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ABSTRACT

Analog Baseband Filters and Mixed Signal Circuits for Broadband Receiver

Systems. (December 2011 )

Raghavendra Laxman Kulkarni, B.E., University of Mysore; M.Tech., IIT Delhi

Chair of Advisory Committee: Dr. José Silva-Martinez

Data transfer rates of communication systems continue to rise fueled by aggres-

sive demand for voice, video and Internet data. Device scaling enabled by modern

lithography has paved way for System-on-Chip solutions integrating compute in-

tensive digital signal processing. This trend coupled with demand for low power,

battery-operated consumer devices offers extensive research opportunities in analog

and mixed-signal designs that enable modern communication systems.

The first part of the research deals with broadband wireless receivers. With an

objective to gain insight, we quantify the impact of undesired out-band blockers

on analog baseband in a broadband radio. We present a systematic evaluation of

the dynamic range requirements at the baseband and A/D conversion boundary.

A prototype UHF receiver designed using RFCMOS 0.18µm technology to support

this research integrates a hybrid continuous- and discrete-time analog baseband along

with the RF front-end. The chip consumes 120mW from a 1.8V/2.5V dual supply

and achieves a noise figure of 7.9dB, an IIP3 of -8dBm (+2dbm) at maximum gain

(at 9dB RF attenuation).

High linearity active RC filters are indispensable in wireless radios. A novel

feed-forward OTA applicable to active RC filters in analog baseband is presented.

Simulation results from the chip prototype designed in RFCMOS 0.18µm technol-

ogy show an improvement in the out-band linearity performance that translates to

increased dynamic range in the presence of strong adjacent blockers.
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The second part of the research presents an adaptive clock-recovery system suit-

able for high-speed wireline transceivers. The main objective is to improve the jitter-

tracking and jitter-filtering trade-off in serial link clock-recovery applications. A

digital state-machine that enables the proposed mixed-signal adaptation solution to

achieve this objective is presented. The advantages of the proposed mixed-signal so-

lution operating at 10Gb/s are supported by experimental results from the prototype

in RFCMOS 0.18µm technology.
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1. INTRODUCTION

Global semiconductor market has experienced a phenomenal growth in the last

decade and continues to grow due to increasing demand for data communication

solutions. Both wired and wireless data communication market segments continue to

be key drivers for research, innovation and development of new technologies. Gordon

Moore’s remarkable prediction of doubling of number of transistor per integrated

circuit approximately every 2 years continues to hold as smallest feature sizes are

scaled aggressively. This has led to design of multi-million transistor system-on-chip

(SoC) solutions with remarkable digital signal processing and memory capabilities.

Low power mobile handheld devices featuring instant access to voice, video and

Internet are one example of a communication system enabled by such SoC solutions

(cf. Fig. 1.1). Video delivery to consumer wireless devices such as cellular handsets,

e-readers and media tablets has become increasingly commonplace, as users are de-

manding access to video content. With the popularity of Digital TV (DTV), digital

video broadcasting (DVB) standards have also been augmented to include the hand-

helds. Battery powered environment of handheld devices demands small physical

size and low power consumption in these communication devices.

In addition to digital demodulation and signal processing, wireless communication

links also require high performance RF (radio-frequency) receivers in the signal chain.

A simple block level partitioning is shown in Fig. 1.2. The RF front-end and analog-

baseband termed as “radio”. The goal of radio is to deliver the desired channel to

the demodulator with tolerable impairments (due to RF front-end non-idealities) at

low cost. As a result design of low power, high performance RF and analog circuits

continues to be a key focus area for research in wireless communication systems.

This dissertation follows the style of IEEE Trans. VLSI Syst..
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Figure 1.1. A multi-featured mobile handheld device.

Figure 1.2. Simple block-level description of a modern wireless device.

The first part of this work (Sections 2, 3 and 4) addresses some of the research

challenges for low power wireless communication devices. Section 2 provides an in-

troduction to modern digital and analog communication techniques and analyzes the

implications of the orthogonal frequency division multiplexing (OFDM) technology

on the design of the wireless receiver and its analog baseband. In particular we

explore the interdependence between analog baseband and dynamic range require-

ments of a subsequent ADC in the signal chain. Section 3 presents a prototype UHF

receiver fabricated using the IBM RFCMOS 0.18µm technology. We also compare

the performance of the receiver with state of the art receivers.
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Figure 1.3. Examples of serial link applications.

In Section 4 we analyze the linearity performance and SNDR requirements of a

analog baseband filter in a wireless receiver. Based on the design requirements we

propose a new feed-forward transconductor (OTA) structure suitable for building

high-linearity active-RC filters. The Section also presents the resulting improvement

in the out-band blocker performance from the new OTA structure.

Aggressive technology scaling has also led to spur of growth in the wired back-

end infrastructure market supporting the global Internet and data communication

traffic. The total volume of data transported over the telecommunications network

has risen significantly mainly due to the increased Internet traffic. Technologies that

expand the capacity of fiber based transport links to 10Gbps and beyond have gained

prominence. The Synchronous Optical Network (SONET) protocol is a standardized

multiplexing protocol that transfers digital bit streams over optical fibers. The base

unit for SONET speeds is 51.84Mb/s and is termed as OC-1 rate. Similarly, OC-192

is a network line operating at 9.95328 Gb/s. In addition to optical links, a variety

of electrical serial link standards have emerged as indicated in Fig. 1.3. This has led

to a demand for a low cost and fully integrated transmitter (TX) and receiver (RX)

chips to be deployed in the Internet backbone router, which is the core element in

the network infrastructure.

Several high speed serial links (both optical and electrical) utilize an embedded

clocking approach. This method relies on serial data coding schemes to ensure suffi-
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cient transition density in the data stream. These data transitions facilitate recovery

of the embedded clock to optimally re-sample the data in the center of the incoming

data bit. Modern clock-data-recovery (CDR) systems use a phase-locked-loop (PLL)

to perform this operation. This has fueled research on low-cost high-performance

phase locking architectures for clock-recovery.

In Section 5 we present a high-performance mixed-signal adaptive clock-recovery

solution. System requirements of such a system are introduced followed by archi-

tecture and implementation of the mixed-signal solution. Section 6 summarizes the

conclusions from this research work.
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2. ANALOG BASEBAND SYSTEM DESIGN FOR DIGITAL

COMMUNICATION SYSTEMS*

This Section provides a short introduction to analog and digital modulation

schemes employed in modern communication systems. Basic principles of multi-

carrier modulation and OFDM technology are presented which set the foundation

for the later Sections. For more detailed discussion of the communication systems

and OFDM technology reader is referred to [1–6].

Effect of undesired adjacent blockers on dynamic range (DR) considerations in

a modern radio are discussed in this Section. An analysis of interdependence be-

tween the baseband filter and analog-to-digital converter (ADC) DR requirement

for a broadband receiver∗ is presented. High DR ADCs (for a given bandwidth)

demand a steep 2 − 4X increase in power consumption per every additional bit in

resolution. This significant increase in ADC power consumption justifies a system-

atic evaluation of the effect of filtering on ADC DR. This Section quantifies impact of

adjacent blockers (digital or analog modulation) on filter-ADC DR interdependence

for Butterworth and Inverse Chebyshev filters. Analysis reveals that (1) low-order

Butterworth filters are quite efficient when the undesired power is dominated by far

out blockers, and (2) high-order Inverse Chebyshev filters can offer up to +12dB

additional reduction in ADC DR (∼ 4X in power consumption) compared to But-

terworth filters in the presence of analog modulated narrowband adjacent blockers.

2.1 Modern Communication Systems

A simple communication system with its constituent functional blocks is shown

in Fig. 2.1. The main goal of the system is to transfer information from the source
∗Part of this section is reprinted with permission from "UHF Receiver Front-End Implemen-
tation and Analog Baseband Design Considerations", by R. Kulkarni, J. Kim, H.-J. Jeon,
J. Xiao, and J. Silva-Martinez, accepted for publication in IEEE Trans. VLSI Syst., DOI
10.1109/TVLSI.2010.2096438.
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Figure 2.1. Basic communication system.

to the destination. In general, the source and the destination are spatially located

away from each other with the channel providing the link between the source and

the destination. Channel is the physical medium used to send the signals and many

types of channels are used for communication links. These include electrical wires,

wireless channels and optical fiber. The transmitter couples the source signal to the

channel. In most cases, the non-idealities of channel degrade the transmitted signal

quality in multiple ways. The main function of the receiver is to extract the source

signal from the the degraded signal due to the impairments of the channel.

The signal from the source (termed as baseband signal) is generally not suited for

direct transmission over the channel. Hence the source signals are modified to enable

signal transmission. The baseband signal is utilized to alter a particular characteristic

of a high-frequency carrier signal. Such a process is termed as modulation. In

addition to modulation, the transmitter may also perform signal amplification and

filtering. The receiver performs the de-modulation process to extract the desired

signal. Depending on the nature of the signal source x(t), modulation schemes

are classified as either analog or digital modulation. In both types of modulation

schemes, a sinusoidal high frequency carrier is still employed for coupling the signal

to the physical channel.

2.1.1 Analog Modulation

An analog modulated carrier xa(t) can be expressed as,

xa(t) = A(t) cos[wct+ φ(t)] (2.1)
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Figure 2.2. Analog TV channel spectrum with picture and audio carriers [7].

where A(t) is the instantaneous amplitude of the carrier, wc is the frequency (in

rad/s), and φ(t) is the instantaneous phase deviation of the carrier. We can obtain

either amplitude (AM) or frequency/phase modulation (FM/PM) based on whether

the signal source x(t) modulates the amplitude A(t) or the phase φ(t) of the carrier.

Depending on the spectral relationship between x(t) and xa(t), linear modulation

schemes have been traditionally classified as: double-sideband modulation (DSB),

single-sideband modulation (SSB), and vestigial-sideband modulation (VSB). Among

these, VSB offers the best compromise between bandwidth conservation and power

efficiency. Commercial TV based on analog modulation schemes, utilize (VSB + pic-

ture carrier) for transmitting video information. Analog FM is used for commercial

radio stations and also for transmitting the audio component of the commercial TV

broadcast. An example of the analog modulation used for TV channel is shown in

Fig. 2.2.
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2.1.2 Digital Modulation

In digital modulation schemes, the digital bits from the input source are first

grouped into symbols. Then each symbol is mapped to one of the possible com-

binations of amplitude {ak}, phase {φk(t)} and/or frequency {wk}. Such a digital

modulated carrier can be expressed as,

xd(t) =
k=∞∑
k=−∞

ak cos[wct+ wkt+ φk(t)]u(t− kTs) (2.2)

where u(t) is a unit amplitude pulse with symbol duration time Ts, and ak, wk, and

φk(t) are respectively the amplitude, frequency and phase trajectory of the kthsymbol

during kTs < t < (k + 1)Ts [3]. In general, digital modulation that uses amplitude,

phase or frequency is referred to as amplitude shift keying (ASK), phase-shift key-

ing (PSK), and frequency-shift keying (FSK) respectively. Modulations that use

both amplitude and phase are termed as quadrature-amplitude modulation (QAM)

schemes. Using the standard trigonometric identities, xd(t) can be written as,

xd(t) =
k=∞∑
k=−∞

[Ikcos(wct) +Qksin(wct)]u(t− kTs) (2.3)

where Ik = akcos(wkt+φk(t)) and Qk = aksin(wkt+φk(t)). Ik and Qk are known as

the in-phase and the quadrature components respectively. A constellation diagram

of a 16-QAM modulation scheme as an example of a digital modulation scheme is

indicated in Fig. 2.3. A few examples of digital modulation schemes used in recent

technologies include 256-QAM used for HDTV in cable television in North America

and various QPSK and QAM formats used for 802.11n Wireless LAN receivers.



9

Figure 2.3. Constellation diagram of a 16-QAM modulation scheme.

2.1.3 Shannon’s Channel Capacity

For a given communication channel, channel capacity C is the upper bound on

the rate of reliable data transmission. For band-limited channels with additive white

Gaussian noise (AWGN), Shannon defines the channel capacity as,

C = B log2(1 + SNR) (2.4)

where B is the channel bandwidth (in Hz) and SNR is the Signal-to-noise ratio

available over that bandwidth. (2.4) shows that to increase C for a given link, either

the B or SNR should be increased. Interestingly, (2.4) also shows that for a fixed

B, data rate can be increased if achievable SNR over the communication link can

be increased. For digital modulation schemes, higher SNR can be used to pack

more bits per symbol which effectively increases the data rate. The choice of the

modulation scheme and the complexity of the system can vary depending on the

channel characteristics, link impairments (noise and inter-symbol-interference), and
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cost budget. As we will see in the subsequent sections, depending on the modulation

scheme and the channel characteristics, it is common to specify the minimum SNR

required from the radio to guarantee reliable transmission (set by a threshold bit-

error-rate or BER).

2.1.4 Multicarrier Modulation and OFDM Technology

In its simplest form, communication systems can be designed with a digital mod-

ulation scheme using a single-carrier to transport data over a given channel. In such

a system, the frequency dependent response of the channel leads to inter-symbol-

interference (ISI) degrading the BER of the system. Generally, the frequency re-

sponse of the channel is compensated in the receiver using a channel estimator and

an equalizer. Communication links have continued to evolve and increasingly provide

high data transmission rates to support multimedia services. This has led to design of

transceivers to handle wider signal bandwidths (several MHz) and high SNRs to en-

able denser digital modulation constellation schemes. As the signal bandwidths and

the data rates increase, the complexity of the digital estimator and equalizer required

to compensate the non-idealities due to channel response increases. A multi-carrier

modulation scheme addresses this issue using frequency division multiplexing within

the available channel bandwidth.

Multi-carrier systems divide the channel bandwidth into multiple sub-bands or

sub-channels. First, the high rate data stream to be transmitted is sub-divided into

multiple parallel low rate data streams. Next, the low rate data streams modulate

multiple orthogonal carriers within the channel bandwidth. For a narrow enough

sub-channel bandwidth, the link response of the sub-channel can be assumed to be

approximately constant and hence can be easily compensated by a simple digital

equalizer. Essentially, the total available transmit power is evenly distributed over

all the sub-channels achieving high spectral efficiency and full channel equalization

is avoided. In case of narrowband distortions in the channel response, one or a few
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Figure 2.4. (a) A general multi-carrier modulation scheme
(b)OFDM sub-carriers.

sub-channels can be easily disabled without significantly affecting overall BER of

the communication link.

A general case of multi-carrier scheme is essentially similar to conventional fre-

quency division multiplexing, with guard-bands between adjacent sub-carriers so that

a receiver can isolate them using digital bandpass filters. The frequency spectrum

of such a scheme is shown in Fig. 2.4(a). However, by using sub-carriers sepa-

rated by a frequency difference that is the reciprocal of the symbol duration, the

multiplexed tones can be made orthogonal to each other. In such a scenario, the

spectra of the sub-carriers overlap as indicated in Fig. 2.4(b). But it should be

noted that, if orthogonality is preserved, then each sub-carriers peak occurs when

the other sub-carriers are at null.

OFDM technology is widely used for communication links over wireless channels.

This is due to its robustness against ISI and multipath distortion. Recent standards

for Wireless LAN (WLAN), WiMax, Digital Video Broadcast (DVB) and Digital

Audio Broadcast (DAB) utilize OFDM technology. In the next section, we will

look at basics of the OFDM-based mobile and terrestrial digital video broadcast

technologies.
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Figure 2.5. Ultra High Frequency (UHF) spectrum for mobile digital video.

2.1.5 Wireless Technologies for Digital Video Broadcast in UHF Spectrum

With the brief introduction different modulation schemes and OFDM technologies

in the previous section, we now look at the wireless technology used for digital video

broadcast/reception in the UHF spectrum. Digital video broadcast in the UHF

spectrum is an intriguing example for radio design especially considering the co-

existence requirement from digital and analog modulation schemes within the UHF

band. Due to this requirement, design of radio front-ends for mobile digital video

reception in UHF spectrum presents a unique set of challenges.

Consider the UHF Spectrum ranging from 470-862MHz as shown in Fig. 2.5. The

spectrum shows the relative location of digital video broadcast standards (DVB-H

(handheld) and DVB-T (terrestrial)) and analog TV channels along with spectral

content from other consumer cellular standards. As indicated the desired DVB-H

channels are embedded within UHF spectrum along with DVB-T and analog TV

channels. The GSM and WCDMA cellular bands are out of the UHF band as in-

dicated. Table 2.1 indicates the details of modulation schemes (OFDM with digital

modulation on each sub-carrier versus analog) used for different standards used for

digital video broadcast.
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Table 2.1
Modulation schemes used for television broadcast in UHF spectrum in North America [7].

Standard Modulation Scheme Use RF Frequency
Range (MHz)

Channel BW
(MHz)

NTSC Analog Terrestrial 47-88,
174-230,
470-854

6

PAL,
SECAM

Analog Terrestrial 47-88, 174-30,
470-854

6, 7, or 8

DVB-T Digital, Coded OFDM
(64QAM)

Terrestrial 174-230,
470-854

6, 7, or 8

ATSC 8-VSB Terrestrail 47-88,
174-230,
470-854

6

DVB-H Digital, Coded OFDM
(QPSK, QAM)

Mobile 470-854 6, 7, or 8

MediaFlo Digital, Coded OFDM
(QPSK)

Mobile 716-722 6
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Figure 2.6. A typical wireless radio using direct conversion architecture.

2.2 Radio Design for UHF Receivers

A typical wireless receiver system using the direct down-conversion architecture

is indicated in Fig. 2.6. From a communication systems standpoint, the overall

receiver can be simply modeled as a demodulator. The spectral energy present in

the undesired cellular bands could be pre-filtered by an external passive band pass

filter.

The signal in the desired UHF band is amplified, filtered and after the analog-to-

digital conversion is presented to the demodulator. The RF and the baseband analog

signal processing chain preceding the demodulator can be treated as an impairment

block affecting the performance of the communication system. Regardless of the

implementation, the goal of the RF receiver is to deliver the desired signal to the

demodulator. The entire spectral energy in the UHF band should be managed by

the receiver front-end and the desired DVB-H channel should be down-converted

with sufficient signal quality for demodulation. The overall requirement of signal to

undesired ratio (including phase noise, quantization noise, thermal noise and other

non-idealities) depends on the modulation scheme being employed and the BER

requirement of the communication link. For example, a BER requirement of 2×10−4

, the minimum SNDR requirement from the receiver chain can be as high as 25dB for

64-QAM modulation scheme for a mobile channel. Such a demanding requirement

directly impacts the design of the RF receiver front-end.
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Figure 2.7. Analog signal processing using cascaded filters and
variable gain stages.

The presence of strong adjacent channel power in the spectrum presents several

challenges for the RF receiver design. The undesired analog and digital channels

could be up to 45dB higher than the desired signal power significantly raising the

over-all DR requirements of the receivers. This is especially important in a direct-

conversion RF receiver architecture which is the most popular architecture for con-

sumer applications. In direct-conversion receivers, RF blocks in the signal chain

(Low Noise Amplifier and I/Q demodulator) typically do not perform any channel-

selection filtering. An I/Q demodulator implemented using a passive current-mode

mixer can be terminated using a trans-impedance amplifier which can easily imple-

ment a single pole to perform first order filtering after the signal down-conversion.

This first order filter provides attenuation for blocker power located far away from

the desired channel, but leaves the spectral energy from the first adjacent channel

unfiltered.

A typical analog baseband signal processing chain with cascaded filtering and

variable gain blocks is shown in Fig. 2.7. The figure also illustrates how the input

signal power is processed in the signal chain. The variable gain stages increase the

signal amplitude, while the filters reduce the blocker power successively increasing

the signal-dynamic range for the desired channel power. When processed, the signal
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is corrupted due to noise and distortion as indicated. It should be noted that the

unfiltered residual blocker power reaches the output and must be accommodated into

the DR requirements at the input of a subsequent ADC in the signal chain.

Due to the presence of blocker power, analog baseband blocks must exhibit not

only a desired in-filter-band DR but also good linearity for out-of-filter-band sig-

nals. The non-linearity with out-of-filter-band signals results in inter-modulation

with the output product components falling within the signal band corrupting the

signal quality. Analysis and circuit techniques to improve the out-band non linearity

performance will be revisited and discussed in Section 4.

2.2.1 System Dynamic Range Requirements

Dynamic range (DR) of a signal is the ratio of the maximum to the minimum

value that the signal can take. In a broadband wireless radio, the signal is first sensed

at the antenna (or LNA input) and then processed to extract the desired spectral

content. The DR requirements from LNA input to the ADC input in a broadband

receiver are illustrated in Fig. 2.8. Typical numbers relevant to an UHF receiver

are also included in the figure. Different components of the broadband signal power

contributing to the DR are explored in this section.

For a given two-sided bandwidth B, the noise floor (Nreceiver) of the receiver in

dBm is defined as,

Receiver noise floor = Nreceiver = (kTB)dBm +NFdB (2.5)

where NFdB is the noise figure of the receiver.

Then, the sensitivity of the receiver defined as the minimum desired signal power

to meet the SNR requirement for the modulation scheme is,

Receiver sensitivity level = PRF,min = Nreceiver + SNRdesired (2.6)
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Figure 2.8. Effect of filtering and AGC on dynamic range require-
ments from antenna to ADC.

As indicated in the figure, the desired channel signal power can vary as much as

40dB and the undesired adjacent blockers can be up to 45dB higher than the signal

power.

Peak-to-average ratio (PAR) is an attribute of OFDM based modulation schemes

which is a result of utilizing a multiple carriers. As a result radios built for OFDM

reception must budget for PAR in the DR calculations to avoid severe distortion and

clipping in the signal chain. As indicated in the figure, automatic-gain-control (AGC)

can help reduce the variation of the desired signal power where as analog baseband

filtering can reduce the blocker power presented to the ADC. In the next section,

we study the interdependence of analog baseband filter and ADC DR requirements

in detail. We will analyze the implications of this DR requirement on the power

consumption cost of a subsequent ADC. It should be noted from Fig. 2.8 that, for

the UHF receiver applications the ADC DRmin > 54dB (~ 9 bits) even assuming an

ideal AGC and complete blocker filtering prior to the ADC.
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2.3 Interdependence of Baseband Filter and ADC Requirements

As previously indicated, analog baseband performs two tasks: (1) filter undesired

adjacent blocker power; and (2) deliver constant power to the ADC with sufficient

signal-to-noise-and-distortion ratio (SNDR). For a given input signal and blocker pro-

file, choice of the baseband filter (order and approximation) determines the required

ADC DR.

ADC DR should perform the following:

1. Be greater than the minimum DR set by the SNR requirement of the modu-

lation scheme. The quantization noise of the ADC affects the performance of

the demodulator. A design margin should be included in the DR of the ADC

to minimize the degradation due to quantization noise. For this work a design

margin of 20dB (≈ 3bits) is used for estimating DRmin [8–10].

2. Accommodate the peak-to-average ratio (PAR) of the received signal.

3. Include desired signal power variation that is not covered by automatic gain

control (AGC). Since the input desired signal power can vary depending on the

physical distance of the receiver from the transmitter, variable gain is required

in the signal chain such that a constant input can be delivered to the ADC.

The remaining signal power variation must be accommodated in the ADC DR.

4. Accommodate the residual undesired power at the ADC input after the channel

select filter.

5. Meet the outband linearity performance requirement based on the residual

blocker power.

In addition, the minimum sampling frequency of the ADC should be chosen to keep

the undesired aliased signal power below the desired signal power by at least DRmin.



19

Figure 2.9. Comparison of filter approximations for orders 3 to 8
for 4MHz channel bandwidth. For each case, nth order Butterworth
response is superimposed with (n − 1)th order Inverse Chebyshev
response with an additional single pole.

The effect of Butterworth filter order on sampling frequency and resolution of the

ADC has been analyzed in [11]. In this work, we focus on item (4) above and quantify

the component of the ADC DR required to accommodate the residual undesired

power for Butterworth and Inverse Chebyshev filters with orders ranging from 3 to

8. A 1st order pole is added to an (n−1)th Inverse Chebyshev filter for comparison to

nthorder Butterworth filter. This addition improves the high frequency attenuation

for even order Inverse Chebyshev filters. A comparison of the filter transfer function

for orders 3 to 6 for the two filters is provided in Fig. 2.9. These two filters are chosen

so that we can compare the impact of an all-pole approximation (Butterworth) and

an approximation with poles and stop-band zeros (Inverse Chebyshev).
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As discussed previously, the residual power evaluation is performed for both dig-

ital and analog adjacent channels as undesired blockers in the UHF spectrum can

employ either modulation scheme. In analog channels, the bulk of the signal energy

is concentrated near the carrier, resulting in strong peaks as illustrated earlier in

2.2. In contrast, the energy in a multi-carrier modulated digital channel is spread

smoothly across the channel [12]. Understanding the impact of this difference is

important as analog modulation techniques continue to be used along with digital

broadcast [7]. The following analysis will show that the higher order Inverse Cheby-

shev filters perform better at reducing the undesired power in the presence of analog

adjacent channels.

2.3.1 Residual Undesired Power from Digital Adjacent Channels

To evaluate the residual undesired power for digital channels, the baseband input

spectrum is modeled as shown in Fig. 2.10. From Fig. 2.10:

• The input power spectral density (PSD) Sin(f) is defined for a broadband

frequency range (0, fmax). Sub-carriers in the input spectrum are separated by

4f , resulting in M = bfmax/∆fc total sub-carriers.

• The desired channel resides in a single-sided bandwidth of (0, B) with Nt sub-

carriers in (0, B − fg) and a guard band fg with zero power carriers. Each

undesired channel has a two-sided bandwidth of 2B with 2Nt sub-carriers in

2(B − fg).

• The input sub-carrier power in the desired channel is set to Pd. The power of

sub-carriers PN+1 in the first adjacent channel (referred as the N + 1 channel)

is set ACdB higher than Pd. For the remaining undesired channels (> N + 1),

the power of sub-carriers Pu is UDdB higher than the desired channel (UD

denotes undesired− to− desired).
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Figure 2.10. Baseband input spectrum with digital adjacent channels.

Figure 2.11. Output power density and definitions of integrated
power in the desired channel, residual N+1 adjacent channel, and
residual power in all undesired channels.

Total integrated input power Pin is

Pin =
fmaxˆ

0

Sin(f) df (2.7)

This input spectrum is filtered using a transfer function H(f). Hence, the

integrated output power within a frequency range (f1, f2) is

P =
f2ˆ

f1

Sin(f) |H(f)|2 df (2.8)
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Table 2.2
Parameters used for the analysis.

Parameter Values
B, fg, fmax 4 MHz, 200kHz, 396MHz

ACdB, UDdB 38dB, 45dB
2Nt 3800 sub-carriers
Pin +6dBm

Using (2.8), integrated power in the desired channel (Pdesired), the residual inte-

grated power due to the N + 1 channel (Pres,N+1), and the residual integrated power

due to all the undesired channels (Pres,Total) are evaluated as indicated in Fig. 2.11.

To quantify the component of the ADC DR required to accommodate the N + 1

channel residual power and total residual power, we evaluate

ResidualDRN+1 = 10 log10(Pdesired + Pres,N+1

Pdesired
) = 10 log10(1 + Pres,N+1

Pdesired
) (2.9)

ResidualDRtotal = 10 log10(Pdesired + Pres,Total
Pdesired

) = 10 log10(1 + Pres,Total
Pdesired

) (2.10)

We findResidualDRtotal andResidualDRN+1 for Butterworth and Inverse Cheby-

shev filters as the first adjacent channel power changes relative to the desired power

(indicated by ACdB). Corner frequency is set to 4MHz for both the filters. Sub-

carrier powers Pd, PN+1 and Pu are suitably adjusted to maintain fixed input power

(Pin = +6dBm ) with UDdB = 45dB. Values of the other parameters are indicated

in Table 2.2. Fig. 2.12 and Fig. 2.13 show ResidualDRtotal and ResidualDRN+1

for filters of order 3 to 8 as ACdB is varied from +10dB to +40dB in 10dB step

size. As expected, Fig. 2.12 indicates that the residual DR requirement for the ADC

(ResidualDRtotal) reduces with increasing filter order.
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Figure 2.12. Residual dynamic requirement for digital adjacent
channels with Butterworth filter.

Figure 2.13. Residual dynamic requirement for digital adjacent
channels with Inverse Chebyshev filter.

The two important observations from Fig. 2.12 are:

1. If the undesired input power is dominated by > (N + 1) channels (ACdB =

10dB), then the first adjacent channel power is easily filtered by both But-

terworth and Inverse Chebyshev filters. In this case, lower order Butterworth

filters (3− 5) are quite effective compared to Inverse Chebyshev filters.
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Figure 2.14. Analog adjacent channels with single analog carrier per channel.

2. If the undesired input power is dominated by the (N + 1) channel (ACdB =

40dB), then ResidualDRtotal ≈ ResidualDRN+1. In this case, both Butter-

worth and Inverse Chebyshev filters have comparable ResidualDRtotal require-

ment from the ADC.

2.3.2 Residual Undesired Power from Analog Adjacent Channels

Compared to digital channels, analog channels use two narrow band carriers (one

for video and one for audio) located within the channel bandwidth. The video carrier

is 13dB higher than the audio carrier and is located closer to the pass band edge

[13, 14]. Hence, a single worst-case carrier at foffset from the edge of the channel is

modeled as shown in Fig. 2.14. For fair comparison, the input power of the single

carrier is set equal to the integrated power from the undesired digital channel.

As indicated in Fig. 2.14, the power of the analog carrier in the (N + 1) adjacent

channel and remaining channels is

PAN,N+1 = PN+1 (2Nt) (2.11)

PAN,u = Pu (2Nt) (2.12)

Similar to the previous analysis, ACdB measures the difference in the desired and

undesired first adjacent channel input power. As the ResidualDRtotal requirement
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Figure 2.15. Residual dynamic range for the analog adjacent channel.

for worst case high ACdB values is dominated by ResidualDRN+1, the difference in

the performance of the two filters is highlighted with ResidualDRN+1. For

foffset = 1.25MHz, ResidualDRN+1 for Butterworth and Inverse Chebyshev filters

are evaluated and the results are shown in Fig. 2.15. The key observations from are:

1. For lower filter orders (3 to 5), both Butterworth and Inverse Chebyshev

filters provide similar attenuation for the adjacent analog channel leading to

comparable ResidualDRtotal requirement from the ADC .

2. For higher order Inverse Chebyshev filters (7 and 8), the ResidualDRN+1 is

12dB lower than that for Butterworth filters. This improvement results from

the sharp transition band and nulls in the transfer function due to stop-band

jw-axis zeros in the Inverse Chebyshev approximation.

In general: (1) Low order Butterworth filters are more efficient at reducing the

undesired blocker power when it is dominated by far out blockers (> N +1) for both

digital and analog modulation; (2) Butterworth and Inverse Chebyshev filters provide

comparable performance when the residual power is dominated by the (N+1) channel

with digital modulation; and (3) Higher order Inverse Chebyshev filters (orders 7 to
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Figure 2.16. Required ADC DR based on blocker type and filter
order/approximation.

8) are favorable than Butterworth filters when the residual power is dominated by

the (N + 1) channel with analog modulation as illustrated in Fig. 2.16.

The drop in the required ADC DR due to filtering translates to reduction in ADC

power consumption. ADC power consumption has a strong structural dependency

[15]. According to [16], the power efficiency of the ADC for a given SNDR can be

predicted using power per conversion bandwidth (P/fsig) metric. Published ADC

data indicates that P/fsig increases approximately at 2X per additional bit but may

approach 4X per additional bit for noise limited high DR ADCs [16] [17].
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Figure 2.17. Published ADC power consumption data for 4MHz
signal bandwidth.

Based on the survey in [17], we estimate the power consumption of a 4 MHz

signal bandwidth ADC as shown in Fig. 2.17. This estimation shows that drop in

ADC power consumption due to filtering depends on the targeted SNDR and filtering

can result in significant ADC power saving for high SNDR ranges. For example, a

10dB drop in ADC DR requirement from an original requirement of 90dB results in

800mW savings, where as a similar 10dB drop from 70dB results in 50mW savings.

Low order Butterworth filters fare better than low-order Inverse Chebyshev filters if

the undesired power is dominated by far out blockers. But in the presence of strong

(N + 1) blocker, high order Inverse Chebyshev filters have either similar (digital

blocker) or better (analog blocker) performance than Butterworth approximation of

the same order. As quantified by the previous analysis, Inverse Chebyshev filters offer

up to +12dB additional ADC DR reduction in the presence of strong analog adjacent

blockers. Hence to tolerate the presence of strong (N + 1) adjacent channels (both

analog and digital), Inverse Chebyshev approximation offers the best performance.
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3. DESIGN OF A UHF RECEIVER AND ITS ANALOG BASEBAND*

In this Section∗ we present the design of an UHF receiver prototype with emphasis

on the design of the baseband filter First we present the top level architecture of the

receiver followed by the block level specifications of the receiver. Next, based on the

analysis presented in the previous Section, a cascaded, programmable, hybrid active-

RC and switched capacitor (SC) inverse Chebyshev filter is described. The proposed

hybrid baseband implementation achieves sharp roll-off with precise stopband zeroes

without requiring precision filter tuning schemes. An all digital non-overlap clock

tuning system to minimize the variation of available settling time window in SC

circuits is also included. The receiver presented in this Section integrates an RFVGA,

an on-chip single-to-differential transconductor (balun) with current-mode passive

mixer, and a hybrid analog baseband with an all-digital tuning scheme for non-

overlap clock generation and achieves performance commensurate with the state of

the art. This receiver achieves a measured noise figure of 7.9dB, an IIP3 of -8dBm

at maximum gain and +2dBm at 9dB RF attenuation. The chip consumes 120mW

(RFVGA, mixer and I-channel baseband) from 1.8V analog/2.5V digital dual supply

and occupies 2.14mm2 in IBM RFCMOS 0.18µm technology.

3.1 Receiver Design Specifications

Some of the earliest UHF receiver solutions were implemented in BiCMOS pro-

cesses [18–20], the trend is to integrate these receivers in CMOS [21–24]. A direct

conversion receiver architecture as shown in Fig. 3.1 is adopted for analysis and

implementation. The key system specifications (sensitivity level and signal-to-noise

ratio (SNR) for different modulation schemes) pertinent to UHF receivers are also
∗Part of this section is reprinted with permission from "UHF Receiver Front-End Implemen-
tation and Analog Baseband Design Considerations", by R. Kulkarni, J. Kim, H.-J. Jeon,
J. Xiao, and J. Silva-Martinez, accepted for publication in IEEE Trans. VLSI Syst., DOI
10.1109/TVLSI.2010.2096438.
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included in Fig. 3.1 [18]. The receiver has a single-ended RF input and uses a

broadband RFVGA to provide gain independent matching [25, 26]. The single-to-

differential signal conversion is accomplished on-chip by two (I&Q) linear transcon-

ductors which in turn drive passive current-mode mixers.

Figure 3.1. Direct-conversion broad-band UHF receiver architecture.

System simulations are performed using cascaded NF and IIP3 equations to max-

imize the receiver dynamic range and arrive at block level specifications. Table 3.1

shows the targeted circuit block specifications. A gain range of 30dB in the RFVGA

ensures that the mixer and baseband stages do not saturate. The RF take over point

(i.e. when the RFVGA switches from gain to attenuation) is set to -20dBm at the

input of the mixer. In the baseband, variable gain must be distributed between base-

band VGA and filter to guarantee sufficient SNDR. Further details of the budgeting

at system level specifications can be found in [26,27].
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Table 3.1
Desired block bevel specifications.

Performance RFVGA Mixer Baseband
Gain (dB) -14 to +16 18 -6 to +53

Noise Figure (dB) 3 at +16dB gain 12 35 at 53dB gain
30 at -14dB gain

IIP3 (dBm) 0 at +16dB gain 13 Outband > 33
20 at -14dB gain Inband > 33

3.2 Analog Baseband Design

Based on the analysis in the previous Section, an Inverse Chebyshev approxi-

mation is chosen for the 4MHz bandwidth filter to provide > 29dB attenuation at

5.25MHz. This results in an 8th-order approximation with pole-zero locations as

indicated in Table 3.2.

Excellent linearity performance of active RC filters makes them suitable for broad-

band receivers [18–24]. However, the accuracy of pole-zero ratios limits roll-off sharp-

ness, and process variations limit the absolute accuracy in active RC filters unless

an automatic tuning scheme is employed. The complexity of the filter tuning scheme

to mitigate this variation depends on the desired precision. In contrast, switched

capacitor (SC) filters can implement precise transfer functions without tuning but

require anti-alias filtering. A 700kHz SC filter for channel selection using an anti-alias

filter with > 2X larger bandwidth (1.5MHz) has been reported in [28]. A solution

that implements an SC ladder filter with embedded anti-aliasing has been reported

previously [29]. The required frequency and gain programmability of the baseband

filter in this work precludes the use of such hybrid ladder architecture.
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Table 3.2
Pole-zero placement for baseband inverse Chebyshev approximation.

8thorder Low Pass Inverse Chebyshev Approximation (3/4MHz bandwidth setting)
Complex Pole Pairs (MHz) Complex Zero Pairs (MHz) Realization

4.05/5.40, Q=0.71 21.89/29.19 Active RC (Zero not realized)
4.66/6.21, Q=0.52 7.69/10.25 Switched Capacitor
3.49/4.66, Q=1.23 5.14/6.85 Switched Capacitor
3.21/4.29, Q=3.79 4.35/5.81 Switched Capacitor

3.2.1 Cascaded Hybrid Baseband Architecture

The hybrid active RC and SC filter with built-in anti-aliasing shown in Fig. 3.2

is suitable for realizing cascaded transfer functions. The desired Inverse Chebyshev

approximation is realized as a cascaded function of 4 biquad stages (∏Hi(s)).

Each biquad transfer function is given by

Hi(s) = Ki

1 + ( s
wz,i

)2

1 + ( s
wp,iQp,i

) + ( s
wp,i

)2 (3.1)

where Ki is the DC gain, wp,i is the location of the complex pole-pair with quality

factor Qi, and wz,i is the location of the jw-axis zero pair. The required anti-aliasing

transfer function is realized using a part of the Inverse Chebyshev approximation.

Thus, the overall filter transfer function is

H(s) = H
′

1(s)H2(s)H3(s)H4(s) (3.2)

where H2(s), H3(s), and H4(s) are realized with SC filters while H ′
1(s) is approx-

imated from H1(s) by ignoring the highest zero pair from the Inverse Chebyshev

approximation (29 MHz in Table 3.2) to provide anti-aliasing. The cascaded SC bi-

quads implement precise stop-band high-Q zeros to provide accurate transition band

positioning and the output can be easily coupled to a Nyquist-rate ADC due to the

sampled nature of the output.
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Figure 3.2. Analog baseband architecture.

3.2.2 Active RC Implementation

Single-opamp multi-feedback (MFB) filter structure shown in Fig. 3.3 is used to

implement H ′
1(s). This structure has the advantage of low sensitivity (to Q and wo

variations). The transfer function of the filter is given by

H
′

1(s) = K1

1 + ( s
wpQp

) + ( s
wp

)2 (3.3)

where

K1 = R4

R1
; wp = 1

RC
√
mn

; Qp =
√
n

(2
√
m+

√
1
m

)
(3.4)

with K1 = 1 , R1 = R4 = R, resistor ratio m = R3/R1 and a capacitor ratio

n = C2/C5. For a given Qp, m and n are interdependent and thus cannot be set

independently.

The total thermal output spot noise spectral density for the filter is

v2
on = 16kTR

∣∣∣∣∣∣ 1
1 + ( s

wpQp
) + ( s

wp
)2

∣∣∣∣∣∣
2

+ 8kTmR
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√
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2

(3.5)
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Figure 3.3. Active RC multi-feedback-filter and programmable gain amplifier (single-ended structure shown).
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Figure 3.4. Variation of integrated noise for a given total capaci-
tance budget with varying resistor ratio.

where v2
amp is the input referred noise density of the amplifier. The first term

represents the noise contribution from R1 and R4; the second term represents the

noise contribution from R3 =mR; and the third term represents the noise

contribution from the amplifier. Parameters wz and Qz are

wz = wp
√

2; Qz =
√

2mn
(2m+ n+ 1) (3.6)

For a fully differential filter, the total capacitance is Ctotal = C2/2 + 2C5 = (n/2 +

2)C. For a given Ctotal, depending on the choice of m (and hence n as set by Qp),

the integrated noise is plotted in Fig. 3.4. The optimum range of resistor ratio m

for reducing the noise for a given capacitance budget is 0.2-0.4. Hence, we choose

m = 0.25 (resulting in n = 4.54) and size the capacitors accordingly to meet the

noise figure requirement. Programmable capacitors C2 and C5 (cf. Fig. 3.3) are

adjusted using digital control bits to implement 3 and 4MHz bandwidth settings in

the filter.

The filter linearity requirement (IIP3 > 33dBm) sets the minimum loop-gain

in the filter passband to suppress distortion adequately. The minimum loop-gain
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and hence, the gain-bandwidth (GBW) of the amplifier is obtained using simulations

and thus, we designed a two-stage Miller amplifier with 160MHz GBW. The amplifier

consumes 2.15mA from a 1.8V supply. The input resistor R1 is split into two separate

resistors with additional capacitance (not shown in Fig. 3.3) resulting in 3rd order

filter to further enhance the anti-aliasing and rejection of far-out blockers.

A continuous time PGA with a gain range of (-6 to +18dB) follows the MFB

filter. The PGA resistors are sized to minimize the input-referred noise of the PGA

(18 nV/
√
Hz) in the maximum gain setting. The switches and resistor arrays are

ratioed proportionately to keep the gain of the PGA independent of switch size to

the first order. In addition, the PGA provides a low closed-loop output impedance

to drive the subsequent SC filter.

3.2.3 SC Implementation

Three cascaded SC biquads emulate the transfer functions H2(s), H3(s), and

H4(s). Each biquad is a two integrator loop implemented using operational transcon-

ductor amplifiers (OTA) as shown in Fig. 3.5. The preceding PGA allows to relax

the input-referred noise density of the SC section (285 nV/
√
Hz).

For a sampling frequency of 80MHz (Ts = 1/fs = 12.5ns), 1ns is budgeted for slew

rate effects, 1ns for switch resistance delay, and 0.9ns for the non-overlapping time,

yielding a Tlinear−settling on the order of 3.35ns [30]. The desired open-loop GBW

(fu,i Hz) of each OTA for 0.5% settling (6τ) is

fu,i = 6
2πβiTlinear−settling

(3.7)

where βi is the feedback factor of the ith OTA for a given filter configuration. Pro-

grammable capacitor arrays (C1, C3 and C6 in Fig. 3.5) are used in the biquads to

achieve accurate gain (0 or 6dB) and frequency programming (3 or 4MHz). Com-

putation of the required capacitor ratios and OTA GBW account for dynamic range
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Figure 3.5. Switched-capacitor biquad implementation (single-
ended structure shown).

Table 3.3
Gain bandwidth and feedback factor for SC biquad OTAs across configurations.

Filter Setting Feedback factor GBW (MHz)

fc(MHz) Gain (dB) β1 β2 β3 β4 β5 β6 fu,1 fu,2 fu,3 fu,4 fu,5 fu,6

3 0 0.46 0.44 0.57 0.50 0.33 0.46 606 632 495 563 672 542

3 6 0.40 0.40 0.47 0.46 0.30 0.42 710 702 594 615 738 612

4 0 0.43 0.38 0.53 0.43 0.31 0.39 658 749 528 657 738 629

4 6 0.37 0.33 0.45 0.39 0.28 0.35 756 842 625 726 816 722

node scaling and noise estimation. Feedback factor and GBW for each OTA across

programmable settings are indicated in Table 3.3. In this prototype, the OTAs are

designed for the worst case fu (4MHz, 6dB setting).

The noise constraint (kBT/C) determines the unit capacitor size, which in turn

sets the power consumption of each OTA for a desired fu. We select Cunit = 113fF

(minimum value imposed by the process), which results in a cascaded input referred

noise density < 100nV/
√
Hz for the maximum gain setting. Fully differential, folded

cascode transconductors (PMOS input) with switched capacitor common-mode feed-
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back are used for the OTAs. Including the biasing circuits, the three biquads consume

6.3mA, 7.7mA, and 6.7mA from a 1.8V supply. The input referred noise density re-

quirement for second and third biquads can be reduced allowing to relax the minimum

Cunit and the total capacitance used in the biquads. Such a power optimization will

allow to reduce the power consumption of later stages of filter. In this work, the pro-

cess imposed constraint of minimum Cunit = 113fF , prevented such optimization.

The switches are implemented with 2.5V NMOS devices.

The active RC section provides 24dB variable gain and a 3rd order filter response

with an attenuation of 4dB at 5.25MHz. With the additional SC filter (6th order),

this attenuation increases to 29dB (42dB) at 5.25MHz (5.75MHz) with an additional

18dB variable gain. This improved attenuation and variable gain consumes 37.3mW

(limited by the high Cunit of the technology in this design). The variable gain control

in the RF and the baseband section were manually controlled using digital control

bits. The passband group delay resulting from filter response adds to the total wire-

less channel delay which is time-variant and has to be compensated by the adaptive

channel equalizer in the digital demodulator. Frequency dependent gain and phase

mismatch between I/Q branches causes sub-carrier dependent errors within the band-

width, but can be reduced at the system-level using digital compensation techniques

[6].

3.2.4 All-Digital Non Overlap Delay Tuning

Fig. 3.6 illustrates a conventional two-phase non-overlapping clock generator.

Digital delays for two-phase non-overlapping clock generation schemes suffer signif-

icantly from process variations, that may result in settling time window variations

up to 30%.

As shown in Fig. 3.6, the valid time available for linear settling is

TV ALID = T

2 − (tN + td) (3.8)
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Figure 3.6. Conventional two-phase non-overlapping clock generation.
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Figure 3.7. All digital non-overlap time tuning system.

where T is reference clock period, tN is the NOR gate delay, and td is the delay

to generate the non-overlapping time. The clock phases (Φ1and Φ2) must be non-

overlapping to guarantee that charge is not inadvertently lost. The design value of

(tN + td) cannot be arbitrarily small, lest the uncontrolled clock routing skews cause

the phase to overlap. In slow process corners delay is maximum, so available settling

time is minimum. In addition, switch time constants also increase in the slow process

corner, demanding an over design of the OTA to accommodate the smallest available

settling time.

Typical SC circuits requiring multiphase clocks employ complex PLLs (or DLLs)

to generate precision clocks to minimize the variation in available settling time [31].

Timing skew and duty cycle adjustment circuits for SC circuits have also been pro-

posed [32, 33]. Alternatively, this work proposes a low-complexity all-digital delay

tuning scheme to reduce the uncertainty of available settling time. As shown in Fig.

3.7, a replica delay element configured as a ring oscillator drives a counter, which

counts the number of ring oscillator transitions per reference clock. The total number

of delay cells in replica delay loop can be adjusted using digital control bits to the

multiplexer to adjust the counter output. A digital comparator compares this count



40

to a desired value and tunes the ring delay to achieve a desired count. The multi-

plexer control bits thus obtained set the delay in Fig. 3.6. This scheme reuses the

reference clock which is already available to generate the non-overlap clock phases.

For an 80MHz clock (T = 12.5ns), the low complexity tuning scheme reduces the

variation of available settling from 17% to less than 4% (900ps to less than 200ps

out of nominal 5.25ns) across process corners.

3.3 Design of RF Front-End

A short description of the RF Front-end design is provided in this section. Anal-

ysis and implementation details of the LNA and Mixer used in this receiver can be

found in [25,26,34].

3.3.1 RF Variable Gain Amplifier (RFVGA)

The RF front-end consists of an RF variable gain amplifier followed by single-

to-differential transconductor and current mode quadrature mixers. A single ended

RF input is used to reduce the system cost by obviating the external balun (cf. Fig.

3.8). The variable gain helps to maximize the output SNDR. Adopted from [25], the

RFVGA implements a modified shunt feedback scheme to achieve wideband input

matching independent of gain without a shunt peaking inductor. The VGA consists

of five identical Gm stages connected with a capacitive divider configuration. This

cascaded arrangement facilitates a 6dB coarse gain setting in the RFVGA. Fine gain

steps with smooth gain adjustment are implemented with a current-steering scheme

(not shown in the figure) using a process independent control block [25]. Operating

with a 1.8V supply, the RFVGA provides a gain range of -14dB to +16dB with a

targeted NF of 3dB at maximum gain and IIP3 performance of +20dBm at 14dB

RF attenuation.
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Figure 3.8. RFVGA with gain-independent shunt feedback input matching [25].
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3.3.2 Current-Mode Passive Mixer

A single-ended RF input in the receiver requires an on-chip single-to-differential

balun in the signal processing chain to minimize common mode noise and even or-

der distortion. One possible approach to on-chip single-to-differential conversion is to

utilize a combination of common-gate and common-source stages [35–37]. An on-chip

transformer load could be used to obtain a single-ended-to-differential LNA archi-

tecture [38,39]. In this work, single-ended to fully-differential conversion is achieved

with a single Gm as indicated in Fig. 3.9. Within the desired bandwidth (470-862

MHz), the single-to-differential converter produces a gain and phase mismatch of

0.4dB and 14o respectively. The transconductor uses resistively source-degenerated

complementary NMOS and PMOS differential pairs to achieve high linearity and

power efficiency through current reuse [40]. The cross-modulation between VHF and

UHF bands can generate in-band second-order inter-modulation distortion (IM2)

products [37]. But the receiver in this work is targeted for UHF band only, hence

the second-order inter-modulation in the RF front-end give rise only to out-of-band

inter-modulation tones. The transconductor and the mixer switches are AC coupled

mainly to eliminate the out-of-band IM2 distortion but also to suppress flicker noise,

reduce DC offset, and provide biasing flexibility.

The passive mixer shown in Fig. 3.10 is terminated at the virtual ground of a

transimpedance amplifier (TIA) stage ( [39, 41, 42]), exhibits higher linearity than

Gilbert-type mixer without the headroom constraints. The transconductor, pas-

sive switch, and TIA cascaded together have an IIP3 of 12.2dBm with sinusoidal

LO in simulation. The on chip LO signal is provided by a frequency divider con-

sisting of two current-mode logic (CML) latches and such a signal is a non ideal

pulse with finite rise- and fall-times. For a typical (pulsewidth/period) ratio of 0.3-

0.4, the IIP3 performance is better than sinusoidal LO signal (IIP3 is 13.4dBm for

(pulsewidth/period) = 0.35). The mixer switches are replica biased at the onset of

inversion to minimize clock feed through and even-order harmonic distortion. The
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Figure 3.9. Single-to-differential converting transconductor (Gm) driving the mixer switches.
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TIA provides a broadband low impedance (< 10Ω) current path for the down con-

verted signal using a wide gain-bandwidth (460 MHz), fully differential, two-stage

Miller-compensated amplifier. An on-chip frequency divider generates the required

quadrature LO signals. A DC-offset cancellation loop is included around the TIA

stage (cf. Fig. 3.10), which has a highpass corner frequency of 2.4kHz. Operating

with a 1.8V supply, the mixer and TIA provide a gain of +18dB with a targeted NF

and IIP3 performance of 12dB and +13dBm, respectively.

3.4 Experimental Results

The receiver was fabricated in IBM 0.18µm RFCMOS technology. Fig. 3.11

shows the chip micrograph. Only one baseband channel was realized (out of I and

Q) in the prototype due to area constraints; however, analog performance verification

only requires testing of one channel. The system occupies 2.14mm2 of active area

and was characterized in a QFN80 package.

Fig. 3.12 illustrates the measurement setup. Baseband outputs tapped at in-

termediate points in the signal chain are buffered with on-chip open drain buffers,

terminated on the board. To accommodate output swing in the baseband outputs,

the output buffers are source degenerated. The differential signal outputs are buffered

separately using highly linear commercial amplifiers.

3.4.1 Baseband Response and Residual DR Measurements

The measured baseband transfer functions are shown in Fig. 3.13. Fig. 3.13(a)

shows the frequency (3 & 4MHz) and gain programmability (-6dB to +18dB with

6dB per step) of the continuous time section. Fig. 3.13(b) shows frequency pro-

grammability of the composite hybrid filter (3 & 4 MHz options) along with the

additional gain programmability of the SC section (0 to +18dB range with 0 or 6dB

per biquad). For the 4 MHz setting, the measured frequency response indicates a
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Figure 3.10. Current mode passive mixer terminated at TIA input with DC offset cancellation.
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Figure 3.11. Chip micrograph of the UHF receiver.
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Figure 3.12. System characterization setup.

stopband attenuation of >29dB for frequencies >5.25 MHz, while the continuous

time filter provides >2.8dB attenuation at the same frequency.

To measure the ResidualDR, input power spread over two channels (generated

using two signal generators and a power combiner) is injected into the filter. A digital

channel is generated using 64-QAM modulation using Root-Nyquist (RNYQ) pulse

shape with appropriately scaled symbol rate to generate a flat PSD through-out the

channel, while an analog channel is generated using a single carrier. The output

power levels between the desired and the undesired channels is suitably adjusted

to vary the ACdB values to obtain a wide range of measurements. Filtered PSD is

measured at both the continuous- and discrete-time outputs. Fig. 3.14 shows the

measured input and filtered outputs with digitally modulated desired and N + 1
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Figure 3.13. Measured (a) continuous-time section (b) continuous-
and discrete-time sections together.

adjacent channel with ACdB = 30dB. The PSD shows attenuation below 1 MHz

due to the frequency limitation from the power combiner. Table 3.4 indicates the

computed ResidualDR from measurements for near digital and analog blocker (N+1

channel) and far out digital blocker (N + 3 channel) for varying ACdB values. The

filtered PSD at the hybrid filter output for the N + 3 channel is below the output

noise floor for ACdB values of 10 and 20dB. The proposed hybrid filter reduces the

ResidualDRN+1 by +17.5dB (> 2.0 bits) for digital N + 1 channel and +24.9 dB

(≈ 3.9 bits) for analog N + 1 channel. Improvement in ResidualDRN+1 is better

in the presence of analog adjacent channel for the hybrid filter as predicted by the

analysis in Section 2.
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Figure 3.14. Measured filtered PSD with combined input of two 64-
QAM digital modulated channels (desired and N+1 adjacent) with
ACdB = 30dB

Table 3.4
Measured ResidualDR with (N + 1) and (N + 3) blockers with varying ACdB

Blocker Profile Continuous-time filter (dB) Hybrid filter (dB)
with ACdBa⇒ 10 20 30 40 10 20 30 40

Digital (N + 1) channel 7.5 16.5 26.4 34.5 1.3 2.9 8.8 17.0
Analog (N + 1) channel 10.6 20.2 30.2 40.2 0.15 1.3 6.3 15.3
Digital (N + 3) channel 0.53 0.84 3.12 9.83 - - 0.45 0.51
a By definition, equivalent integrated power of the (N + 1) channel is (AC+ 3)dB
higher than the integrated power of the desired channel due to 2X integrating
bandwidth of (N + 1) channel.

3.4.2 System Performance

The desired input impedance of the RFVGA is 75Ω (video standard). The mea-

sured S11 response from the network analyzer (referenced to 50Ω) is post-processed

to obtain matching performance with respect to 75Ω (cf. Fig. 3.15). The plot in-

dicates the S11 performance for two cases of shunt feedback matching and resistive
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matching in the frequency range from 400 to 900MHz. We measured a NF of 7.9dB

at maximum gain using the Y-factor method with an NC346B noise source. We

observed an additional NF penalty of 2.5dB with respect to the simulation result,

which can be attributed to (1) insertion loss of interconnections between the noise

source and LNA, (2) the noise contribution of the gain control block in the RFVGA,

and (3) RC routing parasitics between the RFVGA and the mixer.
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Figure 3.15. Measured S11 performance (For 75Ω reference).
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To obtain the system linearity performance, two out-of-channel RF tones located

at N + 2 (516MHz) and N + 4 (531MHz) are injected at the LNA input, and the

in-band distortion tone located at 1 MHz after down conversion was measured. We

varied the N + 2 and N + 4 tone input power in steps of 1dB to obtain the system

IIP3. The plot in Fig. 3.16(a) shows an IIP3 of -8 and +2dBm for the highest gain

and 9dB RF attenuation cases, respectively. Also, the 3rd order harmonic saturation

is measured at -23dBm for the highest gain setting but is not detected for 9dB RF

attenuation showing better linearity performance.

Table 3.5 summarizes the experimental results and compares this receiver to

published UHF receivers. This work was fabricated using IBM 0.18µm RFCMOS

technology without using any special RF components other than MIM capacitors.

The power consumption and the area metrics indicated for this work do not include

the frequency synthesizer, and quadrature generator. The RF front end and baseband

blocks consume 58mW and 52mW from a 1.8V supply respectively. The digital clock

tree to drive the SC filter switches consumes 10mW from a 2.5V digital supply.

Compared to the previously published UHF receiver solutions, this work implemented

in CMOS process offers competitive performance.
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Table 3.5
Experimental results with comparison to previous work.

This Work [18] [19] [20] [21] [22] [24]
Frequency range (MHz) 470-862 470-862 470-862 470-890 470-890 470-850 470-862

1670-1675 1400-1800 1670-1675 1670-1675
RFVGA gain range (dB) 29.2 40 35 >50 20 Not Available (N.A.) 40

(15.2 to -14)
Channel bandwidth (MHz) 6/8 8 7/8 6/7/8 4 to 10 5/6/7/8 2-5

Maximum gain (dB) >80 75 85 94 to 100 86 95 95
Overall AGC range (dB) >75 75 65 >98 80 95 103.5
NF at Max gain (dB) 7.9 8.5 3.6 3.1 to 4.6 3.5/4 4.5/5 3.7/4.3

IIP3 at Max gain (dBm) -8 N.A. N.A. -13 N.A. N.A. -13
IIP3 (dBm) +2 at +12 at +4 at -6.8 at -9/-3/0.5 at -5/-6 at +5 at

9dB RF attn 20dB RF attna 20dB RF attn 8dB RF attn 0/6/10dB RF attn 64dB system gain 15dB RF attn
Power consumption 120mW (182mWb) at 240mW at 2.78V 340mW at 2.7V 184mW at 2.8V 295mW at 2.8V 184/207mW at 2.8V 114mW at 1.2V

1.8V analog and
2.5V digital supply

Die Size (mm2) 2.14c 11.5 12.25 16 9.7 7.8 7.2
Technology CMOS 0.18µm SiGe 0.35µm SiGe 0.35µm SiGe 0.5µm CMOS 0.18µm CMOS 0.18µm CMOS 0.13µ m

a Measured with an external LNA of 10dB gain.
b Includes estimated additional power for Q-baseband channel.
c Does not include the area for Frequency synthesizer and Q-baseband channel.
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4. A LINEAR FEED-FORWARD OTA FOR ACTIVE-RC FILTER DESIGN

The previous two Sections, presented some of the challenges and a solution for

design of analog filters for a UHF receivers. In Section 2, we analyzed the impact

of out-band blockers for analog baseband filters in wireless receivers. Towards this

end, we present a new operational transconductor (OTA) structure suited for design

of active RC filters in this Section. As it will be shown in this Section, the proposed

OTA can be used for designing active RC filters with improved out-band linearity

performance and blocker tolerance. The OTA uses a feed-forward structure for fre-

quency compensation. To demonstrate the improvement in linearity performance,

a lossy integrator (1st order active RC) structure with a 10MHz corner frequency

using the new OTA has been designed. A lossy integrator is chosen as test vehicle in

this prototype since it serves as a fundamental building block in active RC biquads

and loop filters for continuous-time ∆Σ modulators. A reference lossy integrator

using a conventional feed-forward OTA has also been designed for fair comparison of

linearity performance with the proposed structure. The main thrust of this Section

is to highlight the linearity improvement offered by the new OTA in active RC filter

designs.

First, we explore the noise and linearity performance requirements of analog-

baseband filters for wireless receivers. This will set the background to evaluate the

impact of out-band blockers on the linearity requirements. Then, we analyze the

frequency dependent loop gain response of the lossy integrator structure using an

OTA. We present the proposed OTA structure and the design of the two integrators

using the TSMC 0.18µm RFCMOS technology. The designs are currently under

fabrication. A comparison to the state-of-the-art active RC filters is provided based

on the simulation results. Brief conclusions are presented in the end.
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Figure 4.1. Analog signal processing using cascaded filters and
variable gain stages.

4.1 Spurious Free Dynamic Range (SFDR) of Analog Filters in Wireless Receivers

In Section 2.2, we introduced a typical wireless receiver system using a direct

conversion architecture. We noted that the RF building blocks (LNA and I/Q de-

modulator) offer little to no help for channel-selection and blocker filtering and as a

consequence the entire down-converted broadband spectral energy is presented un-

filtered to the analog baseband section. An I/Q demodulator implemented using

a passive current-mode mixer can be terminated using a trans-impedance ampli-

fier which can easily implement a single pole to perform first order filtering after

the signal down-conversion. This first order filter provides attenuation for blocker

power located far away from the desired channel, but leaves the spectral energy

from immediate adjacent channels unfiltered. We also introduced the functionality

of the baseband analog signal processing chain, shown again in Fig. 4.1 for conve-

nience. During signal processing, signal gets corrupted due to noise and distortion as

illustrated. The variable gain stages in the analog baseband increase the signal am-

plitude, while the filtering sections reduce the blocker power successively increasing

the signal-dynamic range for the desired channel power.

As the signal is processed in the baseband chain, the signal gets corrupted due

to additive noise from the active devices like transistors. In addition, due to weakly-
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nonlinear behavior of these active devices, nonlinear distortion terms are also added

to the signal power. In most cases, the magnitude of the additive noise from the active

devices is independent of the input signal power. On the other hand, the magnitude

of the distortion generated depends on input signal level. Higher the magnitude of

the input power, higher the generated distortion power. Hence it can be seen that

while the signal-to-noise ratio (SNR) could be increased by increasing the input signal

power, the signal-to-distortion actually reduces with increasing input power. This

is indeed very critical for the design of first filtering blocks in the signal chain when

the blocker power still relatively unattenuated. Hence we should expect an optimal

input signal power at which the overall signal-to-noise-and-distortion (SNDR) can be

maximized. This value of SNDR denotes the available Spurious-Free-Dynamic-Range

(SFDR) of the system.

Compared to general filtering applications, analog baseband section of a wireless

receiver signal chain exhibits an important difference. The input to the analog base-

band could contain the entire broadband spectral energy. The undesired neighboring

channels (termed as out-band blockers) could be much higher than the design signal

power by up to 45dB (as defined by UDdB or undesired-to-desired ratio in Section

2). The non-linearity terms generated with out-of-filter-band signals results in inter-

modulation (IM) with the output product components falling within the signal band

corrupting the desired signal quality. Due to the presence of blocker power, analog

baseband blocks must exhibit not only a desired in-filter-band DR but also good

linearity for out-of-filter-band signals, especially the first baseband filtering block in

the signal chain after signal down-conversion from the RF signal.

An example of the effect of distortion due to out-band blocker on the total signal

dynamic range of distortion is shown in Fig. 4.2. The figure plots the desired signal

power, blocker power, integrated noise power (input referred) and 3rd order (IM3)

distortion power (input referred) as the input signal increases on a log-log scale.

The distortion power plotted in the figure is generated due to the intermodulation
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Figure 4.2. Typical desired , blocker and intermodulation signal
power for different IIP3 values.

of two un-filtered out-band blockers such that the intermodulation term is in-band.

In this example, the integrated noise power is independent of the input power and

is marked at -76dBm (or 40µVrms) which is a typical number for a low pass filter

with the desired signal bandwidth in the MHz range. The UDdB is set to 30dB in

Fig. 4.2. The linearity performance of the building block is specified at different

third-order intercept points (IIP3) of +20 to +35dBm which is a typical number for

a baseband low pass filter. It is well known that the distortion power due to the 3rd

order inter-modulation increases with a slope of 3 dB/dB with the input power while

the desired (or the fundamental) increases with a slope of 1 dB/dB [27]. As indicated

in the figure, the distortion power rises out of the output noise floor at different input

power levels depending on the linearity performance. Higher the IIP3, higher is the

blocker power (and hence the signal power for a given UDdB) at which the distortion

power rises above the noise floor. Any increase in the blocker power beyond this will

result in SNDR of the desired channel being limited by the distortion power, while

any reduction in the signal power leads to drop in the SNR. Hence the over-all SFDR

can be maximized if out-band linearity can be improved in a analog baseband filter



57

for wireless receivers. In conclusion, we make the following observations relevant to

design of analog filters for wireless receivers,

• The minimum in band SNR of the system is set by the modulation scheme being

employed by the communication link. For low desired input power levels, the

system is limited by SNR.

• Distortion power generated due to large desired input power levels (in-band

signals) is generally lower than the minimum tolerable SNDR of the system.

• Distortion power generated due to large out-band blockers residing in adjacent

channels which could be UDdB higher than the desired power limit the SNDR

performance of the system. Out-band linearity performance must be improved

to tolerate large blockers powers to keep the distortion power below the output

noise floor.

With the above introduction to out-band linearity constraints, we will present a first

order active-RC filter (lossy integrator) with improved out-band blocker tolerance in

the following sections. As we will observe, the improvement in performance arises

from re-designing the active transconductor (Gm) used for the integrator design. First

we present the design of the filter and analyze the loop gain response followed by the

schematic design of the transconductor. The simulated results from the design will

be presented along with the noise and distortion performance for out-band blockers.

4.2 Lossy Integrator Design

Desired high order analog baseband transfer functions can be realized using cas-

caded second-order responses. Tow-Thomas biquad structure using two integrators

in a feedback loop is a popular method to implement biquadratic transfer functions.

Two integrator biquad structure using active-RC integrators is shown in Fig. 4.3.

The loop contains a lossless integrator, a lossy integrator and a signal inversion to
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Figure 4.3. Two integrator loop for implementing second-order transfer functions.

guarantee negative feedback loop. The signal inversion can easily be achieved in a

fully-differential implementation by crossing the differential signals. The resistor R1

and C2 are set based on the desired pole frequency (ωp rad/s), while the resistor

ratio (R2/R1) is set based on the quality factor (Qp) of the pole. While operational

amplifiers (Op-Amps) are used in the filter depicted in Fig. 4.3, OTAs can also be

used as active gain stages since they provide an effective low output impedance in

closed loop operation.

The non-linearity in the lossy integrator structure arises due to non-linear V − I

characteristics of the active transconductors used for building the OTA. Unlike Gm-

C filters which rely on open-loop transconductors, active RC filters employ high gain

transconductors in negative feedback. Application of negative feedback using a linear

feedback network is the most common technique to reduce non-linear distortion. As

noted in [43–45], while the nonlinearities of the feedback network are not suppressed

by feedback, the distortion produced by the the forward amplifier can be suppressed

by a large loop gain if the feedback circuit is linear. The minimum loop gain at

the corner frequency of the filter is set by the desired improvement in the linearity

performance due to feedback. Hence we analyze the frequency dependent character-

istics of the loop gain of a lossy integrator in the following section. The analysis also

helps us identify the poles and zeros present in the loop to ensure stability of the
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negative feedback system. It should also be noted that effect of finite DC gain and

finite gain-bandwidth (GBW) on the accuracy of ωp and Qp in active RC filters has

been studied extensively in the literature. Interested readers are referred to excellent

texts [46].

4.2.1 Loop Gain of a Lossy Integrator Using a Feed-Forward OTA

In this section we analyze the small signal model and the loop gain of a lossy

integrator designed using a feed-forward OTA. The feed-forward OTA structure offers

several advantages over the Miller-OTA and has been widely used for design active

RC filters [47–52].

A lossy integrator structure using a feed-forward OTA is shown in Fig. 4.4. The

load resistor (Rload) value is equal to R1 when it is used in the two-integrator loop

biquad as indicated earlier in Fig. 4.3. In addition to R1, R2, C2 and output load

capacitance Co, the schematic also includes the parasitic capacitor Cp due to the

input stage of the OTA. The internal small signal model of the OTA is also shown in

the figure. A feed-forward OTA structure is composed of three transconductors (gm1,

gm2, gm3). Two transconductors are arranged in a cascaded fashion (gm1 and gm2),

while the third stage (gm3) feed-forwards the signal from the input to the output

stage. Such arrangement of transconductors creates a zero which can be used to

compensate a non-dominant pole in a feedback loop. The input capacitance of the

OTA Cp could be significant due to Miller-effect in the first stage and the feed-forward

stage especially in the absence of a cascode device.

The loop gain response of the integrator can be analyzed as shown in Fig. 4.5.

To simplify the analysis, the loop can be decomposed as a cascaded combination

of frequency dependent OTA (Gm) and frequency dependent feedback network as

shown. The equivalent output impedance (ro) includes the parallel combination of

ro2, ro3 and Rload. The impedances zo, z1 and z2 are given as,
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Figure 4.4. Lossless integrator and the small signal model of the
feed-forward OTA (single-ended structure shown) used for the inte-
grator design.

zo = (ro2||ro3||Rload)||(1/sCo) = ro||(1/sCo) (4.1)

z1 = R1||(1/sCp) (4.2)

z2 = R2||(1/sC2) (4.3)

The transconductance Gm is given by,

Gm = −(gm1(ro1||
1
sC1

)gm2 + gm3) (4.4)

which can be simplified as,

Gm = −Gm,dc
(1 + s/ωz,gm)
(1 + s/ωp,gm) (4.5)

where ωp,gm and ωz,gm are the poles and zeros from the response of the transconduc-

tor. Gm,dc is the low-frequency transconductance given by,
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Figure 4.5. Loop gain for the lossy integrator using the OTA.

Gm,dc = (gm1ro1gm2 + gm3) (4.6)

The output of the first stage contains a pole at ωp,gm given by,

ωp,gm = 1
ro1C1

(4.7)

The location of the feed-forward zero is given by,

ωz,gm = ωp,gm(1 + gm1ro1gm2

gm3
) (4.8)

The frequency dependent loop-gain response can then be obtained as,

LG(s) = vfb
vx

= GmroR1

(ro +R1 +R2)
(1 + s/ωz,RC)

(1 + a1s+ a2s2) (4.9)

where

ωz,RC = 1
R2C2

(4.10)

and the coefficients a1 and a2 of the denominator biquadratic expression are,

a1 = ro(R1Cp +R2C2) +R2(roCo +R1Cp) +R1(roCo +R2C2)
ro +R1 +R2

(4.11)
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a2 = ro(R1CpR2C2) +R2(roCoR1Cp) +R1(roCoR2C2)
ro +R1 +R2

(4.12)

As it can be seen, the denominator is biquadratic despite the presence of 3 ca-

pacitors (Cp, C2 and C2) since there are only two independent nodes (vx and vo). In

order to get more insight and evaluate the approximate location of the two poles, we

make the following observations:

• If the output of the gain block was instead modeled as a voltage amplifier (with

a low output impedance), it can be easily shown that the output impedance and

the load capacitance (ro and Co) would not appear in the loop gain expression.

Instead the feedback factor would depend on z2 and z1. The resulting loop

gain would contain a zero at (R2C2)−1 and a pole at ((R1||R2)(C2 + Cp))−1.

• In the OTA model, the output impedance ro is a parallel combination of r02,

ro3, Rload and any resistor used for common-mode feedback sensing. When

Rload = R1, this leads to ro being less than both R1 and R2.

• The capacitance C2 is used for defining the pole location of the lossy integrator.

Hence C2 is typically larger than Cp which is the parasitic input capacitance

of the OTA. Unless the lossy integrator is driving a large capacitive load, the

output capacitance Co is also less than C2.

• The quadratic coefficients can be used to isolate the two roots when one of the

roots is larger than the the other.

With these assumptions, the quadratic expression leads to two simple roots given

by ,

ωp,RC ≈
1

(R2||(ro +R1))(C2 + CpCo

Cp+Co
)

(4.13)

and
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Figure 4.6. Loop gain response for the lossy integrator using the
feed-forward OTA.

ωp,Cp ≈
1

(R1||ro)(Cp + Co)
(4.14)

with ωp,Cp > ωp,RC .

Using 4.5, 4.13 and 4.14, we can rewrite 4.9 as,

LG(s) = vfb
vx

= −[ Gm,dcroR1

(ro +R1 +R2) ](1 + s/ωz,gm)
(1 + s/ωp,gm)

(1 + s/ωz,RC)

(1 + s/ωp,RC)(1 + s/ωp,Cp) (4.15)

In summary, the OTA contributes a low frequency pole ωp,gm and a high frequency

zero ωz,gm to the overall loop gain. The feedback network consisting of R1 and

R2||C2, create a zero-pole pair (ωz,RC and ωp,RC) that track each other depending

on the location of the filter pole. The parasitic capacitor at the input of the OTA

along with the load capacitor Co creates a pole (ωp,Cp). The loop-gain of the lossy

integrator structure is shown in Fig. 4.6. In the figure, LG0 is the DC loop gain,

LG0 = GmroR1

(ro +R1 +R2) (4.16)
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Also as indicated in the figure, the zero ωz,gm can be suitably placed to cancel

the non-dominant pole ωp,Cp to achieve approximate pole-zero cancellation resulting

in approximate first-order loop-gain response with ωp,gm as the dominant pole.

4.3 Lossy Integrator Design Using the Proposed OTA

This section presents the design of two lossy integrators and a comparison of

the conventional OTA with the proposed OTA used in the two integrators. First we

present the integrator design, followed by details of the proposed and the conventional

OTA. Simulation results to demonstrate the linearity improvement offered by the

proposed OTA are presented in the subsequent section.

In this test prototype, the bandwidth of the lossy integrators is set to 10MHz. The

schematic of the integrator is identical to the structure shown in Fig. 4.4. Passband

gain is set to 1 (0dB ) resulting in R1 = R2. The capacitance of the integrator (C2)

is set to 3.2pF, such that two 5kΩ resistors can be used for R1 and R2 for a 10MHz

bandwidth. This choice of R1, R2 and C2 enables us to obtain relatively moderate

levels of integrated output noise while not presenting a large resistive load to the

previous stages in the signal chain. The values of R1, R2 and C2 are identical in

the two integrators to ensure fair comparison of the two OTAs. Poly resistors and

MIM (metal-insulator-metal) capacitors have been used to implement the passive

components and their layouts are identical.

Conceptually, the difference between the conventional OTA and the proposed

OTA is shown in Fig. 4.7. The structure of the conventional OTA [47–50] uses three

fully-differential structures for implementing the three gm stages. In the proposed

OTA, the fully differential second stage (gm2) and the feed-forward stage (gm3) have

been replaced by complementary pseudo-differential stages. We refer to the conven-

tional OTA as FFF (indicating three fully-differential stages) and the proposed OTA

as FPP (indicating one fully-differential and two pseudo-differential stages) in the

subsequent discussion. While the second-stage (gm2) can be easily implemented as a
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Figure 4.7. Proposed OTA structure.

pseudo stage, the feed-forward stage cannot be isolated and implemented as a pseudo

stage. In this work, we propose to decouple the DC biasing from the input nodes of

the OTA to the feed-forward stage and AC couple the signal. As analyzed in 4.2.1,

the feed-forward stage is useful in creating ωz,gm to cancel the non-dominant pole

in negative feedback loop. This means that an AC coupling arrangement is feasible

as long as we can guarantee a stable loop gain response. As we will see, the main

advantage of this structure is the increased headroom at the output delivering the

much desired improvement in the linearity performance.

The schematic of the FFF OTA and the proposed FPP OTA are shown in Fig.

4.8 and Fig. 4.9 respectively. Both the OTAs implement identical transconductance

values of gm1 = 4mA/v, gm2 = 1mA/V and gm3 = 2mA/V with identical bias levels

(equal gm/ID levels) and channel length (for same intrinsic ro) for the active devices.

The gm values results in a low-frequency transconductance Gm,dc = 22mA/V .

As it can be seen, the first fully-differential stage (gm1) is identical in both the

OTAs. The fully-differential NMOS input pair (M1n) is biased by the tail current

source (M1cs) and acts as the first stage transconductor gm1. The output small signal

current is converted into a differential voltage (Vo1p-Vo1m) at the output of the first

stage with a parallel combination of output impedances of the transistors (M1n and
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Figure 4.8. Schematic of the conventional OTA.

Figure 4.9. Schematic of the proposed OTA.
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M1p), additional parallel RC network and the input parasitic capacitance of the

second stage gm2. The additional parallel RC network (10kΩ||2.2pF ) at the output

of the first stage helps to define a stable pole location ωp,gm in the loop gain response

and also sets the common-mode level at the output of the first stage. The 10K

resistor along with finite output impedance of M1n and M1p, yields effective output

impedance ro1 ≈ 5KΩ. The 2.2pF capacitance adds to the input capacitance of the

second-stage and parasitic capacitance at the output. Effectively, this results in a

nominal ωp,gm around 2π(10MHz) (due to ∼ 5KΩ||3pF ) and hence a feed-forward

zero (ωz,gm) from the transconductor around 2π(110MHz).

In the FFF OTA design shown in Fig. 4.8, the output of the first stage is DC

coupled to the input of the second stage implemented with the fully differential

NMOS pair M2n. The feed-forward stage is implemented using the fully-differential

NMOS pair (M3n). The gate of the feed-forward stage is DC coupled to the input

nodes of the OTA (Vip, Vim) as shown. The load current source (Mc) is controlled

using a common-mode feedback network. The details of the CMFB design will be

addressed in the next section. The available single-ended output swing (Vse,swing,fff )

for this OTA can be obtained based on highest (Vhigh,fff ) and the lowest (Vlow,fff )

permissible voltages at the output node. Referring to Fig. 4.8,

Vhigh,fff < (Vdd − Vdsat,Mc) (4.17)

Vlow,fff > Max((Vdd− VGS,M1p− VGS,M2n + Vdsat,M2n), (Vincm− VGS,M3n + Vdsat,M3n))

(4.18)

which can be simplified assuming (VGS = VT + Vdsat) as,

Vlow,fff > Max((Vdd − VGS,M1p − VT,M2n), (Vincm − VT,M3n)) (4.19)
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Hence we can obtain the available single-ended and differential output swings as,

Vse,swing,fff = (Vhigh,fff − Vlow,fff ) (4.20)

Vdiff,swing,fff = 2Vse,swing,fff (4.21)

The conditions for the low side swing limits arise due to (1) DC coupling from

the output of the first stage to the gates of the second stage and (2) DC coupling

from input of the first stage to the feed-forward stage. As it can be seen, On the high

side, the swing limit can be easily set, but for the low side the swing limit depends

on the input common-mode (Vincm) and VGS,M1p of the first stage. Under optimum

biasing conditions, the gate bias voltages at the input of the second stage and the

feed-forward stage can be ≈ VT + 2Vdsat, reducing the low-side limitation to 2Vdsat.

In summary, swing at the output node has to accommodate at least one Vdsat on the

high side and 2Vdsat on the low side even with optimum biasing conditions.

In the FPP OTA design shown in Fig. 4.9, the output of the first stage is

DC coupled to the input of the second stage implemented using a pseudo-differential

PMOS pair (M2p). The feed-forward stage is implemented using a pseudo-differential

NMOS pair (M3n). The gate of the feed-forward stage is AC coupled to the input

nodes of the OTA (Vip, Vim) as shown. The DC biasing resistor and AC coupling

capacitor are also shown in the schematic. Since part of the bias current for the feed-

forward stage is already provided by M2p, the remaining bias current is provided with

the transistor M2c which also helps to introduce common-mode feedback to control

the output common-mode voltage. The details of the CMFB design in comparison

to the FFF OTA CMFB design will be addressed in the next section. The available

single-ended output swing for this OTA can be obtained based on highest (Vhigh,fpp
) and the lowest (Vlow,fpp) permissible voltages at the output node. Referring to Fig.

4.9,
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Vhigh,fpp < (Vdd − Vdsat,M2c) (4.22)

Vlow,fpp > Vdsat,M3n (4.23)

Vse,swing,fpp = (Vhigh,fpp − Vlow,fpp) (4.24)

Vdiff,swing,fpp = 2Vse,swing,fpp (4.25)

As it can be seen, the swing at the output node has to accommodate at least one

Vdsat on the high side and one Vdsat on the low side.

The supply voltage for this design (in 0.18µm technology) is set to 1.8V (nominal).

The output common-mode voltage is set to 1V using a CMFB loop with a reference

voltage. The input common-mode signal of the integrator is also set to 1V. This

along with the external loop of the integrator through (R2||C2 and R1) bias the

input of the OTA at 1V. As we will see in Section 4.4, to ensure fair comparison for

linearity performance of the two designs, both the integrators can also be operated

with supply voltage at 1.6V and common-mode voltage set to 0.9V.

The simulated frequency response of the integrators is shown in Fig. 4.10.

The simulated differential loop gain of both the integrators is shown in Fig. 4.11.

As shown both the integrators have identical frequency response with loop gain-

bandwidth product (GBW) of around 250MHz which guarantees a gain of 25 at the

10MHz filter corner frequency. Using the results from [43], a loop gain of 25 offers

an IIP3 improvement of 30log(1 + 25) = 42dB from the inherent open-loop IIP3 of

the transconductor without feedback.
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Figure 4.10. Simulated lossy integrator response using the FPP OTA.

4.3.1 Dominant Sources of Non-Linearity

In this section we identify the dominant contributors to the output non-linearity

in lossy integrator designs using the FFF and FPP OTAs. A description of the

inherent nonlinearities of the pseudo- and fully-differential transconductors is pre-

sented. Then we evaluate the power of the IM3 term when two tones at f1 (Hz)

and f2 (Hz) are applied to the lossy integrator. The method is then used to find the

out-band linearity performance of the lossy integrators built using both FFF and

FPP OTAs. In the out-band linearity test, f1 and f2 are appropriately selected in

the filter stop-band such that the low frequency IM3 tone at f3 = 2f1− f2 is within

filter bandwidth as shown in Fig. 4.12. The goal of the analysis is to evaluate the
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Figure 4.11. Simulated differential loop gain response from the
conventional OTA.

power of the tone at f3 and also identify the dominant sources of contribution as a

function of frequency.

4.3.1.1 Inherent Transconductor Non-linearities

Transconductors used for analog signal processing exhibit weakly non-linear be-

havior. This behavior can be mathematically expressed using a power series as,

y = a1u+ a2u
2 + a3u

3 (4.26)

where y is the output for an input u. For a transconductor, y is the output current

for a given input voltage u. The coefficient a1 is the transconductance, while a2
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Figure 4.12. Two out-band tones producing an in-band IM3 tone.

and a3 are the second- and third-order non-linearity coefficients which determine the

second- and third-order nonlinear circuit behavior.

A MOSFET biased in the saturation region is commonly used as a transconduc-

tor. Using a square-law approximation, drain current (iDS) of a MOSFET for an

input voltage vGS is given by,

iDS = IDS + ids = µCox
2 (W

L
)(vGS − VT )2 = β

2 (vGS − VT )2 (4.27)

Using vGS = VGS + vgs and Vdsat = VGS − VT , we can evaluate a1, a2 and a3 as,

a1 = βVdsat, a2 = β

2 , a3 = 0 (4.28)

Hence the single-ended MOSFET transconductor exhibits only second-order non-

linearity. For a pseudo-differential transconductor, two such transistors are used

(without a tail-current source) with a differential input voltage. The non-linearity

coefficients for a pseudo-differential transconductor then are,

a1 = βVdsat, a2 = 0, a3 = 0 (4.29)
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Hence ideally the pseudo-differential transconductor does not exhibit either second-

or third-order non-linearity with a simple square-law approximation. Taking mobility

degradation due to vertical field into account, the iDS can be modeled as,

iDS = IDS + ids = β

2
(vGS − VT )2

1 + θ(vGS − VT ) ≈
β

2 (vGS − VT )2(1− θ(vGS − VT )) (4.30)

where θ is a fitting parameter (with θnom ≈ 0.4− 0.8V −1).

The non-linearity coefficients for a pseudo-differential transconductor then are,

a1 = βVdsat(1−
3θVdsat

2 ), a2 = 0, a3 = −θβ8 (4.31)

which can be rewritten as,

a1 ≈ βVdsat, a2 = 0, a3 ≈ −
θ

8Vdsat
a1 (4.32)

where a3 is expressed in terms a1.

For a fully-differential transconductor (with a tail current-source Itail), the output

current can be obtained as,

io = gmvi

√
1−

(
vi

2Vdsat

)2
(4.33)

which leads to,

a1 = gm = Itail
Vdsat

, a2 = 0, a3 = −1
8
gm
V 2
dsat

= − 1
8V 2

dsat

a1 (4.34)

Hence it can be seen from (4.32) and (4.34) that for the identical a1 (equal gm),

a3,pd

a3,fd
= θVdsat (4.35)
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For a θnom = 0.8V −1 and Vdsat = 0.15V , a3,pd

a3,fd
= 0.12, which means that a3,pd is

≈ 8X smaller than a3,fd.

Second order non-linearity coefficient a2 = 0 in both pseudo- and fully-differential

transconductors only in the absence of any mismatches. The presence of random

offsets (∆VT and ∆β) and systematic layout gradients gives rise to second-order

non-linearity in both the transconductors. Second order non-linearity coefficient can

produce a third-order distortion component when the non-linear device is placed in

feedback [45]. This is applicable to feedback systems with a single-ended stage in the

feedback loop (e.g. differential input, single-ended output stage Miller amplifier used

in feedback). In our example, a3 is dominant for both pseudo- and fully-differential

transconductors but a2 is exists only due to mismatches. Although a2 cannot be

ignored under mismatch conditions, we do so in the following analysis to obtain

insight into the frequency dependent non-linearity estimation originating due to a3.

4.3.1.2 Frequency Dependent Non-Linearity Estimation

To find the relative non-linearity contributions from the each stage, we derive the

transfer function from the filter input (vi) to input of the each stage (virtual ground

vx and node vx2 in Fig. 4.4). An OTA (with transconductance Gm) in a negative

feedback inverting configuration using admittances Y1, Y2 with a load Yo is shown in

Fig. 4.13. As noted in [53], the transfer function (H(s)) from input (vi) to output

vo is given by,

H(s) = vo
vi

(s) = −Y1

Y2

1− Y2
Gm

(1 + Y1+Yo+Y1Yo/Y2
Gm

)
(4.36)

If Gm is sufficiently large, then H(s) can be approximated as,

H(s) ≈ −Y1

Y2
(4.37)
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We can also obtain the transfer function from vi to vx as,

Hvx(s) = vx
vi

(s) = Y1

Y2

(Y2 + Yo)
Gm

1
(1 + Y1+Yo+Y1Yo/Y2

Gm
)

(4.38)

Then using the feed-forward OTA topology (cf. Fig. 4.4) for the Gm, the transfer

function from vi to vx2 is,

Hvx2(s) = vx2

vx
(s) = Hvx(s)A1(s) (4.39)

where A1(s) is the gain of the first stage given by,

A1(s) = A1,dc

(1 + s/ωp,gm) = gm1ro1
(1 + s/ωp,gm) (4.40)

with A1dc = gm1ro1 being the DC gain of the first stage of the OTA. For a lossy

integrator shown in Fig. 4.4, Y1 = 1/R1, Y2 = (1+sR2C2)/R2 and Yo = (1+sroCo)/ro. Hence

the filter response can be approximated using (4.37) as,

H(s) ≈ −R2

R1

1
(1 + s/ωp,filter)

(4.41)

where ωp,filter = (R2C2)−1.

The simulated magnitude response of H(s), Hvx(s) and Hvx2(s) are shown in Fig.

4.14. The responses can be qualitatively explained in three separate (low-, mid-, and

high-frequency) ranges.

In the low-frequency range (ω � ωp,filter and ω � ωp,gm) each capacitor can

be approximated by an open-circuit. Assuming R1 = R2 = R (as in our design),

(4.37)(4.38)(4.39) can be simplified as,

| Hdc |≈ 1 (4.42)

| Hvx,dc |≈
1

Gm(ro||R)
1

(1 +
1
R

+ 2
ro

Gm
)

= ro +R

ro + 2R
2

2 + |Adc|
(4.43)
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Figure 4.13. OTA in feedback using admittances Y1 and Y2 and
driving a load Yo.
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Figure 4.14. Simulated transfer functions from filter input to vo, vx and vx2.

where Adc is the open-loop DC gain of the OTA given by,

|Adc| = Gm(ro||2R) (4.44)
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and assuming |Adc| � 2, we get

| Hvx,dc |≈
ro +R

ro + 2R
2
|Adc|

(4.45)

where Adc = A1dcA2dc is assumed with A2dc being the DC gain of the second stage.

This leads to the expected low-frequency magnitude response shown Fig. 4.14. Es-

sentially, at low-frequency | Hvx | is inversely proportional to Adc and | Hvx2 | is

inversely proportional to A2dc.

In the high-frequency range (when| zC2 | is small), then vx and vo are effectively

shorted-out, leaving the feed-forward stage gm3 diode-connected. Then we can obtain

Hvx(s) and H(s) as,

Hvx(s) ≈ H(s) ≈
(ro|| 1

gm3
)

((ro|| 1
gm3

) +R1)
1

(1 + s(ro||R1|| 1
gm3

)(Cp + Co)
(4.46)

and

Hvx2(s) = Hvx(s)
A1,dc

(1 + s/ωp,gm) (4.47)

Hence |Hvx2| rolls-off faster with frequency compared to |Hvx| and |H| which

exhibit a single-pole high-frequency response.

In the mid-frequency range (ω > ωp,gm and ω > ωp,filter), C1 (at the output of

the first stage) and C2 (filter capacitor) affect Hvx(s) and Hvx2(s). In this design,

ωp,filter ≈ ωp,gm ≈ 2π(10MHz). To simplify the algebraic expressions and get a

better understanding of the frequency response, we set R1 = R2 = ro = R, Cp =

Co = 0, and Gm = −(gm1
sC1

gm2 + gm3) (assuming that the first stage behaves like an

integrator). Then we obtain,

Hvx(s) = 2
gm2R

sC1

gm1

(1 + sRC2/2)
(1 + s(C1( 3+gm3R

gm1gm2R
) +RC2) + s2C1C2(2+gm3R

gm1gm2
))

(4.48)
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This response has 2 zeros and 2 poles. The first zero located at origin is due to our

assumption of an ideal integrator response from the first stage. This zero would be

shifted to ωp,gm assuming a finite gain in the first stage. The second zero is located

at ωz,vx = (2/RC2)−1 = 2ωp,filter is due to the feedback network. The quadratic

denominator is due to the interaction of C1 and C2. The poles can be estimated

(numerically) for the R = 5K, C1 = 3pF , C2 = 3.2pF and gm values used in this

design. The two poles are at ωp1vx = 2π(9.8MHz) and ωp2vx2π(89.3MHz). As it can

be seen the first zero (at ≈ ωp,gm) cancels with ωp1vx, but the gain Hvx(s) increases

at +20dB/decade after ωz,vx until the next pole at ωp2vx providing the high-pass

behavior in the the mid-frequency range.

The qualitative understanding of Hvx(s) and Hvx2(s) responses and simulated

results shown in Fig. 4.14 helps us to gain insight and identify the dominant sources

of non-linearity in the mid-frequency range as we will see in the next section.

4.3.1.3 Output Non-Linearity Due to gm1, gm2 and gm3 in Mid-Frequency Range

The two-tones located at ω1 = 2πf1 and ω2 = 2πf2 applied at the filter input vi
reach vx with magnitudes | vx(jω1) | and | vx(jω2) |. As a result, the transconductor

in the first stage (gm1), produces a non-linear output current component igm1_im3 at

ω3 = (2ω1 − ω2) given by,

igm1_im3 = +3
4a3_gm1 | vx(jω1) |2| vx(jω2) | (4.49)

where a3_gm1 is the third-order non-linearity coefficient of the Taylor-series approxi-

mation for the transconductor and has a negative sign for compressive non-linearity.

igm1_im3 is converted to a voltage vx2_gm1_im3 given by,

vx2_gm1_im3 = igm1_im3 | zo1(jω3) | (4.50)

where z01 is the impedance at the output of the first stage given by,
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zo1(s) = ro1||(1/sC1) = ro1
1 + sro1C1

= ro1
1 + s/ωp,gm

(4.51)

vx2_gm1_im3 produces an output current from gm2 given by,

io_gm1_im3 = −gm2vx2_gm1_im3 (4.52)

io_gm1_im3 is injected into the output node of the filter. Hence the filter output

voltage is,

vo_gm1_im3 = io_gm1_im3
| zopen(jω3) |
| 1 + LG(jω3) | (4.53)

where

zopen(s) = zo(s)||(z1(s) + z2(s)) (4.54)

Combining (4.49), (4.50), (4.52), and (4.53), we get

vo_gm1_im3 = −3
4a3_gm1 | vx(jω1) |2| vx(jω2) | | zo1(jω3) | gm2 | zopen(jω3) |

| 1 + LG(jω3) | (4.55)

Similarly, we can obtain the non-linear output current component due to gm3 as,

igm3_im3 = −3
4a3_gm3 | vx(jω1) |2| vx(jω2) | (4.56)

The negative sign is due to the inversion due to the transconductor itself. a3_gm2

is also negative (for compressive non-linearity). igm3_im3 produces an output voltage

given by,

vo_gm3_im3 = io_gm3_im3
| zopen(jω3) |
| 1 + LG(jω3) | (4.57)

Using (4.56), we get,
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vo_gm3_im3 = −3
4a3_gm3 | vx(jω1) |2| vx(jω2) | | zopen(jω3) |

| 1 + LG(jω3) | (4.58)

Likewise, the non-linear output current term due to gm2 is,

io_gm2_im3 = −3
4a3_gm2 | vx2(jω1) |2| vx2(jω2) | (4.59)

The output voltage then is given by,

vo_gm2_im3 = io_gm2_im3
| zopen(jω3) |
| 1 + LG(jω3) | (4.60)

Combining (4.59), and (4.60), we get,

vo_gm2_im3 = −3
4a3_gm2 | vx2(jω1) |2| vx2(jω2) | | zopen(jω3) |

| 1 + LG(jω3) | (4.61)

The total output IM3 contribution from the total IM3 powers combined from

(4.55), (4.58) and (4.61).

4.3.1.4 Comparison of Results and Summary

The computed out-band IM3 power is compared with Cadence Spectre simula-

tion results. The frequency of the first tone f1 is swept in the frequency range from

10-140MHz, and f2 is appropriately adjusted such that f3 = 2f1 − f2 is at the pass-

band edge. Input power to the tones is set to -10dBm. Comparison of the estimated

and the Spectre simulation results is shown in Fig. 4.15 for the FFF design and Fig.

4.16 for the FPP design respectively. θ = 0.8 is used for numerical computation of

non-linearity from the pseudo-transconductor in the FPP design.

Based on Fig. 4.14, Fig. 4.15 and Fig. 4.16, we make the following observations:
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Figure 4.15. Power of IM3 tone at f3 due to two -10dBm out-band
tones at f1 and f2 for the FFF design.
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Figure 4.16. Power IM3 tone at f3 due to two -10dBm out-band
tones at f1 and f2 for the FPP design.
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• Computed non-linearity contribution from gm1 is identical in both the FPP

and FFF designs since the loop-gain response is identical in both lossy integra-

tors. Inherent non-linearity from gm2 and gm3 are lower in FPP design (due to

pseudo-differential implementations) compared to the FFF design as predicted

by (4.35).

• In the low-frequency range and within the filter passband, non-linearity from

gm2 will dominate compared to non-linearity arising from the gm1 and gm3 in

both FFF and FPP designs since the input signal to gm2 is larger due to gain

of the first stage. In the FFF design, gm2 is fully-differential while it is pseudo-

differential in the FPP design. Hence there is an improvement in the linearity

performance within the filter passband and also at the edge of the passband.

• In the mid-frequency range, either gm1 or gm2 could dominate depending on

their relative contributions. In the FPP design, the inherent contribution from

gm2 is reduced compared to FFF design. Hence the non-linearity contribution

from gm1 rises above the gm2 contribution around 35MHz. In the FFF de-

sign, the inherent gm2 contribution is much higher and hence the non-linearity

contribution from gm1 rises above the gm2 contribution at a higher frequency

around 70MHz.

• In the high frequency range, gm1 is the dominant source of non-linearity contri-

bution in both the OTAs. The amplitude of the signal at the input of gm1 and

gm3 are identical. But the nonlinear output from gm1 located within the filter

passband at f3 is amplified by the second stage, while the contribution from

gm3 does not experience such gain. Since gm1 has an identical implementa-

tion in both FFF and FPP designs, the computed and simulated non-linearity

contributions are identical between 100-140MHz.
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Figure 4.17. Ratio of the non-linearity contribution from gm2 to gm1
in both FFF (gm1 FD, gm2 FD) and FPP (gm1 FD, gm2 PD) designs.

To compare the relative contributions of gm1 and gm2 stages to output non-linearity

in the mid-frequency, we compute the ratio (vo_gm2_im3/vo_gm1_im3). Using (4.55) and

(4.61) and algebraic simplification we get,

vo_gm2_im3

vo_gm1_im3
= a3_gm2

a3_gm1

| vx2(jω1) |2| vx2(jω2) |
gm2 | vx(jω1) |2| vx(jω2) | | zo1(jω3) | (4.62)

Recognizing that vx2(jω) = gm1zo1(jω)vx(jω), we can simplify (4.62) to,

vo_gm2_im3

vo_gm1_im3
= a3_gm2

a3_gm1

g3
m1 | zo1(jω1) |2| zo1(jω2) |

gm2 | zo1(jω3) | (4.63)

This can be further simplified using (4.51) as,

| vo_gm2_im3

vo_gm1_im3
|= a3_gm2

a3_gm1

gm1

gm2
A2

1,dc
| (1 + jω3

ωp,gm
) |

| (1 + jω1
ωp,gm

) |2| (1 + jω2
ωp,gm

) |
(4.64)
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(4.64) predicts the relative amplitudes of the non-linearity contributions at ω3

from two out-band tones located at ω1 and ω2. When ω1 is swept in the stop band

of the filter, ω2 is suitably adjusted such at ω3 is at the edge of the passband. Hence

ω2 = 2ω1 − ω3. The ratio in (4.64) is plotted in Fig. 4.17. At frequencies before

the 0dB crossing of the ratio, gm2 non-linearity dominates compared to gm1 non-

linearity and vice versa. a3_gm1 is identical in both FFF and FPP designs. But

(a3_gm2)FPP < (a3_gm2)FFF due to pseudo implementation as predicted by (4.35).

Hence the curve for FPP (with gm1FD, gm2 PD) crosses the 0dB curve at a lower

frequency compared to FFF design.

In addition, integrator designed with the FPP OTA offers higher output swing

than the FFF OTA. As noted in [44], the output impedance and the non linearity

contribution from output impedance depends on the over drive voltage (Vds−Vdsat) of

the transistor. Hence for a given output swing, contribution from the ro non-linearity

in the FPP OTA will be lower than the FFF OTA. This is really important for large

out-band blockers located near the filter passband. In conclusion, integrator designed

with the FPP OTA improves the out-band non-linearity contribution in the critical

mid-frequency range. High frequency blocker power could be attenuated using an

additional passive RC filter in the input path as done in Section 3. For a given loop

gain response, inherent non-linearity contribution from gm1 has to be optimized to

improve the out-band linearity performance in the high frequency range.

4.3.1.5 Design Guidelines for Improving Out-Band Linearity Performance

Out-band non-linearity contributions by gm1 and gm2 depend on the input signal

level to the transconductors at the intermodulating blocker frequencies. While the

low-frequency (or DC) values of | Hvx | and | Hvx2 | can be reduced by increas-

ing the DC gains of either the first or the second stages, this does not help the

high-frequency linearity performance. To improve the out-band non-linearity per-

formance, essentially the GBW of the loop-gain must be increased to reduce the
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signal swing at vx and vx2 at blocker frequencies. The loop GBW can be increased

by increasing either gm1 or gm2. Increasing gm2 will increase the gain of the second-

stage for a given loading conditions assuming that the passive element values (R1,

R2 and C2 for the lossy integrator) are already fixed by the filter requirements (fre-

quency and noise performance). Increasing the gain of the second-stage reduces the

signal swing at the input of both the first- and second-stages and results in improved

linearity performance. Linearity performance can also be optimized under the con-

straint of fixed overall transconductance (Gmdc = (gm1ro1gm2 + gm3) ≈ (gm1ro1gm2))

by appropriately choosing gm1 and gm2. This optimization depends on the inherent

transconductor non-linearity (set by a3_gm1 and a3_gm2) and their relative frequency

dependent contributions as predicted by (4.64).

4.3.2 Common-Mode Feedback (CMFB) Design

To understand the common-mode loop behavior, we first recognize that there

exist two common-mode loops in the integrator design using a feed-forward OTA as

shown in Fig. 4.18. First loop is through the passive network (R2||C2 and R1) and

the OTA. Second loop is through the CMFB network which is added intentionally

inside the OTA to set the output common-mode level. In first loop, two paths exist

through the OTA for common-mode signals in both the OTAs. Referring to Fig. 4.8

and Fig. 4.9, we note the following to contrast the difference between the FFF and

FPP OTA designs.

In the FFF OTA,

• The first path has a total positive gain (non-inverting) through the cascade

of the first (gm1) and the second (gm2) stages. Both the first stage and the

second stages are degenerated by their respective tail current sources (M1cs,

M2cs) for common-mode signals and offer a small positive low-frequency gain

(non-inverting) when cascaded.
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Figure 4.18. Common-mode feedback loops in the integrator.

• The second path has a total negative gain (inverting) through the feed-forward

stage (gm3). The feed-forward stage is also degenerated by the current source

(M3cs) for common-mode signals and offers a small negative low-frequency gain

(inverting).

• At frequencies higher than the corner frequency of the integrator (when |zC2| <

R2), M3n appears like a diode-connected device. But the tail current source

M3cs still degenerates the device still maintaining a high impedance common-

mode signals increasing the common-mode impedance at the output node.

In the proposed OTA,

• The first path has a total positive gain (non-inverting) through the cascade

of the first (gm1) and the second (gm2) stages. The first stage is degenerated

by the current source (M1cs) and offers a small low-frequency gain. Since the

second-stage is pseudo-differential, it offers a higher negative common-mode

gain (inverting) compared to the fully-differential stage in the FFF OTA.
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Figure 4.19. Common-mode feedback schematic for the conventional OTA.

• The gain through the second path through the feed-forward stage (gm3) is

negative (inverting). Since the feed-forward is a pseudo-differential stage that

directly connects input to output, it offers a higher negative common-mode

gain compared to a fully differential stage.

• At frequencies higher than the corner frequency of the integrator (when |zC2| <

R2) and when the AC coupling capacitor is effectively shorted-out, the feed-

forward stage through M3n appears like a grounded diode-connected device

reducing the common-mode impedance at the output node.

In summary, we establish that (1) the negative gain offered by the OTA for CM

signals is higher in the FPP OTA compared to the FFF OTA, and (2) the common-

mode impedance at the output node is lower for the FPP OTA compared to FFF

OTA.

The schematic of the CMFB blocks in each of the OTAs are shown in Fig. 4.19 and

Fig. 4.20. The output common-mode is sensed through a parallel RC combination.

The error amplifier compares the output common-mode to the reference voltage and
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Figure 4.20. Common-mode feedback for the proposed OTA.

injects a correction signal into the output node using the PMOS current source Mc

in the FFF OTA and M2c in the FPP OTA. The advantage of having a common-

mode low impedance in the FPP design can be used increase the low frequency

common-mode gain by using a high-gain stage in the error amplifier. Hence a mirror

stage is used in the FFF OTA CMFB network to convey the error signal while a

high gain stage is used in the FPP OTA CMFB network. Despite the difference in

the common-mode behavior of the two OTAs, both the OTAs have been designed

to have a stable and equal common-mode loop bandwidth to stabilize the output

common-mode level. The simulated step-response of CM loops in both the OTAs is

shown in Fig. 4.21.

4.4 Noise and Distortion Performance Results

The design and layout of the prototype chip with the two integrators has been

completed using TSMC 0.18µm RFCMOS technology and submitted for fabrication.

The layout of the test chip is shown in Fig. 4.22 with both the the integrators
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Figure 4.21. Step response of the CMFB loop.

marked. The integrators consume approximately 0.105mm2 each. This excludes the

area of the on-chip decoupling capacitor. The additional area due to AC coupling

capacitor and resistors in the FPP design is 0.0072mm2 and is negligible as it can

be seen in the layout (6.8%). Majority of the area in both the integrators is due to

the inter-digitized MIM capacitors used for setting the filter corner frequency. The

FFF and FPP OTA cores shown in Fig. 4.8 and Fig. 4.9 consume 1.4mA and 1mA

respectively. Both the integrators operate from a 1.8V supply and consume ≈ 2mA

including CMFB and additional biasing circuits.

The simulated output spot noise spectrum for both the integrators is nearly

identical and is shown in Fig. 4.23. The flicker noise component is due to NMOS

fully differential input stage (gm1) and can be reduced by employing a PMOS input

stage based OTA design. The mid-band spot noise is predominantly due to the

resistors (R1 = 5K and R2 = 5K) used in the integrator. As expected, four 5K

resistors (fully-differential design) contribute a thermal noise of 17.8nV/
√
Hz. Both

the integrators have an integrated noise of 71µVrms (which is −70dBm using 50Ω

reference) in a noise bandwidth of π/2(f−3dB) = 15.7MHz for a f−3dB ≈ 10MHz.
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Figure 4.22. Layout of the two filters.

The simulated distortion performance for both the integrators is shown in Fig.

4.24. Two un-filtered blocker tones at the band-edge at f1 = 10.1MHz and f2 =

11.3MHz are applied to the integrator and the in-band IM3 distortion tone at

fIM3low = 2f1 − f2 = 890Hz is observed. The figure shows the peak blocker power

per each tone used for the simulation and the power of the in-band distortion tone

power. The simulation test bench includes identical package and board parasitics for

both the integrators. As it can be seen in the figure, the proposed OTA improves the

linearity performance (higher IIP3). This results in higher blocker tolerance. The

integrated output noise floor is also indicated in the figure. The plot indicates that

when the 3rd order distortion power reaches the output noise floor, the FPP OTA

design can tolerate +6dB higher blocker input power than the conventional OTA.

For the FFF design, output IM3 tone reaches −70dBm, when each blocker tone is at

−4.5dBm (190mV pp), while for the FPP design output IM3 tone reaches −70dBm

when each blocker tone is at +1.5dBm (375mV pp).
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Figure 4.23. Simulated output noise from the two integrators.
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A common figure-of-merit (FoM) used for comparing analog filters is given by,

FoM = Pq
Npoles BW SFDRlin

(4.65)

where Pq is the quiescent power consumption, Npoles is the number of poles imple-

mented in the filter, BW is the bandwidth and SFDRlin is defined as,

SFDRlin = 10SF DRdB/10 (4.66)

with,

SFDRdB = 2
3(IIP3dBm − Pnoise,dBm) (4.67)

for a given IIP3 (third-order intercept) in dBm and input referred integrated noise

power in dBm. This is different from using dynamic range (DR ) in the FoM

instead of SFDRlin. Several reported publications use DR as the ratio of in band

power for 1% output THD to noise floor. We use the FoM definition with SFDRdB

as defined above using out-band IIP3dBm since this is the most relevant for filters

for wireless radios. A detailed comparison table with previously reported filters is

indicated in Table 4.1. The two lossy integrators based on FFF and FPP OTAs

are compared with 9 previously reported active RC filters that implement different

filter approximations (Butterworth, Bessel, Elliptic and Chebyshev). The type of

the amplifier (or the active device) used in the implementation of the filter is also

indicated in the table. As it can be seen from the table, the proposed lossy integrator

structure using the FPP OTA has an excellent FoM and offers a power-efficient way

to improve out-band linearity performance and hence dynamic range of active-RC

filters.



93

4.5 Conclusion

This Section highlighted the impact of out-band non-linearity performance of a

baseband filter on the overall SFDR in a analog baseband wireless receiver chain. A

new feed-forward OTA structure suitable for use in active-RC filter design has been

presented. Two lossy integrator structures (first one using the conventional structure

and second one using the proposed OTA) designed with same loop gain and loading

conditions serve as test vehicles to demonstrate the linearity improvement. The

proposed chip has been designed using the TSMC 0.18µm RFCMOS technology.

A detailed comparison table indicates that the lossy integrator structure using the

proposed FPP OTA has an excellent FoM and the additional linearity improvement

is achieved without significant cost in power or silicon area.
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Table 4.1
Comparison of the filter performance with published results.

Filter BW Order Int. noise IIP3 SFDR Power FoM (fJ) CMOS Additional
(MHz) (µVrms) (dBm) (dB) (mW) Node (µm) Comments

[50] 44-300 5 1300a 21 b 43.8 54 10.2 0.18 Active-RC
with Feed-forward OTA

[51] 25 5 42 28.8 c 68.9 22 0.023 0.18 Active RC
with Feed-forward OTA

[54] 20 5 980 27 b 49.4 4.5 0.51 0.18 Active RC
with helper OTA

[55] 2 5 80 33 b 68 4.9 0.078 0.18 Active RC
with adaptive biasing

[56] 1-20 5 232 8 b 57.1 7.5 0.146 0.13 Active RC
with Netsted Miller

[57] 2.1 4 36 31 b 71.2 14.2 0.127 0.13 Active Gm-RC

[58] 10 4 24 17.5 c 64.6 4.1 0.036 0.18 Source-follower
based structure

[59] 10 5 453 21.3 c 50.1 6.1 1.19 0.12 Active RC

[60] 19.7 5 133.2 18.3 c 55.2 11.3 0.345 0.13 Active RC
with Feed-forward OTA

FFF Design 10 1 71 27 b 65.2 2.6 0.088 0.18 Active RC
FPP Design 10 1 71 37 b 71.9 2.9 0.022 0.18 with Feed-forward OTA
a Reported number for the lowest bandwidth setting
b Out-band IIP3 or IIP3 reported/simulated at the band-edge
c In-band IIP3, since IIP3 at bandedge not reported
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5. ADAPTIVE BANG-BANG CLOCK-DATA-RECOVERY

This Section begins with a brief introduction to clock and data recovery (CDR) in

high speed serial link applications. The introduction leads to a review of the popular

analog PLL based CDR system followed by discussion of the timing-non idealities

and jitter performance indicators in a typical CDR system. A review of the jitter

performance requirements paves way to possibility of system optimization solutions

using adaptive loop-gain CDR solutions. This leads to the description of an adaptive

bang-bang CDR solution discussed in this thesis.

The goal of the adaptive solution is to optimize the jitter filtering and jitter

transfer trade-off especially when the input jitter profile is not known apriori. The

loop gain adaptation based on the input jitter profile is performed using an efficient

mixed-mode solution in this work. Focus of this Section is the design of digital

logic blocks in the loop gain control mechanism. Architecture of the adaptive digital

section will be presented first followed by implementation details. Design of the

digital state-machine along with timing information required to enable the charge-

pump control and loop adaptation are also described. Output driver circuits for

real-time monitoring of the loop bandwidth control code on the logic analyzer and

the input amplifier required to interface the CDR with the external equipment are

also presented.

The content presented in this Section is based on the work done in collaboration

with and supports the work presented in [61]. Hence the reader is referred to [61] for

additional material regarding the analog section of the predictor that complements

this Section. Two prototypes operating at 10Gb/s have been designed using TSMC

RFCMOS 0.18µm technology for this research. The measurement results from the

first prototype are included in this Section. The second design is currently under

fabrication. Conclusions from this work are drawn at the end.
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Figure 5.1. A general serial link system using embedded clocking architecture.

5.1 High Speed Serial Link system

5.1.1 Introduction

Digital data transfer rates continue to increase fueled by consumer and enter-

prise demand for cloud computing with audio, video and other multimedia content

residing in the cloud. The new social media and cloud computing trends have led

to steady growth in high speed data networking and storage infrastructure markets.

On the technology side, research initiatives have been looking for efficient solutions

for shuttling data between computing hubs such as microprocessors and memory,

network routers and storage devices. High speed serial links are commonly used in

such applications to transfer data over optical and band-limited electrical electrical

channels. For this reason, high performance serial links capable of data transfer at

several Gbps continue to receive significant attention in the research community.

A general serial link system is shown in Fig. 5.1. It contains a transmitter which

couples a high speed data stream to the channel and a receiver which recovers the

original data stream. On the transmitter side, the parallel data is multiplexed to

a high speed serial data stream. This high speed serial data stream is transmitted

directly using a transmit driver which couples the signal to the channel. Due to finite

non-idealities of the channel, the data stream at the input of the receiver is a poor-

replica of the transmitted signal. The receiver may perform channel equalization
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to compensate for the non-idealities of the channel and reconstruct the signal. This

allows demultiplexing of the high speed serial data stream into its original constituent

parallel bit streams.

Two commonly used options for transmitting the timing-information along with

the data are classified as (1) Forwarded Clock Architectures, and (2) Embedded

Clock architectures. In forwarded clock architectures, a separate channel is used

in parallel to transmit the clock signal that can be used to re-time the data. In

embedded clocking schemes, the timing information is extracted using the edges

present in the data stream. Presence of sufficient edge information in the data

stream can be guaranteed using coding of the original data stream, although at the

expense of data throughput. Embedded clock architectures are quite commonly used

in serial link applications. Recovering the timing information from the data stream

and re-timing the data is popularly called as Clock-and-Data-Recovery (CDR). This

Section outlines a CDR system suitable for serial link applications especially when

the characteristics of the non-idealities present in the incoming data stream are not

known apriori.

5.1.2 Clock and Data Recovery

As introduced in the previous section, embedded clocking architectures need to

perform retiming and demultiplexing of the incoming data. Since these operations

are synchronous, the receiver must generate a clock to perform these operations. A

CDR unit provides such a clock from the incoming data. The data is then re-timed

using a D-flip-fop (DFF) and the recovered clock. The basic idea is that, although

the incoming data stream is noisy, the re-timed data has much less amplitude and

timing noise.

It is desirable that the edge used for retiming that data should maintain an

optimum phase-relationship to minimize bit errors. Rising edge of the recovered

clock is used for retiming in Fig. 5.2. for illustration purposes. For this case, the
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Figure 5.2. Timing margins at a re-timing DFF using a CDR.

rising edge of the clock must must be located at the middle of each bit period. Such

a phase-relationship will ensure adequate timing margins with maximum allowable

setup and hold times for the retiming DFF. This requires the CDR to track certain

components of the incoming data phase variations, such that the recovered clock

tracks the available timing window in the data signal. In addition, the recovered

clock should also have the exact frequency as the incoming data rate. Any frequency

offset between the data rate and the recovered clock will result in a retiming edge

that runs away from the optimum sampling point, resulting in errors.

Many schemes have been proposed in the literature to design the CDR unit for

high speed serial link systems. Each scheme has its own advantages and disad-

vantages. Designers make their architectural choice based on the suitability to the

application under consideration and any implementation constraints such as channel

characteristics, performance of the available silicon process technology, and power

consumption budget. Phase and delay locked loops (PLL, DLL) tend themselves

naturally to CDR applications and are quite popular. While analog PLL solutions

are still popular, digital PLLs offer scalability and flexibility that is afforded by scaled

technology nodes. Solutions using phase interpolators, injection locking schemes and

oversampling architectures are also reported in the literature. An interested reader

is referred to an excellent review and comparison of these architectures in [62]. In
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Figure 5.3. A simple charge-pump based PLL based CDR architecture.

this Section, we discuss the design trade-offs and implementation of a CDR system

using an analog loop. The next section provides an introduction to analog PLL based

CDR system.

5.1.3 Analog PLL Based Clock Recovery System

A CDR using a charge-pump based PLL is shown in Fig. 5.3. The loop consists of

a phase-detector (PD), a charge-pump, an analog loop-filter and a voltage-controlled-

oscillator (VCO). This is similar to the classic analog PLL used for clock synthesis

(without the the frequency divider and the pre-scalar) except that the input reference

clock is replaced by the random incoming serial data stream. The term analog

describes the nature of the filter in the control loop (continuous time, continuous

amplitude). Essentially the local clock signal generated by the VCO is continuously

tuned to track with the incoming data edges using a analog control loop. The phase

detector provides a phase-domain comparison of the incoming data edges and the

reference oscillator. The output error signal is converted to charge packets which

are integrated using a loop filter to generate the control voltage of the VCO. This

control voltage continuously steers the VCO phase to track the incoming data. Such

an arrangement is often used to adjust the phase to maximize the timing margin

available for the re-sampling DFF.
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Two types of phase-detector architectures commonly used in combination with

analog PLL loop are (1) linear PD, and (2) bang-bang PD or binary PD. In a linear

PD, the output of the phase detector is linearly proportional to the phase error

between the incoming data edges and the reference VCO edges. In the phase domain,

such a PD can be modeled as a constant small signal gain from input phase error to

the output signal of the phase detector. The information in the output is contained

in the pulse width of the output voltage signal. Hogge PD, a very commonly used

linear PD utilizes re-timing DFFs to produce two pulses, one called a proportional

pulse and another termed as a reference pulse [63, 64]. The reference pulse width is

half the cycle time, while the proportional pulse changes in width depending on the

phase relationship between the incoming data and the recovered clock. The output

error indicated by the PD is the difference in the two pulse widths. So in theory, a

linear PD should be able to produce and compare narrow pulse widths to indicate

small phase-errors between input phases under a locked condition. Static phase

offsets and Clock-to-Q delays of the DFFs used for pulse width generations could

be a significant fraction of the cycle time. This bottleneck limits the use of linear

PD at high data rates relative to fT of the process. In contrast, a bang-bang or a

binary PD outputs a digital high or a low signal depending on the phase-relationship

between the data edge and the reference clock edge. As CMOS technology continues

to scale-down in tandem with increasing data rates into the Gbps regime, bang-bang

PD implementations are more favored. This comes at the cost of introducing a hard

non-linearity into the loop, which makes the steady-state analysis of the control loop

difficult if not impossible. A design oriented approach to evaluate the stability of a

bang-bang PLL loops is proposed by [65]. [65] uses a design a discrete-time model for

the PLL to arrive at conditions for existence of stable orbits (indicating stable loop

dynamics) in the phase plane. But from a rigorous control-theoretic perspective,

this is the classical Lur’e or Popov problem which considers the stability of fixed

time-invariant systems perturbed by a non-linear feedback gain. This is also known
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as the absolute stability problem. For more information the reader can refer to a more

generalized mathematical problem provided in [66].

To understand the trade-offs involved in the design of a CDR based on analog

PLL loop, we first introduce the the types of timing non-idealities (termed as jitter)

that affect a CDR system in the next section. Then we briefly discuss the jitter

performance indicators used for evaluating the behavior of CDRs. This will provide

the necessary material to introduce the adaptive loop CDR which is the main focus

of this Section.

5.1.4 Types of Timing Non-Idealities

As introduced previously, a CDR unit extracts a clock edge that continuously

tracks the incoming random data edges to re-time the data. Due to non-idealities in

the system, the timing of the extracted clock deviates from the ideal phase and this

deviation is commonly referred as jitter.

Several types of timing errors affect the bit error rate (BER) performance of

a serial link. Depending on the source of non-ideality, the timing error can either

be bounded or un-bounded. A bounded error can be modeled using deterministic

models and have a finite theoretical bound on the maximum error value. An un-

bounded timing error originates from a random source and can only be modeled

using a statistical model. Although, absolute value of the error contribution from

such a source can be infinite in theory (with an extremely low probability), it is

common to specify the limits on an un-bounded error source (e.g. ±3σ limit for a

Gaussian distribution). A general classification of jitter components identifying both

bounded and un-bounded error sources is shown in Fig. 5.4 [67, 68].

Random jitter (Rj) arises from the inherent device noise (thermal, flicker and shot

noise) added in the system during analog signal processing. Rj is unbounded and

modeled using a Gaussian distribution. The distribution has a zero mean and a non-
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Figure 5.4. Common jitter classification [67,68].

zero standard-deviation. Hence generally the maximum peak-to-peak contribution

from Rj is quoted at a certain bit error rate (BER).

Deterministic jitter (Dj) is the bounded component of the jitter. The peak-to-

peak value of Dj is bounded for a given system. Several components of Dj have been

identified in the literature [67, 68]. Sinusoidal Jitter or also known as Periodic jitter

(Pj) is due to the spread-spectrum clocking schemes used in serial links to mitigate

the electro-magnetic interference or from periodic supply noise coupled from various

sources. Pj is independent of the data pattern that is transmitted on the link.

Other forms of Dj are data dependent (DDj). Timing uncertainty due to the finite

bandwidth of the channel is called inter-symbol interference (ISIj) . The circuits

used for processing clock signals often introduce duty cycle distortions (DCD) in the

signal resulting in DCDj. Crosstalk due to adjacent channels also affects the timing

information of the data signals. Such error is often un-correlated to the data pattern

and is bounded. All such errors are lumped into a category termed as bounded

uncorrelated jitter (BUj).
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Figure 5.5. Magnitude of jitter Fourier spectrum from [67].

The timing errors in data signal received at the input of the CDR system contain

all the above components of jitter. It is also instructive to look at the frequency

domain representation of the above jitter components. Fig. 5.5 shows a typical plot

of the Fourier spectrum of jitter as reported in [67]. It should be noted at this point

that the Fourier spectrum is different from Power Spectral Density (PSD) of the

jitter process. Fourier spectrum magnitude ∆Tm at a given frequency fx can be used

to estimate the PSD over a time period T as,

S(fx, T ) = | ∆Tm(fx) |2
T

(5.1)

As noted in [67], 5.1 does not approach the true PSD S(f) and serves as an

approximation at best for a random jitter process. First, we discuss the deterministic

components of the jitter. As indicated, DDj and Pj are narrow-band. Pj appears

at a known frequency (fPj) in the spectrum depending on the source of the periodic

jitter (e.g. spread spectrum clocking). On the other hand, the spectral content of

DDj resides at a frequency (fDDj) which is a periodic multiple of a repeating data

pattern. The BUj components exhibit both narrow-band and broad-band spectral

content. Unless the source of BUj is known apriori, it is not possible to distinguish
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between the narrow-band BUj and DDj /Pj. The Rj components are broad-band

in nature. Again, broadband BUj components cannot be easily isolated from Rj.

It is important to identify and distinguish different sources of timing-errors dur-

ing measurements. Several time- and frequency-domain measurement techniques

have been reported to isolate and separately estimate different components of jitter.

Reader is referred to [67] for an extended discussion of these measurement techniques

for jitter separation and estimation. But what is relevant in our scenario is that, as

we will see in the subsequent sections, loop attributes of a analog PLL based CDR

systems can be optimized based on certain time- and frequency-domain properties

of different jitter components. This is applicable especially in systems where the in-

coming jitter profile is not known apriori. As we will discuss in the next two sections,

ideally the CDR should selectively either track or filter the timing errors based on

the their attributes to reduce the BER and maximize the performance of the CDR.

This Section will provide an outline of an adaptive solution which relies on on-chip

jitter separation to adapt the control loop behavior.

With the above discussion on properties of different jitter components, we will

present the few jitter performance metrics used to describe the behavior of the CDR

in the next section. This will lead us to a discussion of ideal expected behavior of a

CDR in this context and possibility of loop on-chip adaptation.

5.1.5 Jitter Handling in Clock Recovery Systems

In this section we introduce three jitter performance indicators used for analyz-

ing the performance of serial link CDRs. These are jitter transfer (JTRAN), jitter

generation (JGEN) and jitter tolerance (JTOL).
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5.1.5.1 Jitter Transfer (JTRAN)

Jitter transfer (JTRAN) is the equivalent of the transfer function of the CDR

system. JTRAN provides an indication of output jitter for a given input jitter as a

function of frequency. At low frequency input jitter variations, the CDR should track

the input such that the recovered clock can be positioned to maximize the timing

margins at the retiming DFF. As the frequency of the input jitter increases, the

input jitter must be filtered. Hence the JTRAN has a low pass filter response similar

to a phase-transfer function of PLLs [69].

Analog PLL based clock recovery systems do exhibit a low-pass transfer func-

tions. For CDRs with linear PDs, the exact transfer can be obtained using a linear

small-signal (in phase) model. Depending on the particular serial-link application,

the JTRAN specification may require the PLL to comply to a given bandwidth and

constrain any peaking in the transfer function. For example, optical link CDR spec-

ifications like SONET require a JTRAN bandwidth of 120kHz with a very stringent

jitter peaking requirement (< 0.1dB ) [69]. For CDRs with binary PDs, the pres-

ence of a hard non-linearity in the loop does not easily lend to small-signal transfer

function analysis. In addition the gain of the bang-bang PD and hence the overall

loop gain depends on the amplitude of the input jitter itself [70]. A method based on

large-signal piece-wise model has been proposed by [70] to obtain the JTRAN response

and equivalent bandwidth of bang-bang loops. Such analysis obtains the equivalent

low-pass transfer function of the bang-bang loop as a function of the amplitude of the

input jitter. The limitations of linearizing the PD gain as a function of fixed input

jitter have been recognized [71, 72]. [71] analyzes the PD gain using Markov models

to incorporate the effect of dynamics of the bang-bang loop in the presence of in-

put jitter. Non-linear stochastic analysis has been used recently to model bang-bang

PLLs [73,74]. While developing accurate mathematical models for digital and analog

bang-bang PLLs continues to be an active area of theoretical research, challenge lies

in obtaining design insights by careful approximations to rigorous analytical models.
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In summary, although linearization of the bang-bang PD gain could be useful to

designers only analytical models can hold up in mathematical analysis.

5.1.5.2 Jitter Generation (JGEN)

Jitter generation (JGEN) is the contribution of the CDR circuit itself in the ab-

sence of the input jitter to the total jitter in the recovered clock. Naturally, JGEN
is an important specification in clock generation circuits employed in transmitters.

Several sources of jitter exist within a CDR. As indicated by [69] in linear CDRs key

sources of jitter include (1) phase noise from the VCO produced due to device noise

(white, flicker, shot etc), and (2) Coupling to various nodes of the PLL from input

data transitions, supply noise and substrate noise.

In addition to the above sources, non-linear bang-bang PLLs also exhibit a differ-

ent source of jitter called hunting jitter. This originates from the limit cycle behavior

of non-linear loops [65, 75, 76]. The non-linear binary PD quantizes the input error

and produces a binary output even when the phase difference in the input phases is

close to zero. Since PD output is quantized to ±1, a frequency step of fbb is gener-

ated at the VCO output. Based on the phase-domain model presented in [75], this

frequency step leads to the PLL generating an excess hunting jitter with a peak-

to-peak value of Jpp = 4π(fbb/fnom), where fnom is the frequency of the input data

rate and fbb is the bang-bang frequency step. Another approach to evaluating hunt-

ing jitter based on a discrete-time model is presented in [65]. Based on this model,

hunting jitter can be reduced by reducing the loop bandwidth of the CDR [61]. We

should note that, the proportional dependence of hunting jitter on loop bandwidth

is opposite to the dependence of jitter due to VCO noise on loop bandwidth. Due to

high-pass nature of the transfer function from VCO phase noise to the clock output

in a PLL loop, contribution of the VCO noise can be reduced by increasing the loop

bandwidth of the CDR. In summary, several sources of JGEN exist in a CDR and

these sources may exhibit different dependencies on the properties of the CDR loop.
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Figure 5.6. An example of a jitter tolerance mask [69].

5.1.5.3 Jitter Tolerance (JTOL)

Jitter tolerance (JTOL) performance is perhaps the most important specification

for a given serial link system. Jitter tolerance specifies the frequency dependent input

jitter profile that the CDR must tolerate without increasing the BER above a certain

threshold limit. The main idea behind the JTOL specification is that the clock must

always be optimally positioned to facilitate accurate retiming and regeneration of the

incoming data pattern. In an ideal scenario, it would make sense to completely track

the input jitter regardless of the frequency content of the input jitter. As noted in

[77], the presence of loop delay between the incoming data transitions and recovered

clock actually hurts the available timing margin at high frequency inputs. Hence the

JTOL performance requirement is often specified as a mask which the CDR should

meet.

A typical example of such a mask is shown in Fig. 5.6. The mask is defined

to keep the system BER below a threshold value (e.g. 10−12) for a given sweep of

frequency and magnitude of the input Pj. The magnitude value (specified in UI or

unit-intervals) indicated in the figure is the lower boundary for the applied Pj. The

CDR fails the JTOL test if the magnitude of Pj is less than the mask value and vice
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versa. One method to estimate the JTOL performance is to modulate the input data

pattern with intentional Pj to the CDR and observe the BER performance of the

system as the amplitude and the frequency of Pj is varied. The BER profile can be

obtained for a given amplitude of the modulation and frequency of the modulation

pair. At low frequency, we should expect the CDR to track the input jitter. At higher

frequency, the system should filter the jitter. At high frequency, low amplitude

modulation CDR fails to track the input jitter. Hence the phase location of the

recovered clock remains largely invariant to the input jitter while the data eye moves

around rapidly. Hence the BER performance for this input provides an idea of the

timing margin available in the system. But as the frequency of Pj is reduced, the

CDR loops starts tracking the input jitter which improves the timing margin at the

input of the retiming DFF. Hence the JTOL mask shown in Fig. 5.6 contains low-pass

filter like frequency dependent shape.

In the next section we will look at how different input jitter components (Rj

and Dj) affect the design choices in a CDR system and the impact of CDR loop

parameters on the jitter performance indicators of the system. We also introduce

adaptive CDR loops leading to the solution discussed in this Section.

5.2 Adaptive Clock Recovery Systems

The performance of a CDR based on analog PLL implementation depends on the

input jitter profile and the loop design parameters (loop gain, bandwidth, peaking

in the transfer function etc). In this section we discuss the interdependence of input

jitter and loop parameters.

A well designed CDR should maximize the timing margin at the timing DFF

and minimize the BER. A CDR with a large loop gain will be able to minimize

the contributions from its own noise sources (VCO), but will result in excessive

transfer of high frequency input jitter. In such a scenario, although broadband jitter

components such as Rj, ISIj and BUj will be transferred to the recovered clock,
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timing margins between the data and recovered clock will be reduced due to PLL

loop delay. As indicated by the JTOL requirements, low frequency, large amplitude

jitter inputs (e.g. Pj from spread spectrum clocking) must be tracked successfully

to improve the timing margin. This requirement demands a large loop gain. On the

contrary, a CDR with a small loop gain will result in slope-overloading in a bang-

bang PLL loop [75, 78], but will successfully filter the high frequency input jitter,

improving the timing margin.

As it can be seen, conflicting requirements for optimum loop gain can exist in

a serial link system especially if the input jitter profile is not know apriori. One

approach to optimizing the loop bandwidth of a CDR has been discussed in [77,79].

[79] treats the CDR as an estimation problem and implements a solution based on an

adaptive digital loop-filter solution. In order to implement an all-digital adaptation

scheme requires the binary output of the PD to be decimated before a programmable

digital filter solution can post-process the input. As the input data rates continue to

increase, the solution will demand a combination of a high performance CML circuits

and high-speed digital filter implementations. The adaptive solution discussed in

the next section provides an efficient alternative solution to this problem using a

combination of analog and digital circuits to implement jitter profile detection and

loop adaptation.

5.3 Adaptive Bang-bang CDR

Conceptually, the main idea of the adaptive bang-bang CDR is illustrated in Fig.

5.7. PD present at the input of the CDR continuously provides information regarding

the relative phase error between the input phase and the VCO clock phase. Hence it

should be possible to monitor the output of the PD to extract information regarding

the behavior of the loop or the nature of the input jitter profile. Such a “smart logic”

block as indicated in the figure, should be able to dynamically adjust the bandwidth

of the loop. The solution outlined below is based on this principle.
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Figure 5.7. An adaptive clock recovery system.

The architecture of the adaptive bang-bang CDR solution is shown in Fig. 5.8.

As the name suggests, the CDR employs a non-linear bang-bang PD embedded in

an analog loop. Other building blocks in the CDR include a LC voltage controlled

oscillator (VCO) with a high speed divider for quadrature clock generation, a pro-

grammable charge pump suitably adjusted during run-time using a controller. The

loop filter has been implemented using off-chip passive components as indicated. The

details of CML implementation of the half rate PD and the variable charge pump

(1X to 8X) can be found in [61]. In this section we focus on the design of the loop

gain control block shown in Fig. 5.8.

The goal is to estimate the incoming jitter profile and suitably adjust the loop

behavior. The system level solution for the loop gain control outlined in this Section is

the solution proposed in [61]. The solution offers an efficient approach to separately

detect wideband and narrowband jitter components in the incoming data stream.

Depending on the nature of the input jitter profile, the loop gain is either increased

or reduced dynamically. The jitter detection and loop adaptation block has been

termed as predictor and will be discussed in the following subsections. A mixed-

mode predictor has been used for estimating the appropriate bandwidth setting of

the CDR. The predictor contains two sections. An analog front-end (AFE) which

interfaces to the output of the bang-bang PD and a digital section which interprets
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Figure 5.8. Top level architecture of the adaptive clock recovery structure.

the output of the analog section to generate the control signal for the charge-pump.

An outline of the AFE of the predictor is presented first, followed by the design of

the digital section of the controller. State transition diagram of the controller is

presented along with the timing constraints in the implementation. We also include

a description of the I/O driver circuits which enable monitoring the control signals

digital control signals from the predictor on during measurements to experimental

verify the proposed CDR system.

5.3.1 Predictor Design

The top level block diagram of the predictor and the digital section is provided

in Fig. 5.9. It contains an AFE that interfaces with the phase detector and a digital

controller. Conceptually, the AFE essentially monitors the output of the PD to

detect if the PD is indicating either a continuous lead or a continuous lag in the

recovered clock phase with respect to the input phase. That is, the goal of the

predictor is to detect if the PD output has excessive number of either UP or DOWN
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Figure 5.9. Top level architecture of the mixed signal predictor.

signals in its output. In that case, the predictor interprets this and then increases

the loop bandwidth (at a certain rate). If the number of UP and DOWN signals are

comparable within a certain window, the loop bandwidth is reduced.

The AFE consists of a dual path switched capacitor integrator. The PD out-

put drives a V-I converter (transconductor stage) which produces a current that is

integrated onto a capacitor. The capacitor is periodically refreshed to restart the

integration window. The frequency of the clock used for generating the non-overlap

clocks determines the duration of this integration. The arrangement is essentially

similar to an integrate-and-dump block. Two such integrate-and-dump blocks are

employed in tandem such that one path is integrating while the other is dumping (or

resetting). Such a ping-pong tandem arrangement allows for continuous monitoring

for the PD output such that the bandwidth setting accurately reflects the instanta-

neous state of the loop. The accumulated charge on the capacitor is compared to

two levels to perform an absolute analog-to-digital conversion (ADC). If the total

accumulated charge from the integration time window is such that the voltage on

the capacitor exceeds a certain threshold (either positive or negative), the ADC in-

dicates a high (logic 1) signaling a bandwidth increase. A low (logic 0) from at the

ADC output results in the reduction of bandwidth. Essentially, the trick is to ensure
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that the single-bit ADC indicates a 1 (increase bandwidth) for large amplitude low

frequency Pj and a 0 for (reduce bandwidth) for wideband Rj and ISIj. The logic

output of the ADC is continuously monitored by a digital state machine, which pro-

vides the necessary controls for the charge pump. The digital design of the digital

section is introduced in the next section.

The adaptation performance of the CDR depends on the clock frequency used for

the integration and the reference voltages used for the comparison. In this design the

tandem integrate-and-dump blocks run at 78MHz, producing a digital control signal

at 156MHz. Further discussions and justification for this choice of clock frequency

can be found in [61].

There is one key advantages of the analog integrate-and-dump approach. The

approach performs an analog decimation function which other wise would be hard

to achieve using a digital approach. As the data rates approach 10 Gbps, a digital

decimator interfacing with PD would have to operate at 10Gbps resulting in power

hungry CML circuits for division and demultiplexing. Even after a power hungry

CML circuit achieving the decimation, the digital circuits used for implementing a

digital loop filter would still run at a much higher speed compared to the 156MHz

chosen in this work. Analog integration allows for efficient decimation and bandwidth

adaption at a lower speed.

5.3.1.1 Digital State-Machine and Controller

The digital state-machine and the controller implemented in this work are an ex-

tension of the outline presented in [61]. The charge pump is programmable between

1X to 8X. Hence the output of the controller is an 8 bit thermometric code ranging

from 1 (0000 0001) to 8 (1111 1111). Thermometric code is used for charge-pump

control to guarantee monotonicity in the loop adaptation. The variable charge pump

hence includes 8 equal valued current source arms which either source or sink current

into the loop filter depending on the UP/DOWN signal from the phase detector. One
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Figure 5.10. Implementation of a thermometric counter using a
shift-register based architecture.

implementation of such a counter based on [61] is shown in Fig. 5.10. Conceptually,

the counter is implemented using a synchronously clocked shift register and multi-

plexers as indicated. The 8 bit digital code {B0 − Bn} is the thermometric output

controlling the charge pump. An increase in the count (e.g. 0000 0001 to 0000 0011)

is achieved by shifting a logic ’1’ from left to right, while a decrease in the count (e.g.

0000 0011 to 0000 0001) is achieved by shifting a logic ’0’ from right to left. The

Shift Control signal is generated by a state-machine depending on the signal from

the AFE.

In addition to the thermometric code, a state-machine that remembers the logic

decisions of the AFE is included in this design. This addition offers the flexibility

to vary the rate of loop adaptation depending on the history of the control signal

generated by the AFE. The state-machine generates the shift control signals for the

counter in order to produce the control code for the charge pump.
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To illustrate the interaction of the AFE and different digital building blocks, one

bit slice of the 8-bit shift register is shown in Fig. 5.11. The figure depicts the AFE,

digital state-machine, the clock dividers used for synchronization and the combi-

national logic for code-conversion. As shown, an external clock signal at 156MHz

clocks the digital state machine. A digital divide by 2 circuit generates the clock

phases required by the 78MHz clock signal that clock the switched capacitor AFE.

The combination-logic for translation between binary code to thermometer code and

vice versa is also shown.

To explain the functional operation of the digital logic architecture together with

the AFE (cf. Fig. 5.11), we note that,

• The shift register output for ith bit is Bi. The shift register can be shifted right

(or left) to increase (or decrease) the thermometer code between 1 to 8.

• The shifting operation can be chosen between shift by 1 bit or shift by 2 bits.

For shift by 1 bit, Bi−1 or Bi+1 is loaded into Bi. For shift by 2 bits, Bi−2 or

Bi+2 is loaded into Bi.

• Charge pump can also be controlled directly from external control. The binary-

to-thermometer controller converts the external control BW V alue[2 : 0] to 8

bit thermometer code BWi.

• The ith arm of the charge pump is controlled using the bit BCi. Depending

on the value of the BW load control bit, BCi is selected either from Bi or

BWi. Such an arrangement allows for synchronous transfer of control from an

external code to automatic control from the state-machine without introducing

abrupt changes in the CDR loop.

• The bandwidth control signalBCi, is converted to binary valueBW_Control[2 :

0] so that it can be monitored externally on a logic analyzer. The I/O driver

circuits required to drive the load presented by an external logic analyzer are

described in the next section.
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The timing waveform between the AFE and the digital control output is indicated

in Fig. 5.12. As indicated in the figure, Φ1 and Φ2 are two non-overlapping clocks

at 78MHz that clock the data output of the two ADCs running in tandem. Φ3 is the

156MHz clock signal that controls the digital state machine and the shift-register.

The increment/decrement_bar signal is generated from either of the two ADCs at the

rising edge of either Φ1 or Φ2. This signal is processed by the digital stage machine

to produce an updated bandwidth control signal on the subsequent rising edge of Φ3

as indicated in the figure. The state-machine controls the shift register to provide

an output code between 1 to 8. The the logic implemented in the state-machine can

be described as below:

• Increase (or decrease) the bandwidth control if increment signal is high (or low).

Retain the bandwidth control at the maximum value (or minimum value) if a

increment high (or low) is received when the code is at 8 (or 1).

• The step control signal controls the bandwidth control step size. If step control

is set high, then the bandwidth increase (or decrease) step size is changed to 2

at the third consecutive increment (or decrement) signals.

The above logic is encoded using a state-machine as depicted in Fig. 5.13. At every

rising edge of Φ3, the state-machine senses the input increment/decrement_bar signal

and transitions from state (n) to state (n + 1) as indicated in the table. Three bits

(s2, s1, s0) indicate the state. At every transition, depending on the current state

and the input a corresponding two bit output (y1,y0) is generated. The output

(y1,y0) controls the step-size, shift-right or shift-left of the thermometric counter.

The critical timing path for setup condition in the flip-flop can be identified all the

way from the increment/decrement_bar signal to the D input of flip-flop as shown

in Fig. 5.11. Depending on the state-machine output, the appropriate bandwidth

control code BCi is generated.
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Figure 5.11. Architecture of the digital logic and interface to analog front-end.
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The mixed-mode predictor thus implemented provides the combined features of

input jitter estimation and loop gain control. Such a mixed-mode implementation

offers several advantages which will be discussed in the next section.

5.3.1.2 Advantages of Mixed-Mode Predictor Design

There are several advantages of using the mixed-mode approach to estimation

compared to previously reported all-digital approaches:

1. AFE interfacing to the PD output acts as an efficient decimation and estimation

block.

2. As data rates continue to increase, at higher data rate to fT ratios, all-digital

approaches will not be quite efficient. Such approaches will require power

hungry CML circuits to interface to the PD output and decimate the digital

output from the PD before performing estimation and filtering using an all-

digital filter. Although the cost of the digital filter it self may be very low, the

interface and decimation circuits will still be power hungry.

3. This approach still maintains a digital section that can be programmed to alter

the bandwidth adaptation rate as indicated in the current implementation.

5.3.2 Input-Output (I/O) Design for the CDR System

5.3.2.1 Digital Output Driver to Drive the Logic-Analyzer

The bandwidth control code from the predictor should be monitored in real-time

to validate the effectiveness of jitter separation and bandwidth control algorithm

proposed. Hence the bandwidth control code is routed off-chip for monitoring as

illustrated in Fig. 5.11. The bandwidth control signals are updated at the rising

edge of the clock Φ3 running at 156MHz. The 8-bit thermometer code is converted
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Figure 5.12. Timing diagram of analog and digital interface.
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Figure 5.13. Predictor state machine.

to a 4 bits that include a 3 bit equivalent binary code and a 1 bit error code which

indicates if there is an error in the thermometer code. The 4 bits drive a digital output

driver that drives an off-chip logic-analyzer load. This section provides details of the

driver designed to interface with the logic analyzer load at 156MHz.

The load presented by the logic analyzers can be modeled using a parallel com-

bination of a resistor and a capacitor as indicated in Fig. 5.14. While a probe load

could be Rload = 20kΩ||Cload = 10pF , the exact value of the Rload (10K − 20K) and

Cload (5pF − 20pF ) can vary depending on the particular analyzer or the probe that

is being used. It should be noted that the value of the Rload is order of magnitude

larger than the typical characteristic impedance (Zline,typical ∼ 50− 75 Ω) of a trans-

mission line. Hence such a load behaves similar to a capacitive load rather than a

terminated transmission line. A capacitive load has the attributes of a transmission

line terminated in both an open and a short. During steady state the load behaves

like an open, while during signal transitions the load behaves like a short. If the
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Figure 5.14. Digital output buffer driving an off-chip logical analyzer probe load.

load capacitor varies across different conditions, then the reflection co-efficient at the

end of the transmission line is a frequency dependent variable which changes during

signal transitions.

Due to these reasons, using a conventional inverter based digital output driver

would generate a staircase waveform at the logic analyzer input, with the waveform

resting at the mid-range between 0−Vdd during the transitions. Such pedestal wave-

forms are not desired especially when the output needs to be sampled by the internal

clock of a logic-analyzer to convert the signal to decipher a logic high or a logic low

level. Certain models of the logic analyzers provide a method to adjust the delay of

the sampling phase of internal clock for the entire bus. But in the presence of an

skew between multiple data lines in the bus, then the presence of pedestal waveforms

may present a problem finding an optimum sampling point for the logic-analyzer to

decipher the digital code. Hence in this section, we outline a slew-rate controlled

predriver based digital pad driver that avoids this issue for a wide range of loads

and guarantees a smooth and controlled high-to-low and a low-to-high transitions.

The proposed driver combines several output driver design techniques used for both

push-pull and current source drivers [80]. The novelty of the proposed driver is the

use of current-source based charging/discharging of gate signals driving the driver

transistors instead of using current sources as drivers themselves. This approach is

also different from digital output impedance control commonly employed in digital

I/O drivers.



122

Figure 5.15. Digital driver based on a current source based pre-driver.
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Figure 5.16. Logic and the timing generation logic for predriver control.

The schematic of the output driver is shown in Fig. 5.15. The final stage of the

driver contains two transistors (P driver and N driver) for the push-pull operation.

The gate of the P driver (PDRV) and gate of the N driver (NDRV) are separately

controlled as indicated. This is in contrast to a conventional voltage-mode push-pull

driver which use digital hard-switching. This is also different from truly current-

mode drivers which employ constant current sources at the output stage. The digital

control logic required for generating appropriate PDRV and NDRV signals is shown

in 5.16. The main highlights of this design are:

• A break-before-make scheme is employed. This break-before-make scheme en-

sures that there is no crowbar current (short-circuit current from supply-to-

ground during transitions) through the output driver transistors during the

transitions.

• The break-before-make scheme is implemented using a non-overlap clock gen-

erator as indicated in Fig. 5.16. The timing waveforms and signal transitions

are indicated in Fig. 5.17. P1 (and P1B) and P2 (and P2B) are two non-

overlapping phases generated from the input data transitions. Based on this

non-overlap control,

– PMOS driver transistor is shut-off (using break-P) before the NMOS driver

transistor is enabled (usingmake-N ) for a high-to-low output (at the PAD)

transition.
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Figure 5.17. Timing waveforms for predriver control.

– NMOS driver transistor is shut-off (using break-N ) before the PMOS cur-

rent source is enabled (using make-P) for a low-to-high output (at the

PAD) transition.

• The OFF-to-ON transition a the gate of the driver transistors (both P and N)

is facilitated using a constant current sources. The ON-to-OFF transition is

performed instantly using a digital signal.

• The rate of driver gate transitions at PDRV and NDRV is controlled using

the strength of the current source. The value of the current source can be

controlled using a programmable input current source to the output buffer. In

this prototype, the value of the current is controlled by adjusting an external

resistor.

• Controlling the gates of the driver transistors provides a way to control the

output rise/fall transitions and hence eliminate the pedestal output waveforms.
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As suggested by [80], the rise/fall-times of the output transitions in I/O drivers

have to be just right like the Goldilock’s porridge. Too fast a rise time couples

excessive energy into parasitic LC elements resulting in reflections from short

discontinuities, while a very slow rise time reduces the timing margin in the

system.

• Gradual and controlled enabling of the output driver transistors ensures that

Ldi/dt noise generated on the supply nodes due to multiple simultaneous

switching outputs (SSOs) is kept under control.

• The control logic shown in 5.16 also includes an enable (En) control for the

output driver to optionally Tri-state the output driver to minimize substrate

noise during normal operation of the CDR.

As it will be indicated in the subsequent sections, real-time bandwidth control

information has been successfully captured using these current-controlled output

drivers to drive a logic-analyzer load.

5.3.2.2 CML Limiting Amplifier to Drive the Phase Detector

In order to test the proposed CDR system, input data from the test equipment at

10Gb/s must reach the input of the PD. This puts demanding requirements on the

input limiting amplifier which must interface with the input parasitics in a packaged

system and drive the loading presented by the PD. Key requirement specifications

of such a high speed input amplifier are:

• Provide a differential 100Ω input termination to the signal source.

• Deliver an output differential swing of at least 600mV to the phase detector

with a reliable input common-mode signal range in order to bias the input of

the PD.
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Figure 5.18. Single stage input amplifier to interface the signal source to PD.

• Tolerate input ISIj and minimize the additional ISIj from the amplifier in the

presence of input ISIj from the signal source. The input signal source may

contribute up to 10ps of jitter. This is especially important in our application

since we do not have a continuous-time equalizer in the input path to simplify

the design.

Two versions of the input buffer have been designed in this work. The design

used in the first prototype included a two stage solution to tolerate small input

signals from the signal source and provide signal amplification in addition to driving

the PD. In the second design, a single buffer stage was employed to minimize the

ISIj contribution from the amplifier. The schematic of the single stage amplifier

is shown in Fig. 5.18. The load resistor Rload can vary ±20% from the nominal

value such that Rload,min = 0.8 ∗ Rload,nom and Rload,max = 1.2 ∗ Rload,nom. The input

capacitance of the PD (due to Cgs) and the routing parasitics contribute a load

capacitance Cload = 100fF on each output node. The desired differential output

swing at the output of the amplifier is given by Ibias∗Rload. The minimum bandwidth

of the amplifier at the output node ω−3dB = (Rload,maxCload)−1 is constrained by
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Figure 5.19. Simulated eye diagram across corners including package parasitics.

Rload,max, while the minimum single-ended output swing Vse,min = Ibias ∗ Rload,min

is limited by Rload,min. To maximize the output bandwidth for the given Cload,

Rload,nom = 75Ω is chosen. Hence to achieve a desired single-ended output swing of

> 700mV across process and temperature corners, Ibias is set to 12mA. The design

has been simulated in an elaborate test bench including the parasitics in the input

path, supply parasitics, decoupling capacitor networks and external AC coupling in

the input path. The resulting eye diagram from the input path across process corners

is shown in Fig. 5.19.

In addition to the input limiting amplifier, the other contributions to the CDR

system include design and characterization of the power supply network including

both on chip and off chip decoupling capacitors, design of digital input clock pad

circuit and a digital register file with a serial to parallel logic to store the external

control codes for the entire system.
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Figure 5.20. Chip micrograph fabricated using TSMC 0.18µm technology.

5.4 Experimental Results

The proposed adaptive CDR has been fabricated using TSMC 0.18um CMOS

technology (with process fT = 44GHz). The chip micrograph is shown in Fig.

5.20. The total die-size is 2.3mmX2.3mm. The core are of the CDR occupies

1.5mmX1.5mm. Pins used for the digital I/O occupy the additional area in the die.

In order the verify the effectiveness of the proposed jitter separation and loop

adaptation techniques, digital loop gain control signals from the predictor are con-

tinuously monitored under the test with different jitter profile. The measurement

setup is shown in Fig. 5.21. The input data pattern is applied from a high perfor-

mance Bit Error Rate Tester (BERT). BERT allows for controlled-modulation (Pj)

of the triggering clock used for clocking out the data to the DUT. The recovered clock

and data are returned back to the BERT to measure the BER of the system. The
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Figure 5.21. Experimental setup for measurements.

digital bandwidth code from the predictor is connected to a logic analyzer (Agilent

1673G).

The measured loop gain adaptation is shown in Fig. 5.22, Fig. 5.23 and Fig.

5.24.

• Without additional Pj, the proposed CDR successfully recovers clock. The

instantaneous bandwidth code from the CDR is plotted in Fig. 5.22. The

average bandwidth code is maintained at a low value of 1.42 as seen in Fig.

5.22.

• The instantaneous bandwidth code with a moderate Pj (0.8UIpp at 1MHz) is

shown in Fig. 5.23. The average value of the code is 2.1. We should expect

the CDR to have high bandwidth when the slope of the input Pj is the largest.

For Pj frequency of 1MHz, highest slope should occur during zero crossings of

the phase modulation sinusoid every 0.5µs. It should also be noted that the

variation of bandwidth adaptation shows the expected periodicity of 0.5µs.
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• The instantaneous bandwidth code with a moderate Pj (0.8UIpp at 4MHz) is

shown in Fig. 5.23. The average value of the code is 4.6. Bandwidth adaptation

shows the expected periodicity of 0.125µs.

• A comparison of the jitter histogram from the recovered clock for different

input jitter profiles is shown in Fig. 5.25. The jitter profiles are extracted for

the lowest (1X) and the highest (8X) fixed bandwidth settings in addition to

adaptive bandwidth operation. As indicated in the figure:

– The jitter histogram of the adaptive CDR is identical to the minimum

fixed bandwidth CDR (with 1X strength) in the absence of any intentional

Pj applied at the input.

– The jitter histogram of the adaptive CDR is identical to the maximum

fixed bandwidth CDR (with 8X strength) in the presence of a large Pj
(0.7 UIpp at 16MHz) at the input.

• The recovered clock from the CDR has a measured jitter of 1.13ps rms at

9.4Gb/s using a 27 − 1 PRBS pattern from the BERT.

Measurement results from the first prototype demonstrate that the proposed

adaptive CDR unit optimizes the loop gain based on dominant jitter frequency de-

tection. The mixed-mode predictor implemented as a combination of a switched-

capacitor AFE and a digital controller successfully estimates the required bandwidth

of the CDR depending on the Pj applied at the input. The periodicity of loop gain

adaptation logic as indicated by the digital code obtained using a logic analyzer

correlates to the frequency of the applied Pj.

Experimental results also indicated that the first prototype chip was fabricated

in the slow process corner leading to excessive ISI in the output buffers operating

at 10Gb/s. The output buffers and other CML circuits in the CDR have been re-

designed with wider-bandwidths to minimize ISI in the second prototype which is

currently under fabrication.
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Figure 5.22. Measured real-time bandwidth control code value
when no periodic jitter is applied at the input.

Figure 5.23. Measured real-time bandwidth control code value for
Pj = 0.8UIpp at 1MHz.

5.5 Conclusion

This Section outlined an adaptive loop gain bang-bang CDR solution using an

analog PLL implementation. The proposed CDR controls loop gain adaptively for

different jitter profile estimated using a mixed-mode jitter estimator and loop-gain

adaptation. The experimental results from the first prototype fabricated using TSMC
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Figure 5.24. Measured real-time bandwidth control code value for
Pj = 0.8UIpp at 4MHz.

Figure 5.25. Comparison of measured jitter histogram for different input jitter.

RFCMOS 0.18µm technology running at 10Gb/s indicate that the loop gain control

mechanism performs as expected.
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6. CONCLUSION

The research presented in this thesis addresses some of the challenges associated

with both wireless and wireline communication systems. Sections 2, 3 and 4 focused

on analog baseband design for a high dynamic range wireless radios, while Sec-

tion 5 presented an adaptive clock-recovery system meant for a high-speed wireline

transceiver.

Section 2 offers insights into the critical impact of out-band undesired blockers on

analog baseband design in high dynamic range radios. Systematic analysis quantifies

dynamic range requirements at the A/D conversion interface depending on the type,

strength and relative spectral position of the blocker. We showed that baseband

filters implementing high order Inverse Chebyshev approximations that provide a

sharp transition band due to stop-band zeros are desirable in the presence of ag-

gressive analog adjacent blockers, while relatively smoother Butterworth filters are

suitable for the case of far out digital blockers. In Section 3, a prototype broad-

band UHF wireless receiver was presented. The receiver integrated an RFVGA, a

current-mode passive mixer along with a hybrid continuous- and discrete-time analog

baseband. Experimental results from the prototype system include residual dynamic

range measurements under different input blocker profiles.

We delved further into dynamic range requirements of the analog baseband sys-

tem in a wireless radio from a out-band linearity perspective in Section 4. A novel

feed-forward OTA structure suitable for active RC filter design for analog baseband

was proposed. Simulation results from the chip prototype that include a reference

design using the conventional feed-forward OTA for fair comparison were presented.

This research shows that circuit techniques to improve the out-band linearity per-

formance enhance the blocker tolerance and the dynamic range of the receiver. As

indicated in Section 4, proposed OTA has an excellent FoM and improves the out-

band linearity performance without significant cost in area or power.
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Section 5 dealt with clock recovery systems for wireline transceivers and presented

details of the research performed in collaboration with [61]. An efficient mixed-

signal approach to optimize the loop gain of a clock recovery loop was presented.

The Section provided complete details of the supporting digital state-machine in the

mixed-signal solution to achieve adaptive tracking along with the auxiliary circuits

used in the system. The mixed-signal solution presented achieves on-chip jitter

separation and improves the jitter tracking and jitter-filtering trade-off. The main

conclusion from this research is that smart mixed-signal solutions can enable adaptive

clock-recovery systems that operate at high data rates relative to fT of the process

technology.
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