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ABSTRACT

Higher Derivative D-brane Couplings. (August 2011)
Guangyu Guo, B.S., Lanzhou University, China

Chair of Advisory Committee: Dr. Katrin Becker

This dissertation covers two different but related topics: the construction of
consistent models in type IIB and heterotic string theories, and the higher derivative
couplings for D-brane action, which will enable us to relate some models of type I1IB
to the heterotic side through duality chain.

In the first part, we describe an alternative to the KKLT scenario, in which one
can achieve de-Sitter space after fixing all moduli. We fix complex structure moduli
and the axio-dilaton by deriving the stability conditions for the critical points of the
no-scale scalar potential that governs the dynamics of the complex structure moduli
and the axio-dilaton in compactifications of type IIB string theory on Calabi-Yau
three-folds.

In the second part, we show the existence of a class of flux backgrounds in het-
erotic string theory. The background metric we will consider is a T2 fibration over a
K3 base times four-dimensional Minkowski space. Unbroken space-time supersymme-
try determines all background fields except one scalar function which is related to the
dilaton. The heterotic Bianchi identity gives the same differential equation for the
dilaton, and we will discuss in detail the solvability of this equation for backgrounds
preserving an N=2 supersymmetry.

In the third part, we obtain the higher derivative D-brane action by using both
linearized T-duality and string disc amplitude computation. We evaluate disc ampli-

tude of one R-R field C?~%) and two NS-NS fields in the presence of a single Dp-brane



v

in type II string theory. We obtain the action for the higher derivative brane interac-
tions among one R-R field C?~®) and two NS-NS B-fields after carefully comparing
the supergravity amplitudes with the corresponding string amplitude up to o2 order.
We also show that these higher derivative brane couplings are invariant under both

R-R and NS-NS B-field gauge transformations, and compatible with linear T-duality.
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CHAPTER I

INTRODUCTION

The quest for a theory of everything, or a framework that can accommodate every
known interaction, has attracted physicists for generations since the great dream of
Albert Einstein. In the early 1970s, Quantum field theory proved to be an appropriate
framework to organize our knowledge at low energy scale, and sometimes people even
argue that it is the only way to satisfy the principles of both quantum mechanics and
special relativity (aside from theories like string theory that have an infinite number
of particle types )[1]. Both electroweak and strong interactions can be described by
standard model, which is the quantum field theory with the gauge group SU(3)c X
SU(2)r x U(1)y. The theory has been compared with a wild range of experiments
to very high precision for a broad range distance from 10~**m to 10%m.

Despite the great success of standard model, there are still big problems ahead
[2]. 1) Hierarchy problem: in standard model all fermions are chiral, so their masses
are protected by gauge symmetry. However, no such symmetry can prevent scalars,
like Higgs particle, to receive huge mass correction with quadratical divergence. To
avoid the ridiculous fine-tuning one need new physics at TeV scale. 2) Dark matter
and dark energy: the familiar particles in the standard model only account for about
four percents of total energy of the universe. 3) Quantization of gravity: gravity, i.e.
Einstein’s general relativity, is still a classical theory. There exist a few proposals,
like supersymmetry and large extra dimensions, to address the first two problems,

but the last problem is more challenging in the QFT framework. Consistent quantum

This dissertation follows the style of Nuclear Physics B.



field theory seems to exist only for particles with spin no bigger than 1, but graviton
has spin 2. To quantize the gravity, we need something very different.

String theory! arises from dual models as a candidate to describe the strong
interaction in the 1960s. Despite the partial success of dual models, they are replaced
by QCD (Quantum Chromodynamics) as the leading candidate for strong interaction
in the early 1970s. Even though string theory does not fit for strong force, it turns
out to be an appealing framework to address quantum gravity, as every consistent
string theory includes a massless spin 2 particle, which has the same properties as
graviton, governed by general relativity.

String theories can reconcile general relativity and quantum mechanics without
the annoying UV divergence. But it came at a price. There are five different string
theories in 10-dimension and one M theory in 11 dimension, which conflict with the
daily experience that the world around us is only 4-dimensional. To get in tough with
the everyday physics, we need to compactify the extra six dimensions.

To build models of particle phenomenonlogy from string theory, we can start with
four dimensional vacua with A" = 1 supersymmetry. One can obtain such models, for
example, by compactifying M-theory on Go-holonomy manifolds, F-theory on Calabi-
Yau four-folds or type II theories on Calabi-Yau orientifolds, see [7, 8] for review. All
these models have a moduli space of vacuum states, and concrete predictions can not
be made until one can identifies the mechanism that picks the vacuum state of string
theory. By including fluxes as background fields the continuous ambiguity associated
with the vacuum expectation values of the moduli fields is replaced by a discrete
freedom associated with the choice of flux numbers. However, the number of possible

vacuum states is still enormous and it has been argued to built a whole landscape of

Mnterested readers can see [3, 4, 5, 6] for introduction.



solutions [9]. However, most of these string theory backgrounds have flat directions
and there exists very few solutions with all moduli fixed.

In the dissertation, we will explore a few flux backgrounds in both type IIB [10]
and heterotic string theory [11]. One can employ U-duality to connect the models in
type IIB side to corresponding models in heterotic string theory, but the complete
understanding of these duality chains requests better knowledge regarding the higher

derivative brane couplings [12, 13, 14], which will be the main topic of this dissertation.

A. Flux background of type IIB string

Stabilizing all the scalar fields associated with a Calabi-Yau compactification of string
theory at weak coupling is a particularly hard problem. In the context of compactifi-
cations of type IIB string theory on a Calabi-Yau orientifold, one of the fields which
is conventionally unstabilized using fluxes is radial modulus p. In KKLT model [15],
complex structure moduli and the axio-dilaton acquire an expectation value due to
perturbative fluxes while preserving an N' = 1 supersymmetry. The non-perturbative
correction to the superpotential cause the radial modulus p to become heavy com-
pared to the AdS scale. However, the masses of the complex structure moduli will
generically be of the order to the inverse AdS length which means that for all practical
purposes they can be considered stabilized [16]. This situation changes once these
vacua are lifted to dS spaces. In [15] this has been achieved by assuming the presence

of an anti-D3 brane which contributes a factor

1
AV ~ m, (1'1)

to the scalar potential. Once this contribution is taken into account the potential

for the radial modulus displays a metastable minimum at which the scalar potential



takes a positive value and as a result corresponds to a dS space.

An alternative [17] to uplift the potential to positive value is to obtain a potential
contribution resembling the one resulting from anti-D3 branes by considering flux
configurations for which D;W # 0 for some I and superpotential W [18]. From the
no-scale form of the potential it follows that such a contribution is positive and it’s
dependence on p is precisely equal to the one originating from anti-D3 branes. Since
D;W # 0 the flux can no longer be imaginary self-dual (ISD) but will acquire an
imaginary anti-self dual (IASD) component.

In Chapter II, we will analyze the stability conditions of fluxes derived by re-
quiring that the scalar potential is critical in the complex structure and axio-dilaton
directions, and also show these critical points are metastable. We then consider the
four-dimensional theory obtained from compactifications of type 1IB string theory on
backgrounds which are mirror to rigid Calabi-Yau manifolds, i.e. non-geometric back-
grounds with no Kéahler structure. In this case case the flux induced superpotential
does depend explicitly on all scalar fields, 7.e. the complex structure moduli and the
axio-dilaton. Mirror symmetry implies that on the type IIB side the Kahler poten-
tial for the axio-dilaton differs from the conventional one obtained from dimensional
reduction [16]. This fact enables us to find a scalar potential which stabilizes all the
complex structure moduli in terms of RR fluxes only while requiring no orientifold
charge. However the axio-dilaton is not fixed and slides off to weak coupling. The
axio-dilaton could be stabilized if Hyg is taken into account and supersymmetry is
broken to render the scalar fields heavy enough. Another possibility is to take per-
turbative corrections to the Kahler potential and non-perturbative corrections to the

superpotential into account [16].



B. Flux background of heterotic string

Even though moduli stabilization and model building in type II string theories have
been intensively studied, much less is known about the heterotic string compactifica-
tion with flux. The background geometry of supersymmetric heterotic compactifica-
tions with non-zero H-flux are topologically different from the zero-flux Calabi-Yau,
and the geometry is non-Kéhler [19, 20]. The excitations of the low-energy effective
action are no longer the same as those in the no-flux case. That is, due to the lack
of a Kahler structure, there is no longer a one-to-one correspondence between har-
monic forms and massless modes, so the distinction between light and heavy modes
on non-Kéahler manifolds is not as clear as it is for Calabi-Yau manifolds [21]. From
the mathematical point of view algebraic geometry techniques are still missing even
though some progress has been made in describing these spaces with an explicit metric
[22].

Aside from intellectual curiosity, non-Kéahler compactifications of the heterotic
string possess some appealing features of a physical value. In particular, non-trivial
background fluxes admit a possible mechanism for spontaneous supersymmetry break-
ing. Such manifolds admit a globally defined spinor, however, the connection under
which that spinor is covariantly constant is no longer the Levi-Civita connection, but
rather, a connection with non-zero torsion. The flux as well as the torsion induce a
superpotential and hence provide the possibility of fixing at least some of the moduli.
A complete understanding of either of these mechanisms depends upon computation
of the four-dimensional effective action.

In Chapter III, we will consider torsional heterotic backgrounds which are a T?
fibered over a K3 base, which has been considered in [23, 24, 25]. This heterotic

background is dual to a type IIB background. The duality chain has been described



explicitly in ref. [26] based on earlier work by Sen [27, 28]. We are interested in
analyzing o' corrections to the heterotic SUGRA background. Even though the het-
erotic vacua is related to type IIB backgrounds by duality, we will not use duality to
obtain the o corrected heterotic background. Rather we will follow a different route
and construct the o' corrected background directly on the heterotic side, in which
the action and supersymmetry transformations are known to all relevant orders. The
low-energy effective action of the heterotic string to O(a’®) has been constructed by
Bergshoeff and de Roo by supersymmetrizing the Chern-Simons term [29]. Our goal
is to construct the background which solves the o’ corrected equations of motion.
Depending on the choice of flux different amounts of four-dimensional supersym-
metry are preserved. While solutions preserving an N=2,1 supersymmetry have been
discussed before in the literature, starting with ref.[26] (see in particular [30, 31]), the
supersymmetry breaking solutions are new. We explicitly check that the backgrounds
solve the equations of motion. For solutions preserving an N=1,0 supersymmetry we
check this at the SUGRA level. While for solutions preserving an N=2 supersymme-
try we show how to solve the equations of motion including the first o’ correction.
The spinor equations determine the background except one scalar function related to
the dilaton. The Bianchi identity for H gives rise to a differential equation for this

scalar function which is of Laplace type, so the existence of solution is guaranteed.

C. Higher derivative D-brane couplings

In the previous section, the reason that we have to construct heterotic vacua directly
rather than by duality chain from type IIB vacua, is that the present knowledge

about the relevant interactions on the world-volume of Dp-branes and O-planes is



insufficient. For example, the anomalous couplings
71_2 ()/2

24 C@BJFQTFO/F’(p_g)_form N (TI'RT N RT — TI'RN VAN RN) + O((()él)4), (12)

described in [32, 33, 34, 35, 36, 37, 38, 39] are not compatible with T-duality and
additional dependence on NS-NS and R-R fields are required to obtain world-volume
actions compatible with T-duality.

The duality between type IIB and heterotic flux backgrounds of the previous
section can be explicitly checked at the level of SUGRA but beyond leading order
the duality map makes predictions about higher derivative corrections to the world-
volume action describing Dp-branes in type IIB theories. Higher derivative D-brane
couplings are very important in finding consistent compactifications, as they can
sometimes be needed to satisfy an important class of consistency conditions known
as tadpole equations.

For instance in type IIB, the equation of motion for C'¥) wrapping the directions
of Minkowski space is an internal closed six-form which gets contributions both from
fluxes (terms proportional to F® A Hj) and from delta-function forms corresponding
to localized sources such as D3-branes and O3-planes, and can also receive contribu-
tions from higher-derivative corrections to the action. If the six-form is not exact,
then there can be a topological obstruction to solving the tadpole equation, and the
compactification would be inconsistent. In fact, it turns out that in some examples of
this sort (as well as in some other contexts), there may be no way to solve the tadpole
constraint at leading order in a momentum expansion. Higher derivative corrections
must then be included that often change the global structure drastically - either by
allowing the existence of solutions, or perhaps by spoiling the consistency of solutions
that otherwise appeared to be fine. For this reason, it is crucial to understand these

corrections and their global properties.
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Fig. 1. String theory amplitude for a Dp-brane to absorb two B-fields and emit a (p-3)
form R-R potential.

In Chapter IV, we will first use T-duality to deduce some more couplings which
involve derivatives of B-fields, or will involve R-R fields of different degree, etc. It
is not clear that these couplings will necessarily lead to new topological restrictions,
but in some contexts they might, and they will certainly modify the local tadpole
equation. Similar couplings have been obtained via U-duality in M-theory and string
theory in [40, 41], where they have been used to avoid no-go theorems in IIA and
M-theory flux compactifications. Clearly, these issues need to be examined more
closely than they have been. But T-duality alone can not fix all the higher derivative
brane couplings, so we also employ the string amplitude computation (see Figure 1)
to get these brane couplings. At the low energy limit, this string amplitude can be
substituted by six supergravity Feynman diagrams shown in Figure 2.

What really interests us is the amplitude for Figure 2f), which represents the
contact interaction among one R-R field and two B-fields on D-brane. Once we
evaluate the amplitude of first five Feynman diagrams of the Figure 2, we can obtain

the amplitude of Figure 2f) by subtracting the amplitudes of the first five diagrams in
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Fig. 2. Six supergravity Feynman diagrams that replace string amplitude at low energy

Figure 2 from the string amplitude. In Chapter IV, we will see that the final higher
derivative couplings we obtain are invariant under both R-R and NS-NS B-field gauge

transformations, and compatible with linear T-duality.
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CHAPTER II

METASTABLE DE SITTER FLUX VACUA IN TYPE IIB THEORY*

In this chapter, we will consider geometric compactifications of type IIB string theory
on Calabi-Yau three-folds. In section A, we derive the conditions imposed on the flux
configurations to lead to stable critical points of the scalar potential in the complex
structure and axio-dilaton directions. We explicitly show that the critical points
do correspond to minima of the potential by computing the Hessian matrix. We
illustrate the idea in the example of a torus orientifold. In section B, we consider
the four-dimensional theory obtained from compactifications of type IIB strings on
mirrors of rigid Calabi-Yau manifolds. We find a scalar potential which stabilizes all
the complex structure moduli in terms of RR fluxes only while requiring no orientifold

charge. We discuss several possibilities to stabilize the axio-dilaton at weak coupling.

A. Type IIB string theory compactified on Calabi-Yau three-folds

In this section, we start deriving the form of the scalar potential following closely [42].
Then we derive the conditions to obtain a critical point of the potential and explicitly
check that the critical points correspond to minima by computing the Hessian matrix.
At the end, we present a concrete example of T° orientifold.

* The result reported in this chapter are reprinted with permission from

Metastable flux configurations and de Sitter spaces, by K. Becker, Y. Chung and
G. Guo, published in Nucl. Phys. B 790 (2008) 240, Copyright 2008 by Elsevier B.V.
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1. The scalar potential

We start with the low-energy effective action of type IIB string in the ten-dimensional

Einstein frame

.o F?
Sy — dlox\/_ 8MT8 T G-G (5)

(2.1)

2/{10 2(Im7)2  12Im7  4-5!
1 0(4) ANGAG
- Soc-
8ik2, / Tmr

Here the axio-dilaton 7 is written in terms of the RR scalar C(g) and the dilaton ¢
according to

7= Clo) +ie?, (2.2)

and the self-dual condition for five form
~ 1 1
Fisy = Fi5) — 50(2) N Hys + 53(2) N Hpp, (2.3)

should be imposed at the equation of motion level. Here Hrr and Hyg are the field
strengths for field potentials C(y) and By respectively and G = Hrp — THyg. The

Bianchi identity for the five-form field can be written as
dﬁ(g, HNS VAN HRR + QKIOTgplOC. (24)

After integrating both sides of the Bianchi identity over the internal manifold Mg,

we get

/ Hys A Hrr + QY = (2.5)

(27T 4 o'?
where we have used the relation 2x%,T3 = (2m)*a’?. This identity means the sum of the

D3 charges from background fields and localized sources vanishes. After dimension
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reduction of the action Eq. (2.1), one obtain the four-dimensional scalar potential

(2.6)

Im7

1 G- -G i GANG
Ve [ & -
2412, (Imp)? /MG o Imr 4k2,(Imp)3 //\/16

This scalar potential can be written in terms of the flux induced superpotential [18]
W = / G AQ, (2.7)
Mes

and the Kahler potential

K = —3log|—i(p — p)] — log[—i(T — T)] — log[—¢ /M QAQ), (2.8)

where p is the radial modulus, as the standard A/ = 1 supergravity form
V= ek (g“BDaWD;,W - 3|W|2) (2.9)

where a and b label all moduli and the axio-dilaton. Even though the scalar potential
(2.6) take the explicit N = 1 supersymmetric form, the background preserves maximal
N = 2 supersymmetry. Because the superpotential is independent of p the scalar

potential takes the no-scale form
V =eF R (2.10)

where I and J label the complex structure moduli and the axio-dilaton. Here and in

the following we will be using the notation of [43]
EFr =D;W, Zry =DiD,;W, Urjk = DiD;DgW, (2.11)

and indices are raised using the inverse of the Kahler metric g;7 = 0;05K.
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2. Critical points of the scalar potential

The local minimum of the scalar potential (2.10) in the complex structure and axio-
dilaton directions can be achieved after imposing the condition that the first deriva-
tives vanish, i.e.

oV =" (Zi F + FW) = 0. (2.12)

There exist non-trivial solution for the above condition. For example, one obvious
solution of this condition is given by flux configurations satisfying F; = 0. Using the

explicit expression for the superpotential we have

Fi:/ G A X and F.=— 1/ G A, (2.13)
Me T=T JIMs

where x; is the basis of harmonic (2, 1) forms and with lower case indices i, j we label
the complex structure moduli only. This implies that the non-vanishing components
of G can lie in the (0,3) or (2, 1) directions. In other words, G is imaginary self-dual,
*G = iG. Moreover, this critical point is stable because the scalar potential (2.10) is
positive semi-definite and at the critical points the potential vanishes.

In the following we would like to find the most general solution of Eq.(2.12). We

start by rewriting Eq. (2.12) in the form

Z F" + ZjF7 + F,W =0,

(2.14)
Note that
G AXE 1 _
Zij = Hijkf/\/lﬁ—ga Ly = — — / GAxi, Z=0. (2.15)
fM6Q/\Q T =T J

A simple computation (we include the details in appendix A) shows that the first
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condition in Eq. (2.14) is equivalent to

GAxG =0, (2.16)
Mg
while the second condition leads to
(BB, + AAy) / QAQ+ kpA'B) = 0. (2.17)
Mg

Here we introduced the Hodge decomposition
G = AQ + Aly; + Bix; + BQ (2.18)

and k;j, are the Yukawa couplings. The scalars (2.10) does not always have local
minimum for an arbitrary choice of flux. Only if Eq. (2.16) and Eq. (2.17) are
satisfied can we find a critical point in all directions except the size. This is not
always possible. If Hyg = 0, for example, then the dilaton cannot be stabilized since
the only non-vanishing contribution to the dilaton potential comes from the overall
factor eX. As a result no critical point exists since Eq.(2.16) is violated.

It is not difficult to see that all flux combinations can lead to critical points of

the potential except if G is given by a combination of the following components
Gio + Gos), Gio + Gen, Gpo +Gos +Ge, (2.19)

or their complex conjugates. A flux of the form G 3) + G(0,3), for example, is easily
seen to violate the condition (2.16).

Among the possible flux combinations leading to critical points of the scalar
potential only a flux lying in the (2,1) or (1,2) directions preserves supersymmetry.

The (2,1) component obviously preserves supersymmetry, as it satisfies

D,W =D,W =0. (2.20)
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However a flux in the (1,2) direction also preserves supersymmetry if accompanied
by a change in the sign of the tadpole due to fluxes. The reason for this is that
type IIB supergravity in ten dimensions is invariant under the change of sign of all
RR fluxes. Changing the signs of RR fields replaces G by —G and as a result a flux
lying in the (2,1) direction should lead to the same physics as a flux in the (1,2)
direction. The (1,2) component does satisfy the conventional supergravity constraint
DIW = D;W = 0, but with a superpotential given by

w=[ GAQ. (2.21)

Mse

The derivation of this superpotential will be discussed in appendix B. The two super-
potentials W and W are related to each other by a CPT transformation. Any other
flux components satisfying Eq. (2.16) and (2.17) will not preserve supersymmetry and
lead to a positive cosmological constant or vanishing cosmological constant if only a
(3,0) (or (0,3)) component is turned on. On the other hand, due to the no-scale

structure of the potential the radial modulus cannot be stabilized.

3. The Hessian matrix

The no-scale potential (2.10) is positive definite, so the solutions which lead to a
vanishing potential at the critical point V, are necessarily stable. However, we are
interested in solutions for which V, > 0 and as a result we have to check the stability
of the solutions?. In order to determine if the critical points are stable we compute the
Hessian matrix H. It turns out that it only has positive eigenvalues which means that
the critical points are minima in the complex structure and axio-dilaton directions.

2Stability conditions for flux compactifications and the corresponding uplift has
been considered before in ref. [44].
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The second derivatives of the scalar potential are given by

818JV = e’c (U[JKFK -+ 2Z[JW) (222)

0105V = Mg Fx P — R, M FLFX + 2F Fr + ZiZig™ + g5 W )
The critical points will be stable if
d¥? = Hypdw™dw® > 0, (2.23)

where w® labels all coordinates, i.e. « and (3 label the axio-dilaton, complex structure
moduli and their complex conjugates. Using formulas which are explicitly presented

in appendix A we obtain
dY? = 9" (Zan Z godw®dw’” + g7 Upor U gordw®dw’®) (2.24)

where Uyyy = Dy DD, W and Z,, = D, D,W are the generalization of Ur;x and
Zry. As a result the Hessian matrix is positive semi-definite and the critical points

correspond to minima.

4. An example

In this section we describe a concrete example in terms of a type IIB orientifold
compactification. This example is closely related to examples discussed in [17, 45].
We will be following their notation. Let 2’ and v, for i = 1,2,3 be the six real
coordinates on T°. These coordinates are subjected to the periodic identifications

t=g2'+1and ¢y = y* + 1. The complex structure is parameterized by complex
parameters 79, and

2= Tyl (2.25)
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are global holomorphic coordinates. The explicit orientifold is 76 /QR(—1)'%, where
R is the involution which changes the sign of all torus coordinates, R : (z¢,y') —

—(2%,3"). The holomorphic three-form is
Q =dz' Nd2? Nd2?, (2.26)

and the metric is

ds? = dz'dz". (2.27)
We choose the following orientation
/ de' Ada® Ada® A dy' Ady? Ady? =1, (2.28)
T6

and the basis of H*(T® Z):

ap = dax' Ada? Ada?

;= %@lmdxl ANdx™ ANdy', 1<4,5<3

B = —%sﬂmdyl Ady™ Adzt, 1<i,5<3

B = dy' ndy? Ady’ (2.29)

which satisfies fTG ar A 7 =67, The fluxes can be expanded in this basis

1

(2m)2a/ Hrr
1 ij ij
WHNS = COOC(] +Cj041'j +dijﬁj +d0ﬂ0.

= GOOéo + aijaij —+ bijﬁij + boﬁo (230)

Here we take a®, a", by, b;j, ", ¢V, dy, d;; to be even integers, so that all the O3-planes
are of the standard type and the issues regarding flux quantization discussed in ref.
[46] can be avoided. In this case, the total number of O3-planes is 64 and each plane
has D3-brane charge —1/4. For simplicity we only turn on the diagonal components

of the flux, so that we can set the off-diagonal components of 7% equal to zero at
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the critical points. This condition can be imposed by restricting to an enhanced
symmetry locus on the moduli space of the T® [17]. For example, we will consider

configurations which are symmetric under

Rl : <$1,$2,$37y1,y2,y3) - (_$17—$27x37—y17—y2793>

RQ : (171:$27$37y1792793) - (Il,_x27_953,y17_927_93) (23]‘)

Only the diagonal components of the complex structure 7%, and the three forms
ap, i, 3°, B% are preserved under these symmetries, so that the only non-vanishing

0 a%, by, by and &, ¢, dy, d;;. We are left with 3 non-vanishing

flux components are a
complex moduli and the axio-dilaton.

To use the conditions (2.16) and (2.17) which we derived in subsection A.2, we
need to transform the scalar potential (2.6) into the standard N' = 1 supergravity
formula (2.9). For tori having a general complex structure the result is complicated
(see for example [17, 47]). However for tori with diagonal complex structure, we can
express the scalar potential in the form

3 -
V=" (Z 99D WD, W + gT*DTWDT—W> , (2.32)
ij=1

with superpotential (2.7) and “Kéahler potential”,

K = =3log[—i(p = p)] = log[—i(T — T)] = logli(m1 — 71)(72 = 7o) (75 — T3)],  (2.33)

where we used 7; to replace 7. Before we proceed we have one more comment.
Generally we can only set 7% = 0 (for i # j), after computing the first derivative
of the scalar potential (2.6), but on the symmetric locus, the criticality conditions
0,V = 0 (for i # j) are automatically satisfied. As a result we can set 79 = 0

(for ¢ # j) at the beginning of the computation and only deal with the conditions
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0.4V = 0. However, when computing the second derivatives we can not set 7% =
before we differentiate, as there are non-vanishing terms of the form (972_1.jV, which will
disappear if we set 7 = (0 (for i # j) at the beginning.

Next we consider a flux in the (2,1)4(1,2) direction, so the conditions (2.17) and

(2.16) take the form
kijpAI B =0 and gﬁAiBE = 0. (2.34)

Since we are working with a torus we set k193 = 1 and one solution to the above

condition is

AlB! A?B?
A =B3=0 A'B? = —B'A? =0. 2.35
’ ’ (Im7y)? + (Im7s)? (2.35)

For the concrete torus orientifold we are considering the tadpole cancelation condition
takes the form
7 —
—_— GANG=32. 2.36
2Im7 (27)*a’? /Ts (2.36)

In the following we will present a concrete solution of Eq. (2.35). For simplicity

we redefine the parameters according to
A" = —2Im7;Im7 A?, and B’ = 2ilmrIm7 B’ (2.37)

and drop the tilde in the following. The conditions (2.35) and (2.36) can be written

as

A'B? = _BlA%

3
B'B'=B’B’, (A’A’— B’B))lmr [[Imr =4 (2.38)

i=1
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and the non-vanishing components of Hgrr and Hyg are

a’ = —Im[7(A' + A? + B' + B?)]
a'' = —Im[7(A'7, + A*r + Bl + B*7)]
a*? = —Im[7(A'% + A’y + Bl + B*%)]
a® = —Im[7(A'% + A’ry + B'm + B*R)]
bo = —Im[F(A T 1o + A M Toms + B %t + B*AnTs))
by = Im[7F(Almyms + ARy + BT + Bins)]
byy = Im[7F(A'F73 + A3 + B'm 7 + B*A %))
bgs = Im[7 (A7 + A% + B'n 7 + B*Am)]
(2.39)
¢’ = —Im[A' + A* + B' + B?
c!t = —Im[A'F + A%ry + B'ry + B*7)
?? = —Im[A'F, + A’y + By + B*%)
A = —Im[A'F; + A’y + Blry 4+ B%)
do = —Im[A'Fy1om3 + AT 7T + BT + B2AmoTs]
dyy = Im[A'ryrs + A%Fyms + B'RTs + B T
doy = Im[A'Fy 73 + A’y 73 + BT + B*A 73]

d33 = Im[AlﬂT2 + A2T17_'2 + BIT17_'2 + B27_'17'2].

Usually one starts with certain flux numbers and then determines the values of

moduli fields. Here we solve the inverse problem, namely, we start with the value of

the moduli and determine the flux numbers which stabilize the moduli at the given

values. To solve Eq. (2.38) using even flux numbers (2.39) we use the ansatz

Im7r =4, Imm =Imm =Imms =1

(2.40)



21

So one solution of Eq. (2.38) is
Al = 34, A% =34, B' =2+ 2i, B? =242 (2.41)

From Eq. (2.39), we can explicitly compute the flux numbers and obtain

(a®,a't, a®?, a®) = (16, —24,24, 16),
(b07 b117 b22a b33) = (167 07 07 _16)
(2.42)
(00,011,022,033) = (—4,0,0,4),
(dOa d117 d227 d33) = (47 67 _67 4)

which are all even integrals.

B. Type IIB mirrors

In this section we would like to generalize the previous analysis to type IIB theories
which arise as mirrors of type ITA models compactified on rigid Calabi-Yau three-
folds, i.e. with hy; = 0. On the type IIB side these correspond to models with
hi1 = 0 and consequently are not ordinary Calabi-Yau manifolds since a Kahler form
is missing but can nevertheless be described using conformal field theory techniques.
Here we will be interested in the properties of the resulting four-dimensional theories
which contain hy; 4 1 four-dimensional N' = 1 chiral superfields originating from the
complex structure moduli and the axio-dilaton. The number of these fields will in
general be reduced if we consider an orientifold projection.

It has been shown in ref. [16] that for compactifications of type IIB strings on
backgrounds with no Kahler structure the Kéahler potential for the axio-dilaton and

the complex structure is

K = —4log[—i(T — T)] — log |:—Z/Q A Q] , (2.43)
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which differs by a subtle factor 4 from the conventional Kahler potential for the axio-
dilaton. This unconventional factor 4 has the consequence that supersymmetric flux
configurations are no longer required to be ISD [16]. The Kéahler potential (2.43)
also causes the scalar potential to display new and interesting properties. In order to
illustrate this imagine one considers a real three-form flux, i.e. a flux configuration
with Hyg = 0. Then

W =Wgr = /HRR AQ, (2.44)

and the scalar potential can be written in the form
V=€t (gijDiWRRm+ | Wrr |2> ) (2.45)
which is positive definite and depends non-trivially on the complex structure. If
oV =0 for t=1,...,ha1, (2.46)

the potential is critical in all the complex structure directions. So for example, one

solution of Eq. (2.46) is given by

Hrr=0a(Q+9Q), (2.47)

where a is some real constant. This equation determines the complex structure mod-
uli. Indeed, it turns out that this is nothing else than the equation defining a rank
1 attractor which is well known from black hole physics. Eq. (2.47) can, for exam-
ple, be explicitly solved in the large complex structure limit as has been shown by
Shmakova in ref. [48] (see also ref. [49]). These critical points are stable since the

only non-vanishing entries of the Hessian matrix are

0;0;V = 2~ g;;|Wrp|. (2.48)
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The scalar potential (2.45) has been studied before in the literature in the context of
non-supersymmetric attractors (for a partial list of references on non-supersymmetric
attractors see [50]). In particular, the critical points of the potential are the solutions
of

Hpp = 2Im [* (QW — F'x;)] (2.49)

subjected to the constraint

Z..FI 4+ 2FW =0 2.50
J

which can be written as
26W / QAQ+ ki FTFR = 0. (2.51)

Moreover, these critical points are stable since the Hessian matrix written in terms
of 3

dY? = 2" (97 Zon Z godw®dw’ + F, Fydw®dw”) , (2.52)

is positive definite (the stability of non-supersymmetric black hole solutions has been
analyzed in [51, 52]). In this form the critical points correspond non-supersymmetric
attractor points as described in ref. [53]. This indicates that within a non-geometric
model with h;; = 0 the proposal of ref. [17] leads to an interesting new class of
backgrounds in which all the complex structure moduli can be stabilized in terms of
RR fluxes only with no need of negative energy sources like orientifold planes.

Using the solution (2.47) shows that the potential at the minimum satisfies
Vi >0, (2.53)
if a # 0 so the external space is dS. However, before we can conclude that supersym-

3Here the indices a, 3 label the complex structure moduli and their complex
conjugates.
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metry is spontaneously broken by the solution (2.47) we should take into account the
dependence on the axio-dilaton arising from the overall factor eX ~ (Im7)~*. This
factor causes the potential to slope to zero at infinity so a supersymmetric state is
gained back at infinity and as it stands the theory has no ground state at all. Here (as
in [16]) we will simply assume that perturbative corrections to the Kéhler potential
and non-perturbative corrections to the superpotential could achieve this stabilization
and lead to a metastable ground state.

In order to stabilize the axio-dilaton using perturbative fluxes the only possibility
is to use a non-vanishing Hyg flux. By including RR and NS three-form fluxes
one obtains a four-dimensional superpotential which does depend non-trivially on all
moduli fields. Any geometric compactification would lead to a superpotential which
is independent of the Kahler moduli and consequently the radial modulus would
slide off to infinity. As a result even in the absence of any type of corrections moduli
stabilization may be possible within the non-geometric model by including all possible
fluxes. Moreover, in order to obtain moduli fields which are heavy enough we may
have to break supersymmetry [16]. But note that once the NS flux is non-vanishing the
scalar potential is no longer positive definite and it is not obvious that supersymmetry
breaking vacua, and in particular the phenomenologically interesting vacua leading
to a positive cosmological constant, exist. As an illustrative toy example lets consider
a non-geometric model with he; = 0, 7.e. a model with only one massless scalar field,

the axio-dilaton, with a Kahler potential
K = —4log[—i(T — 7)], (2.54)

and a superpotential

W = WRR — TWNs, (255)
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where Wgrr and Wiyg are constants. The condition for unbroken supersymmetry has

one solution only

= [Re(WnsWgg) + 2ilm(WysWgr)] - (2.56)

7’ = ———
WinsWis

However, it is not difficult to see that the scalar potential is also critical if

1 - 1 -
T = m Re(WNSWRR) - §Im(WNSWRR) s (257)

which leads to D,W # 0 so that supersymmetry is broken. Moreover, the scalar
potential at the minimum is negative so that the external space is AdS. As a re-
sult supersymmetry breaking critical points of the potential do exist even though in
this case they lead to an AdS space. However, it is interesting that a single four-
dimensional chiral field with a Kéhler potential of the form (2.54) avoids the no-go
theorem of ref. [54] according to which dS or Minkowski space vacua with a broken
supersymmetry are never possible in a theory with a single chiral field for any su-
perpotential if the Kéhler potential is K = —nlog[—i(r — 7)] with 1 < n < 3. As
a result stable dS vacua are no longer excluded. It will be very interesting to see if
by considering a ‘realistic’ model with a non-vanishing number of complex structure
moduli fields stable critical points of the potential at which supersymmetry is broken

can be found.
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CHAPTER III

FLUX BACKGROUND IN HETEROTIC STRING*

In this chapter, we study different aspects of string theory compactifications in the
presence of background flux. Our main focus is the heterotic string compactified
to four dimensions with background NS three-form H. We start by discussing, and
mostly reviewing, flux compactifications of type IIB string theory on K3xT? orien-
tifolds (see for example refs.[26, 55, 56]). Depending on the choice of flux the solutions
preserve an N=21,0 supersymmetry in four dimensions. The backgrounds solve the
equations of motion and in the supersymmetric case the spinor equations. We check
this to the leading order in o/, i.e. in the SUGRA approximation. To set up our
notation we also review the low-energy effective ‘action’ in section A.1 and derive the
equations of motion of type IIB SUGRA in section A.2. In section A.3 we present the
background which solves the equations of motion of type IIB SUGRA and check the
amount of four-dimensional supersymmetry preserved by the different backgrounds in
section A.4. Taking the type IIB background as a starting point we proceed in section
B to construct the heterotic flux background. To set up the notation we review in
section B.1 the heterotic effective action to O(a’) and in section B.2 we derive the
corresponding equations of motion. In section B.3 we present the background and
show that it solves the SUGRA equations of motion. In section C, we discuss the o/
corrected background. We start by presenting explicit results for Tr(R A R) which are

*The results reported in this chapter are reprinted with permission from Super-
symmetry breaking, heterotic strings and fluxes, by K. Becker, C. Bertinato, Y. Chung

and G. Guo, published in Nucl. Phys. B 823 (2009) 428, Copyright 2009 by Elsevier
B.V.
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needed to solve the Bianchi identity and Einstein equation. In section C.1 we review
the proof that Tr(RAR) is a four-form of type (2, 2) to leading order in o/, a condition
which is needed for the solvability of the Bianchi identity. In section C.3, focusing on
solutions with N=2 supersymmetry, we show how to construct the background which

solves the o/ corrected Bianchi identity and supersymmetry transformations.

A. Type IIB SUGRA background

In this section we review type IIB flux backgrounds in which the space-time metric is
a warped product of flat 4d Minkowski space and a K3xT? orientifold (see refs.[26,
55, 56, 57, 58]). To set up the notation we start summarizing our conventions for
the type IIB SUGRA ‘action’ together with the corresponding equations of motion.
Then we summarize the solutions preserving different amounts of four-dimensional
supersymmetry. The analysis is done at the level of SUGRA, i.e. without taking
actions describing brane sources into account.

1. The action

The bosonic part of the type IIB supergravity ‘action’ in the 10d string frame is
S = Sns + Sk + Scs. (31)
Here Syg is
Sy = i/dl% =525 | R4 4(0¢)? — ~| Hy? (3.2)

while the parts of the action describing the massless R-R sector fields are given by

1 ~ 1 ~
Sp = ~ 13 /dlox\/—g (]Fﬁ + | Fs)* + 5]1«}?) , (3.3)
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1
SCS == 4—1%2/04/\H3/\F3 (34)

In these formulas F, 1 = dC,, Hy = dBs and Fy = Fy — Cy Hj.

2. Equations of motion
The equations of motion are as follows

d*Fl :*Fg /\Hg,
d*pg = F5 /\H3, (35)
d*ﬁlr) = —Fg/\Hg,

from the R-R fields, and

1
R — 4(0¢p)* + 4V72%pp — 3 | Hs |*=0,

(3.6)
d (6_2¢B *Hg) = F1 /\*Fg, — F5 VAN Fg,

in the NS-NS sector. The variation of the action with respect to the metric leads to

2
GMN + 62¢B (gMNv2672¢B _ VMVN672¢B> — 2K 6Stensor €2¢>B

NERVIEA

where GG is the Einstein tensor and Siensor 18 the action for all the tensor fields in-

(3.7)

cluding the dilaton. The left hand side arises from the variation of the Einstein-Hilbert
action with the dilaton contribution arising from the non-canonically normalized cur-

vature term. Moreover, the tensor fields satisfy the Bianchi identities

ng - O,
dFl — 0,

] (3.8)
ng == H3 N Fla

ng) - H3 /\ Fg.
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3. The SUGRA background

We are interested in a solution of the 10d equations of motion in which the space-
time contains four non-compact dimensions and six compact dimension. We require
maximal symmetry in the non-compact dimensions which means all tensor fields
except F5 have components along the internal directions only, while Fj is required to
take the form

Fy = (1 +»)da(y) Ada® A dat A da® A da?, (3.9)

where x,y denote the 4d and 6d coordinates respectively. Moreover, we would like
to consider a background which arises as the orientifold limit of a flux background of
M-theory compactified on K3xK3. In this case the RR axion vanishes and the type

I1B dilaton ¢g is constant. The space-time metric is of the form
ds? = eQA(y)+¢B/2n“,,dx“dx” + e~ 2AW)+on/2 (gijdyidyj + dw? + dwg) , (3.10)

where g;; is the metric of K3 and the factor involving the dilaton arises since this is

AW is the warp factor depending on the

the metric in the 10d string frame and e~2
coordinates of the internal space only. The function « in (3.9) is related to the warp

factor according to

a(y) = W), (3.11)

The complex three-form Gy = F3 — ie”%8 Hy is imaginary self-dual in the internal

dimensions, 1i.e.

Moreover, the warp factor satisfies the Poisson equation
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Away from the orientifold points this is a solution of the equations of motion as can
be explicitly verified.
Note that the three-form tensor fields Hs and Fj are harmonic forms on the

internal part of the space (3.10). It turns out that the Hodge numbers of K3 are

h00 1
pLo pol 0 0
h20 pLLop02 = 1 20 1 (3.14)
h21 2 0 0
h22 1

and in particular there are no harmonic one-forms or three-forms on K3. As a result
H; and Fj have to be the product of harmonic two-forms on K3, which we will denote

by (h3); and ( fg)Z and a one-form in the fiber directions, dw?, i.e.
H3 == (hg)z VAN dwz and Fg = (fg)z VAN dwi, 1= ]., 2, (315)
where w; ~ w; + 1 and
(f2)i, (hs)i € H*(K3,Z). (3.16)

Moreover, the condition that G3 is imaginary self-dual requires the complex three-
form to be

Gz =gy Ndw + g_ A dw, (3.17)

where

dw = dwy + idws,, (3.18)

and g+ can be expanded in (anti)-self dual harmonic two-forms on K3

gy € H¥(K3)® H**(K3)® HY' (K3)  and g € HY'(K3). (3.19)
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There are 3 self-dual two-forms and 19 anti-self dual two-forms which are of type
(1,1) and primitive. In the following we will see that the different solutions of the
equations of motion preserve different amounts of supersymmetry. In particular, the

amount of unbroken supersymmetry will depend on the choices of two-forms on K3.

4. Supersymmetry

Let us represent the dilatino and gravitino fields by Weyl spinors A and ¥, re-
spectively. Similarly, the infinitesimal supersymmetry parameter is represented by a
Weyl spinor . The supersymmetry transformations of the fermi fields of type IIB

supergravity (to leading order in fermi fields) are

o\ = % (Pon — ie?JCo) € + 111 <ie¢’3ﬁ3 - H;;) e, (3.20)
and
)

oWy = (VM + %6¢BF1 Lo+ Ee(ﬁB]fs FM) €3 <2(H3)M + ie”® By I‘M) e (3.21)

Upon reducing to 4d the Lorentz algebra decomposes according to
SO(9,1) — SO(3,1) x SO(6). (3.22)
The Weyl spinor € then decomposes as
16 — (2,4) + (2/,4)). (3.23)
Under the further decomposition SO(6) — SO(4) x SO(2)

4—(2,1)+(2,1)
(3.24)
4 = (2,1)+(2,1)
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The holonomy of K3 is SU(2) and under the reduction SO(4) — SU(2)

2—-1+1
(3.25)

2/ — 2.

This means that either 4 or 4’ of SO(6) gives rise to two SU(2) singlets leading
to an N=4 supersymmetry in 4d. Next we analyze the constraints imposed by the
orientifold projection Z, = Q(—1)tZ. Writing € = & + igy the different parity
transformations act according to

Y . (-DfL . I . .
€ =¢€1+1leg — &9 +ieg —— —gg +ig] = il (—ey + igy), (3.26)

where I, is the chirality operator of SO(2). Combining these operations and requiring

the spinor to be left invariant by the orientifold action imposes
e =—I,e. (3.27)

Before we proceed, lets determine how the spinor projection relates to the one in the
type I string. After two T-dualities on torus, the left moving spinor £; is unaffected,

however the right moving spinor €5, transforms as
S i (3.28)
from which we get the transformation of Eq.(3.27),
(1+T,)(e1—€2) =0 (3.29)

Because the gamma matrix I', is pure imaginary in our representation, this condition
leads to €1 = &9, the spinor that survives the world sheet projection of type IIB string,
i.e. type I string. This is an alternative way to see how type I string emerges after

performing T-dualities of type IIB orientifold.



33

Eqn.(3.27) means that spinor has a definite chirality on the torus, which we
choose to be 1 in eqn. (3.24), while 1’ is projected out. As a result the SU(2) singlets
which are not projected out by the orientifold arise from the 4 in eqn. (3.24). The
orientifold breaks the 4d supersymmetry from N=4 to N=2. Moreover, the two 4d
spinors are in the 2 of SO(3,1) so have the same chirality. We denote the resulting

spinors by 7;, and by an SO(4) transformation we can choose them to satisfy
Cim=Tyum =0 and [imy =Tyne =0, (3.30)

where (y%,y") and (w, @) are complex coordinates on K3 and the torus respectively.
Using these supersymmetry transformations the unbroken supersymmetries are

those that satisfy §(fermi) = 0. Evaluated in the background metric (3.10), using the

relation between the warp factor A(y) and «a(y) and the fact that the spinors have

definite 4d chirality the supersymmetry conditions become
V, (e7*/%) =0, (3.31)

which is satisfied with a spinor proportional to the covariantly constant spinors on
K3xT? and
Ge*=0 and Ge =0. (3.32)

Next we solve the constraints (3.32) and we will check that depending on the choice
of flux different amounts of supersymmetry are preserved. Lets analyze the amount

of unbroken supersymmetry
> if G =¢g_ Adw, then

for k = 1,2. This is solved by requiring G to be primitive with respect to the
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base, i.e.

Guijg” =0, (3.34)

while both spinors 7, for £ = 1,2 are non-vanishing. Since g_ are expanded in
a basis of anti-self dual (1,1) forms eqn. (3.34) is always satisfied. This leads

to an N=2 supersymmetry in 4d.
if G = gi’o A dw, eqn. (3.32) requires
GaisTm5 =0, (3.35)
which is solved by 1, = 0, while the conditions on 7; are
GoiiTnf = Gig; T 0} = Gijal"n;. (3.36)

These conditions are always satisfied which implies that the 4d supersymmetry
arising from 7, is unbroken. This flux configuration leads to an N=1 supersym-

metry in 4d.
if G = 99;2 A dw, eqn. (3.32) requires

Gl = Gigi Tt = G700 = G Ty, = 0, (3.37)

J Jt J

for £k = 1,2. These conditions are solved by requiring 1, = 0 while 7, # 0
and as a result there is an N=1" unbroken supersymmetry in 4d. We label
this supersymmetry with N=1" since it preserves a different subgroup of the

supersymmetry than the Gg;; component.

if G = gi' Adw, eqn. (3.32) requires 1, = 1, = 0 and supersymmetry is

completely broken.



35

B. Heterotic SUGRA background

In this section we analyze the heterotic flux backgrounds. To set up the notation we
review the heterotic low-energy effective action to O(a’?) in section 3.1. In section
3.2 we summarize the equations of motion. In section 3.3 we present the backgrounds
solving the SUGRA equations to leading order in o/. In section 3.4 we analyze
the amount of unbroken four-dimensional supersymmetry. This section is confined
to solutions solving the SUGRA equations to leading order in o/ and the corrected

background is discussed in section 4.

1. The action

The bosonic part of the heterotic supergravity action to O(a’?) in the 10d string frame
is [29, 59, 60, 61, 62]

1 1 o
Shet = 53 dVz\/—ge 2? [R + 4(0¢)* — 5|H|2 — Ztr(ﬁ - R, (3.38)

where
/

H = dB + O‘ng,, (3.39)

is the NS three-form and F = dA + A A A is the gauge field strength. Moreover,
w3 = wr, — wywm 1S given in terms of the Lorentz and Yang-Mills Chern-Simons three-

forms

2 2
wy, = tr (Q+AdQ++§Q+/\Q+/\Q+) and  wyy = tr (A/\dA—l— gA/\A/\A) .
(3.40)

The contribution to the action which is quadratic in the Riemann tensor is

1
trR%r = §RMNAB(Q+)RMNAB(Q+>a (3.41)
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while the quadratic term in F is the standard gauge field kinetic term. Note that
the Einstein-Hilbert action is formulated in terms of the spin connection while the
quadratic term in the Riemann tensor is expressed in terms of a connection involving

the NS three-form which explicitly is defined by
1
QPP =04, & 5HABM. (3.42)

Also, we will follow ref. [29] according to which the action involves the Q. con-
nection while the supersymmetry transformations involve the €2 connection. The

supersymmetry tranformations will be described in more detail below.

2. Equations of motion

The equations of motion arising from the action presented in the previous section are

> for the dilaton
1 /
R—4(Ve)’ +4V°6 — J|H| - O‘Ztr(ﬁ —R2) =0, (3.43)
> for B

d(e™? %10 H) =0, (3.44)

> for the metric

1
Ryn +2Vy Vo — ZHMPQ'HNPQ-F ( )
/ 3.45

a
Z[RMPQR(Q+)RNPQR(Q+) — FupFn]1=0,
> for the Yang-Mills field

€2¢d(672¢ *10 f) + ./4. N *10f — *10.,/t VAN A + F A *u)H =0. (346)
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The Bianchi identities are

a/

dH = Z[tr(R+ ARy)—Tr(FAF) and  dF +[AF]=0. (3.47)

3. The SUGRA background

In the following, we present the background that solves the SUGRA equations of
motion to leading order in o/ (see ref.[26, 30, 31] for supersymmetric backgrounds).
As we will see non-trivial solutions of the Bianchi identity exist only for non-compact
backgrounds. This conclusion is modified once ' corrections are taken into account.

The background metric is
dst,, = nudatde” + e AW g dy'dy’ + By, By, + FuyFu,, (3.48)

where

By, = dw; + By, dy' and By, = dwy + Biy,dy’, (3.49)

and B,, = Biwkdyi, for k = 1,2 are one-forms on the base. These one-forms are

constrained by the condition that
H,, = dBj,dy  and  H,, = dBj,,dy’, (3.50)

are harmonic non-trivial two-forms on K3. Note that F,, have to be globally defined
since otherwise the metric is not be globally defined. As a result on the 6d space
H,, = dE,, become exact even though these forms are non-trivial on K3. We will
expand f,, in harmonic non-trivial two-forms on K3. Depending on the choice of
flux different amounts of 4d supersymmetry will preserved as we will see in the next

section. The three-form is

H=e"%d (e 2?E" A E™) = xpde™ ) — s H,,, A E"" — xH,,, NE™, (3.51)
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where x4 denotes the Hodge dual with respect to the 6d internal space and %, denotes

the Hodge dual with respect to the unwarped base. The dilaton is given by
o= —2A(y). (3.52)

The Yang-Mills field is assumed to be a two-form on K3 only and to satisfy the

hermitian Yang-Mills equations, i.e.

Here J is the Kéhler form of K3. Moreover, A(y) is a scalar function depending on the
coordinates of the base only. To leading order it is required to solve the differential
equation

Ve AW | Hy, |2 + | Ha, *=0. (3.54)

Next we show that this background satisfies the equations of motion to leading order

in o/. The equation of motion of B is satisfied since (3.51) implies
*ioH = —e*?d (e P E*" A EY2) A da™. (3.55)
The equation of motion for the metric has several components

(:ua V)v (i7j>7 (wlvi)v <w27i)7 (w1>w2)' (356)

The (i, j) component, with two indices on K3, is satisfied assuming A(y) solves (3.54).
Moreover, it is easy to see that all other components vanish to this order in . Next
we consider the dilaton equation of motion. Using the metric (B.4) to compute the
scalar curvature R, the dilaton equation of motion is solved assuming A(y) solves

eqn. (3.54). On the other hand the Bianchi identity leads to

dH = — (v26—4A(y)+ | Ho, |2+ | Hy, |2) *xp1 =0, (3.57)
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which again is solved after imposing eqn. (3.54). Note that eqn. (3.54) only has
non-trivial solutions if the internal space is non-compact. Below we will describe in

detail how to construct compact solutions by going beyond the leading order in «’'.

4. Supersymmetry

Next let us analyze the supersymmetry of the solutions of the equation of motion.
The supersymmetry transformations leaving the 10d heterotic string frame effective

action invariant are
1
5\IJM = VME - Z%ME,
1
X =dore — 57775,
ox = 2Fe,

where W, is the gravitino, A the dilatino and y the gaugino. All spinors are Majorana-

Weyl. The covariant derivative of a spinor is defined according to

1
Ve = Oye + ZQABMFABs, (3.58)

where ) is the spin connection. Note that the gravitino variation can then be written

in the form

1
Sy = Oue + ZQéBMFABga (3.59)

where

1
QfF =04+ 5Hf“BM. (3.60)
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Explicitly the components of the spin connection are

1
Qila 2562A(Hw1 + *wal)ab€b7

w2

1
iaziéﬂh%,;mH@%wﬂ
(3.61)

Q%, =2[0"Aey — OpAe” F (}pdA)", e + w

1 1
—iéﬂmminﬂmﬁﬁm—§éﬂmwinmmgyw

Note the sign differences between the first two components of the spin connection
and the last one. These sign differences will play a crucial role in the supersymmetry
analysis. Under the decomposition SO(9,1) — SO(3,1) x SO(6) a 10d Weyl spinor

decomposes as 16 — (2,4) + (2/,4'). Imposing the Majorana condition we set
e=(@n+ 7, (3.62)

where ¢ ® n transforms as (2,4). Since the complex conjugate is not an independent
spinor each 6d Weyl spinor gives rise to one minimal 4d supersymmetry.

Lets solve the supersymmetry constraints. The gravitino condition with the index
in the external space-time is satisfied if the spinor does not depend on the coordinates
of the external space-time. Projecting onto spinors with definite 4d chirality the

supersymmetry conditions become

1

1
@M—§%H=Q
Fn=0,

which are equations constraining the 6d spinor 7. To solve this supersymmetry con-

ditions the spinor 7 has to satisfy

1
Ow;n =0 and oim + Zwabﬂabn =0, (3.63)
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i.e. 1 is a covariantly constant spinor on the base. We denote the two covariantly

constant spinors of K3 by ng, K = 1,2. Moreover, we require 7, to solve
(Hw1 - *wa1)ab'7ab77k = (ng - *wag)ablyabT/k = 07
(Hw1 + *wal)alea??k + (sz + *waz)ab7w2a77k = 07

which after introducing complex coordinates w = w; + iws, so that

) 1
Hy = 5(Hy, —iHy,)  and  Heg = 5(Hy, + i),

take the form
[(1 =) Hul gy 7" = 0,
(1 = %) Hi) vk = 0,

[(1 + *b)Hw]abvwank + [(1 + *b)Hw]abﬂywaT]k =0.

(3.64)

(3.65)

(3.66)

Note that the contributions involving the warp factor arising from the spin connection

components 24 and contributing to the component of the gravitino variation along
C

the base cancel since the two spinors 7, have positive chirality on the base i.e.

—V1234Mk = Tk k=1,2.

(3.67)

Now depending on the choice of flux different amounts of supersymmetry are preserved

[31]. The different cases are

> if H, is proportional to an anti-self dual (1,1) form on the K3 base, the condi-

tions (B.18) are satisfied for both spinors 1y, k = 1,2. An N=2 supersymmetry

is preserved in 4d. Indeed, the third condition is trivially satisfied and the first

two conditions are satisfied since the anti-self dual (1,1) forms are primitive

with respect to the base.

> if H,, is proportional to the self-dual (0,2) form on the base the supersymme-
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try generated by 7, is preserved while 7y = 0. There is an N=1 unbroken

supersymmetry in 4d.

> if H, is proportional to the self-dual (2,0) form on the base the supersymme-
try generated by 7, is unbroken while n; = 0. There is an N=1" unbroken

supersymmetry in 4d.

> if H,, is proportional to the self-dual (1,1) form on the base (B.18) requires the

two spinors to vanish. So N=0 in 4d.

C. The o corrected torsional heterotic geometry

In this section we will consider o/ corrections to the torsional heterotic geometries. We
will see that these o corrections to the background are required since otherwise the
o corrected equations of motion are not satisfied. Once the background is corrected
in o/ compact solutions become possible. As a first step to solve the Bianchi identity
we need to compute tr(R, A R, ), which appears on the right hand side of the Bianchi

identity.

1. tr(R+ VAN R+)
In general, the curvature two-form is defined by
RAp =d0%s + Q%% A Q%, (3.68)

for some connection €. According to Bergshoeff and de Roo [29] the connection

used in the supersymmtry transformations is {2 while in the Bianchi identity the €2,
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connection is used. The connection coefficients are

1 o
Qz-ﬁka :_62A(Hwk - *wak> €, dyja k= 172

’ v (3.69)

@ a a 1 i 1, ac pw
Q+b =0 b+w b_é(Hwk +*wa,c>UECE(J,77 E k?

where, the last term involves a sum over k£ = 1,2. We denote with E* the vielbeine

of the warped base while e® are those of the unwarped K3. Moreover,
Ogp = 2 [8aAeb — 8bA€a — (*bdA)abcec] . (370)

Note that o, is self-dual in its indices, i.e. it satisfies

1
Ogh — §8abcd0'6d. (371)

We are denoting the spin connection coefficients and curvature two-form of the K3
base by w?, and r%,.

Before describing in detail the results for the curvature two-form and Tr(R,AR,),
where R, is computed with respect to the {2, connection, we will first establish that
the curvature two-form of the torsional space is of type (1,1) to leading order in o if
computed with respect to the Q2 connection. This implies that Tr(R; AR, is a (2,2)
form which is a necessary condition for the Bianchi identity to admit a non-trivial
solution. Indeed, up to terms of O(a?) unbroken supersymmetry requires the flux
and the fundamental (1,1) form to be related according to H = i(d — 9)J. As a
result dH = —2i00.J is a (2,2) form. This is the left hand side of the Bianchi identity.
The right hand side of the Bianchi identity is Tr(Ry A R, ), which is required to be
a four-form of type (2,2) since otherwise the background is over-constrained.

Here we follow the presentation of ref. [63]. By definition

1
o =0+ 5HABM, (3.72)
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which implies that the connection in the coordinate basis is modified to
I, =GB B + QP BRER) =T — ~Hix”. (3.73)

By definition

1
Dg = §9JN (91981 + Oxgnr — ONGrx) - (3.74)
Supersymmetry requires H to be related to the derivative of the metric according to
Hyunp = —Omgnp + ONgrMp, (3.75)

and the complex conjugate. Here we have introduced complex coordinates. Using the
fact that the metric of the torsional space is hermitian eqn. (3.74) implies that the

non-vanishing connection coefficients are

e =9"09ky  and T4 = 9™ 0ggs5 — 9" Oxgsk- (3.76)

So in contrast to Kahler geometry there are connection coefficients with mixed indices.

The Riemann tensor is obtained from the connection coefficients according to
Run™p = 0ulNy, — OnTiyr + TiialNp — TNl (3.77)
and the curvature two-form is related to the Riemann tensor according to
A 1 A g2C D
R%p = éR(;D gE~“E”. (3.78)

Introducing complex coordinates it is not difficult to see that

Rimn®r = Romn™r = Roun®z = 0. (3.79)

Moreover,

Ryun™r = 9" (9pwime — 9oy anp) = O(Q). (3.80)
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This quantity is subleading since the right hand side is the (2,2) component of dH
which is O(a/) after using the Bianchi identity. Therefore we conclude that to leading
order in o/, Tr(Ry A R, ) is of type (2,2).

Next we present the explicit results for the curvature two-forms and Tr(R; AR)
and show how to solve the Bianchi identity. We will focus on solutions with N=2

supersymmetry.

2. N=2 background at O(«’)

In this case the forms H,, are proportional to anti-self dual (1,1) forms on the K3 base.
From (3.69) we see that the only non-vanishing components of the spin connection

are

QY =e* (Hy,),eLdy’, k=12
(3.81)
%, =0 +w%.
In this case the curvature two-form computed with respect to the €2, connection is a
two-from on K3 explicitly given by
Ry = =€ (Hyp, )o(Hyy )"
R, = —V[e**(Hy,)a) — **(Hy, )s0", k=1,2 (3.82)
R  =1%+ Vo' + 0%0% — " Hy,)a(Hy, )b,
where 7% is the curvature two-form of K3 and V is the covariant derivative with

respect to the w®, connection. Explicitly
Vo, = do®y + w0y + 0% cw. (3.83)

A convenient way to compute Tr(R, A R, ) is to use the Chern-Simons formula which

relates the results for Tr(R A R) computed with two connections I' and I' according
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to

Tr(RAR) — Tr(RAR) = dQ(T',T), (3.84)

where

- 2
Q(F,F):2a/\R—oz/\doz—2a/\F/\oz—|—§a/\a/\oz (3.85)

where @ = I' — T, Setting

I, =0Q% and I =0,

a

(3.86)
' =Qf, and e, =0, k=12,
or in other words choosing
a’y =0 and v, = —e*A(Hy, )ijeldy’, (3.87)

we obtain

Tr(Ry ARy) = Te[R(D)AR(D)]+2d { e (H, oV [ (Huy o] + € (Hu )0 e (Huy)e }
(3.88)

where
Tr[R(T) A R(D)] = —(Vo% + 1% + 0%0%) (Vs + 10 + 0°0%,) (3.89)

This result can be further simplified by using the Chern-Simons formula again, this
time with

I =w% and Y =w 4+ a%. (3.90)

The result is

Tr[RT)ART)] = Tr(r Ar) —2'd [2(V?A) x dA — xd(VA)? — 8(VA)* xdA] . (3.91)
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A straightforward but tedious computation then shows

Tr(Ry ARy) =Te(r Ar) +4d+, d (VPA) +
doy d [(V2e ™ + [H )] + (3.92)
2d [(V2e 4 + |H|?) % de™]

where

[HI* = [Hu, [ + [ Huy|*. (3.93)

Note that the last two lines in eqn. (3.92) involve the leading order equation of motion
(3.54). Thus we establish that for solutions preserving an N=2 supersymmetry in four
dimensions Tr(R; A Ry) is a (2,2) form with components along the K3 base only.
Note that this fact is a consequence of having used the 2, connection to compute
Tr(Ry A Ry). Since Tr(R4 A R;) has components along the base only the fiber is not
required to be of O(a/) and can be chosen to be large.

Next we will use this result and solve the Bianchi identity

O[,

dH 1

Tr(RA R) — Tr(F A F)] (3.94)

to O(a’). First we note that the second and third line on the right hand side of
Eq.(3.92) are proportional to the dual of dH and are therefore O(a’). As a result
they contribute to the Bianchi identity only to O(a'?). Keeping all terms up to O(c)
the Bianchi identity becomes

/
dxyde™* — s, Hyp N Hyy, +0() = % [Tr(r Ar) —Tr(FAF)]+ o' dx d(V2A). (3.95)
Here we have allowed a correction to O(a/) on the left hand side. Since the su-
persymmtry transformations receive only corrections at O(a'?) any corrections to the
left hand side of eqn.(3.95) have to solve the leading order supersymmetry conditions.

Since the supersymmtry conditions do not determine A(y) we can redefine the warp
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factor and still obtain a supersymmetric situation. In particular if we define
e = ¢ 4L o/V2A. (3.96)

and allow the background to receive an O(a’) correction according to

¢ = _QA,(y)7
H = xpde ™AW — s Hy A By — 5y Hyy A By, (3.97)
dsiet = nMdeude + 6_4A,(y)gijdyidyj + Ewl Ew1 + szEwQ

supersymmtry will still be preserved. To this order in o/ the Bianchi identity becomes
an equation of Laplace type, namely

dxy de™ — wyHy, A Hy, = %[Tr(r A1) — Te(F A F)). (3.98)

Note that we have obtained a linear differential for the dilaton even though the Bianchi
identity could, in principle, lead to a highly non-linear differential equation. This fact
depends crucially on choosing the Q. connection to construct Tr(Ry A Ry). There
is a preferred set of fields for which this connection is required by space-time super-
symmetry as shown by Bergshoeff and de Roo [29]. A different choice of connection
is always possible but it leads to a different choice of fields for which in general the
supersymmetry transformations will receive corrections at O(a’). We have found a
differential equation of Laplace type using the €2, connection and the solvability of the
equation is immediate if the integrated equation is satified. Choosing the hermitian
connection, on the other hand, will lead to a highly non-linear differential equation
of Monge-Ampere type as shown in refs. [23, 24] .

In the following we will show that the o/ corrected background solves the equa-

tions of motion presented in section 3.2. First we note that the equation of motion
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of B is satisfied since in the background (3.97)
*ioH = —e*?d (e > E" A EV2) A da™'. (3.99)

The Bianchi identity for H is solved by construction. To solve the equations of motion
for the metric we first establish some properties of the Riemann tensor. First, the

Riceci tensor of the torsional metric is
1 /
R;j = 4V,0;A' + 80, A0, A’ — §e4A Houai Hj + g5 [2V2A" = 8(0A")?] . (3.100)

where (7, 7) are indices on the base and V; involves connections on the base only.
Note that this derivative is not identical to Vgﬁ), which is the covariant derivative

constructed with respect to the connections on the six-dimensional torsional space.

So for example

VZ(G)@ng = Vﬁjgb — 88iA’8jA’ + 49,3(814/)2 (3101)

Up to terms of O(a’) the curvature two-form constructed from the 2, connection
R4 5 satisfies

xR 4p = —R, 45 +0(d) (3.102)

This condition can be derived using the integrability condition of the supersymmetry

constrain on the gravitino

1
Vo, Voyle= ZR_MNPQFPQE =0, (3.103)

which implies

Moreover, one has

R_poun = Riynpg — 2VipPHuNGg = Ry yypg + O(a), (3.105)
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which implies

Ry ponnJ "%+ O0(a') = 0. (3.106)

From here we obtain the following identity

1
Rippaple," " = 1R pgapRe " P gmn + O(c) (3.107)

where now (m,n) are indices on the K3 base only, while if these indices are along the

fiber the result vanishes. Also,
1
Tr(Ry ARy) = —§R+PQABR+PQAB * 1+ 0(a). (3.108)

Using the above result for the curvature we can now verify the equation of motion for
the metric and the dilaton. The only non-trivial component of the Einstein equation
is the (M, N) = (m,n) component with both indices along the base. All terms, except
the ones proportional to the base metric g,,, cancel. The coefficient of g,,,, on the
other hand, turns out to be the Hodge dual of the Bianchi identity (A), as can be
verified with a bit of patience. As a result the Einstein equation, Bianchi identity
and equation of motion for B are satisfied. Explicit computation shows that also the
dilaton equation of motion is solved.

We end by describing torsional spaces with an N=2 supersymmetry in which the
twist of the fiber is ‘exchanged’ by vacuum expectation values of abelian gauge fields.
This type of solutions were suggested in refs. [25, 64]. In this case the torus fiber is

not twisted and the background fields are

ds* = n,datde” + e YW gdy' dy + dw? + dw?,
H = *bd6_4Al(y),
) (3.109)
F = Fydy'dy’,

¢ =—24'(y),
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where now an abelian gauge field is included as part of the background and F is an
anti-self dual form on K3. This background solves the supersymmetry constraints
preserving an N=2 supersymmtry. Moreover, it is not difficult to see that the Bianchi

identity reduces to the differential equation

/

—V2e AW 4,1 :% [Tr(r A1) — Te(F A F)]

3a/ 2 44 4A

+ %d(e“ *p AVZe™ 1.
The computation of Tr(R. A R,) for these solutions is greatly simplified since the
fiber is not twisted. In this case the second and third lines on the right hand side
of eqn. (3.110) are again corrections of order O(a’?) or higher and can only be
consistently taken into account once the supersymmetry transformations are corrected
to O(a’?). Therefore to O(a’) the differential equation is again of Laplace type and
solvability is guaranteed. The form of the O(a’?) corrections to the supersymmetry
transformations has been described in ref. [29]. It would be interesting to analysis
to O(a') of solutions preserving an N=2 supersymmetry and show the solvability of

the Bianchi identity for backgrounds preserving an N=1 supersymmetry.
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CHAPTER IV

HIGHER DERIVATIVE D-BRANE COUPLINGS*

As we mentioned in the introduction, one needs more complete knowledge regarding
the higher derivative D-brane couplings to connect the flux backgrounds we described
in Chapter III to vacua in type IIB side at the o' order. In this chapter, we will
compute the higher derivative D-brane couplings by using both T-duality rules and
string disc amplitude approaches. In section A, we use spacetime T-duality to argue
that there should be additional higher derivative terms to the well known anomaly
couplings at Eq.(1.2), and we will in fact use the Buscher rules to compute several
terms which must be present, eventually arriving at (4.28), which is the key result of
this section. In section B we evaluate disc amplitudes with insertions of three vertex
operators for one R-R field C?~3) and two NS-NS fields. We will focus on the case that
both NS-NS fields are anti-symmetric B-fields, and only briefly summarize the results
for other situations. In section C, we present the supergravity diagrams that replace
the string amplitude at low energy limit. Using all known low energy effective action
of type II string, we are able to evaluate the amplitudes for most of these diagrams,
except the one with only one vertex, representing the contact interaction among one
R-R field and two B-fields on D-brane. After subtracting all known supergravity
amplitudes from the string amplitude we get the amplitude arising from the brane

*The results reported in this chapter are reprinted with permission from Higher
derivative brane couplings from T-duality, by K. Becker, G. Guo, and D. Rob-
bins, published in JHEP 1009 (2010) 029, Copyright 2010 by Springer; Disk ampli-
tudes, picture changing and space-time actions, by K. Becker, G. Guo, and D. Rob-

bins, arXiv:1106.3307; Higher derivative brane couplings from string amplitudes, by
K. Becker, G. Guo, and D. Robbins (to appear soon).
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couplings including both leading and higher derivative terms. In section D, we write
down the action that reproduce the higher derivative amplitude in section C, in terms
of either field strength H or B + 2a’F, so the action is manifestly invariant under B-
field gauge transformation. We show that the require of R-R gauge invariance impose
the corrections of our action. we also show that the modified higher derivative action
is compatible with linear T-duality. Finally, we will discuss how to fix the arbitrary

terms we left behind.

A. Predictions from T-duality

1. Buscher rules

In backgrounds which include a U(1) isometry, type II string theories appear to enjoy a
duality,called T-duality, relating one background which solves the equations of motion
to another. Pick coordinates such that the isometry corresponds to translation in one
coordinate, y, and let the remaining coordinates be labeled by indices p, v, etc. Then

the explicit T-duality transformations for the NS-NS fields are given by [65]

g = 1 g = % g = guy — YuyYGvy — BuyBuy
Y gy M gy " ! yy
g 9w po_p  Buwlnm 9By g Ly (4.1)
wy ’ p — Ppr ) = 5 Gyy> .
Gyy yy

and for the R-R potentials we have [66]

(p—1)
o®) — -y (p—1) C[ur"upley\gﬂpfl]y (4.2)

H1 pp—1Y 1 Hp—1 )
Jyy

(p=1)
1+ prp—21y| Bip11v1Gpsly

(p) _ (p+1) (p—1) _
Citny = Oy + POy Brgly + 2 (P = 1) Tov

Under this duality, the type IIA and type IIB supergravity actions are mapped into

each other, and in fact the action for the NS-NS sector fields is invariant under T-
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duality.

2. Using T-duality to construct or constrain actions

Suppose that we didn’t actually know the two-derivative action for NS-NS sector
fields, but knew only that it was invariant under diffeomorphisms and B-field gauge
transformations. In this case there are four possible terms we could write down in

the Lagrangian,

A@)=gR,  L(®)V=gH?,  [(®)V=gV?C,  fi(P)V—g(VD)*, (4.3)

where the f; are arbitrary functions of . Note that one combination of these would
be a total derivative, but if we continue to work at the level of Lagrangians, we can
keep all four terms. If we also know that the Lagrangian was invariant under the
Buscher rules above, then we can actually fix the action up to an overall constant.
We would do this by assuming a background with a U(1) isometry, evaluating each of
the terms above in that situation, and demanding that the result be invariant. One

finds the invariant combination
1
LD Ne /=g (R - EH2 +4V20 — 4 (V<I>)2> : (4.4)

with A/ an arbitrary constant?. If we knew the coefficient of one of the terms, like the
Einstein-Hilbert term, then the other terms are determined. In this way, T-duality
can be used to fix the form of the action.

T-duality is also a useful guide in the presence of D-branes, converting a brane
which wraps the direction of the U(1) isometry into one which is localized at a point

*One can compare this result with equation (1.10) of [67], which is obtained by
slightly different reasoning.
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in the circle direction®. T-duality should map the actions on such dual pairs of branes
into one another. In this chapter we will be focused on the Wess-Zumino part of the
D-brane action, its higher derivative corrections, and terms related to it by T-duality.

Formally, these terms can be written as

1
1, [ e (45)
Dp

where T}, is the tension of the D-brane and E%’;}l) is a (p+1)-form on the worldvolume
of the D-brane. A naive guess for the zero-derivative piece of this action would be
E%}l) = CP+Y but it turns out that this is inconsistent with T-duality. Indeed, the
requirement of consistency with T-duality is equivalent to demanding (we use a prime

to indicate that the expression should be transformed by the Buscher rules (4.1) and

(4.2))

(p+1) _ ppt2) (p+1) ()
'CWZ Hippt1l ‘CWZ M1 Hp 1Y) ’CWZ M1 ppY 'CWZ H1pp? <4'6)

which is not satisfied by C®*1 because of the non-linear pieces in the transformation
rules (4.2). Rather, we should proceed as before and write down the possible terms
which can appear, evaluate them in a circle isometry ansatz, and impose T-duality.

Doing so, we arrive at the T-duality completion of this naive term,

5%—21) = C(€B|(p—i-1)—form7 (47)

where C' is a formal sum of R-R potentials and

1
eB:l+B—|—§B/\B+-'-. (4.8)

°In this discussion, we are referring to probe branes, not to branes or stacks of
branes that backreact on the geometry. A supergravity solution corresponding to a
stack of branes wrapping a circle isometry with backreaction taken into account is
converted, by T-duality, into a solution where a stack of lower-dimensional branes
are smeared along the circle direction. Instead, we are typically interested in only a
single brane which is localized, not smeared.
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It is not hard to see that (considered as forms in the ten-dimensional spacetime) the
expression (4.7) satisfies (4.6).

Thus, if one knew about T-duality, and knew that we expected at least a term in
the Lagrangian like [ Dp C®*1) then we could deduce that it must be part of a larger
“T-duality invariant”, | Dy CeB, where the (p + 1)-form integrand here is understood
to be pulled back to the worldvolume of the Dp-brane. Of course, if we also considered
invariance under B-field gauge transformations, then we would be lead to introduce

more terms, so that the final result was
S(O) T O B42wd' F
wz = 1p € ; (4.9)
Dp

where F' = dA is the field strength of the worldvolume gauge field which transforms
under B-field gauge transformations B — B + dA as A — A — A/(2ra’). In most of
what follows we will set the gauge field to zero, though of course the eventual task of
constructing a full non-linear action will require its inclusion, along with many other

terms that we have not written down, in order to satisfy B-field gauge invariance.

3. Higher derivative corrections

Now we turn to four-derivative terms. It is known that (up to field redefinitions),
the type II two-derivative supergravity action gets no corrections until certain eight-
derivative terms predicted from string theory appear. Thus the action receives only
(/)3 corrections, and is uncorrected at order o and (a/)?. It then follows, trivially,
that the Buscher rules which we wrote down before continue to be symmetries of (the
NS-NS part of) the action to order (/).

We will then assume that this observation holds also in the presence of branes,
where suddenly the idea that the Buscher rules remain uncorrected at order (/)2

becomes a powerful tool. The worldvolume actions of D-branes, and the Wess-Zumino
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piece in particular, is known to receive four-derivative corrections at order (a/)%. If
the original Buscher rules continue to describe T-duality at this order, then they can
be used to strongly constrain these corrections to the action, since the four-derivative
parts of the action will need to be T-duality covariant by themselves. On the other
hand, if the Buscher rules were corrected to this order, then it would be much more
difficult to extract any useful information, since we would have to contend with mixing
between T-duality transformations of the zero-derivative and four-derivative parts of
the action.

It’s not completely clear that our assumption is reasonable - one could perhaps
imagine corrections to the Buscher rules which were non-vanishing only in the presence
of branes or other sources. However, for now we will proceed with this idea, and we will
find that the result we got from string amplitude approach in section D will confirm
the predictions we make here, thus justifying, to some extent, our assumptions.

Now we turn to the known a’? corrections to the Wess-Zumino action (1.2), which

is proportional to a four-form

@

original

= TI"RT A RT - TI“RN VAN RN

1 e ik <j i a c
= Z (_nggéih (RT)abef (RT)cdgh + 0 kajz (RN)ab ’ (RN)cdké> dz® N dxb A dx® A d‘rd’

(4.10)

where gr is the induced metric on the brane worldvolume, Rt is the curvature tensor
built from gr, and Ry is the curvature of the normal bundle. Here and throughout
this chapter we use the indices a, b, etc. to refer to the worldvolume of the D-brane,
and indices 7, j, etc. to refer to the normal bundle. Our notation largely follows
that of [68]. We will use indices pu, v, etc. for the ten-dimensional spacetime. If the
brane positions are given by X*(z%), then we have (97)w = ¢uw0a X" 0, X", and we

can pick an orthonormal frame & for the normal bundle which satisfies g,,,&! £ = 0ij
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and ¢,,0,X*¢ = 0.
In order to relate the curvatures Ry and Ry to the ten-dimensional spacetime

curvature, we must first introduce the second fundamental form [69],
Qhy = 0998 (000 X" — (Tr)5y, 0 XY 4+ 1%,0,X°0,X7) . (4.11)

In this expression, Iy and (I'7)g, are the Christoffel symbols constructed from the
spacetime and worldvolume metrics respectively.

We then use the Gauss-Codazzi equations, which state

(RT)abcd = Raped + 5ij (szcﬂgd - szinc) )

(RN)abij = _Rabij + g%d (szchd - QgcQZd) . (412)

Here we raise and lower indices with (gr)a or d;;, as appropriate, and we pull back

indices from spacetime using either 9, X* or &, so
Rapea = 0. X" X 0 X 04X Ryupoy Ry = %670, X O, X 0] Ryppo- (4.13)

We will work in a linearized approximation, which means that we expand all of
our fields around a flat background and work to leading order in the fluctuations. We
do this both to greatly simplify our calculations, and also because these are really the
only results that we can realistically compare to the disc amplitudes we compute in
section B. Fortunately, this does provide an enormous simplification since the second
fundamental form vanishes in the flat background and so must be at least first order
in fluctuations, which means that it contributes to Ry and Ry only at second order
in the fields or higher. Meanwhile, the spacetime curvature does have a piece which

is first order in the fluctuations,

Ruvpe = =Ouphoy + Oujphol + O(h2>» (4.14)
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where we have split the metric into background plus fluctuation, g, = 1. + hpu.

Thus, to leading order in the fluctuations,

X(4-) ) >
( original abed
— 12 (—8[aehbf Oclethary + 0y D gihaje + OBy Ogithay — " hy) 3c|j|hd1i) +O(h?).

(4.15)
4. T-dualizing the corrections

Now we note that the action so far (to this order in o’) is not consistent with T-duality,

since
72 (o )2

+1

(CeP)" A x (4.16)

original

does not satisfy (4.6). In order to find an action that is consistent with T-duality, we

make the following ansatz®

24 (p+1)! (p-3)
(p+1) _ B\ (P (4)
7T2 (a/)Qﬁa’l“'ap“'l - 4' (p _ 3)' (Ce )[al---ap_g Xapfzapflapaerl]
(p+1)! B\ (1) (3)i
NETPED)] (C) a1y it Xap-rapapsa] (4.17)
(p+1)! B\ (p+1) (2) i1z
+22 (p—1)! ( )[al"-ap—1|i1i2\ Xapap+1}

We assume that the objects X are built out of NS-NS sector closed string fields”.

®The normalizations here are chosen so as to make the T-duality rules in (4.19)
simple. In principle we could also include terms with X{Vhis and X (O iizisis which
would in turn correspond to couplings of higher degree forms C®*3) and C®?+9 to the
D-brane. However, it turns out that these couplings do not occur in the T-duality

invariants built from X (Ei)ginal.

"Note that the Buscher rules always preserve the number of R-R fields which
appear in an expression, so this Wess-Zumino term does not mix under T-duality
with terms that contain no R-R fields, such as DBI, or with terms that contain more

than one R-R field.
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To impose consistency under T-duality, we must ensure that this ansatz satisfies

(4.6), which happens iff

4 4 3)1i 3)t 2)1i11 2) 411
Xc§121/2a3a4 = X0(L1212a3a47 Xélzllgag = X151212(I3’ X(5121,21 ? = Xcglzlgl 27 (418)
and®
3 4 2)11 3)t
XC(LlZLIQZ{lg = Xé1212a3y’ Xc(llZLIQy = X(S,u)lgy’ (419)

where a prime means that we have used the Buscher rules to transform the object
in question. This ansatz and these consistency conditions should in fact hold even
beyond the linearized approximation, though at higher orders we may also have to
incorporate open string fields.

Now we would like to build an action which includes the known terms (4.10)
but which is consistent with the T-duality rules expressed above. Note that all four
of the terms in (4.15) have two of the four antisymmetrized free indices attached to
derivatives. The Buscher rules, given our assumption that they are exact to this order
in o/, will preserve this fact - any terms which can mix with these four terms under
T-duality must also have two of the antisymmetrized indices occupied by derivatives.
One immediate consequence of this is that we need not consider terms in X ™ which
are linear order in NS-NS fluctuations, since in that case all derivatives would be
hitting the same field and antisymmetrizing any two derivatives would give zero.
This is not to say that terms with only one NS-NS field will not occur (indeed they
are expected, see [71]), but simply that they cannot appear in the same T-duality
invariant as (4.15). Furthermore, applying the Buscher rules never reduces the number

8Here the T-duality transformation swaps an upper y index with a lower ¥ index
(though of course at linearized order around a flat background this is irrelevant). This

is a frequent feature of T-duality transformations of NS-NS fields and fluxes, such as
for example so-called generalized NS-NS fluxes [70].
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of fluctuations in a term, so we see that we can restrict ourselves to terms which are
quadratic in the fluctuations and we can also restrict ourselves to the linearized version

of the Buscher rules,

B, =h =0 ——h

h:/l/y - _h h/ Bﬂy7 ny WY 2 Yy (420)

Yyy»

with h,, and B, left invariant.
Under these transformations, it is not hard to verify that the terms in (4.15) can

only mix with certain terms, which we can enumerate,

XY ar = Oé13[a1bha203a3\b\ha4}c + QQa[albha268a3|c|ha4]b + aga[aljhmkaag il Paalk
040, Py Ou sy + 45010, " By gty Basyy + 60,4, By Ous 1 Baas:
X = 5104, h, 0 Bl + 2010, oy Do By + 330, by F O By (4.21)
5100, Py Oue B + 3500, " Dy Bagls + B0y, Ny Basio
XE = 50, W0, 0+ 120, TR ,0 ", 4 38, BI0,,, B,

+Py4a[a1bB[i1|C|aa2]C b + 758 leklaaz 12 k + VGa[aljB[h'k‘aaz]kBiQ]j.

From (4.15) we know that —a; = ay = a3 = —ay = 12, but we would like
to use our T-duality constraints to determine the remaining fourteen constants. To
proceed, we need to evaluate the expressions above in an ansatz with a circle bundle.

For instance, suppose the circle bundle is along the brane, then we would evaluate

X@W as

X(4) = )/5(4) + ala[al bha2|y|aa3|i)|ha4]y + Oéﬁa

aijazasaq ajazazaq

jBa2|y\aa3|j|Ba4]y7 (422)

la

where hatted indices are summed over all directions along the brane excluding y, and

where X@ represents the expression for X but with y excluded from all sums.
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Under T-duality, this expression becomes

X @) - XW + ala[al bBa2|y‘aa3|b|Ba4]y + Oéﬁa[aljhaﬂy‘aagmhady. (4.23)

aijazasaq aijazazaq

Meanwhile, if the circle bundle is normal to the brane we have

X = X Dsagar + 30,0, Pasiy) Ouslithasty + @500, "Basly) Oy Basy-~ (4.24)

aijazasaq aijaza3a4

Comparing (4.23) and (4.24) we learn that oy = a5 and ag = ag. Similar considera-
tions for X® and X® show that £, = 35, B¢ = 35, 72 = V5, and v3 = 7.

Next, we also compute

XSy = %al (010" hray Oz Bey — O, "y Oaslpl Baay) + %Oéza[albh@caas]cBby
%aga[af ho, 0,5 Bs, + %ma{aﬁ hay 0,15,
—%%a[albhfya@bB%H - %aﬁa[aljhbyﬁaﬁBaﬂb, (4.25)

and
XU = =101, P, Dasgo Bey — B2010, "y OuieBoy — B30, ", 0usi By,
100, a0 By + s (%fhj w10zt Bag)j + 3[a1bh|yy|3a2\b\3a3}y>
86014,y Oasl i Baslo (4.26)
from which we deduce that g, = —%al, By = —%OZQ, B3 = —%Ofg, By = —%0@,
Bs = —%045 = —%0417 and fJs = —%Oéﬁ = —%043-
A comparison of X,g??l;; and XCE?L;@’ then lead us also to 7, = —%55 = —%ﬁl,

Y2 = =306, 73 = —301, 1 = —302, 75 = —30s, and 75 = —306;. Note that all the
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conditions are self-consistent, and we are left with the result,

Xc(zj‘zzzasazx = 12 <_8[a1bhazcaa3\b\ha4}c + a[mbhazca%\dhadb + a[mjhazkaasljlh%]k
_a[a1jha2ka¢13|k|ha4]j - 8[a1bBazja%|b|BCL4]j + 8[a1jBa2ba¢13|j|Ba4]b) )
ng?zziag = 6 (a[al bhagcaaﬂbBic - a[al bhagcaaa}cBib - a[aljhazkaa:ﬂjBik

+a[a1jha2ka‘13]kBij + a[m bhijaa2|b|Ba3]j - a[aljhibaaQ\ﬂBag}b> ) (427)
X@iiz _ o <—6[a1bh[i1'j'8a2]bhi2]j + 8, h,,), 1, — 0, "Bi9,,, B,

aijaz

00, "BI 0, B, + 0, B9, B, — 0, TB Mo, B

Taking into account the factorial factors in (4.17), we see that this result can be

written in the form

dx® N -+ A dxPt
Y /Dpx T

1 1
{5 (p—3)! Ogl??'i)pff%(—zaapfz [bh‘lpflc] 8‘1th

—0

a

h

i Kl
ap+10+2aap72 ha/pfl aapﬂ apt1k

b
P—2 B
1 (r—1) by ¢ i 7k
+ (p _ 2)' Ca?~~-ap,2i(2aap_1[ hap }aap-kle c 28(1,,_1 b hap ]aap-l»lj

+0, "W 0apBayrj — Oy, 1" 00y Bay )

a.

L 1 (p+1) o
+§mca1mapflili2(_aap h ljaa

_28apb BB b Bizd + 28%1' B0, .1 Bizk]) } : (4.28)

J . J by .
8apbBap+1J + aap,Q Bap71 aap] Bapr)

ap—1

% j 7,910 %
B+ 8, Thi0,, , h,

p+1b

Above action is compatible with linearized T-duality rules, but it is not invariant
under either B-field or R-R gauge transformation, even if we restore the terms that
depend on gauge field strength F'. However, this does not mean action (4.28) is
wrong. There could be additional terms in X, which map to themselves under the
T-duality transformation, and these new terms can combine with the terms in action

action (4.28) to give an action with good property. Starting from new section, we will
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do string disc amplitude computation to obtain the additional terms to action (4.28).

B. String disc amplitude

In this section we compute the three-point function involving one RR field C?~3)
and 2 NS-NS fields in the present of one Dp-brane. When one of the NS-NS field
is symmetric and the other NS-NS field is antisymmetric, the amplitude vanishes
because of symmetry. This also can be checked through explicit string disc amplitude
computation. When both NS-NS fields are gravitons, the disc amplitude are well
known [72, 73, 74],

2( 1\2
T (Oé ) ealmap_'_l O(p—?)) aap_Q [jhap_l k] aapjhap+1k_aap_2 [bhfap_l c] 0apbh

Loca = Tyt
Cee T Tra(p - 3)! atap-s

apiic

(4.29)

Here and throughout this chapter we use the indices a, b, etc. to refer to the world-
volume of the D-brane, and indices i, j, etc. to refer to the normal bundle.

What interests us most is the case that both two NS-NS fields are antisymmetric.

In this section, we will put much effort to compute the complete disc amplitude. In

the following subsection, we start with a short summary of the basic conventions we

will use throughout this chapter.
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1. Basic conventions
On the upper half-plane, the holomorphic fields have OPEs among themselves®

XH(2) X" (w) ~ =" log(z — w),
nt

P (2)" (w) ~ , (4.30)

Z—Ww

¢(2)p(w) ~ —log(z — w),

with similar expressions for the antiholomorphic fields. Because of the boundary,
representing the D-brane, there are also non-trivial OPEs between holomorphic and
antiholomorphic fields,

XH*(2) X" (W) ~ —D" log(z — ),

() () ~ (431)

Z—Ww

(2)(w) ~ —log(z — @),
Here the matrix D" is a diagonal matrix that agrees with n*” in directions along
the brane (Neumann boundary conditions) and with —n*” in directions normal to
the brane (Dirichlet boundary conditions). In our previous notation, D¥® = 5%,
DY = =", D* = 0. Using 7, to raise or lower indices, then we have D* D?, = dk.
Omne can now use a convenient trick [75, 76] when computing amplitudes. One can

make the replacements

Xt(z) = D' X(2),  (2) = D (), 6(2) — ¢(2), (4.32)
and then use only the holomorphic OPEs (4.30), but where we now regard z and z
as independent insertion points.

In order to construct R-R vertex operators, we will also need spin fields Sa(z)

In this section we will mostly work in units where o = 2, and the OPE for )*
differs from [12] by a sign.
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and S 5(Z), where A and B are spinor indices. Rather than give the individual OPEs
involving spin fields, it will suffice to quote the general fermion sector expectation
values that we will need!?,

1 (z — z)M/2-5/4
S22 S — )z —2). . (2 —2)(2n — 2)
x [(F“""‘“lc‘lMT)AB 4 aprn (ke () (D30 M T g

(Sa(2)8p(2)0" (21) . 0" (20))

—_—

o (2 )2 () () () (DP#5C ™ M g |, (4.33)

where

= (2 = 2) (2 = 2) + (2 = 2) (2 = 2)

(i)t (25) = o (2= 2)(z = 2)

In these expressions we use real symmetric 32 x 32 gamma matrices (I'*),Z which

(4.34)

satisfy
{T*, T} = 2nt, (4.35)

CAPB is an antisymmetric charge conjugation matrix, and M, ? encodes the Neumann

and Dirichlet boundary conditions as they are realized on spinor indices, so that it

satisfies I'"M = DH MT". It is explicitly given by

+ (V) ., [T for p even,
M = G (oo, (4.36)
im (5”)(10“.% [eo...1*1'yy, for p odd,
where €V is the epsilon tensor on the brane worldvolume and where
1 0 9
I, = 1—0'@0...”91"‘0 s TR =T T (4.37)

We will not be attempting to compute the overall normalization of our result (as

opposed to relative phases, which will of course be crucial), so we can freely ignore

10A similar expression appears in [77], though their result restricts to fermions
on the boundary of the disc. We need the more general result shown here.
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the £+1 or £ in the definition of M.

The tree level string amplitude (see Figure 1) is given by
: 11 _
Astring — < 2T () VT (0, po) VA (25, ps) > (4.38)

The two vertex operators for two B-fields are not in the same picture, so the above
string amplitude don’t enjoy the manifest symmetry under the exchange of two B-
fields, and being able to write the final result symmetrically is a very useful way to

control the error. The vertex operators in above amplitude are
Vé_%’_%) = (CP+F(p_2))AB/dQZle_éd’SAeiplX(zl) : 6_%¢§Beip1DX(§1)
Vi = (eaD)y / A zae™ 02X (25) 1 (XY — ipy Dipyp”)eP2PX (z5)  (4.39)
Vg = (e3D)u / 250X — ipspyp)e™ ™ (25)  (OX” — ips Dy )e™ P (23)
One also can use the R-R vertex operator in (-3/2,-1/2) picture [77, 78]
Y (=3/2-1/2) — (CP@')AB/szleg¢eip1XSA(zl) : e’%“beiplDXgB(Zl), (4.40)

as long as the total picture charge of all three vertex operators equals to -2. Because
the whole disc amplitude is complicated and it is difficult to keep track of all terms
at once, which is especially true when we compare it with supergravity amplitude,

we want to separate the amplitude into five pieces,
Ascfggg _ Aitring + A;tring + A;tring + Aitring + Agtring (441)
according to different index structures and list these A5 in the following.

1. (e2-p)(es-p) and (g2 - €3) terms

Sum of the terms proportional to either (e - p)(e3 - p) or (eq - €3) for arbitrary
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polarization 5 and e3 equals to

i 1
2v2 (p —2)!

[(pzpz)(gzDgz)ﬁsﬁﬂo — (p2Dps)(e263) 355, L0 + (P2 De2) s, (3 Des) g, I3

Gﬁlﬁzﬂsﬁzl ai-ap—3 Cal---ap,g (p2)ﬁ1 (p3),32 %

Aitring —
—(p2Dea) s, (p2Des) s, I7 + (p3Dea)p, (P2 - €3) 5,15
—(p2De2)p,(p1Nes)p, s — (p3De2) sy (p1Nes) s, Is
—(p2De2) s (2 - €3) s, 16 + (p3 - €2) 35 (P1N€3) 8, Lo

)

+(p1Nea)s, p1N53)ﬁ4110} + {]h — p3, €9 63} (4.42)

In this amplitude, I,, are integrals, whose definition and value at small momen-
tum limit can be found in the appendix A. In appendix B, we compute the
integral Iy in much detail to illuminate the method we use to evaluate all other

integrals for small momentum expansion.

. (p-e-p)(e) term
The sum of the terms proportional to (p - € - p)(e) for arbitrary polarization &9
and e3 equals to

1 1
4v2 (p — 2)!
[(P283DP3>[(/3 + (p2DesDps)I; + (p2DesNpy)Is — (p2 - e3Np1) Iy

string
Aj

Eﬁl,@2u3u4a1"-apfacfalmap% (pQ),@1 (p3)ﬁ2 (52)113#4 X

+(p2e3Dp2) (Is — 210)] + {pz <> D3, E2 < 53} (4.43)
where I, = I,,(pa <> p3).

. (e-p)(e) term

Depending on weather all the polarization of R-R field potential C?~3 is along

the brane direction or not, all terms proportional to (¢ - p)(e) for arbitrary
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polarization €5 and €3 can be separated into two parts:

Astm’ng o —1 1
3 = —

V2 (p—2)!

(p2 ~p3)(p2 : 83)%[2 - (pszs)(PzD&a)uﬁfl + 2(292D]93)(P2 : 53)%[0

68/1’3“4/1‘60‘1map_SC(n'-'apfS (Pl)ﬁ<52)usﬂ4 X

—2(p2 - p3)(P2Des) s Lo — (P2Dp3) (P2 - €3)usLs + (D2 - P3) (P2 Des) e ls
+2(p2Dps) (p3sDes) s 17 + 2(p2 - p3) (p3De3) e I

—(p3Dp3)(p2 - €3)us L — (p3Dps)(p2Des) s 17

—2(p2 - p3)(P1Nes) e Lo + 2(p2Dps) (p1Ne3) s I

—1 1
+8_\/§ MGBMMS%M =3 Oa1~~~ap73 (p1>6(53)u5u6 X

(p2 - p3)(P3 - €2) uul2 — (P2Dp3) (psDe2) L1 + 2(p2Dps) (ps - €2) uy Lo
—2(172 ~p3)(p3D82)u4fo - (p3Dp3)(p1N€2)u4L/1 - (pgng)(pg : 62)H4[é
—(p3Dps)(psDea) i, 17 + (2 - p3)(p3Dea) I

—(p2Dps)(ps - €2) uuls + 2(p3Dps) (p2De2) 1y I3

[ ai-Gp—
LB oy ()3 X (4.44)

[(ple)(pz -e3)Iy — (p1Nps3)(p2Des)Is + (p1 Np2) (psDes) I

+(p1Np2)(p2 - €3) 19 — 2(p1 Np2)(p1 Nes) 1o + (plez)(p2D€3)I5}

1 1 a1
+m (p — 2)' eBHapspea pigcal---ap,3 (pg)ﬁg%% X

{(Ple)(p?, -2) Iy + (p1Np2)(psDe2)Is + 2(p1 Nps)(p1Nea) Lo

—(p1Nps)(p3sDea)Is + (p1Nps3)(ps - €2) 1o — (ple3)(p2D€2)f4]

and

strin i p— 3 . QoG
= Ao Clasana (P2) () (2 ) X

{pg(pg -e3)1y — ph(paDes)Is — 2py(p1Nes) Lo + ph(ps - €3) 1
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"’pé(pgDe’fg)[g, +p12(p3D83)L/1} + |:p2 < P3,E9 83} . (445)

As we use asymmetric vertex operator for two B-fields, it is not unexpected
that A5 appears asymmetric under the exchange of py < ps, and 5 < e5.
However the integrals I,, in above amplitudes are not independent, and they

satisfy the following identities,

(p2 - p3) I + (p2Dp3)I7 + (p1Np2) Iy — (paDpa) I3 =0

(psDps) Iy — 4(p1Nps) o + 2(p2Dp3)Is + 2(p2 - p3)Ig = 0 (4.46)
2(p2 - p3)Is — (p3Dp3)I; + (p2Dpa) Iz + 2(p1 Npa — p1Np3)Is = 0
(psDps3)Is — 2(p1Nps + p1Np2) Iy + 2(p2Dps) s — (p2Dp2)Is = 0

which can be checked using our expression of these integrals at appendix A.

After using these identities, one can rewrite A5 " in a symmetric form,

string i 1 Buspapeal-a
A _ Pratapsarap-sy ay 5(p2)ﬁ(52)u3u4x

8v2 (p —2)!

(p2 - p3) (P2 - €3) L2 — (P2Dp3) (p2Des) us L1 + 2(p2Dps3) (P2 - €3) us Lo

—2(272 P3)(p2D53)u610 (p2Dp3)(p2 : 53)y6]8 + (p2 'p3)(p2D83)p6]8
+2(p2Dps) (p3Des) s 7 + 2(p2 - p3) (p3De3) e I
—(p3Dp3)(p2 - €3)ueds — (P3Dp3)(p2Des) w17
)

—2(p2 - p3)(P1Ne3) ug Lo + 2(p2Dp3) (p1 Ne3) uo L5
n 1 1
8v2 (p — 2)!

(P2 'p3)<p3 : “’52)#4[2 - (p2Dp3)(p3D52),u411 + 2(p2Dp3)(p3 : 52)#410

IOy (P2) 5(63) s X

—2(ps - p3)(psDe2) o — (PsDps)(p1Nea) i Iy — (psDps) (s - €2) ua L
—(p3Dp3)(p3D€2)#4f§ + (p2 'p3)(p3D€2)u4]8 - (psz3)(p3 : 52)u418
+2(P3DP3)(292D52)M4[3} + {pz > P3,E2 > 53} (4.47)
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4. (g9)(e3) term

Sum of the terms proportional to (£2)s,s,(€3)s,s, for arbitrary polarization eo
and e3 equals to

1 1
16v/2 (p — 2)!

2(paDps3)(p1 Nps)Is — 2(paps) (p1 Nps) Iy — (psDps)(p1Nps) I}
4 p—3
-2

strin, el
A5 g eHBHAHE AL Ap—3 ("

a1--ap_3 (52)u3u4 (€3>M5M6 X

+T\/§W6“3H4u5‘u65a2“.ap73C’L.CLZ'”apfii (€2) uspua (€3) psps X

pfpé (psts)L/; + 229?29% (p2 ']93)]9 - 229?]7% (pQDp3)15

—4p§p§ (p1Np2) 1o + 4]9?]93 (p1Nps)vo

i (p=3)(p—4) .
4\/5 (p — 2)! eP1B2u3papspcas -ap 3Oija3~~~ap73 (52)#3M4 (6;3)%”,6

X (p2) s, (P3) s Pspa L0 (4.48)

Because integrals I, satisfy the identities,
2(p2Dp3) 15 — 2(pa - p3) 1o + (p2Dp2)1s — 4(p1Np2) 1o = 0 (4.49)

2(p2Dps) (p1 Nps)Is — 2(paps) (p1 Nps) Iy — (psDps)(p1Nps) 1, (4.50)
= (pZDp3)2[1 - (pz -p3)2]2 - (pzDP2>(P3DP3)I3
one can rewrite A" as

1 1
16v2(p - 2)
{(p2Dp3)2[1 - (p2 -p3)212 - (psz2)(P3DP3)I3
i p—3
16v2(p —2)°

{2p§p§(psz3)I5 + 2055 (pa - ps) Iy — PPy (psDps) 1,

Astrmg _ H3HaHs 61" Ap—3 (T
: =

a1--ap_3 (52)%#4 (53)u5u6 X

!6

+ 13 s e Baz - -ap—3 szmap_g (52)u3u4 (53)%% X
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+2p§pé (Pz Dps ) Is — 2195193 (pz *P3 ) Iy — pffpé (pz Dpz)[ 4

¢ <p_3>(p_4) B1B2p3papspeas -ap—3
asrap— Cz Fa G .
W2 (p—2) 6‘ | jas--ap—s (€2) papua
X(€3)/—’45H6(p2>,31 (p3>,32p7ép;-[107 (451)

In the above expression, integrals I, Is, I3, and [5 are symmetric, but Iy is
anti-symmetric under the exchange p, < ps, so A" is symmetric under the

exchange of two B-fields.

In the appendix D and E, we have evaluated all integrals I,, to o® order, which means
that we have expanded the string amplitude Azfggg to o? order. In the next section,
we will compute the supergravity interpretation of this string amplitude by evaluating

the corresponding Feynamn diagrams to o/? order.

C. Supergravity interpretation

At the low energy limit, our string amplitude A‘gfggg (see Figure 1) can be substituted

by six supergravity Feynman diagrams shown in Figure 2. What really interests us
is the amplitude for Figure 2f), which represent the contact interaction among one
R-R field and two B-fields on D-brane. Once we evaluate the amplitude of first
five Feynman diagrams of the Figure 2, we can obtain the amplitude of Figure 2f)
by subtracting the amplitudes of the first five diagrams in Figure 2 from the string
amplitude.

Now the challenge is to compute the amplitude for supergravity diagrams to
order o?. To achieve this, we first need to obtain the o/? corrections of all vertices
that appear in these diagrams. Even though all vertices in the bulk are derived from
the 10-dimension supergravity action, which has no correction at order o2, three

vertices on the D-brane (see Figure 3) do receive correction at this order. In the
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Dp Dp

(a) (b) (c)

Fig. 3. Three brane vertices with higher derivative corrections

subsection 3.1, we first compute the o' corrections for the vertex in Figure 3a), and
then evaluate the amplitude for Figure 2a), 2b) and 2c) to order /. In subsection
3.2 and 3.3, we compute the amplitude for Figure 2d) and 2e) respectively, after
obtaining the higher order correction for the vertices in Figure 3b) and 3c). Finally,
in subsection 3.4, we write down the amplitude for Figure 2f), so that the sum of the

amplitudes of all the Feynman diagrams in Figure 2 reproduces the string amplitude

string
AC’ BB -

1. Amplitude for diagram 2a), 2b), and 2c)

To compute the higher order correction of the coupling in Figure 3a), we follow the
similar strategy that we want to use to compute the coupling in Figure 3f). The string

disc amplitude with insertions of one R-R and one NS-NS B-field vertex operators
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equals to
A = < v D )V (pae) > (4.52)
2
_ T,  T[l+p2Dpo]D[1 + &0 rvpai | -
(p—=D!'%X2 T+ psDps + (p1+2p2)2] V1vpo1
2 2 2
(i +p2)2(p2D5)u(p2)v + 02Dy (p2De)u(p2)v — m(pﬁ)u(m)y
p2Dps — p1 - po (p—1) 5
+(1+ ———CYn._3(p2), _(Dpa)’e,,
( (pl +p2)2 ) Iz ) (pl +p2)2 1°Vp 25( 2) P 1( 2) o

This string amplitude should be replaced by the three Feynman diagrams in Figure 4

at the low momentum limit. The supergravity amplitude for the Figure 4a) and 4b)

Cp-1
/ C p-1
Cp-1
Cp+1 A <
B> \ B2
— &
Dp bp Dp
(a) (b) (c)

Fig. 4. Three supergravity Feynman diagrams that replace string amplitude A% at

low energy.

are

_Tp 6a1-~~ap+1 2<p B 1)
(p—1)!x4 (p1 + p2)?

p2Dps 4
_1 + - - - €a a -
<( (7 +p2)2) PR (pr 4 pe)?

(a) i
ABC a1ap—2i€ap_1apPlapt1P2 — Ca1~~ap—1

(2€0,6P1 0y P} + Eayil1 apﬂp’i))}
(4.53)
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and
T, 2
(p — D) p2Dps

After subtracting the supergravity amplitudes Ag)c and Ag)c from the string ampli-

b
A%’)C = e aerlCal -ap—1EbapP1 ap+1pl1) (454)

tude Asmng we obtain the supergravity amplitude A - for Figure 4c), and it can be

derived from following action:

T,

Lpc = —(p_ T2 BBy 5, O (4.55)
- T];v x 47{(; AN 50V O
1w 27{(;6%” VoV O,
e 2T)pl 12 7{2 P H .5, CLL
- ?)7! ><4igEﬂlﬁw“'yp’lvaffﬁlﬁzav“ cry)

to the order a/2. This clarifies a confusion regarding the string theory amplitude

computation of the [ C'A B coupling mentioned in [72, 79]. In the above action, we

have used the notation Iy = —7?/3, and Taylor expansion
2
T'[1+ paDps|T[1 + (p1+p2)? 2
[ ] [ (p1+ 2)2 ] =1- _(pl +p2) p2Dpy + O[ ] (456)
T[L+ p2Dps + B2 12

We would like to make a few comments before we proceed:

1) The Feynamn diagrams 2a), 2b), and 2¢) can be constructed from the three
diagrams of Figure 4 by adding the same C®~1) field propagator and vertex from
|CP~1 + H A CP73)? term of 10d action. So we would like to compute the total
amplitude for diagrams 2a), 2b), and 2c) by using A" directly, rather than from
the low energy effective action.

2) String amplitude is evaluated on-shell, which means it does not determine

the off-shell action, where we are not allowed to set p? = 0. When we evaluate the
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amplitudes of diagrams 2a), 2b), and 2c), factor p? leads to (p; + p3)? which is not
zero on-shell. So to keep p? or not in Eq.(4.52) will affect the amplitudes of diagrams
2a), 2b), and 2c).

3) There are also other on-shell condition like p3 = 0, phe,,, = 0, and p/ C’ﬁ;;nypi L=
0, however these conditions do not change the amplitudes of diagrams 2a), 2b), and
2¢) on-shell, so we don’t bother to discuss them here, as long as our purpose is to

.
reproduce A7 L.

4) We will use the expression of A% in Eq.(4.52), without imposing on-shell
condition p? = 0, to compute the supergravity amplitude of diagrams 2a), 2b), and
2¢). This means we also should not impose this condition when we derive Lp¢, so we
end up with a term proportional to p? in the expression of L. So at this moment,
we only make a consistent choice about keeping terms with p? factor, and this does
not remove the ambiguity of the terms that include a factor p?. We will turn to this
issue later.

5) We will see that the amplitudes of diagrams 2a), 2b), and 2c) after using
A in Bq.(4.52), have already reproduced all the terms with 1/p; - pa, 1/p - ps, and
1/(p1 + p2 + p3)? poles in string amplitude Agg%g , which means the arbitrary terms
in comment 4) should not give rise to any of above poles, because only diagrams 2a),
2b), and 2c¢) have such poles. This will largely limit the number of arbitrary terms.

In the following, we compute the total amplitudes of three Figures 2a), 2b), and
2¢) directly from Eq.(4.52), without imposing condition p? = 0. After a long, but

straight forward computation we have

Alatbte) — Aga-&-b—i-C) I Aga+b+c) X A§a+b+6) 4 Aia+b+c) + Ag“+b+c) (4.57)
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with

a+b+c [ 1 Q1
Ag ) 2\/§ (p_ 2)'651,32%#5 1ap SCa1---ap,3(p2)Bl <p3)ﬁ2><

o2 o2
(p1 -m)(p:aDp:a)Qg " (p1 -ps)(pszz)Qz)

272
(p1 ‘ps)(P2Dp2)Q2) T (PsDe2)ua (P2 €a)us s

272
(p1 - p3)(p2Dp2)

472
(P2De2) s (P13 (Zho + 255

(p2De2)u; (p3Des) s (110 +

+(p2De2) s (P2 De3) s (1o +

+(P2Dea) s (P2 - €3) s (Lo + Q2) — (p3Dea) s (P1NE3) s 15

)Qz) + (P3  €2) s (P1NE3) s Lo

+(p1Nea)us(piNes) s dio | + |p2 <= D3, €2 < €3 (4.58)

(at+b+e) i 1 B1P2p3paar-ap—3
A2 4\/§ (p — 2)!6 P C(t11'~~ap73 (pQ)ﬁl <p3)52 X

212

(p1 - p2)(p3Dps)
272

(p1 ']72)(]?3Dp3)
+ {Pz > P3, €2 63} (4.59)

[(pzsszs)(Ig _ Q) + (ps23Dpa)(Is) — (ps - sNp1) s

+(p2DesDps)(—110 —

Q3) + (pzDgszﬂfs} (€2) papia

A§a+b+c)

i 1 alap_
WA 2)!66“3“4”6 3 Cyap—s (P2) 8(82) i [(m - p3)(P2Des) s Is
272 7t p,Dpy, 7
3

(p3Dp3) (p2Des) e (— 110 (p1 - p2)(psDps) ° 3 psDps

272
(p1 ~p2)(p3Dp3)Q3) — (p2Dps)(p2Des) us Lro

272
(pl : p2) (Psts)

272
—2(pyD De)us(To +
(P2Dps) (psDes) s (110 (p1 - p2)(psDps)

+(p2 - p3) (P2 - €3) s (10 + ﬁ(@z +Q3)) — (p2Dps) (P2 - €3)us1s

_(psz3)(p2 : 83)%([9 -

+2(p2 - p3)(p3Des) s (1o — Q3) + 2(p2Dps3) (p1Ne3) g L5

Q3) — 2(p2 - p3)(P1Ne3) ue o

i

1
a0 -2)

rapsnent a3 o (02)8(E3)usus | (P2 - P3) (P3DE2) 1 15
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2
pZ(ZT' P3) (Q2 + Q3)) — (p2Dps3)(p3De2) uy L1o

(pl 'pz)(psts) 3 psts 3

272
(P1 'p2)(p3Dp3)Q3) = (p2Dp3) (P - €2) s

+(p2 ‘p3>(P3 : 82)#412<[10 +

—(psDps)(p1Nea)u, (2110 +

—(p3Dp3)(P3 : 52)%([9 -

272 1 4paDpy 1
—(psD De —Ip — — -t + =7t
(p3 pg)(pg 2)%( 10 (p1 'pz)(pst3) @ 3 p3Dps 3 )
1 2(psDps)(psDes) oy (110 + 2 Qs + 2
bsUp3)\p2 Ve
ST a0 (pl -pg)(pgng) ’ (p1 )( 2Dp2)
_ Ar? + 77_4P2Dp2 2W4 P _ 77_4
(p2Dp2)(psDps) 3 psDps 3 psDps 3
+|P2 < p3, €2 53} (4.60)
a+b+c i b— 3 102 41602
Az(l o = 4\/— (p 2) ﬂ Patispians P 302&2 “Ap— 3(p2),31 (p3)[32 (52)u3u4 X

{P3(p2 e3)ly — Pé(p2D53)[5 — 2295(1?1]\753)[10 + pé(pQ -e3)ly + pé(p2D€3)I5

472

+ph(psDes) (2110 + Qs
? (p1 - p2)(p3Dps)
+ {PQ > P3, €2 < €3 (4.61)
a+b+c { 1 3 501 Qp— 3
Aé e = m (p— 2)!5“3N4M5u6 "7 Cay-aps (€2) puapua (€3) s pus X
272 272
(p2Dp3)?Lio — (p2 - p3)*(Iio + ————Q3 + Q)
{ p22(p2 'p3) p? (pz '293)
2T 272
—(p2Dp2)(psDps) (110 + Qs + Q2
(p1 - p2)(p3Dps) (p1 - pg)(pszz)
+7r4 p2Dpoy n 7t psDps 27t 1272 n 2t p?
3 psDps 3 p2Dpy 3 (p2Dp2)(psDps) 3 p2Dpo
2t p*  2mipiepy 2piope  mipeps Ty

3 psDps 3 psDps 3 paDps 3 psDps 3 p2Dp

[/ p— 3 as--a
—1—16\/§ =2 ghanatspoBaz-ap- *Clay--a,-_ 5 (62) uapua (€3) s i ¥

{2])&?@ (p2Dp3)I5 + 2p§p§ (p2 - p3) 1y + 2]051?3 (p2Dp3)I5s — 2]05]0;, (p2 - p3) 1o

47T2 2 4p2Dp2 2 4)
— =7
D1 'Pz)(P3DP3) 3" psDps 3

— P (psDps) (210 + (
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, 472 2 D 2
—pipi(paDps) (2110 + + O Yt & RS
P3P3 (592 pQ))(( 10 ) (]91 ~p3)(p2 DpQ)QQ 3" psDpy 3 )
it p=3)p—4 N
4\/§ (p B 2)' e Btstiatistions ey 3Oij"‘3"'ap*3 (52)M3M4 (63)M5H6 X
(p2) 1 (p3) g P53 110, (4.62)

where ()5 and Q3 are defined in the Appendix A.

2. Amplitude for diagram 2d)

In this subsection, we first compute the a? correction of the brane vertex in Figure
3b). The string amplitude for a Dp-brane absorbing one R-R field and emitting two

open string gauge field equals to

Aét,’lflig = < V(_%’_%)(pl)v_l(pzaC2)V0(P37C3) >
I'[1 + 4p; - ps]
I'[1+ 2]922 - p3)?

2 »
~ |:1 + T(pQ . p3)2:| 182058111 "3 F 318, F 358, Cr oy (4.63)

6’81ﬁ2ﬁ364 Vl.I.Vp_SFﬁlﬁz Fﬂ3ﬁ4 CVI"'”p*3

where py-p3 = p§ps, as only components p§ and p§ are non-vanishing. The two vertex

operators for two gauge fields are

V(G = (G / dwe~ by X (g)

VOo(ps,G3) = (C3)a/dl‘(3Xa—QZ’P3’¢¢&)@M3'X(I) (4.64)

At the low energy limit, the above string amplitude can be replaced by the super-
gravity diagram 3b), which means that at o* order we have the action

2

T,(2a/ 2 v, 2m a
Loaa = ( p( ) €ﬁ1ﬁ253ﬁ4 . p_gcul--'up—s |:F51ﬁ2Fﬂ3ﬂ4 + ?v bFﬁlﬂzvbaFﬁza@L

p—3)! x8
(4.65)

This action also has the ambiguity that bothers Lpc. For example the factor ps Dps

is zero on-shell, but non-vanishing when we compute the amplitude of diagram 2d).
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We will handle this issue later. The supergravity amplitude of diagram 2d) equals to

) 1
A@ — 1 (P Bapispisanap s 1 (p2) 51 (13) 5,
2v/2 (p — 2 e
(\/z_)ip) ()Dg) 8r* 1+ —”2( Dps + )2] (4.66)
P2LVE2) 3 \P3LVES ) s (p2 ng) (p3 ng) 6 Do UpP3 — P2 - P3 .

3. Amplitude for diagram 2e)

To obtain the amplitude for Feynman diagram 2e),we first need to get the correction
of the vertex 3c) at the order a/2. The disc amplitude with insertions of one R-R, one

antisymmetric NS-NS, and one open string vertex operators is

strin, _1_1 _
ASnE = < V2D (p)V (g2, OV OO (s, ) > (4.67)
1 1 27?2
_ B1B2B3B4v1-vp— . - .
T 972 (p— 3)!6 o 3CV1---vp—s [Fﬁlﬂz (P3)ps (P2 - €)ps 3 (P2 - p3)
4m (]92 p3)2 Q
— Iy, De +
8182 <p3)54 (p3 )Bg(péDpi% Q 3 psDps 21 - p3 2
P2 P3 2
+F51/32 (p3)ﬂ4 (pl : 5>ﬂ3 (p3)ﬁ3gﬁ4( Q - 3 (p2 'p3)2)
Y4 0 52 P1-P3
T
—EB1B2 (p3)ﬂ3 (p2)54 <p3 : C)(p Ds _2 3 P2 'p3)
1 1p3Dps
_F5152€53ﬂ4(§Q 4 Q + 5 ( p3)2>
b1 0
) 1 )
B/Bﬂﬁﬁy"'ypf yal
—27/2 (p_4)!€ 172 PArs B2 3F51ﬁ25ﬁ3ﬂ4(p3>ﬁ5p3cw2'"l/p73(2pl ']93)

where

Lt ppallQ 4 paDpa] ) 7, Dpy) (4.68)

Q= ~
['[1 4+ p1 - ps + psDps) 6

This string amplitude can be replaced by three supergravity Feynman diagrams in

the Figure 5. The amplitudes for supergravity diagram 5a) and 5b) are

1 1
252 (p - 3)!
;—l— 21° (p2 - p3)°
p3Dps 3 p3Dps

A(CaI)LxB =

6ﬁ15253ﬂ4 Vi Vp—3 CV1 ---up,3Fﬂ1ﬂ2 (pg)@; (pgDE)gS

(4.69)
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Dp Dp
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(a) (b) ©

string at

Fig. 5. Three supergravity Feynman diagrams that replace string amplitude A. g5

low energy

and
Ay = st PR — Fau(ps)s, (95 D€) sy (-——)
CAB 27/2 (p _ 3)! V1 Up_3 1082 4 3 2}71 s
+ Foun (9)0, (91 + €)s—— + 25, (p3) 5, Cou ()
p1-Ps D1 'pzD
1 1 p3sDps
—€61:(P3) 85 (P2) 5 (P3 - O(———) — F3,,6 638, (—
ﬂ.lﬁz( 3)153( 2)6: (P )<p1 'pg) 516 5354(4p1 _pg)
¢ Vo Up_ i
_W(p_ 4)!6515’2%,6’4/35 2 Vp 3F3152853,g4(p3)55p3Ciy2...yp73(2p1 -p3)
: 1 V1 Vp—
+W (p_ 3)!6516253@1 1+ Vp 3CV1--~VP_3FB1B2563,64 (470)

After subtracting the supergravity amplitudes A(casz and A(Cbl‘ p from the string am-

plitude, we obtain the supergravity amplitude A(CCA g of Feynman diagram 5¢), which

can be generated by the following action:

27, .
Loan = (p - 3)p' X 86ﬁ1526gﬁ4 e (B)ﬁ1ﬁ2 (2a,F)ﬁ3ﬁ4OV1“'Vp—3
2T, . u
(p — 3)1" - 4]06/3152ﬁ364 R AV b(B),8152vba(ZQIF),@354CV1~.VP,3
T
m]oeﬁlﬁzﬁ:s& R 2VaHﬁ152bvba(20/F)ﬁ3ﬁ4
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+2V*,Hp, 3,V (20 F) g5, — Vo Hp, 5,V (20 F) gy, (4.71)

2 4
+§vbaaHﬁ1ﬁzﬁ3(2O/F Joss + —VabHﬁlﬁQﬁgvb(QOé'F Jags | Co-vys
T,

+—(p — 3)' » 4[ eﬁlﬂzﬂs&m Vp—3\J4%. H5152a(204 F)5354V CV1 Vo3
1 viev i

- (p - 31))! X 8]066152&@1 1 pigvaaHﬁlﬁ2i(2a,F>ﬁ3ﬁ4v CVI"'VP73
T 12887 ia

+ (p — 4)! v 24[0651[323354ﬂ5 AV aHﬁMb[ig (ZQIF)ﬁ4ﬂ5Ciu2---up_3

So the supergravity amplitude of diagram 2e) equals to
A = A 4 A L Al Al (4.72)
with

¢ 1 Eﬁlﬁzmusm “ap-3 ()

= ay-ap— X
2\/5 (p _ 2) 3(p2)51 (p3)ﬂ2
(Pszz p3Dps P1-D3

A =

P1-DP2
+ + 2 + 2

%),ng p2Dpo PE)Dpz p3Dps
p3L/ps3 _|_2p2'p3 +2P2 D3
p2gp2 P2 Dpo ngpz
p3L/p3 i 2292 “P3 2]92 D3
p2Dps  p2Dpy paDps
p3Dps

° P2 Dpo

1
- §7T4(p2D52)M3 (p3D53)u5

1
—§7T4(p2D52)u3 <p2D53)us(

1
—§7T4(p2D52)M3(p2 “€3) s (

2
+—7T4(p2D€2)u3(p1N53)u T |P2 <> P3,€2 <> €3 (4.73)

3

51 Bapspaar--ap—3 C

Age) = F a1--ap— 3(p2)ﬁl(p3)ﬂ2><

p2Dpa D2 - D3 p2Dp3 1,
+2 +2 + =7 (paDe3 Dp3) X
p3Dps  p3Dps pgng) 3 (p2DesDps)

pszz p2 D3 p2Dps } { 1
+ 2 € + |p2 < p3, 0 < € 4.74
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4. Amplitude for diagram 2f)

After subtracting A0+ AD and A© from the string amplitude Agtggg , we have

the supergravity amplitude for diagram 2f)

AD = AD 1 AD 4 AD 4 AP 1 AY) (4.77)
with
1 1
Agf) _ PrP2uzpsar-ap—s Caln-ap,g (p2)31 (p3)ﬁ2 X

22 (-2

(P2p3)(€2D€3) 155 — (P2DP3)(€2€3) papus — 2(P2DE2) s (D3 DE3)

_(p2D82)M3 (p2D€3),u5 + (pQDEQ)#s <p2 ’ 63)#5 + 2(p2D€2)#3 (plNg?))Ms

+ [pz < P3,E2 < 53] (4.78)
f e 1 P
Ag b= m (p — 2)!10€ﬁ1ﬁ2u3m v 30&1"'“;073 (p2>,31 (p3)52 (82),&3#4 X

— (p2e3Dps) + (p2De3Dps) — 2(pae3Dpo)

+ {p2 > D3, €2 53} (4.79)
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pgpé (p:sts - psz2> + ngé <p2 Dpy — pgng) (4-82)

D. Higher derivative brane couplings and their properties

1. Higher derivative couplings

It is straight forward to check that amplitude AY) can be generated by the action,

Lcpp

T, vy, fo @
meﬁlﬁ2ﬁ3ﬂ4 ! p_3Cz/1...1/p—3 {BﬁlﬁzBﬂs& o 2Fv bBﬂlﬂzvbaBﬁsf&l
T

[0 NN 1 i a
__(p — 31;! v 8F€ﬁ1ﬁzﬁsﬁ4 1Vp 3Cy1-.~yp_3 |:§v HMQGV,H@@

1 a 7 ia 2 7 a

_§V Hﬂ152ivaHﬂ3ﬁ4 - Hﬂl,@in Hﬁsﬁw + §V Hﬁlﬁzﬂsv Hﬁ4ai
2 ai a a

_§ 51aiv Hﬁ2ﬁ3ﬂ4 + 2V Hﬁlﬁzavaﬁ3ﬁ4b -2V HﬁlﬁzbvbaBﬂsﬁ4

a a 2 a
+2V°,Hp, 3,0V By, — VaHp 5,6V Bayg, + gvb ot 38,85 Bug,

+%vabH5152B3vbBaﬂ4 _ Mﬁ%engﬂ s,

— Hy,,iV* Hppa — 2V"iHp, g0 Bay5, + Va0 By, | V' Con o,y
_@_Zﬁ %Eﬁlﬁ%ws YN 6,6,V b Cvgoy
+@—Zﬁ%€ﬁlﬁmm§ YN Hig, 605y B s Civaeovps (4.83)

The sum of this action, with Loap of Eq.(4.71) and Loaa of Eq.(4.65) can be written

as Lopp, after making the replacement B — B + 2a/F. So total action is manifestly

invariant under the gauge transformation of B-field. In action Logp, we have fixed

the overall scale by fixing the coefficient of the zero derivative term. We still need to

check the R-R gauge invariance of our action £ = Log + Lo + Loa + Loaa, and

it turns out this action does not have the desired property. We will see this problem

can be solved after including a new term in L¢p, and this new term vanishes on-shell,

so we have the “freedom” to include it (we will fix the coefficients of these term at

the last section).
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2. R-R gauge invariance

In this section we focus on the variation of action Lo + £ under the R-R gauge

transformations,

SCPT = dAP + HAANPT2 0CP P =dAP 24+ HANTY  and  6CP™2 = dAP™?

(4.84)
We also should mention
T, vyt
fo= G O (1.89)

It is easy to check that the variation of Lo + £ vanish for arbitrary AP, so we only

need to focus on the AP~2, and AP~%, ie.

sort,,, = PO a2
sert, o= (- DOwALZ, L+ (P 1)ip ;2)“’ _3)H[a1a2a3A§;f*.apﬂ
SO0 0y = -z, o+ EEE g e
(- 2)(p?; 3)(p—4) T
ocrE, . = =3V AL
0ChS . = VhET) —(p— OV, ALY (4.86)

The gauge variation of action Lgc and Logg + Loap + Loaa only partly cancel,

1 Iy nevy 1o _
T 1
_W%eﬁlﬁzﬁaﬁ u1...upfacylmyp73 % (4.87)
p—3)! T

[ + 2V Hp, 5,0V Hyopup + 2V Hp 5,0 V' (B + 20/ F) gy 5,
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2
_vaaHﬁlﬁzbvb<B + 20/F>33ﬁ4 + gvbaaHﬁﬁ&ﬁa (B + 20/F>b54:|

T IQ ]
- 3151 <82 RO s g 5V Hy 3,0V Oy

T ]() b
(p 4)p' x 24 7r2 R Ve Sle/Blﬁbﬁ:%v Hﬂ4ﬁsbci1/2"'”p3}

The obvious way to make our action invariant for arbitrary AP~2 is to introduce a
similar term like the first term of r.h.s of the above equation, but with an opposite

coefficient. i.e.

T Iy
A _ P P B2vivp—iyga [y AvZ p— 1) 4.
EBC ( — 1)' % 47_‘_2 Vv 8182 \Y Clll Up ( 88)

which is zero on shell, and its coefficient can not fixed by two point string amplitude

Asmng alone. The correction of action Lp¢ leads to the correction of action Lopg,

Ty lo B1B285Ba v vp—syya ;
AECBB = _mﬂ-Q 1P203P4 V1 Vp— BV HﬁlﬁzaHggﬁu‘V Cyl...yp73
Ty Io eP1B2B3Ba vi-v.
+mﬂ-2 1P2P3P4 V1 Vp— 3v bHﬁlﬁ2aHB3ﬁ4bCyl...yp73
L ey AL "V Hp, 3,0V Hpy 3, oy
(p 3)' X 47T2 1P2a 3840 v vp_3
Ty L0 1883845 va--vp—s 7 ;
+mﬂ_2 1P2P3P4P5 V2rVp—3\/ Hglng H335455CZ',,2...VP73
Tp Lo B1P2B5Ba v2-vp—37a b
_mﬁ PS5V Hp0aV Hpop,8,Cor oy (4.89)

It is easy to check that our corrected higher derivative action

»C,BC = Lpc+ ALpc
T,

[ 2007 1
T p-1)ix2f P By g, Ol
TP Iy ﬂlﬁz 1+ Vp—1 1
- r AV S PR VoL )
(p_ 1)| < 47T2 B152 V1 Up_1
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e 27;][; x 12 %Eﬁlmg I 5, Gy, (4:90)
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S(Le+ L) =0 (4.92)

for arbitrary AP~2 and AP~*, with corrected action £’ = L'gc+ L' csp+Loag+Loan.

The action £’ still enjoys manifest B-field gauge invariance.

3. Linear T-duality

Formally, we can write the sum of action £'cgp and action Logg of Eq.(4.29) as

L'opp+ Loga =CP P AXW +CP 2 A XN (4.93)

Then one can read off X® and XZ@ from the action L£'cpp and Loge. Under the

linear T-duality transformation, one can prove that
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X @y — x@ and XV — x0) (4.94)

ai1a2a3zaq a1a2a3a47 aiazazaqas aiazazaqas

which implies that action £'cpp + Lcoga is compatible with linearized T-duality.

E. Ambiguity terms

So far we have shown that Dp-brane action Lo + £', with 10d action, can reproduce
string amplitudes A9, AST AST and AZTR. Also the action Lo + L s
invariant under both B-field and R-R field gauge transformation, and compatible
with linearized T-duality. These results will give strong constrain to the possible
extra terms that we would miss for action £’. At this moment, there are four groups
of ambiguity terms,

1) On-shell vanishing terms for actions £'cp, Loaa and Loap.

2) On-shell non-vanishing corrections for Lo ap, because of the correction in 1)

3) On-shell non-vanishing corrections for £’ cpp because of the correction 1) and

2).
4) On-shell vanishing terms for action £'cpp.
The sum of the first three groups of terms need to satisfy following conditions:
a) Give zero contribution to string amplitudes AZ 29 AST - AZ and AZ
on-shell.

b) B-field and R-R gauge invariance, after combining any terms from 4).

c) Compatible with linearized T-duality, after combining any terms from 4),
which need to compatible with b).

In the following, we handle the first three groups of ambiguity terms first. If the

extra term include gauge fields, then at least one gauge field should appear in the
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combination
2

VH ap. 4.95
p2Dps ’ ( )

20/(F2>ab + (B2)ab -

so that it give zero contribution to Asgg"gg. Then, the request of B-field gauge invari-

ance implies only two kinds of terms exist,

. [QO/(FQ)ab + (B2)ab 2 VeHeab:| [QQI(Fs)cd + (BS)cd]

" p2Dpa

" p2Dp2

] [zaf<p2>ab+<32)ab > vc<H<2>)cab]H<3>

As the correction of £’ o should not introduce new poles, and should be written

in terms of field strengths Hs and F®~2) we are left with three possible terms
o 1P Vlmyp*lvaHa&ﬁzv#[#Cl/l"'Vp—l]
o (1B V2ml/p71ViHB15253v#[/JCZ'l/2"'l/p71]

o NP VlmypilHiﬁlﬂsz[#Cu

1 Vp-1]

The contribution of these terms to Asgggg need to be canceled by the corrections of

action L£'cpp, and actually the combination of corrected £ ¢pp and L'pc is auto-
matically invariant R-R gauge transformation. It can be checked that the corrected
L' po is also compatible with linearized T-duality. These arbitrary terms can not be
fixed by the string amplitudes we have computed so far. It is not unexpected that

the string amplitudes, which are evaluated on-shell, do not fix the action uniquely.
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CHAPTER V

CONCLUSION

In Chapter IV, we have got o'? corrections for the D-brane couplings, which can
reproduce string amplitudes A%, AL, AZT . and ASLE up to order a’2. The
action we obtained is invariant under B-field and R-R gauge transformation, and
compatible with linear T-duality. However, we can not fix it uniquely. So far, for the
three point function case, we only compute the string amplitude involve R-R field
with degree (p-3). It would be interesting to compute the three point function with
R-R fields CP~! and CP™!. A lot work still need to be done to obtain the additional
terms for action (4.28), to make the whole action have nice property, gauge invariance
ete.

Unlike the string amplitude, which only give on-shell information, T-duality
should be correct off-shell. So we expect that the arbitrary terms, we mentioned
at the end of Chapter IV, can partly or all be fixed once we have finished the compu-
tation for the amplitudes involving R-R fields C?~! and CP*™!, and request the whole
action to be compatible with T-duality.

Now the a'? correction of D-brane action should enable us to compute the equa-
tion of motion to o' order for type IIB string theory. It would be interesting to see
how these equation compared with the equation of motion of heterotic string theory
under the duality chain described in Chapter III.

The full collection of terms of Loqe and L£'cppr should be expressed more ele-
gantly. It would be interesting if one can rewrite all 3-form flux Hj in some form of

torsion [80].
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APPENDIX A

In this appendix, we present the details of some of the computations presented in
this paper. To set up our notation we start by reviewing a few basic formulas regarding
Calabi-Yau manifolds [81]. On a Calabi-Yau three-fold, there exists a unique harmonic

(3,0) form Q, whose first derivatives satisfy

o0 o}

where y; is an harmonic (2,1) form. The Kéhler potential on the complex structure

moduli space is
}%:—bﬁﬁ/QA@. (A.2)
As is easy to check

i N XG
0K.=—FK, and g =0:0;K. = —%. (A.3)

One important property of the (3,0) form €2 is that it is undefined up to multiplication

by a holomorphic function f(z)
Q— f(2)Q. (A.4)

Under (A.4) the Kéhler potential transforms as
Kes — Kes — log f(Z> - 1Og f<2)7 (A5)

which leaves the metric on moduli space invariant. For convenience, we can define a

gauge covariant derivative

xi = Difl = 000 + 0; K542, (A.6)
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and thus under the Kahler transformation, it transforms according to D, — fD,(2,
i.e. x; — fxi- One can also generalize the definition of the covariant derivative to

other quantities which transform like
ped) _, popoyglat) (A.7)
under the Kahler transformation. In this case the covariant derivatives take the form

DY = (8 + ad Ko U

D;U ) = (95 + bO;K ) U D). (A.8)

The partial derivatives J; and 0; are to be replaced by ordinary covariant derivatives

Vi, V; when acting on tensors. It is easy to see that under Kahler transformations
DU — foftpu) and  D;wh) — fo Ppapled), (A.9)

We also require

[D;, D;]2 = —3i;%2, and Dyg;; = 0. (A.10)

Using the above formulas, we can get the results quoted in the table below

Derivatives of the basis | Spans

Q (3.0)
D =x 1) (A.11)
Dix; = IQ;AQKU “Xi (1,2)
Dix; = 9i;92 (0,3)
D;Q =0

where the Yukawa couplings are defined as
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The above results are the tools needed to compute the first derivative of scalar po-

tential (2.10). Because the scalar potential is invariant under Kéhler transformation,

i.e. a = b =10, we can transform the ordinary derivatives into covariant derivatives

8[‘/ == D[V = €K (Z[JFJ+F[W)

(A.13)

with the notation (2.11). To obtain an explicit expression for 9;V = 0, we need to

compute a few quantities,

Me
1 _
. = DW=0W+90.KW = — _/ GANAQ
T —T Mg
Ziy = DiD;W = ik /‘GA#
Y o [QNQ S

1 —
Zy = D:D;W =— _/ G A Xi
T —T Mg
Z.. = D,D,W =d,F, —ITF, +9,KF, = 0.

As a result the critical condition 0;V = 0 can be explicitly written as

[GAXi [GAX'+ [GAQ[GAQ=0

JGNXFJGAX(F) + [GAX; [GAQ+ [GAx; [GAR=0

After using the Hodge decomposition for GG
G = AQ + A'x; + B'y; + BQ
the condition (A.15) can be further written in the form

JGAXxG =0

(BBk + Azzlk) f QAQ+ liijkAiBj =0

(A.14)

(A.15)

(A.16)

(A.17)
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which are Eq.(3.6) and (2.17). To derive these equations, we have used the property
that the harmonic (2,1) and (0,3) forms are imaginary self-dual, and the harmonic
(1,2) and (3,0) forms are imaginary anti-self-dual on Calabi-Yau three-fold.

Now we are going to compute the second derivative of scalar potential by noting
that

0,0,V =D;D,V, 0;0;V = D;D;V (A.18)

at the critical point 0;V = 0. After a little algebra, the second derivatives of the

scalar potential (2.10) are

818JV = GIC (U]JKFK =+ QZ[JW>

8105V = U FX + FiF;+ Zi. Z529"% + g15lW ), (A.19)

where Uj e = DyDDgW. The above formula can be easily transformed to (2.22)

by using the identity:
(D1, D Fx = —g17Fk + R, 7" FL (A.20)

To get expression (2.24), we need to generalize the definition of Uj;x and Z;; to

Uspy = DaDsD, W and  Ugps = Ungy (A.21)

and

Zaﬂ = DaDgW and 7&5 = ZaB; (A22)

where «, 3, and ~ label all coordinates, i.e. the axio-dilaton, complex structure

moduli and their complex conjugates. Using the results quoted in the table (A.11),



we have
[GAQ
ik 1=k fQ A Q gk
A vE .
Uj. = DiDDW = G kg
fanQr—r7
1 _ _
Us.. S Y-S 2.l
kij (fQ A Q)2 K@] Kemn

One consequence of Eq. (A.23) and Eq. (A.14) is

FTUijT = FkUijka

Zir = g gW,
ZJI_ = 07
Ukijr = 917Fk,

UTTZ' = UTTT = Ug T — Ua =0.

JT
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(A.23)

(A.24)

The above expressions are useful to show the equivalence of (2.24) and (A.19).
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APPENDIX B

In this appendix we explicitly show the appearance of the two superpotentials
W:/G/\Q, and W:/a/\Q, (B.1)

by dimensional reduction of ten-dimensional supergravity theories. Our convention

1S £01...9 = ]., and

1

(0 — )l ot

*xdx™ A N dx™m = O Mt A LA da™ (B.2)

We take the type IIB effective action (2.1) together with the local terms are

Sloc = _/ dp+1€Tp _G + ”p/ OP‘H (Bg)
Rix%

RAXZT
To perform the dimensional reduction, we assume that the metric is independent of

external coordinates
ds* = Wy, datda” + e AW g, (y)dy™dy" (B.4)

The Einstein equation is

2 08

1
) : _
RMN = klo (TMN — ggMNT> with TMN = —\/—__g(sgm, (B5)
The non-compact components of the Einstein equation can be written as
R = 1 G 2 1 —8A B 2 k2 Tloc lTloc B.6
72 SImT’ ‘ - 46 ( mOé) gNV + 10 o 8 g/“’ ( . )

On the other hand, using the metric (B.4), we obtain

R, = —e*'"V?Ag,, (B.7)
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which yields

~ 1 1 1
VA= eGP 4 e MOl + Skl T — T (BS)

This can also be written in the form

B 1 1 loc
Vet = ﬁem@]? 4 764 [(Gmoz)2 + (8me4A)2} + 5ka62’4 (Tn”;‘ - T[j) (B.9)

To compute the equation of motion for C)y we only need to consider a few terms in

the action namely

1 - - 1 CayNGANG
— F(5) VAN *F(g,) — / ) + @/ Op+1 (Bl())
R4xXT

8k, 8ik?, ImT 2

The appearance of extra factor % is a consequence of the self-duality of the five form.

The Bianchi identity is

d* Fz) = — ;I/;n ? + 2k2 Ty ke (B.11)
As F(5) is self-dual, we have
Fy = (1 +%)da Adz® A dzt A da® A da® (B.12)
and the Bianchi identity becomes
Via = ﬁe%Gmnl, x G 42749, A0 + 2k:%0T3pl;c (B.13)

By summing or subtracting equations (B.9)and (B.13), we get

~ 1
V(e + ) =3 NG Fix G + e 5400 £ 9,,et)?
mr
B.14)
1 (
+ 2k (Z(T;;; — T+ Tgpg‘m)

The left hand side of the above equation vanishes when integrated over a compact
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manifold Mg. As a result there are two solutions

x G = —iG, a=—et with  03,D3

Y

(B.15)
*x6 G = +iG, a = +ett, with 03, D3.

Notice that we can not have O3 and D3 at the same time.

Using the results above we can perform the dimensional reduction

/ d"z/=gR = / d*zv/=gs / d®y\/g6 [-8(VA)%e*] . (B.16)

Taking into account the fact the self-duality of the five-form we get

—4A

[ g [t [ s ey B17)

4

Since av = Fe*4, this term gives the same contribution as the Einstein term
10 F(5) 4 2 4A
dVxy/—g 1 d*zv/—gs | d°y\/g6 (—(Oma)?e’?)
/d4x\/—g /d y\/_( (Omar)?® & 48ma8mA) (B.18)

]_ —mn
N / V=g / dﬁg\@( + ity G x G F 264AK%°T3PIOC)

Where we have used the Bianchi identity (B.13). The second term in the last equation
of (B.18) will cancel the first term of Sj,., and the CS term cancels the second term

of Si... At the end, the scalar potential is

S, = d*
2/—@10

G+ixG) (B.19)

—04

From this expression, we can write the scalar potential in the standard form with

’VV:/@AQ, or W:/G/\Q (B.20)
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APPENDIX C

In this appendix, we summarize our conventions and quote some useful formulas.

We use indices
M,N,...uv,...;0j,...,w,wy, (A B,...a,0,...,a,b,... w1, wy)

to denote the coordinate (non-coordinate) bases of any six-dimensional space, of four-
dimensional Minkowski space-time, of the base and of the fiber, respectively. For
coordinates on the four-dimensional base of the six-dimensional space, we use 3* while

we denote the fiber coordinates by w;, ¢ = 1,2. We define the chirality operators
I = —rr'rerd, 1% = -rrrer’, r,o= i’ (C.1)

where T'W, I'®) | and T', are the chirality operators for external space, K3 base and

the T? fibre, from which we get
o — pWp@p, = o... 19 (C.2)
for the 10d space. In type the IIB theory, the 10d spinor € satisfies
r0e: — ¢ (C.3)
We also choose the orientation
to0Tunws — (C.4)
The Riemann tensor is defined by

R, = 0,0, — 0,9, + 2,0, — 04,05, (C.5)
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and

trRAR = R4 A R5. (C.6)

We use the notation

1
Hwi - EHwiabea A eb’ (Hwi)a - Hwiabeba Hwiab - I——Twimnegle?b1 (C7)
and
1 1

|H|? = 3 Hoy o Ho, ™ + 5f[wwbﬂw;“’ (C.8)

with e® the vielbein for unwarped K3 base. To compute the trR A R, it is convenient

to use the following results

. 1 ) 1
Ay Al = A A™ g 858"k = 3 SinS™" i

4
A5 = ApSh, Ai;ST =0 (C.9)
1 1
Ay = —§€z‘jklz4kz, Sij = §6ijkl8kl

where A;; are the components of any anti-self-dual two form on the K3 base, and S;;

are the components of any self-dual two form on the K3 base.
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APPENDIX D

We wish to evaluate the integral

2r 1 1 (ez‘a . e—w)?
[0 == / d@/ 7“1d7°1/ 7"2d7"2 5 - 2’C, (Dl)
0 0 0 |1 — 1r9e®|” |1 — ryrae®]

at lowest order in momenta. The result is known (see, e.g. [73]), but for completeness

we will present our own derivation. At this order we can set I = 1, provided the
remaining integral converges. If we split the integral up into two regions, r; < 1y
and r; > 19, then we can expand the factors in the denominator of the integrand as

Taylor series,

2m n1+n2
Iy = / do (e — e_i")2 {/ an / Todry (:2) (ryrg) ™
0 1

m1,n17m2 n2=0

dTQ n1+n2 N ] 0

The two regions clearly give identical contributions. Let’s now rewrite the sums

using N = nq +ng, n.= (ny —ng)/2, M = mq + my, and m = (my —msy)/2,

/drl/ drg/ deer“Q“N“

N,M=0
N/2  M/2

Z Z _ —19 2 2z(m+n)

n=—N/2m=—M/2
(D.3)
Note that the angular integral will give a non-zero result if and only if M and N
have the same parity (either both even or both odd). Consider the angular integral

at fixed N and M. If N < M, then for each allowed value of n there is precisely
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one allowed m satisfying each m = —n — 1, m = —n, and m = —n + 1. Thus, when
we expand (e — e7)? and perform the angular integral, the three terms precisely
cancel out. Similarly, the angular integral for N > M gives a vanishing result. This

leaves us only with the case N = M,

dr 2 N/2 . . .
Iy = / ! / rodry Z / df (¥ — 2 4 ¢7210) 2ilmtn)P

nm——N/2
d
= 471'/ Tl/ ng?“g —2(N+].)+N>T’§N
o 742N+1 7'(3
— 8 [ dr 5 =2 S D.4
7r/o " 29N WZ N+ 3 (D-4)

N=0



I

Iy

Is

APPENDIX E

/ d222d223

|22],|23]<1

/ d222d223
|z2],]2z3]|<1

/ d22’2d223
|z2],|23]<1

/ d222d223
|z2l,|23]<1

/ d222d223
|22],|23]<1

/ d222d223
|z2],]2z3]|<1

d22’2d223
/|227|23<1 |Z2|2|23|2(1 - |22|2)|22 - 23|2

/ d22’2d223
|z2],|23]<1

d222d223 —
/|22,|ZS<1 |20]2| 25|21 — 2025%|22 — 232

/ d222d223
|z2],|z3]|<1

(2322 — 2253)2

2] 20 [P 23 2| 1 — 2223 2] 22 — 23 |2

|1+2223|2

K

|1 — 2023|%[22|?| 23]

|2’2 —|—23|2

|20 — 23]2|22|?| 23]

(1+ [22)(1 + |25/

K

(1= [22?) (1 = [25]?) 22[?| 252

2(1 + |2[*)

|22[?[25[*(1 — |22[?)

1 — |zo?|2s)?

|22]?| 23] |1 — 2225

—(1+ |2[*)(|2]* — |25)

—(1+[2f)(1 — [22]*|25]*)

K

|22]2| 23] |1 — 2225|2(1 — |22/?)

(22 — l2s[*) (1 — 22| 25])

(l22f” — |25/

|Z2|2|Z3|2|22 - 23|2

K

K

K
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1
IlO = / d222d223 T 2. 12 K
|20, 23] <1 | 22| 23]
(E.1)

where

IC = (1 — 2222)73201’2 (1 — 2353>p3'DP3 ’ 29 |2P1-p2| Z3 |2P1'P3‘ Zo—23 |2P2-p3| 1—2973 ’2p2-Dp3 )

(E.2)
After a lengthy computation, these integrals equal to
4
T
Io — —E
2
Il = IIO -+ §7T
272 272 2 1 Dps + p3Dps + 4dps D
I, = I+ - Qs+ : Qg — mt = _W4p2 P2 T P3L/P3 — 2P LVp3
p*(p2 - p3) p*(p2 - p3) 3 3 P23
272 472 w2
Is = Iip+ Qs + [1+ —(p2Dps + p2 -p3)2]
(p1 - p2)(psDps) (p2Dp2)(psDps) 6
2m? 1 4 p2Dps  p3Dps D1 P3 p1-p2, 2 4
+ — =7 - +2 +2 +
(Pl ~p3)(p2Dp2) ? 3 [Psts P2 Dpo p2Dpo p3DP3] 3
472 2 D 2
I, = 2o+ T o ZqaP3EPs  2 4
(p1 - p3)(p2Dpo) 3 p2Dpy 3
Is = I
22 mtpsDps  27tpa-ps  2mtpeDps 1,
16 = —Ig— 2+—— _— —_— —TT
(p1 - p3)(p2Dp2) 3 p2Dpy 3 p2Dpo 3 p2Dpy 3
2m? ! p3Dps 2t P2 - P3 2t p2Dps 1 4
I7 - —[10 — P

(pl‘P3>(P2Dp2)Q2 Epszz 3 p2Dps 3 p2Dps 3
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Is = I
w2 w2
Iy = — Q
? p2(p1 'p3) ? PQ(pl 'p2) ’
2 2
L, = +
0 pQ(p1 ']93) ? P2(p1 '192) ’
(E.3)
where we have used the notation
p° = pi1-patpiops+peDs
2
T
Q2 = [1 - gpz(pzD]b)]
2
T
Qs = [1— EPQ(]??,DP:%)]’ (E.4)

and we have only kept the terms to O(p°).
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APPENDIX F

In this appendix, we evaluate the integration I, in detail, while all other integrals

in this paper can be handled similarly. In polar coordinates, ;9 can be written as

1 1 2
hO::2W/‘Qm§/‘mm3/ d0(r2)P P2 (2P (1 p2)peDea() — y2)plps
0 0 0

X (ry — Tgeie)m'm’ (ro — rge_w)p?p?’(l — r2r36i9)p2Dp3(1 — r2r36_i9)p2Dp3 (F.1)

after setting zo = r9e and 23 = r3¢"%. The integration only depends on 6 = 6, — 65,
so one angle can be integrated to get 27 factor. As we only interest in the behavior
of this integral at small momentum limit, we will use binomial expansion to translate
this integral into an infinite series where every single term can be integrated easily.

The formula we will use frequently is

1 e s+n—1
I n F.2
n=0 n

for | x |< 1. This formula is well defined for integer s, and for general s we can use

the Gamma function representation of binomial coefficients, ie.

ny o I'(n+1)
(k)nk+nwn—k+u' (3)

To apply binomial expansion to integral (F.1), we need to consider two situations

ro > r3 and ry < r3 separately. For ro > r3, we have
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00 1 ro 2m
(110)ry>rs = 2 E /7’2d7’2/ 7“3d7“3/ de(rg)plipﬁpwrl(Tg)pl'prl
n1,...6:O 0 0 0

—p2Dpy +ny — 1 —p3Dps +ny — 1
X

—p2-p3+ng—1 —p2-p3+ng—1
X

ns

—p2Dps +mns — 1 ) —p2Dps +ns — 1 )

X
ni T 0 ne
X <r§) ( ) —36_’9> rygezo) rorze " )
T2

S 1 1
-6

‘D1 P3+ng+ng+ns p? +ny+ng + ns + ne

—p2Dpy +ny — 1 —p3Dps +mng — 1
X
n U]
—p2-p3tng—1 —p2-p3+ng—1
X
ns Ny
—p2Dps +mns5 — 1 —p2Dps +ns — 1
X n3+ns—ngs—ng,0
Ny Neg

(F.4)

where p* = (p1 + p2 + ps)?/2 = p1 - P2 + p1 - P3 + P2 - ps. One can exchange py and ps
in (A10)rysrs 10 get (A1g)r<ry. After adding these two parts of integral together, we

obtain
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[10 = ([10)7"2>T3+<[10>T2<7“3

'Y (G )
5> !
P1-p3st+nagt+ny+ns  pr-p2+ng+ng+ns

ni,...6=0

y —p2Dp2 + 11 — 1 —p3Dp3 +ny — 1
ny na
—p2-pst+mnz—1 —p2-p3s+ng—1
X
ns Ty
—p2Dps +n5 — 1 —p2Dp3 +n5 — 1
X
s g
" 1
P g s g T
(F.5)
where one of the binomial coefficients can be expressed as
—p2Dpa +np — 1 ['[—psDpy +
_ [—p2Dpa + 14 (F.6)

Ny [[—=p2Dps]Tng + 1]

which equals to 1 as n = 0, and behavior like —psDps for small —ps Dpy as ny # 0.
As we only interest in the terms up to order O(p°), for most of the time it is enough
to consider only n; = 0 terms. Now we separate the multiple infinite sum into several

pieces,

(o) = = U[=p2Dpa + 1] T[=psDps + 1o
o L[=p2Dps)l'[ny + 1] I[=p3 Dps]l[ng + 1]
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p?+ny +ny —pa - ps

X 2
(plép:a +n9)(p;1 '2p2 + n1)§1p +n+ ni)
T T T D T Do D
D (pl 'p2) p (Pl 'pa) 6 p1-p2 6 p1-p3

where we have used the identity

I [—p2Dpo —|— n] 1 2 4
E = ——paDps + O F.8
n=1 2Dp2 1] P1 D2 n 6 P2p2 (p ) ( )

2. n3 7é 0777‘4 7& 0,715 7& 07”6 7é 0

The leading contribution to Iy for small momentum is order O(p®)

3. TL3:7’L4:O,’I’L5:TLG7£O

The leading contribution to ;g for small momentum is order O(p*). Similar for

following three cases

e ns=ng=0,n3=ng4 #0
e ng=ng=0,ng=n5#0

e ng=n5=0,n3=ng#0

4. ng =0, ng =nyg + ng, ng # 0, and ng # 0
The leading contribution to I} for small momentum is order O(p®). Similar for
following three cases
e ny =0, ng =ng+ns, ng # 0, and n5 # 0
e n5 =0, n3 =n4+ng, ng #0, and ng # 0

e ng=0,n4 =n3+ns5, ng #0, and ns # 0

So we have

1 1 7 p3sDps 7 paDps
Ig = 72 + 7 - — — === 1 0(p* F.9
0 p2(P1 'p2) p2(p1 'p3) 6 p1-Dp2 6 p1-p3 ( ) ( )
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