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ABSTRACT 

 

Subsurface Flow Management and Real-Time Production Optimization Using Model 

Predictive Control. (December 2011) 

Thomas Jai Lopez, B.E., Birla Institute of Science and Technology 

Chair of Advisory Committee: Dr. Eduardo Gildin 

 

One of the key challenges in the Oil & Gas industry is to best manage reservoirs 

under different conditions, constrained by production rates based on various economic 

scenarios, in order to meet energy demands and maximize profit.  To address the energy 

demand challenges, a transformation in the paradigm of the utilization of “real-time” 

data has to be brought to bear, as one changes from a static decision making to a 

dynamical and data-driven management of production in conjunction with real-time risk 

assessment. The use of modern methods of computational modeling and simulation may 

be the only means to account for the two major tasks involved in this paradigm shift: (1) 

large-scale computations; and (2) efficient utilization of the deluge of data streams. 

Recently, history matching and optimization were brought together in the oil 

industry into an integrated and more structured approach called optimal closed-loop 

reservoir management. Closed-loop control algorithms have already been applied 

extensively in other engineering fields, including aerospace, mechanical, electrical and 

chemical engineering. However, their applications to porous media flow, such as - in the 

current practices and improvements in oil and gas recovery, in aquifer management, in 
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bio-landfill optimization, and in CO2 sequestration have been minimal due to the large-

scale nature of existing problems that generate complex models for controller design and 

real-time implementation. Their applicability to a realistic field is also an open topic 

because of the large-scale nature of existing problems that generate complex models for 

controller design and real-time implementation, hindering its applicability.   

Basically, three sources of high-dimensionality can be identified from the 

underlying reservoir models: size of parameter space, size of state space, and the number 

of scenarios or realizations necessary to account for uncertainty. In this paper we will 

address type problem of high dimensionality by focusing on the mitigation of the size of 

the state-space models by means of model-order reduction techniques in a systems 

framework. We will show how one can obtain accurate reduced order models which are 

amenable to fast implementations in the closed-loop framework .The research will focus 

on System Identification (System-ID) (Jansen, 2009) and Model Predictive Control 

(MPC) (Gildin, 2008) to serve this purpose. 

A mathematical treatment of System-ID and MPC as applied to reservoir 

simulation will be presented. Linear MPC would be studied on two specific reservoir 

models after generating low-order reservoir models using System-ID methods. All the 

comparisons are provided from a set of realistic simulations using the commercial 

reservoir simulator called Eclipse®.  With the improvements in oil recovery and 

reductions in water production effectively for both the cases that were considered, we 

could reinforce our stance in proposing the implementation of MPC and System-ID 

towards the ultimate goal of “real time” production optimization.  
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1. INTRODUCTION 

 

1.1 Overview 

 Imagine planning and implementing the evacuation of a crowded city- on a 

moonless night, from a helicopter. We may have a basic idea of the road layout and 

some understanding of how the towns are generally planned and some old scrap of local 

information. But there might just be a few streetlamps that are switched on and we are 

working in darkness. Producing oil and gas from a reservoir is very similar in nature 

wherein the well can be compared to be the streetlamp illuminating its very immediate 

surroundings, but nothing more. The information we receive from seismic interpretation 

of the geology would serve as the sketchy plan of the reservoir. But as reservoir 

engineers our job is to come up with a plan to squeeze out as much oil as possible, 

though we are basically working in the dark.  

 The knowledge of geology and science has given us enough rules of thumb to 

make reasonable assumptions of what might be down there in the reservoirs, but as 

engineers, we still need to make that million-dollar decision based on incredibly small 

amounts of hard information. How could we go from surveying dunes in desert or waves 

on the ocean to the point of being prepared to spend millions of dollars finding out what 

lies beneath it. 

 

This thesis follows the style and format of Journal of Mechanical Design. 
__________________
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It has always been an empirical process. Like any scientific process, we have to act 

on our theory, test it, then get the results, interpret them and intervene to optimize our 

plan. But when it comes to exploration and production, there is always a degree of risk 

and uncertainty that we have to live with all the time. It is this risk associated with the 

industry that makes reservoir simulation and well test analysis all the more challenging. 

Once a well has been drilled for exploration, we perform well testing to listen to how the 

reservoir responds and adapt to events. Reservoir simulation on the other hand has been 

used as a predictive tool that has gradually become a standard in the petroleum industry. 

Its widespread acceptance in the recent past could be attributed to the following: 

 Advances in computing (particularly the increase in computer memory/storage 

and in the speed of computation). 

 Advances in reservoir characterization techniques. 

 Advances in numerical techniques for solving the partial differential equations 

that govern the reservoir model. 

 The generality built into reservoir simulators which make them useful in 

modeling field cases especially complicated oil-recovery techniques that would 

otherwise be impossible to analyze. 

 Reservoir simulators have thus made use of this high speed computing facilities 

quite effectively. They utilize the computational power to solve the set of algebraic 

mathematical equation developed from a set of partial differential equations that 

describe the physical behavior of the process in a reservoir to obtain a numerical 

solution for the reservoir behavior in the field. These mathematical equations would 
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account for the most important physical processes taking place in the reservoir including 

the complex dynamics of the fluids partitioned into as many as three phases (oil water 

and gas) and the mass transfer between the three phases. In addition to these effects, the 

mass transfer between the various phases, viscous, gravity and capillary effects on the 

fluid flow are also taken into consideration.  Furthermore, the spatial variations of rock 

properties, fluid properties, and relative permeability information can be represented 

with a great amount of details in the reservoir simulator [1]. 

 However the size of the large scale system whose complexity we wish to model 

in our reservoir simulators has always raised additional challenges from a system and 

controls perspective. Given the economic importance in depleting the reservoir in the 

most optimal way, there is a serious challenge of rationalizing the complete decision 

making process. For this reason, in recent years, a fresh look at how real-time data may 

be integrated in the decision-making process and  in the creation of value in the Oil & 

Gas industry has opened new avenues of research and, in turn,  a new set of challenges 

have been put forth. 

 Smart wells, e-field, i-fields, among other ideas were developed based on the 

premise that real-time data, field-wide optimization and parameter estimation (history 

matching) could be put together in a somewhat structured manner, called closed loop 

reservoir management. Large investments were made to deploy computers, sensors and 

actuators all over the field, ensuring continuous real-time influx of data. It is well 

disseminated in the industry that worldwide spending on the  technological 

infrastructures for real time-data are ineffective unless value is created by utilizing the 
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improved knowledge and information that these investments provide. The challenge is to 

bring about substantial improvement in developing software and work processes that can 

help us cope with this data flux. Therefore, we need to ensure that the control and 

optimization decisions are made more rapidly so that the “real time” nature of the smart 

wells is not lost.  

Real time control and optimization appear to be impractical since reservoir models 

are highly non-linear and have a large number of parameters and states, and thus require 

large amount of computational power. In many cases, the underlying model used to 

solve the forward problem in an optimization or in an inverse modeling scheme 

(parameter estimation) is a product of discretization of a set of partial differential 

equations (PDE‟s). Hence, highly accurate and detailed description of the underlying 

models induce dynamical systems of large dimensions either in the state or parameter 

spaces (several millions of grid blocks are often obtained). Recent studies, however, 

show that from an input-output perspective, fairly simple models are preferable over 

complex ones.   In this case, the speed of computations is greatly improved without 

penalizing the accuracy of the solutions.   

 

1.2 The Concept of Closed-Loop Control 

 The production phase of hydrocarbon recovery process has been carried out for a 

long time in an open-loop fashion as shown in Figure 1-1. The exploration and 

production phases in the hydrocarbon recovery process starts by what we call the field 

development. Field development basically involves the various steps and processes 
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involved in identifying an economically beneficial reservoir. Whenever we do a field 

development, we build a geological model. These realistic geological models are 

required as input to reservoir simulator programs. Then we build one or more reservoir 

models and do extensive simulation to decide how to service the pipe lines, how to 

position the wells etcetera. After this step then we go into the production. At this stage, 

instead of using our reservoir models as a reference to influence our control decisions, 

we depend on spread sheet engineering and use creaming curves to make these 

decisions. These control inputs would then have to be manually fed in. We certainly do 

some surveillance, but it is based on some very simple models. After about five years 

into production, when we realize that our production does not really match what we 

predicted the first time, we would have to do a field re-development. Because of this, a 

new geological model is needed and we would also have to rebuild the reservoir model. 

Reservoir models are thus in fact “out of the loop” and hence the name “Open-loop 

Reservoir Management”. 

 Wouldn‟t it be much better and profitable if we could keep using our reservoir 

simulation models, by keeping them “ever-green” in order to optimize recovery? 

 Closed-loop reservoir management is based on the hypothesis that recovery can 

be significantly increased by changing reservoir from a batch-type use of reservoir 

simulation models to a near-continuous model-based control activity [2]. The key 

elements of this hypothesis are to perform: 

 Optimization under physical constraints and geological uncertainties.   

 Data assimilation aimed at continuous updating of the system models. 

http://en.wikipedia.org/wiki/Reservoir_simulator
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 These two elements are in fact part of a broader theme under the concepts of 

system and control theory. The closed loop block diagram of optimal reservoir 

management as depicted in Figure 1-2, would not be different from any other closed-

loop system encountered in most of the feedback control systems [3]. There have been 

several attempts to redraw the block diagram of Figure 1-2 to a more suitable system, 

which can be realized in the real-time [2] [4] [5] [6]. 

The top block in the figure represents the real world with the reservoir, the wells, 

and the facilities. To this block, there would be some kind of an input and some kind of 

an output. The inputs could be the rates at which water is injected through a well (for the 

purpose for water flooding) and the outputs could be the oil or water production. We 

simulate the real world with models of different kinds- the geological model, the 

reservoir models, the well models etcetera. Typically we use multiple models because 

the real world is uncertain. Once you have those models, some sort of optimization is 

required to complete the loop. At a high conceptual level, this can be field development 

and planning, and at a lower conceptual level it can be actually changing the injection 

and production rates of wells, optimizing gas lift rates etcetera. We also know that these 

models cannot correctly represent reality so prediction of the reservoir output for 

different inputs would be necessary. In this case, a comparison of the real output and 

some kind of history matching is used to update or correct the models. 

For measuring outputs at the high conceptual level we can think about 

interpreting 4-D seismic data coming from geo-sensors, whereas in the lower conceptual 
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level we could get measurements by having extra sensors like in a production test. In this 

case we would be measuring the phase rates coming out of a single well.  

 This systematic updating of the model by comparing the predicted outputs with 

the actual outputs is what we call “Closed-Loop Reservoir Management”. The main 

issues when trying to perform a systematic update in the reservoir setting which hinder 

its direct applicability to real-time implementations are the large-scale nature of the 

reservoir models (state and parameters spaces) and the number of realizations of such 

uncertain parameters that need to be generated to completely describe the stochastic 

nature of these parameters [7] [8]. 

 When we can look at this from a geosciences perspective, the geological model is 

at the core whereas when we think of reservoir modeling or become more focused on 

production, the flow model is at the core. In both cases we can combine optimization 

with data assimilation. Data assimilation involves using data from the well producing the 

oil to adapt the current reservoir model with the dynamics happening in the subsurface 

and trying to optimize production.  

 Several of these initiatives like i-fields and e-fields are focused on short term 

production optimization whereas one in reality would like to focus on a long term 

reservoir engineering perspective as well.  In the hypothetical case we would like to have 

a single model, correctly representing the true world. Though it is unlikely, let us assume 

that we have it. Then the next question would be to what extend could we use the same 

model to optimize production. In order to carry out the concept of closed loop control 

over the lifetime of a reservoir, we would need to bring up a system where the 
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measurements can play a significant role in updating the reservoir model and would also 

need to come up with an optimization strategy that can work hand in hand with this 

continuously updated model [2] [9].  

There are many ways to do optimization. In this thesis, optimal control theory is 

our choice. Optimal control theory was developed to control the trajectories of rockets 

by the Russians and the Americans in the 60s, but in reservoir engineering we use it to 

do history matching and flooding optimization. One of the key aspects is that we can 

deal with a lot of parameters. It is a gradient based technique that would give us a local 

optimum. This can by physically imagined as when we are try to climb a hill and know 

that we have reached the top of the hill but we do not know whether we reached higher 

than the other hills which may be higher. We can optimize for the net present value or 

the ultimate oil recovery, or any other financial measure that we can compute from our 

reservoir model. We can manipulate several controls, the injection or production rates, 

and the pressure or valve openings. There may be hundreds or thousands of control 

variables and     to     state-space variables. Gradients are obtained by very efficient 

numerical techniques, and importantly it does result in a dynamic control. This would 

mean to dynamically change the inputs (the rates, the pressures etcetera) over time, - 

over the life of the reservoir. Optimization in our framework will be dealt with in 

Section 3.  
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Figure 1-1  Block Diagram for Open-Loop Reservoir Management (adapted from [5]) 

 

Figure 1-2  Block Diagram for Closed-loop Reservoir Management (adapted from [5]) 
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Production optimization in the reservoir management context has been achieved 

by means of gradient-based methods or surrogate-based methods applied to a model 

assumed to be fixed in time and with no real-time adjustments for production data 

mismatch between the underlying models and production data.   

Although this can lead to good results in practice, open loop optimization suffers 

from not having model corrections and change of scenarios embedded into the 

framework. On the other hand, in the closed-loop framework, model updating and 

optimization go hand in hand with the actual production data from the field. A well 

known technique in closed-loop optimization is called model predictive control (MPC). 

Based on the success of model-based optimization to the process industry, we aim to use 

MPC schemes to increase the potential for greater oil recovery, and therefore, enhanced 

reservoir management and profitability. MPC offers a robust control implementation 

together with constraint handling capabilities.  

 

1.3 Problems with Large-Scale Systems and Model Order Reduction 

 As discussed above, reservoir models are typically very large dynamical systems. 

They are usually in the order of   (         state variables. In order to use these 

reservoirs in a closed-loop control framework which would function in a real time sense, 

we would need to remarkably reduce the size of the model. This model reduction has 

been a field of interest within the mathematical and mechanical engineering community 

for a very long time, and it is quite relevant to the petroleum industry. The size and 

complexity of the underlying system with which our reservoir simulators run has always 
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raised a serious challenge for the application of systems and control. In this case, one can 

approximate the input-output behavior of such models in a process called model order 

reduction [10] [11] [12] [13]. 

Before I begin going into the details of the various type of model order reduction 

methods, let me give a brief about the underlying porous media flow equation that drive 

our large scale reservoir simulators. A detailed formulation is provided in Section 2 of 

the thesis. 

 In a mathematical framework, the model and controller reduction may be posed 

as follows:  

 One can show that, the porous media flow equations can be written as 

                                     
     

  
              

        

  
                                                                                              

where    is the gradient operator, K  is the permeability tensor,   fluid viscosity, rik   

is the relative permeability of each phase (which is a function of wS ) , ip  pressure of 

each phase, g is the acceleration of gravity and finally h  is the depth of the reservoir,   

is the fluid density, v  is the fluid superficial velocity, t  is time,    denotes the 

divergence operator,   is the porosity, iS  is the fluid saturation of each phase, iq is flow 

rate per unit volume and finally  wo,  represents the oil and water phases, respectively. 

 After discretization in space, each grid block is related to two states of the 

reservoir, that is, oil pressures and water saturations. Vectorizing the states of the system 

and denoting  TN
ww

N
oo SSpp  11X , and similarly for the sources terms,
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 TN
w

N
owo qqqq 11Q , one can show that, the porous media flow equations Eq. 1.1 can be 

written in matrix form  as 

                                                           ,QXFXXXXV T                                             (1.2) 

The interested reader can refer [4] and [5] for a detailed description of this equation.  

Here, each row of the matrix corresponds to the flow equation across each grid block in 

the reservoir. This equation can be seen as the input-output description of the underlying 

dynamical system [3] [14]. In this case, V(X) is the accumulation matrix, which 

contains  ,   ,    and   , T(X) is the transmissibility matrix, containing the 

permeabilities and viscosity parameters, and F(X) is a selection matrix representing flow 

rates or bottom-hole pressure measurements. The above equation, in turn, can be recast 

in a generalized nonlinear state-space form and linearized through an operating point, 

yielding, the linear time-invariant continuous-time state-space formulation as 

                              

 
   








,,,,,

,,,,,

tt

t

θxxuhy

0θxxug





    

   
     








.)()(

)()()(

ttt

ttt

uDxCy

uBxAx

                  (1.3) 

 One can note that in both cases, linear and nonlinear, a function dependency to 

was added to the equations, where is a vector of uncertain parameters of the system, for 

instance  TNNKK   11 , . As can be seen, the dimensions of the state-space X and 

the parameter space  are dependent upon the number of grid cells of the underlying 

PDE discretization. Therefore, large-scale models are obtained if accurate discretizations 

are sought after, requiring fine grid computations.  
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 Given a dynamical system Σ , modeled as a non-linear differential equation, or in 

a special case,  linear time-invariant dynamical system (LTI), one seeks a reduced order 

approximation to Eq. 1.3, such that: 

 the dimension of the reduced order model is nr  ; 

 the behavior of the reduced order model approximates the original with 

certain accuracy, i.e., there is a small  error bound on  )()( tt ryy  ; 

 the model reduction procedure is computationally stable and efficient, and the 

reduced order model is achieved by means of projection, T
VZΠ  , where 

nXrZV,   with r
IV

T
Z  ,  as in the following equations: 























u(t)D(t)CVx(t)y

u(t)B
T

Z(t)AVx
T

Z(t)x
:Σ

t)u(t),(t),H(Vx
T

Z(t)y

t)u(t),(t),F(Vx
T

Z(t)x
Σ

rrr

rr
r

or

rr

rr
r


:

 

         

 If the model equations are known explicitly, we can apply a model order 

reduction by projection as shown in Eq. 1.4. This is also called as a projection-based 

model order reduction which is a mathematically sound and efficient way of 

representing the model, as one approximates the state space variables x by a linear 

combination of basis vectors    as shown below.  

                                                                      
 
                                                   (1.4) 

                                                                          

Here,   is the actual state which is of dimension n which is a very large number,    is 

the reduced state which is of dimension     . By properly selecting V, one can deal 

with different types of dynamical systems. In order to determine the feasibility of the 
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application of various model reduction methods for designing low-order models and, in 

turn controllers, a study must be performed first at the reservoir model level, i.e., 

reservoir model reduction. 

 Several ways of obtaining reduced-order models were proposed in the literature 

[4] [14]. In a broad sense, they can be divided into two main categories: model reduction 

for simulation and model reduction for control purposes. In the latter case, once should 

recognize the importance of the addition of the controller into the process. In this 

manner, the problem of controller reduction (closed-loop) is different from the problem 

of model reduction (open-loop) given that the ultimate goal is to accurately approximate 

the closed-loop performance of the dynamical system.   

 In general, the problem of reducing the order of a large-scale model is known as 

the approximation of dynamical systems [14]. Basically one can view the approximation 

methodology simply as a surrogate model, as in the case of “black box” approaches, or 

one can intrusively modify the equation, as in the “white-box” approaches (see Figure 1-

3).   
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 Figure 1-3 Model Order Reduction Techniques (adapted from [14]) 

 Based on the type of Model Order Reduction (MOR), we come up with one of 

the reduction methods as shown in Figure1-3 which is by no means a comprehensive 

table with all possible methods.  

In the Section that follows, we will explain the differences between the white box 

and black box approach and briefly describe the following methods for model reduction: 

Balanced truncation, Proper Orthogonal Decomposition and Subspace Identification.  

 

1.3.1  White Box 

 If the model equations are known, one can apply model reduction by projection 

by the white box approach [14]. In this approach, basically three families of model 

reduction may be used. This can be classified into SVD method; Krylov based subspaces 
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or moment matching methods and Nodal Truncation. All the methods in the white-box 

approach would entail the modification of the equations of the dynamical system. For 

this, one needs to have at hand, the source code of the reservoir simulator, and perform 

modifications to it. Several techniques have been developed in both the linear dynamical 

system framework, namely, the Balanced Truncation, Hankel Norm Approximation, 

Moment Matching by Krylov Techniques, and, in the nonlinear setting, namely the use 

of the Proper Orthogonal Decomposition (POD) and its variants [14].  

 Roughly speaking, the SVD family relies on dense matrix factorizations and 

preserves important theoretical properties of the original system, like stability, together 

with a measure of the approximation error. The Krylov methods on one hand rely only 

on matrix vector multiplications, yielding numerically efficient algorithms for large-

scale applications, but on the other hand they lack good theoretical properties. A 

combination of the best features of both families is also possible in an SVD-Krylov 

framework through the use of iterative methods [14]. As far as Nodal Truncation 

methods as concerned, they find their applicability in the discretization of partial 

differential equations, where one finds methods such as the finite element methods 

(FEM). In this case, we can pose model order reduction in a projection framework by 

using what is called the nodal truncation methods. 

 

1.3.1.1 Balanced Truncation 

 One of the best model reduction techniques applied to linear dynamical systems 

is known as balanced truncation. It has been used extensively by the control and 
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structural dynamics communities for obtaining reduced order models for control 

purposes [14].  The main feature of this method is the retention of stability and a priori 

computable error bounds. Notably, as will be seen later, balanced truncation has been 

extended to the nonlinear case by means of proper orthogonal decompositions (PODs) 

[10] [12] [14].  

 Basically, the method relies on the computation of a similar transformation to 

simultaneously diagonalize two matrices, the so-called controllability and observability 

gramians of the system, obtained by the solution of two Lyapunov equations, yielding 

the projection matrices to be used in the reduction process. 

 It has been known in the control engineering community [14] [15] that the 

controllability and observability gramians are related to the energy needed to steer a 

system from an initial condition x0=0 to a final state x, and the energy required to 

observe the output of the system with initial condition x and no excitation function, 

respectively. So, simultaneously diagonalizing the gramians gives good insight into the 

states that require large amounts of energy to be controlled or that yield small amounts 

of observation energy, and, therefore may be eliminated without a significant impact on 

the system response. 

 Given the dynamical system as in Eq. 1.2, one can define, respectively, the 

controllability and observability gramians as 

     * * * *
AP PA BB 0, A Q QA C C 0  

 A similar transformation, T, can be found in Eq. 1.2 to simultaneously 

diagonalize the gramians as 
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 1

1 1
      * *

m q mq
P TPT Q T QT Σ diag I , , I  

 In this case, the diagonal elements of Σ are called the Hankel singular values of 

the system. The reduced model can be obtained by means of a projection, based on the 

partition ofΣ , where 2Σ represents the small singular values of the system.   

11 21

21 221





 
   

    
    

 

1 1

2

1 2

A A B
TAT TB

G(s) A A B
CT D

C C D
        

                                       

 
  
 

11 1

r

1

A B
G (s)

C D
 and  











2

1

Σ0

0Σ
Σ

                                  (1.5) 

 It can be shown [10] [14] [15] that there exists a priori computable error bound 

for the above approximation. 

 

1.3.1.2 POD 

 Proper Orthogonal Decomposition (POD), also known as principal component 

analysis, or the Karhunen-Loève, is one of the most prominent model reduction 

techniques for large-scale nonlinear models. Proper orthogonal decomposition has been 

successfully used in several fields, including the computational fluid dynamics 

community, signal analysis and pattern recognition, and in control theory [10] [14]. 

Recently POD and its variants have been applied somewhat successfully to the reservoir 

simulation arena [2] [10] [11] [12]. 

 This method essentially provides an orthonormal basis for representing the given 

data in a certain least squares optimal sense, and truncation of the optimal basis provides 
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a way to find optimal lower dimensional approximations of the given data. One seeks a 

projection, Pr , of fixed rank r, such that the following cost is minimized: 

2

0
( ) ( )x P x

T

rt t dt  

 It can be shown that a necessary condition for Eq. 1.5 to hold is that Pr is an 

eigenfunction of the kernel

*

0

( ) ( )R x x

T

t t 
, defined by, R k k k   . The main result of 

POD approximation is that the optimal subspace of dimension r is spanned by a 

truncation of the eigenvectors of the kernel as 

*

1

P
r

r k k

k

 



 

 Since the computation of the kernel is a difficult task to be performed in the 

nonlinear case, the method of snapshots was introduced as a way of determining the 

eigenfunctions without explicitly computing the kernel R. In this case, one defines the 

correlation matrix as  

*

1

1
( ) ( )R x x

m

j j

j

t t
m 

 
 

where ( )x jt  is the instantaneous system state or snapshot at time tj. Since R is symmetric 

and positive definite, one can compute its basis, Pr , by means of the thin singular value 

decomposition (SVD) of the kernel as
*

R P S Vr r r . Model reduction is then 

accomplished by projection into the nonlinear equations.  
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 The keen reader can realize the close connections between POD‟s and the 

balanced truncation method [14].  In this sense, if one experiments with the linear 

system given by Eq. 1.3, by choosing the input functions as the impulse ( )t , one can 

recover the controllability gramian as the kernel of the nonlinear system. This yields the 

so-called Balanced POD by means of empirical gramians.  

 

1.3.2 Black Box 

 When one works with mainly commercial-out-of-the-shelf reservoir simulators, 

one has only access to input and output data. In this case, one can work with the black-

box methods in which the reduced order model is obtained by looking at the relation 

between the inputs and outputs of the system. There are many ways to deal with 

input/output data. One can generate artificial intelligence systems, such as the neural 

nets, proxy models, etc, to train the production history into a computer code, so that it 

can predict future outcomes. Of the various meta-modeling or black box approaches as 

shown in Figure 1.3, the one on which I will be focusing in this thesis will be subspace 

identification. 

 

1.3.2.1 Subspace Identification 

 In the early 90's, subspace identification techniques [16] [17] were originated as a 

generalization of the classical realization theory developed in the systems framework, 

with the addition of concepts from numerical linear algebra and geometry. Essentially, 
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subspace identification is a ''black-box'' approach that extracts a linear model from the 

sequence of inputs and outputs generated from a simulator [16] [17] based on the idea of 

controllability and observability and balanced realizations as explained before.  The 

identification process always consists in two steps: (1) weighted projection of the row 

space of a well-defined matrix from input/output data, the so-called data Hankel matrix, 

and in turn the estimation of the state sequence; and (2) the actual computation of the 

system matrices through a least-square approach using the above estimated states. 

 It can be shown that the state-space basis of the subspace identified models can 

coincide with a frequency weighted balanced basis for appropriate weights. This is a 

nice result, since one can compute reduced-order models from input/output data by 

looking at the decay of the frequency weighted Hankel singular values. 

 However in this thesis, as we would be using an in-house simulator to perform 

the optimization, we would be considering the black-box approach namely the subspace 

identification methods. In this case, we will use the input/output behavior of the 

dynamical system (from the commercial reservoir simulator that we intend to use) to 

generate the A, B, C, D state space matrices that would be used in our control 

framework. Further details about System Identification would be provided in Section 4. 

 

1.4 Objectives of the Proposed Research 

 In this thesis we would primarily be focusing on improving the secondary-

recovery of a reservoir using water flooding. As the title implies we would be focusing 

on the control concept called model predictive control and on system identification to 



22 
 

carry out our optimization process for water flooding. A number in injection wells will 

be drilled to inject water and thus maintain a somewhat steady reservoir pressure and 

thus sweep the reservoir. A number of wells would be required to be drilled in various 

parts of the reservoir to effectively retrieve oil. The problem lies in the fact that as time 

progresses, the water injected would flow favorably toward the channelized structure of 

the porous media, and then we would start producing uneconomical quantities of water.  

 The use of smart control over injection and production wells would expand the 

possibilities to control and manipulate the fluid paths through the reservoir. Thus we 

could somewhat manipulate the progression of oil/water front in such a way so as to 

result in the maximum possible ultimate oil recovery.    

 Some of the challenges that the industry currently faces as pointed out in the 

Digital Energy Conference -2011 [18] with regard to closed-loop reservoir management 

are: 

 What is the optimal frequency for the updating of reservoir models and 

production strategies? 

 How can we best combine long-term reservoir management with short-term 

production optimization? 

 What are the observable and controllable variables in our reservoir models and 

which parameters can be identified from data? 

 What is the optimal level of detail (both in space and time) for control-relevant 

reservoir models? 
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 What are the most important decisions, and how can we focus our measurement 

strategy and modeling efforts to support those? 

 What is the scope to apply closed-loop reservoir management in secondary and 

tertiary recovery? 

 What can we learn from other disciplines such as industrial process control, 

meteorology and oceanography? 

 Can we use them to influence the flow in the subsurface rather than just to 

automate the push of a button? 

 Most of these issues will be dealt with on the thesis. In this thesis, I seek to 

explain how real-time optimal control can be to reservoir management by studying the 

reservoir production from two models in particular. Based on the observations from the 

various test that were conducted on the reservoirs, we suggest the use of MPC schemes 

to increase the potential for greater oil recovery. This would obviously ensure enhanced 

reservoir management and profitability.   

At first, an overview of the dynamics of a two-phase reservoir is dealt with by 

referring to the basic equations for flow in porous media. Then a mathematical treatment 

of subspace identification and MPC as applied to reservoir simulation will be presented. 

Then linear MPC performance would be studied on two specific reservoir models after 

generating low-order reservoir models using subspace identification methods. Lastly, the 

highly nonlinear behavior of the models will be highlighted and the use of nonlinear 

MPC will be suggested. All the comparisons are provided from a set of realistic 

simulations using the commercial reservoir simulator called Eclipse®. 
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2. RESERVOIR SIMULATION AND PRODUCTION OPTIMIZATION  

 

2.1 Introduction to Porous Media Flow 

 The electronic explosion that we can witness in our generation has transformed 

reservoir simulation from an esoteric tool to a practical toolbox of immense importance. 

With the explicit use of this tool, today‟s engineering community has had the 

opportunity to better understand not only the intricate details and dynamics of fluid flow 

in the reservoir, but also the characteristics of fluid flow patterns in the immediate 

vicinity of perforations, wellbore, pressure and saturation dynamics of horizontal, 

slanted, vertical and multilateral wells; in addition to considerations of complexities in 

reservoir characterizations. 

 

2.2  Partial Differential Equations 

 Reservoir simulation has always been one of the main components in reservoir 

management. Great effort has been devoted to constructing high-order reservoir models 

for improved oil recovery [19] [20]. In general, the governing equations of multi-phase 

flow in porous media are given by a set of partial differential equations that represent 

conservation of mass, momentum and energy together with equations of state which 

describe the fluid property as a function of pressure and temperature. 

 As discussed in [19] [20], several simplifications can be taken into account such 

as neglected inertial effects, flow being isothermal and the use of the empirical Darcy's 
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law. Hence, one can assume the ''Black-oil'' formulation, where there are two 

components (oil-water) and there are two phases of the hydrocarbon substance (oil and 

gas) present in the reservoir. In this paper, we will assume no gas in the reservoir. The 

mass balance equation for each phase is given by 

                                          
 
     

        

  
   

 
                                            (2.1) 

where   is the fluid density, v  is the fluid superficial velocity, t  is time,    denotes 

the divergence operator,   is the porosity, iS  is the fluid saturation of each phase, iq is 

flow rate per unit volume and finally  wo,  represents the oil and water phases, 

respectively. Using the empirical Darcy's law, one can write 

                                                       
   

  
                                                      (2.2) 

where    is the gradient operator, K  is the permeability tensor,   fluid viscosity, rik   

is the relative permeability of each phase (which is a function of wS ) , ip  pressure of 

each phase, g is the acceleration of gravity and finally h  is the depth of the reservoir. 

Plugging Eq. 2.1 into Eq. 2.2, one writes 

                                             

  
                  

        

  
   

 
                    (2.3) 

 With four unknowns ,,,, owow SSpp   four equations are required to complete the 

system description and solve Eq. 2.3. The two additional equations are given by a 

closure equation which states that the sum of all fractional saturations must always be 

equal to one, and the oil-water capillary pressure equation, which gives a relation 

between phase pressures, as a function of water saturation. They are respectively; 
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                                                                         (2.4) 

                                                                    (2.5) 

 All the equations Eq.2.1, Eq.2.2, Eq.2.3, Eq.2.4 and Eq.2.5 can be rearranged in 

such a way that the two-phase equations are formulated in terms of two state variables -

    , the oil pressure, and   , the water saturation. In order to do that one can apply the 

chain rule differentiation and the definitions of oil, water and rock compressibilities as 

        
  

  

   
   

                          
 

 

  

   
  

yielding 

    
     
  

          
   
   

                             
   
  

  
   
  

 

          

    
     
  

                                    
   
  

  
   
  

           

(2.6) 

 As can be seen from the above equations, multiphase flow through porous media 

is given by a set of weakly-nonlinear parabolic PDE‟s that represents the dynamics of 

the rate of change of pressure (diffusion) coupled with a set of strongly-nonlinear 

parabolic-hyperbolic PDE‟s which describe the dynamics of the rate of change in phase 

saturations and component concentrations (diffusion-convection). The equations can be 

discretized in space yielding a set of ordinary differential equations. Most of the 

numerical reservoir simulators apply a spatial discretization scheme based on finite 
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differences or finite volume formulations, using an upstream weighting in the convection 

dominant terms.  

 These multiphase porous media flow equation when evaluated at every grid 

block for a 2 dimensional reservoir that has a two-phase flow (Oil and Water) would 

take the following form when the liquids are assumed to be slightly compressible [1]. 

    
        

         
          

        
         

           
        

    

     
          

        
         

      
    

  
     

         
            

            (2.7) 

Here,             account for the transmissibility through the south, west, east and 

north grid boundaries respectively for each grid cell in the reservoir based on a five point 

stencil as shown in Figure 2-1. 

 

Figure 2-1 Grid Cell Transmissibility 

 

The transmissibility equations are given by 
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Eq. 2.7 can be rewritten using implicit formulation (which will be described in the end of 

this Section) as   

    
       

        
       

          
       

         
       

        
     

    

 
    

  
     

         
            

                                          (2.8) 

 The transmissibility term C and the flow rate term        
     in the above 

equation is computed as follows. For grid blocks without wells and for grid blocks 

hosting rate specified wells, 

                             

       
           

    

For grid blocks hosting pressure specified wells, 
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2.3 Formulation into Controls Framework 

 The two-phase flow equation shown in Eq. 2.8 when written in the matrix form 

would look like, 

                                 
  

  
                                                        (2.9) 

 Each grid block in the reservoir simulator is related to the two states of the 

reservoir that is the oil pressures and water saturations    
   

    
 ;    accounts for the 

transmissibility matrix. 

 As an illustration, the transmissibility matrix when expanded for a 3 by 4 

rectangular (“shoebox”) reservoir would take the following shape if we assume single 

phase flow in the reservoir.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                         

                             

                        

                        

                           

                           

                           

                           

                          

                        

                          
                      

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 The subscripts for each transmissibility term correspond to the grid cell position 

for which the transmissibility is computed.  
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 The symbol B in the two-phase flow equation “” and the matrix   in the matrix 

form of the two-phase flow equation “”accounts for the accumulation terms. The matrix 

  takes the form; 

    
          

          
 ; 

where 

    

 
 
 
 
 
     

     
  

  
  

    
    

  
    

  
      

 
 
 
 

 

    

 
 
 
 
 
     
     

  
  
  

    
    

  
    

  
      

 
 
 
 

 

    

 
 
 
 
 
     

     
  

  
  

    
    

  
    

  
      

 
 
 
 

 

    

 
 
 
 
 
     
     

  
  
  

    
    

  
    

  
      

 
 
 
 

 

The subscript in each term here corresponds to the grid index of the cell for which the 

accumulation terms    ,    ,     and     and computed. These accumulation terms are 

computed as per the following equations, 
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   is the Grid block bulk volume.     is the volume conversion factor,   is the rock 

porosity and   would represent the formation volume factors of the water (w) and oil (o) 

depending on its subscript.     is the pressure derivative of grid porosity (we are 

assuming the rock to be compressible in our model) defined as, 
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 Thus, as an example, when all the matrices are put together for a two phase 

reservoir with 10 grid cells, we would see that the Eq. 2.9 takes the form 
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Rearranging the equation, we can derive its state space form as follows. 

 
  

  
        

                                                              (2.10) 

where  

      

‘   is the selection matrix. Its size depends on the number of wells to be controlled and 

the total number of grids in the reservoir. „ ’ is the input matrix for the wells. For 

instance, if we are dealing with a reservoir that has a total of 10 grid cells and have 5 

wells that need to be controlled, the size of ‘   would be 20 x 10 and the size of „ ’ 

would be 20 x 1. This is explained as follows. 

 The matrix W is generally a very sparse matrix. The input wells can either be 

controlled by manipulating the flow rates (rate specified wells) or by manipulating the 

bottom hole pressures (pressure specified). In our formulation, if for instance well 

number one, four and five were rate specified, then the columns one, four and five  in the 

selection matrix would have an entry (of value one) at the row corresponding to the grid 

index of its respective well. In a similar fashion if well number two and three were 
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pressure specified, the columns two and five in the well selection matrix would have an 

entry (of value corresponding to the productivity index of the well) at the row 

corresponding to the grid index of its respective well. This is illustrated in Table 1-1. 

 

Table 1-1 Example to Illustrate State-Space Formulation 

Well 

number 

Well Type Control 

Type 

Grid 

Index 

Well Productivity 

(Oil) 

Well Productivity 

(Water) 

1 Injection Rate 6    
     

  

2 Production Pressure 3    
     

  

3 Injection Pressure 10    
     

  

74 Production Rate 4    
     

  

5 Production Rate 8    
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 As mentioned above, the inputs can either be rate specified or pressure specified. 

Thus the size of the column vectors    and     depends on the number of rate specified 

and pressure specified wells respectively. For the example considered above we would 

thus have the column vector    of size 3 x 1 and the column vector    of size 2 x 1. 

Eq. 2.10 can be written in the state-space form as  

           

where   and   are two of the state space matrices. The remaining two matrices   and   

required for the complete state space formulation comes from the measurement 

equations as described below.  

 An important point to be noted is that if the same well is used for both 

monitoring the outputs and manipulating the inputs, then if the inputs are specified, the 

measurements that would be made would be the bottom hole pressures and vice versa. 

For most cases, the same well would serve for both output measurements and input 

manipulation. For the example described above, we would have the measurement vector 

  as follows; 

    
  
  
  

in which the size of    and    depends on how many outputs we would like to measure. 

The calculation for the measurements can be made using the well productivity index 

formula. It is with these equations that we derive the state space matrices   and  .  

 The well productivity index formula at the wells for which would like to measure 

the outputs would take of the form shown below; 
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For rate specified wells, we would want to measure the bottom hole pressures given by 

            
        

                      
                      

              

                        (2.11) 

For pressure specified wells, we would want to measure the rates given by 

                             
                      
                      

              

                (2.12) 

The state space equation would be of the form 

          

where      
  
   
  

   
   
   

  

   
   
   

  

Suppose we wanted to measure the outputs at well number one, two and three for 

the case discussed above. Since well number one is a rate specified well, we would want 

to measure its bottom hole pressure. Similarly for the well number two, since it is a 

pressure specified well, we would want to measure the rates .The rates that we can 

measure for well two can be its oil production rate, water production rate or the liquid 

rate. Since we are considering a two phase flow, the liquid rate is assumed to be the sum 

of the oil and water production rates. For well number two let us measure its oil 

production.  The well number three is also defined as a pressure specified well, and we 

would want to measure its rates. But this case is quite different from that of well number 



36 
 

two as we are dealing with an injection well. Since the only fluid we would be injecting 

is water, the water injection rate is the only quantity that can be measured at this well. 

The state space matrices   and   would take the form; 

    

          
      

        

     
        

  

    

          
      

        

     
        

  

    

   
     

     
  

     
 

  

    

   
   

  

     
  

     
 

  

In this manner Eq. 2.11 and Eq. 2.12 can in turn be recast in a generalized 

nonlinear state-space form and linearized through an operating point, yielding, the linear 

time-invariant state-space formulation 

           

          

for the porous media flow equations that govern a reservoir; where the matrices  ,   ,    

and     denotes the states and controls Jacobians obtained in the linearization process, 

would fully define our system- the reservoir model at each time step. 
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2.4 Introduction to Reservoir Simulation – Solution Methods 

Multiphase-flow simulation results in multiple finite-difference equations for 

each gridblock. We would have one equation for each component for each gridblock. 

The basic solution methods that are currently in use for solving the difference equations 

fall into three categories. These are the SS (Simultaneous Solution), the IMPES (Implicit 

Pressure Explicit Saturation) and the SEQ (Sequential Solution) method. Out of all these 

methods, the most powerful is the fully implicit method (also called Newton‟s method)-

which falls in the Simultaneous Solutions category.  

The Newton‟s Method has always been recognized to be the natural option to 

solve nonlinear system of equations. Though it has always remained quite powerful, its 

application to numerical reservoir simulation was not feasible in the beginnings due to 

limitations in computation power then. After a marked improvement in computer 

technology especially during the late 70‟s and early 80‟s, the application of this 

simultaneous solution method became a lot more practical within the industry. It covered 

a wide spectrum in its applicability; which includes the modeling of the coning process, 

compositional simulation, and other complex problems like multiphase flow in reservoir 

etc. Though it is computationally the most expensive solution method, a noticeable 

advantage in this method when compared to the others was in its retaining of stability 

characteristics independent of the time steps used for computation.  

An alternate linearization method to this called IMPES was developed and used 

by the industry for various field studies. The storage and computer time requirements of 

IMPES are considerably less than those of Simultaneous Solution, making it the best 
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choice in reservoir simulation studies. The main problem with this method is its weak 

numerical stability especially in application to coning problems. Thus small time steps 

are required to maintain the stability while applying the IMPES solution method,. 

The third method called the Sequential Solution method was developed with the 

objective to improve the stability of the IMPES method without solving for the oil 

pressure and saturations simultaneously. This is achieved by solving the equations for 

pressure implicitly in the first step and then solving for the saturation implicitly in the 

subsequent step. The first step of the Sequential Solution method is identical to the 

IMPES method as both perform an implicit pressure solution. The Sequential Solution 

method may be derived by the use of either the linear implicit-flow equations or the 

mass-conservation equations combined with the fractional-flow equations. For this case, 

since the oil pressure and saturations are solved independently, material balance will not 

be satisfied for all the phases present. A comprehensive study of these solutions methods 

including other alternate methods like Semi-Implicit, LSI, SI and adaptive Implicit 

Methods is provided in [1]. 

For our simulator, though we have coded with both Implicit and IMPES solution 

methods, we would primarily use the implicit solution method since we would have 

more freedom in testing with various time steps and not worry about any stability issues. 

Though this is the case, when the actual MPC code is implemented, we would build on a 

commercial simulator rather than on the reservoir simulator we developed. 

 

. 
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3. INTRODUCTION TO MODEL PREDICTIVE CONTROL 

Predictive control is an overarching term for a suite of control strategies mostly 

developed in the process industry during the 1970s. Since then, there has been a plethora 

of names denoting particular variants of predictive control. Examples of these are: 

 Generalized Predictive Control (GPC) 

 Dynamic Matrix Control (DMC) 

 Extended Prediction Self-Adaptive Control (EPSAC) 

 Predictive Functional Control (PFC) 

 Sequential Open Loop Optimization (SOLO) 

 Model Algorithmic Control (MAC) 

 Quadratic Dynamic Matrix Control (QDMC) 

and so on. A controller which is based upon one of these strategies would select control 

inputs by the online optimization of a predefined cost function at discrete time intervals. 

The generic names by which the whole area of predictive control is denoted including 

the ones mentioned above are Model Predictive Control, or MPC, and Model-Based 

Predictive Control, or MBPC. 

 MPC is well suited for multiple-input, multiple-output (MIMO) control. MPC 

allows for explicit handling of input, output, and state constraints (i.e. if a set of control 

inputs violate a constraint as predicted by the dynamic model, that set of inputs is 

discarded as a possible choice). In addition, MPC-based controllers can have a high level 

of flexibility in meeting general operational goals as the operating conditions change. 
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The concepts of MPC have already found attractive and powerful applications in 

measuring and controlling various large-scale systems in oceanography, meteorology 

and the process industry. Most of its interest is particularly attractive to closed-loop 

reservoir management from its ability to handle constraints, and from the natural way by 

which it can be applied to control multivariable systems like large-scale reservoir models 

without losing the intuitive aspect. 

 

3.1 The Basic Formulation 

Even before beginning to explain the formulation, it is important to get accustomed 

to some of the definitions and get an idea of the step by step algorithm in which MPC 

works. To illustrate the way the proposed MPC controller would work, a generic 

example is presented at first and later an explanation of how this algorithm would 

function in a closed – loop reservoir management setup is provided.  

There are two important horizons in MPC as shown in Figure 3-1, both of which are 

expressed in terms of sampling instants. The prediction horizon is the span of time for 

which the plant outputs are predicted. The input horizon (or control horizon) is the 

number of control inputs that are calculated in the prediction computation, and is always 

smaller than the prediction horizon. In Figure 3-1, we could see that the prediction 

horizon is of 7 sampling time steps whereas the input horizon is only of 4 time steps. 

The size of the prediction horizon is generally limited by computation speed; it is 

important to choose the control horizon such that the difference between the control and 
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prediction horizons is as least as long as it takes for all dynamics in the system to settle 

out. 

 

Figure 3-1 Receding Horizon Principle 

 

For the current time step, k=0 the input u = 1.25 and the output y= 0. As shown in 

the input signal plot, the input horizon (Nu) is 4 sampling instants and the prediction 

horizon (Np) is 7 sampling instants. Assume that the four input profiles u1, u2, u3, and u4 

are the possible input combinations to the reservoir, with their open loop dynamic 

responses y1, y2, y3, and y4 as shown in the output signal plot. The desired output (set 

point) is 100. For each of the four cases we thus have the predicted output which was 

called as the open loop dynamic response and a reference trajectory which is the set 

point at 100.  
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3.2  The Cost Function 

Any deviation of the predicted output from the set point trajectory is penalized by 

a cost function. The resulting cost function value for each of the four scenarios is given 

by J in Eq. 3.1.The form of the cost function indicates that it would be dependent on the 

weighted control input at each sampling instant over the input horizon as well as the 

weighted tracking errors at each sampling instant over the prediction horizon.  

    
  
                         

  
   

                 (3.1) 

 In this equation,    is the cost function,     is the control horizon,   is the 

weight place on the changes in control,    is the change in input,     is the prediction 

horizon and   is the weight placed on error. 

 

3.3 The Constraints 

If there was a constraint placed on the inputs that it could not be larger than 2.00, 

then u3 and u4 would no longer be a valid input, and only u1 and u2 would be considered 

as possible inputs. Similarly, if the outputs were constrained that it had to be less than 70 

for instance, then u2, u3, and u4 would no longer be valid inputs, since their output 

responses would be violating the specified output constraint. For such a case, u1 would 

have to be chosen as the input even though it is not the optimal choice in the 

unconstrained case. Similarly, if a large weight was placed on the controller action in the 

cost function calculation; and a very small weight was placed upon the error, and then it 
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is possible that the cost function for u1 would be the minimum case and would be chosen 

as the command profile, even though the set point is never met for this case. 

 Thus, the careful selection of the tuning parameters and constraints is an integral 

part for any MPC implementation. A point to be noted is that the example illustrated 

focuses on a set point trajectory where the value of the set-point at any time s(t) =100. 

This is the trajectory that the output has to follow ideally.  

A variation of the set-point trajectory is the reference trajectory [21]. For the case 

discussed above, the reference trajectory would start at the current output y(k) and would 

define an ideal trajectory along which the plant should return to the set-point trajectory. 

It can be set in such a way that the plant is to be driven back to the set point trajectory as 

fast as possible, but it is not always necessary. The reference trajectory therefore defines 

an important aspect of the closed-loop control of the behavior of the plant. For most 

cases it is assumed that the reference trajectory approaches the set-point by following an 

exponential trajectory from the current output value. The speed of the response is 

determined by the „time constant‟ of the exponential which is denoted as TC.  
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4. INTRODUCTION TO SYSTEM IDENTIFICATION 

With the underlying physics that govern the dynamics of the reservoir model, it is 

plain to see that the state equations grow to a substantial order. We would see that a 

typically high-order reservoir model would have the total number of variables in the 

order of       [12]. To reduce the complexity and computational cost involved in 

using the actual reservoir model in the controller design, we would need to extract the 

dominant behavior from these high order reservoir models and generate lower order 

models that would represent the reservoir model with a good accuracy. In other words 

we would need to perform an effective model order reduction step to mitigate the 

computational cost associated with the large scale model.  

As discussed in the introduction, this reduction in the model order can be performed 

by generally two approaches. The mathematical reduction of the high-order system 

equation is called white-box modeling whereas recognizing the input-output behavior of 

the overall system and deriving a model that would imitate the same input –output 

behavior is called black-box modeling.  

The focus of this Section will be directed at a Black-Box method called System 

identification. A background on identification theory and techniques will be provided 

before describing how we applied the System identification technique to identify a 

model representation of the reservoir model that could be used and an input to the MPC 

controller.  

Subspace identification method includes elements from statistic, high-dimension 

geometry, linear algebra and system theory. Numerous papers on system identification 
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have been published over the last 40 years. The earliest work of this approach dates back 

to the 1960‟s [22], though substantial developments in the theory of stationary stochastic 

processes and multivariable statistical methods had taken place during the 1950‟s. The 

theory got serious attention and was widely recognized in the late 80‟s, showing 

promising results through the work of Willems [23] [24], De Moor [25], Moonen [26], 

Van Overschee [16]. One of the most significant contributions was in the last decade 

when Van Overschee and De Moor had published a first comprehensive book on 

subspace identification of linear systems [17]. 

 

4.1 The Black Box Model 

 Figure 4-1 shows the schematic diagram of the black box system with input   , 

output    and disturbance   . Here we will observe the inputs and outputs but not the 

disturbances. We can manipulate the input    but not the output   . 

 

Figure 4-1 Schematic of Black Box Model  

Even if we do not know the internal structure of the system mathematically, the 

measured output and input data would provide us useful information about the behavior 

of the system. With this information, we will be able to construct mathematical models 
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to describe the dynamics of the system from the observed output-input data. This method 

called as the black-box approach. Our primary goal is to retrieve to correct output from a 

given signal input. 

 

4.2 An Overview of the Theory 

The mathematical model used for system identification purposes in this thesis is 

from Van Overschee and De Moor [17].  The subspace identification are concerned with 

systems and models of the form 

                 

              

where 

   
  

  
    

   
     

  

   
       

Here,     is called the process noise and    is the measurement noise. It is 

assumed that they are zero mean. For our case, we can assume them to be zeros as we 

are getting our inputs and outputs directly from the reservoir simulator in which we had 

not considered noise as such.   is the system matrix,   is the input matrix,   is the 

output matrix and   is the direct feed-through matrix which were described in the 

previous Section. The matrices  ,   and   are the covariance matrices of the noise 

sequence. 

The main problem treated would be that- given the input and output 

measurements, we need to find and approximate system of order n and estimate the 
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system matrices A, B, C, D, Q, R and S. De Moor [25] had suggested the input-output 

relationship for linear systems based upon the following equation,  

          
      

                                        (4.1) 

This equation played a very important role in the development of subspace 

identification. The different terms in Eq. 4.1 can be defined as; 

 

   

 

 
 

 
  
   

 
      

 
 
  

is the extended observability matrix. The deterministic lower block triangular Toeplitz 

matrix is defined as 

  
  

 

 
 

     
      
        
     

                     

 
 
  

The stochastic lower block triangular Toeplitz matrix is given as; 

  
  

 

 
 

     
     
      
     

                  

 
 
  

The input block Hankel matrix is defined as; 
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A similar definition is there for the output Hankel matrix. The subscript j is the size of 

the data set that we perform system identification on. This is assumed to be large 

      .The subscripts a and b denotes the discrete time steps. (As far as the data is 

concerned, we used an in house simulator developed in Matlab® for prototyping the 

equations and algorithms, but used a commercial software called Eclipse® to obtain 

more realistic data).  Also defined for convenience and short hand notation are; 

                             

                             

where the subscripts p and f denote, the past and future respectively.  These matrices are 

paired and stacked in two new matrices given as; 

    
  
  
               

The block Hankel matrix formed with the process and measurement noise are defined 

similarly as 

                             

                             

We finally denote the state sequence as 

                       

Definition: If A and B are two matrices spanning a row space, then the 

orthogonal projection of the row space of A into the row space of B is denoted by     

which is defined as 
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     is the projection of the row space of A into   , for which we have 

   
 
       

The orthogonal projection of the future outputs    into   
  is given as 

    
         

     
     

       
   

Since it is assumed that the noise is uncorrelated with the inputs we have that: 

    
         

     
       

When we multiply this equation with two weighting matrices   and    that 

satisfies the following three conditions; 

                       

                   
        

      
              

we get 

             
                        (4.2) 

          
       

By singular value decomposition (SVD), we can now state the properties  

          

         
     

    
            

   

where 
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Since there are different possibilities for the choices of    and   , there are as 

many variations in subspace implementation.  The remaining shows the basic step of 

how system matrices can be found. The approach described here was used in this thesis 

for obtaining the system matrices of the reservoir models. In this case, the inputs and 

outputs were obtained from a reservoir simulator.  

In the following, the estimated state sequence     is the Kalman filter estimate of 

  (Van Overschee and De Moor, [17]).The projection into Eq. 4.2 leads to the sequence;  

                        
      

                  

The state space matrices can now be found by solving a simple set of over determined 

equations in a least square sense; 

 
     
    

   
  
  

  
   
    

   
  
  
   

By the definition for   and   as residual matrices, this reduces to; 

            
     
    

   
  
  

  
   
    

  
 

 

  

The noise covariances Q, S, and R can be estimated from the residuals as; 

 
  

   
 
 
 
 

 
  
  
  
     

   
       

For a more detailed study on this, the book by (Van Overschee and De Moor, [17]) 

is recommended. With this we can conclude the brief summary of the theory behind 

system identification. Now let us look at an implementation of the same for a particular 

case. 
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4.3 An Example - 2D Homogeneous Reservoir 

In order to apply the subspace identification framework to reservoir simulation, we 

chose the reservoir model as depicted in Figure 4-2. This reservoir is simple enough yet, 

at the same time, realistic for understanding the procedures that are performed for 

subspace identification. The reservoir has similar rock properties everywhere. The 

reservoir and rock properties are as shown in Table 4-1. 

 

 

Figure 4-2  2D Homogeneous Reservoir 

 

 The term “2D” stems from that fact that the reservoir is meshed with just one 

layer. In other words, this would mean that the fluid does not move vertically. The 

reservoir has 51 x 51 number of grid blocks and we assume a two-phase flow in the 

reservoir. There are four producers located in the corners and one producer in the center. 
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Table 4-1 Reservoir and Fluid Properties for System-ID 

Variable Description Value Unit 

   Density of Oil 45.0 lbm/ft3 

   Density of Water 62.0 lbm/ft3 
   Viscosity of Oil 10 cp 
   Viscosity of Water .89 cp 
   Compressibility of Oil 10*10-6 psi-1 

   Initial Pressure 3800 psia 
   Initial Saturation 0.1 [-] 
  Rock Porosity .20 [-] 

 

4.3.1 Experimental Design 

One of the major steps involved in the system identification is to design the 

various tests needed to perform in order to come up with the best input signal that would 

help capture and represent all the dynamics of the original system in the state-space 

model generated. When a study was conducted on the literature that was available on 

subspace identification, it was noticed that the focus was mainly on the various 

identification algorithms than to the design of the experiments. In order to find the 

characteristics of the process outputs, an important experiment called the stair-case 

experiment [27] needs to be performed. It is done to design the input signal that will be 

used to perform system identification for the reservoir. Some important characteristics 

can be studied using this test. They are: 

 The linearity range of the process 

 The estimation of the time constant. 
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It is important to estimate the time constant because with this, we can determine 

the duration of the system identification signal. After calculating the time constant “T”, 

we can estimate the bandwidth frequency of the system (Hz) as “1/T”. Thus by 

conducting the experiment till about 5 – 10 times the duration of the time constant we 

will be able to capture the important input-output behavior of the real reservoir. 

Another important aspect to be considered is the amplitude of the input steps. 

The amplitude mainly depends on the noise ratio and the linearity range. As far as noise 

is concerned, since we are just dealing with computer generated inputs and outputs, we 

can neglect the effect of noise on amplitude. However, it is important to maintain the 

system well within the linearity range.  

The stair case experiment was thus conducted for various injection rates. The 

motivation was to find out the upper limit of the injection rate that would still ensure that 

the system outputs change linearly. From Figure 4-3, it could be seen that linearity is 

assured by injecting at rates up to 1200 BBL/day. If the injection rate was beyond this 

level, the output – which is the oil production, would exhibit a sudden change in rate 

thus hinting us that the linearity is lost. 

We also need to limit the input design in such a way that we could capture the 

most important dynamics taking place in the system. After characterizing the various 

parameters, the step signal was constructed in Matlab. The total duration for maintaining 

a constant step was determined mainly by analyzing the time constant (the time by the 

system to reach 63 % of its final value in a step response [27]. The staircase experiment 

could be considered to be a form of step response by itself.  
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Figure 4-3 Staircase Experiment 

 

Using this time constant, we can compute the system bandwidth frequency (  ). 

The information obtained from the staircase experiment suggests a system bandwidth 

frequency that is equal to 0.1 rad/sec. This is computed as being equal to     , where   

is the time constant. 

The sampling frequency (  ) for the input signal, is another important aspect that 

needs to be decided. From the system bandwidth (wb) already calculated, we can 

approximate the sampling frequency to be between 10wb < ws < 30wb.  

After we decided the approximate input signal, the next was to identify the model. 

The Figure 4-4 shows the input signal that was initially applied to the model and Figure 

4-5 shows the output that was obtained. As we could see, this is a RBS (Robbed Bit 
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Signal) that was applied to the injector well that fluctuates between 300 BBL/day and 

600 BBL/day. As was already inferred from the staircase experiment, this range of 

inputs is well within the linearity range of the reservoir model. The RBS signal was 

applied for 100 days because this was decided as a decent experiment length based upon 

the calculation of the time constant and system bandwidth done before.  

 

 

Figure 4-4 Input Signal 

 

Figure 4-5 Output Obtained 
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When the same inputs where provided to the actual reservoir model in order to compare 

the output quality of the identified model, a very good simulation fit was obtained as 

shown in Figure 4-5. 

The simulation fit was measured using the following formula  

               
    

   

 
       

where  

  
                                     

Here,     is the output as measured from the actual reservoir model;     is the output 

obtained from the identified model by using system identification. The equation first 

calculates the maximum relative error for each of the outputs (from the four production 

wells) over the time period and then plugs this value in the simulation fit equation. The 

simulation fit shown in Figure 4-6 was calculated to be 95.3%. 

 

 

Figure 4-6 Simulation Fit 
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4.3.2 Model Validation 

The interest now lies in finding if the model that was just identified had the 

ability to predict the outcome of the some input sequence other than the identification 

sequence. A simulation fit of 90.6% was obtained in this case. This is a pretty decent fit 

as could be seen in Figure 4-7. It needs to be noted that we performed subspace 

identification with order 5 . Identification was done on an reservoir simulator model with 

grid cells 51 x 51. The full order model is of size 5202 x 5202. This is a measure of the 

size of the state space input matrix if no reduction is performed. That would mean that 

we are dealing with a system of order 5202. The order of the identified model is only 5.  

Thus there is a significant decrease in computational effort when using an identified 

model instead of the actual reservoir model. 

  

 

Figure 4-7 Model Validation Fit 
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4.3.3 An Expanded Model 

In the previous Section, we have recognized the ability of the model to track the 

output effectively when an input sequence that was different from the identification 

sequence was used. Our next aim would be to verify is this model could satisfactorily 

predict the outputs accurately for periods beyond the identification time. Assuming that 

the actual dynamics within the reservoir wouldn‟t change drastically (especially by some 

means of non-linear dynamics that can occur as a result of water breakthrough in any of 

the wells) we would want to have an idea about how long can the model provide a good 

prediction quality, in order to decide, when we would want another system identification 

to be performed. 

 

Figure 4-8 Expanded Model Fit 

For the early stages of the reservoir Figure 4-8 shows that we could derive a good 

model that could track the output pretty well. Beyond 140 days, we could also recognise 
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a signficant drop in the model quality. This would suggests that a system re-

identification would be necessary at about 140 days. Moreover, the early stages of the 

reservoir  represents a special simpler case of the reservoir model with no water cut at 

any of the producing wells. The reason why the system identification fails to maintain 

model quality beyond 140 days could also be attributed to the fact that the model might 

be experiencing some addition nonlinear dynamics due to the appearance of water in the 

producers. The Section 6 to follow would discuss two cases where system identification 

has been performed in a similar fashion but with the intention of performing production 

optimization. 
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5. MPC AND SYSTEM-ID – APPLIED TO RESERVOIR SIMULATION 

In this Section we will be putting together MPC and System-ID to control the 

dynamics of the waterflooding process.  For reasons of simplicity, we focus our attention 

to reservoir with only oil and water present. In other words, this means that we are 

considering only two phase flow in the reservoir. The diagram shown below is a pictorial 

representation of the waterflooding processes in the 2D reservoir model with a 

horizontally placed water injection that runs across the left corner of the reservoir, and a 

horizontally production well that runs across the right of the reservoir. There are Internal 

Control Valves (ICVs) that are placed at regular intervals all across the horizontal length 

of the injection and production wells. These valves are placed so that we can have 

independent control over the injection flow rates across the length of the reservoir.  

  

Figure 5-1 Open-Loop Waterflooding (adapted from [2]) 

When water is injected, it travels through the reservoir, away from the injection 

wells, but not in a uniform manner. This is because of the strong heterogeneous nature of 

the reservoir rock. It could be noticed that the water front has an irregular shape as 
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makes its path towards the production side of the reservoir. This phenomenon is called 

as the fingering effect. This can be attributed mainly to the fact the in certain parts of the 

reservoir, the fluids experience lesser resistance and hence the water front moves much 

faster at that local region.  

Once the waterfront has reached the production side of the reservoir, as a result 

of this fingering effect, particular regions across the length of the horizontal well would 

experience a significant increase in the production of water. Thus the water production 

through some of ICV‟s (ICV number two as shown in Figure 5-1) would become 

significantly high. This would in turn result in a high water production from the whole 

well as such,  (typically more than 90% water production), and the production well 

would have to be closed (shut in).  

 

Figure 5-2 Proposed Controller for Waterflooding 

What we would ideally want is a water front that uniformly progresses across the 

width of the reservoir without being affected by the heterogeneity in the reservoir. For 

this to happen, we would like to have independent control over the downhole ICVs at the 
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injection side as well as the production side. Using these valves, the amount of water 

injected into the reservoir and oil produced from specific portions of the production well 

can be controlled. This control ability is what we wish to achieve by integrating MPC 

and System-ID with the reservoir model as shown in Figure 5-2.    

The inputs and outputs measured at the injection and production side would be 

used to perform a system identification of the reservoir model. After the model has been 

correctly identified, this identified model would be used in the MPC control algorithm to 

generate the new inputs (which could be the injection rates and production bottom hole 

pressures or injection bottom hole pressures and production rates; depending on what we 

decide to control and what we decide to measure).  

In this manner we would be able to establish a control at the individual ICV level 

and thereby have an indirect control over the propagation of the water front. By the use 

to these “intelligent” or “smart” wells, we could ensure that the reservoir is depleted 

uniformly throughout when the waterfront reaches the production side of the reservoir. 

This would obviously ensure a high net present value (NPV) and a high ultimate oil 

recovery. 

 

5.1 The Dynamic Control Capability 

Earlier in the Section an elaborate explanation was provided on the “Receding 

Horizon Principle” (see Figure 3-1) of the MPC controller. Here, let us see how an MPC 

controller would function in a reservoir simulator setting. 
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Assume that the System-ID was already been performed and that we have an 

identified reservoir model that could be used for MPC implementation. Let the MPC 

controller have a prediction horizon (or output horizon) of nine time-steps and an input 

(or control) horizon of 5 time-steps as shown in Figure 5-3. We wish to control the rate 

at the injection well by having a control over the valve‟s opening and closing. The 

bottom-hole pressures at the ICVs present at the production well is what we intend to 

measure as the output.  We also assume a discrete setting, and that the current time is 

labeled as time step 0. For our case, we will be dealing with the internal model that is 

linear and strictly proper. (This means that the calculation of the best input would be 

straight forward and the output y (k) would only depend on the past inputs        

      …., but not on the input at       ) 

 

Figure 5-3 MPC as Applied to Waterflooding Control - a 
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At the first time step, say we decided on the input trajectory as shown in Figure 

5-4, based upon our optimization objectives and constraints from the fomulated 

optimization problem. In the simplest case, we can try to formulate the optimization 

problem to choose the input trajectory so that the output follows its reference trajectory 

(this is not shown in figure). The predicted behavior of the outputs will be dependent on 

the assumed input trajectory                          that has been computed at 

the time k. The input were calculated for each time step in the input horizon. This would 

mean that the inputs for the 5 time steps in the future has already been calculated 

eventhough the output measurements are available only till the present time step (which 

is one).  

 

Figure 5-4 MPC as Applied to Waterflooding Control - b 
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The input trajectory suggests that the well be almost completely closed within the 

next five time steps. This may be because of significant increase in water production at 

the ICV in the production well. Once the future input trajectory was chosen, only the 

first element of that trajectory is applied as the input to the reservoir as shown in Figure 

5-5. At the present time k, this would mean that we set our actual applied signal u(k) to 

be equal to   (k|k) – which denotes the first element of the computed input trajectory. 

 

Figure 5-5 MPC as Applied to Waterflooding Control – c 

 

We then progress in time ready for the next cycle of events. Then we repeat the 

complete cycle of output measurement, prediction, and input trajectory determination, 

for the next sampling instant and then a completely new output measurement       ; 

a new reference trajectory                     is obtained. Predictions are made 
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over the horizon        , with            and a new input trajectory 

                               is chosen as shown in Figure 5-6. 

 

 

Figure 5-6 MPC as Applied to Waterflooding Control - d 

 

Again we select the first element of the new input trajectory i.e.        

            as shown in Figure 5-7. 
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Figure 5-7 MPC as Applied to Waterflooding Control - e 

 

and progress another step in time as illustrated in Figure 5-8. This process we repeat for 

each time step. 
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Figure 5-8 MPC as Applied to Waterflooding Control - f 

 

Since the prediction horizon always remains of the same length and moves ahead 

in time at each sampling instant, this way of controlling a plant is often called a receding 

horizon strategy. At the end of the life cycle of the reservoir, we could clearly that 

control strategy resulted in a dynamic control of the inputs, taking into consideration the 

outputs, reference trajectories, prediction, objective function and constraints for each and 

every time step. 
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5.2 The Formulation of the MPC Control Problem 

We would basically need to take care of three tasks in formulating an MPC control 

problem. The first of which would be to come up with the plant model on which we will 

be performing our control operations. This task would be carried out by performing 

system identification on the real reservoir model. This step was already explained in 

Section 4. 

With this, we will be able to get the identified model with the following identified 

state-space formulation; 

                    

             

             

The second task would be to formulate the cost function or objective function 

which we would be interested in optimizing. The cost function is quadratic and its 

formulation is done two different ways in this thesis. Both these case will be analyzed 

interpreted in the Section to follow. 

In the first type of formulation is dependent on the predicted controlled outputs 

and the reference trajectory that our outputs have to follow. It can either be defined as 

the penalty for the deviations of the predicted controlled outputs form the reference 

trajectory as the following equation suggests. 

                                          
   

    
                   

     
       (5.1) 

Here,       is the vector of outputs which are to be controlled, and      and       

accounts for the penalty weights in states and control prediction respectively. The 
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prediction horizon has the length   , the input horizon is of length   , and we start 

penalizing the deviations of z from r from the    time step. This is to say that the error 

vector                     is penalized at every point in the prediction horizon, in 

the range  

        

The form of the cost function also suggests that there is a cost involved in the 

change in control input    . In needs to be pointed out that in this formulation of cost 

function, we are not penalizing the particular values of the input vector     , but only 

the changes in the input vector. This decision might differ on a case to case basis. 

The other type of formulation is to maximize the oil production rates from all the 

producers. For instance, let us assume that we are interested in maximizing the 

production through only two production wells. Then for this case the objective function 

would mathematically take the form; 

         
        

       
                                       (5.2) 

Both these forms of cost functions (Eq. 5.1 and Eq. 5.2) should be rewritten in terms of 

    which is the variable in which we would formulate our optimization problem (since 

    is the control variable) as; 
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The inputs      can be written in terms or        as                       .  

   (5.3) 

 
 

 
                              

where, 

             

      
           

            
    

           

Eq. 5.3 shows the objective function in its final reduced form. 

The last step is the formulation of the constraints. Considering to the objective 

function above, the corresponding optimization problem would have its constraints 

represented in one of the following methods 

                                          

                                        

                                           

Here E, F and G are matrices of suitable dimensions depending on how many constraints 

we have in our optimization problem. For example, in our reservoir the inputs u can be 

the injection rates then, the matrix E would serve as a representative for the constraints 

on the actuator slew rates at the injection wells, the matrix F – for instance could be the 
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actuator ranges and the matrix G would be the representative for the constraints on our 

outputs which for instance is the BHPs at the injections wells.  

The constraint equations thus take the form  

  
     
 

          
    
 

         
    
 

     

Here, the matrices            and      are approximate functions of     ,    and    

respectively. 

All the constraint equation would also have to be written in terms of the 

optimization variable       as  

 
 
 
 
        

          

                    
 

  

For a detailed description of how the above equation was derived, the interested reader is 

advised to refer the detailed explanation provided on the MPC formulation as a quadratic 

programming covered in [21]. 

We would thus have our entire optimization problem as 

              

                  

where   

                                    
 
 
 
                        

          

                    
 

     

It should be noted that depending on the number of constraints and the number of 

grid blocks on our reservoir model, we could be dealing with dimensions of the matrices 

E, F and G that are very large (say of the order of no: of constraints x no: of grid blocks) 
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unless we perform some kind of model order reduction. For this purpose we intend to 

reap the benefits of using a model identification method called System Identification 

which was dealt with in Section 4. Once we know our model and the constraints, the 

assembling of the matrices E, F and G which appear in the standard formulation of the 

predictive control problem can be automated using either the Model Predictive Control 

Toolbox for MATLAB®, or by hard coding the procedure in an m-file sub procedure. 

  The proposed MPC controller for the production optimization problem would 

thus have an internal model generated by performing System-ID which would be used to 

predict the behavior of the reservoir, starting at the current time, over a future prediction 

horizon.  

 

5.3 Operational Aspects 

The flexibility of the constraints are obtained by using three weighing matrices,     

and  , with which the relative importance of respectively limiting the rate-of-change of 

the inputs, limiting the absolute value of the inputs and output target tracking can be 

adjusted. Apart from this, the two weights on the quadratic cost function (economic 

objective) namely   (penalizes deviations from the reference trajectory) and   

(penalizes change in the input vector) can be adjusted. The control and prediction 

horizons    and   , the weights on the constraints     and  , the weights on the cost 

function   and  , and the reference trajectory, all affect the behavior of the closed-loop 

reservoir model and the predictive controller. They need to be adjusted to give 

satisfactory dynamic performance. All these features together would definitely give the 
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production engineer total control over the behavior of the controller and hence the 

reservoir. 

When implemented with the reduced state space matrices (             , MPC 

has had important implications for its acceptance and development and computation 

speed thereby making it a good prospect for real-time control. Apart from freedom to 

adjust the formulation and the tuning parameters, it will allow production engineers to be 

relatively brave in introducing this new technology since if he wants to temporarily 

inactivate the controller, it is usually possible to disable it and let the local loop 

controllers hold the reservoir simulator at the last set-points they received from higher 

levels.  It is also very much possible for the integration of economic short-term set-point 

optimization with the dynamic performance optimization strategy formulated and 

implemented in the model predictive controller. The reader can refer to publications on 

the use of reduced order models in control and optimization [11] [13]. 
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6. MPC AND SYSTEM-ID – CASE STUDIES AND CONCLUSIONS 

 

In this Section we will be focusing on the combined performance of Model 

Predictive Control and System-ID for two cases in particular. Some important discusion 

would be about the identification of the system around various critical work points and 

the decision and logics that were made in the design stage of the MPC controller. As we 

know by now that designing the proper MPC framework after identifying the model is 

one of the most important and time consuming task. The level of detail in coming up 

with our optimization problem as well as the quality of the model at each stage of the 

control process have a direct effect on the effectiveness of the waterflooding process.     

 

6.1 Case 1 – The Five Spot 2D Reservoir 

The reservoir model that we would be dealing with is almost the same as the one 

that was used as the toy model for evaluating the performance of system identification in 

the previous Section. The reservoir has four production wells at the four corners and a 

water injector at the center as shown in Figure 6-1. The total number of inputs that can 

be manipulated are five. This includes the bottom hole pressures (BHP‟s) of the four 

producers and the water injection rate of the well placed at the center. The Table 6-1 

shows the reservoir and fluid properties that were considered for this case. 
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Figure 6-1 Homogeneous Reservoir for Case 1 

 

                  Table 6-1 Reservoir and Fluid Properties for Case 1 

Variable Description Value Unit 

   Density of Oil 45.0 lbm/ft3 

   Density of Water 62.0 lbm/ft3 
   Viscosity of Oil 10 cp 
   Viscosity of Water .89 cp 
   Compressibility of Oil 10*10-6 psi-1 

   Initial Pressure 3800 psia 
   Initial Saturation 0.1 [-] 
  Rock Porosity .20 [-] 

 

The Figure 6-2 presents the production rates for the homogenous case reservoir 

assuming that it is to be produced for a period of 1400 days.  The reservoir was 
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optimized in a open-loop fashion by using the fmincon optimization function in 

Matlab®. This is a gradient-based optimization procedure as was described in Section 2. 

The reservoir was optimised just once at the beginnning for the entire life cycle of the 

reservoir which is for 1400 days. The reason why 1400 days decided as the end of the 

production life was because by that time the watercut at the production had exceeded a 

set value (for our case it was set at 90%).  The oil price for the optimization problem was 

assumed to be fixed at $85 per barrel and the seperation cost of water at the production 

well was assumed to be at $1 per Barrel. It was also assumed that the cost to injecting 

water is zero.  

Since the reservoir is homogenous and has a perfect symmetry from the injection 

well at the center to the production wells at the four corners of the reservoir, the 

optimization using  fmincon would obviously result in a single constant injection rate 

that would be followed throughout the life of the reservoir. The objective function was to 

maximise the net present value which was a function of the oil production rate, water 

production rate, cost of oil per barrel, and cost of water seperation per barrel.  

 As expected, the trajectory for all the wells are the same due to geometric 

symmetry and homogeneity. The optimised injection rate of 8000 bbl/day was applied 

for the life of the reservoir and the Production BHPs were maintained at 5800 psi. Since 

this was a pretty straight forward case, the time step at 20 days was enough to capture 

the dynamics and hence was decided as the sampling time.  
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The water front reached the production wells at 1186 days. The resevoir was run 

till the water cut reached 60%. The profit calculated by the NPV was at $ 65.3 million  at 

the end of 1400 days. 

 

 

Figure 6-2 Phase Rates for Homogeneous Reservoir  

 

The next step is to introduce a channel of high permeability region between 

producer number two and the injection well as shown in figure. In a real reservoir there 

would be regions of high and low permeabilities. Our purpose of introducing the high 

permeability region is to analyse the performance of MPC in a heterogeneous reservoir. 

There is a natural tendency in the reservoir to produce at a higher rate from the high 
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permeability region. This would in turn effect in a much earlier water break through in 

well number two to which the liquid from high permeable region flows.  

 

Figure 6-3 Homogeneous Reservoir with High-Perm Channel for Case 1 

 

For our present scenario, by introducing a high permeable region (as shown in 

Figure 6-3) towards the direction of well number two, we would expect an increase in 

the production for that well and water cut at a much earlier time. The high perm channel 

has a permeability that is three times higher than that for the rest of the reservoir as 

shown in the color bar. 
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Figure 6-4 Open-loop Phase Rates for Homogeneous Reservoir with Channel  

 

As we would expect, the oil production of well number two  is significantly 

higher than the rest of the wells. This can be seen in Figure 6-4. The production rate at 

well number two is higher than the maximum production rate in the homogeneous case 

whereas for the rest of the wells, it is lower. Consequently, the producer number two 

produces water at a much earlier date. It starts producing at about 400 days compared to 

about 1200 days for the homogeneous case. The calculated profit for this case was $ 53.3 

million which is about 18.3% less than the value for the homogenous case. 
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6.1.1 Performance Enhancement Using MPC 

The open- loop optimized control for both the homogeneous and heterogenous 

reservoir was created and compared  with the intention to evaluate the performance of 

our MPC in dealing with a heterogenous reservoir. We could witness a significant 

decrease in NPV and a much earlier water cut for the reservoir with the high perm 

channel. It would have been better if we could somehow prevent this from happening. 

What we would ideally want is that the water front still approach all the production wells 

at the same time so that - when the production rate of water at the wells would have 

reached uneconomic levels, we would have already depleted the reservoir somewhat 

uniformly and completely, thereby ensuring a higher NPV.  

With this idea in mind we aim to follow production trajectories for the 

homogeneous case eventhough the reservoir is now heterogenous.   The reference 

trajectory for MPC was thus set as shown in Figure 6-2.  

The next step is to integrate the MPC control algorithm with the identified 

model. Our aim is to optimize the control inputs (which in this case is the water injection 

flow rates and the Production BHPs at the four wells)  for a period of time (the life time 

of the reservoir), such that the outputs (Production Rates) would be steered to the 

optimal trajectories found for the homogenous case, thereby ensuring a significantly 

higher NPV and delayed Water break through. 
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6.1.2 The Identification 

First, a model was identified. The subpace identification scheme as suggested by 

above was applied to the Eclipse® model data in order to identify a state space model. 

The identification routine was written in Matlab®, using the subspace identification 

function (SUBID) by Van overschee and De Moor available at the website of the 

Department of Electirical Engineering, Katholieke Universiteit Leuven [17]. The input 

to the system is the water injection rate and the production BHPs. The outputs available 

were the BHPs of the four wells and the water injection BHP.  This supplies us with the 

following vectors. 

        
      

      
      

    
      

  
 
    

    
    

    
      

      

  
 
      

      
      

      
      

      
      

      
      

    
  
 

  
 
   

Figure 6-5 presents the simulation fit of one of the outputs (producer one oil 

rate). In the early stage of waterflooding before the production wells have felt the 

waterfront, the reservoir has a somewhat simple underlying dynamics. For this reason, as 

could be seen from the graph, a good simulation match was obtained. 

Performing subspace identification with order 6 . It need to be noted that we are 

performing subspace identification on an reservoir simulator model with grid cells 51 x 

51. The full order model is of size 5202 x 5202. This is a measure of the size of the state 

space input matrix if no reduction is performed. That would mean that we are dealing 
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with a system of order 5202. The order of the identified model is only 6.  Thus there is a 

significant decrease in computational effort when using an identified model instead of 

the actual reservoir model. Moreover, the idenitified model could also give a simulation 

fit of 97% for this case. 

 

Figure 6-5 Simulation Fit for Homogeneous Reservoir with Channel 

 

The identification was carried out by generating random input signals for 65 

days. We know for a fact that the optimal input signal is going to be somewhat constant 

for a significant period in the early stages of the reservoir (less than 200 days)  as could 

be scene in the homogenous case discussed earlier. (This is because the water front has 

not yet reached the reservoir boundaries. Such a signal cannot be applied as inputs while 

performing system identification because the “constant” input signals will not be able to 

excite the system dynamics and therefore we would not be able to get important 
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information about the system. Thus the random variation in input is added on top of the 

inputs.  

 

 

Figure 6-6 Expanded Simulation Fit for Homogeneous Reservoir with Channel 

 

The Figure 6-6 shows the prediction quality of the identified model. Eventhough 

System-ID was performed only for 65 days, the identified model predictes the „real-

model‟ somewhat accurately for to upto 120 days. In the period beyond 65 days, we 

were able to achieve a simulation fit of 81% which is quite surprising. An interesting 

observation to note is that the identified model could also predict the slight increase in 

the production flow rate which occurs clearly after the period for which subspace 

identification was performed. Similar to this, subsequent decrease or increase in 
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production was also observed for the identified models of well two, three and four quite 

effectively till 120 days.  

 

6.1.3 Results before Water Breakthrough 

Figure 6-7 presents the primary results obtained while optimising the inputs 

through predictive control. The control action is initially triggered when the production 

wells sense a reasonable increase in the water production rate. For the current case, we 

could notice that the trigger occurs at around 70 days. This is because there has been an 

increase in the water production rate at the well number two (which is situated at the 

high permeability corner in the reservoir). The control action therefore suggests to 

increase the BHP for that particular well and decrease the BHP for the remaining wells. 

This is shown in Figure 6-7 as we can notice an increase in the BHP of well number two 

to 5805 psi whereas a decrease in the BHP of the remaining wells to about 5735 BHP.  
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Figure 6-7 MPC Input-BHP for Homogeneous Reservoir with Channel 

 

This change in BHP would inturn effect flow rate to decrease its value in well 

number two and to increase its value for the remaining wells. As shown in Figure 6-8 we 

can see that the production rates for all the wells tends to reach its reference trajectory – 

which is the optimal trajectory as computed in the previous case shown as the blue line 

at about 2010 bbl/day. Even though all the production flow rate are supposed to be 

maintained at the optimal value throughout the life of the reservoir, this is not what 

ideally happens in our case.  

We could see that there is a significant deviation for the flow rate in well number 

two. It infact decreases way below the 2010 bbl/day line at about 250 days. This is 

accounted for, by the decease in prediction quality for the identified model as shown in 

Figure 6-8. The prediction curve suggests by about 120 days into production, we have 
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already lost the simulation fit by about 20%. This would obviously suggest a significant 

decrease in prediction quality at 250 days into production when we use the same single 

model as  identified at the initial stage of our reservoir. The model could probably not 

recognise the increase in water production especially in well number two as a result of 

the progression of the water front through the high-perm channel. 

 

Figure 6-8 MPC Outputs for Homogeneous Reservoir with Channel 

 

Figure 6-9 shows the MPC optimized injection rates that was used to generate the 

outputs in Figure 6-8. It could be seen that there is a steep decrease in the injection rate 

once the water production rated to rise in the wells. The exponential-like curves in 

Figure 6-8 and Figure 6-9 are as a result of limiting the input variations in the time steps. 

Beyond 70 days we can notice slight dynamic variations in the injection rates and BHPs 

of the production wells because of the tight control in the inputs. Neither the injection 
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rates nor the production BHPs have changed noticeably. The output behavior for this 

period of the life cycle of the reservoir can be interpreted by the fact that -  by the time 

we pass 70 days, the inputs become somewhat steady and reaches the same value in all 

the wells and hence, force the outputs to be as close to the optimal trajectories as 

possible. 

 

Figure 6-9 MPC Input-Rates for Homogeneous Reservoir with Channel 

 

6.1.4 The Big Picture 

This Section concludes the result obtained by performing the closed-loop control 

for the complete life of the reservoir. As was decided previously, our motivation in using 

this reservoir was to evaluate the control alogrithm of MPC in driving the outputs 

dynamically toward its set reference trajectories. This is quite successful as we could see 

in Figure 6-10. Taking this methodolgy a step further, we then wished to see the results 
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obtained after water breakthrough. The end of the life of the reservoir for our simulation 

experiment was decided as 100 days after water breakthrough because by that time we 

can capture important dynamics of the reservoir without compromising on the validity of 

the identified model.  

Care needed to be taken to ensure that we updated the model atleast once before 

we could use the model for MPC because we have already noticed a significant drop in 

prediction quality by 250 days into production. Though this is the case, we decided to 

use the same model till about 600 days because by then the water front could sense 

atleast one of the wells.  

 

Figure 6-10 MPC Optimized Lifecycle Production Phase Rates – Case 1 
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6.1.4.1 The Expanded Model 

At the end of this period, a new model had to be identified. For the purpose of 

identification, the random input signals where imposed upon the last 65 days of 

production data. The resulting flow rates (outputs) could be seen as the second random 

period in the figure above. The random signal used to perform this identification has the 

same properties as the signal used for the first case though the state of randomness is 

different.  

However the same number of inputs and outputs could not be used for this 

identification because we need to account for the additional dynamics that occur due to 

water breakthrough. The presence of water at the producing well contributes to the 

pressure dynamics and makes them nonlinear. Thus, in order to represent this case, the 

identification process has to be embedded with the amount of water that has broken 

through. This is taken care of by augmenting the number of outputs used by including 

the WOR (Water-Oil Ratio) in the form of water production rate and oil production rate 

for performing system identification. 

Thus the total number of inputs would still remain the same at five (i.e. one 

injection well rate and four production well BHPs) and the total number of outputs is 

augmented to eight (i.e. the four water production rates and the four oil production rates 

at the four wells). This identified Model does not really do a very good job when 

compared to the identification we were able to make for the period before the Water 

breakthrough as was shown in the history matching plot in Figure 6-10. 
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6.1.4.2 Production Prediction after Water Breakthrough 

As presented in Figure 6-10, we could notice that the liquid rate in well number 

two, which dropped way below the optimal rate settings set as per the homogeneous 

model, is now catching up with the optimal reference trajectory as a result of performing 

the second identification. It would have definitely been better if we could perform 

identification at intermediary stages so that we wouldn‟t lose the model quality. This 

decision need to be made after conducting numerous simulation experiments with 

system identification conducted at different intervals for each case. In this manner, we 

can come up with the most beneficial waterflooding control strategy. 

Our closed-loop control performance by identifying the system twice has resulted 

in a significant improvement in the NPV. We were able to achieve a profit of $31.32 

million when this reservoir was optimized for 700 days compared to a profit of $ 25.61 

million when optimized in an open loop fashion for the same period of time. In addition 

to this, we were also able to delay the water breakthrough by about 195 days.  
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Figure 6-11 MPC Optimized Lifecycle Cumulative Production – Case 1 

 

The Figure 6-11 shows the cumulative production trajectories of oil and water for 

both the open-loop and closed-loop case. We could we that after about 300 days into 

production, the MPC controlled overtook the open-loop optimized reservoir in 

cumulative oil production. At the end of the 700 days period, we could also notice a 

significant improvement in the cumulative oil production. In addition to this, by 

performing optimization using MPC and System-ID, we were also able to delay the 

water production by about 190 days. 
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6.2 Case 2 – A Fine Grid Geostatistically Generated Field  

The 10th SPE comparative solutions project presented a model that could be used 

to study Black-oil, compositional, dual porosity, thermal or miscible simulations, as well 

as horizontal wells and gridding techniques. Our purpose of using this comparative 

solutions project was to evaluate the effectiveness of system identification. The task 

performed by upscaling and other pseudoization methods in the comparative solutions 

project was similar to what system identification would have to perform in our case, as 

both aims at reducing the size of the reservoir model. We had to evaluate its 

performance on a 1.1 million cell geostatistical model that would be used to study 

waterflooding. The size of the model makes the use of classical pseudoization methods 

or having a full fine grid solution impractical. 

 

6.2.1 Reservoir Model Description 

The model used for SPE 10 was originally generated for use in the PUNQ 

project15. The model consists of part of a Brent sequence. The vertical permeability of 

the model used for SPE 10 was altered from the original (i.e. PUNQ): originally the 

model had a uniform kv/kh across the whole domain. The model used here has a kv/kh of 

0.3 in the channels, and a kv/kh of 10-3 in the background. The top part of the model is a 

Tarbert formation, and is a representation of a prograding near shore environment. The 

lower part (Upper Ness) is fluvial.  

The reservoir model presented (Figure 6-12) for the SPE 10 comparative project 

has a simple geometry, with no top structure or faults. The reason why this was provided 
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was to provide maximum flexibility in the selection of the upscaled grids that could be 

tested on the model. At the fine geological model scale, the model is described on a 

regular cartesian grid. The model dimensions are 1200 x 2200 x 170 (ft). The top 70 ft 

(35 layers) represents the Tarbert formation, and the bottom 100 ft (50 layers) represents 

Upper Ness. The fine scale cell size is 20 ft x 10 ft x 2 ft. The fine scale model has 60 x 

220 x 85 cells (1.122x106 cells). 

 

Figure 6-12 Reservoir Model for Case 2 

 

The top slice of the reservoir was used for our study as we are dealing with the 2-

D reservoir model. Thus we would be dealing with a model of size 60 x 220. The 

reservoir and fluid properties are shown in Table 6-2. 

 

6.2.2 Well Placement 

The porosity and permeability distribution is shown in Figure 6-13. We could 

notice that the reservoir has flow channels directed in the top – bottom direction rather 

than in the left – right direction. So according to the reservoir engineering basic 

fundamentals, we would want to place injectors and producers in such a way that 
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injector- producer direction does not align with the reservoir‟s flow channels.  Thus the 

water injected would have to go across the flow channels than through the flow 

channels, thus ensuring that the injected water could effectively displace the oil and 

hence we would expect the water cut to occur at a later time only once the oil has been 

somewhat completely displaced.  

 

Figure 6-13 Porosity and Permeability Field for Case 2 

. 

With this idea in mind we would place in the injector and producer in the left – 

right direction (i.e.  – the injectors at the right side and producers at the left side, or vice 

versa). For our case we placed five equally spaced injectors at the right side and five 

equally spaced producers at the left side. Even though this line-up of injectors and 

producers would be beneficial for waterflooding, it would not pose as a good problem to 

discuss or to interpret the effectiveness of waterflooding using our MPC and System-ID 

approach.  
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                 Table 6-2 Reservoir and Fluid Properties for Case 2 

Variable Description Value Unit 

   Density of Oil 45.0 lbm/ft3 

   Density of Water 62.0 lbm/ft3 
   Viscosity of Oil 10 cp 
   Viscosity of Water .89 cp 
   Compressibility of Oil 10*10-6 psi-1 

   Initial Pressure 3000 psia 
   Initial Saturation 0.1 [-] 
  Rock Porosity .20 [-] 

 

In other words, by placing our injectors and produces in the top – down direction, 

even though we would expect a water-cut at an earlier time, we could clearly evaluate 

the performance of MPC and System-ID in bringing out an effective waterflooding for 

the reservoir. In summary, the reasons for our injector – producer placements are: 

 To pose a good problem wherein the well placement is not ideal for 

waterflooding the reservoir. 

  To deal with a reservoir whose tendency to produce water in some of the 

production wells is much faster than the remaining production wells. (Since the 

flow channels are aligned in the same direction as the Injection- Production well 

direction. 

 Placing wells in the left-right direction has an obvious disadvantage of having to 

perform System identification for more number of times as opposed to when 

waterflooding in the top – down direction. This is primarily because the change 

in reservoir dynamics is much more prominent since a longer time is required for 

wells and the flow would have to be through much more prominent variation of 
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permeability or porosity. Thus to interpret the results and effectiveness, it‟s 

enough to deplete the reservoir within a shorter span of time, as similar good 

results can be obtained if we wish to place wells in the left-right direction. 

 

The system identification was performed in the same manner as explained in the 

Section 4.  The knowledge obtained by performing the step response and staircase 

experiment were the judgmental in coming up with the appropriate design of the input 

signal. The length of the input signal required for identification was decided based upon 

the type of reservoir at hand and the purpose of identification.  

 

Figure 6-14 Simulation Fit for Case 2 

 

The Figure 6-14 shows the simulation fit of the identified model. Due to the 

simple underlying dynamics in the earlier stage of the reservoir, we can see that a very 
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good simulation fit can be reached with lower order models. In the period between 20 

and 65 days, the model output and the reality measured values are very close (more than 

97% fit) as it is the same period for identification. Identifying lower order models was 

possible but we had to make a trade-off between the accuracy to predict the output 

closely enough until the next System-ID is performed and computational effort. A good 

observation was the ability of the model to predict the output accurately enough for the 

next 80 days, (90% fit).  

For periods 30-70 and 70-150 the reference tracking quality is better, but needs 

to be noted that for the last period the prediction quality is not good enough. This is 

obvious because of the fact that MPC controller doesn‟t perform well due to the 

nonlinearity effects of water breakthrough. This is an indication for us that it is time to 

perform model identification. Since water breakthrough has occurred, we can take into 

consideration a new parameter - oil-water ratios at the production wells while 

performing system identification. So the total number of inputs would be five (i.e. the 

five BHPs at the production wells) and the total number of outputs would be ten (i.e. the 

five production rates and the five water-oil ratios at the production wells).  

 

6.2.3 Model Dynamics 

One of the biggest challenges was to come up with an identified model. 

Analyzing all the input and output pairs from the 5 different wells one by one seemed 

like a very time consuming task since in each pair, both the step response as well as the 

stair case experiment had to be interpreted simultaneously to design the best input signal 
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that could serve and predict the outputs effectively for each of the five pair of wells. 

Another issue is the number of inputs and outputs we wish to control and predict 

respectively. For this model we assumed that the injector rates are already fixed to their 

optimal value as computed from the performing the open loop optimization. By this step 

we reduced the number of controllable inputs from ten inputs to five since we are only 

interested in manipulating the BHP for the producers. This would definitely make the 

problem formulation easier from the system identification point of view as by reducing 

the number of inputs we have compromised on the degrees of freedom for the MPC 

controller. This is another trade-off that needs to be made.  

 

6.2.4 MPC Implementation 

The Figure 6-15 below presents the reservoir production flow rates during the 

life of the reservoir at producer number five.  Also included in the same figure is the 

uncontrolled production rate which is presented with the intension to point out the 

benefits and specific advantages of using the MPC controller. The random variation of 

the outputs (flow rates of producer one) at four instances is shown explicitly in this 

graph so that we can observe the time intervals at which model identification has been 

carried out.  
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Figure 6-15 MPC Optimized Open-Loop and Closed-Loop Phase Rates – Well 5 

 

The random input signals that were generated to perform system identification 

were also used in the reservoir model. This would not be required when the actual MPC 

control algorithm needs to be implemented in the real reservoir. This is to say that the 

input signal used for model identification would not be used while performing the closed 

loop optimization in the actual reservoir but instead, the optimal inputs as computed by 

the MPC control algorithm will be used.  

Looking at the Figure 6-15, we can also see that the production rates at the earlier 

stage in the life cycle of the reservoir are higher for the open-loop controller when 

compared with that obtained by using the closed-loop MPC controller. Though this is the 

case, at the later stages, it could be noted that by using the MPC controller there is 

noticeable improvement in the production rate at well number five. Looking back at the 
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location of well number five in Figure 6-13 we can see that the well is located near a 

permeable region, which is the reason why there is reasonably high production rates in 

the earlier stages of the reservoir be it in open–loop or closed-loop control.  

As time progresses till about 750 days, though the production well has a natural 

tendency to have a reduction in the total liquid production rates, the MPC controller 

limits this decrease. Therefore, it will have lower production rates unless it is controlled 

with updated inputs. Apart from steering the total liquid production rate to a higher level 

the Water production rates are also lower due to the MPC control. Looking at the water 

production rates, it could be notes that there is a good delay in the water break through 

that is obtained as a result of our closed-loop control of the production BHPs. Water 

production for the producer well number five starts at about 340 days for the open-loop 

controlled case whereas it only starts at around 450 days by MPC. 

Similar results are obtained at producers one, two, three and four as shown in 

Figure 6-16, Figure 6-17 Figure 6-18 and Figure 6-19 respectively. We could notice that 

if water production rates at all these wells are lower when compared to the open-loop 

case especially at the end of the 700 days. Apart from that, there is a significant 

improvement in the oil production rates too. 
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Figure 6-16 MPC Optimized Open-Loop and Closed-Loop Phase Rates – Well 1 

 

 

Figure 6-17 MPC Optimized Open-Loop and Closed-Loop Phase Rates – Well 2 
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Figure 6-18 MPC Optimized Open-Loop and Closed-Loop Phase Rates – Well 3 

 

 

Figure 6-19 MPC Optimized Open-Loop and Closed-Loop Phase Rates – Well 4 
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Figure 6-20 MPC Optimized Lifecycle Cumulative Production - Case 2 

 

The cumulative production graph shown in Figure 6-20 is a good indicator to 

validate the improvement in optimization and ultimate oil recovery as far as our closed-

loop control is concerned. We could notice that even though the cumulative oil 

production was higher for the open-loop case in the early production phase of the 

reservoir (till about 360 days), beyond this time we can observe a significant 

improvement in production by implementing the MPC controller.  

 

6.3 Conclusions 

This paper presented a general framework for realizing real-time optimal control 

strategies for large-scale reservoir models. As it is the case of most of oil reservoir 
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models, uncertainty in the geological and petrophysical parameters are the main 

drawbacks of open-loop optimization. After observing the improvements in oil recovery 

and reductions in water production effectively for both the cases that were considered, 

we can reinforce our stance in proposing the implementation of MPC and System-ID 

towards the ultimate goal of “real time” production optimization. In addition to obtaining 

a significant reduction in computational effort without compromising on model quality 

or control objectives, we were also able to provide a much more robust control together 

with excellent constraint handling capabilities.  

Closed-loop control has the potential to address issues related to production 

optimization given a set of   unknown parameters as in any other engineering discipline 

taking advantage of real-time data management. However, the size of the models due to 

the discretization of the partial differential equations are very large (as compared with 

other disciplines) and are not amenable for fast implementations, or may require large 

amount of computational power. 

Solution techniques that involve efficient numerical computations for parameter 

estimation and optimization are of great value in these settings. Model reduction 

techniques may be the only way to avoid the large scale computations that takes place in 

the optimization process. It is fair to say that closed-loop reservoir management is still in 

its infancy and much attention and resources need to be put forth for realizing its full 

potential. 
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6.4 Research Gaps 

Basically, the concept of closed-loop reservoir management has been shown to be 

of great value in the literature, but the introduction of such methodologies has not been 

fully accepted (or it has a slow pace) in practical applications in the Oil & Gas industry. 

The main issues are fourfold: 

1. Though great improvements in control capabilities have been observed in this 

research, the nonlinearities of the reservoir as such have not been dealt with in this 

research. This is an important area that is still an open topic to be researched on. The 

highly nonlinear behavior of reservoir models could be dealt with by the use of nonlinear 

schemes like Nonlinear Model Predictive Control (NMPC). The experiments conducted 

on system identification in my research suggests that when  identification is performed 

for more times, the better I could account for that otherwise unavailable knowledge of 

the important dynamics taking place in the reservoir. This requirement can by surpassed 

to a great extent by implementing NMPC along with System-ID. 

2. Automated history matching, and in particular the use of Ensemble Kalman Filter 

(EnKF), has shown to provide models with good matching (past production history) and 

prediction capabilities, but do not result in parameters with a much geological sense. 

This is to say that the input-output behavior of the reservoir model is consistent to what 

is expected as far as production is concerned, but physically they do not represent what 

the geologist‟s may believe is a good model. From a system theoretical point of view 

this is adequate as connecting blocks with the correct input-output description is what 
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makes sense. Therefore, there should be a way of incorporating geological properties to 

automated history matching in as seamless manner. 

3. Reduced-order models have been shown to produce reasonable approximations 

to the full and complex reservoir models. Thus, complex models usually have 

counterparts with much smaller state and parameters dimensions. This is to say that one 

needs to understand how much the complexities will play a role in the input-output 

behavior of such models. From a system theoretical point of view, controllability and 

observability are of central issue, and, in general, the petroleum engineering community 

has not paid much attention to such properties.  

4. Convince the production managers that the operation of the reservoir should be 

guided not only by experience, but also from “smart” decisions resulted from the closed-

loop optimization. The idea is not to completely remove the human element from the 

loop, but also to let him have the upper hand and the help required on the decision-

making process. In several occasions, as pointed out in the literature, short term and long 

term production can be adjusted to maximize production or to maximize economic 

objectives, even though at times they may sound contradictory one to another. For 

instance, one may start producing at a slower pace, so that over the life time of the 

reservoir we can recover larger amounts of oil and in turn, meet financial or production 

targets. Thus, better ways of demonstrating the feasibility of the closed-loop system 

needs to be well thought out. 
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