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ABSTRACT

Energy Efficient Scheduling for Real-Time Systems. (December 2011)

Nikhil Gupta, B.Tech, Indian Institute of Technology, Guwahati

Chair of Advisory Committee: Dr. Rabi N. Mahapatra

The goal of this dissertation is to extend the state of the art in real-time scheduling

algorithms to achieve energy efficiency. Currently, Pfair scheduling is one of the few

scheduling frameworks which can optimally schedule a periodic real-time taskset

on a multiprocessor platform. Despite the theoretical optimality, there exist large

concerns about efficiency and applicability of Pfair scheduling in practical situations.

This dissertation studies and proposes solutions to such efficiency and applicability

concerns. This dissertation also explores temperature aware energy management in

the domain of real-time scheduling. The thesis of this dissertation is:

the implementation efficiency of Pfair scheduling algorithms can be

improved. Further, temperature awareness of a real-time system can be

improved while considering variation of task execution times to reduce

energy consumption.

This thesis is established through research in a number of directions. First, we ex-

plore the applicability of Dynamic Voltage and Frequency Scaling (DVFS) feature

of the underlying platform, within Pfair scheduled systems. We propose techniques

to reduce energy consumption in Pfair scheduling by integrating DVFS into the op-

timal Pfair scheduling algorithm. The integration was achieved by modifying the

original Pfair scheduling algorithm to dynamically vary the weight of a task. Our

experimental evaluation with synthetic and real benchmarks shows up to 66% sav-
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ings in energy consumption compared to the basic Pfair scheduling algorithm. Next,

we explore the problem of quantum size selection in Pfair scheduled systems so that

runtime overheads are minimized. We study the system overhead as a function of

quantum size and present quotient search (QS) – a quantum size selection heuristic

to reduce the overall scheduling overhead of Pfair scheduling. Our results show that

there is a notable difference in the runtime overhead (3% on the average), between

QS and other quantum size selection strategies. We also propose a hardware de-

sign for a central Pfair scheduler core in a multiprocessor system to minimize the

overheads and energy consumption of Pfair scheduling. Three different implementa-

tion schemes for the Pfair scheduling algorithm were considered: replicated software

scheduler running on each processor, single software scheduler running on a dedicated

processor and the proposed hardware scheduler. Experimental evaluation shows that

the hardware scheduler outperforms the other two implementation schemes by or-

ders of magnitude in terms of scheduling delay and energy consumption. Finally,

we propose a temperature aware energy management scheme for tasks with varying

execution times. The proposed scheme, TA-DVS, reduces temperature constraint

violations by 18.9% on the average, compared to existing schemes without adversely

affecting energy consumption.
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1. INTRODUCTION

Although technology scaling has yielded tremendous performance benefits, it has

also led to concerns related to power density and energy consumption. Increasing

power densities has necessitated efficient energy management for not only mobile,

battery operated devices, but also high performance computers connected directly to

the power grid [29] [37]. As computation demands increase the energy consumption

of computer systems is expected to increase requiring energy management at both

hardware and software level.

At the same time technology scaling has led to reliability concerns by pushing

current CMOS materials to their physical reliability limits [45]. The reliability con-

cerns are two-fold. Firstly, the use of ever decreasing threshold voltages has led to

increasing transient fault rates [1] [7]. Secondly, temperature related electronic wear-

out phenomena have reduced the expected lifetime of processing elements [50] [52].

Electronic wear-out is caused by several physical degradation phenomena, includ-

ing electro-migration, hot carrier injection and negative bias temperature instability,

which are intensified by lower feature sizes, higher power densities and higher operat-

ing temperatures [13]. The problem of electronic wear out is even more pronounced

in the latest multicore chips with multiple processing cores [23, 28]

Increasing power densities has also resulted in the processor industry relying on

increasing the number of processing elements on the chip to increase processor per-

formance. However, processor performance does not scale linearly with the number

of processing cores due to the effects of task migration, synchronization, load balanc-

ing etc. This trend necessitates efficient operating systems for managing resources

on a multiprocessor system.

This dissertation follows the style of IEEE Transactions on Parallel and Distributed Systems .
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1.1 Real-Time Scheduling

Real-Time systems form an important class of computing. The distinguishing

feature of real-time systems in comparison to non-real-time systems is that besides

being logically correct, real-time systems must also be temporally correct. Thus,

in real-time computing, programs need to produce logically correct results within

specific time frames. The timing constraints in a real-time system can be conveniently

thought of a timing deadlines within which computation must finish for it to be useful.

Process control systems, weather information systems and air traffic control are some

examples of real-time systems. Consider a weather satellite system for example. To

send satellite imagery to a base station the satellite system must perform two high

level activities or tasks: capture images of regions of interest on the earth; and send

the images to the base station. Both these tasks need to be performed repeatedly with

a minimum frequency so that a base station has updated and fresh information about

the monitored region. The frequency requirements translate to deadline constraints

that the high level tasks must follow.

1.2 Multiprocessor Real-Time Scheduling

(a) Partitioned scheduling (b) Global Scheduling

Fig. 1.1. Multiprocessor Scheduling Schemes
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Increasing the number of cores on a chip is currently the most popular method of

increasing processor performance. This trend makes the study of efficient multipro-

cessor scheduling algorithms extremely important. Although the real-time scheduling

theory is well established for uniprocessor systems, multiprocessor real-time schedul-

ing has received comparatively lesser attention. For example, well known optimal

uniprocessor scheduling algorithms e.g. EDF and LLF have been thoroughly studied.

However, only a few multiprocessor scheduling algorithms can guarantee optimality.

Multiprocessor real-time scheduling algorithms can broadly be divided into two cat-

egories: Partitioned scheduling and Global scheduling, Figure 1.1. In partitioned

scheduling, Figure 1.1a, the real-time taskset is partitioned into M subsets, one for

each processor in the multiprocessor platform. Tasks can only execute on the pro-

cessor assigned. Subsequently, uniprocessor scheduling algorithms like EDF etc. can

be applied on each of the subsets. In contrast, global scheduling, Figure 1.1b, uses a

single queue of tasks. Each processor dequeues a tasks from the same global queue

when it needs a new task to execute. There are both advantages and disadvantages

of using partitioned or global scheduling. Table 1.1 lists some of the advantages and

disadvantages of each scheduling scheme. This dissertation proposes techniques to

mitigate the disadvantages of Global scheduling mentioned in bold in the table.

Pfair (Proportionate fairness) is an optimal scheduling algorithm for multiproces-

sor real-time systems [11]. The Pfair scheduling algorithm optimally solves the prob-

lem of scheduling periodic tasks on a multiprocessor system in polynomial time. This

problem was previously viewed as NP-hard by most researchers [4]. Pfair scheduling

can correctly schedule a periodic taskset with utilization M upon a multiprocessor

system withM processors. At the same time, Dynamic voltage and frequency scaling

(DVFS) is a widely used technique for reducing energy consumption. Although well

studied for uniprocessor systems, DVFS techniques and slack management schemes

for multiprocessor systems are still immature. This dissertation studies DVFS tech-

niques and slack management for the Pfair scheduling algorithm. The overheads in-
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Table 1.1

Comparison of Partitioned and Global Scheduling

Partitioned Scheduling Global Scheduling

Advantages Advantages

• The multiprocessor scheduling
problem is broken down into
simpler uniprocessor scheduling
problems.

• Well studied uniprocessor
scheduling algorithms can be
applied.

• Better suited for dynamic task
systems because of the absence of
taskset partitioning.

• Optimal global scheduling algo-
rithms exist.

Disadvantages Disadvantages

• The Bin-packing problem in-
volved in partitioning is NP-hard.

• Partitioned scheduling algorithms
are sub-optimal.

• Although theoretically opti-

mal, practical implementa-

tion can be inefficient.

• Scheduling overhead can be

large.

• Can result in a large number

of context switches and task

migrations.

volved in the practical implementation of the Pfair scheduling algorithm are largely

dependent on the quantum size used. The quantum size used in Pfair scheduling

must be well balanced according the the set of tasks running on the system. This

dissertation studies the problem of choosing a good quantum size for Pfair scheduling

to reduce these runtime overheads.

Despite the theoretical optimality of the Pfair scheduling algorithm, it can be

inefficient when implemented in serialized software. In Pfair scheduling, the compu-

tation involved in determining the runtime schedule of the tasks grows linearly with



5

the number of tasks in the system. This creates uncertainty about the overall uti-

lization of the system and thereby motivates the hardware implementation of Pfair

scheduling. This dissertation studies the design of a Hardware Pfair Scheduler to

make Pfair scheduling fast, energy efficient and predictable.

In recent times, the power density of microprocessors has doubled every three

years. This increase in power density has led to higher temperatures that directly

affect reliability and cooling costs. Current estimates predict that cooling costs

will rise at $1-$3 per watt of heat dissipated [53]. This dissertation will also study

temperature aware energy management schemes for real-time scheduling.

1.3 Research Focus

This dissertation focuses on the efficient use of Dynamic Voltage and Frequency

Scaling (DVFS) features in modern processors for energy and temperature manage-

ment. DVFS is a recent development in the microprocessor industry whereby the

processor can dynamically change its operating frequency to save energy at run-

time. Although easily employed in general purpose systems, DVFS needs special

considerations when employed in real-time systems. DVFS saves energy by reducing

operating frequency thereby quadratically reducing energy consumption while only

linearly increasing processing time. However, in real-time systems, any increase in

processing time must be carefully examined so that no task deadlines are missed.

1.4 Contributions

The contributions of this dissertation are described below:

• Power Aware Pfair Scheduling: In this work we present a scheme to in-

tegrate DVFS into the optimal Pfair scheduling algorithm. The integration of

DVFS was achieved by modifying the original Pfair scheduling algorithm to

dynamically vary the weight of a task. Experimental evaluation with synthetic
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and real benchmarks shows up to 66% energy savings compared to the basic

Pfair scheduling algorithm.

• Choosing a Good Quantum Size for Pfair Scheduling: In this work we

provide a method to choose a good quantum size for Pfair scheduling. We

study the system overhead as a function of quantum size and present quotient

search (QS) – a quantum size selection heuristic to reduce the overall scheduling

overhead of Pfair scheduling. Our results show that there is a notable difference

in the runtime overhead (upto 10%), between QS and existing quantum size

approaches.

• Hardware Pfair Scheduler: This work presents the design and implemen-

tation of a low- power hardware scheduler for multiprocessor system-on-chips.

The Pfair scheduling algorithm is considered with three different implementa-

tion schemes: replicated software scheduler running on each processor, single

software scheduler running on a dedicated processor and the proposed hardware

scheduler. Experimental evaluation with benchmarks shows that the hardware

scheduler outperforms the other two schemes in terms of energy consumption

by an order of magnitude of 105 and scheduling delay by an order of magnitude

of 103.

• Temperature Aware Dynamic Power Management: In this work, we

present a best effort Temperature Aware Dynamic Voltage and frequency Scal-

ing (TA-DVS) scheme for real-time task scheduling using run time slack man-

agement. We experimentally conclude that when the system utilization is

within a certain limit, energy management alone can satisfy system temper-

ature constraint. Our proposed scheme, TA-DVS, reduces temperature con-

straint violations for tasksets with unconstrained utilizations by 18.9% on the

average, compared to existing approaches.
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1.5 Organization

The rest of this dissertation is organized as follows. Section 2 discusses the as-

sumption and system model used in this dissertation. Section 3 describes the basics

of Pfair scheduling. In Section 4, we present our work on Power Aware Pfair Schedul-

ing to support DVFS on top of the Pfair scheduling algorithm. Section 5 presents

the analysis of overheads involved in Pfair scheduling and presents techniques to

choose a good quantum size for Pfair scheduling. In Section 6 a hardware design

for Pfair scheduler is described. Section 7 explores the similarities between temper-

ature awareness and energy management and presents a technique for temperature

aware DVFS when running tasks with varying execution times. Finally , Section 8

concludes this dissertation with directions for future research.
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2. SYSTEM OVERVIEW AND ASSUMPTIONS

2.1 Task Model

0 5 10 15 20

Task release

Task deadline

Fig. 2.1. Task Model

We assume a periodic task model where each task can be preempted and all

tasks are independent. Formally Γ denotes a task set where each task τi ∈ Γ is

denoted by {ei, pi}, i = 1, 2, . . . , N . Here ei, pi ∈ N denote the worst case execution

time (WCET) at highest processor frequency and period of the task respectively.

The weight of a task is defined as wi = ei/pi and 0 < wi < 1, ∀i. The worst case

utilization of a taskset is given by Utot =
∑n

i=i ei/pi. Each invocation of the task is

called a job. The jth job of task τi is denoted by τij and has its release time and

deadline at (j − 1) · p and j · p respectively. The actual execution time of job τij is

represented by aij. For e.g. Figure 2.1 shows the release times and deadlines of two

tasks τ1 = (2, 5) and τ2 = (2, 6). The total utilization of this taskset is 0.93.
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Fig. 2.2. Platform Model Representation

2.2 Platform Model

In this research we model the multiprocessor platform as a shared memory sym-

metric multiprocessor with M processors, as in Figure 2.2. We also assume that

each processor supports a set of L discrete speed levels, denoted by S = {s1, . . . , sL}.

Changing the processor speed is accompanied by a time overhead given by:

O(si, sj) = C +K· | si − sj | (2.1)

where si and sj are the old and new frequencies respectively [65]. C and K are

technology dependent constants. In our system, at any scheduling instant, we decide

to use DVFS only if the energy savings due to DVFS are greater than the overhead

energy corresponding to the frequency change.

2.3 Energy Model

Here, we describe the energy model used in this dissertation. The total power

consumption in a processor can be modeled as:

P = Ps + ~(Pind + Pd) (2.2)
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where Ps is the static power consumption [65]. Pind and Pd are the frequency in-

dependent and dependent components of dynamic power consumption respectively.

~ = 0 if the system is in sleep state and ~ = 1 otherwise. In this work, we concentrate

on the dynamic power consumption which can be modeled as:

P = Pind + Ceff
m (2.3)

where f is the frequency of operation [65]. m and Cef are system dependent constants

which, for the purpose of this analysis have been assumed to be equal to 3 and 1

respectively. Therefore the energy consumption of a job, τij can be modeled as:

Eij = eij(Pind + f 3) (2.4)

where eij is the execution time of τij. Equation 2.4 shows that DVFS can quadrati-

cally reduce energy consumption while only linearly increasing task execution time.
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3. OVERVIEW OF PFAIR SCHEDULING

With the proliferation of multiprocessor systems in the market, multiprocessor

real-time scheduling algorithms have received renewed attention in research. Pfair

(proportionately fair) scheduling is one such scheduling framework which has re-

ceived considerable attention. Since hard real-time systems require strong guaran-

tees on deadline satisfaction, traditional optimal uniprocessor scheduling algorithms

like EDF and LLF are sub-optimal when applied to multiprocessor systems. Pfair is

one of the few scheduling frameworks that guarantees optimal use of a multiproces-

sor platform (i.e. it correctly schedules any taskset with total utilization M upon M

processors) when scheduling periodic tasks. A number of Pfair scheduling algorithms

exist today, e.g. PF [11], PD [12], PD2 [3], and considerable work has been done on

practical implementation of Pfair scheduling [17], [55].

The concept of Pfairness (Proportionate fairness) was proposed by Baruah et al.

to solve the multiprocessor periodic scheduling problem [11]. The solution to the

multiprocessor periodic scheduling problem was significant because the problem was

previously viewed by most researchers as NP-hard. In the Pfair scheduling algorithm,

time is discretized into slots, Figure 3.1. The unit time interval [t, t+1) is called the

slot t. During each slot, only a single task may execute on a processor. However, a

task may execute on different processors during different slots. Hence, task migration

is allowed while task parallelism is not. In Pfair scheduling, tasks make progress at

a rate approximately equal to the weight of the task which is defined as the ratio of

the task’s WCET and period. The deviation of a task’s actual progress rate from the

ideal rate of progress is measured in terms of the parameter lag which is computed at

the beginning of each scheduling slot. In an ideal schedule, the lag of each task would

remain equal to zero at any given instant of time. Figure 3.2 shows the comparison

of an ideal fluid schedule to a Pfair schedule for three tasks with weight 1/4, 1/4 and

1/2 respectively [36]. The lag trend is shown on the right. Pfair scheduling ensures
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that the rate of progress of a task does not deviate too much from the constant ideal

rate of progress. The deviation is modeled by lag which is formally defined as:

Fig. 3.1. Discretization of Time into Slots

Fig. 3.2. Comparison of Fluid and Pfair Schedules

lag(τi, t) = wi × t− allocated(τi, t) (3.1)

where allocated(τi, t) is the amount of processor time allocated to τi in [0, t). A

schedule is said to be Pfair iff:

∀τi, t : t ∈ N : −1 < lag(τi, t) < 1 (3.2)



13

It is important to note that in a Pfair schedule for a periodic taskset none of the task

deadlines are missed. At the end of each period, wi × t is an integer. Since −1 <

lag(τi, t) < 1, lag(τi, t) = 0. Hence at each period boundary, allocated(τi, t) = ei and

the corresponding deadline is not missed. Pfairness is a strictly stronger requirement

that periodicity. While a periodic schedule only requires that lag = 0 at period

boundaries, a Pfair schedule additionally requires that −1 < lag < 1 at all times.

The first scheduling algorithm which guaranteed Pfair correctness for a periodic

taskset was the PF algorithm [11]. In the PF algorithms, a parameter called the char-

acteristic symbol, αt(τi) is computed at the beginning of each slot. The characteristic

symbol for a task τi at time t is defined as:

αt(τi) = sign(wi · (t+ 1)− ⌊wi · t⌋ − 1) ∈ {+, 0,−} (3.3)

Based on the values of lag and αt(τi), the input taskset is partitioned into three

disjoint sets namely: urgent, contending and tnegru.

urgent = {τi : αt(τi) 6= − ∧ lag(τi, t) > 0} (3.4)

tnegru = {τi : αt(τi) 6= + ∧ lag(τi, t) < 0} (3.5)

cont = {τi : τi /∈ tnegru ∧ τi /∈ urgent} (3.6)

Intuitively, the characteristic symbol and lag parameters allow the PF algorithm to

make decisions on which tasks definitely need an allocation during the slot (repre-

sented by the subset urgent), or else their lag will become >= 1 at the end of slot.

Similarly, the tasks in subset tnegru should not be allocated in the current slot or

else their lag will become <= −1 at the end of the slot. The remaining tasks are

assigned to the contending set.
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Once the sets are populated, the contending set is sorted according to a total order

defined over the characteristic substrings of the tasks. The characteristic substring

of task τi at time t is defined as

α(τi, t) = αt(τi)αt+1(τi)αt+2(τi) . . . αt+k(τi) (3.7)

where αt+k(τi) = 0 and αt+k′(τi) 6= 0 for k′ >= 0, k′ < k. The lexicographic (+ > 0 >

−) ordering of α(τi, t) defines total order on contending set. The tasks are selected

for execution in the current slot as follows: All tasks in urgent set are selected.

Greatest (based on the total order) tasks from the contending set are selected until

all processors are occupied or the contending set is empty. No task from the tnegru

set is selected.

During each slot, the Pfair algorithm performs the following operations:

1. Calculate lag and alpha of each task for the current time slot.

2. Partition the taskset into urgent, tnegru and contending subsets.

3. Compute the characteristic substring for each contending task and define the

total order on the contending set.

4. Schedule each task from the urgent set on a different processor. For the re-

maining processors, select the greatest (based on the total ordering) tasks from

the contending set and schedule them.

Pfair scheduling algorithms ensure near-ideal rate of progress by breaking a task

into quantum length subtasks. Each subtask must execute within its window of el-

igibility. A subtask’s release time and deadline are at the beginning and end of its

window respectively. Pfair scheduling algorithms prioritize subtasks by their dead-

lines. The basic difference between PF [11], PD [12] and PD2 [3] is in the way in

which deadline ties are broken. The PF algorithm looks at future subtask deadlines

to break ties. This is intuitively expensive and hence the running time of the PF
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algorithm is not linear in the size of the input. The PD, and PD2 algorithms use a

constant time tie breaking procedure resulting in a runtime of O(min(M lgN,N)).

While the PD scheduling algorithm uses four tie-break parameters, the PD2 schedul-

ing algorithm uses only two tie break parameters [3].

Optimal uniprocessor scheduling algorithms like EDF and LL are sub-optimal

when applied to multiprocessor systems. The sub-optimality arises mainly due to

the NP-hardness of the bin-packing procedure when the taskset is partitioned. On

the other hand, Pfair scheduling guarantees optimal use of the multiprocessor plat-

form, i.e. any taskset with total utilization M will be correctly scheduled by a Pfair

scheduling algorithm. The optimality of Pfair scheduling algorithms is primarily

due to the fact that each task is broken into quantum length subtasks which can

be scheduled independently of each other (but not in parallel). Although the slot

based nature of Pfair scheduling leads to theoretical optimality, it is a concern for

practical implementation. A job may be preempted/migrated multiple times during

its execution. Also, the scheduler overhead in Pfair scheduling can be large due to

the per-slot scheduling scheme.

Pfair scheduling offers some unique benefits over partitioning approaches [55].

Firstly, Pfair scheduling naturally support dynamic task systems. In Pfair schedul-

ing tasks can join and leave the system at period boundaries as long as the utilization

of the system remains below M . On the other hand, in partitioned systems, the task

partitioning algorithm must be run each time a new task joins to systems to de-

termine if the new taskset is feasible. Secondly, the fairness guarantees of Pfair

scheduling temporally isolate one application from another, since tasks are guaran-

teed to receive their share of the processor even when an application overruns its

worst case execution time. Further, Pfair scheduling can offer peaceful degradation

within the system during failures. If some of the processors within a multiprocessor

system experience faults and need to be turned off, then tasks can be reweighted to

adapt to the reduced capability of the system.
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4. POWER AWARE PFAIR SCHEDULING IN MULTIPROCESSOR REAL

TIME SYSTEMS

Modern embedded systems are increasingly being used in mission critical applica-

tions such as avionics, complex process control and space applications. The nature of

these applications demands real-time performance guarantees. To meet these perfor-

mance demands, multiprocessor real-time systems are widely being adopted. In the

near future, multiprocessor systems are also expected to be widely used in battery

powered devices. The increased performance of multiprocessor systems comes at the

cost of higher energy consumption. At the same time, higher heat dissipation caused

by increased energy consumption decreases system reliability. Thus it is extremely

important to have efficient power management in multiprocessor real-time systems.

Although power management on uniprocessor systems has been widely studied,

it has received relatively lesser focus in the multiprocessor domain. Earliest Dead-

line First (EDF) is an optimal scheduling algorithm in uniprocessor systems but it

is suboptimal when applied in multiprocessor domain. Baruah et al. [11] proposed

the Pfair scheduling algorithm which is optimal for multiprocessors. However, Pfair

scheduling is not power aware and hence cannot benefit from the Dynamic Voltage

and Frequency Scaling (DVFS) features of today’s Multiprocessor System on Chips

(MPSoC). Dynamic frequency scaling can cubically reduce power consumption while

only linearly increasing task latencies. This makes frequency scaling an attractive

choice for runtime power management. Recent works by Zhu et al. [65] and Chen et

al. [20] have used dynamic voltage and frequency scaling to reduce energy consump-

tion in multiprocessor real-time systems. However, none of these schemes work in

conjunction with an optimal multiprocessor real-time scheduling algorithm.

In this research, we introduce Power Aware Pfair (PAPF), a dynamic power man-

agement (DPM) scheme for multiprocessor real-time system using the Pfair schedul-

ing algorithm, Figure 4.1. Our work introduces the notion of DVFS in the Pfair
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Fig. 4.1. PAPF Overview

scheduling algorithm to make it power aware. The notion of DVFS was introduced

in Pfair by dynamically increasing the weight of a task whose execution time is being

increased due to DVFS. The increased weight of task ensures that the task remains

punctual even with the increase in its execution time. We performed detailed sim-

ulations to evaluate the effectiveness of our scheme. The overheads of DVFS and

Pfair scheduling algorithm were considered and analyzed in the experiments. Our

scheme results in up to 66% saving in energy consumption compared to the basic

Pfair scheduling algorithm.

The rest of the section is organized as follows: Section 4.1 discusses related work.

Section 4.2 discusses the preliminaries of power aware scheduling. Our scheme of

integrating DVFS with Pfair algorithm is presented in Section 4.3. Section 4.4 dis-

cusses the correctness of the PAPF scheduling algorithm. Section 4.5 presents task

assignment heuristics to reduce overheads involved in PAPF. Results and discussions

are presented in Section 4.6. Section 4.7 concludes the section.
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4.1 Related Work

Dynamic power management through frequency scaling has been well studied

in literature. In uniprocessor systems, the optimal EDF algorithm has been widely

adopted for DPM. However, there is no solution to the problem of DPM using optimal

multiprocessor scheduling algorithm for periodic real-time tasksets. Previous work

on DPM in multiprocessor systems is either scheduling algorithm oblivious or has

focused on sub-optimal scheduling algorithms. Selected works closely related to our

work on integration of DPM in multiprocessor scheduling algorithm are discussed

here.

Zhu et al. in [65] studied the problem of DPM in Multiprocessor systems. In

their scheme, dynamic voltage scaling was used based on shared slack reclamation to

achieve dynamic power management. Their work considers non-preemptive schedul-

ing where a task runs to completion once it starts executing. At the same time,

they use the Longest Task First scheduling algorithm which is sub-optimal in terms

of schedulable utilization for multiprocessor scheduling. They assume frame based

task sets where all tasks share a common deadline. In contrast, our solution consid-

ers the more flexible periodic task set model and uses the optimal Pfair scheduling

algorithm.

In [44], Li studied the problem of energy minimization in a multiprocessor real-

time system as a combinatorial optimization problem. Unlike the more generic pe-

riodic task model that we assume, this work assumes the frame based task model.

At the same time, this work considers an ideal task execution model where task

execution time is fixed. We consider the more generic scenario where the execution

time of a time may vary across time.

Anderson et al. developed a cache aware Pfair based scheduling scheme [5] for

multicore platforms. This scheme avoids co-scheduling tasks which may thrash the

L2 cache and increase the L2 cache to memory traffic. Their work is similar to ours

in that it helps in reducing energy consumption by reducing L2 cache to memory
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traffic. However, their work does not directly consider energy reduction through

DVFS.

Mishra et al. proposed a scheduling algorithm oblivious, static and dynamic power

management technique in [46]. Their scheme works for preemptive scheduling and

does not allow task migration. Unlike our work, the availability of continuous fre-

quency levels for speed change is assumed and the overheads involved with DVFS

are not considered.

The lack of power aware optimal multiprocessor scheduling algorithms restricts

us from providing comparison results with other approaches. Instead, we provide

detailed simulation results with varying system and task characteristics for real and

synthetic benchmarks compared to the basic Pfair scheduling algorithm.

4.2 Power Aware Scheduling

In this section, we describe power aware scheduling in general and how DVFS is

integrated with a real-time scheduling algorithm. Dynamic Voltage and Frequency

Scaling is a well known technique for dynamic power management in clocked circuits.

Often at run time, idle CPU periods occur when the CPU is not executing any task.

These idle periods are termed as slack and can be used to reduce the frequency of the

processor by using DVFS. In our proposed technique, we associate frequencies with

tasks and the process of using slack to run a task with a lower frequency is termed

as scaling down the task. Slack is created in the system due to two primary reasons

which can be categorized as follows: 1. Static Slack: Static slack arises whenever

the utilization of the taskset being executed is lesser than the schedulable utilization

of the scheduling algorithm. Roughly speaking, this means that the load on the

system is lesser than the maximum load that the system can handle. The extra

room is termed as static slack. 2. Dynamic Slack: Dynamic slack arises because in

real systems the worst case execution time (WCET) of a task must be considered

for real-time scheduling, while actual execution time of the task can be as small as
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only 50% of the WCET [51]. The idle period created whenever a job finishes earlier

than its WCET, gives rise to dynamic slack. An example of using DVFS to scale

down a task is shown in Figure 4.2. Here the white box in 4.2b(b) shows the reduced

frequency execution of τ2 utilizing the idle period generated by early completion of

task τ1, shown by the shaded box.

Time

τ1

Frequency

s

s/2 τ2

deadline

WCET

(a) Schedule Based on WCET

Frequency

Actual Execution Time of τ1

Scaled Execution Time of τ2

Time

τ1

τ2

s

s/2

deadline
(b) Schedule Based on Early Finish of τ1

Fig. 4.2. Slack Generation Due to Early Completion

Our proposed dynamic power management scheme utilizes both static and dy-

namic slack available in the system for power management. Our scheme could utilize

the available slack most efficiently if it were possible to run the processor at con-
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tinuously varying frequencies. However practical constraints restrict the variation of

processor frequency to a few predefined discrete steps, thus limiting the manner in

which we utilize system slack.

4.3 Power Aware Pfair Scheduling

In this section, we describe our technique of integrating DVFS in the Pfair

scheduling algorithm. We call the Power Aware version of the Pfair algorithm, PAPF.

The implementation of slots are timer dependent, Figure 4.3. Hence changes in pro-

cessor frequency affect the number of cycles per slot, Figure 4.4. The main challenge

in integrating DVFS with the Pfair algorithm is that a task’s parameters must change

when we want to scale down the task to reduce energy consumption. When a task

is scaled down, its execution time increases according to the new frequency and

the Pfair scheduling algorithm needs to be made aware of this increase. In PAPF,

we temporarily increase the weight of the task being scaled down, to achieve this

awareness, Figure 4.5. Increasing the weight of a task increases its rate of progress

which allows the task to remain punctual even though it is running at a lower fre-

quency. PAPF ensures that the increase in weight exactly accounts for the increase

in execution time due to DVFS.

Slot k-1 Slot k Slot k+1

TIME

Time = k Time = k+1

Timer Interrupt

Fig. 4.3. Timer Based Implementation of Slots
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Fig. 4.5. Weight Scaling to Account for DVFS

In the original Pfair algorithm, the weight of a task remains constant over time.

However, due to DVFS, the weight of a task changes over time and necessitates

changes in the computation of lag and the characteristic string of the task. To

maintain correctness of the Pfair scheduling algorithm and to accommodate the

notion of variable weights, in PAPF, we calculate the lag and characteristic string
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of a task incrementally. Before formally describing the algorithm, we provide the

updated definitions of lag and characteristic string.

• The weight of task τi in slot t is defined as wit .

• The lag of a task at time t is defined incrementally as follows:

lag(τi, t) =







lag(τi, t− 1) + wit−1 − S(τi, t− 1) if t > 0

0 if t = 0
(4.1)

• The ideal allocation to task τi till time t is given by:

idealit =







idealit−1 + wit−1 if t > 0

0 if t = 0
(4.2)

• α(τi) the characteristic string of task τi is a string over {−, 0,+} where the tth

symbol is given by:

αt(τi) = sign(idealit+1 − ⌊idealit⌋ − 1) (4.3)

Slack management is an important part of the PAPF algorithm. Slack elements

are generated when tasks finish execution earlier than their worst cast execution time.

In our scheme, each slack element l are associated with a weight wl and deadline dl.

When a slack element is generated, its weight (deadline) is set to the weight (deadline)

of the task generating the slack. The set of slack elements is maintained in a priority

queue, DS, based on the deadline of the slack elements.

Algorithm 1 illustrates the PAPF algorithm. Here ei(f) represents the scaled

execution time of task τi at frequency s. The procedure SCHEDULE is a modified

version of PF presented in [11]. Although the complexity of PF has been reduced

in algorithms based on PF such as PD, PD2 [4], we chose PF because of its ease of

presentation and implementation. It should be straightforward to extend our scheme
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Algorithm 1
PAPF Scheduling

1: procedure Schedule(Γ)
2: for all τi ∈ Γ do

3: S(τi, t)← 0
4: Calculate lag(τi, t), αt(τi) and the total order on cont
5: end for

6: Populate urgent, cont, tnegru
7: for all τi ∈ urgent do
8: S(τi, t)← 1
9: end for

10: for all τj ∈ cont based on the total order do

11: if
∑N

i=1 S(τi, t) < M then

12: S(τj, t)← 1
13: end if

14: end for

15: end procedure

16: procedure Job Release(τi)
17: wit ← ei/pi
18: slackmax ←

∑

l∈DS,dl>di
wl

19: wmax ← min(wit + slackmax, 1)
20: smin ← min{s ∈ S | ei(s)/pi < wmax}
21: wnew ← ei(smin)/pi
22: Claim total slack (wnew − wit) with dl > di
23: wit ← wnew

24: end procedure

25: procedure Job End(τi)
26: if t 6= di then
27: Create slack. l, with wl = wit and dl = di
28: DS ← DS ∪ l
29: end if

30: end procedure

to the more efficient PD and PD2 algorithms. The procedure SCHEDULE is called

at the beginning of each slot when it updates the task parameters. Then, it selects

M out of the N tasks in the system to schedule in the current slot according to the

base Pfair scheduling algorithm.
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The procedure JOB RELEASE is called every time a new job of a task is released,

i.e., at every period boundary. This procedure is responsible for utilizing available

slack for scaling down a job to a lower frequency while updating the task’s weight

to maintain correctness. The maximum usable slack, calculated in line 18, is given

by the sum of weights of all slacks with deadline greater than or equal to deadline

of the current task. While scaling down a task the procedure ensures that the

total utilization of the system remains below M , line 18, and that the task’s weight

remains below 1, line 19. Then the procedure selects the minimum frequency that

the system can accommodate based on the increased weight of the task, line 20.

Here ei(s) represents the execution time of task τi when it is runs at speed s. Due

to the discreteness of available processor frequencies, the total weight of the slack to

be claimed from the system is updated based on the minimum frequency achieved,

line 21. In line 22, slack with a total weight of wnew − wit is claimed from DS. To

claim slack, elements are removed from the DS queue in increasing order of deadlines

starting from the deadline of the current job till the total weight of removed elements

becomes greater than or equal to the weight being claimed.

The procedure JOB FINISH is called whenever a job finishes execution and the

lag of the corresponding task is not zero. When a job finishes execution earlier than

its deadline, we create a slack element with weight (resp. deadline) equal to the

weight (resp. deadline) of the task.

4.4 Correctness of PAPF

In this section we argue that the PAPF algorithm is correct in the sense that

no task misses its deadline as a result of task reweighting and DVFS. The original

Pfair scheduling algorithm was developed for a fixed set of tasks with static weights

throughout their lifetime. Conditions for allowing tasks to join and leave the system

and for tasks to be reweighted dynamically were developed in [56]. Task reweighting

can be modeled as a combination of a leave and a join where the task with the
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current weight leaves the system and a task with the new weight joins the system.

It has been proved in [56] that the following conditions for join and leave maintain

the correctness of the Pfair scheduling algorithm:

1. join: Tasks may join the system as long as the total utilization of the system

remains below M .

2. leave: A task may leave the system when its lag is 0.

In our system, we reweight a task by reclaiming the slack produced by other tasks.

The weight increment of the task is equal to the total weight of slack consumed.

During this process, we ensure that the total utilization of the system remains below

M and also that the task’s utilization remains below 1. At the same time, we allow a

task to leave the system only when its lag is zero. By following the above mentioned

rules, we ensure that we maintain the correctness of the Pfair scheduling algorithm

during task reweighting and DVFS.

4.5 Optimizing Power Aware Pfair Scheduling

The PAPF algorithm tries to minimize the energy consumption of the system

by scaling down execution frequency of tasks whenever possible. However, PAPF

does not determine the assignment of scheduled tasks on processors. Hence the basic

PAPF algorithm might end up choosing a task assignment that increases overheads

in the system. In this section, we identify the overheads in the PAPF algorithm and

present intelligent task assignment strategies to minimize these overheads.

4.5.1 Overheads in PAPF

There are two kinds of overheads present in the PAPF scheduler. a) Task migra-

tion and b) Frequency switch. Task migrations are caused by the per slot scheduling

decision in Pfair scheduler and the latter is the result of dynamic power management
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on top of it. A naive task assignment scheme may result in an unacceptably high

level of task migrations and processor frequency switches. Task migrations can ad-

versely affect the cache performance. Although concepts like Megatasking [5] have

been developed which can help in mitigating these effects, the PAPF algorithm in

itself must be made aware of the task migrations. Similarly, the number of proces-

sor frequency switches must be minimized because of the time and energy overhead

associated.

4.5.2 Mitigating Overheads in PAPF

The PAPF algorithm is suitably modified with an intelligent task assignment

technique which is aware of the above mentioned overheads. In each scheduling slot,

the algorithm must assign tasks to processors so that these overheads are minimized.

Each task prefers to be scheduled on a processor based on how often it has been

assigned to that processor in the past. More recent assignments are preferable. To

minimize the task migration overheads, we define the metric task processor affinity,

TPA(τ, r, t) that denotes the affinity of a task τ to be scheduled on a processor r at

time t. The task processor affinity is incrementally defined based on its value in the

last slot and is given by:

TPA(τ, r, t) = TPA(τ, r, t− 1) ∗ α + Sr(τ, t) (4.4)

Here 0 ≤ α ≤ 1 is a temporal coefficient which decreases the processor affinity of a

task for an assignment in the past.

The cost of the frequency switch is proportional to the difference between the

two frequencies. To minimize the number of frequency switches, this cost must be

considered in the task assignment algorithm. We define another metric, processor

frequency affinity, PFA(r, s, t) to represent the affinity of processor r to run at
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frequency s in slot t. The processor frequency affinity is defined in terms of the

overhead for changing the processor frequency as:

PFA(r, s, t) = 1− βO(s, sr(t− 1)) (4.5)

where sr(t− 1) is the frequency of processor r in slot t− 1 and β is a normalization

factor such that 0 < βO(s, sr(t− 1)) < 1.

To minimize the mentioned overheads, we formulate the allocation of tasks to

processors as a bipartite assignment problem with the edge weights defined as a

function of the task processor and processor frequency affinities. The objective is to

maximize the total weight of the assignment. Figure 4.6 illustrates this formulation.

In Figure 4.6, there is an edge corresponding to each task-processor pair. The edge

τ1 τ2 τM

r1 rMr2

we(τ1, r2)

Fig. 4.6. Task Allocation as a Bipartite Assignment Problem

weight for assigning task τ to processor r is defined as:

we(τ, r) = wTPA ∗ TPA+ wPFA ∗ PFA (4.6)

Here 0 ≤ wTPA, wPFA ≤ 1, and wTPA + wPFA = 1. wTPA and wPFA are weights

representing the relative importance of minimizing task migrations and minimizing

processor frequency switches respectively. By varying these weights the system de-

signer can trade-off the severity of tasks migrations and frequency switches. The

results section presents the effects of varying these weights.
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Algorithm 2
Edge-Greedy assignment

1: procedure Assign(Γt, R, E)

2: Es ← φ

3: for all τi ∈ Γt do

4: Add edge e ∈ E with maximum weight to Es

5: Remove from E edges incident on vertices of e

6: end for

7: end procedure

Given this problem definition, we use Kuhn’s Hungarian method for the assign-

ment problem [42] as the optimal solution and also propose two greedy heuristics.

Both the heuristics are based on multiple passes, each of which assigns a single task

to a processor. They take as input the set of tasks to be scheduled in the current

slot (Γt), the set of processors (R), and the set of edges (E). The output is produced

in Es, the set of selected edges.

Algorithm 3
Vertex-Greedy assignment

1: procedure Assign(Γt, R, E)

2: Es ← φ

3: for all τi ∈ Γt do

4: e← Edge with maximum weight incident on τi

5: Es ← Es ∪ {e}

6: Remove from E edges incident on vertices of e

7: end for

8: end procedure
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The first heuristic implemented in Algorithm 2, called Edge-Greedy iterates over

all the available edges of the graph and selects the edge with the maximum weight

(line 4). By selecting an edge the corresponding task is assigned to the corresponding

processor, and during the subsequent passes edges incident upon these task and

processor nodes are not considered (line 5). Algorithm 3 implements the Vertex-

Greedy heuristic which iterates over the set of tasks and chooses the most heavy edge

for each task (line 5). Kuhn’s Hungarian algorithm takes O(M4) operations while

the Edge-Greedy and Vertex-Greedy algorithms take O(M3) and O(M2) operations

respectively. In section 4.6 we present results on the relative effectiveness of each

approach.

4.6 Results and Discussions

4.6.1 Experimental Setup

Simulator

A Java based simulator was developed to evaluate the effectiveness of PAPF and

optimization schemes. The simulator supports simulation of the basic and PAPF

Pfair scheduling algorithms with and without optimizations. The simulator incor-

porates the energy model and the task model described in Section 2. The simulator

can be configured to run in five simulation modes (Table 4.1).

Table 4.1

Simulation Modes in PAPF

Name Description
PF The basic Pfair scheduling algorithm
PAPF Power aware Pfair, without optimizations
VG PAPF with vertex greedy assignment
EG PAPF with edge greedy assignment
OPT PAPF with optimal assignment
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Benchmarks

We evaluate the proposed approach using both synthetic and real benchmarks.

We generated 10 synthetic tasksets with utilizations varying from 0.4 to 4.0. Each

taskset consists of 20 tasks whose utilizations are normally distributed with a mean

value of µ = (task set utilization)/20 and a standard deviation of σ = µ/2. The

periods of tasks are uniformly distributed in the range [100,10000] ms, which is

similar to the range used in [26] [20]. The worst case execution time of each task is

calculated from its utilization and period. During simulation the actual execution

time of a job is calculated as a fraction of the worst case execution time. This fraction

is uniformly distributed between [0.5, 1]. We consider a default slot size of 1ms. The

DVFS overhead parameters C and K were set to 0.5 and 0.0 by default respectively.

Table 4.2

Multimedia Benchmark for Evaluation of PAPF

Application Description pi ei
mpegplay MPEG video decoder 30 11
madplay MP3 audio decoder 30 1
tmn H263 video encoder 400 165

tmndec H263 video decoder 30 12
toast GSM speech decoder 25 1
adpcm ADPCM speech decoder 80 7

For benchmarking with real tasks, we use a multimedia taskset which consists

of six applications: mpegplay, madplay, tmn, tmn, dec, toast and adpcm as

shown in Table 4.2. This taskset has also been used in [61] for benchmarking and

has been studied in [64] for their worst case execution times.

For energy calculations, we use the frequency and power values for Intel XScale

[63] [21] processor (Table 4.3).
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Table 4.3

Intel XScale Frequency and Power Levels

Frequency(MHz) 150 400 600 800 1000
Power(mW) 80 170 400 900 1600

Simulation Parameters

Six sets of experiments were conducted in order to analyze the effectiveness of

our scheme. In experiment 1, the benefits of PAPF over basic Pfair algorithm are

evaluated by varying the taskset and number of processors. In experiment 2, we vary

the slot size and study its effect on the energy consumption. In experiment 3, we vary

the DVFS overhead parameters, C and K and study the effect on energy consump-

tion. Experiment 4 evaluates the effectiveness of different optimization techniques

compared to basic PAPF. The effect of changing weight of the task migration cost

and that of frequency switching cost is studied in experiment 5. Finally, experiment

6 shows the effect of varying system load on the task migration and frequency switch

rates. The system load is defined as the ratio of the total utilization of the taskset to

the number of processors. All the experiments were run for 1 million slots. Table 4.4

lists the other relevant details of each experiment.

Table 4.4

Simulation Parameters for Evaluation of PAPF

Experiment Optimization weights Slot size C,K
heuristic (wTPA, wFPA) (ms)

1 None N/A 1 1,1
2 None N/A varying 1,1
3 None N/A 1 varying
4 Varying 0.5,0.5 1 1,1
5 EG Varying 1 1,1
6 VG 0.5,0.5 1 1,1
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4.6.2 Results

We evaluate the effectiveness of PAPF in terms of the energy consumption of

the PAPF algorithm normalized to that of the basic Pfair algorithm. For optimiza-

tion heuristics, we compare the rate of occurrence of overhead events. In all the

experiments, none of the tasks missed deadlines showing that the PAPF schedul-

ing algorithm can reduce energy consumption without compromising correctness.

Results of the mentioned experiments are discussed in the following sections.

Evaluation of PAPF
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Fig. 4.7. Normalized Energy Consumption of PAPF with Utilization
using Synthetic Taskset

Figure 4.7 shows the energy consumption of PAPF normalized to that of the basic

Pfair algorithm, with varying taskset utilizations in the synthetic benchmark. The

result shows that the energy reduction directly depends on the task set utilization

and the number of processors. Lower utilization tasksets create more static slack

which PAPF can use to scale down execution frequency of tasks resulting in lower
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energy consumption. Increasing the number of processors also reduces the energy

consumption. The result also indicates the effect of the DVFS overheads on the

energy consumption of the PAPF algorithm. The benefits of PAPF over basic Pfair

quickly reach a saturation point after a certain utilization. Beyond this utilization,

the amount of available slack is not enough and the overheads of DVFS are greater

than the energy savings due to DVFS.
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Fig. 4.8. Normalized Energy Consumption of PAPF with Utilization
using Multimedia Taskset

Figure 4.8 shows the normalized energy consumption using the multimedia bench-

mark running on 3 processors. Since the multimedia taskset has a fixed utilization,

the energy improvements were studied by only varying M . It can be seen that in-

creasing the number of processors can increase the energy improvements, but there

is no improvement beyond 4 processors, because the all tasks are already running at

minimum frequency.
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Energy Consumption with Slot Size

In the Pfair scheduling algorithm scheduling decisions are taken at the beginning

of each slot. Hence the total scheduler overhead and the DVFS overhead depends

largely on the slot size used for the Pfair algorithm. To further study the effect

of slot size, Figure 4.9 shows the normalized energy consumption of different tasks

with varying slot size and M = 4. It can be seen that PAPF performs better when

larger slot sizes are used. With slot sizes below 1 ms, our algorithm quickly reaches

a saturation point. This result shows a limitation of our scheme in that our scheme

improves energy consumption only when sufficiently large slot sizes are used.

Energy Consumption with Overhead Parameters

Figure 4.10 shows the effect of varying the DVFS overhead parameters C and

K on the normalized energy consumption of PAPF. In this experiment, a taskset

with weight 2.4 was used and M = 4. This result shows that the overall energy
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Fig. 4.10. Normalized Energy Consumption of PAPF with Overhead Parameters

consumption of a schedule is linear in both C and K. The result also shows that

PAPF is able to reduce energy consumption even in the presence of large DVFS

overhead costs. This is due to the fact that, our scheme employs DVFS only when

the overall energy benefits of DVFS are positive.

Evaluation of Optimization Schemes

Figure 4.11 shows a comparison of VG and EG heuristics with the basic PAPF and

OPT in terms of the task migration and frequency switch rates. Synthetic tasksets

with utilizations 0.8, 2.4, 3.2 and 4.0 were used. Both VG and EG are able to

achieve significant reductions in overheads. Figures 4.11a,4.11a and 4.11a also show

the drawback with the greedy nature of the heuristics. EG results in higher overheads

than VG even though edge greedy has higher run time complexity. Although OPT

achieves maximum reduction in overheads, its high computational complexity could

be prohibitive. The proposed heuristics provide significant improvements (up to 32%

reduction in task migrations and up to 16% in frequency switches for utilization 0.8)
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Fig. 4.11. Comparison of Optimization Schemes using Synthetic Tasksets
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Fig. 4.12. Comparison of Optimization Schemes using the Multimedia Taskset

over PAPF at much lower costs. Figure 4.12 shows the comparison of optimization

schemes using the multimedia taskset.

Effect of Varying Affinity Weights

The weights assigned to the processor frequency affinity and the task processor

affinity represent the relative importance of minimizing frequency switches versus

task migrations. Figures 4.13 and 4.14 show that varying wTPA and wPFA allows
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Fig. 4.14. Effect of Varying wTPA in the Multimedia Taskset

fine grained control over the severity of the overheads considered. By varying these

weights the system designer can trade off the relative severity of each overhead. For

the multimedia taskset the frequency switch overhead does not vary much with wPFA.

This is because of the high variance in the task utilizations and the small periods
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of tasks in the multimedia taskset. A high variance in task utilizations means that

the system is effectively running a high number different frequencies. Also, smaller

periods will result in higher number of frequency switches per slot.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 4  5  6  7

T
a

s
k
 m

ig
ra

ti
o

n
 r

a
te

M

Synthetic taskset, Utilization=1.2

VG
PAPF

Fig. 4.15. Task Migration Rate with Varying System Load

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 4  5  6  7

F
re

q
u

e
n

c
y
 s

w
it
c
h

 r
a

te

M

Synthetic taskset, Utilization=1.2

VG
PAPF

Fig. 4.16. Frequency Switch Rate with Varying System Load



40

Effect of Varying Number of Processors

In experiment 6, we vary the number of available processors and study the effects

on task migration and frequency switch rates for a taskset with utilization 1.2. Fig-

ure 4.15 shows that as the system load decreases, the VG heuristic is able to gradually

decrease the task migration rate, whereas the basic PAPF algorithm could increase

the task migration rate. This is because the VG heuristic can use the extra slack to

maintain task-processor mappings, whereas there are is a higher probability that the

basic PAPF algorithm could use a task-processor assignment that increases the task

migration rate. Figure 4.16 shows that as the system load decreases, PAPF is able

to achieve frequency switch rates comparable to that of VG. As the load decreases,

PAPF is able to run all tasks at minimum frequency which minimizes the frequency

switch rate. It is evident that, for low system loads task migration rate optimization

becomes more important compared to frequency switch rate optimization.

4.7 Conclusions and Future Work

Power management in real-time embedded systems is becoming increasingly im-

portant. A novel power aware Pfair scheduling algorithm for efficient dynamic power

management in multiprocessor real-time system was introduced. The scheduling

scheme was able to achieve up to 66% energy savings over a basic Pfair scheduling

approach. The algorithm is further optimized using task processor assignment tech-

niques to achieve up to 32% reduction in the overheads associated. As the optimal

assignment may be computationally expensive, two heuristics for the assignment

problem were proposed and evaluated. Accounting for the energy savings due to

reduced overheads requires detailed cache modeling and is considered as a future

work.
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5. CHOOSING A GOOD SLOT SIZE FOR PFAIR SCHEDULING

In the Pfair scheduling framework, task parameters (period and execution time)

are specified in terms of fixed length intervals of time, called slots. The slot length is

an implementation dependent parameter that does not effect the algorithmic design,

but as we show in this section, can have significant effects on runtime efficiency. For

efficient implementation of Pfair based scheduling algorithms in a real multiprocessor

system, the slot length must be prudently chosen such that the overall scheduling

overhead involved in Pfair scheduling is minimized. Improvements in scheduling

overhead are significant because scheduling overheads are continuous and ever lasting.

Optimality guarantees of Pfair scheduling algorithms are derived based on the as-

sumption that overheads due to per-slot scheduling activity are negligible. However,

in practical implementations these overheads must be properly accounted. Further,

in real tasksets, task execution time and periods cannot be expected to be multiples

of slot length, leading to additional overheads when task parameters are adjusted

to meet Pfair scheduling requirements. A task’s execution time in slots is given by

dividing its execution time by the slot duration. Any remainder must be accounted

for by using an extra slot. We consider the unused portion of this extra slot as an

overhead. Similarly, the period of a task in slots is given by dividing its period by

the slot duration, and the remainder must be discarded. We argue that the choice of

quantum size must be well balanced according to the taskset being scheduled. Large

quantum sizes will lead to increased overhead due to the extra remainder slots. At

the same time, small quantum sizes will increase the overhead resulting from per-slot

scheduling activity.

The quantum size selection procedure takes as input the current taskset being

scheduled by the scheduling algorithm. In dynamic task systems, which model gen-

eral purpose systems more accurately, the scheduled taskset might change with time

making a previously selected quantum size stale and inefficient. Hence we envision
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the quantum size selection procedure to be an online and continuous process. For

e.g. the quantum size reconfiguration process may be run conservatively at hyper-

period boundaries, or aggressively each time a task-set change1 occurs. The actual

choice will depend on the implementation and the runtime of the quantum size se-

lection procedure. As with anything that is runtime and continuous, the quantum

size selection procedure must be efficient enough to not introduce additional large

overheads into the system. Although it has been previously suggested that quantum

sizes are constrained by the resolution of hardware clocks [55], [16], we nevertheless

believe that a quantum size selection technique is needed to choose from within the

set of available quantum sizes and to provide the motivation for removing or finding

solutions to the hardware limitations.

The primary technical contributions of this section are as follows:

1. We present a model to measure the overall overhead of Pfair scheduling as a

function of quantum size.

2. Based on the overhead model, we present an efficient quantum size selec-

tion heuristic, quotient search (QS) to minimize the overall overhead of Pfair

scheduling without introducing much additional overhead into the system.

3. Through simulation based results, we show that QS performs considerably

better than other quantum size selection strategies.

The rest of the section is organized as follows: Section 5.1 discusses related work.

Augmentations to the task model presented in Section 2 are presented in section 5.2.

Modeling of overheads involved in Pfair scheduling is presents in section 5.3. Our

quantum size selection scheme, QS is presented in Section 5.4. Comparisons with

other quantum size selection schemes, results and discussions are presented in Sec-

tion 5.5. Section 5.6 concludes the section.

1In Pfair scheduled dynamic task systems, taskset changes only occur at task period boundaries.
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5.1 Related Work

There has been considerable related work on implementation of Pfair scheduling

in real systems. Most noteworthy is the work related to the LITMUSRT project [17]

which is an extension to the Linux kernel introducing support for real-time workloads

on multiprocessor platforms, based on the recent advances in algorithmic research

on multiprocessor real-time scheduling. There have been a number of studies on

realizing and analyzing Pfair scheduling in Linux, based on the LITMUSRT platform

[35] [15] [14] [36] [27].

In [55], Srinivasan et al. compare the PD2 scheduling algorithm against a first-fit

partitioned Earliest Deadline First approach. They model the schedulability loss due

to the per-slot scheduling nature of Pfair algorithms. Our work builds up on this work

and extends the overhead model for Pfair scheduling, by considering quantization

overhead besides the per-slot overhead.

Gupta et al. considered the problem of finding an optimal quantum size for Round

Robin scheduling that minimizes the average response time [33]. Their solution is

analytical in nature which they later verify through numerical analysis. In contrast,

we concentrate on minimizing the overall overhead of Pfair scheduling. Since over-

head minimization for Pfair scheduling is a non-smooth optimization problem [22],

we concentrate on simple optimization heuristics instead of an analytical solution.

Recently, Funk et al. [30] presented a unifying theory, DP-FAIR for deadline

partitioning and presented the DP-WRAP algorithm that relaxes the over-strict na-

ture of per-slot scheduling and lag constraints in Pfair scheduling. Their scheme is

motivated towards reducing context-switch and task migration overheads by mak-

ing scheduling decisions only when necessary instead of every slot, thereby enabling

efficient implementation of optimal multiprocessor scheduling algorithms in real sys-

tems. In contrast, we try to reduce the overheads in Pfair scheduling by choosing a

suitable quantum size.
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5.2 Task Model Augmentations

In this work we consider the absolute parameters of a task expressed in terms of

absolute units of time. êi and p̂i are the absolute execution time and period of the

task respectively. The tuple, (ei, pi), where ei, pi ∈ N denote the execution time and

period of the task respectively, in terms of slots. The weight of a task is defined as

wi = ei/pi and 0 < wi < 1, ∀i.

5.3 Overheads in Pfair Scheduling

As mentioned earlier, there are two categories of overheads that come into play

while executing real tasksets with Pfair scheduling algorithms:

1. Overhead due to per-slot scheduling activity, and

2. Quantization overhead due to remainder slots.

Figure 5.1 shows the slot-overhead and quantization overheads graphically.

Absolute execution time

Inflated execution time

Slot

Per Slot Overhead

Inflated execution time = 23

Quantum

size = 5

Quantum

size=10

Quantization

Overhead

Fig. 5.1. Per Slot and Quantization Overheads

As in Figure 5.2, the per-slot scheduling overhead consists of :
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1. Context switching overhead: The time taken to save the context of a

preempted task and then load the context of a new task.

2. Cache-related delays: Depending on whether a task resumes executing on

the same processor and/or which tasks execute on the processor in the mean

time, a task may suffer cache misses leading to increase of execution time.

3. Run time of scheduling algorithm: The time spent by the scheduler in

determining which task to run next is itself an overhead. We use the runtime of

the PD2 algorithm, the fastest Pfair algorithm known, to account for scheduling

algorithm runtime overhead.

Absolute execution time

Inflated execution time

Slot

Per Slot Overhead

Context Switch Cache delay Scheduling

Fig. 5.2. Per Slot Overhead Components

Since the schedulability guarantees of Pfair scheduling algorithms are derived

under the assumption that the costs of these overheads are zero, the execution time

of tasks must be inflated before using the schedulability tests. We partly adopt the

overhead model by Srinivasan et al. in [55] to account for the overhead resulting from

per-slot scheduling activity. Let SPD2 , C, D denote the runtime of PD2 algorithm,
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context switch overhead and average cache related preemption delay respectively.

Then the inflated execution time e′i, given a quantum size Q is given by:

e′i = êi +

⌈

e′i
Q

⌉

× SPD2 + C + n× (C +D) (5.1)

n = min

(

e′i
Q
− 1,

P

Q
−

e′i
Q

)

(5.2)

As in [55], we see that the term e′i appears on both sides of equation 5.1. We

arrive at a value for e′i by initially setting e′i = êi and then repeatedly applying the

formula until its value converges. The task execution time inflation overhead for

Pfair scheduling is given by:

I(L) =
N
∑

i=1

(e′i − êi)× L/p̂i (5.3)

where L is a given, large interval of time, suitable for studying and comparing over-

heads.

Given a quantum size Q, the inflated execution time and period of a task, e′i, p̂i

are transformed into their Pfair counterparts, ei = ⌈e
′

i/Q⌉ and pi = ⌊p̂i/Q⌋, suitable

for use in the Pfair scheduling algorithm. As Figure 5.1 shows, the per-slot overheads

can become significantly large when large quantum sizes are used.

The overall overhead H(L) of a Pfair scheduling algorithm is now given by:

H(L) =
N
∑

i=1

(

ei
pi
−

êi
p̂i

)

× L (5.4)

=
N
∑

i=1

(

⌈e′i/Q⌉

⌊p̂i/Q⌋
−

êi
p̂i

)

× L (5.5)
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Fig. 5.3. Variation of Overheads with Quantum Size

5.4 Choosing a Good Quantum Size for Pfair Scheduling

In this section, we analyze the effects of quantum size on scheduling overhead

and present the QS scheme to choose a good quantum size. The choice of quantum

size in a system must be well balanced according to taskset being executed. Large

quantum sizes will lead to wastage through the remainder slots in task execution

times. At the same time small quantum sizes will lead to a high degree of scheduling

activity and will hence increase scheduling overhead.

As a motivational example, Figure 5.3 shows the variation of overall and inflation

overheads with quantum size for four tasksets with four tasks each. Each taskset is
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obtained by multiplying the base task parameters (period and execution time) by a

scaling factor (i.e. scale=1 represents the base taskset). The base taskset is given by :

{(1100, 5400); (900, 3900); (1000, 5100); (800, 23600)} ((êi, p̂i) in µs.) The quantum

sizes considered for each taskset are varied from 100µs to 2600 * scale µs. We set

L = 1e6 in this experiment. The overheads were calculated by using the formulae

in section 5.3 and then normalized by dividing with L and the number of tasks (4

in this case). Hence the Y-axis represents the per-task per-unit time overhead for a

given taskset.

Figure 5.3 shows that up to a certain quantum size, the overall overhead is roughly

equal to the inflation overhead. Beyond that quantum size, the remainder slot over-

head becomes significant and the overall overhead increases. In each of the three

plots, there exists an optimal quantum size, Q∗, which minimizes the overall over-

head. Using quantum sizes smaller or larger than this value leads to increase in

the overall overhead. In the above example, the optimal quantum sizes are 1210µs,

5400µs, 12100µs and 40100µs for scale 1, 10, 100 and 1000 respectively. Figure 5.3

also shows that it is difficult to arrive at an analytical formula for the optimal quan-

tum size that can minimize the overall overheads of Pfair scheduling algorithms.

Further, it is much more important to choose a quantum size carefully for tasksets

with small tasks (scale=1) than for tasksets with large tasks(scale = 100). In the

case of large tasks (scale = 10, 100 and 1000) as compared to small tasks (scale=1),

there are many more quantum sizes that lead to roughly the same overhead as the

optimal quantum size.

Finding a good quantum size for Pfair scheduling is challenging because of the

discontinuity in the overhead trends. The problem of finding the best quantum size

that will lead to minimal overheads falls under the domain of non-smooth optimiza-

tion. We view the quantum size optimization procedure as a run-time process which

might run every time the taskset changes due to task entry and exit. Hence instead
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of running computationally intensive optimization algorithms, we choose to use and

compare simple heuristics which might be better suited for runtime usage.

For a given task τi, we define its base quantum size e∗i as the inflated execution

time obtained by choosing its execution time as the quantum size. The base quantum

size is given by:

e∗i = êi +

⌈

e∗i
êi

⌉

× SPD2 + C + n∗ × (C +D) (5.6)

n∗ = min

(

e∗i
êi
− 1,

P

êi
−

e∗i
êi

)

(5.7)

Algorithm 4
Quotient Search

1: procedure QS(Γ) ⊲ Find a quantum size for taskset Γ
2: for all τi ∈ Γ do

3: for div ← divlow, divhigh do

4: Q← e∗i /div
5: new ← evaluateQuantum(Q,Γ)
6: if new ≤ current then
7: current← new
8: Q∗ ← Q
9: end if

10: end for

11: end for

12: return Q∗

13: end procedure

A naive approach to finding a suitable quantum size would be to scan through

the range of possible quantum sizes with small increments and choose the quantum

size that results in minimal overhead. In Figure 5.3, it can be seen that the overhead

trend shows a number of local minima. This happens due to the floor and ceiling

functions used in the overhead function H(L). Through extensive experiments, we

have observed that these local minima occur whenever the quantum size is a factor of

the base quantum size for one or more tasks in the taskset. Based on our observation,
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we present a simple heuristic, quotient search (QS), to find a good quantum size for

Pfair scheduling which compares the overheads only at factors of task base quantum

sizes rather than searching throughout the possible quantum size range. Obviously

this observation drastically reduces the computation required to find a good quantum

size.

The operation of algorithm 4 is simple. The algorithm iterates over each of the

tasks in the taskset (line 2) and for each task computes the overhead for each quotient

of the base quantum size (lines 4,5). The algorithm uses two additional parameters,

divlow and divhigh to limit the search space of the QS (line 3). In our experiments,

we set the values of divlow and divhigh as in equations 5.8 and 5.9.

divlow =

⌈

e∗i
minτi∈Γ(p̂i)

⌉

(5.8)

divhigh =

⌊

e∗i
(SPD2 + C +D)

⌋

(5.9)

These values of divlow and divhigh are based on the following rationale: (1) It is

impossible to use a quantum size smaller than the per-slot overhead and, (2) Using

a using a quantum size greater than the minimum of the periods will mean that
⌊

p̂i
Q

⌋

= 0 for at least one task, implying H(L) = ∞. We believe that there are

other possible values for divlow and divhigh too, which would affect the runtime of

QS but not the output of the algorithm. The algorithm selects the quantum size

corresponding to the minimum of the evaluated overheads (lines 8,12).

5.5 Results and Discussions

5.5.1 Experimental Setup

We conducted a series of simulation experiments to evaluate QS. We also im-

plemented four simple and intuitive quantum selection heuristics to compare the

performance of QS:
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1. Random Execution Time (RET): Select the base quantum size for a randomly

chosen task from the taskset.

2. Median Execution Time (MET): Select the median of the base quantum sizes

of the tasks in the taskset.

3. Average Execution Time (AET): Select the average of the base quantum sizes

for all tasks in the taskset.

4. Exhaustive Search (ES): Search the possible range of quantum sizes exhaus-

tively with small increments of 1µs.

Besides these heuristics, we also evaluate QS against the default fixed quantum size

of 1000µs which is currently being used in LITMUSRT [17].

We have observed that the overall overhead, H(L), in Pfair scheduling is highly

dependent on the execution time of tasks. Hence, we experiment with tasksets having

task average execution time in the range of [1000, 30000]µs with increments of 1000µs.

The number of tasks in the taskset was varied in the set {10, 20, 50, 100, 250}. For

each combination of average execution time and taskset task count, we generate 50

random tasksets where the execution times of the tasks are distributed normally and

the task utilizations are varied uniformly between [1/30, 1/3]. Task periods were

calculated from their execution times and utilizations. For each generated taskset

we compute and record the runtime of the PD2 algorithm, SPD2 by running a binary

heap based C implementation of the PD2 algorithm. We assume that C = 5µs and

D = 500µs based on the results in [55], [2].

5.5.2 Results

In the first experiment, we study the variation of overhead with average execution

time and number of tasks. Overheads are calculated according to equation 5.4 and

then normalized by dividing by the length of the comparison period, L, and by
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the number of tasks in the taskset. Hence the overhead numbers that we report

are per task per unit time, percentage measures. Figure 5.4 shows the variation

of overhead with average execution time. As expected, the ES heuristic performs

the best resulting in least overheads. At the same time, the proposed QS heuristic

performs equally well. The RET, MET and AET strategies perform roughly the

same as each other. They result in about 2-3% more overhead than the ES and

QS schemes. Figure 5.4 also shows that the fixed quantum size of 1000µs leads

to considerable higher overheads (upto 10%) than QS and ES. These differences

are significant because the overhead measure is per task per unit time. For higher

execution times, the ES and QS schemes are able to find and use higher quantum sizes

resulting in even lower overheads. On the other hand, in the LITMUSRT approach

the overheads increase with higher execution times due to the increase in per slot

overhead.

Figure 5.5 shows the variation of overheads with number of tasks. Similar to

Figure 5.4, the ES and QS schemes lead to about 2-3% lower overheads than the
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RET, MET and AET schemes and up to 10% lower overheads than the LITMUSRT .

As the number of tasks increases, the overheads increase because of the increase

in the values of SPD2 . In summary, a taskset agnostic quantum size may lead to

significantly high overheads than a taskset aware quantum size selection strategy.
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Fig. 5.5. Variation of Per Task Overhead Percentage with Number
of Tasks, Average Execution Time 10000µs

In the next experiment, we observe the normalized runtime of the quantum size

selection procedure against average execution time. As mentioned in section 5, we

envision that in dynamic task systems, a quantum size selection algorithm will be

used at runtime to optimize the system operation based on the current set of tasks

running in the system. Although the quantum size selection process might seem to

be a system initialization procedure for static task systems, it should be a continu-

ous process for dynamic task systems and hence the runtime of the heuristic is an

important selection criterion. In this experiment we compare the per task, per unit

time, percentage measure of algorithm runtime. Figure 5.6 shows that ES is an ex-

pensive scheme for choosing a quantum size and is hence unsuitable for dynamic task

systems. The RET, MET and AET strategies, being the simplest, expectedly lead
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to lowest runtimes. The QS technique leads to runtimes only slightly higher than

the execution time based strategies making it an suitable choice for taskset aware,

run-time quantum size selection.

In the last experiment, we study the percentage of tasksets for which the com-

pared selection scheme leads to a correct quantum size. For deciding correctness,

we assume that if the resultant overhead measure of a scheme is within 95% of the

overhead in ES, then the selection process is correct. Figure 5.7 shows the variation

of percentage correctness with average execution time. We see that the RET, MET

and AET schemes are correct, only up to a maximum of 37% of the time whereas the

QS scheme is correct almost all of the time. The fixed quantum size in LITMUSRT

leads to worse results compared to any of the taskset aware schemes. Figure 5.8

shows the variation of percentage correctness with number of tasks. Again, the QS

scheme leads to very good performance while the RET, MET and AET schemes re-

main below 20%. At the same time, as the number of tasks increases, the execution

time based schemes lead to worse performances while no such effect is observed in
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the case of QS. The decrease in percentages is because the execution time based

schemes choose a quantum size based on the base quantum size for a single task in
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the taskset. Hence when the number of tasks increases, the number of tasks whose

base quantum size is not a multiple of the quantum size, increases.

Based on the above results we argue that Quotient search is a useful technique

to solve the non-smooth optimization problem of finding the best quantum size. The

scheme selects a good quantum size without highly impacting system load making it

a suitable choice for quantum size selection, especially in dynamic task systems.

5.6 Conclusions and Future Work

Pfair scheduling is one of the few optimal multiprocessor scheduling algorithms.

However, due to inherent slot based scheduling, Pfair algorithms are prone to expe-

riencing considerable overheads when implemented in real systems. In this section,

the system overhead was analyzed as a function of quantum size. It was shown that

prudent quantum size selection is important to minimize system overheads. Based on

the analysis of system overhead, a simple quantum size selection heuristic Quotient

Search (QS) was proposed which was shown to reduce system overhead considerably

compared to other quantum size selection heuristics. As future extensions of this

work, we will integrate QS into LITMUSRT and measure the benefits gained in real

systems. We will also evaluate the results of online quantum size reconfiguration in

dynamic task systems.
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6. HARDWARE IMPLEMENTATION OF PFAIR SCHEDULER1

Today, most desktops run on multiprocessor systems. The popularity of mul-

tiprocessor systems is expected to continue, and in the future, most mobile, even

embedded systems will feature multiprocessors. Increasing the number of processors

on a chip is the most viable method of increasing processor performance. But, along

with the performance gains, multiprocessor systems also present new challenges for

system designers. One of these challenges is the efficient scheduling of real-time tasks

upon multiprocessor systems.

Traditionally, scheduling in multiprocessor system has been implemented in an

inefficient fashion. Each processor in the system runs a copy of the scheduling algo-

rithm in software to decide on the next task to run. Running multiple scheduler copies

is inefficient use of resources in multiprocessor systems like MPSoC. The inefficiency

is further aggravated when either the number of tasks or the number of processors

in the system is high. This results in increased overhead in terms of scheduling time

and context switching which in turn, translates to higher energy consumption. It is

possible to reduce these overheads by replacing the replicated scheduling operations

by a central scheduler unit. The central scheduler can communicate the scheduling

decision to the processors upon completion of schedule calculation. Although the

centralized approach is more efficient than the replicated approach, such a scheduler

should be fast enough to support a large number of tasks for multiple processors

without suffering from unpredictability of scheduling delays. This motivates the use

of a hardware scheduler that will meet the above goals.

Despite the optimal nature of Pfair algorithm, it can be inefficient and computa-

tionally expensive when implemented in serialized software. Pfair algorithm involves

computation that grows linearly with the number of tasks to schedule. This adds to

uncertainty in the effective utilization of the system if the scheduler and the tasks

1The work in this section has been derived from the paper [32]
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share resources. A parallel implementation can get rid of the unpredictability in

scheduling delay and can increase effective utilization. Since scheduling is performed

in a dedicated hardware module, time overhead is minimized. The parallelizable

nature of Pfair can lead to a significant speed up of the scheduling process when

implemented in hardware.

In this section, we propose a low power hardware Pfair scheduler for MPSoC.

The speed-area-energy trade-offs involved in the design of a hardware Pfair scheduler

were analyzed. We compare its performance in terms of scheduling delay and energy

consumption with two other implementation schemes:

1. The replicated Pfair scheduling algorithm running in software on all the pro-

cessors in the multiprocessor system; and

2. The Pfair scheduling algorithm implemented in software on a dedicated pro-

cessor.

We also report the area and energy consumption of hardware scheduler through

suitable synthesis work.

The main technical contributions of this section are as follows:

1. Introduced the use of a hardware Pfair scheduler in MPSoC to reduce energy

consumption.

2. Designed, implemented and evaluated the Low-power Hardware Pfair schedul-

ing scheme suitable for multiprocessor environment.

3. Evaluated the performance of the Low-power Hardware Pfair scheduler using

real-time benchmarks in terms of scheduling delay and energy consumption.

The rest of this section is organized as follows: Section 6.1 discusses related work.

In section 6.2 we augment our energy model presented in Section 2 suitably for this

work. Section 6.4 describes our hardware implementation of the Pfair scheduling
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algorithm. Results and discussions are presented in section 6.5. Finally, section 6.6

concludes the section.

6.1 Related Work

While the concept of implementing run time schedulers in software is not new, to

the best of our knowledge, this is the first implementation of a hardware scheduler

for the Pfair scheduling algorithm.

There have been similar works in the literature which implement a part or whole

of the runtime scheduler in hardware to improve predictability and the ability to

meet real-time constraints [49] [48] [43] [47]. Mooney et al. developed a tool for

run time scheduler synthesis from a system specification [47]. Recently, Kumar et

al. proposed and approach to accelerate dynamic task scheduling on multiprocessor

systems [43]. Their design accelerates task queues in hardware to overcome the

deficiencies of software queues and achieve better load balancing.

Hildebrandt and Timmermann developed a scheduling co-processor for uniproces-

sor real-time systems [34]. The coprocessor was aimed at speeding up the scheduling

task of a RTOS by parallelizing the task prioritization in hardware. They present re-

sults on the synthesis of the co-processor module and did not consider benchmarks for

evaluation of scheduling performance. Our design achieves similar synthesis results

but in a multiprocessor environment.

Danne et al. proposed a hardware scheduler design for programmable devices [25].

They implemented a scheduler that performs the MSDL scheduling for real-time

tasks. They reported a linear scheduling time with the increased number of tasks and

processors. The motivation was similar to our design; i.e. reducing overall scheduling

overhead. Since the scheduling algorithm was different and the hardware design

varies significantly from ours, we do not compare our results with theirs.

Anderson et al. discussed the implementation of Pfair scheduling in hardware

in the context of network processor design [54]. However, they did not describe a
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detail implementation due to several applicability issues of Pfair in network processor

design context.

6.2 Energy Model Augmentations

For studying this problem we augment our energy model by assuming that the

MPSoC consists of StrongARM processors (SA1100) and other hardware IP blocks.

The scheduler runs on SA1100 processors when it runs in software. Thus we use

the Intel SA1100 processor energy model to compute the energy consumption of the

scheduling algorithm for when it runs in software.

6.3 Scheduler Implementation Schemes

6.3.1 Replicated Software Scheduler

This is the most commonly used multiprocessor scheduling scheme. In this tech-

nique, the scheduling algorithm runs on every processor at the end of an execution

slot and selects the corresponding tasks for execution in the next slot. The process

involves a compulsory context switch and the runtime of the scheduling algorithm

and possibly a task migration when the running task resumes on a different proces-

sor. The scenario, illustrated in Figure 6.1(C), leads to a high degree of scheduling

overhead.

6.3.2 Software Scheduler on a Dedicated Processor

Another method of implementing a multiprocessor scheduling algorithm is to

run the scheduler on an independent on-chip processor which communicates with

the other processors and notifies them with the scheduling details prior to the next

execution slot, illustrated in Figure 6.1(B). In this case, the scheduling time is not

spent in the processors themselves and hence the scheduling overhead is reduced.
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This scheduling method is simple to implement since the already designed scheduler

software can run on a separate processor and does not require many design changes.
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However, this technique requires an extra processor and hence is costly in terms of

area and power consumption.

6.3.3 Pfair Scheduler Core

The third option is an on chip dedicated hardware core running the scheduling

algorithm, Figure 6.1(A). The hardware core works in a similar way as the dedi-

cated software scheduler, but it has a faster response time and requires much lesser

energy during operation. The nature of the Pfair scheduling algorithm offers many

parallelization options for fast scheduling. Like dedicated software scheduling, this

technique is free from the scheduling delay overhead. The area requirement of a ded-

icated scheduler core is also expected to be much less compared to a general purpose

processor core.

6.4 Hardware Pfair Scheduler

The original Pfair algorithm does not yield itself to a straight forward hardware

implementation. Pfair works by calculating the proportionate progress of a task from

its period and execution time. The steps involve maintaining the data structures

for each task which include information about the task and current slot number.

Primary computations are calculation of lag, characteristic symbol and characteristic

string. The original scheme of computation involves floating point multiplication for

updating task lag and characteristic string. We have modified the definitions to

make the computation incremental so that the only additions and comparisons are

used. This was done by multiplying all the task parameters with the corresponding

task’s period, since all fractional values are result of division by period of the task.

This eliminates the floating point computation required by the original Pfair scheme

and simplifies the mathematics to a great deal. Also, as required by computation of
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α, ⌊w · t⌋ can be maintained in its integral equivalent after multiplication by period

The modified definitions are as follows:

Period = p2 (6.1)

Execution Time = e · p (6.2)

Weight = e (6.3)

S(t) =







e if the task is scheduled in slot t

0 otherwise
(6.4)

lag(t) = lag(t− 1) + e− St−1 (6.5)

Ideal(t) =







Ideal(t− 1) + e if t > 0

0 if t = 0
(6.6)

FIdeal(t) =































0, if t = 0

FIdeal(t− 1) + p, if Ideal(t− 1) + e ≥

FIdeal(t− 1) + p

FIdeal(t− 1) otherwise

(6.7)

α(t) = sign(Ideal(t+ 1)− FIdeal(t)− p) (6.8)

In the above definitions, S(t) denotes whether or not the task has been scheduler

in slot t. Ideal(t) is equivalent to w · t and FIdeal(t) is equivalent to ⌊w · t⌋. The

definition of the sets urgent, tnegru and contending remain the same. The original

Pfair algorithm can be found in [11] and has been kept unchanged. The significant

change that had to be done was the evaluation total order of characteristic string in

parallel. In the following subsections, we discuss the scheduler design in detail.

6.4.1 System Architecture

The steps of the Pfair scheduling algorithm are clearly reflected in the hardware

design. The scheduler consists of the following main blocks:
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Fig. 6.2. Pfair Scheduler Block Schematic

1. Task State Registers (TR) along with logic to update the attributes lag and

ideal

2. Total Order Calculator (TOC)

3. Schedule Generator (SG)

4. Master Controller (MC)

The overall organization of the hardware Pfair scheduler is illustrated in Figure 6.2.

The details of each component are discussed in the following sections.

6.4.2 Task State Registers

This is the main data structure block in the design. It comprises of a persistent

register for each task in the system. The fields in the register are shown in Figure 6.3.

As our modified definitions are incremental, we only need to maintain the current

values of task parameters. The fields are updated at the beginning of each slot using

the incremental formulae 6.4-6.8 described earlier.

Along with the registers, this block also contains the logic that performs the

computation required to update these fields at the beginning of each slot. The

update logic is based on the incremental formulae in equations 6.4–6.8. This block

can compute the urgent, tnegru and the contending sets at the beginning of each
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slot. The next module does the total ordering of the contending set by looking at

the contending bits in the task registers.

6.4.3 Total Order Calculator

1 3 5

Num + Num 0 Num -

0 2 4

Fig. 6.4. Total Order Calculator

This module calculates the total order needed to select tasks from the contending

set. The total ordering is defined over the characteristic string of each task in the

contending set. This module, incrementally calculates the characteristic string of

the relevant tasks as the calculation of total order progresses. We optimize this

process by computing the characteristic string depending on the number of tasks to

be selected from the contending set. At each stage of the incremental process, we

disable tasks from being considered in subsequent iterations by looking at a mask

which is calculated based on the number of ‘+’ symbols, ‘0’ symbols and ‘-’ symbols
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as in Figure 6.4. In the figure the arrows show the relative position of the number

of tasks to be selected and the corresponding mask values. Mask values of 1, 3 and

5 represent completion of the total order calculation process. For mask values 0

(resp. 2) tasks with characteristic symbol 0, - (resp. -), do not need to be further

evaluated. This technique is easily implemented in hardware and greatly simplifies

the evaluation. The mask value is the output of this module and is used by the

schedule generator.

6.4.4 Schedule Generator

P E lag Ideal FIdeal S C T

Schedule

bit

P E lag Ideal FIdeal S C T

Schedule

bit

SG

MC

TOC

Fig. 6.5. Schedule Generator

This module sets the schedule bits for the tasks that are selected based on the total

order, Figure 6.5. It does so by interpreting the scheduling mask generated by the

total order calculator at the end of each pass. When all the tasks are scheduled from

the contending set or all the processors are allocated a task, the process completes

for that slot. The schedule generator notifies the master controller on completion of

schedule generation and master controller stores the generated schedule and presents

them to the processor interrupt service routine (ISR) as requested.
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6.4.5 Master Controller
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Core MCore 1 Core 2

Master Controller

Task State Register

Fig. 6.6. Master Controller

The heart of the master controller is essentially a state machine described in

Figure 6.7. In addition to the scheduling state machines, it also implements the

interfacing logic to the processors, Figure 6.6. The master controller is woken up

using a timer at the beginning of each slot and it performs the scheduling task for

next k slots and stores the generated schedule. Upon timer expiration, it checks if

the schedule is already computed. If schedule details are available it immediately

interrupts the processors that need to do a context switch. Otherwise, it runs the

scheduler to compute the schedule for the next k slots. The master controller also

provides an interface to program the task set at the time of system startup.

6.4.6 Scheduler Operation

The scheduler is invoked by a timer. The timer can be programmed during the

system startup to fire with a period same as the slot duration. The scheduler first

checks whether the scheduling decision for that slot is already present or not. If not,

it calculates the schedule. Next, it checks which processors need to be interrupted

for a task switch. It then sends interrupt signals to those processors to invoke the

context switch ISR. At this point the ISRs query the scheduler core using some

addressing scheme for the next task to run. This process can be completed in one
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Fig. 6.7. FSM of the Scheduler Core

memory access. The ISR can immediately switch to the next task to run it. The

scheduler core only needs to respond to the queries from the ISRs once it has sent

the interrupts. So it goes to idle mode after sending the interrupt signals to save

energy.

6.5 Results and Discussions

In this section we will compare the performance and predictability of our hardware

Pfair scheduler with that of the other two implementation schemes.
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6.5.1 Experimental Setup

To obtain time and power estimates of the software version, the scheduling algo-

rithm was implemented in C and was run on an ARM power performance simulator

based on SimpleScalar [58] [6]. The ARM simulator can perform a low level power

performance simulation of an ARM binary running on an Intel SA1100 processor.

For the hardware Pfair scheduler, Synopsys design compiler was used for synthesis

power, area and timing results. We use the H.263 benchmark from the DSPstone

suite. All the three different implementation options were evaluated. The results of

the simulations are reported in section 6.5.2.

Benchmarks

The benchmark selected was H.263 from DSPstone suite [59]. H.263 is a video

codec standard originally designed as a low- bitrate compressed format for video con-

ferencing. This requires soft real-time processing. We dissociated a portion of this

application into the following subtasks: DCT, Dequantization, IDCT, Quantization

and calculation of SAD (sum of absolute division). All these were applied on an 8x8

macroblock in a pipelined fashion. By partitioning H.263, we get the execution time

and period for each of the individual subtasks. Each subtask was cross-compiled for

the ARM architecture (StrongARM) and simulated with SimpleScalar. The peri-

ods were obtained by assuming different frame rates used in real applications as in

Table 6.1. We assume an image resolution of 480x240 resulting in 300 macroblocks

per frame. Table 6.1 lists all the details of the benchmark that we have used. Four

taskset configurations were generated with utilizations varying from 5 to 17. We

used the minimum possible number of processors to schedule each taskset.
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Table 6.1

DSPStone Based Benchmark Details

Taskset

Number

Frame

Rate
Utilization

Number

of Tasks

Number of

Processors

1 5 5.25 10 6
2 12 11.15 25 12
3 15 13.25 30 14
4 24 16.57 50 17

Evaluation Criteria

We have evaluated the scheduler core design in terms of speed, area and power.

We define each property as follows:

Speed: We measured the number of cycles taken by the scheduler to perform the

scheduling task. We also considered the length of the ISR running in the processors

while calculating the overall scheduling time. We then use the scheduler frequency

to calculate the absolute time required to schedule the tasks.

Area: The scheduler core was synthesized using 90 nm process technology from

Synopsys [57]. Synopsys design compiler was used to obtain area estimates using the

library. We compared the area of the scheduler core to that of an additional ARM

core which can be used in the dedicated software scheduler.

Power: The primary motivation of the scheduler core design being low power,

this is the most important metric in our evaluation. We estimate the static and dy-

namic power consumption in the scheduler core using Synopsys Power Compiler. We

compare the power and energy estimates to those of replicated scheduler scheme and

dedicated software scheduling scheme. Although instantaneous power of our sched-

uler core can be higher than the software schedulers, the overall energy consumption

is much lower. The corresponding results have been illustrated in section 6.5.2.
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6.5.2 Results

In this section we discuss the results on scheduling delay and energy consump-

tion obtained by running real-time benchmark on the three implementations. The

scheduling speed is compared in terms of the number of cycles required to schedule

a slot. This is followed by synthesis results of the Pfair scheduler core.

Comparison of Different Schemes

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

10 25 30 50

C
y
c
le

s
 p

e
r 

s
lo

t

Number of Tasks

Replicated
Dedicated software scheduler

Pfair scheduler core

Fig. 6.8. Comparison of Scheduling Delay with Varying Number of Tasks

First we discuss the results on the scheduling delay. The scheduling delay for the

replicated, and dedicated software scheduler were found out using the Simplescalar

simulator [6]. We have used the Synopsys VCS simulator to measure the scheduling

delay of the Pfair scheduler core. Figure 6.8 shows the scheduling delay due to the

three different implementation schemes. The replicated and the dedicated software

schemes yield the same scheduling delay. But the Pfair scheduler core shows an

order of magnitude improvement (103) in scheduling delay. For example, in the case
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of taskset having 30 tasks, which uses 14 processors, the software schemes completes

the scheduling operation for one slot in 185937 cycles whereas the hardware scheme

completes the same in 142 cycles. In real-time applications that have tasks with very

small periods, the scheduling decisions need to be made much quickly compared to

the periods of the task set. Hence, the Pfair scheduler core should be the preferred

choice for such systems.
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Fig. 6.9. Comparison of Scheduling Energy with Varying Number of Tasks

The energy consumption of the Pfair scheduler core is compared to the dedi-

cated software and replicated implementation schemes in Figure 6.9. To calculate

energy consumption of the Pfair scheduler core, we used the power values from the

synthesis results. The scheduling delay per slot was obtained using Synopsys VCS

simulation. For the dedicated software and replicated implementations, an ARM

power performance simulator based on the SimpleScalar was used [58]. The dedi-

cated Pfair scheduler yields an order of magnitude (105) improvement over both the

schemes. For example, in the case of task set having 30 tasks that uses 14 proces-

sors, the replicated scheme consumes 508 micro joules whereas the hardware scheme
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consumes only 15 nano joules. The low scheduling delay and the low energy con-

sumption of the Pfair scheduler core make it an attractive choice for use in a low

power multiprocessor system on chip.

Pfair Scheduler Core Synthesis Results

We have synthesized the design using TSMC 90nm process technology. As dis-

cussed in the section 6.4, the area and power consumption depend on the number

of tasks supported. We have synthesized designs to support task sets with 10 to 50

tasks. Figures 6.10 and 6.11 show these synthesis results. As expected, the power

and area consumption of the design increases with the number of tasks. This is

due to the linear increase in the number of state registers as the number of tasks

increases. This replication maintains the scheduling delay as the number of tasks

increases (Figure 6.8).
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The total power consumption of the hardware design is shown in Figure 6.11. We

used Synopsys design compiler to get the Dynamic and leakage power of the circuit.
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The total power consumption is in microwatts, which is an order of magnitude (103)

lesser than the power consumption in dedicated software schedulers.

6.6 Conclusions and Future Work

The imminent requirements of high performance embedded systems will require

multi core embedded design to be in place. Scheduling real-time tasks on such

platform has to be efficient and optimal to obtain maximum performance. The

proposed energy efficient hardware scheduler core can provide such performance at

a reduced energy cost. Experimental evaluation has shown a 103 order improvement

in scheduling delay while consuming 105 orders less energy. Future work includes

incorporating low power techniques such as dynamic voltage/frequency scaling to

further increase the efficiency of the system.
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7. TEMPERATURE AWARE DYNAMIC POWER MANAGEMENT1

In recent times, the power densities of microprocessors have doubled every three

years. This increase in power densities has led to two major problems. Firstly, high

energy consumption is a limitation for mobile, battery operated devices. Secondly,

higher temperatures directly affect reliability and cooling costs. Current estimates

predict that cooling costs will rise at $1-$3 per watt of heat dissipated [53]. The power

consumption in microprocessors mainly consists of two components; dynamic power

consumption, and leakage power consumption. Dynamic power consumption is a

result of transistor switching activity whereas the leakage power is due to the leakage

current and is dependent on the system temperature. A feedback loop exists between

temperature and leakage power. Higher temperature increases leakage power which

in turn increases temperature. Hence it is extremely important to manage energy

consumption and temperature in current microprocessors. In this work we present an

online temperature aware energy management technique for real-time applications

with varying execution times.

Past work on temperature aware energy management has mostly focused on tasks

with fixed execution times [9, 10, 18, 19, 38, 39, 60]. However, in practical situations,

task execution times are rarely fixed. It is possible to estimate a task’s worst case

execution time (WCET), but the actual execution times can be as less as 50% of

the WCET. Therefore, a scheme that takes this variation of execution times into

consideration is highly desirable. Past efforts that take the variation of task execution

times into consideration have not considered temperature awareness [40, 41, 66]. In

this work we combine the past efforts on energy management using feedback control

and temperature aware energy management.

Energy consumption is a cumulative measure over a time interval whereas tem-

perature is an instantaneous property of the system. Hence a scheme that minimizes

1The work in this section has been derived from the paper [31]
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Fig. 7.1. Flowchart of the TA-DVS System

energy consumption might exhibit a large number of temperature constraint viola-

tions. We consider a temperature constraint on the system, the violations of which,

should be avoided as much as possible. Our primary goal is to reduce energy con-

sumption. The secondary goal is to reduce violations of the temperature constraint.

Dynamic voltage/frequency scaling (DVS) is a widely used technique to reduce

energy consumption, in both research and practice. We propose a temperature aware

DVS scheme that reduces the number of temperature constraint violation while re-

ducing energy consumption. Our scheme is based on a feedback controller which

increases energy savings over basic DVS approach by estimating the execution time

for the next job of a task. Based on the feedback controller’s estimate we split a

task into two portions. We use the α-queue technique to manage the slack avail-

able for a task at run time [8]. The TA-DVS technique computes the execution

speed by managing the amount of slack available for each portion of a task such that

the temperature does not exceed the temperature constraint. Figure 7.1 shows the

integration of these different components in our system.

The primary technical contributions of our work are as follows:

1. Experimentally showed that when the canonical speed (defined later) is less

than or equal to the equilibrium speed (described later), energy management

is sufficient to satisfy the system temperature constraint.
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2. Further, when the canonical speed is greater than the equilibrium speed we

propose a temperature aware energy management technique, TA-DVS, that

reduces the number of temperature constraint violations while still reducing

energy consumption.

3. Demonstrated through simulation data that TA-DVS reduces temperature con-

straint violations by 18.9% on the average compared to existing schemes.

This section is organized as follows: We discuss related work in section 7.1.

Section 7.1.1 lays out the thermal model used in the work. We describe the slack

management technique used in this section in section 7.2. In section 7.3 we discuss

the task splitting approach followed by a discussion of feedback control in section 7.4.

Section 7.5 presents our temperature aware dynamic voltage scaling technique. We

present the experiments and results in section 7.6. Finally, section 7.7 concludes this

section.

7.1 Related Work

In this section, we briefly discuss existing energy management and temperature

aware scheduling techniques for real-time systems.

Energy management for tasks with varying execution times has been widely stud-

ied in the literature [8,51,62,66]. Pillai et al. considered static and dynamic voltage

scaling to reduce energy consumption considering the EDF and RM scheduling tech-

niques [51]. Zhu et al. improved over [51] by using a feedback controller to estimate

the actual execution time of tasks [66]. In [8], Aydin et al. propose solutions to

reduce energy consumption by using a speculative speed adjustment algorithm that

anticipates early completions by tracking average case workload information.

Past work on temperature aware energy management has mostly focused on tasks

with fixed execution times [9,10,18,19,38,39,60]. Chen et al. studied the problem of

minimizing the maximum temperature. Their work concentrates on approximation
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bounds for minimization of maximum temperature by considering continuous and

discrete speed levels on uniprocessor and multiprocessor environments [19]. Wang

et al. and Bansal et al. studied energy efficient speed scheduling under thermal con-

straints for a frame based taskset [60], [9]. Bao et al. developed an online temper-

ature aware DVFS technique considering the frequency/temperature dependency to

increase energy savings [10].

Temperature aware task scheduling for non real-time applications to reduce ther-

mal gradients and thermal cycles has been studied in [24].

To the best of our knowledge this is the first work considering temperature aware

energy management using a feedback controller for real-time tasks with varying ex-

ecution times.

7.1.1 Energy Model Augmentations and Thermal Model

We use energy and thermal models similar to those in [60]. Our temperature

aware scheduling approach concentrates on DVS enabled processors. The processor

is assumed to have m discrete speed levels; s1, s2, .., sl. The total power consumption

of a DVS processor can be represented by:

Ψ(s,Θ) = hsγ + δΘ+ ρ (7.1)

Here, hsγ is the speed dependent power component and δΘ + ρ is the speed in-

dependent power component. The speed, s = s(t) and the absolute temperature,

Θ = Θ(t) are functions of time t. In the above equation, h and γ are constants such

that γ ≤ 3. The speed independent power component mainly resulting from leakage

current is often dependent on the temperature. Hence, we model it as a linear func-

tion of temperature. The energy consumed during the time interval [t0, t1] is given

by
∫ t1
t0

Ψ(s(t),Θ(t))dt.
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Considering cooling effects and ambient temperature, the variation of tempera-

ture with time is given by:

Θ′(t) = αsγ(t)− βΘ(t)− σ (7.2)

where α, β and σ are the constants. To simplify the notation, we set θ(t) = Θ(t)
α
− σ

αβ
,

where θ(t) is the adjusted temperature. Equation 7.2 can now be simplified as:

θ′(t) = sγ(t)− βθ(t). (7.3)

From equation 7.3, the equilibrium temperature for a given speed s is given by:

θ = sγ/β (7.4)

Similarly, for a given temperature constraint, θ∗, the corresponding equilibrium speed

is given by:

se = (βθ∗)1/γ (7.5)

The energy overhead of changing the processor speed is dependent on the speed levels

before and and after the speed change. We assume that changing the processor speed

from si to sj incurs an energy overhead given by E = ξ | s2i−s
2
j | where ξ is a constant.

7.2 Slack Management

Actual execution times of tasks are often lesser than their worst case execution

times. These unused execution cycles are termed as slack. Efficient management

of static and dynamic slack is necessary to manage energy consumption in dynamic

systems with varying execution times. In our system, we manage static slack by

releasing each task with its speed set to the canonical speed of the system. We

define canonical speed as minimum available speed greater than or equal to the
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taskset utilization, Utot. Aydin et al. showed that when the EDF scheduling policy is

used, by releasing tasks at canonical speed, we can minimize the energy consumption

statically while meeting all deadlines. To account for dynamic slack we use the α-

queue technique developed in [8]. The α-queue technique computes the amount

of available slack for a task by calculating its earliness compared to the statically

optimal schedule. To compute the earliness of a task we maintain two parameters

for each task during the schedule.

• remi, the remaining execution time of τi in the statically optimal schedule.

• wceti, the remaining worst case execution time of τi in the current schedule.

To maintain remi, upon arrival, each task pushes its worst case execution time at

the canonical speed onto the α-queue, which is totally ordered according to the EDF

policy (ties between tasks are broken in a consistent manner). The element at the

head of the queue is always decremented by the amount of time elapsed. This results

in a dynamic image of the ready queue in the statically optimal schedule, Figure 7.2.

It can be shown that at any given time, the dynamic slack available for a task τx is

no less than
∑

di<dx
remi + remx −wcetx, where di represents the absolute deadline

for task τi. This is because tasks with higher priority than τx must have already

finished in the actual schedule.
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7.3 Task Splitting
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Fig. 7.3. Task Splitting

We use task splitting in conjunction with feedback control to exploit the dynamic

slack created in the system. Dynamic slack is created due to the fluctuation in actual

execution times of jobs from a given task. Let li denote the amount of dynamic slack

available when a job of the task τi is released. Using this dynamic slack, the speed

of τi can be reduced to:

si =

(

ei
ei + li

)

∗ sl (7.6)

As in Figure 7.3a, task splitting divides a given task τi into two subtasks, τa and

τb having execution times ea and eb respectively, such that ei = ea + eb . The two

subtasks are allowed to execute at different speeds, Figure 7.3b. A feedback controller

is used to adjust the value of ea for each task. We expect that the execution of task

τi will finish within ea execution cycles. We reserve enough time in subtask τb so that

τi meets its deadline even if it requires its worst case execution time. This allows us

to use an even lower speed for subtask τa, given by:

sa =

(

ea
ea + li

)

∗ sl (7.7)
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Splitting a given tasks’ execution time into two subtasks is sufficient for applying

feedback control because the controller adjusts the execution time of only a single

subtask. Hence we avoid creating more than two subtasks which would lead to

unnecessary overheads without any benefits. Equation 7.7 assumes that we use all

the available slack for subtask τa. In section 7.5 we will show that this choice may

violate the temperature constraint. It can be shown that task splitting is necessary

to apply feedback control in hard real-time systems.

7.4 Feedback Control

In real systems, the actual execution time of different jobs from a given task

often fluctuates over time. Earlier work on dynamic real-time scheduling has shown

that feedback control is a useful technique for enhancing the schedule by reacting to

fluctuations in execution time. In section 7.3, we described how task splitting can

reduce energy consumption if we can estimate the actual execution time of the next

job. In this section, we focus on determining a value for ea using feedback control.

We use a PID-feedback controller in our system to control the execution time

of τa. A PID-feedback controlled system has a controlled variable, a set point and

an output. The feedback controller changes the output so that the value of the

controlled variable remains the same as the set point. A PID-controller has three

terms, namely, proportional control, integral control and derivative control. The

proportional term controls the reaction to the current error from the set point. The

integral term controls the reaction to the history of recent errors and the derivative

term controls the reaction to the rate of error change. In our system, we use the

actual execution time of a task, ai, as the set point and ea as the controlled variable.

The system error is defined as:

eij = eaij − aij (7.8)
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We use the following feedback control formula to adjust the value of ea:

∆eaij = KP ∗ eij +
1

KI

∑

j∈IW

eij +KD ∗ (eij − ei(j−1))

eai(j+1)
= eaij +∆eaij

(7.9)

HereKP , KI andKD are the proportional, integral and derivative parameters respec-

tively, and IW is the length of the window for recent histories. In our experiments

we use KP = 0.9, KI = 0.08 and KD = 0.1 . These values based on trial and error

were found to perform best in terms of accurately adjusting the values of ea.

7.5 Temperature Aware Energy Management

We explore temperature aware energy management. We assume that the sys-

tem has a temperature constraint θc(Θc adjusted). Violations of this temperature

constraint should be avoided as much as possible, even if the subtask τb executes.

As mentioned in section 7.3, to meet the temperature constraint, it might not be

best to use all the slack for subtask τa. If energy minimization was the only goal,

then we could use all the slack for τa and run τb at maximum speed if required as

in [66]. However, for temperature aware energy minimization we distribute the slack

between τa and τb such that θ(t) ≤ θc during [t0, t2]. It is worthwhile to note here

that, during an interval of time [t0, t2] the energy consumption depends only on the

speeds used, whereas the temperature during the time interval also depends on the

temperature at t0. Solving equation 7.3 using an integrating factor, we get:

θ(t1) = sγa/β + eβ(t0−t1)(θ(t0)− sγa/β) (7.10)

θ(t2) = sγb/β + eβ(t1−t2)(θ(t1)− sγb/β) (7.11)
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Let la and lb denote the amounts of slack allotted to subtasks τa and τb respectively

such that la + lb = li. So, we get:

sa =

(

ea
ea + la

)

∗ sl, sb =

(

eb
eb + lb

)

∗ sl, (7.12)
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Fig. 7.4. Temperature Variation with Slack Distribution

As a motivational example consider a task with ei = 0.8s, ea = 0.2s, eb =

0.6s and li = 0.6s. Figure 7.4 shows the temperature curves during [t0, t2] assum-

ing different values of la. The temperature at t0 is assumed to be 75 ◦C. Assuming

Θc = 90 ◦C, it can be clearly seen that both Figures 7.4a and 7.4d violate the tem-

perature constraint, while Figures 7.4b and 7.4c obey the same. Here, Figure 7.4b

represents a better speed schedule than Figure 7.4c because it uses a lesser speed for
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subtask τa. Our goal is to use most of the slack for τa while reserving slack for τb

so that the temperature constraint is not violated even if τb executes. All the four

speed schedules result in comparable energy consumptions.

To minimize the energy consumption while obeying the temperature constraint,

we need to determine suitable values for la and lb. The values of la and lb give the

speeds to be used for τa and τb according to equation 7.12. To maximize the energy

savings while meeting temperature constraints, we want θ(t2) to be as close to θc as

possible. In this way, the minimum possible slack is used for τb while maximizing the

slack used for τa. It is important to note here that TA-DVS can not guarantee that

the temperature constraint will always be satisfied. The amount of available slack

may not be enough to obey the temperature constraint. Rather, TA-DVS is a best

effort solution to reduce the number of temperature constraint violations.

Algorithm 5
TA-DVS: Calculate la and lb

1: for i = 1 to l do

2: sa ← si

3: sb ←
ebsl

eb + li − ea(sl/sa − 1)

4: Compute θ(t1) and θ(t2) according to equation 7.10,7.11

5: if θ(t2), θ(t1) ≤ θc then

6: break

7: end if

8: if i = l then

9: sa ← canonical speed

10: end if

11: end for

12: la ← ea ∗ (sl/sa − 1)

13: lb ← li − la
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Fig. 7.5. Pattern of Variation for Actual Execution Times of a Task

Algorithm 5 shows the pseudo-code for calculating la and lb. We want to use the

maximum possible slack for τa to maximize the energy savings. Hence, the algorithm

iterates through the list of available speeds starting from the lowest. Using this speed

for sa, the values of sb and θ(t2) are calculated. The for loop ends when θ(t1) and

θ(t2) are within θc for the first time. This speed schedule achieves the maximum

possible energy savings while obeying the temperature constraints during both τa

and τb if possible. If none of the available speeds satisfy the condition on line 5, it

means that the amount of available slack is insufficient to satisfy the temperature

constraint. In this case we choose the canonical speed as the speed for subtask τa.

7.6 Results and Discussions

We evaluated the performance of TA-DVS in a simulation environment which

implements task splitting, feedback control and α-queue. For comparison purposes,

we also implemented two other energy management schemes. The first one, Multi-

ple Feedback Dynamic Voltage Scaling approach, referred to as MF-DVS performs

temperature unaware energy management using feedback control [66]. The second

scheme, Temperature Aware Speed Control, referred to as TASC performs temper-

ature constraint aware energy management without taking dynamic slack into ac-

count [60]. We generated fifteen tasksets, each with ten tasks, and total worst case

utilization varying from [0.85, 1.00] in intervals of 0.01. The periods of the tasks

were uniformly distributed in the range [1,100] sec. The worst case execution time
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(WCET) of each task was chosen to meet the total utilization of the taskset. The

actual execution time of each task was distributed in the range [0.5, 1.0] ×WCET

and followed the pattern shown in Figure 7.5. In this pattern, the actual execution

time of the task remains at 50% of the WCET and spikes to a peak value every

tenth job. The peak value is normally distributed in the range [0.5 × WCET, 1.0 ×

WCET]. After the peak, the actual execution time of the task falls off exponentially.

We assume a DVS capable processor with eight different normalized speed levels

{0.25, 0.5, 0.63, 0.75, 0.81, 0.87, 0.93, 1.0}. The maximum frequency of the processor

is assumed to be 2.1 GHz. Since the speed levels are discrete, we use the closest

speed which is no lesser than that resulting from equation 7.12. We experiment

with temperature constraint values in the range of [80, 95]◦C. Hence we assume a

fine grained control over the speed at corresponding equilibrium speeds. We set the

length of the integral window, IW = 10. Each individual run in our experiments was

of length 500 sec. In all our experiments, we use the following values for parameters

in the system model: h = 6, γ = 3, δ = 0.01, ρ = 0.1 Watt, α = 105 K/Joule, β =

12.325 sec−1, σ = 371.5 K/sec and ξ = 2.52 µJ [60].

In all our experiments, none of the jobs missed a deadline, showing that tem-

perature aware energy management is a safe technique to use in terms of real-time

constraints.

In the first experiment, we observed the number of temperature constraint viola-

tions with varying taskset utilizations. A temperature constraint of 90◦C was used

in this experiment which corresponds to an equilibrium speed of 0.91. Figure 7.6

shows the results. For the tasksets with utilization 0.86 and 0.87, the processor can

always run at the canonical speed of 0.87 or lower. Since the equilibrium speed is

0.91, there are no constraint violations with any of the schemes. From this result

we can directly conclude that when the canonical speeds is less than or equal to

the equilibrium speed, energy management using appropriate slack reclamation is

sufficient to satisfy temperature constraints. At utilizations of 0.87 and 0.93, we see
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Fig. 7.6. Temperature Constraint Violations for Θ∗ = 90◦C, with
Varying Taskset Utilization
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Fig. 7.7. Normalized Energy with Varying Taskset Utilization

an increase in the number of violations. Beyond utilizations of 0.87 and 0.93, the

next available speeds are 0.93 and 1.00 which result in equilibrium temperatures of

93.6◦ and 109◦C respectively. Due to the discreteness in the speed levels, we see a
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jump in the number of violations for these tasksets. However, TA-DVS is able to

reduce the number of violations by an average of 18.9% over MF-DVS. Since TASC

does not take advantage of the dynamic slack created, it results in a considerably

high number of constraint violations. At utilization of 1.00, wee see that TA-DVS

and MF-DVS actually result in a higher number of constraint violations compared

to TASC. This is due to the fact TASC does not try to utilize runtime slack to re-

duce energy consumption. Our results suggest that, at high utilizations, it might be

a better idea to let the processor idle than to try and reduce energy consumption

which might increase temperature constraint violations.

Figure 7.7 shows the normalized energy consumption for the same tasksets. As

expected, with increasing utilization, the normalized energy consumption increases

for all three schemes. For all utilizations, the energy consumption of the TA-DVS

scheme is comparable to that of MF-DVS. Since TASC does not take advantage of

the dynamic slack created, it leads to considerably higher energy consumption.
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Fig. 7.8. Constraint Violations for WCET Utilization = 0.91 with
Varying Temperature Constraints
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Fig. 7.9. Normalized Energy for WCET Utilization = 0.91 with
Varying Temperature Constraints

In the second experiment, we observe the number of constraint violations by vary-

ing the temperature constraint itself. Figure 7.8 shows the results for a taskset with

utilization 0.91. For utilization 0.91, the canonical speed is 0.93 and the correspond-

ing equilibrium temperature is 93.6◦. Hence for constraints beyond 93◦, we observe

no violations. As the temperature constraint is gradually increased from 80◦, the

violations fall down gradually with a jump at 83◦. The jump is due to the addition

of one more speed to the set of safe speeds that do not violate the given constraint.

In all the cases, TA-DVS is able to reduce the number of constraint violations by an

average of 14% over MF-DVS. As in the previous experiment, TASC results in a high

number of constraint violations. Figure 7.9 shows the normalized energy consump-

tion for the same experiment. The result shows that for TA-DVS and TASC, the

energy consumption does not depend on the temperature constraint used, implying

that temperature aware energy management does not increase the energy consump-

tion. This result shows that temperature awareness does not adversely affect energy

consumption.
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Fig. 7.10. Constraint Violations for WCET Utilization = 0.91 with
Varying Temperature Constraints and Fine-Grained Speed Distribu-
tion
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In the third experiment, we consider a fine-grained speed distribution for the

processor by considering hundred speed levels between 0 and 1 with increments of

0.01. We observe the constraint violations by varying the temperature constraint.

Figure 7.10 shows the result for a taskset with utilization 0.91. It can be clearly seen

that all the three schemes perform better compared to the coarse-grained distribution

of speed levels that we assumed earlier. This is due to the increased room for utilizing

the available slack. Although the equilibrium temperature for utilization 0.91 is 93.6◦,

we observe no constraint violations even with constraints of 90◦ − 95◦. This is due

to the fact that early completions of tasks results in an actual utilization which

is lesser than 0.91. In this experiment, TA-DVS reduces the number of constraint

violations by an average of 14% over MF-DVS. Figure 7.11 shows the normalized

energy consumption for this experiment yielding similar results as in Figure 7.9.

Table 7.1

Multimedia Benchmark for TA-DVS Evaluation

Task Description Period (sec) WCET (sec)
mpegplay MPEG video decoder 30 11
madplay MP3 audio decoder 30 1
tmn H263 video encoder 400 165
toast GSM speech decoder 25 1
adpcm ADPCM speech decoder 80 7

We also experimented with a set of multimedia tasks with a total worst case

utilization of 0.94. The taskset consists of six programs as shown in Table 7.1. The

execution times of these tasks were obtained by profiling offline traces. The violation

count and energy consumption for the multimedia taskset during a 5000 sec interval

are shown in Table 7.2. Similar to the results from the synthetic tasksets, TASC

results in a high number of constraint violations and energy consumption. TA-DVS

is able to reduce the number of constraint violations over MF-DVS by 8.03% while

achieving similar energy consumption.
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Table 7.2

Temperature Constraint Violations and Energy Consumption for
Θ∗ = 90◦C Using the Multimedia Benchmark

Scheme Violation count Energy (J)
TASC 6165 138806

MF-DVS 5217 117380
TA-DVS 4798 116757

7.7 Conclusions and Future Work

Reducing temperature and energy consumption are important design constraints

for modern computing devices. In this section, we propose a temperature aware

energy management technique for real-time tasks with varying execution times. We

use feedback control and DVS techniques to reduce energy consumption in a temper-

ature aware manner. We experimentally showed that when the equilibrium speed is

lesser than the canonical speed, a energy management that utilizes slack efficiently

is sufficient to satisfy the temperature constraint. Further, our proposed scheme,

TA-DVS, reduces temperature constraint violations by 18.9% on the average while

consuming similar amount of energy, compared to an existing energy management

technique. In the future TA-DVS will be extended to multiprocessor platforms. For

this, we will extend the thermal model to consider the IC floorplan and the effect

of the temperature of neighboring cores. The thermal model will be extended to

account for fan controlled cooling.
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8. CONCLUSIONS AND FUTURE WORK

Energy management for real-time systems is a challenging problem due to dead-

line constraints that tasks must obey. This dissertation has explored the usage

Dynamic Voltage and Frequency Scaling capabilities of the underlying platform to

reduce runtime energy consumption in real-time systems.

Pfair scheduling is an optimal scheduling algorithm for periodically recurrent real-

time tasks, but suffers from applicability concerns in real systems. This dissertation

has proposed techniques to address some of these issues.

This dissertation has also explore temperature aware dynamic power management

for real-time tasks with varying execution times. This work brings out the similar-

ities and differences in the characteristics of energy management and temperature

awareness for real-time systems.

8.1 Summary

Section 4 considered the problem of employing DVFS to reduce energy consump-

tion in Pfair scheduled real-time systems. First we showed how DVFS will violate

the task deadlines in Pfair scheduling. Then we proposed our weight scaling ap-

proach to maintain real-time correctness while reducing energy consumption in Pfair

scheduling. Comparison of our approach against the basic Pfair scheduling algorithm

showed improvements of upto 66% in energy consumption. This work also proposed

techniques to optimize task processor assignment to reduce overheads resulting out

of task migrations and frequency switches.

Section 5 explored the problem of choosing a good quantum size for Pfair schedul-

ing to reduce the practical overheads involved in implementing Pfair scheduling.

First the overheads involved in Pfair scheduling were analyzed and then the Quo-

tient Search heuristic was presented to choose a good quantum size. The proposed
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technique was compared against other quantum size selection approached showing

improvements in runtime and overheads.

In Section 6 a hardware block for Pfair scheduling was designed and implemented.

We proposed the use of a centralized Pfair scheduler in multiprocessing systems

to avoid repeated calculations. For hardware implementation, the definitions of

Pfair parameters were suitably modified to transform them into the integer domain.

Finally, comparison with other software based implementation approaches showed

improvements in terms of energy consumption and scheduling delay.

In Section 7 we explored temperature aware DVFS in uni-processor systems us-

ing the EDF scheduling policy. This work proposes a solution to temperature aware

energy management using task with varying execution time using a feedback con-

troller based approach. The comparison of our approach with other existing ap-

proaches showed improvements in system temperature without adversely affecting

energy management.

8.2 Future Work

We now describe a few of the challenges that are remaining in this research area.

Most of the work on multiprocessor real-time scheduling still focuses on tasksets

with independent tasks. The existing research on handling task dependencies with

multiprocessor real-time scheduling is still immature. The challenge with handling

task dependencies lies in the design of appropriate synchronization protocols that

can prevent real-time priority inversions where a task with a higher priority waits

for a resource held by a lower priority task. Extensions of PAPF to handle task

dependencies will model real systems more accurately.

In the future, the number of processors in the chip may well increase beyond a

number where the realization of a shared L2 cache becomes impractical. It will be

interesting to study how the overheads in Pfair scheduling change in the absence of

a global shared cache. In such a scenario, it might be useful the study restricted
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migration of tasks so that a task is only allowed to migrate within cores which share

an L2 cache.

Also, the accounting of interrupt overheads within Pfair scheduling has not been

handled. It is not clear how interrupts should be modeled because the degree of

interruptions is system dependent and varies largely with the workload [36]. However,

the interrupt overheads need to be accounted for, and the execution times of tasks

need to be appropriately adjusted.

The Hardware Pfair Scheduler presented in Section 6 can be made DVFS aware

by integrating the work in Section 4. The challenge in this extension lies in designing

the communication protocol between the scheduler core and the processing elements

of the multiprocessor platform to keep the implementation fast and predictable. This

will further improve the energy efficiency of the hardware scheduler.

It would be interesting to see extensions of the work on Temperature aware en-

ergy management for real-time systems. The challenge here lies with extending the

thermal model appropriately to handle the temperature dependence of one core on

its neighborhood cores. HotSpot is a thermal model which takes the floorplan of

the circuit into account and allows the study of thermal evolution by developing an

equivalent circuit of thermal resistances and capacitances. However, the suitability

of HotSpot in dynamic online settings remains to be studied.

Yet another direction to be explored is the support for multiple quantum sizes

in a Pfair scheduled system. In a task set with a mix of small and large tasks (in

terms of execution time), the presence of multiple slot sizes can greatly improve

implementation efficiency by preferring to execute large tasks on processors which

use large quantum sizes; and preferring processors with small quantum sizes for tasks

with small execution times.
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APPENDIXAPPENDIX A

SIMULATION BASED TOOLS

Most of the work in this dissertation was evaluated using simulation based tools.

This section provides further details on these tools to give greater insight into the

evaluation process.

For the evaluation of PAPF in section 4, a Java based simulator was developed

which implements PAPF over the basic Pfair scheduling algorithm. The simulator

also supports the evaluation of the optimization schemes presented in the section.

The Java classes involved in the simulator and their descriptions are mentioned in

Table A.1.

Table A.1

List of Classes in PAPF Simulator

Class Description

Simulator The main Java class that instantiates other classes within
the simulator and keeps track of time

Dispatcher Responsible for Job release, DVFS and weight scaling
ExecutionReport Notifies whether a job finished in time or earlier than time
Job Job representation
PFScheduler The Pfair scheduling algorithm logic
ReadySet Representation of the set of ready jobs
Report One ExecutionReport for each Processor in the system
Slack The representation of a slack element
SlackManager Responsible for computing slack usable by a given task
SlackSet The set of available dynamic slack in the system
Task Task representation
Utils Utility functions

The evaluation for quantum size selection schemes presented in section 5 was per-

formed in another Java simulator. This simulator incorporates the overhead model

and the selection heuristics mention in section 5. Table A.2 lists the classes involved

in this simulator.
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Table A.2

List of Classes in Quantum Size Selection Scheme Evaluator

Class Description

Main The main Java class which instantiates other
Java classes and produces output

TaskOb A task object
Taskset A set of tasks
OptimizeExhaustive Exhaustive search optimization scheme
OptimizeMean Mean execution time based selection
OptimizeMedian Median execution time based selection
OptimizeRandom Random execution time based selection
OptimizeQuotient Our proposed Quotient Search scheme
OptimizeLITMUS The LITMUSRT quantum size approach

The evaluation of TA-DVS in section 7 was performed on another discrete event

Java simulator which implements Feedback control, task splitting and α-queue tech-

niques. The simulator also incorporates the thermal and energy model used in the

section. Table A.3 lists the classes involved in the simulator.

Table A.3

List of Classes in TA-DVS Scheduler

Class Description

Simulator The main Java class which instantiates other
Java classes and tracks time

Task A task object
SystemModel Class incorporating the system model for this work
AlphaQueue Implementation of α-queue
EventType Enum for representing different event types
Event An event in the discrete event simulator
EventManager The class that manages events in the simulator

based on event time
FeedbackController Feedback control implementation
Pattern Class for producing the run time variation of

task execution time
ReadyQueue The ready queue of the EDF scheduler
RunType An enum representing whether the CPU is idle or busy
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