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ABSTRACT

Higher Derivative D-brane Couplings. (August 2011)

Guangyu Guo, B.S., Lanzhou University, China

Chair of Advisory Committee: Dr. Katrin Becker

This dissertation covers two different but related topics: the construction of

consistent models in type IIB and heterotic string theories, and the higher derivative

couplings for D-brane action, which will enable us to relate some models of type IIB

to the heterotic side through duality chain.

In the first part, we describe an alternative to the KKLT scenario, in which one

can achieve de-Sitter space after fixing all moduli. We fix complex structure moduli

and the axio-dilaton by deriving the stability conditions for the critical points of the

no-scale scalar potential that governs the dynamics of the complex structure moduli

and the axio-dilaton in compactifications of type IIB string theory on Calabi-Yau

three-folds.

In the second part, we show the existence of a class of flux backgrounds in het-

erotic string theory. The background metric we will consider is a T 2 fibration over a

K3 base times four-dimensional Minkowski space. Unbroken space-time supersymme-

try determines all background fields except one scalar function which is related to the

dilaton. The heterotic Bianchi identity gives the same differential equation for the

dilaton, and we will discuss in detail the solvability of this equation for backgrounds

preserving an N=2 supersymmetry.

In the third part, we obtain the higher derivative D-brane action by using both

linearized T-duality and string disc amplitude computation. We evaluate disc ampli-

tude of one R-R field C(p−3) and two NS-NS fields in the presence of a single Dp-brane
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in type II string theory. We obtain the action for the higher derivative brane interac-

tions among one R-R field C(p−3) and two NS-NS B-fields after carefully comparing

the supergravity amplitudes with the corresponding string amplitude up to α′2 order.

We also show that these higher derivative brane couplings are invariant under both

R-R and NS-NS B-field gauge transformations, and compatible with linear T-duality.
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CHAPTER I

INTRODUCTION

The quest for a theory of everything, or a framework that can accommodate every

known interaction, has attracted physicists for generations since the great dream of

Albert Einstein. In the early 1970s, Quantum field theory proved to be an appropriate

framework to organize our knowledge at low energy scale, and sometimes people even

argue that it is the only way to satisfy the principles of both quantum mechanics and

special relativity (aside from theories like string theory that have an infinite number

of particle types )[1]. Both electroweak and strong interactions can be described by

standard model, which is the quantum field theory with the gauge group SU(3)C ×
SU(2)L × U(1)Y . The theory has been compared with a wild range of experiments

to very high precision for a broad range distance from 10−15m to 108m.

Despite the great success of standard model, there are still big problems ahead

[2]. 1) Hierarchy problem: in standard model all fermions are chiral, so their masses

are protected by gauge symmetry. However, no such symmetry can prevent scalars,

like Higgs particle, to receive huge mass correction with quadratical divergence. To

avoid the ridiculous fine-tuning one need new physics at TeV scale. 2) Dark matter

and dark energy: the familiar particles in the standard model only account for about

four percents of total energy of the universe. 3) Quantization of gravity: gravity, i.e.

Einstein’s general relativity, is still a classical theory. There exist a few proposals,

like supersymmetry and large extra dimensions, to address the first two problems,

but the last problem is more challenging in the QFT framework. Consistent quantum

This dissertation follows the style of Nuclear Physics B.
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field theory seems to exist only for particles with spin no bigger than 1, but graviton

has spin 2. To quantize the gravity, we need something very different.

String theory1 arises from dual models as a candidate to describe the strong

interaction in the 1960s. Despite the partial success of dual models, they are replaced

by QCD (Quantum Chromodynamics) as the leading candidate for strong interaction

in the early 1970s. Even though string theory does not fit for strong force, it turns

out to be an appealing framework to address quantum gravity, as every consistent

string theory includes a massless spin 2 particle, which has the same properties as

graviton, governed by general relativity.

String theories can reconcile general relativity and quantum mechanics without

the annoying UV divergence. But it came at a price. There are five different string

theories in 10-dimension and one M theory in 11 dimension, which conflict with the

daily experience that the world around us is only 4-dimensional. To get in tough with

the everyday physics, we need to compactify the extra six dimensions.

To build models of particle phenomenonlogy from string theory, we can start with

four dimensional vacua with N = 1 supersymmetry. One can obtain such models, for

example, by compactifying M-theory on G2-holonomy manifolds, F-theory on Calabi-

Yau four-folds or type II theories on Calabi-Yau orientifolds, see [7, 8] for review. All

these models have a moduli space of vacuum states, and concrete predictions can not

be made until one can identifies the mechanism that picks the vacuum state of string

theory. By including fluxes as background fields the continuous ambiguity associated

with the vacuum expectation values of the moduli fields is replaced by a discrete

freedom associated with the choice of flux numbers. However, the number of possible

vacuum states is still enormous and it has been argued to built a whole landscape of

1Interested readers can see [3, 4, 5, 6] for introduction.
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solutions [9]. However, most of these string theory backgrounds have flat directions

and there exists very few solutions with all moduli fixed.

In the dissertation, we will explore a few flux backgrounds in both type IIB [10]

and heterotic string theory [11]. One can employ U-duality to connect the models in

type IIB side to corresponding models in heterotic string theory, but the complete

understanding of these duality chains requests better knowledge regarding the higher

derivative brane couplings [12, 13, 14], which will be the main topic of this dissertation.

A. Flux background of type IIB string

Stabilizing all the scalar fields associated with a Calabi-Yau compactification of string

theory at weak coupling is a particularly hard problem. In the context of compactifi-

cations of type IIB string theory on a Calabi-Yau orientifold, one of the fields which

is conventionally unstabilized using fluxes is radial modulus ρ. In KKLT model [15],

complex structure moduli and the axio-dilaton acquire an expectation value due to

perturbative fluxes while preserving an N = 1 supersymmetry. The non-perturbative

correction to the superpotential cause the radial modulus ρ to become heavy com-

pared to the AdS scale. However, the masses of the complex structure moduli will

generically be of the order to the inverse AdS length which means that for all practical

purposes they can be considered stabilized [16]. This situation changes once these

vacua are lifted to dS spaces. In [15] this has been achieved by assuming the presence

of an anti-D3 brane which contributes a factor

∆V ∼ 1

(Imρ)3
, (1.1)

to the scalar potential. Once this contribution is taken into account the potential

for the radial modulus displays a metastable minimum at which the scalar potential
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takes a positive value and as a result corresponds to a dS space.

An alternative [17] to uplift the potential to positive value is to obtain a potential

contribution resembling the one resulting from anti-D3 branes by considering flux

configurations for which DIW 6= 0 for some I and superpotential W [18]. From the

no-scale form of the potential it follows that such a contribution is positive and it’s

dependence on ρ is precisely equal to the one originating from anti-D3 branes. Since

DIW 6= 0 the flux can no longer be imaginary self-dual (ISD) but will acquire an

imaginary anti-self dual (IASD) component.

In Chapter II, we will analyze the stability conditions of fluxes derived by re-

quiring that the scalar potential is critical in the complex structure and axio-dilaton

directions, and also show these critical points are metastable. We then consider the

four-dimensional theory obtained from compactifications of type IIB string theory on

backgrounds which are mirror to rigid Calabi-Yau manifolds, i.e. non-geometric back-

grounds with no Kähler structure. In this case case the flux induced superpotential

does depend explicitly on all scalar fields, i.e. the complex structure moduli and the

axio-dilaton. Mirror symmetry implies that on the type IIB side the Kähler poten-

tial for the axio-dilaton differs from the conventional one obtained from dimensional

reduction [16]. This fact enables us to find a scalar potential which stabilizes all the

complex structure moduli in terms of RR fluxes only while requiring no orientifold

charge. However the axio-dilaton is not fixed and slides off to weak coupling. The

axio-dilaton could be stabilized if HNS is taken into account and supersymmetry is

broken to render the scalar fields heavy enough. Another possibility is to take per-

turbative corrections to the Kähler potential and non-perturbative corrections to the

superpotential into account [16].
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B. Flux background of heterotic string

Even though moduli stabilization and model building in type II string theories have

been intensively studied, much less is known about the heterotic string compactifica-

tion with flux. The background geometry of supersymmetric heterotic compactifica-

tions with non-zero H-flux are topologically different from the zero-flux Calabi-Yau,

and the geometry is non-Kähler [19, 20]. The excitations of the low-energy effective

action are no longer the same as those in the no-flux case. That is, due to the lack

of a Kähler structure, there is no longer a one-to-one correspondence between har-

monic forms and massless modes, so the distinction between light and heavy modes

on non-Kähler manifolds is not as clear as it is for Calabi-Yau manifolds [21]. From

the mathematical point of view algebraic geometry techniques are still missing even

though some progress has been made in describing these spaces with an explicit metric

[22].

Aside from intellectual curiosity, non-Kähler compactifications of the heterotic

string possess some appealing features of a physical value. In particular, non-trivial

background fluxes admit a possible mechanism for spontaneous supersymmetry break-

ing. Such manifolds admit a globally defined spinor, however, the connection under

which that spinor is covariantly constant is no longer the Levi-Civita connection, but

rather, a connection with non-zero torsion. The flux as well as the torsion induce a

superpotential and hence provide the possibility of fixing at least some of the moduli.

A complete understanding of either of these mechanisms depends upon computation

of the four-dimensional effective action.

In Chapter III, we will consider torsional heterotic backgrounds which are a T2

fibered over a K3 base, which has been considered in [23, 24, 25]. This heterotic

background is dual to a type IIB background. The duality chain has been described
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explicitly in ref. [26] based on earlier work by Sen [27, 28]. We are interested in

analyzing α′ corrections to the heterotic SUGRA background. Even though the het-

erotic vacua is related to type IIB backgrounds by duality, we will not use duality to

obtain the α′ corrected heterotic background. Rather we will follow a different route

and construct the α′ corrected background directly on the heterotic side, in which

the action and supersymmetry transformations are known to all relevant orders. The

low-energy effective action of the heterotic string to O(α′3) has been constructed by

Bergshoeff and de Roo by supersymmetrizing the Chern-Simons term [29]. Our goal

is to construct the background which solves the α′ corrected equations of motion.

Depending on the choice of flux different amounts of four-dimensional supersym-

metry are preserved. While solutions preserving an N=2,1 supersymmetry have been

discussed before in the literature, starting with ref.[26] (see in particular [30, 31]), the

supersymmetry breaking solutions are new. We explicitly check that the backgrounds

solve the equations of motion. For solutions preserving an N=1,0 supersymmetry we

check this at the SUGRA level. While for solutions preserving an N=2 supersymme-

try we show how to solve the equations of motion including the first α′ correction.

The spinor equations determine the background except one scalar function related to

the dilaton. The Bianchi identity for H gives rise to a differential equation for this

scalar function which is of Laplace type, so the existence of solution is guaranteed.

C. Higher derivative D-brane couplings

In the previous section, the reason that we have to construct heterotic vacua directly

rather than by duality chain from type IIB vacua, is that the present knowledge

about the relevant interactions on the world-volume of Dp-branes and O-planes is
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insufficient. For example, the anomalous couplings

π2α′2

24
CeB+2πα′F |(p−3)−form ∧ (TrRT ∧RT − TrRN ∧RN) +O((α′)4), (1.2)

described in [32, 33, 34, 35, 36, 37, 38, 39] are not compatible with T-duality and

additional dependence on NS-NS and R-R fields are required to obtain world-volume

actions compatible with T-duality.

The duality between type IIB and heterotic flux backgrounds of the previous

section can be explicitly checked at the level of SUGRA but beyond leading order

the duality map makes predictions about higher derivative corrections to the world-

volume action describing Dp-branes in type IIB theories. Higher derivative D-brane

couplings are very important in finding consistent compactifications, as they can

sometimes be needed to satisfy an important class of consistency conditions known

as tadpole equations.

For instance in type IIB, the equation of motion for C(4) wrapping the directions

of Minkowski space is an internal closed six-form which gets contributions both from

fluxes (terms proportional to F (3)∧H3) and from delta-function forms corresponding

to localized sources such as D3-branes and O3-planes, and can also receive contribu-

tions from higher-derivative corrections to the action. If the six-form is not exact,

then there can be a topological obstruction to solving the tadpole equation, and the

compactification would be inconsistent. In fact, it turns out that in some examples of

this sort (as well as in some other contexts), there may be no way to solve the tadpole

constraint at leading order in a momentum expansion. Higher derivative corrections

must then be included that often change the global structure drastically - either by

allowing the existence of solutions, or perhaps by spoiling the consistency of solutions

that otherwise appeared to be fine. For this reason, it is crucial to understand these

corrections and their global properties.
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B

B2

2

p-3Cp-

Dp

Fig. 1. String theory amplitude for a Dp-brane to absorb two B-fields and emit a (p-3)

form R-R potential.

In Chapter IV, we will first use T-duality to deduce some more couplings which

involve derivatives of B-fields, or will involve R-R fields of different degree, etc. It

is not clear that these couplings will necessarily lead to new topological restrictions,

but in some contexts they might, and they will certainly modify the local tadpole

equation. Similar couplings have been obtained via U-duality in M-theory and string

theory in [40, 41], where they have been used to avoid no-go theorems in IIA and

M-theory flux compactifications. Clearly, these issues need to be examined more

closely than they have been. But T-duality alone can not fix all the higher derivative

brane couplings, so we also employ the string amplitude computation (see Figure 1)

to get these brane couplings. At the low energy limit, this string amplitude can be

substituted by six supergravity Feynman diagrams shown in Figure 2.

What really interests us is the amplitude for Figure 2f), which represents the

contact interaction among one R-R field and two B-fields on D-brane. Once we

evaluate the amplitude of first five Feynman diagrams of the Figure 2, we can obtain

the amplitude of Figure 2f) by subtracting the amplitudes of the first five diagrams in
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p-3Cp-

Dp

B2

Dp
Dp

Dp

(a) (b) (c)

A

A

A

Dp

p+1C
p-1C

B2

p-3Cp-

p-3Cp-
p-3Cp-

B2

B2

B2

B2

p-1C

B2

B2

A

B2

B2

p-3Cp-

p-3Cp-

B2

B2

(d) (e) (f )

Dp Dp

p-1C

Fig. 2. Six supergravity Feynman diagrams that replace string amplitude at low energy

Figure 2 from the string amplitude. In Chapter IV, we will see that the final higher

derivative couplings we obtain are invariant under both R-R and NS-NS B-field gauge

transformations, and compatible with linear T-duality.
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CHAPTER II

METASTABLE DE SITTER FLUX VACUA IN TYPE IIB THEORY*

In this chapter, we will consider geometric compactifications of type IIB string theory

on Calabi-Yau three-folds. In section A, we derive the conditions imposed on the flux

configurations to lead to stable critical points of the scalar potential in the complex

structure and axio-dilaton directions. We explicitly show that the critical points

do correspond to minima of the potential by computing the Hessian matrix. We

illustrate the idea in the example of a torus orientifold. In section B, we consider

the four-dimensional theory obtained from compactifications of type IIB strings on

mirrors of rigid Calabi-Yau manifolds. We find a scalar potential which stabilizes all

the complex structure moduli in terms of RR fluxes only while requiring no orientifold

charge. We discuss several possibilities to stabilize the axio-dilaton at weak coupling.

A. Type IIB string theory compactified on Calabi-Yau three-folds

In this section, we start deriving the form of the scalar potential following closely [42].

Then we derive the conditions to obtain a critical point of the potential and explicitly

check that the critical points correspond to minima by computing the Hessian matrix.

At the end, we present a concrete example of T 6 orientifold.

* The result reported in this chapter are reprinted with permission from
Metastable flux configurations and de Sitter spaces, by K. Becker, Y. Chung and
G. Guo, published in Nucl. Phys. B 790 (2008) 240, Copyright 2008 by Elsevier B.V.
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1. The scalar potential

We start with the low-energy effective action of type IIB string in the ten-dimensional

Einstein frame

SIIB =
1

2κ2
10

∫
d10x

√−g

[
R− ∂Mτ∂M τ̄

2(Imτ)2
− G ·G

12Imτ
−

F̃ 2
(5)

4 · 5!

]
(2.1)

− 1

8iκ2
10

∫
C(4) ∧G ∧G

Imτ
+ Sloc.

Here the axio-dilaton τ is written in terms of the RR scalar C(0) and the dilaton φ

according to

τ = C(0) + ie−φ, (2.2)

and the self-dual condition for five form

F̃(5) = F(5) − 1

2
C(2) ∧HNS +

1

2
B(2) ∧HRR, (2.3)

should be imposed at the equation of motion level. Here HRR and HNS are the field

strengths for field potentials C(2) and B(2) respectively and G ≡ HRR − τHNS. The

Bianchi identity for the five-form field can be written as

dF̃(5) = HNS ∧HRR + 2κ2
10T3ρ

loc
3 . (2.4)

After integrating both sides of the Bianchi identity over the internal manifold M6,

we get

1

(2π)4α′2

∫

M6

HNS ∧HRR + Qloc
3 = 0, (2.5)

where we have used the relation 2κ2
10T3 = (2π)4α′2. This identity means the sum of the

D3 charges from background fields and localized sources vanishes. After dimension
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reduction of the action Eq. (2.1), one obtain the four-dimensional scalar potential

V =
1

24κ2
10(Imρ)3

∫

M6

d6y
√

g
G ·G
Imτ

− i

4κ2
10(Imρ)3

∫

M6

G ∧G

Imτ
(2.6)

This scalar potential can be written in terms of the flux induced superpotential [18]

W =

∫

M6

G ∧ Ω, (2.7)

and the Kähler potential

K = −3 log[−i(ρ− ρ̄)]− log[−i(τ − τ̄)]− log[−i

∫

M6

Ω ∧ Ω], (2.8)

where ρ is the radial modulus, as the standard N = 1 supergravity form

V = eK
(
gab̄DaWDb̄W − 3|W |2

)
(2.9)

where a and b label all moduli and the axio-dilaton. Even though the scalar potential

(2.6) take the explicit N = 1 supersymmetric form, the background preserves maximal

N = 2 supersymmetry. Because the superpotential is independent of ρ the scalar

potential takes the no-scale form

V = eKFIF̄
I , (2.10)

where I and J label the complex structure moduli and the axio-dilaton. Here and in

the following we will be using the notation of [43]

FI = DIW, ZIJ = DIDJW, UIJK = DIDJDKW, (2.11)

and indices are raised using the inverse of the Kähler metric gIJ̄ = ∂I∂J̄K.
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2. Critical points of the scalar potential

The local minimum of the scalar potential (2.10) in the complex structure and axio-

dilaton directions can be achieved after imposing the condition that the first deriva-

tives vanish, i.e.

∂IV = eK
(
ZIJ F̄ J + FIW

)
= 0. (2.12)

There exist non-trivial solution for the above condition. For example, one obvious

solution of this condition is given by flux configurations satisfying FI = 0. Using the

explicit expression for the superpotential we have

Fi =

∫

M6

G ∧ χi and Fτ = − 1

τ − τ̄

∫

M6

G ∧ Ω, (2.13)

where χi is the basis of harmonic (2, 1) forms and with lower case indices i, j we label

the complex structure moduli only. This implies that the non-vanishing components

of G can lie in the (0, 3) or (2, 1) directions. In other words, G is imaginary self-dual,

?G = iG. Moreover, this critical point is stable because the scalar potential (2.10) is

positive semi-definite and at the critical points the potential vanishes.

In the following we would like to find the most general solution of Eq.(2.12). We

start by rewriting Eq. (2.12) in the form

Zττ F̄
τ + ZτjF̄

j + FτW = 0,

Ziτ F̄
τ + ZijF̄

j + FiW = 0.

(2.14)

Note that

Zij = κijk

∫
M6

G ∧ χk

∫
M6

Ω ∧ Ω
, Zτi = − 1

τ − τ̄

∫

M6

Ḡ ∧ χi, Zττ = 0. (2.15)

A simple computation (we include the details in appendix A) shows that the first



14

condition in Eq. (2.14) is equivalent to

∫

M6

G ∧ ?G = 0, (2.16)

while the second condition leads to

(BB̄k + AĀk)

∫

M6

Ω ∧ Ω + κijkA
iBj = 0. (2.17)

Here we introduced the Hodge decomposition

G = AΩ + Aiχi + B̄ īχ̄ī + B̄Ω (2.18)

and κijk are the Yukawa couplings. The scalars (2.10) does not always have local

minimum for an arbitrary choice of flux. Only if Eq. (2.16) and Eq. (2.17) are

satisfied can we find a critical point in all directions except the size. This is not

always possible. If HNS = 0, for example, then the dilaton cannot be stabilized since

the only non-vanishing contribution to the dilaton potential comes from the overall

factor eK. As a result no critical point exists since Eq.(2.16) is violated.

It is not difficult to see that all flux combinations can lead to critical points of

the potential except if G is given by a combination of the following components

G(3,0) + G(0,3), G(3,0) + G(2,1), G(3,0) + G(0,3) + G(2,1), (2.19)

or their complex conjugates. A flux of the form G(3,0) + G(0,3), for example, is easily

seen to violate the condition (2.16).

Among the possible flux combinations leading to critical points of the scalar

potential only a flux lying in the (2, 1) or (1, 2) directions preserves supersymmetry.

The (2, 1) component obviously preserves supersymmetry, as it satisfies

DIW = DρW = 0. (2.20)
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However a flux in the (1, 2) direction also preserves supersymmetry if accompanied

by a change in the sign of the tadpole due to fluxes. The reason for this is that

type IIB supergravity in ten dimensions is invariant under the change of sign of all

RR fluxes. Changing the signs of RR fields replaces G by −Ḡ and as a result a flux

lying in the (2,1) direction should lead to the same physics as a flux in the (1,2)

direction. The (1,2) component does satisfy the conventional supergravity constraint

DIW̃ = DρW̃ = 0, but with a superpotential given by

W̃ =

∫

M6

G ∧ Ω. (2.21)

The derivation of this superpotential will be discussed in appendix B. The two super-

potentials W and W̃ are related to each other by a CPT transformation. Any other

flux components satisfying Eq. (2.16) and (2.17) will not preserve supersymmetry and

lead to a positive cosmological constant or vanishing cosmological constant if only a

(3, 0) (or (0, 3)) component is turned on. On the other hand, due to the no-scale

structure of the potential the radial modulus cannot be stabilized.

3. The Hessian matrix

The no-scale potential (2.10) is positive definite, so the solutions which lead to a

vanishing potential at the critical point V? are necessarily stable. However, we are

interested in solutions for which V? > 0 and as a result we have to check the stability

of the solutions2 . In order to determine if the critical points are stable we compute the

Hessian matrix H. It turns out that it only has positive eigenvalues which means that

the critical points are minima in the complex structure and axio-dilaton directions.

2Stability conditions for flux compactifications and the corresponding uplift has
been considered before in ref. [44].
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The second derivatives of the scalar potential are given by

∂I∂JV = eK
(
UIJKF̄K + 2ZIJW̄

)
(2.22)

∂I∂J̄V = eK(gIJ̄FKF̄K −R L
IJ̄K FLF̄K + 2FIF̄J̄ + ZILZ̄J̄K̄gLK̄ + gIJ̄ |W |2)

The critical points will be stable if

dΣ2 = Hαβdwαdwβ ≥ 0, (2.23)

where wα labels all coordinates, i.e. α and β label the axio-dilaton, complex structure

moduli and their complex conjugates. Using formulas which are explicitly presented

in appendix A we obtain

dΣ2 = eKgγσ
(
ZαγZβσdwαdwβ + gτ τ̄UαγτUβστ̄dwαdwβ

)
(2.24)

where Uαγσ = DαDγDσW and Zαγ = DαDγW are the generalization of UIJK and

ZIJ . As a result the Hessian matrix is positive semi-definite and the critical points

correspond to minima.

4. An example

In this section we describe a concrete example in terms of a type IIB orientifold

compactification. This example is closely related to examples discussed in [17, 45].

We will be following their notation. Let xi and yi, for i = 1, 2, 3 be the six real

coordinates on T 6. These coordinates are subjected to the periodic identifications

xi ≡ xi + 1 and yi ≡ yi + 1. The complex structure is parameterized by complex

parameters τ ij, and

zi = xi + τ ijyj, (2.25)
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are global holomorphic coordinates. The explicit orientifold is T 6/ΩR(−1)FL , where

R is the involution which changes the sign of all torus coordinates, R : (xi, yi) →
−(xi, yi). The holomorphic three-form is

Ω = dz1 ∧ dz2 ∧ dz3, (2.26)

and the metric is

ds2 = dzidz̄ ī. (2.27)

We choose the following orientation

∫

T 6

dx1 ∧ dx2 ∧ dx3 ∧ dy1 ∧ dy2 ∧ dy3 = 1, (2.28)

and the basis of H3(T 6,Z):

α0 = dx1 ∧ dx2 ∧ dx3

αij =
1

2
εilmdxl ∧ dxm ∧ dyj, 1 ≤ i, j ≤ 3

βij = −1

2
εjlmdyl ∧ dym ∧ dxi, 1 ≤ i, j ≤ 3

β0 = dy1 ∧ dy2 ∧ dy3 (2.29)

which satisfies
∫

T 6 αI ∧ βJ = δJ
I . The fluxes can be expanded in this basis

1

(2π)2α′
HRR = a0α0 + aijαij + bijβ

ij + b0β
0 (2.30)

1

(2π)2α′
HNS = c0α0 + cijαij + dijβ

ij + d0β
0.

Here we take a0, aij, b0, bij, c
0, cij, d0, dij to be even integers, so that all the O3-planes

are of the standard type and the issues regarding flux quantization discussed in ref.

[46] can be avoided. In this case, the total number of O3-planes is 64 and each plane

has D3-brane charge −1/4. For simplicity we only turn on the diagonal components

of the flux, so that we can set the off-diagonal components of τ ij equal to zero at
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the critical points. This condition can be imposed by restricting to an enhanced

symmetry locus on the moduli space of the T 6 [17]. For example, we will consider

configurations which are symmetric under

R1 : (x1, x2, x3, y1, y2, y3) → (−x1,−x2, x3,−y1,−y2, y3)

R2 : (x1, x2, x3, y1, y2, y3) → (x1,−x2,−x3, y1,−y2,−y3) (2.31)

Only the diagonal components of the complex structure τ ij, and the three forms

α0, αii, β
0, βii are preserved under these symmetries, so that the only non-vanishing

flux components are a0, aii, b0, bii and c0, cii, d0, dii. We are left with 3 non-vanishing

complex moduli and the axio-dilaton.

To use the conditions (2.16) and (2.17) which we derived in subsection A.2, we

need to transform the scalar potential (2.6) into the standard N = 1 supergravity

formula (2.9). For tori having a general complex structure the result is complicated

(see for example [17, 47]). However for tori with diagonal complex structure, we can

express the scalar potential in the form

V = eK
(

3∑
i,j=1

gij̄Dτi
WDτj

W + gτ τ̄DτWDτW

)
, (2.32)

with superpotential (2.7) and “Kähler potential”,

K = −3 log[−i(ρ− ρ̄)]− log[−i(τ − τ̄)]− log[i(τ1 − τ̄1)(τ2 − τ̄2)(τ3 − τ̄3)], (2.33)

where we used τi to replace τ ii. Before we proceed we have one more comment.

Generally we can only set τ ij = 0 (for i 6= j), after computing the first derivative

of the scalar potential (2.6), but on the symmetric locus, the criticality conditions

∂τ ijV = 0 (for i 6= j) are automatically satisfied. As a result we can set τ ij = 0

(for i 6= j) at the beginning of the computation and only deal with the conditions
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∂τ iiV = 0. However, when computing the second derivatives we can not set τ ij = 0

before we differentiate, as there are non-vanishing terms of the form ∂2
τ ijV , which will

disappear if we set τ ij = 0 (for i 6= j) at the beginning.

Next we consider a flux in the (2,1)+(1,2) direction, so the conditions (2.17) and

(2.16) take the form

κijkA
jBk = 0 and gij̄A

iB̄ j̄ = 0. (2.34)

Since we are working with a torus we set κ123 = 1 and one solution to the above

condition is

A3 = B3 = 0, A1B2 = −B1A2,
A1B̄1

(Imτ1)2
+

A2B̄2

(Imτ2)2
= 0. (2.35)

For the concrete torus orientifold we are considering the tadpole cancelation condition

takes the form

i

2Imτ(2π)4α′2

∫

T 6

G ∧G = 32. (2.36)

In the following we will present a concrete solution of Eq. (2.35). For simplicity

we redefine the parameters according to

Ai = −2iImτiImτÃi, and B̄ ī = 2iImτiImτ ˜̄B ī (2.37)

and drop the tilde in the following. The conditions (2.35) and (2.36) can be written

as

A1B2 = −B1A2, B1B̄1 = B2B̄2, (A2Ā2 −B2B̄2)Imτ

3∏
i=1

Imτi = 4 (2.38)
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and the non-vanishing components of HRR and HNS are

a0 = −Im[τ̄(A1 + A2 + B̄1 + B̄2)]

a11 = −Im[τ̄(A1τ̄1 + A2τ1 + B̄1τ1 + B̄2τ̄1)]

a22 = −Im[τ̄(A1τ̄2 + A2τ2 + B̄1τ2 + B̄2τ̄2)]

a33 = −Im[τ̄(A1τ̄3 + A2τ3 + B̄1τ3 + B̄2τ̄3)]

b0 = −Im[τ̄(A1τ̄1τ2τ3 + A2τ1τ̄2τ3 + B̄1τ1τ̄2τ̄3 + B̄2τ̄1τ2τ̄3)]

b11 = Im[τ̄(A1τ2τ3 + A2τ̄2τ3 + B̄1τ̄2τ̄3 + B̄2τ2τ̄3)]

b22 = Im[τ̄(A1τ̄1τ3 + A2τ1τ3 + B̄1τ1τ̄3 + B̄2τ̄1τ̄3)]

b33 = Im[τ̄(A1τ̄1τ2 + A2τ1τ̄2 + B̄1τ1τ̄2 + B̄2τ̄1τ2)]

c0 = −Im[A1 + A2 + B̄1 + B̄2]

c11 = −Im[A1τ̄1 + A2τ1 + B̄1τ1 + B̄2τ̄1]

c22 = −Im[A1τ̄2 + A2τ2 + B̄1τ2 + B̄2τ̄2]

c33 = −Im[A1τ̄3 + A2τ3 + B̄1τ3 + B̄2τ̄3]

d0 = −Im[A1τ̄1τ2τ3 + A2τ1τ̄2τ3 + B̄1τ1τ̄2τ̄3 + B̄2τ̄1τ2τ̄3]

d11 = Im[A1τ2τ3 + A2τ̄2τ3 + B̄1τ̄2τ̄3 + B̄2τ2τ̄3]

d22 = Im[A1τ̄1τ3 + A2τ1τ3 + B̄1τ1τ̄3 + B̄2τ̄1τ̄3]

d33 = Im[A1τ̄1τ2 + A2τ1τ̄2 + B̄1τ1τ̄2 + B̄2τ̄1τ2].

(2.39)

Usually one starts with certain flux numbers and then determines the values of

moduli fields. Here we solve the inverse problem, namely, we start with the value of

the moduli and determine the flux numbers which stabilize the moduli at the given

values. To solve Eq. (2.38) using even flux numbers (2.39) we use the ansatz

Imτ = 4, Imτ1 = Imτ2 = Imτ3 = 1 (2.40)
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So one solution of Eq. (2.38) is

A1 = −3i, A2 = 3i, B̄1 = 2 + 2i, B̄2 = 2 + 2i (2.41)

From Eq. (2.39), we can explicitly compute the flux numbers and obtain

(a0, a11, a22, a33) = (16,−24, 24, 16),

(b0, b11, b22, b33) = (16, 0, 0,−16)

(c0, c11, c22, c33) = (−4, 0, 0, 4),

(d0, d11, d22, d33) = (4, 6,−6, 4)

(2.42)

which are all even integrals.

B. Type IIB mirrors

In this section we would like to generalize the previous analysis to type IIB theories

which arise as mirrors of type IIA models compactified on rigid Calabi-Yau three-

folds, i.e. with h2,1 = 0. On the type IIB side these correspond to models with

h1,1 = 0 and consequently are not ordinary Calabi-Yau manifolds since a Kähler form

is missing but can nevertheless be described using conformal field theory techniques.

Here we will be interested in the properties of the resulting four-dimensional theories

which contain h2,1 + 1 four-dimensional N = 1 chiral superfields originating from the

complex structure moduli and the axio-dilaton. The number of these fields will in

general be reduced if we consider an orientifold projection.

It has been shown in ref. [16] that for compactifications of type IIB strings on

backgrounds with no Kähler structure the Kähler potential for the axio-dilaton and

the complex structure is

K = −4 log [−i(τ − τ̄)]− log

[
−i

∫
Ω ∧ Ω̄

]
, (2.43)
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which differs by a subtle factor 4 from the conventional Kähler potential for the axio-

dilaton. This unconventional factor 4 has the consequence that supersymmetric flux

configurations are no longer required to be ISD [16]. The Kähler potential (2.43)

also causes the scalar potential to display new and interesting properties. In order to

illustrate this imagine one considers a real three-form flux, i.e. a flux configuration

with HNS = 0. Then

W = WRR =

∫
HRR ∧ Ω, (2.44)

and the scalar potential can be written in the form

V = eK
(
gij̄DiWRRDjWRR+ | WRR |2

)
, (2.45)

which is positive definite and depends non-trivially on the complex structure. If

∂iV = 0 for i = 1, . . . , h2,1, (2.46)

the potential is critical in all the complex structure directions. So for example, one

solution of Eq. (2.46) is given by

HRR = a
(
Ω + Ω̄

)
, (2.47)

where a is some real constant. This equation determines the complex structure mod-

uli. Indeed, it turns out that this is nothing else than the equation defining a rank

1 attractor which is well known from black hole physics. Eq. (2.47) can, for exam-

ple, be explicitly solved in the large complex structure limit as has been shown by

Shmakova in ref. [48] (see also ref. [49]). These critical points are stable since the

only non-vanishing entries of the Hessian matrix are

∂ī∂jV = 2eKgīj|WRR|2. (2.48)
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The scalar potential (2.45) has been studied before in the literature in the context of

non-supersymmetric attractors (for a partial list of references on non-supersymmetric

attractors see [50]). In particular, the critical points of the potential are the solutions

of

HRR = 2Im
[
eKcs

(
ΩW̄ − F̄ iχi

)]
, (2.49)

subjected to the constraint

ZijF̄
j + 2FiW̄ = 0 (2.50)

which can be written as

2FiW̄

∫
Ω ∧ Ω + κijkF̄

jF̄ k = 0. (2.51)

Moreover, these critical points are stable since the Hessian matrix written in terms

of 3

dΣ2 = 2eK
(
gγσZαγZβσdwαdwβ + F̄αFβdwαdwβ

)
, (2.52)

is positive definite (the stability of non-supersymmetric black hole solutions has been

analyzed in [51, 52]). In this form the critical points correspond non-supersymmetric

attractor points as described in ref. [53]. This indicates that within a non-geometric

model with h1,1 = 0 the proposal of ref. [17] leads to an interesting new class of

backgrounds in which all the complex structure moduli can be stabilized in terms of

RR fluxes only with no need of negative energy sources like orientifold planes.

Using the solution (2.47) shows that the potential at the minimum satisfies

V? > 0, (2.53)

if a 6= 0 so the external space is dS. However, before we can conclude that supersym-

3Here the indices α, β label the complex structure moduli and their complex
conjugates.
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metry is spontaneously broken by the solution (2.47) we should take into account the

dependence on the axio-dilaton arising from the overall factor eK ∼ (Imτ)−4. This

factor causes the potential to slope to zero at infinity so a supersymmetric state is

gained back at infinity and as it stands the theory has no ground state at all. Here (as

in [16]) we will simply assume that perturbative corrections to the Kähler potential

and non-perturbative corrections to the superpotential could achieve this stabilization

and lead to a metastable ground state.

In order to stabilize the axio-dilaton using perturbative fluxes the only possibility

is to use a non-vanishing HNS flux. By including RR and NS three-form fluxes

one obtains a four-dimensional superpotential which does depend non-trivially on all

moduli fields. Any geometric compactification would lead to a superpotential which

is independent of the Kähler moduli and consequently the radial modulus would

slide off to infinity. As a result even in the absence of any type of corrections moduli

stabilization may be possible within the non-geometric model by including all possible

fluxes. Moreover, in order to obtain moduli fields which are heavy enough we may

have to break supersymmetry [16]. But note that once the NS flux is non-vanishing the

scalar potential is no longer positive definite and it is not obvious that supersymmetry

breaking vacua, and in particular the phenomenologically interesting vacua leading

to a positive cosmological constant, exist. As an illustrative toy example lets consider

a non-geometric model with h2,1 = 0, i.e. a model with only one massless scalar field,

the axio-dilaton, with a Kähler potential

K = −4 log [−i(τ − τ̄)] , (2.54)

and a superpotential

W = WRR − τWNS, (2.55)



25

where WRR and WNS are constants. The condition for unbroken supersymmetry has

one solution only

τ =
1

WNSW̄NS

[
Re(W̄NSWRR) + 2iIm(W̄NSWRR)

]
. (2.56)

However, it is not difficult to see that the scalar potential is also critical if

τ =
1

WNSW̄NS

[
Re(W̄NSWRR)− i

2
Im(W̄NSWRR)

]
, (2.57)

which leads to DτW 6= 0 so that supersymmetry is broken. Moreover, the scalar

potential at the minimum is negative so that the external space is AdS. As a re-

sult supersymmetry breaking critical points of the potential do exist even though in

this case they lead to an AdS space. However, it is interesting that a single four-

dimensional chiral field with a Kähler potential of the form (2.54) avoids the no-go

theorem of ref. [54] according to which dS or Minkowski space vacua with a broken

supersymmetry are never possible in a theory with a single chiral field for any su-

perpotential if the Kähler potential is K = −n log [−i(τ − τ̄)] with 1 ≤ n ≤ 3. As

a result stable dS vacua are no longer excluded. It will be very interesting to see if

by considering a ‘realistic’ model with a non-vanishing number of complex structure

moduli fields stable critical points of the potential at which supersymmetry is broken

can be found.
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CHAPTER III

FLUX BACKGROUND IN HETEROTIC STRING*

In this chapter, we study different aspects of string theory compactifications in the

presence of background flux. Our main focus is the heterotic string compactified

to four dimensions with background NS three-form H. We start by discussing, and

mostly reviewing, flux compactifications of type IIB string theory on K3×T2 orien-

tifolds (see for example refs.[26, 55, 56]). Depending on the choice of flux the solutions

preserve an N=2,1,0 supersymmetry in four dimensions. The backgrounds solve the

equations of motion and in the supersymmetric case the spinor equations. We check

this to the leading order in α′, i.e. in the SUGRA approximation. To set up our

notation we also review the low-energy effective ‘action’ in section A.1 and derive the

equations of motion of type IIB SUGRA in section A.2. In section A.3 we present the

background which solves the equations of motion of type IIB SUGRA and check the

amount of four-dimensional supersymmetry preserved by the different backgrounds in

section A.4. Taking the type IIB background as a starting point we proceed in section

B to construct the heterotic flux background. To set up the notation we review in

section B.1 the heterotic effective action to O(α′) and in section B.2 we derive the

corresponding equations of motion. In section B.3 we present the background and

show that it solves the SUGRA equations of motion. In section C, we discuss the α′

corrected background. We start by presenting explicit results for Tr(R∧R) which are

*The results reported in this chapter are reprinted with permission from Super-
symmetry breaking, heterotic strings and fluxes, by K. Becker, C. Bertinato, Y. Chung
and G. Guo, published in Nucl. Phys. B 823 (2009) 428, Copyright 2009 by Elsevier
B.V.
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needed to solve the Bianchi identity and Einstein equation. In section C.1 we review

the proof that Tr(R∧R) is a four-form of type (2, 2) to leading order in α′, a condition

which is needed for the solvability of the Bianchi identity. In section C.3, focusing on

solutions with N=2 supersymmetry, we show how to construct the background which

solves the α′ corrected Bianchi identity and supersymmetry transformations.

A. Type IIB SUGRA background

In this section we review type IIB flux backgrounds in which the space-time metric is

a warped product of flat 4d Minkowski space and a K3×T2 orientifold (see refs.[26,

55, 56, 57, 58]). To set up the notation we start summarizing our conventions for

the type IIB SUGRA ‘action’ together with the corresponding equations of motion.

Then we summarize the solutions preserving different amounts of four-dimensional

supersymmetry. The analysis is done at the level of SUGRA, i.e. without taking

actions describing brane sources into account.

1. The action

The bosonic part of the type IIB supergravity ‘action’ in the 10d string frame is

S = SNS + SR + SCS. (3.1)

Here SNS is

SNS =
1

2κ2

∫
d10x

√−g e−2φB

[
R + 4(∂φB)2 − 1

2
|H3|2

]
, (3.2)

while the parts of the action describing the massless R-R sector fields are given by

SR = − 1

4κ2

∫
d10x

√−g

(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
, (3.3)
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SCS =
1

4κ2

∫
C4 ∧H3 ∧ F3. (3.4)

In these formulas Fn+1 = dCn, H3 = dB2 and F̃3 = F3 − C0 H3.

2. Equations of motion

The equations of motion are as follows

d ? F1 = ?F̃3 ∧H3,

d ? F̃3 = F̃5 ∧H3,

d ? F̃5 = −F3 ∧H3,

(3.5)

from the R-R fields, and

R− 4(∂φB)2 + 4∇2φB − 1

2
| H3 |2= 0,

d
(
e−2φB ? H3

)
= F1 ∧ ?F̃3 − F̃5 ∧ F̃3,

(3.6)

in the NS-NS sector. The variation of the action with respect to the metric leads to

GMN + e2φB
(
gMN∇2e−2φB −∇M∇Ne−2φB

)
= − 2κ2

√−g

δStensor

δgMN
e2φB , (3.7)

where GMN is the Einstein tensor and Stensor is the action for all the tensor fields in-

cluding the dilaton. The left hand side arises from the variation of the Einstein-Hilbert

action with the dilaton contribution arising from the non-canonically normalized cur-

vature term. Moreover, the tensor fields satisfy the Bianchi identities

dH3 = 0,

dF1 = 0,

dF̃3 = H3 ∧ F1,

dF̃5 = H3 ∧ F3.

(3.8)
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3. The SUGRA background

We are interested in a solution of the 10d equations of motion in which the space-

time contains four non-compact dimensions and six compact dimension. We require

maximal symmetry in the non-compact dimensions which means all tensor fields

except F5 have components along the internal directions only, while F5 is required to

take the form

F̃5 = (1 + ?)dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3, (3.9)

where x, y denote the 4d and 6d coordinates respectively. Moreover, we would like

to consider a background which arises as the orientifold limit of a flux background of

M-theory compactified on K3×K3. In this case the RR axion vanishes and the type

IIB dilaton φB is constant. The space-time metric is of the form

ds2 = e2A(y)+φB/2ηµνdxµdxν + e−2A(y)+φB/2
(
gijdyidyj + dw2

1 + dw2
2

)
, (3.10)

where gij is the metric of K3 and the factor involving the dilaton arises since this is

the metric in the 10d string frame and e−2A(y) is the warp factor depending on the

coordinates of the internal space only. The function α in (3.9) is related to the warp

factor according to

α(y) = e4A(y). (3.11)

The complex three-form G3 = F̃3 − ie−φBH3 is imaginary self-dual in the internal

dimensions, i.e.

?G3 = iG3. (3.12)

Moreover, the warp factor satisfies the Poisson equation

∇2e−4A(y) + e−φB|H3|2 = 0. (3.13)
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Away from the orientifold points this is a solution of the equations of motion as can

be explicitly verified.

Note that the three-form tensor fields H3 and F̃3 are harmonic forms on the

internal part of the space (3.10). It turns out that the Hodge numbers of K3 are

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

=

1

0 0

1 20 1

0 0

1

(3.14)

and in particular there are no harmonic one-forms or three-forms on K3. As a result

H3 and F̃3 have to be the product of harmonic two-forms on K3, which we will denote

by (h3)i and (f̃3)i and a one-form in the fiber directions, dwi, i.e.

H3 = (h3)i ∧ dwi and F̃3 = (f̃3)i ∧ dwi, i = 1, 2, (3.15)

where wi ∼ wi + 1 and

(f̃3)i, (h3)i ∈ H2(K3, ZZ). (3.16)

Moreover, the condition that G3 is imaginary self-dual requires the complex three-

form to be

G3 = g+ ∧ dw̄ + g− ∧ dw, (3.17)

where

dw = dw1 + idw2, (3.18)

and g± can be expanded in (anti)-self dual harmonic two-forms on K3

g+ ∈ H2,0(K3)⊕H0,2(K3)⊕H1,1
+ (K3) and g− ∈ H1,1

− (K3). (3.19)
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There are 3 self-dual two-forms and 19 anti-self dual two-forms which are of type

(1, 1) and primitive. In the following we will see that the different solutions of the

equations of motion preserve different amounts of supersymmetry. In particular, the

amount of unbroken supersymmetry will depend on the choices of two-forms on K3.

4. Supersymmetry

Let us represent the dilatino and gravitino fields by Weyl spinors λ and Ψµ, re-

spectively. Similarly, the infinitesimal supersymmetry parameter is represented by a

Weyl spinor ε. The supersymmetry transformations of the fermi fields of type IIB

supergravity (to leading order in fermi fields) are

δλ =
1

2

(
∂/φB − ieφB∂/C0

)
ε +

1

4

(
ieφBF̃3/ −H3/

)
ε?, (3.20)

and

δΨM =

(
∇M +

i

8
eφBF1/ ΓM +

i

16
eφBF̃5/ ΓM

)
ε−1

8

(
2(H3)M/ + ieφBF̃3/ ΓM

)
ε?. (3.21)

Upon reducing to 4d the Lorentz algebra decomposes according to

SO(9, 1) → SO(3, 1)× SO(6). (3.22)

The Weyl spinor ε then decomposes as

16 → (2,4) + (2′,4′). (3.23)

Under the further decomposition SO(6) → SO(4)× SO(2)

4 → (2,1) + (2′,1′)

4′ → (2,1′) + (2′,1)

(3.24)
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The holonomy of K3 is SU(2) and under the reduction SO(4) → SU(2)

2 → 1 + 1

2′ → 2.

(3.25)

This means that either 4 or 4′ of SO(6) gives rise to two SU(2) singlets leading

to an N=4 supersymmetry in 4d. Next we analyze the constraints imposed by the

orientifold projection ZZ2 = Ω(−1)FLI. Writing ε = ε1 + iε2 the different parity

transformations act according to

ε = ε1 + iε2
Ω−→ ε2 + iε1

(−1)FL−−−−→ −ε2 + iε1
I−→ iΓ?(−ε2 + iε1), (3.26)

where Γ? is the chirality operator of SO(2). Combining these operations and requiring

the spinor to be left invariant by the orientifold action imposes

ε = −Γ?ε. (3.27)

Before we proceed, lets determine how the spinor projection relates to the one in the

type I string. After two T-dualities on torus, the left moving spinor ε1 is unaffected,

however the right moving spinor ε2, transforms as

ε2 → Γ8Γ9ε2, (3.28)

from which we get the transformation of Eq.(3.27),

(1 + Γ?)(ε1 − ε2) = 0 (3.29)

Because the gamma matrix Γ? is pure imaginary in our representation, this condition

leads to ε1 = ε2, the spinor that survives the world sheet projection of type IIB string,

i.e. type I string. This is an alternative way to see how type I string emerges after

performing T-dualities of type IIB orientifold.
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Eqn.(3.27) means that spinor has a definite chirality on the torus, which we

choose to be 1 in eqn. (3.24), while 1′ is projected out. As a result the SU(2) singlets

which are not projected out by the orientifold arise from the 4 in eqn. (3.24). The

orientifold breaks the 4d supersymmetry from N=4 to N=2. Moreover, the two 4d

spinors are in the 2 of SO(3, 1) so have the same chirality. We denote the resulting

spinors by ηi, and by an SO(4) transformation we can choose them to satisfy

Γiη1 = Γwη1 = 0 and Γīη2 = Γwη2 = 0, (3.30)

where (yi, y ī) and (w, w̄) are complex coordinates on K3 and the torus respectively.

Using these supersymmetry transformations the unbroken supersymmetries are

those that satisfy δ(fermi) = 0. Evaluated in the background metric (3.10), using the

relation between the warp factor A(y) and α(y) and the fact that the spinors have

definite 4d chirality the supersymmetry conditions become

∇i

(
e−A/2ε

)
= 0, (3.31)

which is satisfied with a spinor proportional to the covariantly constant spinors on

K3×T2 and

Gmε? = 0 and Gε = 0. (3.32)

Next we solve the constraints (3.32) and we will check that depending on the choice

of flux different amounts of supersymmetry are preserved. Lets analyze the amount

of unbroken supersymmetry

. if G = g− ∧ dw, then

Gwij̄Γ
ij̄η?

k = Giwj̄Γ
wj̄η?

k = Gj̄iwΓiwη?
k = Gwij̄Γ

wij̄ηk = 0, (3.33)

for k = 1, 2. This is solved by requiring G to be primitive with respect to the
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base, i.e.

Gwij̄g
ij̄ = 0, (3.34)

while both spinors ηk for k = 1, 2 are non-vanishing. Since g− are expanded in

a basis of anti-self dual (1,1) forms eqn. (3.34) is always satisfied. This leads

to an N=2 supersymmetry in 4d.

. if G = g2,0
+ ∧ dw̄, eqn. (3.32) requires

Gw̄ijΓ
ijη?

2 = 0, (3.35)

which is solved by η2 = 0, while the conditions on η1 are

Gw̄ijΓ
ijη?

1 = Giw̄jΓ
w̄jη?

1 = Gijw̄Γijw̄η1. (3.36)

These conditions are always satisfied which implies that the 4d supersymmetry

arising from η1 is unbroken. This flux configuration leads to an N=1 supersym-

metry in 4d.

. if G = g0,2
+ ∧ dw̄, eqn. (3.32) requires

Gw̄īj̄Γ
īj̄η?

k = Gīw̄j̄Γ
w̄j̄η?

k = Gj̄īw̄Γīw̄η?
k = Gw̄īj̄Γ

w̄īj̄ηk = 0, (3.37)

for k = 1, 2. These conditions are solved by requiring η1 = 0 while η2 6= 0

and as a result there is an N=1’ unbroken supersymmetry in 4d. We label

this supersymmetry with N=1’ since it preserves a different subgroup of the

supersymmetry than the Gw̄ij component.

. if G = g1,1
+ ∧ dw̄, eqn. (3.32) requires η1 = η2 = 0 and supersymmetry is

completely broken.
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B. Heterotic SUGRA background

In this section we analyze the heterotic flux backgrounds. To set up the notation we

review the heterotic low-energy effective action to O(α′2) in section 3.1. In section

3.2 we summarize the equations of motion. In section 3.3 we present the backgrounds

solving the SUGRA equations to leading order in α′. In section 3.4 we analyze

the amount of unbroken four-dimensional supersymmetry. This section is confined

to solutions solving the SUGRA equations to leading order in α′ and the corrected

background is discussed in section 4.

1. The action

The bosonic part of the heterotic supergravity action to O(α′2) in the 10d string frame

is [29, 59, 60, 61, 62]

Shet =
1

2κ2

∫
d10x

√−ge−2φ

[
R + 4(∂φ)2 − 1

2
|H|2 − α′

4
tr(F2 −R2

+)

]
, (3.38)

where

H = dB +
α′

4
ω3, (3.39)

is the NS three-form and F = dA + A ∧ A is the gauge field strength. Moreover,

ω3 = ωL − ωYM is given in terms of the Lorentz and Yang-Mills Chern-Simons three-

forms

ωL = tr

(
Ω+ ∧ dΩ+ +

2

3
Ω+ ∧ Ω+ ∧ Ω+

)
and ωYM = tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
.

(3.40)

The contribution to the action which is quadratic in the Riemann tensor is

trR2
+ =

1

2
RMNAB(Ω+)RMNAB(Ω+), (3.41)
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while the quadratic term in F is the standard gauge field kinetic term. Note that

the Einstein-Hilbert action is formulated in terms of the spin connection while the

quadratic term in the Riemann tensor is expressed in terms of a connection involving

the NS three-form which explicitly is defined by

ΩAB
± M

= ΩAB
M ± 1

2
HAB

M . (3.42)

Also, we will follow ref. [29] according to which the action involves the Ω+ con-

nection while the supersymmetry transformations involve the Ω− connection. The

supersymmetry tranformations will be described in more detail below.

2. Equations of motion

The equations of motion arising from the action presented in the previous section are

. for the dilaton

R− 4(∇φ)2 + 4∇2φ− 1

2
|H|2 − α′

4
tr(F2 −R2

+) = 0, (3.43)

. for B
d(e−2φ ?10 H) = 0, (3.44)

. for the metric

RMN + 2∇M∇Nφ− 1

4
HMPQHN

PQ+

α′

4
[RMPQR(Ω+)RN

PQR(Ω+)−FMPFN
P ] = 0,

(3.45)

. for the Yang-Mills field

e2φd(e−2φ ?10 F) +A ∧ ?10F − ?10F ∧A+ F ∧ ?10H = 0. (3.46)
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The Bianchi identities are

dH =
α′

4
[tr(R+ ∧R+)− Tr(F ∧ F)] and dF + [A,F ] = 0. (3.47)

3. The SUGRA background

In the following, we present the background that solves the SUGRA equations of

motion to leading order in α′ (see ref.[26, 30, 31] for supersymmetric backgrounds).

As we will see non-trivial solutions of the Bianchi identity exist only for non-compact

backgrounds. This conclusion is modified once α′ corrections are taken into account.

The background metric is

ds2
het = ηµνdxµdxν + e−4A(y)gijdyidyj + Ew1Ew1 + Ew2Ew2 , (3.48)

where

Ew1 = dw1 + Biw1dyi and Ew2 = dw2 + Biw2dyi, (3.49)

and Bwk
= Biwk

dyi, for k = 1, 2 are one-forms on the base. These one-forms are

constrained by the condition that

Hw1 = dBjw1dyj and Hw2 = dBjw2dyj, (3.50)

are harmonic non-trivial two-forms on K3. Note that Ewk
have to be globally defined

since otherwise the metric is not be globally defined. As a result on the 6d space

Hwk
= dEwk

become exact even though these forms are non-trivial on K3. We will

expand Hwk
in harmonic non-trivial two-forms on K3. Depending on the choice of

flux different amounts of 4d supersymmetry will preserved as we will see in the next

section. The three-form is

H = e2φ ?6 d
(
e−2φEw1 ∧ Ew2

)
= ?bde−4A(y) − ?bHw1 ∧ Ew1 − ?bHw2 ∧ Ew2 , (3.51)
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where ?6 denotes the Hodge dual with respect to the 6d internal space and ?b denotes

the Hodge dual with respect to the unwarped base. The dilaton is given by

φ = −2A(y). (3.52)

The Yang-Mills field is assumed to be a two-form on K3 only and to satisfy the

hermitian Yang-Mills equations, i.e.

Fij̄J
ij̄ = 0 and Fij = Fīj̄ = 0. (3.53)

Here J is the Kähler form of K3. Moreover, A(y) is a scalar function depending on the

coordinates of the base only. To leading order it is required to solve the differential

equation

∇2e−4A(y)+ | Hw1 |2 + | Hw2 |2= 0. (3.54)

Next we show that this background satisfies the equations of motion to leading order

in α′. The equation of motion of B is satisfied since (3.51) implies

?10H = −e2φd
(
e−2φEw1 ∧ Ew2

) ∧ dx0123. (3.55)

The equation of motion for the metric has several components

(µ, ν), (i, j), (w1, i), (w2, i), (w1, w2). (3.56)

The (i, j) component, with two indices on K3, is satisfied assuming A(y) solves (3.54).

Moreover, it is easy to see that all other components vanish to this order in α′. Next

we consider the dilaton equation of motion. Using the metric (B.4) to compute the

scalar curvature R, the dilaton equation of motion is solved assuming A(y) solves

eqn. (3.54). On the other hand the Bianchi identity leads to

dH = − (∇2e−4A(y)+ | Hw1 |2 + | Hw2 |2
)

?b 1 = 0, (3.57)
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which again is solved after imposing eqn. (3.54). Note that eqn. (3.54) only has

non-trivial solutions if the internal space is non-compact. Below we will describe in

detail how to construct compact solutions by going beyond the leading order in α′.

4. Supersymmetry

Next let us analyze the supersymmetry of the solutions of the equation of motion.

The supersymmetry transformations leaving the 10d heterotic string frame effective

action invariant are

δΨM = ∇Mε− 1

4
HM/ ε,

δλ = /∂φhε− 1

2
H/ ε,

δχ = 2F/ ε,

where ΨM is the gravitino, λ the dilatino and χ the gaugino. All spinors are Majorana-

Weyl. The covariant derivative of a spinor is defined according to

∇Mε = ∂Mε +
1

4
ΩAB

MΓABε, (3.58)

where Ω is the spin connection. Note that the gravitino variation can then be written

in the form

δΨM = ∂Mε +
1

4
ΩAB
− M

ΓABε, (3.59)

where

ΩAB
± M

= ΩAB
M ± 1

2
HAB

M . (3.60)
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Explicitly the components of the spin connection are

Ωw1
± a

=
1

2
e2A(Hw1 ∓ ?bHw1)abe

b,

Ωw2
± a

=
1

2
e2A(Hw2 ∓ ?bHw2)abe

b,

Ωa
±b

=2 [∂aAeb − ∂bAea ∓ (?bdA)a
bce

c] + ωa
b

− 1

2
e4A(Hw1 ± ?bHw1)

a
bE

w1 − 1

2
e4A(Hw2 ± ?bHw2)

a
bE

w2 .

(3.61)

Note the sign differences between the first two components of the spin connection

and the last one. These sign differences will play a crucial role in the supersymmetry

analysis. Under the decomposition SO(9, 1) → SO(3, 1)× SO(6) a 10d Weyl spinor

decomposes as 16 → (2,4) + (2′,4′). Imposing the Majorana condition we set

ε = ζ ⊗ η + ζ? ⊗ η?, (3.62)

where ζ ⊗ η transforms as (2,4). Since the complex conjugate is not an independent

spinor each 6d Weyl spinor gives rise to one minimal 4d supersymmetry.

Lets solve the supersymmetry constraints. The gravitino condition with the index

in the external space-time is satisfied if the spinor does not depend on the coordinates

of the external space-time. Projecting onto spinors with definite 4d chirality the

supersymmetry conditions become

∇Mη − 1

4
HM/ η = 0,

/∂φη − 1

2
H/ η = 0,

F/ η = 0,

which are equations constraining the 6d spinor η. To solve this supersymmetry con-

ditions the spinor η has to satisfy

∂wi
η = 0 and ∂iη +

1

4
ωab

iγabη = 0, (3.63)
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i.e. η is a covariantly constant spinor on the base. We denote the two covariantly

constant spinors of K3 by ηk, k = 1, 2. Moreover, we require ηk to solve

(Hw1 − ?bHw1)abγ
abηk = (Hw2 − ?bHw2)abγ

abηk = 0,

(Hw1 + ?bHw1)abγ
w1aηk + (Hw2 + ?bHw2)abγ

w2aηk = 0,

(3.64)

which after introducing complex coordinates w = w1 + iw2, so that

Hw =
1

2
(Hw1 − iHw2) and Hw̄ =

1

2
(Hw1 + iHw2), (3.65)

take the form

[(1− ?b)Hw]ab γabηk = 0,

[(1− ?b)Hw̄]ab γabηk = 0,

[(1 + ?b)Hw]abγ
waηk + [(1 + ?b)Hw̄]abγ

w̄aηk = 0.

(3.66)

Note that the contributions involving the warp factor arising from the spin connection

components Ωab
± c

and contributing to the component of the gravitino variation along

the base cancel since the two spinors ηk have positive chirality on the base i.e.

−γ1234ηk = ηk k = 1, 2. (3.67)

Now depending on the choice of flux different amounts of supersymmetry are preserved

[31]. The different cases are

. if Hw is proportional to an anti-self dual (1,1) form on the K3 base, the condi-

tions (B.18) are satisfied for both spinors ηk, k = 1, 2. An N=2 supersymmetry

is preserved in 4d. Indeed, the third condition is trivially satisfied and the first

two conditions are satisfied since the anti-self dual (1,1) forms are primitive

with respect to the base.

. if Hw is proportional to the self-dual (0,2) form on the base the supersymme-
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try generated by η1 is preserved while η2 = 0. There is an N=1 unbroken

supersymmetry in 4d.

. if Hw is proportional to the self-dual (2,0) form on the base the supersymme-

try generated by η2 is unbroken while η1 = 0. There is an N=1’ unbroken

supersymmetry in 4d.

. if Hw is proportional to the self-dual (1,1) form on the base (B.18) requires the

two spinors to vanish. So N=0 in 4d.

C. The α′ corrected torsional heterotic geometry

In this section we will consider α′ corrections to the torsional heterotic geometries. We

will see that these α′ corrections to the background are required since otherwise the

α′ corrected equations of motion are not satisfied. Once the background is corrected

in α′ compact solutions become possible. As a first step to solve the Bianchi identity

we need to compute tr(R+∧R+), which appears on the right hand side of the Bianchi

identity.

1. tr(R+ ∧R+)

In general, the curvature two-form is defined by

RA
B = dΩA

B + ΩA
C ∧ ΩC

B, (3.68)

for some connection Ω. According to Bergshoeff and de Roo [29] the connection

used in the supersymmtry transformations is Ω− while in the Bianchi identity the Ω+
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connection is used. The connection coefficients are

Ωwk
+ a =

1

2
e2A(Hwk

− ?bHwk
)ije

i
adyj, k = 1, 2

Ωa
+b

=σa
b + ωa

b − 1

2
(Hwk

+ ?bHwk
)ijE

i
cE

j
bη

acEwk ,

(3.69)

where, the last term involves a sum over k = 1, 2. We denote with Ea the vielbeine

of the warped base while ea are those of the unwarped K3. Moreover,

σab = 2 [∂aAeb − ∂bAea − (?bdA)abce
c] . (3.70)

Note that σab is self-dual in its indices, i.e. it satisfies

σab =
1

2
εabcdσ

cd. (3.71)

We are denoting the spin connection coefficients and curvature two-form of the K3

base by ωa
b and ra

b.

Before describing in detail the results for the curvature two-form and Tr(R+∧R+),

where R+ is computed with respect to the Ω+ connection, we will first establish that

the curvature two-form of the torsional space is of type (1,1) to leading order in α′ if

computed with respect to the Ω+ connection. This implies that Tr(R+∧R+) is a (2,2)

form which is a necessary condition for the Bianchi identity to admit a non-trivial

solution. Indeed, up to terms of O(α′2) unbroken supersymmetry requires the flux

and the fundamental (1,1) form to be related according to H = i(∂ − ∂̄)J . As a

result dH = −2i∂∂̄J is a (2,2) form. This is the left hand side of the Bianchi identity.

The right hand side of the Bianchi identity is Tr(R+ ∧ R+), which is required to be

a four-form of type (2,2) since otherwise the background is over-constrained.

Here we follow the presentation of ref. [63]. By definition

ΩAB
+ M

= ΩAB
M +

1

2
HAB

M , (3.72)
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which implies that the connection in the coordinate basis is modified to

ΓJ
+IK = GJL(EA

L ∂IE
A
K + ΩAB

+ I
EA

L EB
K) = ΓJ

IK −
1

2
HIK

J . (3.73)

By definition

ΓJ
IK =

1

2
gJN (∂IgNK + ∂KgNI − ∂NgIK) . (3.74)

Supersymmetry requires H to be related to the derivative of the metric according to

HMNP̄ = −∂MgNP̄ + ∂NgMP̄ , (3.75)

and the complex conjugate. Here we have introduced complex coordinates. Using the

fact that the metric of the torsional space is hermitian eqn. (3.74) implies that the

non-vanishing connection coefficients are

ΓI
+JK = gIN̄∂JgKN̄ and ΓI

+JK̄ = gIN̄∂K̄gJN̄ − gIN̄∂N̄gJK̄ . (3.76)

So in contrast to Kähler geometry there are connection coefficients with mixed indices.

The Riemann tensor is obtained from the connection coefficients according to

RMN
K

L = ∂MΓK
NL − ∂NΓK

ML + ΓK
MRΓR

NL − ΓK
NRΓR

ML, (3.77)

and the curvature two-form is related to the Riemann tensor according to

RA
B =

1

2
RCD

A
BECED. (3.78)

Introducing complex coordinates it is not difficult to see that

R+MN
K

L = R+MN
K̄

L = R+MN
K̄

L̄ = 0. (3.79)

Moreover,

R+M̄N̄
K̄

L = gPK̄
(
gP [N̄,M̄ ]L − gL[N̄,M̄ ]P

)
= O(α′). (3.80)
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This quantity is subleading since the right hand side is the (2,2) component of dH
which is O(α′) after using the Bianchi identity. Therefore we conclude that to leading

order in α′, Tr(R+ ∧R+) is of type (2,2).

Next we present the explicit results for the curvature two-forms and Tr(R+∧R+)

and show how to solve the Bianchi identity. We will focus on solutions with N=2

supersymmetry.

2. N=2 background at O(α′)

In this case the forms Hwi
are proportional to anti-self dual (1,1) forms on the K3 base.

From (3.69) we see that the only non-vanishing components of the spin connection

are

Ωwk
+ a =e2A(Hwk

)ije
i
adyj, k = 1, 2

Ωa
+b

=σa
b + ωa

b.

(3.81)

In this case the curvature two-form computed with respect to the Ω+ connection is a

two-from on K3 explicitly given by

Rw1
w2 = −e4A(Hw1)a(Hw2)

a

Ra
wk

= −∇[e2A(Hwk
)a]− e2A(Hwk

)bσ
b
a, k = 1, 2

Ra
b = ra

b +∇σa
c + σa

cσ
c
b − e4A(Hwk

)a(Hwk
)b,

(3.82)

where ra
b is the curvature two-form of K3 and ∇ is the covariant derivative with

respect to the ωa
b connection. Explicitly

∇σa
b = dσa

b + ωa
cσ

c
b + σa

cω
c
b. (3.83)

A convenient way to compute Tr(R+∧R+) is to use the Chern-Simons formula which

relates the results for Tr(R ∧ R) computed with two connections Γ and Γ̃ according
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to

Tr(R ∧R)− Tr(R̃ ∧ R̃) = dQ(Γ, Γ̃), (3.84)

where

Q(Γ, Γ̃) = 2α ∧R− α ∧ dα− 2α ∧ Γ ∧ α +
2

3
α ∧ α ∧ α (3.85)

where α = Γ− Γ̃. Setting

Γ̃a
b = Ωa

+b
and Γ̃wk

a = Ω+
wk

a

Γa
b = Ωa

+b
and Γwk

a = 0, k = 1, 2,

(3.86)

or in other words choosing

αa
b = 0 and αwk

a = −e2A(Hwk
)ije

i
adyj, (3.87)

we obtain

Tr(R+∧R+) = Tr[R(Γ)∧R(Γ)]+2d
{
e2A(Hwk

)b∇[e2A(Hwk
)b] + e4A(Hwk

)bσ
b
c(Hwk

)c

}
,

(3.88)

where

Tr[R(Γ) ∧R(Γ)] = −(∇σa
b + ra

b + σa
cσ

c
b)(∇σb

a + rb
a + σb

cσ
c
a) (3.89)

This result can be further simplified by using the Chern-Simons formula again, this

time with

Γ̃a
b = ωa

b and Γa
b = ωa

b + σa
b. (3.90)

The result is

Tr[R(Γ)∧R(Γ)] = Tr(r∧ r)− 24d
[
2(∇2A) ? dA− ?d(∇A)2 − 8(∇A)2 ? dA

]
. (3.91)



47

A straightforward but tedious computation then shows

Tr(R+ ∧R+) =Tr(r ∧ r) + 4d ?b d
(∇2A

)
+

d ?b d
[
(∇2e−4A + |H|2)e4A

]
+

2d
[
(∇2e−4A + |H|2) ?b de4A

]
,

(3.92)

where

|H|2 = |Hw1|2 + |Hw2|2. (3.93)

Note that the last two lines in eqn. (3.92) involve the leading order equation of motion

(3.54). Thus we establish that for solutions preserving an N=2 supersymmetry in four

dimensions Tr(R+ ∧ R+) is a (2,2) form with components along the K3 base only.

Note that this fact is a consequence of having used the Ω+ connection to compute

Tr(R+∧R+). Since Tr(R+∧R+) has components along the base only the fiber is not

required to be of O(α′) and can be chosen to be large.

Next we will use this result and solve the Bianchi identity

dH =
α′

4
[Tr(R ∧R)− Tr(F ∧ F)] (3.94)

to O(α′). First we note that the second and third line on the right hand side of

Eq.(3.92) are proportional to the dual of dH and are therefore O(α′). As a result

they contribute to the Bianchi identity only to O(α′2). Keeping all terms up to O(α′)

the Bianchi identity becomes

d?b de−4A−?bHwk
∧Hwk

+O(α′) =
α′

4
[Tr(r∧r)−Tr(F ∧F)]+α′d?b d(∇2A). (3.95)

Here we have allowed a correction to O(α′) on the left hand side. Since the su-

persymmtry transformations receive only corrections at O(α′2) any corrections to the

left hand side of eqn.(3.95) have to solve the leading order supersymmetry conditions.

Since the supersymmtry conditions do not determine A(y) we can redefine the warp
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factor and still obtain a supersymmetric situation. In particular if we define

e−4A′ = e−4A + α′∇2A. (3.96)

and allow the background to receive an O(α′) correction according to

φ = −2A′(y),

H = ?bde−4A′(y) − ?bHw1 ∧ Ew1 − ?bHw2 ∧ Ew2

ds2
het = ηµνdxµdxν + e−4A′(y)gijdyidyj + Ew1Ew1 + Ew2Ew2

(3.97)

supersymmtry will still be preserved. To this order in α′ the Bianchi identity becomes

an equation of Laplace type, namely

d ?b de−4A − ?bHwk
∧Hwk

=
α′

4
[Tr(r ∧ r)− Tr(F ∧ F)]. (3.98)

Note that we have obtained a linear differential for the dilaton even though the Bianchi

identity could, in principle, lead to a highly non-linear differential equation. This fact

depends crucially on choosing the Ω+ connection to construct Tr(R+ ∧ R+). There

is a preferred set of fields for which this connection is required by space-time super-

symmetry as shown by Bergshoeff and de Roo [29]. A different choice of connection

is always possible but it leads to a different choice of fields for which in general the

supersymmetry transformations will receive corrections at O(α′). We have found a

differential equation of Laplace type using the Ω+ connection and the solvability of the

equation is immediate if the integrated equation is satified. Choosing the hermitian

connection, on the other hand, will lead to a highly non-linear differential equation

of Monge-Ampere type as shown in refs. [23, 24] .

In the following we will show that the α′ corrected background solves the equa-

tions of motion presented in section 3.2. First we note that the equation of motion
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of B is satisfied since in the background (3.97)

?10H = −e2φd
(
e−2φEw1 ∧ Ew2

) ∧ dx0123. (3.99)

The Bianchi identity forH is solved by construction. To solve the equations of motion

for the metric we first establish some properties of the Riemann tensor. First, the

Ricci tensor of the torsional metric is

Rij = 4∇i∂jA
′ + 8∂iA

′∂jA
′ − 1

2
e4A′HwkaiH

wka
j + gij

[
2∇2A′ − 8(∂A′)2

]
, (3.100)

where (i, j) are indices on the base and ∇i involves connections on the base only.

Note that this derivative is not identical to ∇(6)
i , which is the covariant derivative

constructed with respect to the connections on the six-dimensional torsional space.

So for example

∇(6)
i ∂jφ = ∇i∂jφ− 8∂iA

′∂jA
′ + 4gij(∂A′)2. (3.101)

Up to terms of O(α′) the curvature two-form constructed from the Ω+ connection

RA
+B

satisfies

?bR+
A

B = −R+
A

B + O(α′) (3.102)

This condition can be derived using the integrability condition of the supersymmetry

constrain on the gravitino

[∇−M ,∇−N ] ε =
1

4
R−MNPQΓPQε = 0, (3.103)

which implies

R−MNPQJPQ = 0. (3.104)

Moreover, one has

R−PQMN = R+MNPQ − 2∇[PHMNQ] = R+MNPQ + O(α′), (3.105)
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which implies

R+PQMNJPQ + O(α′) = 0. (3.106)

From here we obtain the following identity

R+mPABR+n
PAB =

1

4
R+PQABR+

PQABgmn + O(α′) (3.107)

where now (m,n) are indices on the K3 base only, while if these indices are along the

fiber the result vanishes. Also,

Tr(R+ ∧R+) = −1

2
R+PQABR+

PQAB ?b 1 + O(α′). (3.108)

Using the above result for the curvature we can now verify the equation of motion for

the metric and the dilaton. The only non-trivial component of the Einstein equation

is the (M,N) = (m,n) component with both indices along the base. All terms, except

the ones proportional to the base metric gmn cancel. The coefficient of gmn, on the

other hand, turns out to be the Hodge dual of the Bianchi identity (A), as can be

verified with a bit of patience. As a result the Einstein equation, Bianchi identity

and equation of motion for B are satisfied. Explicit computation shows that also the

dilaton equation of motion is solved.

We end by describing torsional spaces with an N=2 supersymmetry in which the

twist of the fiber is ‘exchanged’ by vacuum expectation values of abelian gauge fields.

This type of solutions were suggested in refs. [25, 64]. In this case the torus fiber is

not twisted and the background fields are

ds2 = ηµνdxµdxν + e−4A′(y)gijdyidyj + dw2
1 + dw2

2,

H = ?bde−4A′(y),

F = Fij̄dyidyj̄,

φ = −2A′(y),

(3.109)
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where now an abelian gauge field is included as part of the background and F is an

anti-self dual form on K3. This background solves the supersymmetry constraints

preserving an N=2 supersymmtry. Moreover, it is not difficult to see that the Bianchi

identity reduces to the differential equation

−∇2e−4A(y) ?b 1 =
α′

4
[Tr(r ∧ r)− Tr(F ∧ F)]

+
3α′

4
d(∇2e−4A ?b de4A)

+
α′

4
d(e4A ?b d∇2e−4A).

(3.110)

The computation of Tr(R+ ∧ R+) for these solutions is greatly simplified since the

fiber is not twisted. In this case the second and third lines on the right hand side

of eqn. (3.110) are again corrections of order O(α′2) or higher and can only be

consistently taken into account once the supersymmetry transformations are corrected

to O(α′2). Therefore to O(α′) the differential equation is again of Laplace type and

solvability is guaranteed. The form of the O(α′2) corrections to the supersymmetry

transformations has been described in ref. [29]. It would be interesting to analysis

to O(α′2) of solutions preserving an N=2 supersymmetry and show the solvability of

the Bianchi identity for backgrounds preserving an N=1 supersymmetry.
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CHAPTER IV

HIGHER DERIVATIVE D-BRANE COUPLINGS*

As we mentioned in the introduction, one needs more complete knowledge regarding

the higher derivative D-brane couplings to connect the flux backgrounds we described

in Chapter III to vacua in type IIB side at the α′ order. In this chapter, we will

compute the higher derivative D-brane couplings by using both T-duality rules and

string disc amplitude approaches. In section A, we use spacetime T-duality to argue

that there should be additional higher derivative terms to the well known anomaly

couplings at Eq.(1.2), and we will in fact use the Buscher rules to compute several

terms which must be present, eventually arriving at (4.28), which is the key result of

this section. In section B we evaluate disc amplitudes with insertions of three vertex

operators for one R-R field C(p−3) and two NS-NS fields. We will focus on the case that

both NS-NS fields are anti-symmetric B-fields, and only briefly summarize the results

for other situations. In section C, we present the supergravity diagrams that replace

the string amplitude at low energy limit. Using all known low energy effective action

of type II string, we are able to evaluate the amplitudes for most of these diagrams,

except the one with only one vertex, representing the contact interaction among one

R-R field and two B-fields on D-brane. After subtracting all known supergravity

amplitudes from the string amplitude we get the amplitude arising from the brane

*The results reported in this chapter are reprinted with permission from Higher
derivative brane couplings from T-duality, by K. Becker, G. Guo, and D. Rob-
bins, published in JHEP 1009 (2010) 029, Copyright 2010 by Springer; Disk ampli-
tudes, picture changing and space-time actions, by K. Becker, G. Guo, and D. Rob-
bins, arXiv:1106.3307; Higher derivative brane couplings from string amplitudes, by
K. Becker, G. Guo, and D. Robbins (to appear soon).
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couplings including both leading and higher derivative terms. In section D, we write

down the action that reproduce the higher derivative amplitude in section C, in terms

of either field strength H or B + 2α′F , so the action is manifestly invariant under B-

field gauge transformation. We show that the require of R-R gauge invariance impose

the corrections of our action. we also show that the modified higher derivative action

is compatible with linear T-duality. Finally, we will discuss how to fix the arbitrary

terms we left behind.

A. Predictions from T-duality

1. Buscher rules

In backgrounds which include a U(1) isometry, type II string theories appear to enjoy a

duality,called T-duality, relating one background which solves the equations of motion

to another. Pick coordinates such that the isometry corresponds to translation in one

coordinate, y, and let the remaining coordinates be labeled by indices µ, ν, etc. Then

the explicit T-duality transformations for the NS-NS fields are given by [65]

g′yy =
1

gyy

, g′µy =
Bµy

gyy

, g′µν = gµν − gµygνy −BµyBνy

gyy

,

B′
µy =

gµy

gyy

, B′
µν = Bµν − Bµygνy − gµyBνy

gyy

, Φ′ = Φ− 1

2
ln gyy, (4.1)

and for the R-R potentials we have [66]

C(p)′
µ1···µp−1y = C(p−1)

µ1···µp−1
− (p− 1)

C
(p−1)
[µ1···µp−2|y|gµp−1]y

gyy

, (4.2)

C(p)′
µ1···µp

= C(p+1)
µ1···µpy + pC

(p−1)
[µ1···µp−1

Bµp]y + p (p− 1)
C

(p−1)
[µ1···µp−2|y|Bµp−1|y|gµp]y

gyy

.

Under this duality, the type IIA and type IIB supergravity actions are mapped into

each other, and in fact the action for the NS-NS sector fields is invariant under T-
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duality.

2. Using T-duality to construct or constrain actions

Suppose that we didn’t actually know the two-derivative action for NS-NS sector

fields, but knew only that it was invariant under diffeomorphisms and B-field gauge

transformations. In this case there are four possible terms we could write down in

the Lagrangian,

f1(Φ)
√−gR, f2(Φ)

√−gH2, f3(Φ)
√−g∇2Φ, f4(Φ)

√−g (∇Φ)2 , (4.3)

where the fi are arbitrary functions of Φ. Note that one combination of these would

be a total derivative, but if we continue to work at the level of Lagrangians, we can

keep all four terms. If we also know that the Lagrangian was invariant under the

Buscher rules above, then we can actually fix the action up to an overall constant.

We would do this by assuming a background with a U(1) isometry, evaluating each of

the terms above in that situation, and demanding that the result be invariant. One

finds the invariant combination

L ⊃ N e−2Φ
√−g

(
R− 1

12
H2 + 4∇2Φ− 4 (∇Φ)2

)
, (4.4)

with N an arbitrary constant4 . If we knew the coefficient of one of the terms, like the

Einstein-Hilbert term, then the other terms are determined. In this way, T-duality

can be used to fix the form of the action.

T-duality is also a useful guide in the presence of D-branes, converting a brane

which wraps the direction of the U(1) isometry into one which is localized at a point

4One can compare this result with equation (1.10) of [67], which is obtained by
slightly different reasoning.
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in the circle direction5 . T-duality should map the actions on such dual pairs of branes

into one another. In this chapter we will be focused on the Wess-Zumino part of the

D-brane action, its higher derivative corrections, and terms related to it by T-duality.

Formally, these terms can be written as

Tp

∫

Dp

L(p+1)
WZ , (4.5)

where Tp is the tension of the D-brane and L(p+1)
WZ is a (p+1)-form on the worldvolume

of the D-brane. A naive guess for the zero-derivative piece of this action would be

L(p+1)
WZ = C(p+1), but it turns out that this is inconsistent with T-duality. Indeed, the

requirement of consistency with T-duality is equivalent to demanding (we use a prime

to indicate that the expression should be transformed by the Buscher rules (4.1) and

(4.2))

L(p+1)′
WZ µ1···µp+1

= L(p+2)
WZ µ1···µp+1y, L(p+1)′

WZ µ1···µpy = L(p)
WZ µ1···µp

, (4.6)

which is not satisfied by C(p+1) because of the non-linear pieces in the transformation

rules (4.2). Rather, we should proceed as before and write down the possible terms

which can appear, evaluate them in a circle isometry ansatz, and impose T-duality.

Doing so, we arrive at the T-duality completion of this naive term,

L(p+1)
WZ = CeB|(p+1)−form, (4.7)

where C is a formal sum of R-R potentials and

eB = 1 + B +
1

2
B ∧B + · · · . (4.8)

5In this discussion, we are referring to probe branes, not to branes or stacks of
branes that backreact on the geometry. A supergravity solution corresponding to a
stack of branes wrapping a circle isometry with backreaction taken into account is
converted, by T-duality, into a solution where a stack of lower-dimensional branes
are smeared along the circle direction. Instead, we are typically interested in only a
single brane which is localized, not smeared.
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It is not hard to see that (considered as forms in the ten-dimensional spacetime) the

expression (4.7) satisfies (4.6).

Thus, if one knew about T-duality, and knew that we expected at least a term in

the Lagrangian like
∫

Dp
C(p+1), then we could deduce that it must be part of a larger

“T-duality invariant”,
∫

Dp
CeB, where the (p + 1)-form integrand here is understood

to be pulled back to the worldvolume of the Dp-brane. Of course, if we also considered

invariance under B-field gauge transformations, then we would be lead to introduce

more terms, so that the final result was

S
(0)
WZ = Tp

∫

Dp

CeB+2πα′F , (4.9)

where F = dA is the field strength of the worldvolume gauge field which transforms

under B-field gauge transformations B → B + dΛ as A → A− Λ/(2πα′). In most of

what follows we will set the gauge field to zero, though of course the eventual task of

constructing a full non-linear action will require its inclusion, along with many other

terms that we have not written down, in order to satisfy B-field gauge invariance.

3. Higher derivative corrections

Now we turn to four-derivative terms. It is known that (up to field redefinitions),

the type II two-derivative supergravity action gets no corrections until certain eight-

derivative terms predicted from string theory appear. Thus the action receives only

(α′)3 corrections, and is uncorrected at order α′ and (α′)2. It then follows, trivially,

that the Buscher rules which we wrote down before continue to be symmetries of (the

NS-NS part of) the action to order (α′)2.

We will then assume that this observation holds also in the presence of branes,

where suddenly the idea that the Buscher rules remain uncorrected at order (α′)2

becomes a powerful tool. The worldvolume actions of D-branes, and the Wess-Zumino
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piece in particular, is known to receive four-derivative corrections at order (α′)2. If

the original Buscher rules continue to describe T-duality at this order, then they can

be used to strongly constrain these corrections to the action, since the four-derivative

parts of the action will need to be T-duality covariant by themselves. On the other

hand, if the Buscher rules were corrected to this order, then it would be much more

difficult to extract any useful information, since we would have to contend with mixing

between T-duality transformations of the zero-derivative and four-derivative parts of

the action.

It’s not completely clear that our assumption is reasonable - one could perhaps

imagine corrections to the Buscher rules which were non-vanishing only in the presence

of branes or other sources. However, for now we will proceed with this idea, and we will

find that the result we got from string amplitude approach in section D will confirm

the predictions we make here, thus justifying, to some extent, our assumptions.

Now we turn to the known α′2 corrections to the Wess-Zumino action (1.2), which

is proportional to a four-form

X
(4)
original = TrRT ∧RT − TrRN ∧RN

=
1

4

(
−geg

T gfh
T (RT )abef (RT )cdgh + δikδj` (RN) ij

ab (RN) k`
cd

)
dxa ∧ dxb ∧ dxc ∧ dxd,

(4.10)

where gT is the induced metric on the brane worldvolume, RT is the curvature tensor

built from gT , and RN is the curvature of the normal bundle. Here and throughout

this chapter we use the indices a, b, etc. to refer to the worldvolume of the D-brane,

and indices i, j, etc. to refer to the normal bundle. Our notation largely follows

that of [68]. We will use indices µ, ν, etc. for the ten-dimensional spacetime. If the

brane positions are given by Xµ(xa), then we have (gT )ab = gµν∂aX
µ∂bX

ν , and we

can pick an orthonormal frame ξµ
i for the normal bundle which satisfies gµνξ

µ
i ξν

j = δij
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and gµν∂aX
µξν

i = 0.

In order to relate the curvatures RT and RN to the ten-dimensional spacetime

curvature, we must first introduce the second fundamental form [69],

Ωi
ab = δijgµνξ

µ
j

(
∂a∂bX

ν − (ΓT )c
ab ∂cX

ν + Γν
ρσ∂aX

ρ∂bX
σ
)
. (4.11)

In this expression, Γν
ρσ and (ΓT )c

ab are the Christoffel symbols constructed from the

spacetime and worldvolume metrics respectively.

We then use the Gauss-Codazzi equations, which state

(RT )abcd = Rabcd + δij

(
Ωi

acΩ
j
bd − Ωi

adΩ
j
bc

)
,

(RN) ij
ab = −R ij

ab + gcd
T

(
Ωi

acΩ
j
bd − Ωj

acΩ
i
bd

)
. (4.12)

Here we raise and lower indices with (gT )ab or δij, as appropriate, and we pull back

indices from spacetime using either ∂aX
µ or ξµ

i , so

Rabcd = ∂aX
µ∂bX

ν∂cX
ρ∂dX

σRµνρσ, R ij
ab = δikδj`∂aX

µ∂bX
νξρ

kξ
σ
` Rµνρσ. (4.13)

We will work in a linearized approximation, which means that we expand all of

our fields around a flat background and work to leading order in the fluctuations. We

do this both to greatly simplify our calculations, and also because these are really the

only results that we can realistically compare to the disc amplitudes we compute in

section B. Fortunately, this does provide an enormous simplification since the second

fundamental form vanishes in the flat background and so must be at least first order

in fluctuations, which means that it contributes to RT and RN only at second order

in the fields or higher. Meanwhile, the spacetime curvature does have a piece which

is first order in the fluctuations,

Rµνρσ = −∂µ[ρhσ]ν + ∂ν[ρhσ]µ +O(h2), (4.14)
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where we have split the metric into background plus fluctuation, gµν = ηµν + hµν .

Thus, to leading order in the fluctuations,

(
X

(4)
original

)
abcd

= 12
(
−∂ e

[a h f
b ∂c|e|hd]f + ∂ e

[a h f
b ∂c|f |hd]e + ∂ i

[a h j
b ∂c|i|hd]j − ∂ i

[a h j
b ∂c|j|hd]i

)
+O(h3).

(4.15)

4. T-dualizing the corrections

Now we note that the action so far (to this order in α′) is not consistent with T-duality,

since

L(p+1)
WZ =

π2 (α′)2

24

(
CeB

)(p−3) ∧X
(4)
original (4.16)

does not satisfy (4.6). In order to find an action that is consistent with T-duality, we

make the following ansatz6

24

π2 (α′)2L(p+1)
a1···ap+1

=
(p + 1)!

4! (p− 3)!

(
CeB

)(p−3)

[a1···ap−3
X

(4)
ap−2ap−1apap+1]

+
(p + 1)!

3! (p− 2)!

(
CeB

)(p−1)

[a1···ap−2|i| X
(3) i
ap−1apap+1] (4.17)

+
(p + 1)!

22 (p− 1)!

(
CeB

)(p+1)

[a1···ap−1|i1i2| X
(2) i1i2
apap+1]

We assume that the objects X(n) are built out of NS-NS sector closed string fields7 .

6The normalizations here are chosen so as to make the T-duality rules in (4.19)

simple. In principle we could also include terms with X
(1) i1i2i3
a and X(0) i1i2i3i4 , which

would in turn correspond to couplings of higher degree forms C(p+3) and C(p+5) to the
D-brane. However, it turns out that these couplings do not occur in the T-duality

invariants built from X
(4)
original.

7Note that the Buscher rules always preserve the number of R-R fields which
appear in an expression, so this Wess-Zumino term does not mix under T-duality
with terms that contain no R-R fields, such as DBI, or with terms that contain more
than one R-R field.
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To impose consistency under T-duality, we must ensure that this ansatz satisfies

(4.6), which happens iff

X(4)′
a1a2a3a4

= X(4)
a1a2a3a4

, X(3)′ i
a1a2a3

= X(3) i
a1a2a3

, X(2)′ i1i2
a1a2

= X(2) i1i2
a1a2

, (4.18)

and8

X(3)′ y
a1a2a3

= X(4)
a1a2a3y, X(2)′ iy

a1a2
= X(3) i

a1a2y, (4.19)

where a prime means that we have used the Buscher rules to transform the object

in question. This ansatz and these consistency conditions should in fact hold even

beyond the linearized approximation, though at higher orders we may also have to

incorporate open string fields.

Now we would like to build an action which includes the known terms (4.10)

but which is consistent with the T-duality rules expressed above. Note that all four

of the terms in (4.15) have two of the four antisymmetrized free indices attached to

derivatives. The Buscher rules, given our assumption that they are exact to this order

in α′, will preserve this fact - any terms which can mix with these four terms under

T-duality must also have two of the antisymmetrized indices occupied by derivatives.

One immediate consequence of this is that we need not consider terms in X(n) which

are linear order in NS-NS fluctuations, since in that case all derivatives would be

hitting the same field and antisymmetrizing any two derivatives would give zero.

This is not to say that terms with only one NS-NS field will not occur (indeed they

are expected, see [71]), but simply that they cannot appear in the same T-duality

invariant as (4.15). Furthermore, applying the Buscher rules never reduces the number

8Here the T-duality transformation swaps an upper y index with a lower y index
(though of course at linearized order around a flat background this is irrelevant). This
is a frequent feature of T-duality transformations of NS-NS fields and fluxes, such as
for example so-called generalized NS-NS fluxes [70].
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of fluctuations in a term, so we see that we can restrict ourselves to terms which are

quadratic in the fluctuations and we can also restrict ourselves to the linearized version

of the Buscher rules,

h′yy = −hyy, h′µy = Bµy, B′
µy = hµy, Φ′ = Φ− 1

2
hyy, (4.20)

with hµν and Bµν left invariant.

Under these transformations, it is not hard to verify that the terms in (4.15) can

only mix with certain terms, which we can enumerate,

X(4)
a1a2a3a4

= α1∂
b

[a1
h c

a2
∂a3|b|ha4]c + α2∂

b
[a1

h c
a2

∂a3|c|ha4]b + α3∂
j

[a1
h k

a2
∂a3|j|ha4]k

+α4∂
j

[a1
h k

a2
∂a3|k|ha4]j + α5∂

b
[a1

B j
a2

∂a3|b|Ba4]j + α6∂
j

[a1
B b

a2
∂a3|j|Ba4]b,

X(3) i
a1a2a3

= β1∂
b

[a1
h c

a2
∂a3]bB

i
c + β2∂

b
[a1

h c
a2

∂a3]cB
i
b + β3∂

j
[a1

h k
a2

∂a3]jB
i
k (4.21)

+β4∂
j

[a1
h k

a2
∂a3]kB

i
j + β5∂

b
[a1

hij∂a2|b|Ba3]j + β6∂
j

[a1
hib∂a2|j|Ba3]b,

X(2) i1i2
a1a2

= γ1∂
b

[a1
h[i1|j|∂a2]bh

i2]
j + γ2∂

j
[a1

h[i1|b|∂a2]jh
i2]

b + γ3∂
b

[a1
B[i1|c|∂a2]bB

i2]
c

+γ4∂
b

[a1
B[i1|c|∂a2]cB

i2]
b + γ5∂

j
[a1

B[i1|k|∂a2]jB
i2]

k + γ6∂
j

[a1
B[i1|k|∂a2]kB

i2]
j.

From (4.15) we know that −α1 = α2 = α3 = −α4 = 12, but we would like

to use our T-duality constraints to determine the remaining fourteen constants. To

proceed, we need to evaluate the expressions above in an ansatz with a circle bundle.

For instance, suppose the circle bundle is along the brane, then we would evaluate

X(4) as

X(4)
a1a2a3a4

= X̂(4)
a1a2a3a4

+ α1∂
b̂

[a1
ha2|y|∂a3|b̂|ha4]y + α6∂

j
[a1

Ba2|y|∂a3|j|Ba4]y, (4.22)

where hatted indices are summed over all directions along the brane excluding y, and

where X̂(4) represents the expression for X(4) but with y excluded from all sums.
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Under T-duality, this expression becomes

X(4) ′
a1a2a3a4

= X̂(4)
a1a2a3a4

+ α1∂
b

[a1
Ba2|y|∂a3|b|Ba4]y + α6∂

̂
[a1

ha2|y|∂a3|̂|ha4]y. (4.23)

Meanwhile, if the circle bundle is normal to the brane we have

X(4)
a1a2a3a4

= X̂(4)
a1a2a3a4

+ α3∂
̂

[a1
ha2|y|∂a3|̂|ha4]y + α5∂

b
[a1

Ba2|y|∂a3|b|Ba4]y. (4.24)

Comparing (4.23) and (4.24) we learn that α1 = α5 and α6 = α3. Similar considera-

tions for X(3) and X(2) show that β1 = β5, β6 = β3, γ2 = γ5, and γ3 = γ1.

Next, we also compute

X(4) ′
a1a2a3y =

1

2
α1

(
∂ b

[a1
h c

a2
∂a3]bBcy − ∂ b

[a1
h|yy|∂a2|b|Ba3]y

)
+

1

2
α2∂

b
[a1

h c
a2

∂a3]cBby

+
1

2
α3∂

ĵ
[a1

h k̂
a2

∂a3]ĵBk̂y +
1

2
α4∂

ĵ
[a1

h k̂
a2

∂a3]k̂Bĵy

−1

2
α5∂

b
[a1

hĵ
y∂a2|b|Ba3]ĵ −

1

2
α6∂

ĵ
[a1

hb
y∂a2|ĵ|Ba3]b, (4.25)

and

X(3) y
a1a2a3

= −β1∂
b

[a1
h c

a2
∂a3]bBcy − β2∂

b
[a1

h c
a2

∂a3]cBby − β3∂
̂

[a1
h k̂

a2
∂a3]̂Bk̂y

−β4∂
̂

[a1
h k̂

a2
∂a3]k̂B̂y + β5

(
∂ b

[a1
h̂
|y|∂a2|b|Ba3]ĵ + ∂ b

[a1
h|yy|∂a2|b|Ba3]y

)

+β6∂
̂

[a1
hb
|y|∂a2|̂|Ba3]b, (4.26)

from which we deduce that β1 = −1
2
α1, β2 = −1

2
α2, β3 = −1

2
α3, β4 = −1

2
α4,

β5 = −1
2
α5 = −1

2
α1, and β6 = −1

2
α6 = −1

2
α3.

A comparison of X
(3) i ′
a1a2y and X

(2) iy
a1a2 then lead us also to γ1 = −1

3
β5 = −1

3
β1,

γ2 = −1
3
β6, γ3 = −1

3
β1, γ4 = −1

3
β2, γ5 = −1

3
β3, and γ6 = −1

3
β4. Note that all the
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conditions are self-consistent, and we are left with the result,

X(4)
a1a2a3a4

= 12
(
−∂ b

[a1
h c

a2
∂a3|b|ha4]c + ∂ b

[a1
h c

a2
∂a3|c|ha4]b + ∂ j

[a1
h k

a2
∂a3|j|ha4]k

−∂ j
[a1

h k
a2

∂a3|k|ha4]j − ∂ b
[a1

B j
a2

∂a3|b|Ba4]j + ∂ j
[a1

B b
a2

∂a3|j|Ba4]b

)
,

X(3) i
a1a2a3

= 6
(
∂ b

[a1
h c

a2
∂a3]bB

i
c − ∂ b

[a1
h c

a2
∂a3]cB

i
b − ∂ j

[a1
h k

a2
∂a3]jB

i
k

+∂ j
[a1

h k
a2

∂a3]kB
i
j + ∂ b

[a1
hij∂a2|b|Ba3]j − ∂ j

[a1
hib∂a2|j|Ba3]b

)
, (4.27)

X(2) i1i2
a1a2

= 2
(
−∂ b

[a1
h[i1|j|∂a2]bh

i2]
j + ∂ j

[a1
h[i1|b|∂a2]jh

i2]
b − ∂ b

[a1
B[i1|c|∂a2]bB

i2]
c

+∂ b
[a1

B[i1|c|∂a2]cB
i2]

b + ∂ j
[a1

B[i1|k|∂a2]jB
i2]

k − ∂ j
[a1

B[i1|k|∂a2]kB
i2]

j

)
.

Taking into account the factorial factors in (4.17), we see that this result can be

written in the form

SWZ ⊃ Tp
π2(α′)2

24

∫

Dp

dxa1 ∧ · · · ∧ dxap+1

{
1

2

1

(p− 3)!
C(p−3)

a1···ap−3
(−2∂ [b

ap−2
h c]

ap−1
∂apbhap+1c + 2∂ [j

ap−2
h k]

ap−1
∂apjhap+1k

−∂ b
ap−2

B j
ap−1

∂apbBap+1j + ∂ j
ap−2

B b
ap−1

∂apjBap+1b)

+
1

(p− 2)!
C

(p−1)
a1···ap−2i(2∂

[b
ap−1

h c]
ap

∂ap+1bB
i
c − 2∂ [j

ap−1
h k]

ap
∂ap+1jB

i
k

+∂ b
ap−1

hij∂apbBap+1j − ∂ j
ap−1

hib∂apjBap+1b)

+
1

2

1

(p− 1)!
C

(p+1)
a1···ap−1i1i2

(−∂ b
ap

hi1j∂ap+1bh
i2

j + ∂ j
ap

hi1b∂ap+1jh
i2

b

−2∂ b
ap

Bi1c∂ap+1[bB
i2

c] + 2∂ j
ap

Bi1k∂ap+1[jB
i2

k])

}
. (4.28)

Above action is compatible with linearized T-duality rules, but it is not invariant

under either B-field or R-R gauge transformation, even if we restore the terms that

depend on gauge field strength F . However, this does not mean action (4.28) is

wrong. There could be additional terms in X(4), which map to themselves under the

T-duality transformation, and these new terms can combine with the terms in action

action (4.28) to give an action with good property. Starting from new section, we will
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do string disc amplitude computation to obtain the additional terms to action (4.28).

B. String disc amplitude

In this section we compute the three-point function involving one RR field C(p−3)

and 2 NS-NS fields in the present of one Dp-brane. When one of the NS-NS field

is symmetric and the other NS-NS field is antisymmetric, the amplitude vanishes

because of symmetry. This also can be checked through explicit string disc amplitude

computation. When both NS-NS fields are gravitons, the disc amplitude are well

known [72, 73, 74],

LCGG = Tp
π2(α′)2

12(p− 3)!
εa1···ap+1C(p−3)

a1···ap−3

[
∂ap−2

[jhap−1

k]∂apjhap+1k−∂ap−2

[bhap−1

c]∂apbhap+1c

]

(4.29)

Here and throughout this chapter we use the indices a, b, etc. to refer to the world-

volume of the D-brane, and indices i, j, etc. to refer to the normal bundle.

What interests us most is the case that both two NS-NS fields are antisymmetric.

In this section, we will put much effort to compute the complete disc amplitude. In

the following subsection, we start with a short summary of the basic conventions we

will use throughout this chapter.
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1. Basic conventions

On the upper half-plane, the holomorphic fields have OPEs among themselves9

Xµ(z)Xν(w) ∼ −ηµν log(z − w),

ψµ(z)ψν(w) ∼ ηµν

z − w
,

φ(z)φ(w) ∼ − log(z − w),

(4.30)

with similar expressions for the antiholomorphic fields. Because of the boundary,

representing the D-brane, there are also non-trivial OPEs between holomorphic and

antiholomorphic fields,

Xµ(z)X̃ν(w̄) ∼ −Dµν log(z − w̄),

ψµ(z)ψ̃ν(w̄) ∼ Dµν

z − w̄
,

φ(z)φ̃(w̄) ∼ − log(z − w̄).

(4.31)

Here the matrix Dµν is a diagonal matrix that agrees with ηµν in directions along

the brane (Neumann boundary conditions) and with −ηµν in directions normal to

the brane (Dirichlet boundary conditions). In our previous notation, Dab = ηab,

Dij = −δij, Dai = 0. Using ηµν to raise or lower indices, then we have Dµ
ρD

ρ
ν = δµ

ν .

One can now use a convenient trick [75, 76] when computing amplitudes. One can

make the replacements

X̃µ(z̄) → Dµ
νX

ν(z̄), ψ̃(z̄) → Dµ
νψ

ν(z̄), φ̃(z̄) → φ(z̄), (4.32)

and then use only the holomorphic OPEs (4.30), but where we now regard z and z̄

as independent insertion points.

In order to construct R-R vertex operators, we will also need spin fields SA(z)

9In this section we will mostly work in units where α′ = 2, and the OPE for ψµ

differs from [12] by a sign.
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and S̃B(z̄), where A and B are spinor indices. Rather than give the individual OPEs

involving spin fields, it will suffice to quote the general fermion sector expectation

values that we will need10 ,

〈
SA(z)S̃B(z̄)ψµ1(z1) . . . ψµn(zn)

〉
=

1

2n/2

(z − z̄)n/2−5/4

√
(z1 − z)(z1 − z̄) . . . (zn − z)(zn − z̄)

×
[
(Γµn...µ1C−1MT )AB + ̂ψµ1(z1)ψµ2(z2)(Γ

µn...µ3C−1MT )AB ± . . .

+ ̂ψµ1(z1)ψµ2(z2) ̂ψµ3(z3)ψµ4(z4)(Γ
µn...µ5C−1MT )AB ± . . .

]
, (4.33)

where

̂ψµi(zi)ψµj(zj) = ηµiµj
(zi − z)(zj − z̄) + (zj − z)(zi − z̄)

(zi − zj)(z − z̄)
. (4.34)

In these expressions we use real symmetric 32 × 32 gamma matrices (Γµ) B
A which

satisfy

{Γµ, Γν} = 2ηµν , (4.35)

CAB is an antisymmetric charge conjugation matrix, and M B
A encodes the Neumann

and Dirichlet boundary conditions as they are realized on spinor indices, so that it

satisfies ΓµM = Dµ
νMΓν . It is explicitly given by

M =




± i

(p+1)!
(εv)a0···ap

Γa0 · · ·Γap , for p even,

± 1
(p+1)!

(εv)a0···ap
Γa0 · · ·ΓapΓ11, for p odd,

(4.36)

where εv is the epsilon tensor on the brane worldvolume and where

Γ11 =
1

10!
εµ0···µ9Γ

µ0 · · ·Γµ9 = Γ0 · · ·Γ9. (4.37)

We will not be attempting to compute the overall normalization of our result (as

opposed to relative phases, which will of course be crucial), so we can freely ignore

10A similar expression appears in [77], though their result restricts to fermions
on the boundary of the disc. We need the more general result shown here.
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the ±1 or ±i in the definition of M .

The tree level string amplitude (see Figure 1) is given by

Astring
CBB =< V

(− 1
2
,− 1

2
)

C (p1)V
(−1,0)
B (ε2, p2)V

(0,0)
B (ε3, p3) > (4.38)

The two vertex operators for two B-fields are not in the same picture, so the above

string amplitude don’t enjoy the manifest symmetry under the exchange of two B-

fields, and being able to write the final result symmetrically is a very useful way to

control the error. The vertex operators in above amplitude are

V
(− 1

2
,− 1

2
)

C = (CP+ /F (p−2))AB

∫
d2z1e

− 1
2
φSAeip1X(z1) : e−

1
2
φS̃Beip1DX(z̄1)

V
(−1,0)
B = (ε2D)µν

∫
d2z2e

−φψµeip2X(z2) : (∂Xν − ip2Dψψν)eip2DX(z̄2) (4.39)

V
(0,0)
B = (ε3D)µν

∫
d2z3(∂Xµ − ip3ψψµ)eip3X(z3) : (∂Xν − ip3Dψψν)eip3DX(z̄3)

One also can use the R-R vertex operator in (-3/2,-1/2) picture [77, 78]

V (−3/2,−1/2) = (CP−/C)AB

∫
d2z1e

− 3
2
φeip1XSA(z1) : e−

1
2
φeip1DX S̃B(z̄1), (4.40)

as long as the total picture charge of all three vertex operators equals to -2. Because

the whole disc amplitude is complicated and it is difficult to keep track of all terms

at once, which is especially true when we compare it with supergravity amplitude,

we want to separate the amplitude into five pieces,

Astring
CBB = Astring

1 +Astring
2 +Astring

3 +Astring
4 +Astring

5 (4.41)

according to different index structures and list these Astring
n in the following.

1. (ε2 · p)(ε3 · p) and (ε2 · ε3) terms

Sum of the terms proportional to either (ε2 · p)(ε3 · p) or (ε2 · ε3) for arbitrary
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polarization ε2 and ε3 equals to

Astring
1 =

i

2
√

2

1

(p− 2)!
εβ1β2β3β4 a1···ap−3Ca1···ap−3(p2)β1(p3)β2×[

(p2p3)(ε2Dε3)β3β4I0 − (p2Dp3)(ε2ε3)β3β4I0 + (p2Dε2)β3(p3Dε3)β4I3

−(p2Dε2)β3(p2Dε3)β4I7 + (p3Dε2)β3(p2 · ε3)β4I8

−(p2Dε2)β3(p1Nε3)β4I4 − (p3Dε2)β3(p1Nε3)β4I5

−(p2Dε2)β3(p2 · ε3)β4I6 + (p3 · ε2)β3(p1Nε3)β4I9

+(p1Nε2)β3(p1Nε3)β4I10

]
+

[
p2 ↔ p3, ε2 ↔ ε3

]
(4.42)

In this amplitude, In are integrals, whose definition and value at small momen-

tum limit can be found in the appendix A. In appendix B, we compute the

integral I10 in much detail to illuminate the method we use to evaluate all other

integrals for small momentum expansion.

2. (p · ε · p)(ε) term

The sum of the terms proportional to (p · ε · p)(ε) for arbitrary polarization ε2

and ε3 equals to

Astring
2 =

i

4
√

2

1

(p− 2)!
εβ1β2µ3µ4a1···ap−3Ca1···ap−3(p2)β1(p3)β2(ε2)µ3µ4×[

(p2ε3Dp3)I
′
6 + (p2Dε3Dp3)I

′
7 + (p2Dε3Np1)I5 − (p2 · ε3Np1)I9

+(p2ε3Dp2)(I8 − 2I0)

]
+

[
p2 ↔ p3, ε2 ↔ ε3

]
(4.43)

where I ′n = In(p2 ↔ p3).

3. (ε · p)(ε) term

Depending on weather all the polarization of R-R field potential Cp−3 is along

the brane direction or not, all terms proportional to (ε · p)(ε) for arbitrary
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polarization ε2 and ε3 can be separated into two parts:

Astring
3 =

−i

8
√

2

1

(p− 2)!
εβµ3µ4µ6a1···ap−3Ca1···ap−3(p1)β(ε2)µ3µ4×[

(p2 · p3)(p2 · ε3)µ6I2 − (p2Dp3)(p2Dε3)µ6I1 + 2(p2Dp3)(p2 · ε3)µ6I0

−2(p2 · p3)(p2Dε3)µ6I0 − (p2Dp3)(p2 · ε3)µ6I8 + (p2 · p3)(p2Dε3)µ6I8

+2(p2Dp3)(p3Dε3)µ6I
′
7 + 2(p2 · p3)(p3Dε3)µ6I

′
6

−(p3Dp3)(p2 · ε3)µ6I
′
6 − (p3Dp3)(p2Dε3)µ6I

′
7

−2(p2 · p3)(p1Nε3)µ6I9 + 2(p2Dp3)(p1Nε3)µ6I5

]

+
−i

8
√

2

1

(p− 2)!
εβµ4µ5µ6a1···ap−3Ca1···ap−3(p1)β(ε3)µ5µ6×[

(p2 · p3)(p3 · ε2)µ4I2 − (p2Dp3)(p3Dε2)µ4I1 + 2(p2Dp3)(p3 · ε2)µ4I0

−2(p2 · p3)(p3Dε2)µ4I0 − (p3Dp3)(p1Nε2)µ4I
′
4 − (p3Dp3)(p3 · ε2)µ4I

′
6

−(p3Dp3)(p3Dε2)µ4I
′
7 + (p2 · p3)(p3Dε2)µ4I8

−(p2Dp3)(p3 · ε2)µ4I8 + 2(p3Dp3)(p2Dε2)µ4I3

]

+
i

4
√

2

1

(p− 2)!
εβµ3µ4µ6a1···ap−3Ca1···ap−3(p3)βεµ3µ4 × (4.44)

[
(p1Np3)(p2 · ε3)I9 − (p1Np3)(p2Dε3)I5 + (p1Np2)(p3Dε3)I

′
4

+(p1Np2)(p2 · ε3)I9 − 2(p1Np2)(p1Nε3)I10 + (p1Np2)(p2Dε3)I5

]

+
i

4
√

2

1

(p− 2)!
εβµ4µ5µ6a1···ap−3Ca1···ap−3(p3)βεµ5µ6×[

(p1Np2)(p3 · ε2)I9 + (p1Np2)(p3Dε2)I5 + 2(p1Np3)(p1Nε2)I10

−(p1Np3)(p3Dε2)I5 + (p1Np3)(p3 · ε2)I9 − (p1Np3)(p2Dε2)I4

]

and

Astring
4 =

i

4
√

2

p− 3

(p− 2)!
εβ1β2µ3µ4µ6a2···ap−3Cia2···ap−3(p2)β1(p3)β2(ε2)µ3µ4×[

pi
3(p2 · ε3)I9 − pi

3(p2Dε3)I5 − 2pi
2(p1Nε3)I10 + pi

2(p2 · ε3)I9
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+pi
2(p2Dε3)I5 + pi

2(p3Dε3)I
′
4

]
+

[
p2 ↔ p3, ε2 ↔ ε3

]
. (4.45)

As we use asymmetric vertex operator for two B-fields, it is not unexpected

that Astring
3 appears asymmetric under the exchange of p2 ↔ p3, and ε2 ↔ ε3.

However the integrals In in above amplitudes are not independent, and they

satisfy the following identities,

(p2 · p3)I
′
6 + (p2Dp3)I

′
7 + (p1Np2)I

′
4 − (p2Dp2)I

′
3 = 0

(p3Dp3)I
′
4 − 4(p1Np3)I10 + 2(p2Dp3)I5 + 2(p2 · p3)I9 = 0 (4.46)

2(p2 · p3)I8 − (p3Dp3)I
′
7 + (p2Dp2)I7 + 2(p1Np2 − p1Np3)I5 = 0

(p3Dp3)I
′
6 − 2(p1Np3 + p1Np2)I9 + 2(p2Dp3)I8 − (p2Dp2)I6 = 0

which can be checked using our expression of these integrals at appendix A.

After using these identities, one can rewrite Astring
3 in a symmetric form,

Astring
3 =

i

8
√

2

1

(p− 2)!
εβµ3µ4µ6a1···ap−3Ca1···ap−3(p2)β(ε2)µ3µ4×[

(p2 · p3)(p2 · ε3)µ6I2 − (p2Dp3)(p2Dε3)µ6I1 + 2(p2Dp3)(p2 · ε3)µ6I0

−2(p2 · p3)(p2Dε3)µ6I0 − (p2Dp3)(p2 · ε3)µ6I8 + (p2 · p3)(p2Dε3)µ6I8

+2(p2Dp3)(p3Dε3)µ6I
′
7 + 2(p2 · p3)(p3Dε3)µ6I

′
6

−(p3Dp3)(p2 · ε3)µ6I
′
6 − (p3Dp3)(p2Dε3)µ6I

′
7

−2(p2 · p3)(p1Nε3)µ6I9 + 2(p2Dp3)(p1Nε3)µ6I5

]

+
i

8
√

2

1

(p− 2)!
εβµ4µ5µ6a1···ap−3Ca1···ap−3(p2)β(ε3)µ5µ6×[

(p2 · p3)(p3 · ε2)µ4I2 − (p2Dp3)(p3Dε2)µ4I1 + 2(p2Dp3)(p3 · ε2)µ4I0

−2(p2 · p3)(p3Dε2)µ4I0 − (p3Dp3)(p1Nε2)µ4I
′
4 − (p3Dp3)(p3 · ε2)µ4I

′
6

−(p3Dp3)(p3Dε2)µ4I
′
7 + (p2 · p3)(p3Dε2)µ4I8 − (p2Dp3)(p3 · ε2)µ4I8

+2(p3Dp3)(p2Dε2)µ4I3

]
+

[
p2 ↔ p3, ε2 ↔ ε3

]
(4.47)
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4. (ε2)(ε3) term

Sum of the terms proportional to (ε2)β1β2(ε3)β3β4 for arbitrary polarization ε2

and ε3 equals to

Astring
5 =

i

16
√

2

1

(p− 2)!
εµ3µ4µ5µ6a1···ap−3Ca1···ap−3(ε2)µ3µ4(ε3)µ5µ6×

[
2(p2Dp3)(p1Np3)I5 − 2(p2p3)(p1Np3)I9 − (p3Dp3)(p1Np2)I

′
4

]

+
i

16
√

2

p− 3

(p− 2)!
εµ3µ4µ5µ6βa2···ap−3Cia2···ap−3(ε2)µ3µ4(ε3)µ5µ6×[

pβ
1p

i
2(p3Dp3)I

′
4 + 2pβ

1p
i
3(p2 · p3)I9 − 2pβ

1p
i
3(p2Dp3)I5

−4pβ
3p

i
3(p1Np2)I10 + 4pβ

3p
i
2(p1Np3)I10

]

+
i

4
√

2

(p− 3)(p− 4)

(p− 2)!
εβ1β2µ3µ4µ5µ6a3···ap−3Cija3···ap−3(ε2)µ3µ4(ε3)µ5µ6

×(p2)β1(p3)β2p
i
3p

j
2I10 (4.48)

Because integrals In satisfy the identities,

2(p2Dp3)I5 − 2(p2 · p3)I9 + (p2Dp2)I4 − 4(p1Np2)I10 = 0 (4.49)

2(p2Dp3)(p1Np3)I5 − 2(p2p3)(p1Np3)I9 − (p3Dp3)(p1Np2)I
′
4 (4.50)

= (p2Dp3)
2I1 − (p2 · p3)

2I2 − (p2Dp2)(p3Dp3)I3

one can rewrite Astring
5 as

Astring
5 =

i

16
√

2

1

(p− 2)!
εµ3µ4µ5µ6a1···ap−3Ca1···ap−3(ε2)µ3µ4(ε3)µ5µ6×[

(p2Dp3)
2I1 − (p2 · p3)

2I2 − (p2Dp2)(p3Dp3)I3

]

+
i

16
√

2

p− 3

(p− 2)!
εµ3µ4µ5µ6βa2···ap−3Cia2···ap−3(ε2)µ3µ4(ε3)µ5µ6×[

2pβ
3p

i
2(p2Dp3)I5 + 2pβ

3p
i
2(p2 · p3)I9 − pβ

2p
i
2(p3Dp3)I

′
4
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+2pβ
2p

i
3(p2Dp3)I5 − 2pβ

2p
i
3(p2 · p3)I9 − pβ

3p
i
3(p2Dp2)I4

]

+
i

4
√

2

(p− 3)(p− 4)

(p− 2)!
εβ1β2µ3µ4µ5µ6a3···ap−3Cija3···ap−3(ε2)µ3µ4

×(ε3)µ5µ6(p2)β1(p3)β2p
i
3p

j
2I10, (4.51)

In the above expression, integrals I1, I2, I3, and I5 are symmetric, but I9 is

anti-symmetric under the exchange p2 ↔ p3, so Astring
5 is symmetric under the

exchange of two B-fields.

In the appendix D and E, we have evaluated all integrals In to α′0 order, which means

that we have expanded the string amplitude Astring
CBB to α′2 order. In the next section,

we will compute the supergravity interpretation of this string amplitude by evaluating

the corresponding Feynamn diagrams to α′2 order.

C. Supergravity interpretation

At the low energy limit, our string amplitude Astring
CBB (see Figure 1) can be substituted

by six supergravity Feynman diagrams shown in Figure 2. What really interests us

is the amplitude for Figure 2f), which represent the contact interaction among one

R-R field and two B-fields on D-brane. Once we evaluate the amplitude of first

five Feynman diagrams of the Figure 2, we can obtain the amplitude of Figure 2f)

by subtracting the amplitudes of the first five diagrams in Figure 2 from the string

amplitude.

Now the challenge is to compute the amplitude for supergravity diagrams to

order α′2. To achieve this, we first need to obtain the α′2 corrections of all vertices

that appear in these diagrams. Even though all vertices in the bulk are derived from

the 10-dimension supergravity action, which has no correction at order α′2, three

vertices on the D-brane (see Figure 3) do receive correction at this order. In the
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p-3Cp-

Dp
Dp

B2
A

B2

p-3Cp-

(a) (b) (c)

Dp

p-1C

A

A

Fig. 3. Three brane vertices with higher derivative corrections

subsection 3.1, we first compute the α′2 corrections for the vertex in Figure 3a), and

then evaluate the amplitude for Figure 2a), 2b) and 2c) to order α′2. In subsection

3.2 and 3.3, we compute the amplitude for Figure 2d) and 2e) respectively, after

obtaining the higher order correction for the vertices in Figure 3b) and 3c). Finally,

in subsection 3.4, we write down the amplitude for Figure 2f), so that the sum of the

amplitudes of all the Feynman diagrams in Figure 2 reproduces the string amplitude

Astring
CBB .

1. Amplitude for diagram 2a), 2b), and 2c)

To compute the higher order correction of the coupling in Figure 3a), we follow the

similar strategy that we want to use to compute the coupling in Figure 3f). The string

disc amplitude with insertions of one R-R and one NS-NS B-field vertex operators
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equals to

Astring
BC = < V (− 1

2
,− 1

2
)(p1)V

(−1,0)
B (p2, ε) > (4.52)

=
Tp

(p− 1)!× 2

Γ[1 + p2Dp2]Γ[1 + (p1+p2)2

2
]

Γ[1 + p2Dp2 + (p1+p2)2

2
]

εν1···νp−1µν

[
C(p−1)

ν1···νp−1

(
2

(p1 + p2)2
(p2Dε)µ(p2)ν +

2

p2Dp2

(p2Dε)µ(p2)ν − 2

(p1 + p2)2
(p1ε)µ(p2)ν

+(1 +
p2Dp2 − p1 · p2

(p1 + p2)2
)εµν

)
− (p− 1)

(p1 + p2)2
Cν1···νp−2β(p2)νp−1(Dp2)

βεµν

]

This string amplitude should be replaced by the three Feynman diagrams in Figure 4

at the low momentum limit. The supergravity amplitude for the Figure 4a) and 4b)

Dp Dp
Dp

Dp

(a) (b) (c)

A
p+1C

p-1C

B2
B2

B2

p-1C

p-1C

Fig. 4. Three supergravity Feynman diagrams that replace string amplitude Astring
BC at

low energy.

are

A
(a)
BC =

−Tp

(p− 1)!× 4
εa1···ap+1

[
2(p− 1)

(p1 + p2)2
Ca1···ap−2iεap−1app1 ap+1p

i
2 − Ca1···ap−1(

(−1 +
p2Dp2

(p1 + p2)2
)εapap+1 −

4

(p1 + p2)2
(2εapbp1 ap+1p

b
1 + εapip1 ap+1p

i
1)

)]

(4.53)
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and

A
(b)
BC =

Tp

(p− 1)!

2

p2Dp2

εa1···ap+1Ca1···ap−1εbapp1 ap+1p
b
1 (4.54)

After subtracting the supergravity amplitudes A
(a)
BC and A

(b)
BC from the string ampli-

tude Astring
BC , we obtain the supergravity amplitude A

(c)
BC for Figure 4c), and it can be

derived from following action:

LBC =
Tp

(p− 1)!× 2
εβ1β2 ν1···νp−1Bβ1β2C

(p−1)
ν1···νp−1

(4.55)

− Tp

(p− 1)!× 4

I0

π2
εβ1β2 ν1···νp−1∇a

aHβ1β2i∇iC(p−1)
ν1···νp−1

+
Tp

(p− 1)!× 2

I0

π2
εβ1β2 ν1···νp−1∇a

iHβ1β2a∇iC(p−1)
ν1···νp−1

+
Tp

(p− 2)!× 12

I0

π2
εβ1β2β3 ν2···νp−1∇ia

aHβ1β2β3C
(p−1)
i ν2···νp−1

+
Tp

(p− 1)!× 4

I0

π2
εβ1β2 ν1···νp−1∇aHβ1β2a∇µ

µC
(p−1)
ν1···νp−1

to the order α′2. This clarifies a confusion regarding the string theory amplitude

computation of the
∫

C ∧ B coupling mentioned in [72, 79]. In the above action, we

have used the notation I0 = −π4/3, and Taylor expansion

Γ[1 + p2Dp2]Γ[1 + (p1+p2)2

2
]

Γ[1 + p2Dp2 + (p1+p2)2

2
]

= 1− π2

12
(p1 + p2)

2p2Dp2 + O[α′3] (4.56)

We would like to make a few comments before we proceed:

1) The Feynamn diagrams 2a), 2b), and 2c) can be constructed from the three

diagrams of Figure 4 by adding the same C(p−1) field propagator and vertex from

|Cp−1 + H ∧ Cp−3|2 term of 10d action. So we would like to compute the total

amplitude for diagrams 2a), 2b), and 2c) by using Astring
BC directly, rather than from

the low energy effective action.

2) String amplitude is evaluated on-shell, which means it does not determine

the off-shell action, where we are not allowed to set p2
1 = 0. When we evaluate the
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amplitudes of diagrams 2a), 2b), and 2c), factor p2
1 leads to (p1 + p3)

2 which is not

zero on-shell. So to keep p2
1 or not in Eq.(4.52) will affect the amplitudes of diagrams

2a), 2b), and 2c).

3) There are also other on-shell condition like p2
2 = 0, pµ

2εµν = 0, and pµ
1C

p−1
µν2···νp−1

=

0, however these conditions do not change the amplitudes of diagrams 2a), 2b), and

2c) on-shell, so we don’t bother to discuss them here, as long as our purpose is to

reproduce Astring
CBB .

4) We will use the expression of Astring
BC in Eq.(4.52), without imposing on-shell

condition p2
1 = 0, to compute the supergravity amplitude of diagrams 2a), 2b), and

2c). This means we also should not impose this condition when we derive LBC , so we

end up with a term proportional to p2
1 in the expression of LBC . So at this moment,

we only make a consistent choice about keeping terms with p2
1 factor, and this does

not remove the ambiguity of the terms that include a factor p2
1. We will turn to this

issue later.

5) We will see that the amplitudes of diagrams 2a), 2b), and 2c) after using

Astring
BC in Eq.(4.52), have already reproduced all the terms with 1/p1 · p2, 1/p1 · p3, and

1/(p1 + p2 + p3)
2 poles in string amplitude Astring

CBB , which means the arbitrary terms

in comment 4) should not give rise to any of above poles, because only diagrams 2a),

2b), and 2c) have such poles. This will largely limit the number of arbitrary terms.

In the following, we compute the total amplitudes of three Figures 2a), 2b), and

2c) directly from Eq.(4.52), without imposing condition p2
1 = 0. After a long, but

straight forward computation we have

A(a+b+c) = A
(a+b+c)
1 + A

(a+b+c)
2 + A

(a+b+c)
3 + A

(a+b+c)
4 + A

(a+b+c)
5 (4.57)
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with

A
(a+b+c)
1 =

i

2
√

2

1

(p− 2)!
εβ1β2µ3µ5a1···ap−3Ca1···ap−3(p2)β1(p3)β2×

[
(p2Dε2)µ3(p3Dε3)µ5(I10 +

2π2

(p1 · p2)(p3Dp3)
Q3 +

2π2

(p1 · p3)(p2Dp2)
Q2)

+(p2Dε2)µ3(p2Dε3)µ5(I10 +
2π2

(p1 · p3)(p2Dp2)
Q2) + (p3Dε2)µ3(p2 · ε3)µ5I8

+(p2Dε2)µ3(p2 · ε3)µ5(I9 +
2π2

(p1 · p3)(p2Dp2)
Q2)− (p3Dε2)µ3(p1Nε3)µ5I5

−(p2Dε2)µ3(p1Nε3)µ5(2I10 +
4π2

(p1 · p3)(p2Dp2)
Q2) + (p3 · ε2)µ3(p1Nε3)µ5I9

+(p1Nε2)µ3(p1Nε3)µ5I10

]
+

[
p2 ↔ p3, ε2 ↔ ε3

]
(4.58)

A
(a+b+c)
2 =

i

4
√

2

1

(p− 2)!
εβ1β2µ3µ4a1···ap−3Ca1···ap−3(p2)β1(p3)β2×

[
(p2ε3Dp3)(I9 − 2π2

(p1 · p2)(p3Dp3)
Q3) + (p2ε3Dp2)(I8)− (p2 · ε3Np1)I9

+(p2Dε3Dp3)(−I10 − 2π2

(p1 · p2)(p3Dp3)
Q3) + (p2Dε3Np1)I5

]
(ε2)µ3µ4

+

[
p2 ↔ p3, ε2 ↔ ε3

]
(4.59)

A
(a+b+c)
3 =

i

8
√

2

1

(p− 2)!
εβµ3µ4µ6a1···ap−3Ca1···ap−3(p2)β(ε2)µ3µ4

[
(p2 · p3)(p2Dε3)µ6I8

−(p3Dp3)(p2Dε3)µ6(−I10 − 2π2

(p1 · p2)(p3Dp3)
Q3 − π4

3

p2Dp2

p3Dp3

+
π4

3
)

−(p3Dp3)(p2 · ε3)µ6(I9 − 2π2

(p1 · p2)(p3Dp3)
Q3)− (p2Dp3)(p2Dε3)µ6I10

+2(p2 · p3)(p3Dε3)µ6(I9 − 2π2

(p1 · p2)(p3Dp3)
Q3) + 2(p2Dp3)(p1Nε3)µ6I5

−2(p2Dp3)(p3Dε3)µ6(I10 +
2π2

(p1 · p2)(p3Dp3)
Q3)− 2(p2 · p3)(p1Nε3)µ6I9

+(p2 · p3)(p2 · ε3)µ6(I10 +
2π2

p2(p2 · p3)
(Q2 + Q3))− (p2Dp3)(p2 · ε3)µ6I8

]

+
i

8
√

2

1

(p− 2)!
εβµ4µ5µ6a1···ap−3Ca1···ap−3(p2)β(ε3)µ5µ6

[
(p2 · p3)(p3Dε2)µ4I8
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+(p2 · p3)(p3 · ε2)µ4I2(I10 +
2π2

p2(p2 · p3)
(Q2 + Q3))− (p2Dp3)(p3Dε2)µ4I10

−(p3Dp3)(p1Nε2)µ4(2I10 +
4π2

(p1 · p2)(p3Dp3)
Q3 +

2

3
π4p2Dp2

p3Dp3

− 2

3
π4)

−(p3Dp3)(p3 · ε2)µ4(I9 − 2π2

(p1 · p2)(p3Dp3)
Q3)− (p2Dp3)(p3 · ε2)µ4I8

−(p3Dp3)(p3Dε2)µ4(−I10 − 2π2

(p1 · p2)(p3Dp3)
Q3 − 1

3
π4p2Dp2

p3Dp3

+
1

3
π4)

+2(p3Dp3)(p2Dε2)µ4(I10 +
2π2

(p1 · p2)(p3Dp3)
Q3 +

2π2

(p1 · p3)(p2Dp2)
Q2

− 4π2

(p2Dp2)(p3Dp3)
+

π4

3

p2Dp2

p3Dp3

+
2

3
π4 p2

p3Dp3

− π4

3
)

]

+

[
p2 ↔ p3, ε2 ↔ ε3

]
(4.60)

A
(a+b+c)
4 =

i

4
√

2

p− 3

(p− 2)!
εβ1β2µ3µ4µ6a2···ap−3Cia2···ap−3(p2)β1(p3)β2(ε2)µ3µ4×[

pi
3(p2 · ε3)I9 − pi

3(p2Dε3)I5 − 2pi
2(p1Nε3)I10 + pi

2(p2 · ε3)I9 + pi
2(p2Dε3)I5

+pi
2(p3Dε3)(2I10 +

4π2

(p1 · p2)(p3Dp3)
Q3)

]

+

[
p2 ↔ p3, ε2 ↔ ε3

]
(4.61)

A
(a+b+c)
5 =

i

16
√

2

1

(p− 2)!
εµ3µ4µ5µ6a1···ap−3Ca1···ap−3(ε2)µ3µ4(ε3)µ5µ6×[

(p2Dp3)
2I10 − (p2 · p3)

2(I10 +
2π2

p2(p2 · p3)
Q3 +

2π2

p2(p2 · p3)
Q2)

−(p2Dp2)(p3Dp3)(I10 +
2π2

(p1 · p2)(p3Dp3)
Q3 +

2π2

(p1 · p3)(p2Dp2)
Q2

+
π4

3

p2Dp2

p3Dp3

+
π4

3

p3Dp3

p2Dp2

− 2π4

3
− 12π2

(p2Dp2)(p3Dp3)
+

2π4

3

p2

p2Dp2

+
2π4

3

p2

p3Dp3

+
2π4

3

p1 · p3

p3Dp3

+
2π4

3

p1 · p2

p2Dp2

+
π4

3

p2 · p3

p3Dp3

+
π4

3

p2 · p3

p2Dp2

)

]

+
i

16
√

2

p− 3

(p− 2)!
εµ3µ4µ5µ6βa2···ap−3Cia2···ap−3(ε2)µ3µ4(ε3)µ5µ6×[

2pβ
3p

i
2(p2Dp3)I5 + 2pβ

3p
i
2(p2 · p3)I9 + 2pβ

2p
i
3(p2Dp3)I5 − 2pβ

2p
i
3(p2 · p3)I9

−pβ
2p

i
2(p3Dp3)(2I10 +

4π2

(p1 · p2)(p3Dp3)
Q3 +

2

3
π4p2Dp2

p3Dp3

− 2

3
π4)
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−pβ
3p

i
3(p2Dp2)(2I10 +

4π2

(p1 · p3)(p2Dp2)
Q2 +

2

3
π4p3Dp3

p2Dp2

− 2

3
π4)

]

+
i

4
√

2

(p− 3)(p− 4)

(p− 2)!
εβ1β2µ3µ4µ5µ6a3···ap−3Cija3···ap−3(ε2)µ3µ4(ε3)µ5µ6×

(p2)β1(p3)β2p
i
3p

j
2I10, (4.62)

where Q2 and Q3 are defined in the Appendix A.

2. Amplitude for diagram 2d)

In this subsection, we first compute the α′2 correction of the brane vertex in Figure

3b). The string amplitude for a Dp-brane absorbing one R-R field and emitting two

open string gauge field equals to

Astring
CAA = < V (− 1

2
,− 1

2
)(p1)V

−1(p2, ζ2)V
0(p3, ζ3) >

=
Γ[1 + 4p2 · p3]

Γ[1 + 2p2 · p3]2
εβ1β2β3β4 ν1···νp−3Fβ1β2Fβ3β4Cν1···np−3

∼
[
1 +

2π2

3
(p2 · p3)

2

]
εβ1β2β3β4 ν1···νp−3Fβ1β2Fβ3β4Cν1···np−3 (4.63)

where p2 ·p3 = pa
2p

a
3, as only components pa

2 and pa
3 are non-vanishing. The two vertex

operators for two gauge fields are

V −1(p2, ζ2) = (ζ2)a

∫
dxe−φψae2ip2·X(x)

V 0(p3, ζ3) = (ζ3)a

∫
dx(∂Xa − 2ip3 · ψψa)e2ip3·X(x) (4.64)

At the low energy limit, the above string amplitude can be replaced by the super-

gravity diagram 3b), which means that at α′2 order we have the action

LCAA =
Tp(2α

′)2

(p− 3)!× 8
εβ1β2β3β4 ν1···νp−3Cν1···νp−3

[
Fβ1β2Fβ3β4 +

2π2

3
∇a

bFβ1β2∇b
aFβ3β4

]

(4.65)

This action also has the ambiguity that bothers LBC . For example the factor p2Dp2

is zero on-shell, but non-vanishing when we compute the amplitude of diagram 2d).
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We will handle this issue later. The supergravity amplitude of diagram 2d) equals to

A(d) =
i

2
√

2

1

(p− 2)!
εβ1β2µ3µ5a1···ap−3Ca1···ap−3(p2)β1(p3)β2×

(p2Dε2)µ3(p3Dε3)µ5

8π2

(p2Dp2)(p3Dp3)
[1 +

π2

6
(p2Dp3 + p2 · p3)

2] (4.66)

3. Amplitude for diagram 2e)

To obtain the amplitude for Feynman diagram 2e),we first need to get the correction

of the vertex 3c) at the order α′2. The disc amplitude with insertions of one R-R, one

antisymmetric NS-NS, and one open string vertex operators is

Astring
CAB = < V (− 1

2
,− 1

2
)(p1)V

−1(p2, ζ)V (0,0)(p3, ε) > (4.67)

=
i

27/2

1

(p− 3)!
εβ1β2β3β4 ν1···νp−3Cν1···νp−3

[
Fβ1β2(p3)β4(p2 · ε)β3

2π2

3
(p2 · p3)

−Fβ1β2(p3)β4(p3Dε)β3(
2

p3Dp3

Q +
4π2

3

(p2 · p3)
2

p3Dp3

+
Q

2p1 · p3

)

+Fβ1β2(p3)β4(p1 · ε)β3

Q

p1 · p3

+ εβ1β2(p3)β3ζβ4(
p2 · p3

p1 · p3

Q− 2π2

3
(p2 · p3)

2)

−εβ1β2(p3)β3(p2)β4(p3 · ζ)(
Q

p1 · p3

− 2π2

3
p2 · p3)

−Fβ1β2εβ3β4(
1

2
Q +

1

4

p3Dp3

p1 · p3

Q +
π2

3
(p2 · p3)

2)

]

− i

27/2

1

(p− 4)!
εβ1β2β3β4β5 ν2···νp−3Fβ1β2εβ3β4(p3)β5p

i
3Ci ν2···νp−3(

Q

2p1 · p3

)

where

Q =
Γ[1 + p1 · p3]Γ[1 + p3Dp3]

Γ[1 + p1 · p3 + p3Dp3]
≈ 1− π2

6
(p1 · p3)(p3Dp3) (4.68)

This string amplitude can be replaced by three supergravity Feynman diagrams in

the Figure 5. The amplitudes for supergravity diagram 5a) and 5b) are

A
(a)
CAB = − i

25/2

1

(p− 3)!
εβ1β2β3β4 ν1···νp−3Cν1···νp−3Fβ1β2(p3)β4(p3Dε)β3

(
1

p3Dp3

+
2π2

3

(p2 · p3)
2

p3Dp3

) (4.69)
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p-3Cp-

DpDpDp

p-3Cp-

B2

p-1C

B2

A

B2

p-3Cp-

(a) (b) (c)

Dp

A A

A

Fig. 5. Three supergravity Feynman diagrams that replace string amplitude Astring
CAB at

low energy

and

A
(b)
CAB =

i

27/2

1

(p− 3)!
εβ1β2β3β4 ν1···νp−3Cν1···νp−3

[
− Fβ1β2(p3)β4(p3Dε)β3(

1

2p1 · p3

)

+Fβ1β2(p3)β4(p1 · ε)β3

1

p1 · p3

+ εβ1β2(p3)β3ζβ4(
p2 · p3

p1 · p3

)

−εβ1β2(p3)β3(p2)β4(p3 · ζ)(
1

p1 · p3

)− Fβ1β2εβ3β4(
1

4

p3Dp3

p1 · p3

)

]

− i

27/2

1

(p− 4)!
εβ1β2β3β4β5 ν2···νp−3Fβ1β2εβ3β4(p3)β5p

i
3Ci ν2···νp−3(

1

2p1 · p3

)

+
i

29/2

1

(p− 3)!
εβ1β2β3β4 ν1···νp−3Cν1···νp−3Fβ1β2εβ3β4 (4.70)

After subtracting the supergravity amplitudes A
(a)
CAB and A

(b)
CAB from the string am-

plitude, we obtain the supergravity amplitude A
(c)
CAB of Feynman diagram 5c), which

can be generated by the following action:

LCAB =
2Tp

(p− 3)!× 8
εβ1β2β3β4 ν1···νp−3(B)β1β2(2α

′F )β3β4Cν1···νp−3

− 2Tp

(p− 3)!× 4
I0ε

β1β2β3β4 ν1···νp−3∇a
b(B)β1β2∇b

a(2α
′F )β3β4Cν1···νp−3

− Tp

(p− 3)!× 8
I0ε

β1β2β3β4 ν1···νp−3

[
− 2∇aHβ1β2b∇b

a(2α
′F )β3β4
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+2∇a
bHβ1β2a∇b(2α′F )β3β4 −∇a

aHβ1β2b∇b(2α′F )β3β4 (4.71)

+
2

3
∇ba

aHβ1β2β3(2α
′F )bβ4 +

4

3
∇a

bHβ1β2β3∇b(2α′F )aβ4

]
Cν1···νp−3

+
Tp

(p− 3)!× 4
I0ε

β1β2β3β4 ν1···νp−3∇a
iHβ1β2a(2α

′F )β3β4∇iCν1···νp−3

− Tp

(p− 3)!× 8
I0ε

β1β2β3β4 ν1···νp−3∇a
aHβ1β2i(2α

′F )β3β4∇iCν1···νp−3

+
Tp

(p− 4)!× 24
I0ε

β1β2β3β4β5 ν2···νp−3∇ia
aHβ1β2β3(2α

′F )β4β5Ciν2···νp−3

So the supergravity amplitude of diagram 2e) equals to

A(e) = A
(e)
1 + A

(e)
2 + A

(e)
3 + A

(e)
4 (4.72)

with

A
(e)
1 =

i

2
√

2

1

(p− 2)!
εβ1β2µ3µ5a1···ap−3Ca1···ap−3(p2)β1(p3)β2×[

− 1

3
π4(p2Dε2)µ3(p3Dε3)µ5(

p2Dp2

p3Dp3

+
p3Dp3

p2Dp2

+ 2
p1 · p3

p2Dp2

+ 2
p1 · p2

p3Dp3

)

−1

3
π4(p2Dε2)µ3(p2Dε3)µ5(

p3Dp3

p2Dp2

+ 2
p2 · p3

p2Dp2

+ 2
p2Dp3

p2Dp2

)

−1

3
π4(p2Dε2)µ3(p2 · ε3)µ5(

p3Dp3

p2Dp2

+ 2
p2 · p3

p2Dp2

+ 2
p2Dp3

p2Dp2

)

+
2

3
π4(p2Dε2)µ3(p1Nε3)µ5

p3Dp3

p2Dp2

]
+

[
p2 ↔ p3, ε2 ↔ ε3

]
(4.73)

A
(e)
2 =

i

4
√

2

1

(p− 2)!
εβ1β2µ3µ4a1···ap−3Ca1···ap−3(p2)β1(p3)β2×[

1

3
π4(p2ε3Dp3)(

p2Dp2

p3Dp3

+ 2
p2 · p3

p3Dp3

+ 2
p2Dp3

p3Dp3

) +
1

3
π4(p2Dε3Dp3)×

(
p2Dp2

p3Dp3

+ 2
p2 · p3

p3Dp3

+ 2
p2Dp3

p3Dp3

)

]
(ε2)µ3µ4 +

[
p2 ↔ p3, ε2 ↔ ε3

]
(4.74)

A
(e)
3 =

i

8
√

2

1

(p− 2)!
εβµ3µ4µ6a1···ap−3Ca1···ap−3(p2)β(ε2)µ3µ4×[

2

3
π4(p2Dp3)(p3Dε3)µ6(

p2Dp2

p3Dp3

+ 2
p2 · p3

p3Dp3

+ 2
p2Dp3

p3Dp3

)

+
2

3
π4(p2 · p3)(p3Dε3)µ6(

p2Dp2

p3Dp3

+ 2
p2 · p3

p3Dp3

+ 2
p2Dp3

p3Dp3

)

]



83

+
i

8
√

2

1

(p− 2)!
εβµ4µ5µ6a1···ap−3Ca1···ap−3(p2)β(ε3)µ5µ6×[

2(p3Dp3)(p2Dε2)µ4(
8π2

(p2Dp2)(p3Dp3)
+

2π4

3

(p2Dp3 + p2 · p3)
2

(p2Dp2)(p3Dp3)

−1

3
π4p3Dp3

p2Dp2

− 2

3
π4 p1 · p3

p2Dp2

)

]
+

[
p2 ↔ p3, ε2 ↔ ε3

]
(4.75)

A
(e)
4 =

i

4
√

2

p− 3

(p− 2)!
εβ1β2µ3µ4µ6a2···ap−3Cia2···ap−3(p2)β1(p3)β2(ε2)µ3µ4×

pi
2(p3Dε3)(−2

3
π4p2Dp2

p3Dp3

) +

[
p2 ↔ p3, ε2 ↔ ε3

]
(4.76)

4. Amplitude for diagram 2f)

After subtracting A(a+b+c), A(d), and A(e) from the string amplitude Astring
CBB , we have

the supergravity amplitude for diagram 2f)

A(f) = A
(f)
1 + A

(f)
2 + A

(f)
3 + A

(f)
4 + A

(f)
5 (4.77)

with

A
(f)
1 =

i

2
√

2

1

(p− 2)!
I0ε

β1β2µ3µ5a1···ap−3Ca1···ap−3(p2)β1(p3)β2×[
(p2p3)(ε2Dε3)µ3µ5 − (p2Dp3)(ε2ε3)µ3µ5 − 2(p2Dε2)µ3(p3Dε3)µ5

−(p2Dε2)µ3(p2Dε3)µ5 + (p2Dε2)µ3(p2 · ε3)µ5 + 2(p2Dε2)µ3(p1Nε3)µ5

]

+

[
p2 ↔ p3, ε2 ↔ ε3

]
(4.78)

A
(f)
2 =

i

4
√

2

1

(p− 2)!
I0ε

β1β2µ3µ4a1···ap−3Ca1···ap−3(p2)β1(p3)β2(ε2)µ3µ4×[
− (p2ε3Dp3) + (p2Dε3Dp3)− 2(p2ε3Dp2)

]

+

[
p2 ↔ p3, ε2 ↔ ε3

]
(4.79)
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A
(f)
3 =

i

8
√

2

1

(p− 2)!
I0ε

βµ3µ4µ6a1···ap−3Ca1···ap−3(p2)β(ε2)µ3µ4×[
− 2(p2 · p3)(p2Dε3)µ6 + 2(p2Dp3)(p2Dε3)µ6 + 2(p2Dp3)(p2 · ε3)µ6

+2(p2 · p3)(p2 · ε3)µ6 + (p2 · ε3)µ6(p2Dp2 + p3Dp3 + 4p2Dp3)

+(p3Dp3)(p2 · ε3)µ6 + (p2 · ε3)µ6(p2Dp2 + 2p2 · p3 + 2p2Dp3)

−2(p3Dp3)(p2Dε3)µ6 + 2(p2Dε3)µ6(p2Dp2 + p2 · p3 + p2Dp3)

+2(p2Dp3)(p3Dε3)µ6 − 2(p2 · p3)(p3Dε3)µ6

]

+
i

8
√

2

1

(p− 2)!
I0ε

βµ4µ5µ6a1···ap−3Ca1···ap−3(p2)β(ε3)µ5µ6×[
− 2(p2 · p3)(p3Dε2)µ4 + 2(p2Dp3)(p3Dε2)µ4 + 2(p2Dp3)(p3 · ε2)µ4

+2(p2 · p3)(p3 · ε2)µ4 + (p3 · ε2)µ4(p2Dp2 + p3Dp3 + 4p2Dp3)

+(p3Dp3)(p3 · ε2)µ4 + (p3 · ε2)µ4(p2Dp2 + 2p2 · p3 + 2p2Dp3)

−2(p3Dp3)(p3Dε2)µ4 + 2(p3Dε2)µ4(p2Dp2 + p2 · p3 + p2Dp3)

+4(p3Dp3)(p1Nε2)µ4 − 4(p1Nε2)µ4(p2Dp2)− 6(p3Dp3)(p2Dε2)µ4

+4(p2Dε2)µ4(p2Dp2 + p1 · p2 + p2)

]
+

[
p2 ↔ p3, ε2 ↔ ε3

]
(4.80)

A
(f)
4 = − i

2
√

2

p− 3

(p− 2)!
I0ε

β1β2µ3µ4µ6a2···ap−3Cia2···ap−3(p2)β1(p3)β2(ε2)µ3µ4p
i
2(p3Dε3)µ6

+

[
p2 ↔ p3, ε2 ↔ ε3

]
(4.81)

A
(f)
5 = − i√

2

1

(p− 2)!
εµ3µ4µ5µ6a1···ap−3Ca1···ap−3(ε2)µ3µ4(ε3)µ5µ6

+
i

16
√

2

1

(p− 2)!
I0ε

µ3µ4µ5µ6a1···ap−3Ca1···ap−3(ε2)µ3µ4(ε3)µ5µ6×[
4(p2Dp2)(p3Dp3)− 2(p3Dp3)

2 − 2(p2Dp2)
2 − 2(p1 · p2 + p1 · p3)(p3Dp3)

−2p2(p3Dp3)− (p2 · p3)(p3Dp3)− 2p2(p2Dp2)− 2(p1 · p3 + p1 · p2)(p2Dp2)

−(p2 · p3)(p2Dp2)− (p2 · p3)(p2Dp2 + p3Dp3)

]

+
i

4
√

2

p− 3

(p− 2)!
I0ε

µ3µ4µ5µ6βa2···ap−3Cia2···ap−3(ε2)µ3µ4(ε3)µ5µ6×
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[
pβ

2p
i
2(p3Dp3 − p2Dp2) + pβ

3p
i
3(p2Dp2 − p3Dp3)

]
(4.82)

D. Higher derivative brane couplings and their properties

1. Higher derivative couplings

It is straight forward to check that amplitude A(f) can be generated by the action,

LCBB =
Tp

(p− 3)!× 8
εβ1β2β3β4 ν1···νp−3Cν1···νp−3

[
Bβ1β2Bβ3β4 − 2

I0

π2
∇a

bBβ1β2∇b
aBβ3β4

]

− Tp

(p− 3)!× 8

I0

π2
εβ1β2β3β4 ν1···νp−3Cν1···νp−3

[
1

2
∇iHβ1β2a∇iHβ3β4

a

−1

2
∇aHβ1β2i∇aHβ3β4

i −Hβ1β2i∇iaHβ3β4a +
2

3
∇iHβ1β2β3∇aHβ4ai

−2

3
Hβ1ai∇aiHβ2β3β4 + 2∇aHβ1β2a∇bHβ3β4b − 2∇aHβ1β2b∇b

aBβ3β4

+2∇a
bHβ1β2a∇bBβ3β4 −∇a

aHβ1β2b∇bBβ3β4 +
2

3
∇ba

aHβ1β2β3Bbβ4

+
4

3
∇a

bHβ1β2β3∇bBaβ4

]
− Tp

(p− 3)!× 8

I0

π2
εβ1β2β3β4 ν1···νp−3×

[
−Hβ1β2i∇aHβ3β4a − 2∇a

iHβ1β2aBβ3β4 +∇a
aHβ1β2iBβ3β4

]
∇iCν1···νp−3

− Tp

(p− 4)!× 24

I0

π2
εβ1β2β3β4β5 ν2···νp−3∇iHβ1β2β3∇bHβ4β5bCiν2···νp−3

+
Tp

(p− 4)!× 24

I0

π2
εβ1β2β3β4β5 ν2···νp−3∇ia

aHβ1β2β3Bβ4β5Ciν2···νp−3 (4.83)

The sum of this action, with LCAB of Eq.(4.71) and LCAA of Eq.(4.65) can be written

as LCBB, after making the replacement B → B + 2α′F . So total action is manifestly

invariant under the gauge transformation of B-field. In action LCBB, we have fixed

the overall scale by fixing the coefficient of the zero derivative term. We still need to

check the R-R gauge invariance of our action L = LCB +LCBB +LCAB +LCAA, and

it turns out this action does not have the desired property. We will see this problem

can be solved after including a new term in LCB, and this new term vanishes on-shell,

so we have the “freedom” to include it (we will fix the coefficients of these term at

the last section).
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2. R-R gauge invariance

In this section we focus on the variation of action LC + L under the R-R gauge

transformations,

δCp+1 = dΛp +H ∧Λp−2, δCp−1 = dΛp−2 +H ∧Λp−4, and δCp−3 = dΛp−4

(4.84)

We also should mention

LC =
Tp

(p + 1)!
εν1···νp+1Cp+1

ν1···νp+1
(4.85)

It is easy to check that the variation of LC + L vanish for arbitrary Λp, so we only

need to focus on the Λp−2, and Λp−4, ie.

δCp+1
a1···ap+1

=
(p + 1)p(p− 1)

3!
H[a1a2a3Λ

p−2
a4···ap+1]

δCp−1
a1···ap−1

= (p− 1)∂[a1Λ
p−2
a2···ap−1] +

(p− 1)(p− 2)(p− 3)

3!
H[a1a2a3Λ

p−4
a4···ap−1]

δCp−1
i a2···ap−1

= (p− 1)∂[iΛ
p−2
a2···ap−1] +

(p− 2)(p− 3)

2
Hi[a2a3Λ

p−4
a4···ap−1]

−(p− 2)(p− 3)(p− 4)

3!
H[a2a3a4Λ

p−4
|i|a5···ap−1]

δCp−3
a1···ap−3

= (p− 3)∇[a1Λ
(p−4)
a2···ap−3]

δCp−3
i a2···ap−3

= ∇iΛ
(p−4)
a2···ap−3

− (p− 4)∇[a2Λ
(p−4)
|i|a3···ap−3] (4.86)

The gauge variation of action LBC and LCBB + LCAB + LCAA only partly cancel,

δ(L+ LC) = δ

{
Tp

(p− 1)!× 4

I0

π2
εβ1β2 ν1···νp−1∇aHβ1β2a∇µ

µC
(p−1)
ν1···νp−1

− Tp

(p− 3)!× 8

I0

π2
εβ1β2β3β4 ν1···νp−3Cν1···νp−3 × (4.87)

[
+ 2∇aHβ1β2a∇bHβ3β4b + 2∇a

bHβ1β2a∇b(B + 2α′F )β3β4
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−∇a
aHβ1β2b∇b(B + 2α′F )β3β4 +

2

3
∇ba

aHβ1β2β3(B + 2α′F )bβ4

]

+
Tp

(p− 3)!× 8

I0

π2
εβ1β2β3β4 ν1···νp−3Hβ1β2i∇aHβ3β4a∇iCν1···νp−3

− Tp

(p− 4)!× 24

I0

π2
εβ1β2β3β4β5 ν2···νp−3∇iHβ1β2β3∇bHβ4β5bCiν2···νp−3

}

The obvious way to make our action invariant for arbitrary Λp−2 is to introduce a

similar term like the first term of r.h.s of the above equation, but with an opposite

coefficient. i.e.

∆LBC = − Tp

(p− 1)!× 4

I0

π2
εβ1β2 ν1···νp−1∇aHβ1β2a∇µ

µC
(p−1)
ν1···νp−1

(4.88)

which is zero on shell, and its coefficient can not fixed by two point string amplitude

Astring
BC alone. The correction of action LBC leads to the correction of action LCBB,

∆LCBB = − Tp

(p− 3)!× 8

I0

π2
εβ1β2β3β4 ν1···νp−3∇aHβ1β2aHβ3β4i∇iCν1···νp−3

+
Tp

(p− 3)!× 8

I0

π2
εβ1β2β3β4 ν1···νp−3∇a

bHβ1β2aHβ3β4bCν1···νp−3

+
Tp

(p− 3)!× 4

I0

π2
εβ1β2β3β4 ν1···νp−3∇aHβ1β2a∇bHβ3β4bCν1···νp−3

+
Tp

(p− 4)!× 24

I0

π2
εβ1β2β3β4β5 ν2···νp−3∇aHβ1β2a∇iHβ3β4β5Ci ν2···νp−3

− Tp

(p− 3)!× 12

I0

π2
εβ1β2β3β4 ν2···νp−3∇aHβ1ba∇bHβ2β3β4Cν1···νp−3 (4.89)

It is easy to check that our corrected higher derivative action

L′BC = LBC + ∆LBC

=
Tp

(p− 1)!× 2
εβ1β2 ν1···νp−1Bβ1β2C

(p−1)
ν1···νp−1

− Tp

(p− 1)!× 4

I0

π2
εβ1β2 ν1···νp−1∇a

aHβ1β2i∇iC(p−1)
ν1···νp−1

+
Tp

(p− 1)!× 2

I0

π2
εβ1β2 ν1···νp−1∇a

iHβ1β2a∇iC(p−1)
ν1···νp−1
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+
Tp

(p− 2)!× 12

I0

π2
εβ1β2β3 ν2···νp−1∇ia

aHβ1β2β3C
(p−1)
i ν2···νp−1

(4.90)

and

L′CBB = LCBB + ∆LCBB

=
Tp

(p− 3)!× 8
εβ1β2β3β4 ν1···νp−3Cν1···νp−3

[
Bβ1β2Bβ3β4 − 2

I0

π2
∇a

bBβ1β2∇b
aBβ3β4

]

− Tp

(p− 3)!× 8

I0

π2
εβ1β2β3β4 ν1···νp−3Cν1···νp−3

[
1

2
∇iHβ1β2a∇iHβ3β4

a

−1

2
∇aHβ1β2i∇aHβ3β4

i −Hβ1β2µ∇µaHβ3β4a +
2

3
∇µHβ1β2β3∇aHβ4aµ

−2

3
Hβ1ai∇aiHβ2β3β4 − 2∇aHβ1β2b∇b

aBβ3β4 + 2∇a
bHβ1β2a∇bBβ3β4

−∇a
aHβ1β2b∇bBβ3β4 +

2

3
∇ba

aHβ1β2β3Bbβ4 +
4

3
∇a

bHβ1β2β3∇bBaβ4

]

+
Tp

(p− 3)!× 4

I0

π2
εβ1β2β3β4 ν1···νp−3∇a

iHβ1β2aBβ3β4∇iCν1···νp−3

− Tp

(p− 3)!× 8

I0

π2
εβ1β2β3β4 ν1···νp−3∇a

aHβ1β2iBβ3β4∇iCν1···νp−3

+
Tp

(p− 4)!× 24

I0

π2
εβ1β2β3β4β5 ν2···νp−3∇ia

aHβ1β2β3Bβ4β5Ciν2···νp−3 (4.91)

satisfy

δ(LC + L′) = 0 (4.92)

for arbitrary Λp−2 and Λp−4, with corrected action L′ = L′BC +L′CBB +LCAB +LCAA.

The action L′ still enjoys manifest B-field gauge invariance.

3. Linear T-duality

Formally, we can write the sum of action L′CBB and action LCGG of Eq.(4.29) as

L′CBB + LCGG = Cp−3 ∧X(4) + Cp−3
i ∧X(5)i (4.93)

Then one can read off X(4) and X
(5)
i from the action L′CBB and LCGG. Under the

linear T-duality transformation, one can prove that
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X(4)′
a1a2a3a4

= X(4)
a1a2a3a4

, and X(5)′i
a1a2a3a4a5

= X(5)i
a1a2a3a4a5

(4.94)

which implies that action L′CBB + LCGG is compatible with linearized T-duality.

E. Ambiguity terms

So far we have shown that Dp-brane action LC + L′, with 10d action, can reproduce

string amplitudes Astring, Astring
CB , Astring

CAA , and Astring
CAB . Also the action LC + L′ is

invariant under both B-field and R-R field gauge transformation, and compatible

with linearized T-duality. These results will give strong constrain to the possible

extra terms that we would miss for action L′. At this moment, there are four groups

of ambiguity terms,

1) On-shell vanishing terms for actions L′CB, LCAA and LCAB.

2) On-shell non-vanishing corrections for LCAB, because of the correction in 1)

3) On-shell non-vanishing corrections for L′CBB because of the correction 1) and

2).

4) On-shell vanishing terms for action L′CBB.

The sum of the first three groups of terms need to satisfy following conditions:

a) Give zero contribution to string amplitudes Astring
CBB , Astring

CB , Astring
CAA , and Astring

CAB

on-shell.

b) B-field and R-R gauge invariance, after combining any terms from 4).

c) Compatible with linearized T-duality, after combining any terms from 4),

which need to compatible with b).

In the following, we handle the first three groups of ambiguity terms first. If the

extra term include gauge fields, then at least one gauge field should appear in the
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combination

2α′(F2)ab + (B2)ab − 2

p2Dp2

∇cHcab. (4.95)

so that it give zero contribution to Astring
CBB . Then, the request of B-field gauge invari-

ance implies only two kinds of terms exist,

•
[
2α′(F2)ab + (B2)ab − 2

p2Dp2
∇eHeab

][
2α′(F3)cd + (B3)cd

]

•
[
2α′(F2)ab + (B2)ab − 2

p2Dp2
∇c(H(2))cab

]
H(3)

As the correction of L′BC should not introduce new poles, and should be written

in terms of field strengths H3 and F (p−2), we are left with three possible terms

• εβ1β2 ν1···νp−1∇aHaβ1β2∇µ
[µCν1···νp−1]

• εβ1β2β3 ν2···νp−1∇iHβ1β2β3∇µ
[µCi ν2···νp−1]

• εβ1β2 ν1···νp−1Hiβ1β2∇iµ
[µCν1···νp−1]

The contribution of these terms to Astring
CBB need to be canceled by the corrections of

action L′CBB, and actually the combination of corrected L′CBB and L′BC is auto-

matically invariant R-R gauge transformation. It can be checked that the corrected

L′BC is also compatible with linearized T-duality. These arbitrary terms can not be

fixed by the string amplitudes we have computed so far. It is not unexpected that

the string amplitudes, which are evaluated on-shell, do not fix the action uniquely.
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CHAPTER V

CONCLUSION

In Chapter IV, we have got α′2 corrections for the D-brane couplings, which can

reproduce string amplitudes Astring
CBB , Astring

CB , Astring
CAA , and Astring

CAB up to order α′2. The

action we obtained is invariant under B-field and R-R gauge transformation, and

compatible with linear T-duality. However, we can not fix it uniquely. So far, for the

three point function case, we only compute the string amplitude involve R-R field

with degree (p-3). It would be interesting to compute the three point function with

R-R fields Cp−1 and Cp+1. A lot work still need to be done to obtain the additional

terms for action (4.28), to make the whole action have nice property, gauge invariance

etc.

Unlike the string amplitude, which only give on-shell information, T-duality

should be correct off-shell. So we expect that the arbitrary terms, we mentioned

at the end of Chapter IV, can partly or all be fixed once we have finished the compu-

tation for the amplitudes involving R-R fields Cp−1 and Cp+1, and request the whole

action to be compatible with T-duality.

Now the α′2 correction of D-brane action should enable us to compute the equa-

tion of motion to α′2 order for type IIB string theory. It would be interesting to see

how these equation compared with the equation of motion of heterotic string theory

under the duality chain described in Chapter III.

The full collection of terms of LCGG and L′CBB should be expressed more ele-

gantly. It would be interesting if one can rewrite all 3-form flux H3 in some form of

torsion [80].
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APPENDIX A

In this appendix, we present the details of some of the computations presented in

this paper. To set up our notation we start by reviewing a few basic formulas regarding

Calabi-Yau manifolds [81]. On a Calabi-Yau three-fold, there exists a unique harmonic

(3,0) form Ω, whose first derivatives satisfy

∂Ω

∂zi
= KiΩ + χi and

∂Ω

∂z̄i
= 0 (A.1)

where χi is an harmonic (2,1) form. The Kähler potential on the complex structure

moduli space is

Kcs = − log[−i

∫
Ω ∧ Ω]. (A.2)

As is easy to check

∂iKcs = −Ki and gij̄ = ∂i∂j̄Kcs = −
∫

χi ∧ χ̄j̄∫
Ω ∧ Ω

. (A.3)

One important property of the (3,0) form Ω is that it is undefined up to multiplication

by a holomorphic function f(z)

Ω → f(z)Ω. (A.4)

Under (A.4) the Kähler potential transforms as

Kcs → Kcs − log f(z)− log f̄(z̄), (A.5)

which leaves the metric on moduli space invariant. For convenience, we can define a

gauge covariant derivative

χi = DiΩ = ∂iΩ + ∂iKcsΩ, (A.6)
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and thus under the Kähler transformation, it transforms according to DiΩ → fDiΩ,

i.e. χi → fχi. One can also generalize the definition of the covariant derivative to

other quantities which transform like

Ψ(a,b) → faf̄ bΨ(a,b) (A.7)

under the Kähler transformation. In this case the covariant derivatives take the form

DiΨ
(a,b) = (∂i + a∂iKcs)Ψ

(a,b)

Dj̄Ψ
(a,b) = (∂j̄ + b∂j̄Kcs)Ψ

(a,b). (A.8)

The partial derivatives ∂i and ∂ī are to be replaced by ordinary covariant derivatives

∇i, ∇j̄ when acting on tensors. It is easy to see that under Kähler transformations

DiΨ
(a,b) → faf̄ bDiΨ

(a,b) and Dj̄Ψ
(a,b) → faf̄ bDj̄Ψ

(a,b). (A.9)

We also require

[Di,Dj̄]Ω = −gij̄Ω, and Dkgij̄ = 0. (A.10)

Using the above formulas, we can get the results quoted in the table below

Derivatives of the basis Spans

Ω (3,0)

DiΩ = χi (2,1)

Diχj = 1∫
Ω∧Ω

κ k̄
ij χ̄k̄ (1,2)

Diχ̄j̄ = gij̄Ω (0,3)

DiΩ = 0

(A.11)

where the Yukawa couplings are defined as

κijk =

∫
Ω ∧ DiDjDkΩ. (A.12)
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The above results are the tools needed to compute the first derivative of scalar po-

tential (2.10). Because the scalar potential is invariant under Kähler transformation,

i.e. a = b = 0, we can transform the ordinary derivatives into covariant derivatives

∂IV = DIV = eK
(
ZIJ F̄ J + FIW

)
(A.13)

with the notation (2.11). To obtain an explicit expression for ∂IV = 0, we need to

compute a few quantities,

Fi = DiW =

∫

M6

G ∧ χi

Fτ = DτW = ∂τW + ∂τKW = − 1

τ − τ̄

∫

M6

G ∧ Ω

Zij = DiDjW =
κijk∫
Ω ∧ Ω

∫

M6

G ∧ χk (A.14)

Zτi = DτDiW = − 1

τ − τ̄

∫

M6

G ∧ χi

Zττ = DτDτW = ∂τFτ − Γτ
ττFτ + ∂τKFτ = 0.

As a result the critical condition ∂IV = 0 can be explicitly written as





∫
G ∧ χi

∫
G ∧ χ̄i +

∫
G ∧ Ω

∫
G ∧ Ω = 0

∫
G ∧ χ̄k

∫
G ∧ χ̄i(

κijk∫
Ω∧Ω

) +
∫

G ∧ χj

∫
G ∧ Ω +

∫
G ∧ χj

∫
G ∧ Ω = 0

(A.15)

After using the Hodge decomposition for G

G = AΩ + Aiχi + B̄ īχ̄ī + B̄Ω (A.16)

the condition (A.15) can be further written in the form





∫
G ∧ ?G = 0

(BB̄k + AĀk)
∫

Ω ∧ Ω + κijkA
iBj = 0

(A.17)
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which are Eq.(3.6) and (2.17). To derive these equations, we have used the property

that the harmonic (2,1) and (0,3) forms are imaginary self-dual, and the harmonic

(1,2) and (3,0) forms are imaginary anti-self-dual on Calabi-Yau three-fold.

Now we are going to compute the second derivative of scalar potential by noting

that

∂I∂JV = DIDJV, ∂I∂J̄V = DIDJ̄V (A.18)

at the critical point ∂IV = 0. After a little algebra, the second derivatives of the

scalar potential (2.10) are

∂I∂JV = eK
(
UIJKF̄K + 2ZIJW

)

∂I∂J̄V = eK(UJ̄IKF̄K + FIF̄J̄ + ZILZ̄J̄K̄gLK̄ + gIJ̄ |W |2), (A.19)

where UJ̄IK = DJ̄DIDKW . The above formula can be easily transformed to (2.22)

by using the identity:

[DI ,DJ̄ ]FK = −gIJ̄FK + R L
IJ̄K FL (A.20)

To get expression (2.24), we need to generalize the definition of UIJK and ZIJ to

Uαβγ = DαDβDγW and U ᾱβ̄γ̄ = Uαβγ (A.21)

and

Zαβ = DαDβW and Z ᾱβ̄ = Zαβ, (A.22)

where α, β, and γ label all coordinates, i.e. the axio-dilaton, complex structure

moduli and their complex conjugates. Using the results quoted in the table (A.11),
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we have

Uijk = DiDjDkW =

∫
G ∧ Ω∫
Ω ∧ Ω

κijk

Uijτ = DiDjDτW = −
∫

G ∧ χ̄k

∫
Ω ∧ Ω

κijk

τ − τ̄
(A.23)

Uk̄ij = − 1

(
∫

Ω ∧ Ω)2
κ m̄

ij κ̄k̄m̄n̄F
n̄

One consequence of Eq. (A.23) and Eq. (A.14) is

F̄ τUijτ = F̄ kUijk,

ZJ̄I = gIJ̄W,

ZJĪ = 0,

UKJ̄I = gIJ̄FK ,

Uττi = Uτττ = UK̄J̄I = Uαj̄τ = 0.

(A.24)

The above expressions are useful to show the equivalence of (2.24) and (A.19).



106

APPENDIX B

In this appendix we explicitly show the appearance of the two superpotentials

W =

∫
G ∧ Ω, and W̃ =

∫
G ∧ Ω, (B.1)

by dimensional reduction of ten-dimensional supergravity theories. Our convention

is ε01....9 = 1, and

?dxm0 ∧ ... ∧ dxmn =
1

(9− n)!
ε m0...mn
mn+1...m9

dxmn+1 ∧ ... ∧ dxm9 (B.2)

We take the type IIB effective action (2.1) together with the local terms are

Sloc = −
∫

R4×Σ

dp+1ξTp

√
−Ĝ + µp

∫

R4×Σ

Cp+1 (B.3)

To perform the dimensional reduction, we assume that the metric is independent of

external coordinates

ds2 = e2A(y)ηµνdxµdxν + e−2A(y)g̃mn(y)dymdyn (B.4)

The Einstein equation is

RMN = k2
10

(
TMN − 1

8
gMNT

)
with TMN = − 2√−g

δS

δgMN
, (B.5)

The non-compact components of the Einstein equation can be written as

Rµν =

[
− 1

8Imτ
|G|2 − 1

4
e−8A(∂mα)2

]
gµν + k2

10

(
T loc

µν −
1

8
T locgµν

)
(B.6)

On the other hand, using the metric (B.4), we obtain

Rµν = −e2A∇̃2Agµν (B.7)
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which yields

∇̃2A =
1

8Imτ
e−2A|G|2 +

1

4
e−10A|∂mα|2 +

1

8
k2

10e
−2A[Tm

m − T µ
µ ]loc. (B.8)

This can also be written in the form

∇̃2e4A =
1

2Imτ
e2A|G|2 + e−6A

[
(∂mα)2 + (∂me4A)2

]
+

1

2
k2

10e
2A

(
Tm

m − T µ
µ

)loc

(B.9)

To compute the equation of motion for C4 we only need to consider a few terms in

the action namely

1

8κ2
10

∫
F̃(5) ∧ ?F̃(5) − 1

8iκ2
10

∫
C(4) ∧G ∧G

Imτ
+

µp

2

∫

R4×Σ

Cp+1 (B.10)

The appearance of extra factor 1
2

is a consequence of the self-duality of the five form.

The Bianchi identity is

d ? F̃(5) = −G ∧G

2iImτ
+ 2k2

10T3ρ
loc
3 (B.11)

As F̃(5) is self-dual, we have

F̃5 = (1 + ?)dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 (B.12)

and the Bianchi identity becomes

∇̃2α =
i

12Imτ
e2AGmnp ? G

mnp
+ 2e−6A∂me4A∂mα + 2k2

10T3ρ
loc
3 (B.13)

By summing or subtracting equations (B.9)and (B.13), we get

∇̃2(e4A ± α) =
1

2Imτ
e2A|G∓ i ? G|2 + e−6A|∂mα± ∂me4A|2

+ 2k2
10e

2A

(
1

4
(Tm

m − T µ
µ )loc ± T3ρ

loc
3

)
.

(B.14)

The left hand side of the above equation vanishes when integrated over a compact
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manifold M6. As a result there are two solutions

?6 G = −iG, α = −e4A, with O3, D3

?6 G = +iG, α = +e4A, with O3, D3.

(B.15)

Notice that we can not have O3 and D3 at the same time.

Using the results above we can perform the dimensional reduction

∫
d10x

√−gR =

∫
d4x

√−g4

∫
d6y

√
g6

[−8(∇A)2e4A
]
. (B.16)

Taking into account the fact the self-duality of the five-form we get

∫
d10x

√−g
F̃ 2

(5)

4
=

∫
d4x

√−g4

∫
d6y

√
g6

e−4A

2
(∂mα)2 (B.17)

Since α = ∓e4A, this term gives the same contribution as the Einstein term

∫
d10x

√−g

(
R−

F̃ 2
(5)

4

)
=

∫
d4x

√−g4

∫
d6y

√
g6

(−(∂mα)2e4A
)

=

∫
d4x

√−g4

∫
d6y

√
g6

(
∓ (∂mα)2 ± 4∂mα∂mA

)

=

∫
d4x

√−g4

∫
d6y

√
g6

(
± 1

12iImτ
e4AGmnp ? G

mnp ∓ 2e4Aκ2
10T3ρ

loc
3

)
(B.18)

Where we have used the Bianchi identity (B.13). The second term in the last equation

of (B.18) will cancel the first term of Sloc, and the CS term cancels the second term

of Sloc. At the end, the scalar potential is

Sv =
1

2κ2
10

∫
d4x

√−g4

∫
e4A

2Imτ
G ∧ ?6(G± i ? G) (B.19)

From this expression, we can write the scalar potential in the standard form with

W̃ =

∫
G ∧ Ω, or W =

∫
G ∧ Ω (B.20)
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APPENDIX C

In this appendix, we summarize our conventions and quote some useful formulas.

We use indices

M,N, . . . µ, ν, . . . , i, j, . . . , w1, w2, (A,B, . . . α, β, . . . , a, b, . . . , w1, w2)

to denote the coordinate (non-coordinate) bases of any six-dimensional space, of four-

dimensional Minkowski space-time, of the base and of the fiber, respectively. For

coordinates on the four-dimensional base of the six-dimensional space, we use yi while

we denote the fiber coordinates by wi, i = 1, 2. We define the chirality operators

Γ(4) = −iΓ0Γ1Γ2Γ3, Γ(4′) = −Γ4Γ5Γ6Γ7, Γ? = −iΓ8Γ9 (C.1)

where Γ(4), Γ(4′), and Γ? are the chirality operators for external space, K3 base and

the T 2 fibre, from which we get

Γ(10) = Γ(4)Γ(4′)Γ? = Γ0 · · ·Γ9 (C.2)

for the 10d space. In type the IIB theory, the 10d spinor ε satisfies

Γ(10)ε = −ε (C.3)

We also choose the orientation

ε4567w1w2 = −1. (C.4)

The Riemann tensor is defined by

Rµν
A

B = ∂µΩA
Bν − ∂νΩ

A
Bµ + ΩA

CµΩC
Bν − ΩA

CνΩ
C

Bµ (C.5)
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and

trR ∧ R = RA
B ∧RA

B. (C.6)

We use the notation

Hwi
=

1

2
Hwiabe

a ∧ eb, (Hwi
)a = Hwiabe

b, Hwiab = Hwimne
m
a en

b (C.7)

and

|H|2 =
1

2
Hw1abHw1

ab +
1

2
Hw2abHw2

ab (C.8)

with ea the vielbein for unwarped K3 base. To compute the trR∧R, it is convenient

to use the following results

AijA
i
k =

1

4
AmnA

mngjk, SijS
i
k =

1

4
SmnS

mngjk

AijS
i
k = AikS

i
j, AijS

ij = 0

Aij = −1

2
εij

klAkl, Sij =
1

2
εij

klSkl

(C.9)

where Aij are the components of any anti-self-dual two form on the K3 base, and Sij

are the components of any self-dual two form on the K3 base.
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APPENDIX D

We wish to evaluate the integral

I0 =

∫ 2π

0

dθ

∫ 1

0

r1dr1

∫ 1

0

r2dr2

(
eiθ − e−iθ

)2

|r1 − r2eiθ|2 |1− r1r2eiθ|2K, (D.1)

at lowest order in momenta. The result is known (see, e.g. [73]), but for completeness

we will present our own derivation. At this order we can set K = 1, provided the

remaining integral converges. If we split the integral up into two regions, r1 ≤ r2

and r1 ≥ r2, then we can expand the factors in the denominator of the integrand as

Taylor series,

I0 =

∫ 2π

0

dθ
(
eiθ − e−iθ

)2
∞∑

m1,n1,m2,n2=0

{∫ 1

0

dr1

r1

∫ r1

0

r2dr2

(
r2

r1

)n1+n2

(r1r2)
m1+m2

+

∫ 1

0

dr2

r2

∫ r2

0

r1dr1

(
r1

r2

)n1+n2

(r1r2)
m1+m2

}
ei(n1−n2+m1−m2)θ. (D.2)

The two regions clearly give identical contributions. Let’s now rewrite the sums

using N = n1 + n2, n = (n1 − n2)/2, M = m1 + m2, and m = (m1 −m2)/2,

I0 = 2

∫ 1

0

dr1

∫ r1

0

dr2

∫ 2π

0

dθ
∞∑

N,M=0

rM−N−1
1 rM+N+1

2

N/2∑

n=−N/2

M/2∑

m=−M/2

(
eiθ − e−iθ

)2
e2i(m+n)θ.

(D.3)

Note that the angular integral will give a non-zero result if and only if M and N

have the same parity (either both even or both odd). Consider the angular integral

at fixed N and M . If N < M , then for each allowed value of n there is precisely
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one allowed m satisfying each m = −n− 1, m = −n, and m = −n + 1. Thus, when

we expand (eiθ − e−iθ)2 and perform the angular integral, the three terms precisely

cancel out. Similarly, the angular integral for N > M gives a vanishing result. This

leaves us only with the case N = M ,

I0 = 2

∫ 1

0

dr1

r1

∫ r1

0

r2dr2

∞∑
N=0

r2N
2

∫ 2π

0

dθ

N/2∑

n,m=−N/2

(
e2iθ − 2 + e−2iθ

)
e2i(m+n)θ

= 4π

∫ 1

0

dr1

r1

∫ r1

0

r2dr2

∞∑
N=0

(N − 2 (N + 1) + N) r2N
2

= −8π

∫ 1

0

dr1

∞∑
N=0

r2N+1
1

2N + 2
= −2π

∞∑
N=0

1

(N + 1)2
= −π3

3
. (D.4)
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APPENDIX E

I0 =

∫

|z2|,|z3|<1

d2z2d
2z3

(z3z̄2 − z2z̄3)
2

2 | z2 |2| z3 |2| 1− z2z̄3 |2| z2 − z3 |2K

I1 =

∫

|z2|,|z3|<1

d2z2d
2z3

|1 + z2z̄3|2
|1− z2z̄3|2|z2|2|z3|2K

I2 =

∫

|z2|,|z3|<1

d2z2d
2z3

|z2 + z3|2
|z2 − z3|2|z2|2|z3|2K

I3 =

∫

|z2|,|z3|<1

d2z2d
2z3

(1 + |z2|2)(1 + |z3|2)
(1− |z2|2)(1− |z3|2)|z2|2|z3|2K

I4 =

∫

|z2|,|z3|<1

d2z2d
2z3

2(1 + |z2|2)
|z2|2|z3|2(1− |z2|2)K

I5 =

∫

|z2|,|z3|<1

d2z2d
2z3

1− |z2|2|z3|2
|z2|2|z3|2|1− z2z̄3|2K

I6 =

∫

|z2|,|z3|<1

d2z2d
2z3

−(1 + |z2|2)(|z2|2 − |z3|2)
|z2|2|z3|2(1− |z2|2)|z2 − z3|2K

I7 =

∫

|z2|,|z3|<1

d2z2d
2z3

−(1 + |z2|2)(1− |z2|2|z3|2)
|z2|2|z3|2|1− z2z̄3|2(1− |z2|2)K

I8 =

∫

|z2|,|z3|<1

d2z2d
2z3

(|z2|2 − |z3|2)(1− |z2|2|z3|2)
|z2|2|z3|2|1− z2z̄3|2|z2 − z3|2K

I9 =

∫

|z2|,|z3|<1

d2z2d
2z3

(|z2|2 − |z3|2)
|z2|2|z3|2|z2 − z3|2K
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I10 =

∫

|z2|,|z3|<1

d2z2d
2z3

1

|z2|2|z3|2K
(E.1)

where

K = (1− z2z̄2)
p2·Dp2 (1− z3z̄3)

p3·Dp3 | z2 |2p1·p2 | z3 |2p1·p3| z2−z3 |2p2·p3| 1−z2z̄3 |2p2·Dp3 .

(E.2)

After a lengthy computation, these integrals equal to

I0 = −π4

3

I1 = I10 +
2

3
π4

I2 = I10 +
2π2

p2(p2 · p3)
Q3 +

2π2

p2(p2 · p3)
Q2 − 2

3
π4 − 1

3
π4p2Dp2 + p3Dp3 + 4p2Dp3

p2 · p3

I3 = I10 +
2π2

(p1 · p2)(p3Dp3)
Q3 +

4π2

(p2Dp2)(p3Dp3)
[1 +

π2

6
(p2Dp3 + p2 · p3)

2]

+
2π2

(p1 · p3)(p2Dp2)
Q2 − 1

3
π4[

p2Dp2

p3Dp3

+
p3Dp3

p2Dp2

+ 2
p1 · p3

p2Dp2

+ 2
p1 · p2

p3Dp3

] +
2

3
π4

I4 = 2I10 +
4π2

(p1 · p3)(p2Dp2)
Q2 − 2

3
π4p3Dp3

p2Dp2

+
2

3
π4

I5 = I10

I6 = −I9 − 2π2

(p1 · p3)(p2Dp2)
Q2 +

π4

3

p3Dp3

p2Dp2

+
2π4

3

p2 · p3

p2Dp2

+
2π4

3

p2Dp3

p2Dp2

+
1

3
π4

I7 = −I10 − 2π2

(p1 · p3)(p2Dp2)
Q2 +

π4

3

p3Dp3

p2Dp2

+
2π4

3

p2 · p3

p2Dp2

+
2π4

3

p2Dp3

p2Dp2

− 1

3
π4
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I8 = I9

I9 =
π2

p2(p1 · p3)
Q2 − π2

p2(p1 · p2)
Q3

I10 =
π2

p2(p1 · p3)
Q2 +

π2

p2(p1 · p2)
Q3

(E.3)

where we have used the notation

p2 = p1 · p2 + p1 · p3 + p2 · p3

Q2 = [1− π2

6
p2(p2Dp2)]

Q3 = [1− π2

6
p2(p3Dp3)], (E.4)

and we have only kept the terms to O(p0).
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APPENDIX F

In this appendix, we evaluate the integration I10 in detail, while all other integrals

in this paper can be handled similarly. In polar coordinates, I10 can be written as

I10 = 2π

∫ 1

0

r2dr2

∫ 1

0

r3dr3

∫ 2π

0

dθ(r2
2)

p1·p2−1(r2
3)

p1·p3−1(1− r2
2)

p2Dp2(1− r2
3)

p3Dp3

×(r2 − r3e
iθ)p2·p3(r2 − r3e

−iθ)p2·p3(1− r2r3e
iθ)p2Dp3(1− r2r3e

−iθ)p2Dp3 (F.1)

after setting z2 = r2e
iθ2 and z3 = r3e

iθ3 . The integration only depends on θ = θ2− θ3,

so one angle can be integrated to get 2π factor. As we only interest in the behavior

of this integral at small momentum limit, we will use binomial expansion to translate

this integral into an infinite series where every single term can be integrated easily.

The formula we will use frequently is

1

(1− x)s
=

∞∑
n=0




s + n− 1

n


 xn (F.2)

for | x |≤ 1. This formula is well defined for integer s, and for general s we can use

the Gamma function representation of binomial coefficients, ie.

(
n

k

)
=

Γ(n + 1)

Γ(k + 1)Γ(n− k + 1)
. (F.3)

To apply binomial expansion to integral (F.1), we need to consider two situations

r2 > r3 and r2 < r3 separately. For r2 > r3, we have
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(I10)r2>r3 = 2π
∞∑

n1,···6=0

∫ 1

0

r2dr2

∫ r2

0

r3dr3

∫ 2π

0

dθ(r2
2)

p1·p2+p2·p3−1(r2
3)

p1·p3−1

×



−p2Dp2 + n1 − 1

n1






−p3Dp3 + n2 − 1

n2




×



−p2 · p3 + n3 − 1

n3






−p2 · p3 + n4 − 1

n4




×



−p2Dp3 + n5 − 1

n5






−p2Dp3 + n5 − 1

n6




×
(

r2
2

)n1
(

r2
3

)n2
(

r3

r2

eiθ

)n3
(

r3

r2

e−iθ

)n4
(

r2r3e
iθ

)n5
(

r2r3e
−iθ

)n6

= π2

∞∑
n1,···6=0

1

p1 · p3 + n2 + n3 + n5

1

p2 + n1 + n2 + n5 + n6

×



−p2Dp2 + n1 − 1

n1






−p3Dp3 + n2 − 1

n2




×



−p2 · p3 + n3 − 1

n3






−p2 · p3 + n4 − 1

n4




×



−p2Dp3 + n5 − 1

n5






−p2Dp3 + n5 − 1

n6


 δn3+n5−n4−n6,0

(F.4)

where p2 = (p1 + p2 + p3)
2/2 = p1 · p2 + p1 · p3 + p2 · p3. One can exchange p2 and p3

in (A10)r2>r3 to get (A10)r2<r3 . After adding these two parts of integral together, we

obtain
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I10 = (I10)r2>r3 + (I10)r2<r3

= π2

∞∑
n1,···6=0

(
1

p1 · p3 + n2 + n3 + n5

+
1

p1 · p2 + n1 + n3 + n5

)

×



−p2Dp2 + n1 − 1

n1






−p3Dp3 + n2 − 1

n2




×



−p2 · p3 + n3 − 1

n3






−p2 · p3 + n4 − 1

n4




×



−p2Dp3 + n5 − 1

n5






−p2Dp3 + n5 − 1

n6




× 1

p2 + n1 + n2 + n5 + n6

δn3+n5−n4−n6,0

(F.5)

where one of the binomial coefficients can be expressed as



−p2Dp2 + n1 − 1

n1


 =

Γ[−p2Dp2 + n1]

Γ[−p2Dp2]Γ[n1 + 1]
(F.6)

which equals to 1 as n = 0, and behavior like −p2Dp2 for small −p2Dp2 as n1 6= 0.

As we only interest in the terms up to order O(p0), for most of the time it is enough

to consider only ni = 0 terms. Now we separate the multiple infinite sum into several

pieces,

1. n3 = n4 = n5 = n6 = 0

(I10)1 = π2

∞∑
n1,2=0

Γ[−p2Dp2 + n1]

Γ[−p2Dp2]Γ[n1 + 1]

Γ[−p3Dp3 + n2]

Γ[−p3Dp3]Γ[n2 + 1]
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× p2 + n1 + n2 − p2 · p3

(p1 · p3 + n2)(p1 · p2 + n1)(p2 + n1 + n2)

=
π2

p2(p1 · p2)
+

π2

p2(p1 · p3)
− π4

6

p3Dp3

p1 · p2

− π4

6

p2Dp2

p1 · p3

+ O(p2) (F.7)

where we have used the identity

∞∑
n=1

Γ[−p2Dp2 + n]

Γ[−p2Dp2]Γ[n + 1]

1

p1 · p2 + n
= −π2

6
p2Dp2 + O(p4) (F.8)

2. n3 6= 0,n4 6= 0,n5 6= 0,n6 6= 0

The leading contribution to I10 for small momentum is order O(p8)

3. n3 = n4 = 0, n5 = n6 6= 0

The leading contribution to I10 for small momentum is order O(p4). Similar for

following three cases

• n5 = n6 = 0, n3 = n4 6= 0

• n3 = n6 = 0, n4 = n5 6= 0

• n4 = n5 = 0, n3 = n6 6= 0

4. n3 = 0, n5 = n4 + n6, n4 6= 0, and n6 6= 0

The leading contribution to I10 for small momentum is order O(p6). Similar for

following three cases

• n4 = 0, n6 = n3 + n5, n3 6= 0, and n5 6= 0

• n5 = 0, n3 = n4 + n6, n4 6= 0, and n6 6= 0

• n6 = 0, n4 = n3 + n5, n3 6= 0, and n5 6= 0

So we have

I10 = π2 1

p2(p1 · p2)
+ π2 1

p2(p1 · p3)
− π4

6

p3Dp3

p1 · p2

− π4

6

p2Dp2

p1 · p3

+ O(p2) (F.9)
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