer of zirconium to fill the canister.  The canister 

was sealed with a force of 4,500 N (0.5 ton) applied to the edge of the rim. 

 The canister was loaded into the extrusion apparatus with the copper plug and the 

extrusion ram placed on top.  Force was applied from the hydraulic press in order to 

deform the plug and form an additional seal.  As before, the extrusion apparatus was 

heated to 600°C and allowed to equilibrate for a few minutes.  Force was applied from 

the hydraulic press and the sample was extruded.  Towards the end of the extrusion there 

was some buildup of pressure, indicated by the auditory feedback from the hydraulic 

pump, and some cracking sounds, however the extrusion proceeded to completion.  The 

apparatus was allowed to cool down to room temperature before inspection and 

extraction of the extrusion sample. 

 The results were similar to the results of extrusion experiment #3.  The sample 

had extruded a length of approximately one inch past the maximum reduction of the die 

before the copper plug had deformed to a point where the pressure forced it through the 

remainder of the canister, breaching it and severing the fully extruded section from the 

top of the canister.  During the extrusion, the reduction die had failed and plastically 

deformed into a concave shape.  The final dimensions of the extrusion sample, however, 

were not changed very much, maintaining a 3.65 mm (0.25 in) diameter.  The surface of 

the extruded sample appeared to be textured and not smooth, shown in FIGURE (4-10), 

this was different as compared to sample 3. 
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Figure (4-10) – Photo of the extruded sample from experiment 5. 

 

 The sample was sectioned to obtain a cross section from the center of sample for 

characterization.  The cross section showed areas of dense solid matrix interspersed with 

cracks and voids which originated at the copper liner of the sample and extended to three 

quarters the radius of the sample on average.  The sample was then cut axially, and it 

was revealed that the cracks were in a consistent conical pattern throughout the sample, 

indicating that they were likely induced by stresses during the extrusion. 

 The cross section form the sample was mounted in epoxy and polished.  Images 

were obtained of the matrix in the vicinity of the dense material between the stress 

cracks noted above. 
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Figure (4-11) – Backscatter electron image of the matrix of extrusion sample #5 

 

 FIGURE (4-11) shows the alloy phases from the sample consisted of many 

variations that had not been encountered in sample #3.  The material appeared to be 

pitted, with voids mainly concentrated in the vicinity of a medium grey phase.  EDS 

analysis showed that the darkest grey phase was pure zirconium, the white phase was 

pure uranium and the medium grey phase gave a very strong uranium response, however 

it also contained magnesium content.  An x-ray map was also taken of the sample, 

shown in FIGURE (4-12) which showed that some pits and voids gave a very strong 
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response for magnesium x-rays, while others did not.  Additionally, it confirmed the 

EDS measurements which demonstrated that the medium grey phase consisted of a 

strong uranium response intermingled with a magnesium response. 

 

 

Figure (4-12) – Backscatter electron image and x-ray map of the same region in the 

sample.  Blue indicates zirconium characteristic x-rays, green indicates uranium 

characteristic x-rays and red indicates magnesium characteristic x-rays. 

 

4.7  EXTRUSION 6 – U-12Zr-5Mn 

 The uranium powder for this experiment was generated utilizing a bench top 

version of the hydride apparatus due to the glovebox well being unavailable.  Pieces of 

fresh uranium metal were used for generating the material.  The uranium was amella at 

225°C for 48 hours and dehydrided at 325°C for 30 minutes.  The resulting uranium 

powder material was sized via sieving to select for particles smaller than 90 um. 
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 The surrogate metal chosen for this experiment was manganese, as before with 

the magnesium surrogate the ratio of metal powders was chosen such that the atomic 

percent of a sample consisting of 10% zirconium and 20% transuranic material was 

represented.  24.8 g of uranium powder was mixed with 3.55 g of zirconium powder and 

1.6 g of manganese powder.  This mixture yielded a sample which consisted of 12% 

zirconium and 5% manganese by weight.  The mixture was shaken in the base of the 

sieve shaker overnight in order to ensure uniformity. 

 The uranium powder mixture was packed into a copper canister.  Also like the 

magnesium sample, due to the increased volume of material available due to the addition 

of the manganese the canister was able to be fully packed without the need of additional 

material to meet the required volume to seal the canister.  The canister lid was sealed 

with a force of 4500 N (0.5 ton) applied to the rim. 

 The canister was loaded into the extrusion apparatus with the copper plug and the 

extrusion ram placed on top.  Force was applied to the extrusion ram by the hydraulic 

press in order to deform the copper plug and form an additional seal.  The extrusion 

apparatus then began heating to the extrusion temperature, 600°C.  At around 400°C 

there was a large buildup of pressure within the extrusion canister which resulted in the 

ejection of the extrusion ram, the copper plug and a majority of the uranium powder 

mixture.  Upon ejection, the uranium powder mixture oxidized and the experiment was 

terminated. 
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5.  ANALYSIS AND DISCUSSION 

 

5.1 EXTRUSION #3 ANALYSIS 

 

 

Figure (5-1) – Annotated DSC measurements of U-10%Zr alloy from extrusion #3, 

illustrating the phase changes that occur during heating. 

 

 FIGURE (5-1) shows a combined plot of the calorimetry curves generated during 

the upward temperature scan from the as fabricated U-10%Zr alloy from extrusion 3. 

The same 110 mg sample was examined through two DSC measurement cycles and the 

difference between in the initial (as fabricated) behavior and the heat treated behavior is 

highlighted in FIGURE (5-1). The sample was held at 800 C for 3 hours between DSC 

cycles.   
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 In the first measurement, the first notable feature begins at approximately 500°C 

as a long endothermic drop in the signal is observed; note that this is not a distinct peak, 

but a broad drop in the signal indicating a possible slow process that is not a distinct 

reaction or phase change.  This slow decrease continues for the remainder of the 

measurement and seems to end at approximately 730°C.  In the second measurement, 

this feature is almost nonexistent except for a hint of a similar broad feature above the 

final phase change noted near 700°C. This behavior is likely characteristic of diffusion 

occurring in the material that results in an enthalpy of mixing.  The BSE images 

(FIGURE 4-6) performed on the sample showed a very heterogeneous structure. 

 The next major features in the first measurement are two strong peaks at 672°C 

and 776°C.  These two peaks correspond well to phase transformations that are 

consistent with pure uranium metal, first the transformation from the orthorhombic α 

phase into the tetragonal β phase, followed by the transformation into the body-centered 

cubic γ phase. (Note that these transition temperatures are slightly off from the literature 

values, but these preliminary scans were done without an extensive calibration of the 

instrument such that the data is only indicating the behavior without any claim on the 

precision or accuracy of the values.)  This is consistent with the existence of a 

heterogeneous state in the alloy structure prior to the initial heating.  No zirconium 

transformations are observed because they occur at temperatures greater than 800°C 

(phase transition at 862°C, melting at 1855°C)[13], the maximum temperature of this 

analysis. 

 After holding at 800°C for 3 hours to allow the matrix to homogenize, the sample 

was reheated for the second scan shown in (FIGURE 5-1).  The first feature encountered 
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was a small peak that occurred at 599°C, followed by a series of stronger peaks at 

677°C, 688°C and 701°C respectively.  These measurements correspond to phase 

transformations that would be expected to be observed by an alloy of uranium with 10 

wt% zirconium.  The first transformation corresponds to the transformation of the 

intermetallic δ phase into a body-centered cubic γ2 phase, followed by the orthorhombic 

α phase transition into the tetragonal β phase, followed by the β phase transformation 

into the body-centered cubic γ1 phase.   A more thorough study would be required to 

understand the differences between these numbers and the literature values shown on the 

phase diagram (FIGURE 2-3) but it is clear that the same alloy had different phase 

transformation characteristics after heat treatment. This implies that something has 

changed in the alloy, which is consistent with the observation of diffusional mixing 

noted in FIGURES (4-7) and (4-8).  

 The BSE images in FIGURES (4-6), (4-7), and (4-8) support the observations 

noted above.  Initially, the alloy sample was extremely heterogeneous, with no mixing of 

the zirconium and the uranium phases.  One anomaly in the uranium phase was the 

presence of some grains which gave a slightly lower response in the BSE image, 

indicative of a lower density than the surrounding material.  EDS analysis confirmed that 

the phase was uranium, and no other metals were present, however it is possible that 

these small grains may be indicative of uranium hydride contamination.  This 

explanation is somewhat confirmed by their lack of presence in either the one hour or the 

five hour heat treated samples. 

 The microstructures that evolved during heat treatment contained a lot of very 

interesting features (FIGURES 4-6, 4-7, 4-8).  The edges of the zirconium particles prior 
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to heat treatment appeared to maintain an outline of the grains after diffusion had 

allowed for a large amount of exchange of uranium and zirconium, FIGURE (4-9)  

focuses on a single grain so this outline can be observed easily.  This outline may be due 

to surface oxidation of the zirconium powder.  The feature in FIGURE (4-9) is extremely 

thin, less than 1 µm, and does not appear hindrance the interdiffusion of the uranium and 

the zirconium.  Zirconium that diffuses into the uranium phase appears to precipitate into 

extremely small grains, some less than ~1 µm wide.  It is possible that these precipitates 

are the intermetallic Uzr2 (δ phase) but this was not confirmable because the particles 

were too small for WDS quantitative analysis. 

 

TABLE (5-1) WDS Analysis of lamellar structure 

WDS 

Analysis 

U 

(wt%) 

Zr 

(wt%) 

Total 

(wt%) 

U 

(at%) 

Zr 

(at%) 

Lamellar_1 77.04 23.63 100.68 55.50 44.42 

Lamellar_2 72.41 27.72 100.14 50.01 49.95 

Lamellar_3 72.87 28.92 101.79 49.12 50.86 

 

 Uranium does not appear to have penetrated fully into to the remnant zirconium 

phase (FIGURE 4-9), even after five hours of heat treatment.  This is consistent with by 

the DSC discussion above indicating some small amount of mixing taking place after 

three hours of heat treatment.  The uranium appears to penetrate the former Zr particle in 

a uniform manner, indicating a uniform rate of reaction.  Surrounding the zirconium core 

is a lamellar structure formed by both the uranium and the zirconium.  This structure 

may be a 2-phase combination of α uranium plus the δ phase but the features are too fine 
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to confirm this.  Analyses performed by WDS on this structure, shown in TABLE (5-1) 

revealed that a composition of 50 atom % uranium and 50 atom % zirconium; this 

corresponds to a local concentration of U-27.7 wt% Zr. 

 In order to establish a baseline for the accuracy of image analysis in determining 

the composition of the matrix, ten optical microscopy images taken of the matrix as 

fabricated were analyzed in ImageJ. The analysis was performed by utilizing the 

threshold tool to isolate and measure the areas of the different phases based on their 

shading.  The image area analysis, shown in TABLE (5-2), resulted in a measurement of 

9.5±1.2% zirconium by weight.  This matches well with the measured matrix 

composition of 10% based on the weight of the powders measured during the canister 

loading procedure. 

 

TABLE (5-2) – Image analysis results of extrusion #3. 

Image Area % U Area % Zr Weight % U Weight % Zr 

1 76.7 23.3 90.6 9.4 

2 78.2 21.8 91.3 8.7 

3 80 20 92.1 7.9 

4 76.3 23.7 90.4 9.6 

5 75.1 24.9 89.8 10.2 

6 73.3 26.7 88.9 11.1 

7 72.3 27.7 88.4 11.6 

8 76.4 23.6 90.5 9.5 

9 77.9 22.1 91.2 8.8 

10 79.6 20.4 91.9 8.1 

Average 76.6 23.4 90.5 9.5 

Std Dev 2.51 2.51 1.21 1.21 
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5.2 EXTRUSION #5 ANALYSIS 

 

 

Figure (5-2) – Backscattered electron image of extrusion sample #5 

 

 FIGURE 5-2 shows an image from a polished cross section of the U-12%Zr-

2.5%Mg alloy fabricated during extrusion #5. The matrix appeared to be highly 
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segregated, similar to the as-extruded U-10%Zr structure in FIGURE 4-6, except that 

there are three distinct types of solid features observable in this image. On first glance, 

this is consistent with the fact that uranium, zirconium, and magnesium powders were 

added to the extrusion canister. However, there are a few curiosities that require 

discussion before this obvious possibility may be confirmed. 

 Based on the BSE image, it would appear that there are distinct dark grey and 

light grey phases bonded together by a single very light phase.  EDS analysis confirmed 

that the dark grey phase was pure zirconium and the very light phase was pure uranium, 

however the mid-level grey phases were found to give a strong uranium response 

intermingled with a weaker magnesium response, shown in TABLE (5-3).  On first 

considerations, this was an unexpected result for the following reasons: 1) since Mg has 

a very low atomic number and thus large Mg particles should appear to have a very dark 

contrast in the presence of Zr and U, 2) the binary U-Mg phase diagram (FIGURE 2-4) 

indicates that these two metals are completely immiscible, and 3) the mid-level grey 

phases do not appear to be distorted or give any indication of mixing.  

 One possible explanation is that these particles are indeed the Mg particles but 

some BSE electrons are emanating from the U matrix below the particles in the image. It 

is quite possible that the microprobe beam penetrates through the magnesium particles 

and interacts with the uranium below it, resulting in uranium characteristic x-rays being 

registered by the detector.  This is because electrons have a very large depth of 

penetration in magnesium due its low density, approximately 4 µm, as compared to 

uranium, which is approximately 0.1 µm[20]. 
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TABLE (5-3) WDS analysis of extrusion #5 light grey regions 

WDS 

Analysis 

U 

(wt%) 

Zr 

(wt%) 

Mg 

(wt%) 

Total 

(wt%) 

U 

(at%) 

Zr 

(at%) 

Mg 

(at%) 

Light 

Grey_1 
92.14 0.00 1.41 93.55 87.00 0.00 13.00 

Light 

Grey_2 
99.44 0.00 0.12 99.56 98.83 0.00 1.17 

Light 

Grey_3 
100.40 0.01 0.05 100.46 99.54 0.03 0.43 

Light 

Grey_4 
87.96 0.00 2.86 90.82 75.88 0.00 24.12 

Light 

Grey_5 
14.66 3.10 32.69 50.45 4.28 2.36 93.36 

Light 

Grey_6 
93.65 0.01 0.17 93.83 98.23 0.02 1.75 

Light 

Grey_7 
93.68 0.00 0.17 93.85 98.24 0.00 1.76 

Light 

Grey_8 
91.57 0.03 1.96 93.56 82.59 0.07 17.34 

Light 

Grey_9 
88.03 0.03 0.13 88.19 98.50 0.09 1.42 

 

 Another interesting observation was the presence very large magnesium response 

found in the cracks found in the vicinity of the light grey particles (FIGURE 4-12).  

These areas had no uranium response but instead had only a strong magnesium response 

or no response.  It is possible that the geometry introduced by the cavities may have an 

effect where some areas are shadowed form the x-ray sensor and others are magnified.  

It is also possible that during the extrusion some magnesium may have preferentially 

moved towards the voids. 

 Image analysis was performed on nine BSE images in order to quantify the 

composition of the matrix, shown in TABLE (5-4).  The images were analyzed in 

ImageJ in a similar manner to the method used to analyze extrusion #3.  The void areas 

accounted for 2.45±0.69 % of the matrix, indicating that this was a very dense structure.  
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Zirconium content was measured to be 20.3±1.1 % by weight and the magnesium 

content was measured to be 6.9±0.7 % by weight, based upon the assumption that the 

grey particles were 100% magnesium.  Both of these values were higher than the 

expected values based upon the measurements taken while the powders were being 

packed, 12% zirconium and 2.5% magnesium by weight.  Ultimately, however, this is a 

good indication that the magnesium particles were preserved in the matrix during the 

extrusion. 

 

TABLE (5-4) – Image analysis results for extrusion #5. 

Image Weight % U Weight % Mg Weight % Zr Area % Void 

1 72.6 7.3 19.3 4.0 

2 74.2 7.0 18.5 1.8 

3 73.5 5.6 20.6 1.9 

4 72.8 7.0 19.7 2.6 

5 73.6 6.0 20.0 2.1 

6 69.1 8.0 22.4 2.3 

7 71.9 6.9 20.8 1.9 

8 71.9 7.0 20.5 2.9 

9 71.9 7.1 20.5 2.5 

Average 72.4 6.9 20.3 2.5 

Std Dev 1.5 0.7 1.1 0.7 

 

 The reasons for this discrepancy between the measurement from the image 

analysis and the composition of the powders are not clear.  It may be possible that the 

powders were not mixed properly prior to loading and have an uneven distribution; 

however this is a fairly unlikely.  Another possibility is that the flow was not uniform in 

the extrusion die, which led to uneven distributions of material in the sample.  This is 

also unlikely however, as the images used for the area measurement were taken from 



 

 

 

62

different areas of the cross section of the sample, unless the inhomogeneity is present 

axially in the sample. 
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6. SUMMARY AND RECOMMENDATIONS 

 

 As a result of this study, it may be concluded that under the right circumstances 

the extrusion process can yield a very dense matrix of heterogeneous metal particles. 

The metallurgical morphology of the extruded pin may be modified through heat 

treatment into a large array of microstructures based on the time and temperatures 

involved. 

 It was also demonstrated that magnesium metal would remain in the metal matrix 

after the extrusion process.  As magnesium metal has a much higher vapor pressure than 

the transuranic elements to be integrated into metal nuclear fuel, it may be concluded 

that hot extrusion may be a viable method for fabrication. 

 The potential process methodology for the production of hot extruded fuel pins 

was explored and partially demonstrated from uranium powder production, to sample 

preparation through to extrusion.  More work needs to be done to fully characterize the 

extrusion process through quantifying the process variables more completely (i.e., stress 

vs. temperature during extrusion). 

 If this process is utilized with uranium produced form the hydride-dehydride 

method, additional work must be done to develop a method to ensure that the hydrogen 

has been fully removed prior to canister loading..  Also, alternative canister materials, 

such as vanadium, should be explored in order to determine if they alter the stresses the 

sample undergoes during extrusion. 

 Ultimately, testing should be performed at a pilot production scale in order to 

fabricate test fuel pins that are suitable for irradiation testing and analysis.  The behavior 
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of the highly heterogeneous structure that the hot extrusion method produces should be 

studied further to determine how it performs in the high temperature and high radiation 

environment of a nuclear reactor.  
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