
 
 
 
 
 
 

NEUROSENSORY DEVELOPMENT IN THE ZEBRAFISH INNER EAR 

 

 

A Dissertation  
 

by 
 

SHRUTI VEMARAJU 

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

 

 

December 2011 

 

 

Major Subject: Biology 



NEUROSENSORY DEVELOPMENT IN THE ZEBRAFISH INNER EAR 

 

A Dissertation  
 

by 
 

SHRUTI VEMARAJU 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

 

Approved by: 

Chair of Committee,        Bruce B. Riley 
Committee Members,      Mark J. Zoran 
        Brian D. Perkins 
        Rajesh C. Miranda 
Head of Department      Uel Jackson McMahan 

 

December 2011 

 

Major Subject: Biology



	
   iii 

ABSTRACT 

 

Neurosensory Development in the Zebrafish Inner Ear. (December 2011) 

Shruti Vemaraju, B.Tech., Guru Gobind Singh Indraprastha University 

Chair of Advisory Committee: Dr. Bruce B. Riley 

 

The vertebrate inner ear is a complex structure responsible for hearing and 

balance. The inner ear houses sensory epithelia composed of mechanosensory hair cells 

and non-sensory support cells. Hair cells synapse with neurons of the VIIIth cranial 

ganglion, the statoacoustic ganglion (SAG), and transmit sensory information to the 

hindbrain. This dissertation focuses on the development and regulation of both sensory 

and neuronal cell populations. The sensory epithelium is established by the basic helix-

loop-helix transcription factor Atoh1. Misexpression of atoh1a in zebrafish results in 

induction of ectopic sensory epithelia albeit in limited regions of the inner ear. We show 

that sensory competence of the inner ear can be enhanced by co-activation of fgf8/3 or 

sox2, genes that normally act in concert with atoh1a. The developing sensory epithelia 

express several factors that regulate differentiation and maintenance of hair cells. We 

show that pax5 is differentially expressed in the anterior utricular macula (sensory 

epithelium). Knockdown of pax5 function results in utricular hair cell death and 

subsequent loss of vestibular (balance) but not auditory (hearing) defects. SAG neurons 

are formed normally in these embryos but show disorganized dendrites in the utricle 

following loss of hair cells. Lastly, we examine the development of SAG. SAG 
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precursors (neuroblasts) are formed in the floor of the ear by another basic helix-loop-

helix transcription factor neurogenin1 (neurog1). We show that Fgf emanating from the 

utricular macula specifies neuroblasts, that later delaminate from the otic floor and 

undergo a phase of proliferation. Neuroblasts then differentiate into bipolar neurons that 

extend processes to hair cells and targets in the hindbrain. We show evidence that 

differentiating neurons express fgf5 and regulate further development of the SAG. As 

more differentiated neurons accumulate, increasing level of Fgf terminates the phase of 

neuroblast specification. Later on, elevated Fgf stabilizes the transit-amplifying phase 

and inhibits terminal differentiation. Thus, Fgf signaling regulates SAG development at 

various stages to ensure that proper number of neurons is generated. 
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CHAPTER I 

 

INTRODUCTION 

 

CLINICAL IMPLICATION AND RELEVANCE 

The vertebrate inner ear is a complex structure that is responsible for hearing and 

maintaining balance. Hearing impairment and balance disorders such as vertigo can have 

several underlying causes ranging from genetic conditions to environmental factors. The 

most common form of permanent hearing deficit results from loss of inner ear sensory 

hair cells. Although humans have lost the ability to regenerate hair cells, most non-

mammalian vertebrates have retained the capacity to replace hair cells lost during 

normal growth or following injury. In some cases of ear dysfunction, the peripheral 

nerve connecting the inner ear to the central nervous system itself is damaged. A better 

understanding of the molecular players involved in neurosensory development and 

regeneration is critical for designing therapeutic strategies to restore proper inner ear 

function.        

 

CRANIAL PLACODES 

The peripheral nervous system in vertebrate embryos is derived from two cell 

populations- neural crest and cranial placodal cells, which form at the border of the  

 

This dissertation follows the style of Developmental Biology. 
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neural plate and epidermis. Cranial placodes are specialized regions of vertebrate 

ectoderm that contribute to cranial ganglia and paired sense organs associated with 

olfaction, vision, hearing and balance in the head. These ectodermal thickenings form at 

distinct anteroposterior positions along the developing neural tube. Cranial placodes 

include the anterior lobe of the pituitary gland (adenohypophyseal), olfactory, lens, 

trigeminal, profundal, otic, lateral line, epibranchial and hypobranchial placodes. Most 

of these placodes are present in all vertebrates. Despite the diversity of structure and cell 

types derived from these placodes, all cranial placodes are thought to arise from a 

common field called the preplacodal ectoderm (reviewed in Baker and Bronner-Fraser, 

2001, Schlosser, 2010, Streit, 2004).  

 

STRUCTURE OF THE INNER EAR 

The inner ear is a complex three-dimensional structure that houses neuronal, sensory and 

non-neurosensory cell-types that are involved in hearing and balance. The earliest visible 

sign of inner ear development is the appearance of the otic placode. This placode 

cavitates to form a hollow structure called the otic vesicle in zebrafish (Fig. 1.1A). In 

other vertebrates such as chick and mouse this process occurs via invagination. The 

vesicle then undergoes a series of morphological changes that form interconnected 

chambers and canals (Lewis et al., 1985) (Fig. 1.1C). Each of these structures is  

associated with sensory patches, called maculae and cristae, which are important for 

auditory (hearing) and vestibular (balance) function. These patches called sensory 
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Figure 1.1. Structure of the inner ear. 
(A) Otic vesicle at 24 hpf showing otoliths (o) overlaying the sensory epithelia in the 
anterior and posterior regions. Neuronal precursor cells delaminate from the otic floor 
and accumulate outside the vesicle to form the SAG. (B) Illustration showing hair cells 
(hc) and support cells (sc) in the sensory epithelium. Bipolar SAG neurons innervate the 
hair cells peripherally and hindbrain nuclei centrally. (C) Illustration of adult inner ear 
structure. Chambers colored in blue are auditory endorgans; all others constitute the 
vestibular apparatus. Black patches represent sensory epithelium associated with each 
chamber or canal. Abbreviations: u, utricle; s, saccule; l, lagena; scc, semicircular canals 
(adapted and modified from Riley and Phillips, 2003).   
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epithelia are composed of mechanosensory hair cells and non-sensory support cells (Fig. 

1.1B). Hair cells perceive sound and motion through lateral deflection of ciliary bundles 

that project into the lumen of the ear. Maculae are present in the sensory epithelia of the 

utricle, saccule and lagena. They are associated with dense calcium carbonate crystals 

called otoliths that facilitate detection of linear acceleration, gravity and sound. Cristae, 

sensory epithelia in the semicircular canals, lack otoliths and instead long ciliary bundles 

of hair cells act as sensors of rotational acceleration. Sensory information from hair cells 

is transduced to nuclei in the hindbrain via neurons of the VIIIth cranial ganglion (Fig. 

1.1A, B), called the statoacoustic ganglion (SAG), that synapse with hair cells (Haddon 

and Lewis, 1996, Riley and Philips, 2003; Whitfield et al., 2002). The vestibular 

apparatus, constituting the utricle and semicircular canals, is present in all vertebrates 

and is highly conserved. The auditory sense organs, on the other hand, show 

considerable diversity. The primary auditory endorgans in fish are the saccule and the 

lagena whereas in birds and mammals it is the cochlea (Fig. 1.1C). The saccule serves a 

vestibular function in birds and mammals, and there is no known counterpart of the 

cochlea in fish (Riley and Phillips, 2003).  

 

ROLE OF FGF IN OTIC INDUCTION  

Induction of the otic placode depends on signals from the hindbrain and the mesoderm 

underneath the presumptive otic tissue. Several members of the fibroblast growth factor 

(Fgf) gene family have been identified as primary otic inducers. In zebrafish, fgf3 and 

fgf8 are expressed in the developing hindbrain adjacent to the pre-otic domain and act in 
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a redundant manner to induce otic tissue. Knockdown of either fgf3 or fgf8 results in a 

smaller otic vesicle and disrupting both fgf functions causes complete loss of otic tissue 

(Phillips et al., 2001; Leger and Brand, 2002; Maroon et al., 2002). In mouse, Fgf3 from 

hindbrain acts redundantly with Fgf10 from subotic mesoderm to induce the otic 

placode. Fgf3/Fgf10 double mutants fail to form otic vesicles or form microvesicles 

(Alvarez et al., 2003; Wright and Mansour, 2003). In chick, Fgf19 expressed in the 

mesoderm adjacent to the prospective otic placodal tissue has been shown to play a role 

in otic induction (Ladher et al., 2000). Recent studies in mouse and chick have reported 

that Fgf8 is involved in otic induction albeit in an indirect manner. It is expressed in the 

endoderm and also in the periotic region of mouse. Fgf8 is necessary for the expression 

of mesodermal otic inducer Fgf10 in mouse and Fgf19 in chick (Ladher et al., 2005). 

These studies support a central role of Fgfs in otic placode induction. Fgfs continue to be 

expressed in surrounding tissue and the otic vesicle at later stages. Their role in otic 

vesicle patterning and neurosensory development will be discussed later.   

  

AXIAL PATTERNING OF THE INNER EAR 

Following otic induction several genes are expressed asymmetrically in the placode and 

vesicle stages. As a result, the anterior-posterior (A-P), dorso-ventral (D-V) and medio-

lateral (M-L) axes are established in the ear. Signals from adjacent tissue play an 

important role in regional specification of the ear. Paired domain transcription factor 

pax2a is expressed in preotic cells and is later restricted to the ventromedial wall of the 

otic placode, adjacent to the hindbrain, and finally maintained in sensory hair cells 
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(Riley et al., 1999; Leger and Brand, 2002). Medial expression of Pax2 is also observed 

in chick and mouse (Nornes et al., 1990; Herbrand et al., 1998; Hutson et al., 1999). 

Hutson et al., (1999) showed that Pax2 is expressed on the medial side of the developing 

ear closest to the hindbrain and absent from the lateral wall. By rotating the otic field 

180O about the A-P axis the (now) medially positioned lateral epithelium upregulated 

Pax2 expression supporting a role for hindbrain signals in otic patterning.  

 In the zebrafish hindbrain, fgf3 is strongly expressed in rhombomere 4 (r4) 

during placodal stages (Maroon et al., 2002) and regulates anterior fates in the placode. 

hmx3 and pax5 are expressed in the anterior part of the otic placode as early as 14 hpf 

and 17 hpf, respectively (Pfeffer et al., 1998; Adamska et al., 2000). Loss of fgf3 

eliminates expression of these anterior markers. Expansion of fgf3 expression domain in 

the hindbrain of valentino (val) mutants shows the opposite effect. The val gene, 

orthologous to mouse MafB Kreisler gene, encodes a bZIP transcription factor that is 

expressed in r5 and r6 (Cordes and Barsh, 1994). val mutants show mispatterning of the 

hindbrain resulting in expanded fgf3 expression, from r4 through r5/r6. hmx3 and pax5 

are expressed throughout the medial wall and posterior marker pou3f3b is eliminated 

suggesting anteriorization of the otic vesicle. Fgf3 also regulates specification of the 

anterior sensory macula (utricle) and in val ectopic hair cells are produced in the medial 

wall adjacent to the expanded fgf3 domain in r5/6, which is normally devoid of hair cells 

(Kwak et al., 2002). Similar altered otic patterning is seen in vhnf1 mutants. vhnf1 codes 

for a homeodomain transcription factor that is expressed in the same hindbrain segments 

as val (Sun and Hopkins, 2001). Vhnf1 acts in synergy with Fgf3 from r4 to activate val 
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expression in r5 and r6, and also represses hoxb1a so as to limit its expression to r4 

(Hernandez et al., 2004). In vhnf1 mutant embryos anterior markers, such as hmx3 and 

pax5, are expanded posteriorly. In addition, these embryos show expansion of ventrally 

expressed atoh1 in the nascent maculae at the cost of dorsal marker suggesting a role in 

D-V patterning. As a result, sensory epithelia are distributed abnormally along the A-P 

and D-V axes. Precursor cells of the SAG are specified in the anteroventral part of the 

otic placode and express neurog1 and neurod. Expression of these genes is expanded 

posteriorly and failed to downregulate at later stages in mutant embryos. However, no 

ectopic posterior ganglion was observed suggesting that mechanisms independent of 

vhnf1 regulate ganglion size (Lecaudey et al., 2007).  

Fgf8 is expressed strongly in r4 during early somitogenesis but is not detected in 

the hindbrain after 14 hpf. Instead, fgf8 is expressed in the presumptive anterior and 

posterior maculae in the otic vesicle starting at 18 hpf (Leger and Brand, 2002). Loss of 

fgf8 (ace) does not alter hmx expression in the vesicle but severely impairs hair cell and 

SAG development. Expression of SAG markers is reduced which may reflect a direct 

role of fgf8 in SAG development or secondary effects resulting from a small otic vesicle 

in ace mutant embryos (Adamska et al., 2000; Leger and Brand, 2002).  

   

DEVELOPMENT OF SENSORY EPITHELIUM  

Sensory epithelia are composed of mechanosensory hair cells and non-sensory support   

cells that detect auditory and vestibular stimuli. The basic helix-loop-helix transcription 

factor Atoh1 is both necessary and sufficient for sensory epithelia development. Two 
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Atoh1 genes, atoh1a and atoh1b, are present in zebrafish. Atoh1 (atoh1b in zebrafish at 

10.5 hpf) is initially broadly expressed in cells throughout the presumptive sensory 

epithelium. These are precursor cells that have equal potential to give rise to both hair 

cells and support cells. At later stages, these cell-types emerge in a salt-and-pepper 

pattern as a result of lateral inhibition within this domain. Some cells (prospective hair 

cells) within the equivalence group upregulate expression of Atoh1 followed by Notch-

signaling ligands like Delta1 and Jagged2. This results in Notch activation in 

neighboring cells that eventually attain the alternate support cell fate. In zebrafish, both 

atoh1a and atoh1b are expressed in sensory epithelia primordium at 14 hpf. At later 

stages, atoh1a is expressed predominantly in the sensory epithelia and at higher levels in 

the hair cell layer compared to the basal support cell layer (Millimaki et al., 2007). 

Zebrafish mindbomb (mib) mutants, defective in Delta-Notch signaling, fail to restrict 

the initial, broad atoh1 expression domain and this results in excess hair cells at the 

expense of support cells (Haddon et al., 1998; Millimaki et al., 2007). Loss of Atoh1 

results in complete absence of both hair cells and support cells (Woods et al., 2004; 

Millimaki et al., 2007). Atoh1 misexpression can induce hair cell production in non-

sensory regions of the ear and attract auditory neurons in some cases (Zheng and Gao, 

2000; Kawamoto et al., 2003; Izumikawa et al., 2005; Millimaki et al., 2007; Huang et 

al., 2009). However, the ability to induce ectopic hair cells is limited. Some of these 

ectopic cells are disorganized, show abnormal morphology, and fail to survive. This 

might reflect the absence of certain factors normally present during sensory epithelia 
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development or the presence of inhibitory factors at ectopic locations. The effects of 

atoh1a misexpression will be investigated in Chapter II.  

Several studies have shown that Notch signaling specifies the sensory 

progenitors in mouse and chick much before expression of Atoh1. Activation of Notch-

signaling in non-sensory regions of the otic vesicle results in induction of ectopic 

sensory patches (Daudet and Lewis, 2005; Hartman et al., 2010; Pan et al., 2010). The 

prosensory domain also expresses Sox2, a high mobility group (HMG) box domain 

transcription factor belonging to the SoxB1 subfamily of proteins (Uchikawa et al., 

1999). Members of this group are known for maintaining stem-cell-like state and 

inhibiting neuronal differentiation (Bylund et al., 2003; Graham et al., 2003). In chick 

and mouse ear, Sox2 is expressed in both neuronal and sensory progenitors. In the 

developing sensory epithelium, Sox2 expression in downregulated in cells that will 

differentiate into hair cells while it is maintained in support cells (Neves et al., 2007; 

Dabdoub et al., 2008). Support cells are involved in regenerative response after hair cell 

damage in birds either by proliferation or by trans-differentiation where a support cell 

differentiates into a hair cell (reviewed in Matsui and Ryals, 2005). In zebrafish, sox2 is 

expressed in the otic placode a few hours after the initial specification of the prosensory 

domain. Its expression is lost from mature hair cells but maintained in support cells, like 

in chick and mouse. Knockdown of sox2 function results in cell death in the sensory 

epithelia and impairs recovery following hair cell loss consistent with its expression in 

support cells (Millimaki et al., 2010).    
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  Fgf signaling regulates specification of the prosensory region by activating Atoh1 

expression. Inhibition of Fgf signaling at early stages causes failure to induce atoh1 

expression and causes a reduction in the number of hair cells and support cells. Fgfs are 

also expressed in newly formed sensory epithelia. Blocking Fgf signaling at later stages 

results in a failure to expand the sensory epithelium by possibly impairing recruitment of 

additional cells (Pirvola et al., 2002; Jacques et al., 2007; Millimaki et al., 2007; 

Puligilla et al., 2007; Hayashi et al., 2008).  

 Developing hair cells express genes that are essential for proper differentiation 

and survival. pax2a and pax2b are expressed in differentiating hair cells and are 

downstream targets of atoh1 (Riley et al., 1999; Millimaki et al., 2007). Another paired 

domain transcription factor, pax5, is differentially expressed in the anterior part of the 

otic vesicle (Pfeffer et al., 1998) and its function in sensory epithelium development will 

be explored in Chapter III. Differentiating hair cells in all sensory epithelia express a 

Pou-domain transcription factor, Pou4f3 (Brn3c). Brn3c-null mice express early hair cell 

differentiation markers but these immature cells undergo apoptosis soon after (Xiang et 

al., 1998). This suggests a role in hair cell maturation and survival. Brn3c upregulates 

the expression of a zinc-finger transcription factor Gfi1 (Hertzano et al., 2004). Gfi1 

mutant embryos show a similar phenotype as Brn3c mutant embryos. However, rapid 

degeneration is seen only in the cochlea, and although vestibular sensory patches are 

disorganized no signs of cell death are observed. In these embryos, neurons of the 

cochlear ganglion show progressive degeneration following hair cell loss (Wallis et al., 

2003). Another survival factor Barhl1, a homeodomain protein, is also expressed in hair 
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cells of all epithelia but shows a gradual loss of hair cells only in the cochlea much later 

in development (Li et al., 2002). These studies suggest that maintenance of sensory 

epithelia is differentially regulated.  

 

DEVELOPMENT OF THE STATOACOUSTIC GANGLION (SAG) 

Sensory neurons of the statoacoustic ganglion (SAG), also called the cochleovestibular 

ganglion (CVG), innervate hair cells in the sensory epithelia. SAG development is a 

sequential process involving several stages discussed below and illustrated in Fig.1.2. 

SAG precursor cells, called neuroblasts, are specified in the otic floor by neurogenin1 

(neurog1), a bHLH factor homologous to atoh1. Loss of neurog1 leads to a complete 

loss of SAG neurons (Ma et al., 1998, Ma et al., 2000; Andermann et al., 2002). 

Overexpression of neurog1 in Xenopus and zebrafish results in formation of ectopic 

neurons in the ectoderm supporting a role in neuronal specification (Ma et al., 1996; 

Blader et al., 1997). In zebrafish, neuroblasts are first specified during placodal stages 

(Haddon and Lewis, 1996; Andermann et al., 2002; Radosevic et al., 2011). These 

neuroblasts leave the otic floor in a process called delamination from the anterolateral 

margin of the vesicle and from the middle of the floor more posteriorly up until 42 hpf 

(Haddon and Lewis, 1996). Expression of neurog1 is transient in the precursors and is 

followed by strong upregulation of neuronal differentiation bHLH gene neurod (Korzh 

et al., 1998, Andermann et al., 2002). Delta-Notch signaling regulates the number of 

cells committed into entering neuronal differentiation via lateral inhibition. Members of 

Notch signaling pathway are expressed in the neurogenic domain of the otic vesicle and 
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disruption of Notch signaling in zebrafish mindbomb mutant or in chick by blocking 

Notch intracellular cleavage leads to excess sensory neuronal precursors (Adam et al., 

1998; Haddon et al., 1998; Alsina et al., 2004; Abello et al., 2007).  

 In chick and mouse, neuroblasts undergo a brief phase of proliferation to expand 

the precursor population (D’Amico-Martel, 1982; Begbie et al., 2002; Alsina et al., 

2003; Matei et al., 2005). This stage of transit-amplification is characterized by the 

expression of neurod and proliferation markers (Camerero et al., 2003). Mitotic cells are 

observed in the SAG well after delamination has ceased in chick (D’Amico-Martel, 

1982). In some fish such as the oscar, Astronotus ocellatus, neurons are added to the 

SAG throughout adulthood suggesting that a pool of neuronal precursor cells is 

maintained (Popper and Hoxter, 1984; Presson and Popper, 1990). In zebrafish, hair 

cells form throughout life (Bang et al, 2001; Higgs et al., 2001) and it is likely that the 

SAG continues to grow in order to accommodate the expanding sensory epithelia. 

Following proliferation, neuroblasts exit the cell cycle and differentiate into bipolar 

neurons that innervate hair cells in the sensory epithelia and processing centers in the 

hindbrain. Maturing neurons in zebrafish express LIM domain/homeodomain 

transcription factors Islet-1/2 (Korzh et al., 1993; Inoue et al., 1994; Haddon et al., 

1998). In chick and mouse, Islet-1 is expressed in the otic epithelium in addition to the 

developing SAG (Li et al., 2004b; Radde-Gallwitz et al., 2004). 

 Differentiating neurons express a gamut of other markers related to extension of 

neurites to peripheral and central targets, synaptogenesis and survival. Otic neurons in 

chick and mouse are spatially segregated into auditory (cochlear or spiral ganglion  
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Figure 1.2. Stages of statoacoustic ganglion (SAG) development.  
Illustration depicting the various stages of SAG development. SAG precursor cells 
called neuroblasts form in the floor of the otic vesicle (1, specification). These cells 
leave the ear (2, delamination) and migrate ventromedially. Upon delamination, 
neuroblasts undergo proliferation (3, transit-amplification) and eventually differentiate 
into neurons (4, mature neurons). Abbreviations: nc, notochord; ov, otic vesicle. 
Transverse section posterior to the utricular macula is shown, with dorsal on top.    

 

neurons, SGN) and vestibular ganglia, which innervate endorgans with respective 

functions (Maklad and Fritzsch, 1999; Koundakjian et al., 2007; Bell et al., 2008).  

Dye-tracing experiments in zebrafish embryos show spatial segregation of SAG into 

anteroventral and posteromedial parts. This reflects functional segregation as well for the 

most part. The anteroventral part of the SAG innervates sensory epithelia responsible for 

vestibular function (utricle, anterior and lateral cristae). The posteromedial part of the 

SAG innervates the auditory endorgan (saccule). One exception is the posterior crista 
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that is innervated by the posterior part of the SAG and not the anteroventral part along 

with other vestibular endorgans (our unpublished observation, Sapede and Pujades, 

2010). Whether vestibular and auditory neurons segregate further during later stages of 

development is not known. 

 

FACTORS REGULATING SAG DEVELOPMENT 

Sensory neurons depend on neurotrophins for survival and differentiation. Inner ear 

sensory epithelia and delaminating neuroblasts express brain-derived neurotrophic factor 

(BDNF) and neurotrophin-3 (NT-3). Their action is mediated by high-affinity tyrosine 

kinase receptors TrkB (BDNF) and TrkC (NT-3) that are expressed in SAG neurons. 

Studies in chick and mouse suggest selective dependency of vestibular and cochlear 

neurons on BDNF and NT-3, respectively. In embryos doubly homozygous for 

BDNF/NT-3 or TrkB/TrkC all SAG neurons are lost (reviewed in Fritzsch et al., 2004; 

Sanchez-Calderon et al., 2007b, reviewed in Appler and Goodrich, 2011). 

Insulin-like growth factor (IGF-1) and its receptor (IGF1R) are expressed in the 

inner ear of chick and mouse. IGF affects nervous system development and otic 

neurogenesis by modulating cell proliferation and survival. Exogenous IGF-1 in cultured 

chick SAG increases proliferation, neurite outgrowth and expression of differentiation 

markers. Blocking IGF-1, on the other hand, impairs SAG development by reducing 

proliferation, differentiation and increasing cell death (Camarero et al., 2003). IGF-1 acts 

in a similar fashion in mice. IGF-1 null mice show delay in differentiation of cochlear 

neurons and apoptotic cell death during postnatal development resulting in loss of 
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hearing. IGF-1 mutation in humans leads to hearing loss as well (Camarero et al., 2002; 

reviewed in Varela-Nieto et al., 2004). In zebrafish, IGF1R is expressed in the ear 

primordium and knockdown of IGF1R function results in arrested development, 

increased neuronal apoptosis and a small otic vesicle (Ayaso et al., 2002; Schlueter et 

al., 2007). 

Several studies in chick and mouse have implicated the role of Fgf signaling at 

different stages of otic neurogenesis. Fgf2 (bFgf) is expressed in chick otic placode 

(Vendrell et al., 2000) and ectopic Fgf2 increases the number of migrating and 

differentiating SAG neurons (Hossain et al., 1996; Zhou et al., 1996; Adamska et al., 

2001). Fgf2 promotes TrkB receptor expression in culture that allows these neurons to 

respond to BDNF that has been shown to accelerate SAG precursor proliferation and 

their migration (Brumwell et al., 2000). Fgf3 is expressed in the sensory epithelium and 

the SAG in mouse. Fgf3 mutants have smaller SAG and since the ear shows 

morphogenetic defects in this background it is difficult to deduce its role in otic 

neurogenesis (Wright and Mansour, 2003). Fgf8 is expressed in the chick otic vesicle 

and in the SAG. Delaminating neuroblasts are observed at the boundary of Fgf8 domain 

in the vesicle. Ectopic application of Fgf8 enhances expression of SAG markers 

(Adamska et al., 2001). Knockdown of fgf3 and fgf8 in zebrafish shows impairment of 

SAG development, as discussed previously, but detailed analysis is lacking (Leger and 

Brand, 2000). Another Fgf, Fgf10, is expressed in the presumptive neural and sensory 

regions of the otic placode in chick and mouse. In mouse, Fgf10 is also expressed in the 

SAG and delaminating neural precursors (Pirvola et al., 2000; Alsina et al., 2004). 



	
   16 

Overexpression of Fgf10 in chick increases the number of Neurod-positive cells in the 

neurogenic domain of the vesicle and in the SAG without inducing ectopic site of 

delamination. No increase in Neurog1/Delta1 expression or cell proliferation is observed 

in the otic epithelium suggesting that Fgf10 promotes neuronal determination 

(characterized by Neurod expression) and not specification. However, inhibition of all 

Fgf signaling using SU5402 results in a dramatic reduction in Neurog1 and Neurod 

supporting a role for Fgfs in early stages of SAG precursor specification and 

determination (Alsina et al., 2004). Mouse Fgf10 null mutants do not show defects in 

formation of SAG neurons although neurons innervating the posterior crista are lost later 

in development (Pauley et al., 2003). Fgf19 is expressed in delaminating neuroblasts and 

the SAG in chick, and its role in otic neurogenesis is unknown. Homologue of chick 

Fgf19 in mouse, Fgf15, is not expressed in the SAG (Wright et al., 2004; Sanchez-

Calderon et al., 2007a). Detailed analysis of zebrafish SAG development and its 

regulation by Fgf will be examined in Chapter IV.  

  

ESTABLISHMENT OF NEURAL AND SENSORY DOMAINS 

The anterior ventromedial region of the otic vesicle gives rise to both sensory neurons 

and the sensory epithelia. In chick and mouse, neurosensory development occurs in a 

sequential manner- SAG precursors are specified first followed by delamination, and 

then sensory epithelia precursors form in the same region. In zebrafish, neuronal and 

sensory populations begin to develop concurrently during placodal stages and are 

segregated spatially instead of temporally. Both of these scenarios require that the 
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expression domains of Neurog1 and Atoh1 be restricted within the common 

neurosensory field. Raft et al. (2007) showed that expression of neurogenic markers 

(Neurog1, Neurod) persists while Atoh1 expression is upregulated in the utricle and 

saccule, but not in the cochlea of mouse. They show evidence of mutual antagonism 

between Neurog1 and Atoh1, such that expression domain of each is expanded in Atoh1 

and Neurog1 mutants, respectively. Cross-regulation of bHLH genes to generate 

progenitor cells with alternative fates has been shown elsewhere in the nervous system 

(Gowan et al, 2001; Bertrand et al., 2002; Akagi et al., 2004). Similar cross-regulation is 

thought to occur in the zebrafish inner ear but is not fully understood.     

 Upon specification of precursors, the question remains as to how precursors from 

the same neurosensory region give rise to different branches of the SAG and to various 

sensory epithelia. Recent studies in chick have shown that neuronal precursors of 

vestibular and cochlear ganglion are temporally and spatially segregated within the otic 

placode. Early-born precursors from the anterior region of the neurogenic domain give 

rise to neurons that innervate vestibular endorgans. One exception is precursors of 

neurons that project to the posterior cristae, which are present in the posterior neurogenic 

domain. Later-born precursors from the posterior part of the neurogenic region mainly 

contribute to the cochlear ganglion. Sensory epithelia precursors show similar spatial 

segregation. Fate maps reveal that precursors of vestibular and auditory endorgans 

emerge from the anterior and posterior-medial part of the neurosensory domain in the 

otic floor, respectively (Bell et al., 2008). This suggests that both neuronal and sensory 

precursors acquire similar positional identity in the otic floor and that neurons formed in 
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a specific region of the ear eventually innervate sensory epithelia derived from the same 

region. Overall these data suggest that a complex and dynamic relationship exists 

between sensory epithelia and SAG formation in the inner ear.     

 

DISSERTATION OBJECTIVES 

The objective of this dissertation is to study the development and regulation of neuronal 

and sensory components of the zebrafish inner ear. 

 Several studies have shown that Atoh1 is necessary for induction of sensory 

epithelia and sufficient to form ectopic hair cells. However, whether atoh1 can induce 

the entire sensory epithelium, including hair cells and support cells, has been addressed 

only by few. Studies in chick and mouse have shown that the competence of otic tissue 

to form ectopic hair cells is restricted. This may be either due to changes in 

developmental plasticity or absence of other necessary factors. Chapter II, a 

collaborative effort with the first author, my former colleague Elly M. Sweet, shows that 

atoh1 is sufficient to induce ectopic sensory epithelium with maximal effects during 

placodal stages. However, there is a degree of spatial restriction even at this early stage 

that can be overcome by misexpressing fgf3/8 and sox2, factors normally involved in 

sensory epithelia development.  

During otic differentiation, many factors are expressed asymmetrically in 

response to signals from adjacent tissues. Fgf3 from the hindbrain induces expression of 

pax5 in the anterior macula (utricle). Chapter IV is in collaboration with the first author, 

my former colleague, Sujin Kwak and addresses the role of pax5 in sensory epithelia 
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development. We show that pax5 is necessary for survival of hair cells in the utricle but 

not the posterior macula (saccule). As a secondary consequence dendrties of 

statoacoustic ganglion (SAG) neurons are disorganized. Since the utricle is responsible 

for vestibular function, embryos knocked down for pax5 show balance defects but no 

auditory impairment.  

Chapter V focuses on the development of the statoacoustic ganglion (SAG). We 

show that precursor cells are specified in the floor of the ear by a moderate to low dose 

of Fgf, emanating from the adjacent hindbrain and the utricle. Upon leaving the otic 

vesicle, these precursor cells undergo proliferation, followed by differentiation. 

Differentiating neurons express fgf5, which increases the overall level of Fgf signaling 

and results in termination of precursor specification. In addition, Fgf stabilizes precursor 

cells in a proliferative state and delays differentiation. This feedback inhibition mediated 

by Fgf from mature neurons regulates neurogenesis and thus, the total number of 

neurons formed in the ganglion.    
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CHAPTER II 

 

SOX2 AND FGF INTERACT WITH ATOH1 TO PROMOTE SENSORY 

COMPETENCE THROUGHOUT THE ZEBRAFISH INNER EAR* 

 

OVERVIEW  

This is published work describing the effects of atoh1a misexpression and factors 

influencing sensory competence of otic tissue. It is primarily the work of my colleague, 

E. M. Sweet. I include it here as a record of my work because I contributed towards 

portions of Figure 2.6 and the entirety of Figures 2.1, 2.7, 2.9, 2.10, 2.11. 

 

INTRODUCTION 

 Sensory epithelia of the inner ear, comprising hair cells and support cells, 

mediate the senses of hearing and balance.  One of the most important regulatory factors 

controlling development of sensory epithelia is the basic helix-loop-helix transcription 

factor, Atoh1, expression of which is both necessary and sufficient for development of  

sensory epithelia (Chen et al., 2002; Millimaki et al. 2007; Millimaki et al., 2010; Woods 

et al., 2004).  Atoh1 is best known for its role in differentiation of hair cells. Atoh1 

expression is maximal in differentiating hair cells, and conditions that maintain  

elevated expression promote hair cell differentiation at the expense of support cells 

                                                
* Reprinted with permission from “Sox2 and Fgf interact with Atoh1 to promote sensory 
competence throughout the zebrafish inner ear” by Sweet, E.M., Vemaraju, S., Riley, 
B.B., 2011. Dev. Biol. 358, 113-121, Copyright [2011] by Elsevier Inc.   
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 (Dabdoub et al., 2008; Jones et al., 2006; Woods et al., 2004; Zheng and Gao, 2000).  

However, Atoh1 also acts at an earlier stage to establish the prosensory domain from 

which both hair cells and support cells emerge.  Accordingly, Atoh1 is initially 

expressed in a broad domain containing precursors of both hair cells and support cells 

(Woods et al., 2004; Yang et al., 2010).  Only later does Atoh1 become restricted to 

differentiating hair cells by a self-limiting process termed lateral inhibition (reviewed by 

Cotanche and Kaiser, 2010).  Disruption of Atoh1 prevents development of both hair 

cells and support cells, whereas misexpression of Atoh1 can stimulate formation of 

ectopic sensory epithelia containing both cell types (Millimaki et al., 2007; Woods et al., 

2004).  Thus, Atoh1 exhibits potent tissue-organizing activity that goes beyond its ability 

to promote hair cell differentiation.  

The basis for Atoh1’s broader organizing activity lies in its ability to activate 

downstream signaling pathways that diversify cell fates.  For example, Atoh1 activates 

expression of various Notch ligands that facilitate lateral signaling required for support 

cell specification (Millimaki et al., 2007; Woods et al., 2004).  Notch signaling in this 

context works in part by repressing Atoh1 expression in a subset of precursor cells, 

resulting in the alternating pattern of hair cells and support cells seen in mature sensory 

epithelia.  Newly formed sensory epithelia also express a number of Fgf genes.  It 

appears that Fgf signaling serves to recruit additional cells into the developing sensory 

epithelium: Discrete subsets of hair cells and support cells that normally form after the 

first wave of hair cell production fail to form when Fgf signaling is impaired (Hayashi et 

al., 2007; Hayashi et al., 2008; Jacques et al., 2007; Millimaki et al., 2007; Pirvola et al., 
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2002; Puligilla et al., 2007).  Notch and Fgf also appear to function upstream to activate 

Atoh1 expression (Hayashi et al., 2008; Millimaki et al., 2007; Woods et al., 2004), 

suggesting a complex feedback network that is only partially understood.  How these 

signals influence the effects of Atoh1 misexpression remains to be established. 

Despite the organizing effects of Atoh1, competence to respond properly to 

Atoh1 is not uniform.  For example, some regions of the otic vesicle appear to be 

completely refractory to the effects of Atoh1, failing to produce sensory epithelia even 

after high-level Atoh1 misexpression (Huang et al., 2009; Kawamoto et al., 2003; 

Millimaki et al., 2010; Woods et al., 2004; Zheng and Gao, 2000).  Even in regions 

capable of forming ectopic sensory epithelia, ectopic hair cells induced by Atoh1 

misexpression often exhibit aberrant morphology or a diminished capacity to survive 

after differentiation (Izumikawa et al., 2005; Kawamoto et al. 2003; Millimaki et al., 

2007).  In such cases, it is likely that cells in foreign sites lack essential cofactors needed 

for normal Atoh1 activity or, alternatively, other regionally expressed factors may 

interfere with Atoh1.  Because Atoh1 is a promising candidate for gene therapy to 

restore hearing (Izumikawa et al., 2005; Shou et al., 2003), identifying the factors that 

influence sensory competence remains an important goal of inner ear research. 

Here we investigate the effects of atoh1a misexpression in zebrafish by 

examining temporal and spatial parameters that influence Atoh1 function.  We 

demonstrate that misexpression of atoh1a at various stages of otic development can 

induce ectopic sensory epithelia composed of both hair cells and support cells.  

Competence to respond to atoh1a misexpression is already spatially restricted during 
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placodal stages and becomes increasingly restricted after formation of the otic vesicle.  

Co-misexpressing atoh1a with fgf3, fgf8 or sox2, genes that normally act in the same 

gene network with atoh1a, promotes sensory development throughout the otic vesicle.  

These data elucidate a genetic network that is sufficient to enhance competence to 

respond to Atoh1. 

 

MATERIALS AND METHODS 

Strains 

The wild-type strain was derived from the AB line (Eugene, OR).  The brn3c:gfp line 

was developed by Xiao et al. (Xiao et al., 2005) and hsp70:dkk1-GFPw32 was developed 

by Stoick-Cooper et al., (Stoick-Cooper et al., 2007).  hsp70:atoh1ax20, hsp70:fgf8x17 and 

hsp70:sox2x21 lines were previously described (Millimaki et al., 2010).  We also 

generated two new lines, Tg (hsp70:pax2a)x23 and Tg(hsp70:fgf3)x27, using previously 

described techniques (Millimaki et al., 2010).   

 

Misexpression and gene-knockdown 

To assess the effects of gene misexpression or gene knockdown, at least 30 embryos 

were observed for each time-point.  Except where noted in the text, phenotypes were 

fully penetrant. For most misexpression experiments using heat shock-inducible 

transgenic lines, embryos were incubated in a water bath at 39°C for 30 minutes at time 

points described in the results.  For experiments involving hsp70:pax2ax23 or both 

hsp70:pax2ax23 and hsp70:atoh1ax20, embryos were activated at 36°C for 30 minutes.  
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Activation of hsp70:pax2ax23 at higher temperatures causes elevated cell death, whereas 

activation of both transgenes is highly effective at 36°C (data not shown).  Injection of 

morpholino oligomers to knockdown pax2a, pax2b or pax8 was performed as previously 

described (Bricaud and Collazo, 2006; Mackereth et al., 2005). 

 

In situ hybridization 

In situ hybridization was performed as described previously (Jowett and Yan, 1996; 

Phillips et al., 2001). 

 

Immunostaining 

Antibody staining was performed as described by Riley et al. (Riley et al., 1999).  

Primary antibodies: anti-Pax2 (Covance diluted at 1:100), anti-GFP (Santa Cruz 

Biotechnology diluted 1:200) and anti-Caspase 3 (R&D systems diluted 1:100).  

Secondary antibodies: Alexa 546-conjugated goat anti-rabbit IgG (Molecular Probe 

diluted 1:200) or HRP-conjugated goat anti-rabbit IgG (Vector laboratories PI-2000 

diluted 1:200). 

 

Sections 

For cryosectioning of brn3c:gfp, embryos were fixed overnight in MEMFA (0.1 M 

Mops at pH7.4, 2 mM EGTA, 1 mM MgSO4, 3.7% formaldehyde).  Embryos were then 

washed twice for 5 minutes in 1x PBS followed by two one hour long washes in PBT 

with 0.5% Triton-X and finally washed twice for 5 minutes in 1x PBS and transferred 
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into a 30% sucrose solution made in PBS.  Embryos were embedded in tissue freezing 

medium (Triangle Biomedical Sciences, H-TFM) and cut into 10 µm sections using a 

cryostat.  Slides were dried overnight, washed in PBS, and then mounted in ProLong 

Gold (Invitrogen).  The same protocol was used for cryosectioning of embryos following 

wholemount in situ hybridization except that PBT washes were omitted.  For double 

labeling of sox2 and brn3c:gfp, embryos were first stained by wholemount situ 

hybridization for sox2, then 10 µm cryosections were immunostained for GFP.  For 

resin-sections of sox2 and brn3c:gfp, embryos were stained in wholemount by 

immunolocalization of GFP followed by in situ hybridization for sox2, then embedded in 

Immunobed resin (Poly- sciences No. 17324) and cut into 7 µm sections. 

 

RESULTS 

Effects of hs:atoh1a misexpression in the nascent otic vesicle 

We showed previously that zebrafish atoh1a is necessary and sufficient for hair cell 

development (Millimaki et al., 2007).  To further investigate the effects of atoh1a 

misexpression and determine the temporal requirements for atoh1a, we utilized a heat 

shock-inducible transgenic line to misexpress atoh1a (Millimaki et al., 2010).  Induction 

of the hsp70 heat shock promoter typically results in elevated transcript levels of the 

transgene for 90 minutes, followed by a gradual decay over the next few hours (Hans et 

al., 2007).  However, activation of transgenic hs:atoh1a led to robust expression of 

atoh1a transcript for at least 6 hours, with moderate upregulation still evident through 9 

hours post-activation (Fig. 2.1E, F).  This extended period of upregulation likely occurs 
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through auto-regulatory activation of the endogenous atoh1a locus (Helms et al., 2000; 

Sun et al., 1998; our unpublished observations).  For the purposes of this study it is 

important to note that the hs:atoh1a transgene is expressed globally, including 

throughout the otic vesicle (Fig. 2.1A-D). 

  We began our analysis by activating hs:atoh1a at 18 hpf, the time when the otic 

vesicle first forms.  Production of mature hair cells was monitored by following 

expression of brn3c:gfp (Xiao et al., 2005), which can first be detected in nascent hair 

cells around 9 hours after activation of hs:atoh1a (Millimaki et al., 2010).  Activation of 

hs:atoh1a at 18 hpf led to production of hair cells throughout the ventromedial quadrant 

of the ear at 30 hpf (Fig. 2.2A, B).  This region includes the areas normally occupied by 

the utricular and saccular maculae plus intervening tissue.  Ectopic hair cells were stably 

maintained through at least 42 hpf, and additional hair cells continued to accumulate 

around the edges of the expanded sensory epithelium (Fig. 2.2C, D).  To further 

characterize hair cell differentiation under these conditions, we examined Pax2 

expression, which normally upregulates during development of all utricular hair cells, as 

well as the first 2-3 hair cells to form in the saccule (Riley et al., 1999; Kwak et al., 

2006).  Nearly all cells within the otic vesicle that expressed brn3c:gfp became positive 

for Pax2 within 15 hours of hs:atoh1a activation (Fig. 2.2E, F).  Additionally, 

expression of general macular markers fgf3 and fgf8 also expanded following activation 

of hs:atoh1a, as did the utricular marker pax5 (Fig. 2.2G-L).  Thus, misexpression of 

atoh1a induced formation of excess and ectopic hair cells in the ventromedial portion of 

the otic vesicle, with most hair cells expressing markers consistent with an anterior 
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(utricular) fate.  In contrast, only a small number of hair cells were seen in the dorsal 

epithelium and none in the lateral epithelium, indicating that sensory competence is 

already spatially restricted at the early otic vesicle stage. 

 

                    

Figure 2.1.  atoh1a expression following hs:atoh1a activation at 24 hpf.   
Expression of atoh1a at indicated times in control embryos (A, C, E) and hs:atoh1a 
transgenic embryos (B, D, F). Images of wholemount specimens (A-B, E-F) are 
dorsolateral views with anterior to the left and transverse sections (C-D) with dorsal to 
the top.  The otic vesicles are outlined in C-D. 
 

Effects of hs:atoh1a misexpression at later stages 

We next characterized the effects of activating hs:atoh1a at 24 hpf, by which time the 

first mature hair cells have formed and maculae have started to expand (Haddon and 

Lewis, 1996; Riley et al., 1999).  We showed previously that activation of hs:atoh1a at 

this time leads to production of hair cells throughout the ventromedial wall in a manner 

comparable to activating hs:atoh1a at 18 hpf (Millimaki et al., 2010).  We extended that 

work by examining early markers of macular development.  Some of the earliest targets 

of atoh1a/b in the zebrafish otic placode and vesicle are Notch pathway genes deltaA 

and deltaD (Millimaki et al., 2007).  Accordingly, activation of hs:atoh1a at 24 hpf led 



	
   28 

to a rapid expansion of the macular domains of deltaA to cover the entire ventromedial 

wall of the otic vesicle by 26 hpf (Fig. 2.3A, B).  This was followed by expansion of fgf3 

into the medial wall at 28 hpf, including medial expansion of utricular expression and 

upregulation in the saccular macula  (Fig. 2.3C, D). Expression of sox2, which normally 

follows atoh1a/b and initially marks both hair cells and support cells, showed intense 

expression throughout the ventromedial wall of the otic vesicle by 30 hpf, 6 hours after 

 

 

Figure 2.2. Otic vesicle patterning following hs:atoh1a activation at 18 hpf.  
(A-F) Expression of brn3c:gfp (green) in the utricle and saccule of control embryos (A, 
C, E) and in hs:atoh1a transgenic embryos (B, D, F) at indicated times.  (E, F) Co-
staining with anti-Pax2 in red.  (G-L) Otic expression of fgf3, fgf8, and pax5 in control 
embryos (G, I, K) and expanded expression in hs:atoh1a transgenic embryos (H, J, L).  
All images show dorsolateral views with anterior to the left and dorsal up (A-H) or 
dorsal views with anterior to the left and medial up (I-L).  
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heat shock (Fig. 2.3E, F; Millimaki et al., 2010).  Because sox2 is also induced by Fgf 

and Notch (Millimaki et al., 2010), it is possible that Atoh1a induced sox2 indirectly 

through activation of Fgf and Notch pathways. Ectopic hair cells marked with brn3c:gfp 

were first observed by 33 hpf, 9 hours after activation of hs:atoh1a (Millimaki et al., 

2010, and data not shown).  Transverse sections of embryos differentially stained for 

brn3c:gfp and sox2 confirmed that atoh1a misexpression expanded production of both 

hair cells and support cells (Fig. 2.3G, H). Many hair cells in the anterior half of the ear, 

and a few randomly scattered hair cells in the posterior, became Pax2-positive by 39 hpf 

(Fig. 2.3I, J; Millimaki et al., 2010).  The timeframe of responses of various macular 

genes to hs:atoh1a activation is summarized in Fig. 2.3K. 

 Although many genes showed similar responses to hs:atoh1a activation at 18 hpf 

compared to 24 hpf, there were several notable exceptions.  For example, activation of 

hs:atoh1a at 24 hpf or later did not expand the domains of fgf8 and pax5 expression as it 

did with earlier hs:atoh1a activation (data not shown).  Similarly, upregulation of pax2a 

was limited mostly to anterior hair cells following hs:atoh1a activation at 24 hpf, 

whereas virtually all hair cells expressed pax2a following hs:atoh1a activation at 18 hpf 

(compare Figs. 2.2F and 2.3J).  These data suggest that atoh1a misexpression at 24 hpf  

does not expand anterior otic fates as it does at earlier stages.  The reason for this change 

is not clear. 

 The effects of atoh1a misexpression diminished after 24 hpf.  For example, 

compared to the broad medial expansion of hair cells following activation of hs:atoh1a 

at 24 hpf (Fig. 2.4B, F), activation of hs:atoh1a at 36 hpf resulted in production of two 
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Figure 2.3. Otic vesicle patterning following hs:atoh1a activation at 24 hpf.  
(A-F) Expression at the indicated times of dlA, fgf3 and sox2 in control embryos (A, C, 
E) and hs:atoh1a transgenic embryos (B, D, F).   To assist in interpretation of images, 
otic vesicles are outlined in A-D and the spatial limits of fgf3 expression are marked by 
arrows (C, D).  (G, H) Transverse sections showing expression of sox2 (blue) and anti-
GFP (brown) at 36 hpf in a control embryo (G) and a hs:atoh1a transgenic embryo (H).  
Positions of hair cells (hs) and support cells (sc) are indicated.  (I, J) Expression of 
brn3c:gfp (green) and Pax2 (red) in otic hair cells at 39 hpf in a control embryo (I) and a 
hs:atoh1a transgenic embryo (J). (K) Summary of the onset of expanded or ectopic 
expression of various otic markers following activation of hs:atoh1a at 24 hpf.  Most 
markers were stably expressed, except for dlA.  Expression of dlA was lost in a subset of 
cells after several hours, presumably reflecting the process of lateral inhibition.  Images 
of wholemount specimens (A-F, I, J) are dorsolateral views with anterior to the left and 
dorsal to the top. 
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discrete but enlarged maculae, with an intervening region devoid of hair cells (Fig. 2.4C, 

G).  Activation of hs:atoh1a at 48 hpf caused only a slight increase in hair cell 

production within the endogenous maculae and cristae but did not promote sensory 

development in ectopic locations (Fig. 2.4D, H).  These data indicate that competence to 

respond to hs:atoh1a becomes increasingly restricted at later developmental stages. 

 

Effects of hs:atoh1a misexpression at placodal stages 

In zebrafish, a broad prosensory domain is established in the preplacode by 10.5 hpf and 

the first hair cells are specified by 14 hpf, just as the otic placode becomes 

morphologically visible (Millimaki et al., 2007).  We reasoned that competence to 

respond to Atoh1a may be more widespread at these early stages.  Misexpression at 

 

 

Figure 2.4. Spatial restriction of competence to respond to hs:atoh1a at different 
stages. Expression of brn3c:gfp in control embryos (A-D) and hs:atoh1a transgenic 
embryos (E-H).  Embryos were heat shocked at the times indicated across the top and 
photographed 12-13 hours later.  Arrowheads mark positions of endogenous and 
expanded sensory epithelia.  Images show dorsolateral views with anterior to the left and 
dorsal to the top. 
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different times showed that activating hs:atoh1a at 14 hpf had the greatest effect on 

sensory development (Fig. 2.4A, E).  In contrast, activation of hs:atoh1a at 12 hpf 

resulted in a more modest expansion of sensory epithelia; and heat shock initiated at 10 

hpf had little or no effect on macular development (data not shown).  The likely reason 

for the weak response to transgene activation at 10 hpf or 12 hpf is that the endogenous 

atoh1b locus normally shows widespread expression in the otic placode at these times 

(Millimaki et al., 2007), such that a brief pulse of transgene activity is superfluous.  We 

therefore focused on transgene activation at the most sensitive stage to assess the spatial 

limits of sensory competence.  Although heat shock at 14 hpf caused a dramatic 

expansion of sensory epithelium, the sensory epithelium was generally limited to the 

ventral epithelium of the otic vesicle (Fig. 2.4A, E).  In rare cases, a small number of 

ectopic hair cells were observed in more dorsal positions (Fig. 2.4E), though none were 

detected in the lateral wall.  The same results were obtained when embryos were 

subjected to serial heat shocks at 14 hpf and 16 hpf to prolong expression of hs:atoh1a 

(Fig. 2.5A, B, and data not shown).  Transverse sections revealed few if any cells on the 

dorsal, medial, or lateral walls of the otic vesicle (Fig. 2.5I, J).  Thus, the zone of sensory 

competence is already spatially restricted at the earliest stages when embryos are 

maximally responsive to hs:atoh1a.  

 

Enhancement of sensory competence by misexpression of Fgf8 or Sox2 

Fgf is one of the factors required to activate atoh1a/b in the developing otic placode and 

vesicle (Millimaki et al., 2007).  We speculated that Fgf might influence sensory 
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competence by activating additional factors that work in concert with Atoh1.  To test 

this, we examined the effects of co-misexpression of hs:atoh1a and hs:fgf8.  A single 

heat shock at 14 hpf yielded a large sensory epithelium in the ventral floor, as well as a 

few scattered hair cells in the lateral wall (not shown).  Prolonging misexpression by 

serial co-activation of hs:atoh1a and hs:fgf8 at 14 hpf and 16 hpf led to a much more 

dramatic expansion of hair cells throughout the otic vesicle, including the dorsal and 

lateral walls (Fig. 2.5C).  Similar results were obtained by serial co-activation of 

hs:atoh1a and hs:fgf3 (Fig. 2.6F).  Transverse sections of hs:atoh1a;hs:fgf8 embryos 

confirmed the presence of a contiguous sensory epithelium covering the entire vesicle, 

with the exception of a small region in the medial wall (Fig. 2.5K, L).  Absence of hair 

cells in this region correlated with notable thinning of the epithelium and the presence of 

multiple microvesicles in adjacent hindbrain tissue, suggesting some degree of tissue 

disruption.  Nevertheless, these data show that early co-misexpression of hs:atoh1a and 

either hs:fgf8 or hs:fgf3 can dramatically expand sensory competence into virtually all 

regions of the otic vesicle.  Moreover, regions of ectopic sensory development exhibited 

a thickened pseudostratified morphology typical of normal sensory epithelia.  In 

contrast, activation of hs:fgf8 or hs:fgf3 alone was not sufficient to induce ectopic 

sensory epithelia, though the saccular macula was broken into 2 discrete domains in 

these backgrounds (Fig. 2.6B, C). 

 We next examined the ability of sox2 to enhance hair cell production following 

activation of hs:atoh1a.  sox2 is normally induced by Fgf and Notch and is co-expressed 

with atoh1a/b in developing sensory epithelia (Millimaki et al., 2010).  Similar to 
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Figure 2.5. Co-misexpression of atoh1a with fgf8 or sox2.  
(A-J) Expression of brn3c:gfp after serial heat shock at 14 and 16 hpf in a control (A, E), 
hs: atoh1a (B, F, I, J), hs:atoh1a;hs:fgf8 (C, G, K, L) and hs:atoh1a;hs:sox2 (D, H) 
embryos.  Embryos were fixed and processed at the indicated times.  Arrowheads mark 
positions of endogenous and ectopic sensory epithelia. Images in I-L show transverse 
sections.  The boxed areas in I and K are enlarged in J and L, respectively.  The 
hindbrain shows sporadic formation of microvesicles (asterisks), suggesting tissue 
disruption, and the adjacent wall of the otic vesicle shows marked epithelial thinning 
(et).    All other images show dorsolateral views of live embryos, with anterior to the left 
and dorsal to the top. 
 

 

co-misexpression of atoh1a and fgf8, serial activation of hs:atoh1a and hs:sox2 at 14 hpf 

and 16 hpf produced hair cells located throughout the otic vesicle (Fig. 2.5D).  Serial 

activation of hs:sox2 alone had little effect on hair cell production (Fig. 2.6A).  Hair 

cells produced after misexpression of atoh1a with either fgf8 or sox2 were still present at 

50 hpf, indicating these cells are relatively stable.  Although hair cells in the lateral wall 
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appeared more widely separated at later stages (Fig. 2.5G, H), this appears to result from 

expansion of intervening tissue rather than death of hair cells based on monitoring GFP 

patterns over time.  Anti-Caspase 3 staining confirmed that double-transgenic embryos 

did not exhibit an elevated number of apoptotic cells (Fig. 2.7).   

We also examined the ability of pax genes to influence sensory competence.  

Expression of pax8 and pax2a are also regulated by Fgf during otic development and are 

known to affect development and survival of hair cells (Kwak et al., 2006; Millimaki et 

al., 2007; Riley et al., 1999).  However, serial co-activation of hs:atoh1a with either 

hs:pax2a or hs:pax8 did not alter the production of hair cells compared to activation of 

hs:atoh1a alone (Fig. 2.6D, E, I, and data not shown).  Likewise, disruption of either 

pax8 or pax2a and pax2b did not diminish the ability of hs:atoh1a to induce ectopic hair 

cells following heat shock activation at 14 hpf or 24 hpf (Fig. 2.6G, H, and data not 

shown). 

 

Patterning associated with global sensory development 

The nearly global expansion of sensory development following co-misexpression 

of hs:atoh1a with either hs:fgf8 or hs:sox2 suggested dramatic changes in axial 

patterning within the otic vesicle.  To test this, we examined expression of numerous 

spatial markers after serial activation of hs:atoh1a alone or in combination with hs:fgf8.  

Several anterior markers, fgf8, fgf3 and pax5 were all expanded posteriorly following 

activation of hs:atoh1a alone and were more strongly expressed following co-

misexpression of hs:atoh1a and hs:fgf8 (Fig. 2.8A-C’’).  Consistent with anteriorization 
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of the otic vesicle, the posterior marker pou3f3b (previously zp23) was reduced by 

activation of hs:atoh1a and nearly absent following activation of hs:atoh1a and hs:fgf8, 

while the posterior marker fsta was completely absent after misexpression of atoh1a or 

atoh1a and fgf8 (Fig. 2.8D-E’’).  Expression of the dorsal marker dlx3b was reduced in  

hs:atoh1a and nearly absent after co-activation of hs:atoh1a and hs:fgf8 (Fig. 2.8F-F’’). 

An anterior/ventral marker hmx3 (previously nkx5.1) was somewhat expanded by 

activating hs:atoh1a alone and was expressed nearly globally in hs:atoh1a; hs:fgf8 

double transgenic embryos (Fig. 2.8G-G’’).  Expression of the neuronal specifier 

neurog1 was restricted to a small antero-lateral patch following activation of hs:atoh1a 

(Fig. 2.8H, H’).  This is consistent with data from mouse showing Neurog1 and Atoh1 

antagonize one another (Raft et al., 2007).  In hs:atoh1a; hs:fgf8 embryos the domain of 

neurog1 was similarly reduced but shifted to a slightly more posterior position (Fig. 

2.8H’’).  The lateral/posterior marker otx1 was severely diminished in the otic vesicles 

of hs:atoh1a embryos and completely eliminated in double transgenic animals (Fig. 2.8I- 

I’’).  Consistent with loss of lateral markers we observed expansion of the medial marker 

pax2a into more lateral regions in hs:atoh1a and more strongly so in hs:atoh1a; hs:fgf8 

double transgenic embryos (Fig. 2.8J-J’’).  Nevertheless, expansion of medial fate was 

incomplete, since pax2a expression was not as strong laterally as medially (Fig. 2.8J’’) 

and pax5 did not show appreciable lateral expansion (Fig. 2.8C’’).  In contrast to the 

above results, serial activation of hs:fgf8 alone led to ectopic expression of some anterior  

markers in posterior domains but otherwise did not strongly affect axial patterning in the 

otic vesicle (Fig. 2.9).  Taken together, these data indicate that atoh1a misexpression can  
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Figure 2.6. Ability of fgf, sox and pax genes to influence sensory competence.  
Expression of brn3c:gfp after serial heat shock at 14 and 16 hpf in the indicated 
transgenic (A-F, H, I) and non-transgenic (G) backgrounds.  Embryos in G and H were 
also injected at the one-cell stage with 5 ng each of pax2a and pax2b morpholino 
(pax2a/b MO).  Embryos were fixed and processed at 38 hpf.  All images are 
dorsolateral views with anterior to the left and dorsal to the top.  
 

expand anterior/ventral/medial identity within the otic vesicle but only to a certain extent 

on its own.  Co-activation of hs:fgf8 and hs:atoh1a enhances this activity. 

 

Expansion of sensory competence at later stages 

Because the effects of atoh1a misexpression become severely limited at later stages of 

development, we asked whether co-misexpression of fgf8 or sox2 can enhance sensory 
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Figure 2.7. Analysis of cell death following co-misexpression of atoh1a and fgf8.  
Expression of brn3c:gfp (green) and Caspase 3 (red) at 44 hpf following serial heat 
shock at 14 and 16 hpf in a control embryo (A), hs:fgf8 (B), hs:atoh1a (C) and 
hs:atoh1a;hs:fgf8 (D).  Means and standard deviations of the number of Caspase-
positive cells is indicated for each background.  Sample sizes and p-values from t-tests 
(relative to controls) were as follows: controls, n=17.  hs:atoh1a, n=17, p=0.01.  hs:fgf8, 
n=13, p=0.07.  hs:atoh1a;hs:fgf8, n=20, p=0.94.  Thus, only hs:atoh1a embryos showed 
a statistically significant, albeit small, increase in cell death.  All images are dorsolateral 
views with anterior to the left and dorsal to the top.   
 
 

competence after 24 hpf.  In an initial series of experiments, we observed that delivering 

two heat shocks separated by either a 2- or 3-hour rest interval was optimal for 

increasing hair cell production, whereas two heat shocks separated by a 4-hour rest 

interval gave results that were indistinguishable from a single heat shock.  Delivering a 

third heat shock offered no advantage relative to two heat shocks.  For all experiments 

below, embryos were subjected to two heat shocks separated by a 3-hour rest interval, 

and sensory development was examined 24 hours after the final heat shock. 
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Figure 2.8. Axial patterning following co-activation of hs:atoh1a and hs:fgf8.  
Expression of various otic markers in control embryos (A-J) hs:atoh1a transgenic 
embryos (A’-J’) and hs:atoh1a;hs:fgf8 double transgenic embryos (A”-J”).  Embryos 
were serially heat shocked at 14 hpf and 16 hpf and fixed for processing at 26 hpf.  
Images  show dorsal views (A-C”) or dorsolateral views (D-J”), with anterior to the left.  
Circles outline the otic vesicle.  Arrowheads in E-E” mark expected location of fsta in 
the posterior otic vesicle.  Arrowheads in J-J” indicate expanded domains of pax2a in the 
lateral wall of the otic vesicle. 
 

 Serial activation of hs:atoh1a at 24 hpf or 45 hpf yielded greater production of 

excess and ectopic hair cells than a single heat shock.  However, production of ectopic 

hair cells was still mostly seen in the medial and ventral portions of the otic vesicle (Fig. 

2.10D, E).  Formation of hair cells in the lateral wall was rare, with an average of about 

2 ± 2 lateral-wall hair cells per otic vesicle (n=13) (Fig. 2.11).  Semicircular canals 

failed to form normally under these conditions, suggesting perturbation of non-sensory 
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development.  Serial co-activation of hs:atoh1a and hs:fgf8 after 24 hpf did not 

appreciably expand the domain of sensory development compared to serial activation of 

hs:atoh1a alone (not shown).  In contrast, serial co-activation of hs:atoh1a and hs:sox2 

beginning at 24 hpf or 45 hpf led to a marked increase in hair cell production, including 

in the lateral wall of the otic vesicle (Fig. 2.10G, H).  On average 9 ± 3 hair cells were 

observed in the lateral wall per otic vesicle (n=12) (Fig. 2.11).  Ectopic hair cells usually 

formed as widely scattered single cells or small clusters. 

 

                 

 
Figure 2.9. Axial patterning following activation of hs:fgf8.  Expression of various 
otic markers in control (A-H) and hs:fgf8 transgenic embryos (A’-H’). Embryos were 
serially heat shocked at 14 hpf and 16 hpf and fixed for processing at 26 hpf.  Images 
show dorsal views (A-B’’) or dorsolateral views (C-H’’), with anterior to the left. Circles 
outline the otic vesicle.  
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The epithelium surrounding ectopic hair cells was notably thickened and exhibited a 

pseudostratified morphology (compare Fig. 2.10C, F, I).  Additionally, small patches of 

sox2 expression were usually detected near ectopic hair cells, suggesting the presence of 

support cells (Fig. 2.10I).  Excess and ectopic hair cells were not observed following 

activation of hs:sox2 alone, nor in control embryos (Fig. 2.11 and Millimaki et al., 

2010).  Thus, co-misexpression of sox2 plus atoh1a can significantly enhance sensory 

competence at later stages of development.  

Finally, we examined the effects of co-misexpressing atoh1a with either pax2a 

or the Wnt-inhibitor dkk1.  Despite the involvement of pax2a in sensory development 

(Kwak et al., 2006; Riley et al., 1999), co-activation of hs:atoh1a and hs:pax2a after 24 

hpf did not lead to production of ectopic hair cells, similar to results obtained at earlier 

stages (Fig. 2.6E and data not shown).  Wnt signaling is thought to induce non-sensory 

fates in the otic vesicle (Lecaudey et al., 2007; Riccomagno et al., 2005), raising the 

possibility that blocking Wnt via dkk1 misexpression might enhance sensory 

competence.  However, the effects of co- activating hs:atoh1a and hs:dkk1 were 

indistinguishable from activating hs:atoh1a alone (data not shown).  Thus, not all genes 

associated with medial sensory development or lateral non-sensory development can 

affect sensory competence under the conditions used here.  

 

DISCUSSION 

We have characterized the effects of Atoh1 misexpression and identified important 

cofactors that potentiate its ability to promote sensory development in the zebrafish inner 
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ear.  Misexpressing atoh1a greatly expands the spatial domain of sensory development, 

typically resulting in formation of a single large macula covering the ventral/medial 

region of the otic vesicle.  Responsiveness to atoh1a misexpression is maximal during 

placodal through early otic vesicle stages and diminishes soon thereafter, presumably 

 

 

Figure 2.10. Sox2 expands sensory competence at later stages.  Transverse sections 
showing otic expression of brn3c:gfp (red) and sox2 (blue) in a control embryo (A-C), a 
hs:atoh1a transgenic embryo (D-F) and a hs:atoh1a;hs:sox2 double transgenic embryo.  
Embryos were serially heat shocked at 45 hpf and 48 hpf and fixed at 72 hpf for staining 
and sectioning.  Shown are sections passing through the anterior end (A, D, G) or the 
posterior end (B, C, E, F, H, I) of the otic vesicle.  Positions of the utricular macula 
(um), saccular macula (sm), semicircular canals (ssc) and lateral line neuromasts (nm) 
are indicated.  White arrows (G-H) mark ectopic hair cells.  Specimens in (C, F, I) are 
enlargements of images (B, E, H) and are shown in brightfield with fluorescence to 
clarify the spatial relationships between hair cells and sox2 expression. 
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reflecting progressive differentiation of non-sensory fates in the developing inner ear.  

Even during placodal stages, cells in the lateral portion of the otic placode are refractory 

to the effects of Atoh1a.  By co-misexpressing the upstream regulator fgf8, which 

normally predominantly affects ventral/medial (sensory and neural) fates (Alsina et al., 

2004; Hatch et al., 2007; Kwak et al., 2002; Kwak et al., 2006; Vasquez-Echeverria et 

al., 2008), the entire otic epithelium is rendered competent to respond appropriately to 

atoh1a.  Likewise, co-misexpressing sox2, which is normally induced in parallel with 

atoh1a/b in response to Fgf and Notch (Millimaki et al., 2010), globally expands sensory 

development during placodal stages.  At later stages sox2 can still potentiate the ability 

 

                                

Figure 2.11. Hair cells in the plane of the lateral wall after serial heat shock.  
Expression of brn3c:gfp at 72 hpf following serial heat shock at 45 and 48 hpf in a 
control (A), hs:sox2 (B), hs:atoh1a (C) and hs:atoh1a;hs:sox2 (D).  White arrowheads 
indicate ectopic hair cells in the lateral wall.  Hair cells are also evident in the anterior 
crista (ac), lateral crista (lc), posterior crista (pc), and neuromasts of the lateral line (nm).  
Images show lateral views with anterior to the left and dorsal up. 
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of atoh1a to promote ectopic sensory development, whereas fgf8 loses this ability. These 

findings refine our understanding of the genetic network that influences Atoh1 function 

and sensory competence.  

 

 Profile of gene expression in expanded and ectopic sensory epithelia 

A highly conserved feature of Atonal gene regulation in insects and vertebrates is a 

robust auto-amplification loop that acts during the initial stages of proneural/prosensory 

development (Helms et al., 2000; Sun et al., 1998; our unpublished observations).  This 

is followed by a non-autonomous negative feedback loop in which upregulation of Delta 

mediates lateral inhibition/lateral specification (Millimaki et al, 2007; Woods et al., 

2004).  Accordingly, we find that a relatively brief pulse of transgenic atoh1a expression 

is sufficient to activate prolonged expression of endogenous atoh1a/b genes within 1 

hour, and delta genes are activated within 2 hours (Figs. 2.1, 2.3B and data not shown).  

Thus efficient induction of both feedback loops accounts for why transient expression of 

hs:atoh1a causes a dramatic increase in both hair cells and support cells.  An expanded 

domain of sox2 expression is seen within 6 hours and brn3c:gfp expression is detected in 

new hair cells within 9-10 hours (Fig. 2.3), a timeframe similar to the course of normal 

sensory development.  A notable difference in ectopic sensory development, however, is 

that upregulation of pax2a in hair cells is not observed until 15 hours after hs:atoh1a 

activation.  Normally pax2a expression precedes or coincides with hair cell 

differentiation, as both processes are initially coordinately regulated by localized Fgf 

signaling from the hindbrain.  In contrast, the first exposure to local Fgf signaling in 
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ectopic sensory patches comes 4-6 hours after activation of hs:atoh1a as expanded 

macular domains of fgf3 and fgf8 begin to form.  Hence the delay in expression of pax2a 

could reflect the distinctive timing of Fgf signaling in ectopic sensory epithelia. 

 

Mechanisms that promote sensory competence 

Our findings implicate Fgf and Sox2 as important mediators of sensory competence in 

zebrafish.  Neither factor alone is sufficient to promote ectopic sensory development, but 

they synergize with Atoh1a to promote global sensory development.  How Fgf and Sox2 

function in this context is not clear.  Fgf signaling influences axial fates in the otic 

placode and vesicle (Alsina et al., 2004; Hatch et al., 2007; Kwak et al., 2002; Kwak et 

al., 2006; Vásquez-Echeverría et al., 2008), raising the possibility that transgenic Fgf8 

expands a regional identity compatible with sensory development.  Indeed, analysis of 

regional markers in the otic vesicle following co-misexpression of atoh1a and fgf8 

indicates there is a near global expansion of ventral/medial/anterior identity, which is 

normally associated with the utricular macula.  Similar but less pronounced changes in 

axial markers are seen following misexpression of atoh1a alone, including expansion of 

the domains of fgf3 and fgf8 expression.  Nevertheless, expansion of endogenous fgf3/8 

expression by hs:atoh1a is not sufficient to promote sensory development in 

dorsal/lateral regions of the otic vesicle.  It is possible that transgenic Fgf8 boosts the 

overall level of Fgf signaling above the threshold required for more complete axial 

respecification.  Transgenic Sox2 also strongly promotes sensory competence, although 

its role in axial specification in the inner ear is unknown.  A distinct alternative model is 
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that Fgf8 and Sox2 promote sensory competence by inducing a state of increased 

pluripotency.  Both factors can promote formation of stem cells or multi-potent 

progenitors associated with early stages of tissue development (Graham et al., 2003; 

Nyeng et al., 2011; Tucker et al., 2010; reviewed by Lanner and Rossant, 2010).  Thus, 

elevating Fgf8 or Sox2 could reverse early stages of differentiation of non-sensory cell 

types, thereby making cells more susceptible to Atoh1 activity.  Whether Fgf and Sox2 

are required before Atoh1 to enhance sensory competence, or instead act simultaneously 

with Atoh1 to form an optimal combinatorial code, remains to be established. 

 Studies in mouse and chick suggest that a somewhat different mechanism 

operates in amniotes, though there is likely to be some conservation of function as well.  

Misexpression of Atoh1 in rodents induces formation of ectopic sensory epithelia but 

only in regions close to endogenous sensory epithelia, indicating that competence to 

respond to Atoh1 is spatially restricted in mammals, too.  Mammalian and avian sensory 

epithelia are normally specified by Jag1-Notch signaling (Brooker et al., 2006; Daudet et 

al., 2007; Kiernan et al., 2001; Kiernan et al., 2006).  Notch plays a dual role in sensory 

development in birds and mammals, with an initial prosensory phase followed by a 

robust inhibitory phase associated with lateral inhibition/lateral specification (Brooker et 

al., 2006; Daudet and Lewis, 2005; Daudet et al., 2007).  In mouse early misexpression 

of NICD, the intracellular domain of Notch, leads to global expression of prosensory 

markers Jag1 and Sox2 throughout the otic epithelium (Hartman et al., 2010; Pan et al., 

2010).  Under these conditions otic development arrests and mature hair cells and 

support cells are not observed.  However, localized Cre-mediated expression of NICD at 
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later stages results in formation of scattered ectopic sensory epithelia, even in non-

sensory regions far from endogenous sensory epithelia.  Thus prosensory Notch activity 

in mammals can reprogram virtually any otic cell to adopt a sensory fate.  In chick, 

misexpression of NICD or Jag1 can induce formation of ectopic sensory epithelia, but 

not within the dorsal half of the otic vesicle (Daudet and Lewis, 2005; Neves et al., 

2011).  However, misexpression of the Notch target gene Sox2 can yield scattered 

sensory epithelia in virtually any part of the otic vesicle in chick (Neves et al., 2011).  In 

zebrafish, activation of NICD strongly upregulates sox2 expression throughout the 

medial wall, but this is not sufficient to activate hair cell formation, nor does NICD 

activate sox2 expression in lateral cells (Millimaki et al., 2010).  Despite these species-

differences, Sox2 appears to be an important effector of sensory-competence in all 

vertebrates:  Sox2 is essential for sensory development in mammals (Kiernan et al., 

2005), it is sufficient to activate sporadic sensory development in chick (Neves et al., 

2011), and it is sufficient to render all otic cells competent to respond to Atoh1 in 

zebrafish (this work).  Whether Fgf signaling can also promote Sox2 expression or 

ectopic sensory development in mammals and birds has not been reported. 

 

Implications for regeneration 

In non-mammalian vertebrates, hair cell regeneration is efficiently mediated by support 

cells, which can transdifferentiate directly into hair cells or undergo asymmetric cell 

division to yield new hair cell-support cell pairs (Millimaki et al., 2010; Schuck and 

Smith, 2009; reviewed by Brignull et al., 2009; Cotanche and Kaiser, 2010).  However, 
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regeneration fails to occur in the adult mammalian cochlea because support cells lose the 

ability to divide or transdifferentiate during neonatal development.   This transition 

correlates with a significant decline in Sox2 expression during cochlear maturation 

(Smeti et al., 2011).  Because Sox2 is essential for hair cell regeneration in zebrafish 

(Millimaki et al., 2010), it seems likely that the decline in Sox2 levels in the mammalian 

cochlea contributes to loss of regenerative capacity.  Interestingly, forced expression of 

Atoh1 in rodents can stimulate transdifferentiation of support cells and thereby foster 

some regeneration, though recovery of hair cells is inefficient and morphology is often 

abnormal (Izumikawa et al., 2005; Kawamoto et al., 2003; Shou et al., 2003; Zheng and 

Gao., 2000).  Whether Sox2 can augment Atoh1-mediated regeneration in mammals 

remains an open question.  In apparent contradiction, one study in mouse showed that 

co-misexpression of Sox2 and Atoh1 induced many fewer ectopic hair cells than did 

Atoh1 alone (Dabdoub et al., 2008).  However that study utilized vectors designed to 

promote strong constitutive expression, conditions that clearly override normal feedback 

mechanisms.  Based on our studies, we speculate that transient co-misexpression would 

allow endogenous Atoh1 and Sox2 promoters to respond freely to natural regulatory 

mechanisms and potentiate sensory development and hair cell regeneration (e.g. see 

Woods et al. 2004). 

 

 

 

 



	
   49 

CHAPTER III 

 

ZEBRAFISH PAX5 REGULATES DEVELOPMENT OF UTRICULAR MACULA 

AND VESTIBULAR FUNCTION* 

 

OVERVIEW 

This is a published account of the role of pax5 in sensory epithelia development. It is 

primarily the work of my colleague, S. J. Kwak. Because I contributed to portions of 

Figures 3.2, 3.4, 3.5, 3.6, 3.7 and Table 2, I include it here as a record of my work.  

 

INTRODUCTION 

The vertebrate inner ear is a conserved organ system comprising a series of 

interconnected chambers, each of which primarily mediates either vestibular or auditory 

function.  Each chamber contains a sensory patch consisting of sensory hair cells and 

supporting cells.  Hair cells synapse with neurons of the statoacoustic ganglion (SAG), 

or the VIIIth cranial nerve, axons of which project to processing nuclei in the hindbrain 

(reviewed by Lewis et al., 1985).   

All sensory patches originate from a prosensory region in the ventromedial wall 

of the otic vesicle, and each sensory patch subsequently differentiates with specific 

                                                
*Reprinted with permission from “Zebrafish pax5 regulates development of the utricular 
macula and vestibular function” by Kwak, S.J., Vemaraju, S., Moorman, S.J., Zeddies, 
D., Popper, A.N., Riley, B.B., 2006. Dev. Dyn. 235, 3026-3038. Copyright [2006] 
Wiley-Liss, Inc. 
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structural and functional attributes (Lewis et al., 1985; Fekete and Wu, 2002; Riley and 

Phillips, 2003; Barald and Kelley, 2004).  Hair cells in the semicircular canals have very 

long cilia embedded in a gelatinous cupula that senses angular acceleration through fluid 

motion in the canal.  Hair cells in the cochlea of mammals and birds have shorter cilia 

embedded in a tectorial membrane that transmits sound vibrations.  Hair cells in the 

sensory maculae of the utricle, saccule, and lagena bear cilia that contact crystalline 

otoliths that transmit forces caused by linear acceleration, gravity and, in fish, sound 

vibrations (Fay and Popper,1980; Popper and Fay, 1993).  

Despite the dual sensory capacity of fish maculae, studies in zebrafish (Danio 

rerio) and the closely related goldfish (Carassius auratus) suggest that the functions of 

different maculae are not identical.  Although it is likely that all maculae contribute to 

hearing, the saccule is the primary auditory sensor, particularly at frequencies above 

several hundred Hz (Popper et al., 2003).  Zebrafish, like other ostariophysan fishes, 

utilize a series of bones (Weberian ossicles) that are thought to transmit sound vibrations 

from the swim bladder to the saccule (Popper et al., 2003).  Disruption of the Weberian 

ossicles or swim bladder results in partial loss of hearing  (Fay and Popper, 1973; Bang 

et al., 2002; Zeddies and Fay, 2005).  The utricle probably also has some role in hearing, 

possibly in sound source localization (Popper et al., 2003).  However, unlike the saccule, 

the utricle is essential for vestibular function in zebrafish larvae, as shown by analysis of 

monolith (mnl) mutants (Riley et al., 1997; Riley and Moorman, 2000).  These mutants 

usually form saccular otoliths but not utricular otoliths, which ablates all discernable 

vestibular function and is lethal during larval stages.  However, experimental 
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manipulations that restore utricular otoliths rescue both vestibular function and viability 

in mnl mutants, even if saccular otoliths are ablated instead.  Thus, in zebrafish the 

utricle is especially important for vestibular function while the saccule has a more 

pronounced role in hearing.  Sensory cristae within the semicircular canals are also 

devoted to vestibular function but these do not become functional until after 30 dpf 

(Beck et al., 2004).  

Differential gene activity in the otic vesicle presumably underlies development of 

the characteristic structure and function of each chamber and sensory epithelium.  

Indeed, many candidate genes have been identified that show expression in only one or a 

small subset of sensory patches.  However, loss of function of such genes often causes 

severe morphogenetic defects that preclude assessment of functional output.  For 

example, Otx1 is expressed in the presumptive lateral crista and Otx1-/- mutant mice do 

not produce the lateral crista or a normal lateral semicircular canal (Morsli et al., 1999).  

Thus, it is not clear whether Otx1 plays an ancillary role in programming the lateral 

crista or its associated neurons to specialize as a vestibular endorgan. 

In zebrafish, sensory epithelia form at an early stage before extensive 

morphogenesis of the various chambers of the inner ear (Haddon and Lewis, 1996; 

Whitfield et al., 2002).  The nascent otic vesicle contains only two sensory patches 

corresponding to the utricular (anterior) and saccular (posterior) maculae.  We have been 

interested in identifying genes required for regulating functional specialization of these 

two sensory epithelia.  One candidate gene, pax5, is initially expressed in the anterior 

end of the nascent otic vesicle (Pfeffer et al., 1998) and later becomes localized to the 
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utricular macula.  This pattern suggested that pax5 might be involved in development, 

maintenance or functional organization of the utricular macula.  To investigate pax5 

function, we cloned the full sequence of pax5 cDNA and performed loss of function 

studies using antisense morpholinos.  Knocking down pax5 caused vestibular defects in 

zebrafish larvae without altering morphogenesis of the ear or the ability to hear.  We 

show that vestibular deficits result from defects in maintaining utricular hair cells, with 

secondary defects in the pattern of SAG neuronal processes in the utricular macula.   

 

MATERIAL AND METHODS 

Fish strains and staging 

Wild-type zebrafish strains were derived from the AB line (Eugene, OR).  Mutants 

alleles used in this study include noitu29a (Lun and Brand, 1998), liat24152 (Herzog et al., 

2004) and mnlz2 (Riley and Grunwald, 1996).  Embryos and larvae were maintained in 

an incubator at 28.5˚ C and staged as described by Kimmel et al. (1995).  Ages are 

denoted as hours post-fertilization (hpf) or days post-fertilization (dpf).  Embryos 

normally hatch by 3 dpf, after which they are referred to as larvae.  In some case, 0.2 

mM phenylthiourea (PTU) was added to prevent melanin formation.   

 

Cloning of pax5  

Comparison of zebrafish (http://www.ensembl.org) and Fugu genomic sequences 

identified the putative missing 5’ and 3’ ends of zebrafish pax5.  The identified sequence 

was confirmed by RT-PCR followed by cloning and sequencing using primers for the 
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putative full length ORF; pax5(-6): 5’GGGAATTCAACACGATGGAAATCCACTG3’, 

pax5(1128):5’GGTCTAGATTATTTCGTGCCTCCCACTC3’.   

 

Behavioral analysis  

Vestibular function was assayed by three tests between 3 and 7 dpf as previously 

described (Riley and Moorman, 2000).  Balance was assessed by the ability of larvae to 

rest with their dorsal sides up one minute after initiating a startle response by tapping 

Petri dishes containing larvae.  Each specimen was tested three times and was scored as 

negative if it failed all three trials.  To test motor coordination, individual larvae were 

observed following a startle response, induced by tapping the plate or gentle physical 

stimulation of the tail.  Normally, larvae rapidly traverse a 6 cm Petri dish in a straight 

line.  Larvae with vestibular dysfunction swim in circles, vertical loops, spirals, or in 

erratic zigzags.  Specimens failing three consecutive trials were scored as negative.  

Swim bladder inflation was observed under a dissecting microscope (Riley and 

Moorman 2000).  Normally, larvae must swim to the surface to obtain air for swim 

bladder inflation.  Vestibular deficits impede this motion and thereby prevent swim 

bladder inflation.  Acoustic-evoked behavioral responses (AEBR) were tested in larval 

fish 7-12 dpf as described by Zeddies and Fay (2005).  Briefly, larval fish were placed in 

the 8 central wells (one fish per well) of a 24-well plate affixed to a plastic platform.  A 

TDT System 3 (TDT, Inc, Gainsville, FL) was used to deliver tonal pulses to the 

platform via a vertically oriented Bruel & Kjaer type 4810 shaker.  Eight frequencies 

from 100-1200Hz were tested at seven different levels (ranging from 0 to -42 dB re 1g).  
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Five-second long video sequences of the larvae were digitally recorded such that the 

tone was presented 2.5 s after the start of the video recording.  A frame-by-frame 

subtraction method was then employed to analyze the video sequences and compare the 

movement of the larval fish in quiet to their movement when the stimulus is present.  A 

positive response was registered when the movement during the tone was significantly 

different (p<.0001) than in quiet. A complete experiment consisted of the presentation of 

two randomized presentations of the 56 trials. The lowest level that resulted in a positive 

response at each frequency was then considered the threshold level for that frequency.   

 

Morpholino injection  

Splice- and translation-blocking morpholino oligomers (Nasevicius and Ekker, 2000; 

Draper et al., 2001) were generated to knock down pax5.  Translation blocker for splice 

variant 1 (TB1): 5’CAGTGGATTTCCATCTGTTTTAAA3’; translation blocker for 

splice variant 2 (TB2): 5’CTCGGATCTCCCAGGCAACATGGT3’; splice blocker for 

exon-intron boundary of exon 2 (SB1): 5’TACTCATAACTTACCTGCCCAGTA3’; 

splice blocker for exon-intron boundary of exon 3 (SB2): 

5’ATGTGTTTTACACACCTGTTGATTG3’; splice blocker for exon-intron boundary 

of exon 5: 5’TTGACCCTTACCTAAATTATGCGCA3’.  A cocktail of all five 

morpholinos was prepared in Danieaux solution (Nasevicius and Ekker, 2000) to a 

concentration of 12 µg/µl (3µg/µl each TB1 and TB2; and 2 µg/µl each SB1, 2 and 3).  

Approximately 1 nl was injected into wild-type zebrafish embryos at one-cell stage to 

generate pax5 morphants.     
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Injection of pax5 RNAs  

Two splice variants, pax5-v1and pax5-v2 were cloned in pCS2p+.  RNAs for both 

variants were synthesized in vitro and 200 pg of pax5-v1 and pax5-v2 RNA mixture 

(100 pg each) was injected into embryos at the one- to two-cell stage. 

 

Immunohistochemistry 

Embryos raised in PTU were fixed and processed as previously described (Riley et al., 

1999).  Primary antibodies: mouse anti-Pax2 (Berkeley Antibody Company, 1:100 

dilution), anti-acetylated tubulin (Sigma T-6793, 1:100) and anti-Islet-1/2 

(Developmental Studies Hybridoma Bank 39.4D5, 1:100).  Secondary antibodies: Alexa 

546 goat anti-rabbit IgG (Molecular Probes A-11010, 1:50) and Alexa 488 goat anti-

mouse IgG (Molecular Probes A-11001, 1:50).   

 

Rhodamine-Phalloidin staining 

Larvae raised in PTU were fixed between 3 and 7 dpf.  Fixed larvae were rinsed in PBS 

containing 0.1% Triton-X-100 for 15 minutes and then permeabilized by incubation in 

PBS containing 2-3% Triton-X-100 for 4 hours at room temperature and then overnight 

at 4˚C.  Permeabilized embryos were incubated in Rhodamine-Phalloidin (Molecular 

Probes R415, 1:30 dilution in 1% Bovine Serum Albumin in PBS) for 2 hours at room 

temperature, washed four times in PBS with 0.5% Triton-X-100 for 30 minutes each.   
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DiI labeling 

Larvae were fixed between 3 and 7 dpf and then washed in PBS.  Fixed larvae were 

mounted in 0.6% low-melting-temperature agarose made in PBS.  To examine the 

neuronal projections from the statoacoustic ganglion (SAG), DiI (1,1-dioctadecyl-3,3,3,3 

-tetramethylin-docarbocyanine perchlorate, Molecular probes D-282, 4mg/ml in 100% 

ethanol) was injected into the utricular macula.  Glass micropipettes were backfilled with 

the DiI solution and directed to the utricular macula using a micromanipulator.  Injected 

larvae were incubated at 33˚C overnight and observed.   

 

Whole-mount in situ hybridization 

Whole-mount in situ hybridizations were carried out as described previously (Phillips et 

al. 2001) using the following riboprobes: nkx5.1 (Adamska et al., 2000), otx1 (Li et al., 

1994), zp23 (Hauptmann and Gerster, 2000), dlx3b (Ekker et al., 1992a), krox20 

(Oxtoby and Jowett, 1993), msxC (Ekker et al., 1992b), pax5 (Pfeffer et al., 1998), fgf8 

(Reifers et al., 1998) and fgf3 (Kiefer et al., 1996).    

 

Cell death analysis 

Embryos were dechorionated and incubated in acridine orange (1µg/ml) in PBS for 1 

hour at room temperature and washed twice (10 minutes each) in PBS prior to 

observation.  In situ TUNEL assay (TdT-mediated dUTP Nick-End Labeling) was 

performed as suggested by the manufacturer (Promega TUNEL assay kit). 
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RESULTS 

Cloning of zebrafish pax5 

The known sequence for zebrafish pax5 cDNA was incomplete, with sequences missing 

from both the 5’ and 3’ cDNA ends (Pfeffer et al., 1998).  We completed cloning of the 

pax5 sequence (see Experimental Procedures).  Analysis of multiple cDNA clones 

revealed two distinct splice isoforms, pax5-variant 1 (pax5-v1) and pax5-variant 2 

(pax5-v2) (Fig. 3.1A).  pax5-v1 corresponds to full-length pax5 cDNA.  pax5-v2 has a 

partial paired domain caused by splicing out the second exon (nucleotides 47-212).  This 

splice variant is predicted to use an alternative translation start codon in exon 3.  In 

mouse, six splice variant forms are known.  The two zebrafish variants, pax5-v1 and 

pax5-v2, are homologous to mouse splice variants Pax-5a and Pax-5b, respectively, 

suggesting that mechanisms for alternative splicing of pax5 have been conserved 

(Zwollo et al., 1997).  The relative abundance of cloned cDNAs suggests that pax5-v1 (8 

out of 10 clones) is more prevalent than pax5-v2 (2 out of 10 clones). 

 

Expression of pax5 in the otic vesicle 

pax5 is first detected in the anterior end of the otic placode at about 17 hpf, just before 

formation of the otic vesicle (Fig. 3.1B).  By 24 hpf, the anterior quarter of the otic 

vesicle shows a uniformly high level of pax5 expression (Fig. 3.1C).  Expression is 

subsequently restricted to the anterior (utricular) macula and remains in the macula until 

at least 72 hpf (Fig. 3.1D, E).  At these later stages, all cells in the utricular macula  
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Figure 3.1. cDNA structure and expression of pax5.   
(A) General structure of pax5 splice variants. Brackets indicate exon-boundaries.  
Conserved functional domains, paired (PD), octapeptide (OP), homeo (HD), 
transactivation (TAD) and inhibitory (ID) are marked.  Putative translation start sites 
(M) are indicated. Binding sites for translation-blocking (TB1 and 2) and splice-blocking 
(SB1, 2 and 3) morpholinos are shown. Newly identified 5’(i) and 3’(ii) sequences are 
shown in comparison with fugu pax5. Zebrafish and fugu sequences are 100% identical 
at the amino acid level.  (B-E) Expression of pax5 in the otic placode at 17 hpf (B), in 
the otic vesicle at 24 hpf (C) and in the utricular macula at 48 hpf (D,E). (E) Enlarged 
view of boxed area in (D). Hair cell (hc) supporting cell layers are marked. Arrow, weak 
expression in the saccule.  (A) Dorsal, (B) dorsolateral and (C,D) lateral views, with 
anterior to the left.  
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express pax5, but hair cells show higher expression than supporting cells (Fig. 3.1E).  In 

addition to the predominant domain in the utricle, a small number of saccular hair cells 

also express pax5 (Fig. 3.1C).  This posterior expression is maintained through at least 

48 hpf (not shown). 

 

Vestibular defects in pax5-depleted larvae 

To study pax5 function in the inner ear development, two morpholinos were designed to 

block translation from two putative translation start sites and three were designed to 

block splicing of sequences encoding the paired domain or the homeodomain (Fig. 

3.1A).  Each of these morpholinos, used individually, disrupted vestibular function 

(discussed below) but varied in efficiency.  However, a cocktail of all five morpholinos 

proved most efficient and was used for the remainder of this study.  Embryos injected 

with pax5-MO cocktail (pax5 morphants) show no obvious morphological defects.  The 

otic vesicle is normal in size and otoliths form in the correct positions at the right time.  

Because of the predominant expression of pax5 in the utricle, we assayed the vestibular-

dependent functions of balance, motor coordination, and swim bladder inflation (Riley 

and Moorman, 2000).  For comparison we also examined monolith (mnl) mutants, which 

show a severe and permanent loss of vestibular function due to the lack of utricular 

otoliths (Riley and Grunwald, 1996; Riley et al., 1997; Riley and Moorman, 2000).  By 

all three assays, pax5 morphants are delayed by a day or more in development of 

vestibular function (Fig. 3.2A-C).  This does not reflect a general developmental delay 

since morphological and molecular milestones occur on time (see below).  Although 
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many pax5 morphants eventually display normal vestibular behavior, about 20% never 

do so and continue to show severely impaired vestibular function through at least 7 dpf 

(Fig. 3.2).  These data support the hypothesis that pax5 is required for development 

and/or function of the vestibular system. 

 

                      

Figure 3.2. Assessment of vestibular and auditory function.   
Development of balance (A), motor coordination (B) and swim bladder inflation (C) in 
wild-type (n=173), pax5-morphant (n=330), lia/lia (n=110) and mnl/mnl (n=238) 
embryos between 3 and 7 dpf.  Data show the means and standard errors of two 
independent experiments.  (D) Frequency range and sensitivity of hearing in wild-type 
larvae and pax5 morphants at 5 dpf.  Only pax5 morphants with severe vestibular 
deficits were used in (D).   
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 In contrast to vestibular function, acoustic function appears normal in pax5 

morphants.  Zeddies and Fay (2005) recently described an assay to test acoustically-

evoked behavioral responses (AEBR) in zebrafish larvae and adults.  Beginning at 5 dpf, 

wild-type larvae respond at the same levels over the same frequency range as adult 

zebrafish.  Because pax5 shows only minor expression in the saccular macula, we 

hypothesized that hearing should be relatively normal.  Indeed, even pax5 morphants 

with severe and persistent vestibular deficits appear to respond normally to sound on 5 

dpf and later (Fig. 3.2D and data not shown).  These data suggest that the vestibular 

deficits in pax5 morphants are not caused by global or nonspecific defects but instead 

reflect a specific requirement in the utricular epithelium for vestibular function. 

 

Otic vesicle patterning in pax5 morphants 

The vestibular defects in pax5 morphants could be caused by perturbation of general 

patterning of the otic vesicle.  To test this possibility, we examined several markers of 

otic vesicle patterning.  nkx5.1, which marks the anterior end of the otic vesicle, is 

expressed normally in pax5 morphants (Fig. 3.3A, B), as is zp23, a marker of the 

posterior medial wall adjacent to r5 and r6 of hindbrain (Fig. 3.3C, D).  Patterning of 

dorsoventral and mediolateral axes also appear normal as demonstrated by expression of 

a dorsomedial marker, dlx3b, and a ventrolateral marker, otx1 (Fig. 3.3E, F, G, H).  In 

addition, sensory maculae and cristae appear to form on time and express appropriate 

markers (Fig. 3.3I-L).  Several aspects of inner ear patterning, including otic expression 

of pax5, depend on Fgf3 from the hindbrain (Kwak et al., 2002), so we also examined 
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hindbrain patterning.  Expression of fgf3, as well as other hindbrain markers such as 

krox20, are normal in pax5 morphants (Fig. 3.3M-P, and data not shown).  Thus, 

hindbrain patterning and general features of otic vesicle patterning appear normal in 

pax5 morphants.   

 

           

Figure 3.3. Inner ear and hindbrain patterning in pax5 morphants.   
Expression of nkx5.1, zp23 (arrows mark otic domain), dlx3b and otx1 in the otic vesicle 
of uninjected control embryos (A,C,E,G) and pax5-morphants (B,D,F,H) at 24 hpf.  (I,J) 
Macular expression of fgf8 in control (I) and pax5-morphant (J) at 48 hpf.  (K,L) 
Expression of msxC in cristae (arrowheads) of control (K) and pax5-morphant (L) at 72 
hpf.  (M-P) krox20 and fgf3 expression at 13.5 hpf (9-somite stage) in the hindbrain of 
uninjected control embryos (M,O) and pax5 morphants (N,P).  Images show dorsolateral 
(A-F), lateral (I-L) and dorsal (G-H, M-P) views with anterior to the left.  Abbreviations: 
MHB, midbrain-hindbrain border; r3, rhombomere 3; r4, rhombomere 4.  Scale bar, 35 
µm (A-J), 65 µm (K,L), 160 µm (M-P). 



	
   63 

Formation of SAG neurons in pax5 morphants 

Another possible cause of vestibular deficits is failure to form the statoacoustic ganglion 

(SAG).  SAG neuroblasts are initially specified in the ventral region of the otic vesicle in 

a region that partially overlaps with the domain of pax5 expression (Haddon and Lewis, 

1996).  Neuroblasts delaminate from the otic vesicle and migrate to a position between 

the anteromedial wall of the otic vesicle and hindbrain.  neurogenin1(ngn1) encodes a 

bHLH transcription factor required for SAG specification and is first expressed at 18 hpf 

(Andermann et al., 2002).  ngn1 is expressed normally in pax5 morphants (Fig. 3.4A, B).  

After delamination, SAG neuroblasts express nkx5.1 (Adamska et al., 2000) and this 

pattern is also normal in pax5 morphants (Fig. 3.3A, B).  Similarly, the number and 

position of SAG neuroblasts is normal at 30 hpf as shown by anti-Islet staining (Fig. 

3.4C, D).  Thus, depletion of pax5 does not alter production or migration of SAG 

neurons. 

 

Neuronal targeting of SAG neurons in pax5 morphants 

SAG neurons are bipolar neurons, sending processes into the hindbrain and sensory 

patches of the ear.  Axonal processes to the hindbrain were visualized by injecting a 

lipophilic tracer, DiI, into utricular maculae at 3 dpf or later.  Utricular SAG neurons 

initially extend their axons in a bundle to the hindbrain in a dorsoposterior direction.  

This axonal bundle splits into two main branches in the hindbrain, one ascending and the 

other descending (Fig. 3.4G).  In some specimens, ascending and descending branches 

are compact and well organized (Fig 3.4G, type-1).  In about 60% of control larvae, the 
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Figure 3.4. Development of the statoacoustic ganglion (SAG). 
(A-B) Expression of ngn1 in the otic vesicle (arrowheads) and SAG (arrows) in a control 
embryo (A) and pax5-morphant (B) at 24 hpf.  (C, D) Anti-Islest1/2 staining of SAG 
neuroblasts (outlined) at 30 hpf.  An average of 16.5±4.2 neuroblasts were detected in 
control embryos (C) compared to 15.7±3.5 in pax5 morphants (D).  Arrows mark 
otoliths. (E, F) Utricular maculae of a 48 hpf control embryo (E) and pax5 morphant (F) 
showing acetylated tubulin (green) relative to Pax2 in hair cell nuclei (red).  White 
arrows in (E) mark axonal process projecting to hair cells and broader regions of staining 
(yellow arrows) are observed at the basal regions of hair cells, possibly associated with 
synapses.  Specimen in (F) shows a misplaced hair cell (arrowhead) associated with a 
single thick SAG process (arrow).  (G, H) Central projections of SAG neurons visualized 
by injecting DiI into the utricular macula at 72 hpf.  Schematic in (G) shows the site of 
DiI injection (orange arrow) and SAG projections relative to the ear.  Wild-type larvae 
show either two discrete axonal bundles in the hindbrain (G, type-1) or more diffuse 
projection patterns (H, type-2), including smaller secondary branches indicated by 
arrows.  (I) Table 1, percentage of larvae showing type-1 or type-2 projection patterns in 
control embryos, pax5 morphants, mnl/mnl mutants and lia/lia mutants.  Images show 
dorsolateral (A-B, E-F), dorsal (C, D) and lateral (G-K) views, with anterior to the left.  
Scale bar, 50µm (A,B,E,F), 30µm (C,D), 12.5µm (G-K). 
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main branches are more diffuse and there are several additional minor branches 

projecting in parallel to the main branches (Fig. 3.4H, type-2).  A similar distribution of 

type-1 vs. type-2 patterns is seen at 7 dpf, even though all control larvae show fully 

integrated vestibular function by 5 dpf (Fig. 3.2).  Moreover, virtually identical patterns 

are observed in mnl mutants (Fig. 3.4I, Table 1), which are null for vestibular function 

(Riley and Moorman, 2000).  Thus, the distribution of type-1 vs. type-2 patterns is not 

influenced by the status of vestibular signaling or early maturation of the larval 

hindbrain.  Similar SAG projections are seen in pax5 morphants, though type-2 patterns 

are slightly more frequent than in control larvae (Fig. 3.4I, Table 1).  At present, we do 

not understand the significance of the two different projection patterns.  Nevertheless, 

vestibular deficits in pax5 morphants do not appear to be caused by aberrant projections 

in the hindbrain.  

 We also examined SAG processes in developing maculae.  Acetylated tubulin is 

localized in the cortex and cilia of hair cells, as well as axonal processes of SAG neurons 

(Fig. 3.4G, H).  Acetylated tubulin staining is especially prominent in the basal part of 

hair cells where SAG neurons synapse (Fig. 3.4E).  While some pax5 morphants appear 

normal, half or more show a variety of defects in neural patterning in the utricle.  For 

example, about half of pax5 morphants show loss of putative synapse-staining on 

utricular hair cells and the number of SAG processes is reduced (Fig. 3.4F).  

Occasionally, processes can be seen projecting at oblique angles and fail to innervate 

any hair cells (not shown).  In addition, about 20% of pax5 morphants show thick 

bundles of dendrites reaching to the luminal surface without contacting any hair cells 
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(Fig. 3.4F).  Anti–NCAM staining shows similar patterns of SAG axonal processes (data 

not shown). Innervation of the saccular macula is difficult to visualize because of its 

close proximity to the brightly stained hindbrain.  However, SAG innervation of hair 

cells in cristae is normal in pax5 morphants (data not shown).  Thus, variable defects in 

hair cell innervation primarily affect the utricle in pax5 morphants and could contribute 

to the observed vestibular deficits in pax5 morphants. 

 

Formation of hair cells 

We hypothesized that pax5 might also regulate development of utricular hair cells.  To 

test this, embryos were stained with anti-Pax2 antibody, which labels nuclei of mature 

hair cells (Riley et al., 1999).  In pax5 morphants, hair cells are produced normally in the 

utricular and saccular maculae at 24 hpf, but at later stages the number of utricular hair 

cells is consistently reduced by 20-30% relative to uninjected controls (p<0.05) (Fig. 

3.5A-C).  In contrast, the number of saccular hair cells is normal through at least 72 hpf 

(Fig. 3.5C).  To confirm these results, we used two other markers to stain hair cell cilia, 

anti-acetylated tubulin and phalloidin.  The number of utricular hair cells detected by 

phalloidin or acetylated tubulin-staining is slightly greater than Pax2-staining at all time 

points (Fig. 3.5G), probably because cilia form before high level accumulation of Pax2 

in differentiating hair cells.  However these markers confirmed a 20-30% decrease in 

utricular hair cells in pax5 morphants (Fig. 3.5G).  In the saccule, the number of Pax2-

postivie cells does not change after 30 hpf (Fig. 3.5C), yet the number of hair cells  
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Figure 3.5. Assessment of hair cell development. 
(A, B) Anti-Pax2 staining in the otic vesicle in a control embryo (A) and pax5 morphant 
(B) at 48 hpf.  (C) Number of Pax2+ hair cells at the indicated stages (means and 
standard errors of at least three experiments, with at least15 specimens/time-
point/experiment).  p-values for the comparison of control embryos vs. pax5 morphants 
are: utricle, p=0.042 (30 hpf), p=0.009 (36 hpf), p=0.0007 (48 hpf), p=0.017 (60 hpf), 
saccule, p=0.136 (30 hpf), p=0.138 (36 hpf), p=0.05 (48 hpf), p=0.28 (60 hpf).  (D, E)  
Rhodamine-phalloidin staining in the saccular macula of a control embryo (D) and pax5 
morphant (E) at 48 hpf.  In control embryos (n=23), there were 21.5±5.0 hair cells in the 
utricular macula and 17.8±9.7 in the saccular macula.  In pax5 morphants (n=42), there 
were 16.8±4.5 hair cells in the utricle and 14.8±7.5 in the saccule.  (F) Saccular maculae 
stained with anti-acetylated tubulin (green) and anti-Pax2 (red) in a pax5 morphant at 48 
hpf.   Only two hair cells are Pax2-positive (arrows).  (G) Hair cell numbers detected by 
anti-Pax2 or phalloidin staining in pax5 morphants and uninjected controls at 72 hpf.  
Data bars are color-coded as in (C).  (H, I) Enlarged view of the utricular macula stained 
with anti-Pax2 at 48 hpf in a control embryo (H) and pax5 morphant (I).  Basal edges of 
hair cell (hc) and supporting cell (sc) layers are indicated.  (J) Otic vesicle of pax5 
morphant stained with anti-Pax2 at 36 hpf.  Arrowheads mark misplaced hair cells.  The 
ventral limit of the otic vesicle (ov) is indicated.  Images show dorsolateral (A, B, D-F, 
J) and lateral (H, I) views with anterior to the left.  Scale bar, 40µm (A,B, D-F), 12.5µm 
(H,I), 25µm (J). 
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detected by acetylated tubulin or phalloidin-staining increases steadily (Fig. 3.5D-G).  At 

72 hpf, for example, there are only 2-4 Pax2-positive cells in the saccule, whereas 28 ± 

4.8 hair cells are detected by phalloidin-staining (Fig. 3.5G).  We do not know the 

functional significance of the small number of Pax2-positive hair cells in the saccule but 

note that the pattern of Pax2-staining is similar to the pattern of pax5 expression.  In any 

case, the number of saccular hair cells in pax5 morphants is not significantly different 

from the control (Fig. 3.5G).  Thus, the deficiency of hair cells in pax5 morphants is 

limited to the utricle. 

Anti-Pax2 staining also demonstrates that pax5 morphants have irregular 

arrangements of hair cells in utricular macula.  In a variable fraction (22.9± 8.3%) of 

pax5 morphants, one or two hair cell nuclei are localized in the basal supporting cell 

layer or even outside of the otic vesicle (Fig. 3.5I, J).  Interestingly, misplaced hair cells 

are usually accompanied by the appearance of abnormal SAG processes (Fig. 3.4F).  

Ejection of hair cells undergoing apoptosis has been previously described in several 

species.  In mouse and guinea pig, for example, apoptotic hair cells sink to the basal 

layer within the sensory epithelium (Sobkowicz et al., 1992; Sobkowicz et al., 1997; 

Quint et al., 1998).  Similarly, hair cells in zebrafish mind bomb (mib) mutants begin to 

die after 36 hpf and are extruded from otic vesicle to the underlying mesenchyme 

(Haddon et al., 1998).  Therefore, the reduced number and misplaced position of hair 

cells in pax5 morphants could reflect elevated apoptosis. 
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pax5 and cell death in the utricle   

To examine the pattern of cell death, embryos were stained with the vital dye acridine 

orange (AO).  Control embryos show very little AO staining in the otic vesicle between 

30 and 72 hpf (Fig. 3.6A).  Summing the patterns of 30 embryos shows a “hot spot” of 

cell death near the anteromedial wall of the otic vesicle, although some of these cells 

may lie outside the otic vesicle (Fig. 3.6G).  Staining in other regions is very sparse.  

Only 5.4 to 7.7% of control embryos (depending on the stage) show AO-positive cells in 

the utricle.  The overall pattern of AO staining is very similar in pax5 morphants, except 

that there are roughly five-fold more labeled cells in the utricular macula (Fig. 3.6G; 34 

labeled cells in pax5 morphants vs. 7 in control embryos).  On average, 31.2 to 37.1% of 

pax5 morphants (at 30 hpf and 48 hpf, respectively) show labeled cells in the utricular 

macula (Fig. 3.6B, E).  Similarly, wholemount TUNEL assays show that 40% of pax5 

morphants have apoptotic cells in utricle at 48 hpf (Fig. 3.6C, D).  The saccular macula 

shows little cell death in either uninjected embryos or pax5 morphants (Fig. 3.6G), 

showing that pax5-depletion specifically affects the utricular macula. We hypothesized 

that dying cells seen in the utricle of pax5 morphants correspond to misplaced hair cells.  

To test this, AO-stained embryos were photographed at 48 hpf to record positions of 

dying cells, then fixed and stained for Pax2.  pax5 morphants with no cell death show 

normal hair cell arrangements (n=14).  In contrast, misplaced Pax2-positive hair cells 

were frequently detected in the corresponding position where AO positive cells had been 

detected (12 out of 19 embryos, Fig. 3.6E, F).  The remainder of AO staining was 

detected in normally positioned hair cells in the utricular macula (3/19) or Pax2-negative  
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Figure 3.6. Analysis of cell death in pax5 morphants. 
(A, B) Acridine orange staining in the otic vesicle of a control embryo (A) and in the 
utricle of a pax5 morphant (B) at 48 hpf.  White arrows indicate AO-positive cells, black 
arrows show otoliths.  (C, D) TUNEL staining in the utricle of a control embryo (C) and 
a pax5 morphant (D) at 48 hpf.  Arrowhead shows a TUNEL-positive cell (E).  (E, F) A 
pax5-morphant stained with acridine orange at 48 hpf (E) and subsequently stained with 
anti-Pax2 (F).  An AO-positive cell appears in the same position as a misplaced hair cell 
(white arrows).  The utricular macula is outlined in (A-F).  (G) Cumulative data (n=30) 
representing the frequency and distribution of AO-labeled cells in the otic vesicle of a 
wild-type control embryo, a pax5 morphant and a noi/noi mutant at 48 hpf.  The 
positions of labeled cells (red spots) were projected onto schematic maps of the otic 
vesicle.  Positions of the utricular macula (u), saccular macula (s), anterior crista (ac), 
lateral crista (lc) and posterior crista (pc) are indicated.  All images show lateral views, 
with anterior to the left.  Scale bar, 40µm (A), 25µm (B-D), 30µm (E,F), 50 µm (G). 
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cells within the basal layer (presumptive support cells or nascent hair cells, 4/19) (data 

not shown).  These data support the hypothesis that utricular hair cells in pax5 

morphants undergo an elevated rate of apoptosis and that dying hair cells are ejected 

from the utricular macula. Elevated AO staining persists through 3 dpf in pax5 

morphants but declines to normal by 4 dpf (not shown).  This is probably reflects 

diminishing capacity of the injected morpholinos to knock down pax5 function. 

 

pax5 mRNA rescues early defects in pax5 morphants. 

To confirm specificity of gene knockdown by pax5-MO, we coinjected pax5-MO with 

pax5-v1 and pax5-v2 mRNAs to try to rescue pax5 morphants.  These mRNAs are 

impervious to splice-blocking MOs and when injected at high levels can overwhelm the 

effects of translation-blocking MOs.  In control (non-morphant) embryos, misexpression 

of pax5 has no effect on morphology.  However, pax5 mRNA restores hair cell numbers 

to normal in pax5 morphants at 32 hpf (p=0.47, wild-type vs. rescued embryos, Table 2).  

The fraction of embryos showing cell death in the utricular macula (21.7%) is reduced to 

half of the level otherwise seen in pax5 morphants, a significant difference (p≤0.032).  

At 48 hpf, the effects of pax5 mRNAs are less evident (Table 2).  This is probably 

because injected RNAs rarely persist beyond 24 to 30 hpf, whereas morpholinos often 

continue to function for at least 3 days.  The ability to rescue balance and coordination 

could not be evaluated due to the limited stability of injected mRNA.  However, the 

finding that pax5 mRNA rescues early defects in the pax5 morphants validates the 

specificity of pax5-MO. 
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Distinct roles for pax2a and fgf3 in regulating pax5 and vestibular function 

Previous studies identified pax2a and fgf3 as upstream regulators of pax5.  Knocking 

down fgf3 by morpholino injection diminishes expression of pax5 in the ear (Kwak et 

al., 2002).  noi (pax2a) null mutants show a complete loss of pax5 expression in the ear 

(Pfeffer et al., 1998; and Fig. 3.7A).  Therefore, we speculated that these mutants might 

display defects similar to those of pax5 morphants.   

 noi mutants initially produce more hair cells than normal due to weakened lateral 

inhibition (Riley et al 1999).  Thus, noi mutants produce an average of 6.0± 0.8 utricular 

hair cells by 30 hpf, compared to 4.9± 0.8 in the wild-type.  However, noi mutants later 

show a deficit of utricular hair cells similar to that seen in pax5 morphants:  At 48 hpf, 

noi mutants have 16± 3.4 utricular hair cells (n=29), a 27% decrease compared to the 

wild-type (22± 2.7 hair cells, n=22) (Fig. 3.7I, J).  Moreover, about 35% of noi mutants 

show dying cells in the utricular macula at 48 hpf (Fig. 3.7C).  Summing data from 30 

noi mutants shows nearly a four-fold increase in the number of AO stained cells in the 

utricular macula (Fig. 3.6G; 26 labeled cells in noi/noi vs. 7 in +/+ embryos).  noi 

mutants also show elevated cell death in primordia of the posterior and lateral cristae 

(Fig. 3.6G).  TUNEL assays give similar results (Fig. 3.7D).  SAG projections to the 

utricular macula are difficult to discern and, when present, are highly disorganized (data 

not shown).  SAG projections to the hindbrain are also disorganized (Fig. 3.7B).  Since 

the morphology of noi mutants is severely altered and embryos begin to die by 3 dpf, 

balance and coordination cannot be tested.  Thus there are a number of similarities  
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Table 2.  Rescue of pax5 morphants by pax5 mRNA injection.  

 
† Based on the number of Pax2-positive hair cells; mean of 2-3 experiments ± standard 
error (n=total number of embryos examined).  Percentages in boldface reflect values 
relative to the control. 
†† Mean (± standard error) of 2 experiments, except for 48 hpf control and 32 hpf 
mRNA-injection, which are means of one experiment each. 
p-values are based on T-tests in comparison with control (*) or with pax5 morphants (‡). 
 
 

   Control pax5-MO pax5-MO 
+pax5 RNA 

pax5 RNA 

32 
hpf 

100 % 
6.8 ± 0.8 
(n=92) 

79.5 % 
5.4 ± 0.4 
(n=90) 

*p=0.008 
 

101.5 % 
6.9 ± 0.7 
(n=35) 

*p=0.474 
‡p=0.013 

107.4 % 
7.3 ± 0.7 
(n=48) 

*p=0.254 
 

Number of  
hair cells in 
the 
utricular 
macula† 
 48 

hpf 

100 % 
14.6 ± 1.1 

(n=30) 

70.5 % 
10.3 ± 0.7 

(n=28) 
*p=0.023 

79.5 % 
11.6 ± 0.8 

(n=19) 
*p=0.045 
‡p=0.118 

not 
determined 

 

32 
hpf 

100 % 
2.3 ± 0.3 
(n=92) 

100 % 
2.3 ± 0.2 
(n=90) 

*p=0.492 

100 % 
2.3 ± 0.1 
(n=35) 

*p=0.434  
‡p=0.242 

100 % 
2.3 ± 0.3 
(n=48) 

*p=0.493 

Number of  
hair cells in 
the 
saccular 
macula† 
 48 

hpf 

100 % 
2.1 ± 0.1 
(n=30) 

104.8 % 
2.2 ± 0.3 
(n=28) 

*p=0.386 

95.2 % 
2.0 ± 0.2 
(n=19) 

*p=0.242 
‡p=0.242 

not 
determined 

 

32 
hpf 

5.4 % 
± 1.77 
(n=39) 

37.1 % 
± 4.91 
(n=59) 

21.7 % 
± 10.9 
(n=50) 

‡p=0.032 
 

4.0 % 
(n=35) 

Percentage 
of embryos 
with AO-
positive 
cells in the 
utricular 
macula †† 
 

48 
hpf 

7.7 % 
(n=13) 

31.2 % 
± 11.4 
(n=44) 

26.2 % 
± 4.5 (n=52) 

‡p=0.268 

not 
determined 
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between noi mutants and pax5 morphants, but noi mutants have a wider range of defects.  

This is probably because noi mutants lack expression of pax5 as well as numerous other 

down stream genes. 

 A null mutation in fgf3, lim absent (lia) was recently identified (Wiebke et al., 

2004).  Consistent with the results of fgf3-MO injection (Kwak et al., 2002), lia mutants 

display decreased pax5 expression in the otic vesicle (Fig. 3.7E) and in some cases, pax5 

transcripts are almost ablated (Fig. 3.7F).  lia mutants produce fewer hair cells in the 

utricular macula (2.6± 0.5, 30 hpf, n=11) than wild-type (5± 0.6, 30 hpf, n=38) (Fig. 

3.7K, L).  Projections of SAG neurons to the hindbrain are similar to wild-type (Fig. 3.4, 

Table 1).  Despite having strongly reduced pax5 expression, lia mutants do not show 

increased cell death in the utricular macula (Fig. 3.7G, H) or misplaced hair cells (data 

not shown), and SAG projection patterns in the utricle are normal.  The reduced number 

of hair cells in lia probably reflects a reduced rate of production, as Fgf3 is implicated in 

hair cell specification (Kwak et al., 2002).  Vestibular function is more severely 

impaired in lia mutants than pax5 morphants (Fig. 3.2).  However, we note that utricular 

and saccular otoliths fuse in lia mutants by 48 hpf.  Combined with the reduced number 

of utricular hair cells, the late stage otolith defects are likely to contribute to the severe 

vestibular deficits in lia mutants.  Thus, loss of fgf3 perturbs vestibular function by a 

mechanism distinct from that seen in noi mutants and pax5 morphants.  The implications 

of these findings are discussed below. 
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Figure 3.7. Otic development in noi (pax2a) and lia (fgf3) mutants. 
Otic expression of pax5 in noi/noi (A) and lia/lia (E,F) mutants at 24 hpf.  Arrowheads 
mark the pax5 expression domain.  (B) SAG projections in a noi/noi mutant labeled by 
injecting DiI into the utricular macula at 72 hpf. (C, G) Acridine orange staining in 
noi/noi (C) and lia/lia (G) mutants at 48 hpf.  (D, H) TUNEL staining in noi/noi (D) and 
lia/lia (H) mutants at 48 hpf.  White arrowheads indicate apoptotic cells (C, D) and black 
arrows mark otoliths.  Utricular maculae are outlined in (c, D, G, H).  (I, J) Rhodamine-
phalloidin labeling of the utricular macula (outlined) in wild-type (I) and noi/noi (J) 
embryos at 48 hpf.  (K, L) Anti-Pax2 staining of the otic vesicle in wild-type (K) and 
lia/lia (L) embryos at 30 hpf.  White arrows indicate hair cell patches (I-L).  Images 
show dorsolateral (A, B, E, F, I-L) and lateral (C, D, G, H) views, with anterior to the 
left.  Scale bar, 30µm (A, E, F, K, L), 50µm (B), 25µm  (C, D, G, H, I, J). 
 

 

DISCUSSION 

In this report, we have shown that pax5 regulates the maintenance and function of the 

utricular macula, which is essential for vestibular function during larval development 

(Riley and Moorman, 2000).  In pax5 morphants, utricular hair cells appear to form 

normally but begin to die by 30 hpf, resulting in variable disorganization of the macula.  
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There is not a wholesale loss of hair cells, possibly because of ongoing developmental 

expansion of the macula or regeneration of lost hair cells.  In addition, it is likely that the 

phenotype is ameliorated by loss of pax5-MO activity during later stages of 

development, as suggested by a return to normal rates of cell death by 4 dpf.  Globally 

misexpressing pax5 rescues early cell death in the utricular macula of pax5 morphants, 

resulting in restoration of utricular hair cell number.  Together, these data suggest that 

pax5 regulates maintenance rather than formation of hair cells, and its function 

specifically affects the utricular macula.  In addition, pax5 morphants show variable 

defects in the pattern of SAG processes in the utricle, the severity of which correlates 

with the degree of hair cell disorganization and death.  It seems likely that SAG 

mispatterning is a secondary consequence of hair cell loss.  Together, these changes in 

utricular architecture seem sufficient to explain the disruption of vestibular function seen 

in pax5 morphants.  

 Some of the above defects could also reflect changes in support cells, which are 

thought to be necessary for hair cell survival (Haddon et al., 1998).  However, there are 

no substantial deficits in support cells based on the morphology of the sensory epithelia 

in pax5 morphants.  In addition, about 80% of the dying cells detected in the utricle by 

AO staining appear to be Pax2-postive hair cells.  The remainder are Pax2-negative cells 

in the basal layer of the utricular sensory epithelium.  These could be either newly 

specified hair cells in the earliest stages of differentiation or support cells (for which 

there are no markers in zebrafish).  For now the involvement of support cells remains an 

open question. 
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 How pax5 functions is not yet clear.  The early expression of pax5 in the 

utricular primordium suggests that it might regulate an essential aspect of early 

differentiation, without which cells later die.  A similar cell death phenotype is seen in 

noi (pax2a) mutants (Fig. 3.6).  Since pax2a is required for expression of pax5 in the ear 

(Pfeffer et al., 1998; Fig. 3.7A), the effect of noi on cell survival in the utricle could be 

mediated specifically by loss of pax5 expression.  Alternatively, because pax2a and pax5 

are likely to be partially redundant (Bouchard et al., 2000) pax5 might serve to 

supplement pax2a in promoting hair cell survival in the utricle.  In either case, these 

findings raise the question of why utricular hair cells alone require pax5 for survival.  

Presumably the basic ground plan of the sensory epithelium can be modified by specific 

combinations of multiple factors (combinatorial codes), possibly including Pax5, that 

confer unique properties and requirement to the utricular macula.   

 The importance of a combinatorial code is also suggested by the phenotype of lia 

(fgf3) mutants.  lia mutants show strong reduction in pax5 expression yet do not show 

cell death or SAG mispatterning in the utricle.  This shows that cell death is not an 

inescapable consequence of reducing pax5 function in the utricle.  Fgf3 presumably 

regulates other genes that could influence utricular development in conjunction with 

pax5.  Indeed, Fgf3 is required to block expression of the posterior marker, zp23, in the 

utricular macula, consistent with a general role for Fgf3 in specifying anterior identity 

(Kwak et al., 2002).  Based on the general morphology of the utricular macula and its 

SAG projections, lia mutants do not show a wholesale conversion of the utricle into a 

saccule.  However, partial readjustment of the combinatorial code in lia (e.g. loss of 
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pax5, ectopic expression of zp23) could subtly alter regional identity, thereby making 

hair cell survival independent of pax5. 

 In mouse, several other genes have been shown to differentially regulate survival 

of hair cells in different regions.  Brn-3c is required for the survival of hair cells in all 

epithelia, although auditory hair cells are affected more severely (Xiang et al., 1998).  In 

a gene expression profiling experiment, Gfi1 was identified as a downstream target of 

Brn-3c (Hertzano et al., 2004).  Although Gfi1 is expressed in all hair cells, ablation of 

this gene causes cell death only in cochlear hair cells (Wallis et al., 2003).  The cochlear 

phenotype of Gfi1-/- mutants is very similar to that of Brn-3c-/- mutants implying that 

Brn-3c regulates maintenance of cochlear hair cells through Gfi1 function.  The fact that 

Gfi1 is dispensable for hair cell survival in other sensory patches again suggests that 

each region is regulated by a specific combination of differentiation and maintenance 

factors.   

 

Pax2 and Pax5 functions in other vertebrates 

In mouse and chick, the expression and function of Pax2 have been studied most 

extensively in the cochlea, although it is also expressed in hair cells in other sensory 

epithelia (Lawoko-Kerali et al., 2002; Burton et al., 2004; Li et al., 2004a; Sanchez-

Calderon et al., 2005).  However, its role in hair cell maintenance per se cannot be 

addressed in the cochlea of Pax2 null mice because of severe agenesis of this region.  

The sensory epithelia that do form (utricular macula and cristae) have not been examined 
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in sufficient detail to determine whether there are defects in hair cell patterning or 

survival.  

Pax5 expression in the otic vesicle has been reported in Xenopus (Heller and 

Brandli, 1999) and recent gene expression profiling data for the chick ear indicate Pax5 

expression in the adult utricle and cochlea (http://hg.wustl.edu/lovett/projects/nohr/ 

inner_ear_ratio.html).  In contrast, Pax5 is not detected in the mouse ear during 

embryonic development, and Pax5 null mice have no obvious defects in hearing or 

balance (Urbanek et al., 1994).  It is possible that mouse represents a derived state where 

in Pax5 is no longer utilized in otic development.    

 

The pattern of utricular SAG projections 

DiI injections into the utricle revealed two patterns of central projections of the SAG, 

type-1 with discretely organized ascending and descending branches in the hindbrain, 

and type-2 with diffuse primary branches and several smaller secondary branches.  

These patterns are independent of age through 7 dpf and do not require vestibular 

activity, as shown by analysis of pax5 morphants and mnl and lia mutants.  Variation in 

neural patterning is often seen during early development and is later corrected by 

pruning (reviewed by Maklad and Fritzsch, 2003).  It therefore seems likely that the 

type-2 pattern eventually resolves into a more cohesive pattern.  Nevertheless it is 

remarkable that vestibular activity and motor coordination are so effectively integrated 

in young larvae despite variation in SAG projection patterns.   
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 A fundamental question remaining is how SAG neurons make connections 

between a given sensory epithelium to the appropriate processing center in the brain.  A 

recent study by Satoh and Fekete (2005) showed that neuroblasts from one region of the 

ear often innervate sensory patches in another.  This suggests that SAG targeting can be 

regulated after neuroblasts delaminate from the vesicle.  For example, SAG neurons 

might project randomly to different sensory patches, after which regional signals from 

the sensory patch program the neuron to make appropriate central projections.  Changes 

in the utricle caused by disruption of pax5 or fgf3 did not affect central projections, but 

noi mutants showed severely distorted central projections.  At present it is not clear 

whether this reflects changes in otic vesicle or hindbrain.  Further analysis of noi and 

other zebrafish mutants could help resolve this issue. 
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CHAPTER IV 

 

SPATIAL AND TEMPORAL GRADIENT OF FGF CONTROLS DISCRETE 

STAGES OF STATOACOUSTIC GANGLION DEVELOPMENT  

IN THE ZEBRAFISH INNER EAR 

 

INTRODUCTION 

 
Sensory neurons of the VIIIth cranial ganglion, statoacoustic ganglion (SAG), innervate 

hair cells in the sensory epithelia. These bipolar neurons relay auditory (hearing) and 

vestibular (balance) sensory information to the hindbrain. SAG precursor cells, called 

neuroblasts, are specified in the otic floor by neurogenin1 (neurog1), a bHLH factor 

homologous to atoh1. Loss of neurog1 leads to a complete loss of SAG neurons (Ma et 

al., 1998, Ma et al., 2000; Andermann et al., 2002). In zebrafish, neuroblasts are first 

specified during placodal stages adjacent to the nascent sensory epithelium, utricular 

macula (Haddon and Lewis, 1996; Andermann et al., 2002; Radosevic et al., 2011).  

These neuroblasts leave the otic floor in a process called delamination from the 

anterolateral margin of the vesicle and from the middle of the floor more posteriorly 

until 42 hpf (Haddon and Lewis, 1996). Expression of neurog1 is transient in the 

precursors and is followed by strong upregulation of neuronal differentiation bHLH gene 

neurod (Korzh et al., 1998, Andermann et al., 2002). Delta-Notch signaling regulates the 

number of cells committed into entering neuronal differentiation via lateral inhibition. 

Members of Notch signaling pathway are expressed in the neurogenic domain of the otic 
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vesicle and disruption of Notch signaling in zebrafish mindbomb mutant or in chick by 

blocking Notch intracellular cleavage leads to excess sensory neuronal precursors 

(Adam et al., 1998; Haddon et al., 1998; Alsina et al., 2004; Abello et al., 2007).  

 In chick and mouse, neuroblasts undergo a brief phase of proliferation to expand 

the precursor population (D’Amico-Martel, 1982; Begbie et al., 2002; Alsina et al., 

2003; Matei et al., 2005). This stage of transit-amplification is characterized by the 

expression of neurod and proliferation markers (Camerero et al., 2003). Mitotic cells are 

observed in the SAG well after delamination has ceased in chick (D’Amico-Martel, 

1982). Following proliferation, neuroblasts exit the cell cycle and differentiate into 

bipolar neurons that innervate hair cells in the sensory epithelia and processing centers in 

the hindbrain. Maturing SAG neurons in zebrafish express LIM domain/homeodomain 

transcription factors Islet-1/2 (Korzh et al., 1993; Inoue et al., 1994; Haddon et al., 

1998).  

 Several studies have implicated the role of Fgf signaling at different stages of 

otic neurogenesis.  Fgf10 is expressed in the prospective neurosensory domain of the 

otic placode and has been shown to promote neuronal determination in chick (Alsina et 

al., 2004). Fgf2 and 8 expressed in chick otic placode increases the number of migrating 

and differentiating SAG neurons (Hossain et al., 1996; Adamska et al., 2001). In 

zebrafish, fgf3/8 are detected in the hindbrain (rhombomere 4) and by 18 hpf they are 

expressed in the nascent sensory epithelium (Leger and Brand, 2002; Millimaki et al., 

2007). Both fgf3/8 have been shown to affect SAG development. Expansion of fgf3 into 

the posterior segments of the hindbrain in vhnf1 mutants results in posterior extension of 
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neurogenic domain (Lecaudey et al., 2007). Loss of Fgf3/8 function in mutants and 

morphants shows a reduction in SAG markers (Adamska et al., 2000; Leger and Brand, 

2002). Because of the importance of Fgfs in otic induction, defects in ear morphogenesis 

are often associated with SAG defects thus making it difficult to deduce the role of Fgf 

in otic neurogenesis per se.   

 Here we study the development of SAG and its regulation by Fgf. We show that 

Fgf signaling controls each stage of otic neurogenesis by conditionally manipulating Fgf 

levels. Fgf is necessary for the initial specification of neuroblasts in the otic floor and 

moderate to low level of Fgf from the adjacent utricle promotes this phase. As SAG 

development continues, mature neurons express fgf5 causing an increase in the overall 

level of Fgf. This serves two roles. First, upon accumulation of sufficient mature neurons 

the phase of specification is terminated.  Second, elevated Fgf signaling stabilizes the 

transit-amplifying population and delays the differentiation of SAG precursor cells. 

Thus, a spatial and temporal gradient of Fgf ensures production of the appropriate 

number of precursors and prevents overproduction of mature neurons.  

 

MATERIALS AND METHODS 

Fish strains, misexpression and inhibitor treatment 

Wild-type zebrafish strains were derived from the AB line (Eugene OR). The following 

transgenic lines were used in this study- Tg(hsp70:fgf8)x17  (Millimaki et al., 2010), 

Tg(hsp70I:dnfgfr1-EGFP)pd1  (Lee et al., 2005) and Tg(-17.6isl2b:GFP)zc7 (Pittman et 

al., 2008). Embryos were maintained at 28oC, unless otherwise stated, and staged 
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according to standard protocol (Kimmel et al., 1995). PTU, 1-phenyl 2-thiourea, 

(0.3mg/ml, Sigma) was added to fish water to prevent melanin formation. For 

misexpression experiments, embryos were incubated in a re-circulating water bath at 

specific temperatures and time points described in the results. To block Fgf signaling, 

embryos were treated in their chorions with SU5402 (Tocris Bioscience) diluted from a 

20mM stock in DMSO.  

 

Morpholino injection and RT-PCR 

A splice-blocking morpholino targeting intron1-exon2 (I1E2) boundary, 5’-

TTTCTCTATCTAGGTGTGC TGGAGC-3’ was designed to knock down fgf5 function. 

Approximately 5ng morpholino was injected per embryo at one-cell stage. The efficacy 

of this morpholino was assessed by RT-PCR with primers- P1 (forward), 5’-

TCGATGGAAGAGTCAACGGGAGC-3’ and P2 (reverse) 5’-

GCCTTCCCCTCTTGTTCATGGC-3’. For control ornithine decarboxylase (odc) was 

used. Uninjected embryos from the same genetic background were used as controls.  

 

In situ hybridization 

Whole-mount in situ hybridization was carried out with methods described previously 

(Jowett and Yan, 1996). A shorter riboprobe was synthesized for neurog1 using T7 RNA 

polymerase to address non-specific binding in Tg(-17.6isl2b:GFP)zc7 line at sites of gfp 

expression. The in situ hybridization protocol was modified for fgf5 riboprobe to reduce 

background. Pre-hybridization was performed at 70oC for 12 hours instead of 67oC for 2 
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hours. Similarly, hybridization step was done at 70oC and lasted 24 hours instead of 16 

hours. Washes on day 2 were as described in Moens, C., (2008).   

 

Immunostaining  

Antibody staining was performed as described previously (Riley et al., 1999). Primary 

antibodies were as follows: anti-Islet1/2 (Developmental Studies Hybridoma Bank 

39.4D5, 1:100 for whole-mount, 1:250 for cryosections) and anti-BrdU (Beckton-

Dickinson, 1:300). Secondary antibodies were as follows: HRP-conjugated goat anti-

mouse IgG (Vector Labs PI-2000, 1:200) and Alexa 546 goat anti-mouse IgG 

(Invitrogen A-11003, 1: 250).  

 

Cryosectioning and BrdU labeling 

Fixed embryos were washed thrice for 5 min each in 1x PBS and then soaked in 20% 

sucrose solution made in PBS followed by 30% sucrose until they sunk to the bottom of 

a microcentrifuge tube.  Embryos were embedded in tissue freezing medium (Triangle 

Biomedical Sciences, TFM-C), transverse sections were cut at 10µm thickness using a 

cryostat and immunostained. Finally, slides were washed twice in 1x PBS and mounted 

in ProLong Gold (Invitrogen) with a coverslip.  For double labeling, whole-mount in situ 

hybridization was performed first followed by immunostaining on cryosections.  

For BrdU labeling, dechorionated embryos were incubated in fish water 

containing 10mM BrdU in 1% DMSO for the indicated duration. Embryos were rinsed 

twice for 5 minutes each in fish water prior to fixation. For older stages (96 hpf) 2nl of 
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10mM BrdU/1% DMSO solution with 3% filtered green food coloring was injected into 

the brain ventricle of larvae anesthetized in Tricaine (Sigma). Embryos were first 

processed by whole-mount in situ hybridization for neurod and then cryosectioned. 

Slides were washed thrice for 5 minutes each in PBT (with 0.1% Triton) and incubated 

in 2N HCl for 45 minutes at 37oC. Slides were rinsed in PBT again, incubated in 

blocking solution (with 1% Triton for 36 hpf and 3% Triton for 102 hpf) for 2 hours and 

stained for BrdU.  

 

Laser ablation 

Maturing SAG neurons were ablated using a MicroPoint laser, under 40x objective, in 

isl2b:GFP transgenic line that labels this population of cells. Anesthetized embryos were 

mounted in a dorsolateral orientation beneath a #1 coverslip on a bridge slide made by 

stacking two #1 coverslips on either side of the embryo. Single round of ablations 

resulted in only 50% loss of Isl1-positive population possibly because neighboring cells 

in the GFP domain were photo-bleached during ablation. GFP fluorescence recovers 

within 1-2 hours. Serial ablation 2-3 hours after the first round results in approximately 

90% decrease in Isl1+ cell number (data not shown).     

 

RESULTS 

Development of the statoacoustic ganglion (SAG)  

Otic neurogenesis is a sequential process involving specification, delamination, 

proliferative expansion and differentiation of precursor cells resulting in the formation of 
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the SAG (Alsina et al., 2003; Sanchez-Calderon et al., 2007b) as illustrated in figure 

4.1A. In zebrafish, neuronal precursors (neuroblasts) are specified in the floor of the otic 

placode as early as 16 hpf and express neurog1 (Andermann, 2002; Radosevic et al., 

2011). Cells from the anterolateral margin of the vesicle and from the middle of the otic 

floor more posteriorly delaminate between 17 hpf and 42 hpf in zebrafish (Fig. 4.1C). 

Delamination begins to slow down after 30 hpf (this study and Haddon and Lewis, 

1996). neurog1 is only transiently expressed in precursors, followed by upregulation of a 

neuronal differentiation gene, neurod (Liu et al., 2000; Andermann et al., 2002). In chick 

and mouse embryos, neuroblasts proliferate briefly to expand the neural population 

(D'Amico-Martel, 1982; Begbie et al., 2002; Alsina et al., 2003; Fritzsch et al., 2006). 

Cells then begin to exit cell cycle and differentiate into mature neurons. In zebrafish, 

neuroblasts undergo a similar transit-amplification phase as seen by co-expression of 

neurod and cell proliferation marker BrdU (Fig. 4.1D). The presence of a transit-

amplifying population explains why neuronal population in the SAG continues to 

expand at least through 72 hpf although delamination ends at around 42 hpf (Fig. 4.1B). 

neurod-positive precursor cells continue to proliferate even at 4 days post fertilization 

(dpf) (Fig. 4.1E). As precursor cells exit the cell cycle, they begin to differentiate and 

express Islet-1 (Isl1) (Fig. 4.1B, F and Haddon et al., 1998; Khorzh et al., 1998). The 

most mature neurons lose neurod expression and are located proximal to the vesicle, 

plastered against the ventromedial edge of the ear, while the neurod-expressing cells 

undergoing transit-amplification reside more distally (Fig. 4.1I, J). These cell  
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Figure 4.1. Development of statoacoustic ganglion (SAG). 
(A) Illustration showing the various stages of SAG development. Neuronal precursors 
(neuroblasts) that are specified (1) in the otic floor delaminate (2) and accumulate 
ventromedially between the otic vesicle and hindbrain. They undergo a phase of transit-
amplification (3) where they proliferate and eventually differentiate into mature neurons 
(4).  (B) Number of Islet-1-positive mature SAG neurons at indicated stages (mean of 
total number ± standard deviation, n=20 for each timepoint). (C) neurog1 expression at 
30 hpf. (D-E) Co-expression of neurod (blue) and BrdU (red) in embryos exposed to 
BrdU for 6 hours starting at 26 hpf (D) and 96 hpf (E). (F-J) Expression of neurod (blue) 
and Islet-1 (red) at 36 hpf. Mature neurons are labeled with Islet-1 (F) and precursor 
cells express neurod (G). (H-J) Sections showing co-expression of neurod and Islet-1 at 
regions indicated in (G). All embryos are wild-type. The otic vesicle is outlined in black. 
Regions representing the different stages of SAG development are demarcated in grey 
and numbered accordingly. Transverse sections are at the level of anterior (C-E, I) and 
posterior (J) sensory epithelium indicated by u, utricular and s, saccular maculae. Images 
of whole-mount specimens (F, G) are dorsolateral (F) and dorsal (G) views with anterior 
to the left. Images of transverse sections (C-E, H-J) show dorsal to the top and lateral to 
the left.     
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populations also show a dynamic spatial distribution along the anterior-posterior axis of 

the developing SAG: the anterior most region is occupied by neurod+ precursors 

followed by a region of neurod+ and Isl1+ cells in the middle that extends mediolaterally, 

and the posterior region that is narrow and strictly medial (Fig. 4.1H, I, J, respectively 

and 4.1G). Upon differentiation, Isl1+ neurons project dendrites to hair cells in peripheral 

sensory endorgans, and axons to central targets in the hindbrain.  

 

Fgf regulates neuroblast specification at early and late stages 

Several Fgfs expressed in tissues near the developing SAG have been implicated in 

establishing a neurogenic domain in the ear (reviewed in Wright and Mansour, 2003). In 

zebrafish, Fgf3/8 are expressed in hindbrain segments adjacent to the otic placode and in 

the nascent maculae (sensory epithelium) starting at 18 hpf. We hypothesize that high 

levels of Fgf signaling in the sensory epithelium promotes sensory development whereas 

lower levels of Fgf specify the neurogenic domain in adjacent otic epithelium. 

Knockdown of Fgf3/8 in mutants and morphants results in a smaller SAG.  However, 

these embryos also exhibit a smaller otic vesicle and defects in sensory epithelia (Leger 

and Brand, 2002). To bypass the early requirements of Fgf during otic induction we used 

a chemical inhibitor, SU5402, to inhibit signaling at later stages of development. 

Embryos treated with 100µM SU5402 from 14 hpf -18 hpf showed a strong reduction in 

neurog1 expression domain (Fig. 4.2A, B). These embryos show severe necrosis within 

12 hours of treatment because of ongoing dependence on Fgf for proper embryonic 

development and this precludes analysis of Isl1 numbers at later stages. Loss of Fgf 
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signaling at 14 hpf using heat shock-inducible hs:dnfgfr1 transgenic line activated at 

38oC for 30 minutes showed similar results albeit to a lesser extent (Fig. 4.2C). These 

data confirm that initial specification of the neurogenic domain depends on Fgf 

signaling. To test our hypothesis that cells in the otic floor that are specified to become 

neuroblasts respond to a specific low level Fgf signaling we used a heat shock-inducible 

transgenic line, hs:fgf8 (Millimaki et al., 2010). To provide a broad shelf of low Fgf 

sgnaling we misexpressed hs:fgf8 at a low temperature (35oC, 6 hours) for a prolonged 

period of time at 18 hpf. As a result a marked expansion in neurog1 expression domain 

was observed (Fig. 4.2D-E). There is a subsequent increase in delaminating neuroblasts 

as seen by hmx3 expressing cells leaving the vesicle (Fig. 4.2F-G) and in the number of 

Isl1+ cells in the mature SAG (Fig. 4.2H, an average of 63.44 ± 5.98 Isl1+ cells were 

present in the SAG of control embryos compared to 86 ± 3.6 in hs:fgf8 transgenic 

embryos, n=15). To evaluate the effects of high level Fgf, hs:fgf8 embryos were 

maximally activated (39oC, 30 minutes). Elevated Fgf signaling is inhibitory to SAG 

development (Fig. 4.2H, an average of 51.2 ± 4.16 Isl1+ cells in the SAG, n=15). 

neurog1 expression is reduced briefly following heat shock but recovers by 24 hpf  (data 

not shown). These data support the idea that Fgf acts as a morphogen and lower levels 

promote and higher levels inhibit neuronal precursor specification.  

We next examined the effects of Fgf on specification at later stages of 

development. Misexpression of hs:fgf8 at 24 hpf resulted in a reduced neurog1 

expression domain at 30 hpf following activation at either 39oC for 30 minutes (Fig.  
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Figure 4.2. Fgf regulates neuroblast specification. 
(A-C) neurog1 expression at 18 hpf in a control (A), SU5402 inhibitor treated (B) and 
hs:dnfgfr1 transgenic embryo heat shocked at 14 hpf. (D-G) Expression of neurog1 (D-
E) and hmx3 (F-G) in control and hs:fgf8 embryos heat shocked at 18 hpf at 35oC for 6 
hours to activate prolonged low level Fgf and fixed immediately. (H) Number of Islet-1-
positive cells in the SAG (mean of total number ± standard deviation) at 42 hpf 
following heat shock activation of hs:fgf8 at 18 hpf at indicated temperatures. *p < 0.001 
in comparison to control, analyzed with Student’s t test. (I-K) neurog1 expression at 30 
hpf following heat shock at 24 hpf in a control embryo (I), hs:fgf8 embryo heat shocked 
at 39oC for 30 minutes to strongly over-express Fgf (J) and hs:dnfgfr1 embryo heat 
shocked for 2 hours at 35oC and then incubated at 33oC instead of 28.5oC to maintain 
low level inhibition of Fgf signaling (K). Otic vesicle is outlined in grey. Images show 
dorsolateral views with anterior to the left. 
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4.2H, I) or 35oC for 6 hours (data not shown). In keeping with the requirement of Fgf for 

neuroblast specification, full activation of hs:dnfgfr1 diminished neurog1 expression 

(data not shown). However, weak attenuation of Fgf signaling by activating hs:dnfgfr1 at 

a low level, 35oC for 2 hours followed by incubation at 33oC, expanded the neurog1 

expression domain at 30 hpf (Fig. 4.2J). Overall these data suggest that a moderate dose 

of Fgf promotes neuroblast specification at both early and later stages, and complete 

blockage of Fgf signaling impairs this process. At later stages, however, the process of 

specification becomes increasingly sensitive to inhibition by Fgf. This indicates that 

either otic cells respond more efficiently to Fgf or that the overall level of Fgf increases 

during development. The latter possibility proved to be correct as described below.  

 

fgf5 from mature neurons inhibits neuroblast specification 

Our data suggest that SAG specification becomes more sensitive to inhibition by Fgf as 

development progresses. We speculated that this is because local Fgf levels increase 

during normal neuroblast development.  We therefore surveyed expression of all known 

fgf genes and identified fgf5 as a strong candidate for a feedback regulator of SAG 

development. Fgf5, is a member of the Fgf1 superfamily, is expressed in the mouse 

acoustic ganglion between E12.5 and E14.5 (Goldfarb et al., 1991), however, its 

function in this context is not known. In zebrafish, fgf5 is expressed in the SAG (Fig. 

4.3A-C) and in other cranial ganglia including trigeminal (V), facial (VII) and vagus (X) 

(data not shown). fgf5 mRNA was detected as early as 20 hpf in a small population of 
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recently delaminated neuroblasts (data not shown). By 24 hpf, expression begins to 

upregulate in maturing neurons located proximal to the ventromedial floor of the otic 

 

 
 
Figure 4.3. Mature neurons express fgf5. 
(A-C) Co-expression of fgf5 (blue) and Islet-1 (red) at indicated stages at the level of the 
anterior sensory epithelium. (D) Schematic of fgf5 mRNA showing intron (I)-exon (E) 
structure (not to scale). Binding sites for splice-blocking morpholino at intron1-exon2 
junction (I1E2-MO) and PCR primers for RT-PCR (forward P1, reverse P2) are shown. 
(E) RT-PCR results showing the efficacy of I1E2-MO. fgf5 transcript levels are severely 
reduced. odc transcript level was used as a control. Otic vesicle is outlined in grey. 
Images are transverse sections (A-C) with dorsal to the top and lateral to the left.  
 

 

vesicle as seen by co-localization with Isl1 (Fig. 4.3A). Expression of fgf5 continues to 

be restricted to mature SAG neurons at later stages (Fig. 4.3B, C).  

 We investigated the role of Fgf5 in SAG development by knocking down gene 

function using a morpholino targeting the intron1-exon2 splice junction (Fig. 4.3D, E). 

To address the role of fgf5 in neuroblast specification we examined neurog1 expression 

at various stages in morphant embryos. At 24 hpf no obvious difference was observed 

between morphants and controls (Fig. 4.4A, E) but at 30 hpf, neurog1 expression was 
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dramatically expanded in fgf5 morphants (Fig. 4.4B-C, F-G). The mediolateral 

expansion of neurog1 in the otic floor is evident in sections (Fig. 4.4C, G). Although 

neurog1 expression also extends along the anterior-posterior axis (Fig. 4.4B, F) the site 

of delamination did not shift posteriorly in morphants (data not shown). Normally, 

neuroblast specification begins to slow down after 30 hpf (Andermann et al., 2002 and 

 

 

Figure 4.4. fgf5 from mature neurons terminates the phase of neuroblast 
specification. (A-H) Expression of neurog1 in control (A-D) and fgf5 morphant (E-H) 
embryos at indicated stages. (I-L) Expression of isl2b:gfp (I-J) and neurog1 (K-L) in 
unablated (contralateral) control side (I, K) and ablated side (J, L) of the same embryo. 
GFP-positive mature neurons were serially ablated at 22 and 25 hpf (compare GFP 
domain in I and J). Otic vesicle is outlined in grey/white. Grey vertical lines in (B, F, D, 
H) indicate the plane of section in (C, G, inset in D and H). Insets in (D) and (H) show 
magnified images of the otic floor. Arrows indicate the expanse of neurog1 domain in 
the otic floor. Images of whole-mount specimens (A-B, E-F, D, H-J) are dorsolateral 
views with anterior to the left. Transverse sections (C, G, inset in D and H, K-L) with 
dorsal to the top and lateral to the left.   
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Haddon and Lewis, 1996). However, in fgf5 morphants more neurog1-positive cells are 

detected, both in the otic floor and in the delaminating population, in contrast to controls 

at 36 hpf indicating a prolonged phase of specification (Fig. 4.4D, H). This data is 

consistent with the notion that mature SAG cells become a source of elevated Fgf, which 

eventually exceeds the threshold for termination of specification. This also explains the 

increased susceptibility to fgf8 misexpression. To test whether neurog1 expansion is an 

indirect effect of altered otic patterning we examined general axial patterning markers 

and observed no difference between morphant and control embryos. Sensory epithelia 

development, which is also regulated by Fgf (Millimaki et al., 2007), was normal in fgf5 

morphants (Fig. 4.5, hair cell numbers shown in Table 3).  

We used another approach to test whether signals from mature SAG neurons 

inhibit neuroblast specification. Mature neurons labeled by GFP in isl2b:gfp transgenic 

line were laser-ablated serially at 22 and 25 hpf  (Fig. 4.4I-J) and neurog1 expression at 

30 hpf was examined. On the ablated side, neurog1 expression was expanded relative to 

the unablated (contralateral) side although to a slightly lesser extent than in fgf5 

morphants (Fig. 4.4K-L, compare with 5G). All together these data suggest that as 

mature neurons expressing fgf5 accumulate within the SAG, overall levels of Fgf 

signaling increase and as a result neuroblast specification is terminated. Differentiating 

neurons thus regulate the phase of specification to ensure that the appropriate number of 

SAG precursor cells is produced.  
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Figure 4.5. Axial pattering in fgf5 morphants.  
(A-H) Expression of various otic markers in control (A-D) and fgf5 morphant (E-H) 
embryos. pax5 (A and E) and pou3f3b (B and F) label anterior-posterior axis,  
respectively. otx1a (C and G) labels ventromedial and dlx3b (D and H) labels 
dorsolateral regions of the vesicle. Table 1 shows the number of GFP-positive hair cells 
(mean of total number ± standard deviation) in the sensory epithelia of brn3c:gfp 
embryos injected with fgf5 morpholino. Otic vesicle is outlined in black. Images show 
dorsolateral views with anterior to the left.  
 
 

Fgf regulates the balance between transit-amplification and differentiation 

We next wanted to test the effects of Fgf on later stages of SAG development- transit-

amplification and differentiation. We used neurod expression to mark precursor cells in 

the transit-amplification phase, and Isl1 expression plus the absence of neurod to mark 

mature SAG neurons. We examined the expression of these markers under various 

conditions of gain and loss of Fgf signaling. To better interpret changes in the neurod 

and Isl11 expression domains that are distributed dynamically along the anterior-

posterior axis of the SAG, we analyzed transverse sections and grouped them into 

anterior, middle and posterior (see Fig. 4.1G-J).  Misexpression of hs:fgf8 at 24 hpf 

resulted in a slight increase in neurod+ precursor domain in the middle part of the SAG 

at 36 hpf (Fig. 4.6A-B, I). The posterior part of the SAG is truncated and nearly devoid 
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of neurod+ cells (Fig. 4.6E-F, I). This is possibly because the posterior SAG forms later 

and elevated Fgf prematurely terminates specification of neuroblasts that contribute to 

the posterior tail of SAG (see Fig. 4.2I-J). Despite the increased population of transit-

amplifying cells in the middle region of the SAG, there was a reduction in the neurod-

negative mature neuronal population (Fig. 4.6A-B, E-F,J). No significant difference was 

noted in the anterior part of SAG (Fig. 4.6I-J). The total number of Isl1+ SAG neurons 

was reduced in hs:fgf8 embryos compared to controls (Fig. 4.6K). For loss of function 

studies, we activated hs:dnfgfr1 at 24 hpf (38oC-30 minutes) to block all Fgf signaling. 

As a result a smaller neurod+ domain was observed at 36 hpf in the middle and posterior 

regions of SAG compared to controls (Fig. 4.6C,G,I). In contrast to reduction in transit-

amplifying population there was a corresponding increase in Isl1+ population throughout 

the anterior-posterior axis of the SAG (Fig. 4.6J,K). The opposing changes in the size of 

transit-amplifying and differentiating populations could possibly reflect altered cell-

cycle progression. To address this, we examined BrdU incorporation following heat 

shock of hs:fgf8 and hs:dnfgfr1 at 24 hpf. Embryos were incubated in BrdU after a 2-

hour rest period and processed at 36 hpf. Cells undergoing proliferation in the transit-

amplifying population were co-labeled with BrdU+/ neurod+. Since the size of the 

neurod+ transit-amplifying domain varies greatly among control, hs:fgf8 and hs:dnfgfr1, 

we calculated the relative proportion of BrdU-labeled nuclei in the anterior, middle and 

posterior regions of the SAG. No significant change was observed suggesting that the 

rate of proliferation is not altered (data not shown). We then evaluated the number of 

BrdU+ nuclei in the mature neuron population to gauge the progression of precursor cells  
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Figure 4.6. Fgf regulates the balance between transit-amplification and 
differentiation. (A-H) neurod expression in control (A, E), hs:fgf8 (B, F), hs:dnfgfr1 (C, 
G) and fgf5 morphant (D, H) embryos at 36 hpf. (I-K) Quantification of area occupied by 
neurod+ precursor cells (I), neurod-/Isl1+ mature neurons (J) in the anterior, middle and 
posterior region of SAG and the total number of Isl1+cells (K) in the SAG at 36 hpf.  
 (L- S) Isl1 expression in control (L, P), hs:fgf8 (M, Q), hs:dnfgfr1 (N, R) and fgf5 
morphant (O, S) embryos at 48 hpf. (T-V) Quantification of the area occupied by 
neurod+ precursor cells (T), neurod-/Isl1+ mature neurons (U) in the anterior, middle and 
posterior region of SAG and the total number of Isl1+cells (V) in the SAG at 48 hpf. 
hs:fgf8 embryos activated at 39oC for 30 minutes to strongly over-express Fgf and 
hs:dnfgfr1 activated at 38oC for 30 minutes to fully block Fgf signaling. Error bars 
indicate standard deviation. *p < 0.05 in comparison to control, analyzed with Student’s 
t test. Otic vesicle is outlined in black. Area occupied by mature neurons is demarcated 
(A-H) and the limits of SAG are outlined (L-S) in grey. Representative sections from the 
middle (A-D, L-O) and posterior (E-H, P-S) part of the SAG are shown at the level of 
the utricular (u) and saccular (s) maculae. Images of transverse sections show dorsal to 
the top and lateral to the left.  
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Figure 4.6. (continued) Fgf regulates the balance between transit-amplification and 
differentiation. 

 

towards differentiation. Fewer BrdU+ nuclei were observed in the middle region of the 

SAG in hs:fgf8 than control. In contrast, more BrdU+ nuclei were observed in the middle 

region of the SAG in hs:dnfgfr1 (control 17 ± 1.4, hs:fgf8 10.7 ± 0.6 and hs:dnfgfr1 27.2 

± 5; p<0.05, n=4). Overall these data support the idea that Fgf inhibits or delays SAG 

differentiation, such that blocking Fgf relieves this inhibition thereby accelerating 

maturation.  

We next assessed the role of Fgf5 as a candidate for the endogenous factor from 

mature SAG that normally inhibits maturation of precursor cells. We examined the 

distribution of cells in the transit-amplification vs differentiation phase as explained 

above. The size of neurod+ domain was increased in both the middle and posterior  
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regions of SAG in the embryos (Fig. 4.6D,H, I). There was also an increase in the 

number of Isl1+ neurons in the SAG and the area occupied by mature neurons at 36 hpf 

in morphant embryos compared to control (Fig. 4.6J,K). No obvious change was 

observed between controls and fgf5 morphants in the anterior region of SAG (Fig. 4.6I- 

J). An increase in both transit-amplification and differentiation is different from what 

was observed with loss and gain of Fgf function above. This is because fgf5 morphants 

showed an increase in transit-amplifying cells due to prolonged phase of specification, 

but also had an increase in mature SAG due to ongoing maturation. It is important to 

note that despite the large increase in transit-amplifying population and continued 

maturation, fgf5 morphants did not produce more mature neurons than hs:dnfgfr1 

embryos. This suggests that other Fgfs, perhaps Fgf3/8 from the maculae, contribute to 

SAG regulation and weakly restrain maturation in fgf5 morphants. In hs:dnfgfr1 

embryos signaling from all Fgfs is impaired and leads to more rapid maturation. In 

summary, the balance between transit-amplification and differentiation in the developing 

SAG shifts in response to the overall level of Fgf signaling.  

We extended our analysis to a later time point to study how changes in the 

transit-amplifying and mature neuronal populations at early stages continue to affect 

SAG development. By 48 hpf more neurod+ precursors in the transit-amplification phase 

have differentiated into Isl1+ neurons in comparison to 36 hpf. The spatial distribution of 

these populations remains the same along the anterior-posterior and proximal-distal axes. 

The distribution of transit-amplifying cells and differentiating neurons, in the middle and 

anterior region of the SAG, at 48 hpf was similar to what was observed at 36 hpf with 
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some exceptions (Fig. 4.6T-U). There was no notable difference in the posterior (Fig. 

4.6T, compare with 4.6I). As expected, the mature neuronal population was smaller in 

hs:fgf8, and expanded in hs:dnfgfr1 and fgf5 morphant embryos both in the middle and 

posterior regions of the SAG (Fig. 4.6L-N, P-R and U-V). There was, however, an 

increase in the mature neuronal population in fgf5 morphant embryos in the anterior 

region of the SAG (Fig. 4.6U, compare with 4.6J). This possibly reflects maturation of 

the excessive neuroblasts that were specified during earlier stages of SAG development. 

These findings strongly support the idea that as the SAG expands, elevated levels of Fgf 

signaling from mature neurons stabilizes the transit-amplifying population and inhibits 

these cells from differentiating into neurons, thus regulating the overall size of the 

ganglion.  

 

DISCUSSION 

Otic neurogenesis is a multistep process that gives rise to neurons of the statoacoustic 

ganglion (SAG). SAG development has been well characterized in chick and mouse. 

Here we show that zebrafish otic neurogenesis follows similar steps. Neuroblasts are 

specified in the otic floor that later delaminate. Upon delamination, neuroblasts then 

undergo a phase of proliferation. The number of neurons in the SAG continue to increase 

even after delamination ceases owing to growth of a precursor pool. In this study we 

show that Fgf controls each phase of this complex developmental process. Initially 

moderate to low level Fgf from the hindbrain and utricular macula specifies neuroblasts. 

Neuroblasts differentiate into SAG neurons that express fgf5 and as more neurons  
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Figure 4.7. Model illustrating regulation of SAG development by Fgf. 
(A) Neuroblast specification at early stages. Fgf3/8 gradient from the utricular macula 
(u.m) specifies neuroblasts in the otic floor that later delaminate. (B) Fgf5 from mature 
neurons terminated the phase of specification and regulates progression from transit-
amplification to differentiation. (C-D) Ongoing Fgf signaling delays maturation of 
transit-amplifying cells into neurons. Attenuation of Fgf signaling (C) promotes 
maturation of neurons whereas elevated Fgf (D) delays the progression further. White 
arrows indicate cell stage progression and black arrows indicate gene function. 
Transverse sections are represented with dorsal on top and medial to the right.   
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accumulate, elevated Fgf level in turn terminates the phase of specification. We show 

that Fgf also regulates the balance between transit-amplification and differentiation. 

Thus, Fgf signaling renders the SAG system self-organizing and self-maintaining.     

 

Fgf regulates the phase of neuroblast specification 

Several studies have implicated a role for Fgfs in neuroblast specification (Alsina et al., 

2003; Wright and Mansour, 2003; Alsina et al., 2004). Since Fgfs are also critical in otic 

induction and patterning, steps foreshadowing establishment of the neurogenic domain, 

it has been challenging to interpret most of these studies. Blocking Fgf signaling after 

placode induction resulted in a dramatic loss of neurogenic domain (neurog1 expression) 

although it was not completely lost. This is possibly because of incomplete inhibition of 

Fgf signaling. Blocking Fgf signaling at earlier stages or more strongly is toxic to the 

embryo (data not shown). We show that Fgf acts as a morphogen with both an upper and 

lower threshold for SAG specification. Neurogenic domain is induced in response to low 

level of Fgf emanating from the utricle/hindbrain (Fig. 4.7A). High levels of Fgf, on the 

other hand, are inhibitory. One possible explanation for the inhibitory action of Fgf is 

that elevated Fgf induces high levels of neurog1 initially. Neurog1 has been shown to 

negatively autoregulate itself via Notch-mediated lateral inhibition (Haddon et al., 1998; 

Raft et al., 2007) and elevated Notch activity might shut down the entire process of 

specification.  

At later stages the process of specification becomes more sensitive to the 

inhibitory effects of Fgf but not until sufficient fgf5+ SAG neurons have accumulated. As 
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SAG development progresses the overall levels of Fgf increase further and the phase of 

specification is terminated (Fig. 4.7B). In fgf5 morphants, although specification is 

prolonged it begins to slow down at 36 hpf suggesting that specification might be 

regulated by multiple mechanisms. 

 

Fgf regulates later stages of otic neurogenesis 

We show evidence that Fgf signaling continues to regulate later stages of SAG 

development. The final number of neurons in the SAG depends on a dynamic balance 

between transit-amplification and differentiation of precursor cells. As SAG 

development continues mature neurons express fgf5 thus elevating levels of Fgf. This in 

turn inhibits or delays SAG differentiation. Blocking Fgf alleviates this inhibition and 

accelerates maturation whereas elevated levels delays it further (Fig. 4.7C, D). In fgf5 

morphants, although additional neuroblasts are specified, the number of mature neurons 

is no different from when Fgf signaling is completely attenuated in hs:dnfgfr1. It is 

possible that Fgf from other adjacent sources such as the maculae play a role in 

regulating SAG neurogenesis. The possibility that sensory epithelia expansion 

cooperates with SAG development to regulate neurosensory growth in the inner ear is 

fascinating. A similar role for Fgf signaling has been shown in minbrain-rhombomere1 

development in mouse where conditional knockdown of Fgf receptors results in an 

increase in differentiated neurons and a concomitant loss of progenitor cells in the 

ventricular zone. Thus, Fgf is thought to play a role in regulating the balance between 

progenitor self-renewal and postmitotic differentiation (Saarimaki-Vire et al., 2007). In 
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another study, high levels of Fgf2 have been shown to maintain proliferation of cultured 

neural progenitor cells from the human cortex and block differentiation. Low levels of 

Fgf2, however, enhance neurogenesis. An autoregulatory mechanism mediated by Fgf2 

is proposed where levels of Fgf2 increase as neurogenesis proceeds and this in turn 

prevents further differentiation (Nelson and Svendsen, 2006). In summary our data 

support a model for SAG regulation mediated by different sources of Fgf during 

different phases of otic neurogenesis.  
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CHAPTER V 

 

SUMMARY AND DISCUSSION 

 

SUMMARY OF FINDINGS 

This study examines the development of neurosensory components of the zebrafish inner 

ear. Formation of sensory epithelia, composed of hair cells and support cells, depends on 

atoh1 function. In Chapter II, we show that misexpression of atoh1a recapitulates 

expression of markers seen during endogenous sensory epithelia development. This 

results in the induction of ectopic sensory epithelia. However, the ability of otic tissue to 

respond to atoh1a varies in a spatial and temporal manner. Maximal effects are observed 

during placodal stages and induction of ectopic sensory epithelia is still limited to the 

ventromedial region of the otic vesicle. Competence of otic tissue to respond to atoh1a 

can be enhanced by co-misexpression of fgf8 or sox2, genes that normally work in 

concert with atoh1a. As a result ectopic sensory epithelia are induced in the non-sensory 

lateral wall of the otic vesicle, even at later stages of development. The sensory 

epithelium expresses several genes that regulate differentiation and maintenance/survival 

of hair cells. pax5 is one such gene differentially expressed in the utricular (anterior) 

macula and its role is examined in Chapter III. pax5 regulates the maintenance of 

utricular hair cells and requires pax2a and fgf3 for its expression. Disruption of Pax5 

function results in hair cell death in the utricle and not the (posterior) saccule. As a 

consequence, neurons of the statoacoustic ganglion (SAG) that innervate these hair cells 
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become disorganized and vestibular, not auditory, function is impaired. Bipolar neurons 

of the SAG transmit information from sensory endorgans to targets in the hindbrain. 

Detailed analysis of the development and regulation of SAG is addressed in Chapter IV. 

Neuronal precursor cells (neuroblasts) are formed in the otic floor in response to a 

moderate dose of Fgf signaling possibly from the adjacent hindbrain or the utricular 

macula. These neuroblasts undergo a protracted phase of proliferation prior to 

differentiating into mature neurons. Mature neurons express fgf5 and together with fgf3/8 

expression in the sensory epithelia increase the overall levels of Fgf signaling as 

development progresses. We show evidence that Fgf signaling regulates SAG 

development by first, terminating the phase of neuroblast specification, and later 

maintaining the balance between proliferation of neuroblasts and their differentiation 

into neurons. This ensures that sufficient precursors are generated and prevents over-

production of neurons, thus controlling the ultimate size of the SAG.     

 

ESTABLISHING THE PROSPECTIVE NEUROSENSORY DOMAIN 

Previous studies have shown the requirement of Fgf in establishing the prosensory 

domain that gives rise to both hair cells and support cells (Pirvola et al., 2002; Millimaki 

et al., 2007; Hayashi et al., 2008). Fgf is also expressed within the maculae suggesting 

that high levels of Fgf promote sensory development (Millimaki et al., 2007). Fgf 

signaling also plays an important role is specifying the proneural domain that gives rise 

to neurons of the SAG. Our studies using conditional manipulation of Fgf signaling 

show that neuroblast specification in zebrafish depends on Fgf in a dose-dependent 
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manner. Cells in the otic floor respond to moderate to low levels of Fgf, emanating from 

the hindbrain first and then the utricle, whereas high levels are inhibitory.  

In mouse and chick, neurog1 expression foreshadows atoh1 such that neuroblasts 

are specified first followed by sensory precursors within the same ventromedial region 

of the otic palcode. This is different from zebrafish where atoh1b expression is seen first 

in preotic cells in a broad domain as early as 10.5 hpf. This domain is restricted to 

distinct anterior and posterior regions of the otic placode by 14 hpf. Soon thereafter 

neurog1 is expressed in the placode. The role of atoh1b, if any, in specifying the 

proneural domain is not known. Although atoh1 is expressed before neurog1 in 

zebrafish, specification of sensory and neuronal precursors occurs concurrently and not 

sequentially as seen in chick and mouse. As explained above, Fgf signaling is critical in 

establishing the proneural and prosensory domains in the ventromedial region of the otic 

placode. How expression domains of atoh1 and neurog1 are spatially restricted within 

this region is not fully understood. Clues from other systems suggest that differential 

expression of cofactors might regulate this process. For instance, in mouse, Pax6 plays a 

role in defining progenitor domains in the lower rhombic lip by limiting Neurog1 

expression domain and promoting Atoh1 domain. As a result, Pax6 mutants show an 

expansion of Neurog1 expression at the expense of Atoh1 (Landsberg et al., 2005). In 

zebrafish, Fgf regulates the expression of Pax2/5/8 family of transcription factors in 

addition to atoh1a and neurog1. Pax2/5 are expressed regionally and implicated in hair 

cell development (Pfeffer et al., 1998; Riley et al., 1999; Kwak et al., 2002; Millimaki et 

al., 2007; this study). Together with the observation that pax2a and neurog1 transcripts 
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are distributed in a mutually exclusive fashion in the otic vesicle (Korzh et al., 1998), it 

is possible that once the general neurosensory domain is set up by Fgf gradient, pax2a 

then sharpens the border analogous to Pax6. 

 

SENSORY EPITHELIA DEVELOPMENT AND MAINTENANCE 

The proneural gene atoh1 is both necessary and sufficient for sensory epithelia 

development. Developing sensory epithelia express several markers that are essential for 

differentiation and maintenance of hair cells. sox2, induced by Fgf and Notch, is co-

expressed with atoh1a/b at early stages. During sensory epithelia differentiation, sox2 is 

downregulated in mature hair cells and maintained in the support cells (Millimaki et al., 

2010). fgf3/8 are also expressed in the sensory epithelia and ongoing Fgf signaling 

appears to be important for macular expansion. pax2a is expressed along the medial wall 

of the otic palcode in response to Fgf from the hindbrain, and is later upregulated in all 

utricular hair cells and the first few hair cells in the saccule. Pax2a is required for normal 

expression of deltaA involved in lateral inhibition and in pax2a (noi) mutants the number 

of utricular hair cells is doubled (Riley et al., 1999). Pax2a also activates expression of 

another member of the pax2/5/8 subfamily, pax5. pax5 is predominantly present in the 

utricle, and in addition to pax2a requires Fgf3 for its expression. Loss of Fgf8 or Atoh1 

function does not alter pax5 expression (Kwak et al., 2002; Millimaki et a., 2007). Our 

studies show that pax5 is required for maintenance of utricular hair cells and loss of its 

function results in vestibular but not auditory defects. However, severe reduction of pax5 

expression does not always lead to cell death. noi mutants show elevated cell death in 
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the utricle whereas fgf3 (lia) mutants do not. One possible explanation is that lia mutants 

express another factor in the utricle that promotes survival. Fgf3 regulates anterior 

identity in part by suppressing posterior markers such as pou3f3b. pou3f3b is expanded 

anteriorly in lia mutant embryos (Kwak et al., 2002) and could account for pax5- 

independent survival in the utricle. In fact, loss of fgf3 (lia) can suppress utricular cell 

death phenotype in noi mutants (unpublished observations). This suggests that each 

region of the otic vesicle is regulated by a certain combination of factors that promote 

differentiation and survival.  

We show that misexpression of atoh1a induces ectopic sensory epithelia in the 

vicinity of endogenous sensory epithelia, consistent with other studies. By expanding 

regional identity compatible with sensory development, the overall competence of non-

sensory otic regions to respond to atoh1a can be enhanced. We achieved this by co-

activating fgf3/8 that work in concert in atoh1a normally. As a result, ectopic sensory 

epithelia are observed in the lateral wall of the otic vesicle. Co-activation of sox2 and 

atoh1a show similar results. In addition, only this combination of factors induces ectopic 

sensory epithelia in non-sensory regions at later stages, although still largely limited to 

the lateral wall. The unique ability of sox2, and not fgf, to induce sensory epithelia in 

non-sensory regions could reflect the ability of sox2 to maintain cells in a pluripotent 

state, thereby allowing atoh1a to promote sensory fate specification. Whether sox2 alters 

axial patterning of the vesicle is not known. In the developing inner ear of chick and 

mouse, Sox2 is expressed in both neuronal and sensory precursors (Puligilla et al., 2010; 

Neves et al., 2011). Misexpression of Sox2 can activate Atoh1 and induce ectopic 
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sensory epithelia almost anywhere in the chick otic vesicle by recapitulating early steps 

of preosensory development. Whether otic cells in mammals respond to factors that alter 

sensory competence in a similar way remains to be seen.  

 

STATOACOUSTIC GANGLION (SAG) DEVELOPMENT  

Development of the SAG or otic neurogenesis involves several stereotypical stages. The 

region of neural competence or proneural domain is established in the otic tissue by a 

combination of regionally expressed markers. Fgfs play a critical role in this process. 

Because of the role of Fgfs in otic induction and patterning it has been a challenge to 

study the direct effects of Fgf in the development and regulation of SAG. By using 

inducible transgenic zebrafish lines activated after placode induction we have 

successfully addressed this issue. We have shown that the anterior ventromedial region 

of the otic placode expresses neurog1 in response to moderate to low level of Fgf from 

adjacent tissue, and gives rise to neuronal precursors (neuroblasts). In mouse, T-box 

transcription factor Tbx1 is expressed posterolaterally and anterodorsally in the otic 

placode, and limits the posterior boundary of the proneural domain. Tbx1 null mice fail 

to restrict the neurogenic domain and ectopic neurogenesis is observed. Tbx1 

misexpression on the other hand suppresses neurogenic fates (Raft et al., 2004). tbx1 is 

expressed in the posterolateral part of zebrafish otic vesicle and it appears to restrict the 

posterior limit of the neurogenic domain (Radosevic et al., 2011). Upon specification, 

neuroblasts delaminate and undergo proliferation even after delamination has ceased, 

similar to what has been reported in chick (D’Amico-Martel, 1982). SAG precursors in 
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chick express Sox2, known to mark progenitor cells in the central nervous system. 

However, expression of SoxB1 subfamily members, sox1/2/3 is not detected in zebrafish 

SAG precursors during embryonic stages (unpublished results). Proliferating cells are 

detected in the zebrafish SAG as late as 5 days postfertilization. How these precursor 

cells remain in an undifferentiated state is not known. 

 After cell cycle exit, neuroblasts differentiate into bipolar SAG neurons that 

extend processes to peripheral and central targets. SAG neurons depend on neurotrophic 

factors from sensory epithelia for differentiation and survival (reviewed in Appler and 

Goodrich, 2011). With the death of hair cells, afferent fibers of SAG neurons become 

disorganized and begin to degenerate as seen in pax5 morphants. It is thus critical to 

preserve SAG neurons following hair cell insult, by application of neuroprotective 

factors such as neurotprohins or electrical stimulation, for success with prostheses like 

cochlear implants and gene/cell-based therapies (Roehm and Hansen, 2005; Shibata et 

al., 2011). Innervation of newly regenerated hair cells would be a prerequisite for 

functional recovery. Kawamoto et al. (2003) have shown evidence that some ectopic hair 

cells induced by Atoh1 misexpression are innervated in mouse. It is not known whether 

ectopic sensory epithelia observed in our study are innervated by SAG neurons. 

 

REGULATION OF SAG NEUROGENESIS 

This study sheds light on how the total number of postmitotic neurons in the SAG might 

be regulated. We show that Fgfs from both the differentiated neurons within the SAG 

and from adjacent tissues like the sensory epithelium mediate this process during 
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embryonic development. First, Fgf signaling from mature SAG neurons (expressing 

fgf5) terminates the phase of neuroblast specification. During later stages, Fgf signaling 

also regulates the balance between proliferation and differentiation of precursor cells. 

Elevated levels of Fgf stabilize precursors and delay differentiation. Similar role for Fgf 

signaling is seen in minbrain-r1 development in mouse and cultured neural progenitor 

cells from the human cortex (Nelson and Svendsen, 2006, Saarimaki-Vire et al., 2007). 

Negative autoregulatory action ensures that the correct number of mature neurons is 

produced. Whether Fgf from developing sensory epithelia or other adjacent tissue plays 

a role in regulating the overall size of the SAG needs to be further explored.   

Members of the TGFβ superfamily have been known for long to act as negative 

growth regulators during development and adult tissue homeostasis. Myostatin, or 

Growth and Differentiation Factor 8 (Gdf8), is secreted by differentiating myoblasts and 

inhibits proliferation of neighboring muscle precursor cells (Thomas et al., 2000). Gdf11 

works in a similar manner in mouse to regulate olfactory neurogenesis (Wu et al., 2003). 

Understanding the mechanisms by which these factors regulate the balance between 

progenitor self-renewal and postmitotic differentiation is an important step in designing 

therapeutic strategies to restore function after neuronal damage in the SAG and 

elsewhere in the nervous system.   
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