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ABSTRACT 

 

Testing a Coupled Global-limited-area Data Assimilation System Using Observations 

from the 2004 Pacific Typhoon Season. (August 2011) 

Christina R. Holt, B.S., University of South Alabama 

Chair of Advisory Committee: Dr. Istvan Szunyogh 

 

 Tropical cyclone (TC) track and intensity forecasts have improved in recent years 

due to increased model resolution, improved data assimilation, and the rapid increase in 

the number of routinely assimilated observations over oceans. The data assimilation 

approach that has received the most attention in recent years is Ensemble Kalman 

Filtering (EnKF). The most attractive feature of the EnKF is that it uses a fully flow-

dependent estimate of the error statistics, which can have important benefits for the 

analysis of rapidly developing TCs. 

 We implemented the Local Ensemble Transform Kalman Filter algorithm, a 

variation of the EnKF, on a reduced-resolution version of the National Centers for 

Environmental Prediction (NCEP) Global Forecast System (GFS) model and the NCEP 

Regional Spectral Model (RSM) to build a coupled global-limited area analysis/forecast 

system. This has been the first time, to our knowledge, that such a system is used for the 

analysis and forecast of tropical cyclones.  We used data from summer 2004 to study 

eight tropical cyclones in the Northwest Pacific.  
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 The benchmark data sets that we use to assess the performance of our system 

were the NCEP Reanalysis and the NCEP Operational GFS analyses from 2004. These 

benchmark analyses were both obtained by the Statistical Spectral Interpolation, which 

was the operational data assimilation system of NCEP in 2004. The GFS Operational 

analysis assimilated a large number of satellite radiance observations in addition to the 

observations assimilated in our system. All analyses are verified against the Joint 

Typhoon Warning Center Best Track data set. The errors are calculated for the position 

and intensity of the TCs.  

 The global component of the ensemble-based system showed improvement in 

position analysis over the NCEP Reanalysis, but showed no significant difference from 

the NCEP operational analysis for most of the storm tracks. The regional component of 

our system improves position analysis over all the global analyses. The intensity 

analyses, measured by the minimum sea level pressure, are of similar quality in all of the 

analyses. Regional deterministic forecasts started from our analyses are generally not 

significantly different from those started from the GFS operational analysis. On average, 

the regional experiments performed better for longer than 48 h sea level pressure 

forecasts, while the global forecast performed better in predicting the position for longer 

than 48 h. 
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1. INTRODUCTION 

 

 Tropical cyclone (TC) track forecasts have improved in recent years due to 

advances in numerical weather prediction (Rappaport et al. 2009). These 

improvements have been due to increased model resolution, improved data 

assimilation techniques, and the rapid increase in the number of routinely assimilated 

observations over oceans. Improvements in the analysis and forecasts of the intensity 

of TCs have been much more modest. This modest improvement is not surprising 

considering that the eyewall radius of a TC is about 25-50 km (Kimball  and Mulekar 

2004) and, as several authors (Fiorino and Elsberry 1989a,b; Grasso 2000; Skamarock 

2004) have pointed out, 4 to 10 grid points are needed to resolve a flow feature such 

as the eye of a TC; the 5-10 km resolution that would be required to capture the 

structure of the eye of a TC is currently unattainable in an operational real-time global 

analysis/forecast system.* 

The data assimilation approach that has received the most attention in recent 

years is Ensemble Kalman Filtering (EnKF; Whitaker and Hamill 2002). The most 

attractive feature of the EnKF is that it uses a fully flow-dependent estimate of the 

error statistics, which can have important benefits for the analysis of a rapidly 

developing TC. One particular study that should be mentioned here is Hamill et al. 

(2011), which compared the performance of an implementation of EnKF on the 

National Centers for Environmental Prediction (NCEP) Global Forecast System 
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(GFS) model to that of the Grid-point Statistical Interpolation (GSI). The GSI is the 

current operational data assimilation component of the NCEP GFS (Kleist et al. 2009). 

Hamill et al. (2011) found that the track forecasts started from the EnKF analyses 

were more accurate than those from the GSI analyses, but they did not find a similar 

improvement in the intensity forecasts. The latter result was not unexpected 

considering the approximate 45 km resolution of the analysis/forecast system.   

Torn and Hakim (2009) carried out EnKF data assimilation experiments using 

a 30 km resolution version of the Weather Research and Forecasting (WRF) model, 

with a 10 km nested grid in the TC region in some of the experiments. They found that 

while the EnKF provided accurate analysis of the TC position, the same was not true 

for the analysis of the intensity: the system on the coarser grid underestimated the 

intensity, while the finer grid overestimated the intensity. The overestimation of 

intensity was mainly due to the timing of intensification. Another interesting finding 

by Torn (2010) was that error in the intensity estimate increased with the intensity of 

the TC, most likely due to the fact that the analysis/forecast system has a greater 

difficulty resolving the steeper pressure gradient in the more intense TCs. 

The present study, to the best of our knowledge, is the first investigation that 

employs a coupled global-limited-area EnKF data assimilation system to assimilate 

observations in a TC region. The particular region selected for this study is the 

Northwest Pacific (Fig. 1), where observations collected in summer 2004 are 

assimilated. The primary goal of the research presented here is to assess the 

analysis/forecast benefits of using a higher resolution limited-area model in the TC 
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region. A secondary goal is to study the effects of assimilating surface wind 

observations by scatterometers and targeted vertical soundings by dropsondes released 

from aircraft. Some experiments to compare the performance of the limited-area 

component for different horizontal resolutions are also presented.  

The thesis is organized as follows. Section 2 gives an overview of the coupled 

global-limited-area data assimilation system. Section 3 describes analysis and forecast 

verification techniques employed by the study. Section 4 describes the characteristics 

of the 2004 Northwest Pacific Typhoons included in this study. The analysis 

verification results are presented in Section 5, while the forecast verification results 

are described in Section 6. Section 7 is a summary and discussion of the main results.  

 

 
Fig. 1. Map indicating the domain of the RSM for all RSM ANL and FCST experiments.  
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2. ANALYSIS/FORECAST SYSTEM 

 

 The data assimilation system is an implementation of the Local Ensemble 

Transform Kalman Filter (LETKF) algorithm (Ott et al. 2004; Hunt et al. 2007) on the 

National Centers for Environmental Prediction (NCEP) Global Forecast System 

(GFS) model (Szunyogh et al. 2005 and 2008) and the NCEP Regional Spectral 

Model (RSM). This implementation of the LETKF was first tested on winter storms 

over the U.S. and is described in Merkova et al. (2011). To obtain the LETKF 

analyses, all observations that were assimilated by NCEP in real-time in summer 2004 

are used, excluding satellite radiance observations. Neither “Tropical Cyclone 

relocation,” nor bogusing techniques are employed in the system. The following 

describes the different components of the forecast/analysis system.  

 

a. GFS Model 

The GFS is a spectral-transform model and we use it at a cut-off wave number 

of 62 with 28 vertical sigma layers (T62L28). This spectral resolution corresponds to a 

grid spacing of approximately 210 km and the output is processed on a 2.5 x 2.5 

degree grid. We generate the initial GFS ensemble for the LETKF with the 0000 UTC 

operational GFS analyses truncated to T62 resolution, from 40 different days during 

the summer of 2004. 
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b. Regional Spectral Model 

 The RSM is essentially a nested limited-area version of the GFS. To eliminate 

common lateral boundary issues faced with using limited-area grid-space models in 

conjunction with global spectral models, the RSM employs a technique of predicting 

the deviations from the global model forecast over the entire regional domain. These 

deviations are then combined with the global state solution to obtain the high-

resolution forecasts (Juang and Kanamitsu, 1994). 

 The vertical levels in the RSM are identical to the 28 sigma layers of the GFS. 

The horizontal resolution of the RSM is 48 km in most of our experiments. In some 

experiments, the resolution is increased to 24 km without changing the vertical 

resolution. In the configuration we implement, the RSM does not propagate 

information back to the GFS. Having the RSM feed information back to the GFS 

during the data assimilation process was shown by Merkova et al. (2011) to produce 

mixed results compared to the configuration used in this study.  

 

c. The LETKF 

 The LETKF is a data assimilation algorithm that, similar to other formulations 

of the ensemble-based Kalman Filter (EnKF) approach, uses an ensemble to generate 

an estimate of the forecast error covariance matrix. Thus, the error covariance evolves 

both between and within the analysis cycles. The main distinguishing features of the 

LETKF from other EnKF schemes are that it assimilates all observations that may 

affect the state estimate at a given grid point simultaneously and the analyses at the 
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different grid points are obtained in parallel, independently of each other grid-point 

analysis (Szunyogh et al. 2008).  

 An EnKF prepares a background (prior) estimate of the probability distribution 

of the state at analysis time tn by evolving an ensemble of state estimates with the 

model from the previous analysis time, tn-1. The prior estimate of the probability 

distribution of the state is then updated by assimilating the observations over the time 

window [tn – Δt/2, tn + Δt/2].  

 The data assimilation process begins by creating a K-member background 

ensemble by an ensemble of forecasts 

€ 

xb(k ) tn( ) =M xa(k) tn−1( )[ ] ,  k = 1,…,K   (1) 

where  is the k-th member of the background ensemble, M represents the model 

dynamics, and {xa(k)(tn-1), k = 1,…,K} is the analysis ensemble at time tn-1. The 

background ensemble mean  is calculated as  

€ 

x b tn( ) = K −1 xb(k )

k=1

K

∑ tn( )     (2) 

and is used to construct the ensemble perturbation matrix, 

€ 

Xb tn( ), in which the k-th 

column is the k-th background perturbation,

€ 

Xb(k ) tn( ) = xb(k ) tn( ) − x b tn( ) . The matrix of 

background perturbations is used in the calculation of the background error covariance 

matrix, 

€ 

Pb tn( ) , such that 

€ 

Pb tn( ) = K −1( )−1Xb tn( ) Xb tn( )[ ]
T

    (3) 
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 The update step of an ensemble-transform-based scheme obtains the analysis 

mean by  

€ 

x a tn( ) = x b tn( ) + Xb tn( )wa tn( )      (4) 

where 

€ 

wa tn( ) is the particular choice of the weight vector w, which minimizes the 

quadratic cost function 

€ 

J w( ) = k −1( )wTw + yo tn( ) −h x b tn( ) + Xb tn( )w[ ]( )
T
R−1 tn( ) yo tn( ) −h x b tn( ) + Xb tn( )w[ ]( )  

(5) 

The components of the vector 

€ 

yo tn( )are the observations assimilated at time tn and 

h(x) is a four-dimensional observation operator that maps the grid-point representation 

of the model state at tn to the time and location of the observations, and converts 

model variables to observed quantities. The observation operator satisfies 

€ 

yo tn( ) = h x t tn( )[ ] + e tn( ),    (6) 

where 

€ 

x t tn( )  is the model representation of the true state at tn and  is a random 

noise vector that has a Gaussian distribution with mean 0 and covariance matrix  

€ 

R tn( ). To obtain the full ensemble of analyses, the analysis perturbations are added to 

the ensemble mean 

€ 

x a tn( ). These analysis perturbations are computed from the 

background perturbation by  

€ 

Xa tn( ) = Xb tn( )Wa tn( ),    (7) 

where 

€ 

Wa tn( ) is a weight matrix, in which each row is a weight vector for an 

ensemble member.   



 8 

 In the coupled global-limited-area data assimilation system, each of 40 global 

ensemble members has a limited-area counterpart. First, the global analysis is 

prepared and then each member of the global background ensemble is used to define 

the global component (boundary conditions and large scale forcing) of a high-

resolution limited-area background ensemble member. The initial conditions for the 

limited-area background ensemble at time tn are the members of the limited-area 

analysis ensemble at time tn-1. 

For this study, each analysis is obtained by cycling the system for six hours 

with an observation time window of Δt = 6 h. This approach provides four analyses 

per day at 0000 UTC, 0600 UTC, 1200 UTC, and 1800 UTC. Covariance inflation is 

applied to the ensemble-based estimates of the background error covariance matrix to 

compensate for the effects of sampling errors (due to the finite sizes of the ensemble) 

and nonlinearities, and to account for the effects of model errors. The covariance 

inflation ranges from 1.5 at the equator down to 1.3 in roughly the northern half of the 

domain. Observations are assimilated within an 800 km radius of each grid point.  
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3. VERIFICATION METHODS 

 

a. Benchmark Analyses 

 The benchmark analyses we use to assess the quality of the LETKF analyses 

are the NCEP/NCAR (National Center for Atmospheric Research) Reanalysis (Kalnay 

et al. 1996) and the NCEP operational analyses from 2004. The NCEP/NCAR 

Reanalysis was chosen for comparison because it is also based on the NCEP global 

operational model and was prepared at the same T62L28 resolution as our global 

analysis. The difference from our analysis/forecast system is that the Reanalysis used 

an older version of the model and the Spectral Statistical Interpolation (SSI), a 3D 

variational analysis method (Parrish and Derber 1992). The operational NCEP 

analysis (referred to as NCEP Oper ANL) used the same version of the model we use 

and the SSI, but was originally prepared at T254L64 resolution, which is roughly 

equivalent to 55 km resolution. It also assimilated a large number of satellite radiance 

observations in addition to the observations assimilated in our system, and employed 

TC relocation techniques. Each  of the global benchmark analyses is compared to the 

experimental analyses on a 2.5 x 2.5 degree grid. 

 

b. Analysis Verification  

The Joint Typhoon Warning Center’s (JTWC) Best Track data (Atagan et al. 

2004) is used as the verification data set to assess the errors in the track and intensity 

analyses and forecasts. Since the Best Track information was not assimilated in our 
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experiments, it provides independent verification information. The Best Track is 

issued after the JTWC reanalyzes all available data once a storm has dissipated. The 

data set includes six-hourly track and intensity information. The intensity estimates, 

derived from the Dvorak model, are based on one-minute mean sustained wind speed. 

This procedure leads to estimates that are higher than those provided by other 

agencies, which base their estimates on a ten-minute mean (Chu et al. 2002). The 

derived one-minute mean wind is then interpolated to provide a minimum central 

surface pressure. The data from this data set are all point estimates and will be 

compared to gridded model data. The vast difference in resolution when comparing 

the two is a large source of error. Scaling the best track point estimates to the 

resolution of the model output would be a more even comparison, but is beyond the 

scope of the current research.   

Analyses are prepared using the coupled LETKF system for three base cases: a 

global analysis (GFS LETKF ANL), a regional analysis (RSM LETKF ANL), and a 

regional analysis that includes QuikSCAT satellite-derived surface wind observations 

(RSM LETKF ANL QS) in addition to the observations assimilated in the GFS 

LETKF ANL and RSM LETKF ANL experiments. Analyses are prepared for the 

period between 0000 UTC June 22, 2004 and 1800 UTC August 15, 2004. These 

analyses, along with the NCEP Reanalysis and NCEP Oper ANL, are verified against 

the JTWC data set. 

 Because there is a strong variability in intensity among the eight TCs that 

occurred in the northwest Pacific during the period we consider, the method by which 
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the storm center is located is based on storm intensity. After visually assessing the sea 

level pressure and low-level (lowest model level) vorticity fields for each case, the 

center-finding method was determined: if the model indicates that there is a closed 

low-pressure center near the Best Track location, the location of the minimum model 

pressure in that area serves as the storm position at the time. When the model indicates 

no closed low-pressure center near the Best Track, which occurs in the case of the 

least intense TCs, the position of the TC is taken to be the location of the vorticity 

maximum. The minimum pressure, then, is taken to be the sea level pressure at the 

vorticity maximum grid point. The two methods produce slightly different results 

when applied to closed low-pressure centers. Choosing the location of the lowest 

model pressure to mark the track, whenever possible, is motivated by previous studies 

(e. g. Torn 2010), which followed the same approach.  

 Once the cyclone tracks and intensities for all analyses (including NCEP 

benchmarks) are extracted, root mean square errors (RMSE) are calculated to provide 

a single number as a measure of the error in the track for the entire lifetime of each 

TC. To test the significance of the differences between the RMSE for the different 

configurations of the analysis/forecast system, we employ a method described in 

Szunyogh et al. (2008) and Aravéquia et al. (2011). The test is based on a paired t-test 

with a null hypothesis that the two time series are the same, versus the alternative that 

they are different. Assuming that the difference, Δ(x,t), between two time series of 

analysis or forecast errors is described by a first-order autoregressive process, the test 

statistic is  
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€ 

z(x) =
Δ (x)

VΔ(x) /T '(x)[ ]1/ 2 ,          
(8) 

where 

€ 

Δ (x)  is the time average over Δ(x,t) and VΔ(x) is the variance of the time series 

(Δ(x,t): t=1,2,…T). In Eq. 8, the effective sample size, T’, is 

€ 

T '(x) = T 1− r(x)[ ] 1+ r(x)[ ]−1 ,                (9) 

 where the autocorrelation coefficient, r(x), is computed by  

€ 

r x( ) =

Δ(x,t) − ΔT1(x)[ ] Δ(x, t +1) − ΔT2(x)[ ]{ }
t=1

T −1

∑

Δ(x,t) − ΔT1(x)[ ]2 Δ(x, t) − ΔT2(x)[ ]2
t=2

T

∑
t=1

T −1

∑
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

1/ 2 .          (10) 

Here, ΔT1 is the average over the first T-1 time steps of Δ(x,t) and ΔT2 is the average 

over the last T-1 time steps of Δ(x,t).  

 Under the assumption that the time series of errors is described by a first order 

autoregressive process, autocorrelation should fall within the range [0, 1]. While most 

analyses and forecast error statistics satisfy this assumption, the track analysis errors 

do not, because the position error has a “short memory”. Thus, in the computation of 

the statistical significance of the difference between the errors, we assume that the 

effective sample size T’ is equal to the sample size T.  

 Once z(x) is computed, the difference between the time series is deemed 

significant if the likelihood of obtaining this z(x) is less than the significance level 

being tested. In this study, significance at the 90% confidence level is sufficient.  

Differences between analysis time series of pressure or track error are significant at 

the 90% level if |z| ≥ 1.65 using a standard normal distribution. We also consider the 
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significance of the differences based on the t-distribution. The t-distribution has 

heavier tails to account for smaller sample sizes. In this case, the probability of 

obtaining our tested value given a true null (p-value) is calculated. Any values less 

that 0.1 are considered significant at the 90% confidence level.  

Verification statistics stratified by cyclone intensity are also prepared. This 

verification approach is motivated by Torn (2010), who found that the largest errors in 

intensity analysis tended to occur in strong TCs (Category 3-5), while the largest track 

errors tended to occur in weak TCs (Tropical Depressions and Storms). Observations 

of minimum SLP and position error are separated based on Best Track wind speed 

into the three groups used in Torn (2010): Tropical Depression/Tropical Storm (< 64 

kts), Category 1-2 (64-95 kts), and Category 3-5 (> 95 kts). 

The distributions of ensemble mean analysis errors stratified by TC Category 

are analyzed with the use of box plots. This type of graph shows the distribution of the 

data by displaying three quartiles, the minimum, and the maximum on a rectangular 

box. The lower edge is the first quartile, while the upper edge is the third quartile. The 

center line indicates the median of the data set. The lines that extend away from the 

top and bottom of the box are often called “whiskers” and extend to the largest data 

point within 1.5 interquartile ranges from the respective quartile. Data points plotted 

beyond the “whiskers” are outliers. The shape can tell us the variability (height of 

box), departure from symmetry, and center of the data (position of median in box). 

The disposition of the box from zero tells us the general magnitude of the data 

(Montgomery and Runger 2007).  
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c. Special Cases 

 Besides the surface wind observations by scatterometer, it is useful to 

investigate other factors that may affect the performance of the analysis/forecast 

system. In a select few observation time windows, there are in situ measurements 

from the Dropwindsonde Observations for Typhoon Surveillance near the Taiwan 

Region (DOTSTAR) program (Wu et al., 2005).  These observations have been 

specifically targeted to maximize TC predictability and will be included when 

available as a separate analysis (RSM LETKF ANL DS).  

 The DOTSTAR program obtains in situ measurements by utilizing the 

Airborne Vertical Atmosphere Profiling System (AVAPS) and flying an ASTRA 

aircraft in a pre-determined flight path around the TC. This path is chosen based on 

short-term model forecasts and targeted observation products. Dropwindsondes are 

released from an altitude of 14 km for five hours over the course of the mission (Wu 

2005). Three individual missions were conducted for Typhoon Mindulle over three 

days, just before the storm underwent rapid intensification. 

 The effect of the resolution of the regional component of the system is another 

factor we investigate because resolution is known to play a role in the maximum 

intensity, or minimum pressure, that a modeled cyclone can obtain.   In order to keep 

the computational cost manageable, 24 km resolution analyses were prepared only for 

two separate time periods with slightly different domain positions, but identical 

domain sizes. The first time period and domain (Fig. 2) takes advantage of the fact 

that the first two storms, Mindulle and Tingting, occur fairly close to each other in 
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space and time. The second (not shown) is chosen to cover the full track of Typhoon 

Namtheun, providing more verification data for an intense storm. We refer to these 

cases collectively as RSM LETKF ANL 24. Choosing these two periods allows for the 

use of the analysis techniques we described in the previous section, including 

stratification by Best Track wind intensity, since the intense storms went through 

moderate and weak stages as well. There are 121 data points available for the 

verification of RSM LETKF ANL 24. We compare the RSM LETKF ANL 24 case 

with a subset of corresponding RSM LETKF ANL QS cases, because RSM LETKF 

ANL 24 also assimilates the scatterometer observations.  

 

d. Forecast Verification 

 The quality of short-term forecasts is an important measure of the quality of 

the analyses used as the initial conditions of the forecasts. Deterministic forecasts 

were prepared for the cases where the analysis verification results suggested relatively 

large differences between the qualities of the analyses with the different 

analysis/forecast systems. Each forecast is initialized from its respective ensemble 

analysis mean, that is, the GFS LETKF ANL is the initial condition of the forecast 

GFS LETKF FCST. The naming convention for each forecast will be the analysis 

name with FCST substituted for ANL.  We verify the deterministic forecasts against 

the Best Track information to assess the errors in track and intensity produced by our 

analysis/forecast system and compare the results of each experimental design to 

determine the relative performance of each system component.  
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Fig. 2. Map indicating the increased resolution domain for the Typhoons 
Mindulle and Tingting. 
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4. SUMMER 2004 NORTHWEST PACIFIC TYPHOONS 

 

During the summer of 2004 between June 22 and August 15, there were eight TCs 

in the northwest Pacific basin. Of these eight, there were a variety of storm intensities 

ranging from Tropical Depression (< 63 kts) to Category 4 (113-155 kts) on the Saffir-

Simpson Scale (Atagan et al. 2004). During this time, there were also reconnaissance 

flights providing targeted in situ measurements for one of the most intense storms, 

Mindulle. Basic information for each of these storms is included in Table 1. 

 

Table 1. Tropical cyclone name, number, minimum sea level pressure at maximum intensity, 
Saffir-Simpson Category, number of observations, and time period for the cyclones studied. Data 
is taken from Atagan, et al. 2004. (TS = Tropical Storm)  

Name 
Storm 

Number 

Minimum 
SLP at 
Max 

Intensity 
(hPa) 

Maximum 
Saffir-

Simpson 
Category 

Number of 
Observation 

Times 
Included 

Time Period 
Included 

(mm/dd/hh) 

Mindulle 10 916 Cat. 4 50 06/22/00Z – 
07/04/06Z 

Tingting 11 963 Cat. 1 38 06/24/18Z – 
07/04/00Z 

Kompasu 12 991 TS 18 07/12/12Z – 
07/16/12Z 

Namtheun 13 927 Cat. 4 33 07/24/06Z – 
08/01/06Z 

Malou 14 954 Cat. 2 27 08/02/18Z – 
08/09/06Z 

Meranti 15 997 TS 14 08/02/00Z – 
08/05/06Z 

Rananim 16 954 Cat. 2 25 08/07/00Z – 
08/13/00Z 

Malakas 17 997 TS 13 08/10/06Z – 
08/13/06Z 
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5. ANALYSIS VERIFICATION RESULTS 

 

a. Main Analyses 

 The analysis track error averaged over the eight storms (Fig. 3) shows that 

both the global and regional LETKF systems performed better than the NCEP 

reanalysis. The GFS LETKF ANL is about 60 km more accurate, while the regional 

analyses are about 80 km more accurate than the NCEP Reanalysis. NCEP Oper ANL 

is the best of the global analyses on average, performing similarly to the regional track 

analyses. The variability among the average minimum sea level pressure (SLP) errors 

in the different systems (Fig. 4) is much smaller than the variability among track 

errors. They are, however, in good agreement with the results based on verifying the 

track on the relative quality of the different systems. There is also some indication that 

the assimilation of QuikSCAT data improves the intensity analysis. These results also 

show that the ensemble-based analysis systems performed adequately without using 

bogusing or TC relocation techniques.  

 We find that for Category 1 Typhoons and stronger, the minimum SLP error is 

inversely proportional to the Best Track minimum central pressure. Fig. 5 shows an 

illustration of this result for Typhoon Mindulle. At the peak intensity, the RSM 

analyses are more accurate by about 2 hPa over the duration of the most intense 

observations. The nearly one-to-one inverse relationship between intensity and error is 

most likely related to the low horizontal resolution of our analysis/forecast system.   



 19 

 
Fig. 3. Average Track RMSE over all 218 observations of eight tropical 
cyclones. 

 

 
Fig. 4. Average minimum SLP RMSE over all 218 observations of eight 
tropical cyclones. 
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Fig. 5. Minimum SLP RMSE time series for Typhoon Mindulle. The Best Track Analysis 
pressure (black) corresponds to the secondary (right) axis, while the error for each analysis 
is plotted in the color indicated by the legend and corresponds to the primary (left) axis.  

 

Fig. 6 shows that although the minimum sea level pressure errors grow as cyclones 

intensify, the trend in the pressure time series captures the intensification. With much 

higher-resolution simulations, it may be possible to significantly reduce the SLP error 

observed in the current experiments, but the simulations would be much more 

computationally expensive.  

 Resolution also produces some error in the position of the storm. There is no 

way to locate the center of the storm with higher precision than the size of the grid 

box it is located in. Fig. 7 shows the tracks for the global and regional analyses for 

Typhoon Mindulle as an example.    
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Fig. 6. Minimum SLP time series for Typhoon Mindulle. 

 

Assessment of the performance for each model configuration was done on a 

storm-by-storm basis using the two-sample t-test to test for the statistical significance 

of the difference between the errors for the different configurations. Five comparisons 

are made:  NCEP Reanalysis vs. GFS LETKF ANL; NCEP Oper ANL vs. GFS 

LETKF ANL; GFS LETKF ANL vs. RSM LETKF ANL; and RSM LETKF ANL QS 

vs. RSM LETKF ANL. Tables 2 - 7 show the actual sample sizes, the effective sample 

sizes, z-scores, and p-values from the t-distribution for minimum SLP and positions 

errors.  For SLP comparisons, a small percentage of time series differences are very 

slightly anti-correlated, returning small negative autocorrelation values that are  
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Table 2. Sample size, effective sample size, and Z score for minimum SLP error for each global 
comparison of each TC. Shaded boxes indicate values significant at the 90% confidence level. 

    NCEP - GFS   
NCEP Oper - 

GFS   GFS - RSM   
Storm 
Name 

Time 
Steps T’ Z T’ Z T’ Z 

Mindulle 50 20.3 3.03 16.5 2.51 4.7 1.06 
Tingting 38 18.2 0.40 12.7 -2.15 10.8 0.91 
Kompasu 18 3.9 -1.52 9.3 1.32 3.6 2.74 
Namtheun 33 4.6 -1.33 8.4 2.29 16.5 4.85 
Malou 27 4.4 1.94 19.5 1.43 26.0 2.67 
Meranti 14 6.4 -0.63 7.8 -0.01 13.0 0.64 
Raninim 25 7.9 -1.60 6.9 1.25 2.7 1.38 
Malakas 13 12.0 3.05 12.0 1.48 2.9 1.23 

 

Table 3. Sample size, effective sample size, and Z score for minimum SLP error for each 
regional comparison of each TC. Shaded boxes indicate values significant at the 90% 
confidence level. 
    NCEP Oper - RSM   RSM QS - RSM   

Storm 
Name 

Time 
Steps T’ Z T’ Z 

Mindulle 50 21.9 -1.19 30.1 0.49 
Tingting 38 4.2 1.13 35.6 1.15 
Kompasu 18 3.7 2.66 17.0 0.60 
Namtheun 33 12.4 -1.11 27.4 0.61 
Malou 27 21.8 -0.07 26.0 0.52 
Meranti 14 9.9 0.21 11.1 -0.57 
Raninim 25 9.5 -0.47 20.2 1.55 
Malakas 13 12 -0.76 10.0 0.41 
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Table 4. Sample size, effective sample size, and p-value from the t-distribution for minimum SLP 
error for each global comparison of each TC. Shaded boxes indicate values significant at the 90% 
confidence level.  

    NCEP - GFS   
NCEP Oper - 

GFS   GFS - RSM   
Storm 
Name 

Time 
Steps T' p-value T' p-value T' 

p-
value 

Mindulle 50 20.3 0.008 16.5 0.023 4.7 0.201 
Tingting 38 18.2 0.363 12.7 0.047 10.8 0.251 
Kompasu 18 3.9 0.117 9.3 0.160 3.6 0.031 
Namtheun 33 4.6 0.148 8.4 0.041 16.5 0.000 
Malou 27 6.8 0.072 19.5 0.142 26.0 0.001 
Meranti 14 6.4 0.304 7.8 0.385 13.0 0.315 
Raninim 25 7.9 0.110 6.9 0.170 2.7 0.125 
Malakas 13 12.0 0.010 12.0 0.132 2.9 0.150 

 

Table 5. Sample size, effective sample size, and p-value from the t-distribution for 
minimum SLP error for each regional comparison of each TC. Shaded boxes indicate 
values significant at the 90% confidence level. 
    NCEP Oper - RSM   RSM QS - RSM   

Storm 
Name 

Time 
Steps T' p-value T' p-value 

Mindulle 50 21.9 0.192 30.1 0.349 
Tingting 38 4.2 0.182 35.6 0.204 
Kompasu 18 3.7 0.034 17.0 0.324 
Namtheun 33 12.4 0.207 27.4 0.326 
Malou 27 21.8 0.393 26.0 0.368 
Meranti 14 9.9 0.379 11.1 0.326 
Raninim 25 9.5 0.343 20.2 0.121 
Malakas 13 12 0.288 10.0 0.354 
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Table 6. Sample size and Z-score for position error of each TC. Shading indicates values 
significant at the 90% confidence level. 

        Z     

Storm 
Name 

Analysis 
Time 
Steps 

NCEP - 
GFS 

NCEP 
Oper - 
GFS 

GFS - 
RSM 

RSM 
QS - 
RSM 

NCEP 
Oper - 
RSM 

Mindulle 50 1.82 1.71 1.81 -1.51 0.44 
Tingting 38 0.62 2.57 0.38 -0.20 -1.20 
Kompasu 18 2.63 -2.26 1.47 1.73 2.74 
Namtheun 33 1.54 -0.53 2.85 0.27 2.66 
Malou 27 2.99 0.44 2.00 -0.53 1.36 
Meranti 14 1.95 0.70 -1.33 -1.33 -1.64 
Raninim 25 1.73 -1.29 -0.26 2.04 1.13 
Malakas 13 -0.58 1.82 1.58 -1.92 -0.81 

 

Table 7. P-value for position error of each TC based on the t-distribution. Shading indicates 
those values that are significant at the 90% confidence level. 

       p-value     

Storm 
Name 

Analysis 
Time 
Steps 

NCEP - 
GFS 

NCEP 
Oper - 
GFS 

GFS - 
RSM 

RSM QS 
- RSM 

NCEP 
Oper - 
RSM  

Mindulle 50 0.078 0.093 0.079 0.126 0.360 
Tingting 38 0.325 0.017 0.368 0.388 0.192 
Kompasu 18 0.018 0.037 0.135 0.092 0.015 
Namtheun 33 0.122 0.343 0.010 0.382 0.015 
Malou 27 0.007 0.358 0.058 0.342 0.156 
Meranti 14 0.065 0.302 0.160 0.161 0.105 
Raninim 25 0.091 0.172 0.381 0.054 0.206 
Malakas 13 0.326 0.080 0.115 0.069 0.275 

 



 25 

 
Fig. 7. Tracks for Typhoon Mindulle from each of the 6 available model configurations. In 
each panel black represents the JTWC track with TC symbols at 0000 UTC each day.   
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typically an order of magnitude smaller than positive autocorrelation values. For these 

instances, the autocorrelation was set to zero so that the effective sample size reduced 

to the number of observations in the time series. The differences in track analysis are 

not autocorrelated like the SLP analysis, so there is no need to calculate an effective 

sample size for the test statistic for track error differences. 

Fig. 8 shows (track) and (SLP), where  is the time average of NCEP 

Reanalysis error minus GFS LETKF ANL error. Positive values indicate that the GFS 

LETKF ANL performs better. Storms 11, 13, and 17 show differences in track error 

that are not significant at the 90 % confidence level. Of the remaining five storms, the 

GFS LETKF ANL produces a significantly more accurate analysis, ranging from 30-

180 km better than NCEP Reanalysis. The (SLP) analysis shows that only three 

comparisons produce significant differences. Each of these three shows an enhanced 

minimum SLP analysis by the GFS LETKF ANL. The scatter plot in Fig. 9 shows that 

there are a large number of cases where NCEP Reanalysis has much higher position 

error than the GFS LETKF ANL. In cases where the GFS LETKF ANL has larger 

error, the difference between the magnitudes of the errors tends to be larger. The 

scatter plot of minimum SLP (Fig. 10) of the two analyses shows smaller differences, 

but there are a larger number of NCEP Reanalysis points with greater error, especially 

for errors less than 30 hPa indicating an enhancement of minimum SLP analysis by 

the GFS LETKF ANL.  

Fig. 11 is the same as Fig. 8 except that  is defined as NCEP Oper ANL 

minus GFS LETKF ANL. Positive values indicate that the GFS LETKF ANL 
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performs better. The lack of significance among several of track comparisons 

indicates that the GFS LETKF ANL performs similarly to the NCEP Oper ANL for 

about half of the storms. The NCEP Oper ANL performs track analysis significantly 

better in three of the four storms. The scatter plot of NCEP Oper ANL error vs. GFS 

LETKF ANL error supports the findings of the average (track) shown in Fig. 12. 

Here, large number of high-error data points indicate lower errors for GFS LETKF 

ANL than NCEP Oper ANL. Fig. 13 shows the scatter plot for minimum SLP, 

indicating no difference between the two analyses for errors less than 30 hPa. For 

larger errors, GFS LETKF ANL performs better than NCEP Oper ANL. 

 

 
Fig. 8. NCEP Reanalysis minus GFS LETKF ANL root mean square error for A) 
(track) and B) (SLP) for each of the eight cyclones. Shaded boxes indicate the 
storms in which  is significant. 
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Fig. 9. RMSE in position analysis for NCEP Reanalysis vs. GFS 
LETKF ANL for all data points. The scatter plot also shows the 
45° line between the errors.  

 
 

 
Fig. 10. RMSE in minimum SLP analysis for NCEP 
Reanalysis vs. GFS LETKF ANL for all data points. The 
scatter plot also shows the 45° line between the errors.  
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Fig. 11. NCEP Oper ANL minus GFS LETKF ANL root mean square error for A) (track) 
and B) (SLP) for each of the eight cyclones. Shaded boxes indicate the storms for which  
is significant. 
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Fig. 12. RMSE in position analysis for NCEP Oper ANL vs. 
GFS LETKF ANL for all data points. The scatter plot also 
shows the 45° line between the errors.  

 
 
 

 
Fig. 13. RMSE in minimum SLP analysis for NCEP Oper ANL 
vs. GFS LETKF ANL for all data points. The scatter plot also 
shows the 45° line between the errors.  
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Fig. 14 is the same as Fig. 8 except that  is defined as NCEP Oper ANL 

minus RSM LETKF ANL. Statistically significant track results indicate that the RSM 

LETKF ANL performs better in the analysis of position of the cyclone than the NCEP 

Oper ANL for two storms. The lack of significant differences in SLP for most of the 

storms indicates that our regional component performs similarly to the NCEP Oper 

ANL. The scatter plots for the position (Fig. 15) and minimum SLP (Fig. 16) errors 

also support a slightly better analyses by the RSM LETKF ANL.  

 

 
Fig. 14. NCEP Oper ANL minus RSM LETKF ANL root mean square error for A) (track) 
and B) (SLP) for each of the eight cyclones. Shaded boxes indicate the storms for which  
is significant. 
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Fig. 15. RMSE in position analysis for NCEP Oper ANL vs. 
RSM LETKF ANL for all data points. The scatter plot also 
shows the 45° line between the errors.  

 
 

 
Fig. 16. RMSE in minimum SLP analysis for NCEP Oper ANL 
vs. RSM LETKF ANL for all data points. The scatter plot also 
shows the 45° line between the errors.  
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 Fig. 17 is the same as Fig. 8 except that  is defined as GFS LETKF ANL 

minus RSM LETKF ANL, where positive values indicate a superior RSM LETKF 

ANL. For (track) error comparison, only storms 1, 4, and 5 have significant mean 

differences, all of which indicate a better RSM LETKF ANL that is more accurate by 

about 25 – 75 km at a 90% confidence level. The (SLP) analysis provides significant 

differences for only three storms, all of which indicate that the RSM LETKF ANL is 

the better intensity analysis. This result provides further support for increasing 

resolution to more accurately capture the true minimum SLP, as well as using a 

second data assimilation step in the regional component of the system. Fig. 18 shows 

that RSM LETKF ANL exhibits lower errors than GFS LETKF ANL for position 

analysis. The scatter plot for minimum SLP (Fig. 19) indicates that the RSM performs 

better than the GFS LETKF ANL in cases where the error is smaller than about 40 

hPa, while the two systems perform similarly for larger error cases.  

 In Fig. 11, Fig. 14, and Fig. 17, the minimum SLP error differences are the 

largest for TS Kompasu (TC 3). The GFS LETKF ANL recognized the flow feature 

only in the vorticity field. Because the pressure of the cyclone and the pressure of the 

surroundings were so similar for this weak storm, the pressure errors in the GFS were 

much higher than in the benchmarks, where the surrounding SLP was lower, and in 

the RSM LETKF ANL which captured a low-pressure center, as well as a vorticity 

maximum.  
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Fig. 17. GFS LETKF ANL minus RSM LETKF ANL root mean square error for A)  
(track) and B)  (SLP) for each of the eight cyclones. Shaded boxes indicate the storms for 
which  is significant. 

 

RSM LETKF ANL QS and RSM LETKF ANL are compared in Fig. 20, 

where positive differences indicate a better analysis by the RSM LETKF ANL QS. 

These results are quite different from the previous relationships. None of the 

minimum SLP differences are significant, which means the two analyses produce 

almost identical minimum SLP estimates. This result is supported by the very linear 

one-to-one relationship shown in the scatter plot of Fig. 21. Only one of the storms 

shows that track analysis is significantly better for the RSM LETKF ANL QS, two are  
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Fig. 18. RMSE in position analysis for GFS LETKF ANL vs. 
RSM LETKF ANL for all data points. The scatter plot also 
shows the 45° line between the errors. 

 

 
Fig. 19. RMSE in minimum SLP analysis for GFS LETKF 
ANL vs. RSM LETKF ANL for all data points. The scatter 
plot also shows the 45° line between the errors.  
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significantly better for RSM LETKF ANL, while the rest provide insignificant 

differences. The scatter plot for this comparison (Fig. 22) of position analysis also 

supports that the RSM LETKF ANL may be slightly better. These results indicate that 

assimilating the QuikSCAT data only in the regional component of our system has 

little effect on overall track and intensity analysis.  

 

 
Fig. 20. RSM LETKF ANL QS minus RSM LETKF ANL root mean square error for A)  
(track) and B)  (SLP) for each of the eight cyclones. Shaded boxes indicate the storms for 
which  is significant. 
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Fig. 21. RMSE in minimum SLP analysis for RSM LETKF 
ANL QS vs. RSM LETKF ANL for all data points. The 
scatter plot also shows the 45° line between the errors.  

 
 

 
Fig. 22. RMSE in position analysis for RSM LETKF ANL QS 
vs. RSM LETKF ANL for all data points. The scatter plot also 
shows the 45° line between the errors.  

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

!" #!" $!" %!" &!" '!" (!" )!" *!"

!"
#
$%
&'
()
$*
+
%$
,
"$
!#

"&
$-.

/0
1$

!"#$%&'()$*+%$!#"&$-./01$

!"#$%&'()$*+%$,"$234$!"#$%&'()$*+%$!#"&$56$#565787$"%/$

!"

#!!"

$!!"

%!!"

&!!"

'!!!"

'#!!"

!" #!!" $!!" %!!" &!!" '!!!" '#!!"

!"
#
$%
&'
()
$*
+
%$
,
"$
!#

"&
$-.

/0
1$

!"#$%&'()$*+%$!#"&$-./01$

!"#$%&'()$*+%$,"$234$!"#$%&'()$*+%$!#"&$56$/7353876$



 38 

The peak magnitudes of the SLP errors vary widely from storm to storm, 

increasing almost linearly with storm intensity. The peak magnitudes of track errors, 

however, have the opposite response and tend to be lower on average for intense 

cyclones. Grouping the individual point observations by JTWC Best Track wind speed 

intensity for strong, moderate, and weak cyclones and analyzing the distribution of 

errors for each explains the general response. Fig. 23 and Fig. 24 show intensity and 

track error box plots as a function of Best Track wind speed. In each model 

configuration, there are 15 strong TCs, 48 moderate TCs, and 155 weak TCs.  

 

 
Fig. 23. RMSE distribution of SLP for A) Category 4 and 5 cyclones, B) Category 1-3 cyclones, 
and C) tropical storms and depressions. Each box represents the errors associated with a different 
component or configuration of the system.   
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Fig. 24. RMSE distribution of position for A) Category 4 and 5 cyclones, B) Category 1-3 
cyclones, and C) tropical storms and depressions. Each box represents the errors associated with 
a different analysis. 

 

 Fig. 23A shows the distribution of SLP errors for Category 4 and 5 TC 

observations. The magnitude of SLP errors are nearly twice those seen in moderate 

cyclones (Category 1-3) in Fig. 23B, which are close to three times those of the weak 

cyclones (Tropical Storms and Depressions) (Fig. 23C). The inter-quartile ranges for 

the moderate cyclones are approximately double those for other storm strength 

categories. Recall that a larger inter-quartile range means there is more variability in 

the data. The increased variability of the minimum SLP found in the moderate 

category is possibly due the inverse relationship seen in intensity and error. For the 
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well-analyzed lower Category SLP observations included in this bin, the errors are 

small, whereas the minimum SLP errors are much larger for the Category 3 storms in 

the same bin. This is also reflected in the fact that the distributions are slightly skewed 

toward higher errors (i.e. the median is closer to the lower edge of the box), which is 

not as pronounced for the other intensity bins.  The number of outliers is greatest for 

the weak cyclones, indicating that the analysis of minimum SLP is least reliable when 

a strong closed low is not present.   

The distributions of position errors in Fig. 24 for each of the storm strength 

categories show similar magnitudes for the inter-quartile ranges, all ranging from 

about 100 to 200 km. The smallest, however, tend to occur in the case of strong 

cyclones indicating a more accurate, less varying track analysis. The median tends to 

be highest (around 200 km) in the weak storms (Fig. 24C), indicating a lack of skill in 

determining the position for each weak TC. There are only a few outliers for the 155 

weak observations in each of the analyses, indicating that although there is higher 

error, there is some degree of predictability. Relatively, there are more outliers for the 

moderate storms (Fig. 24B) for which there are only 48 observations. This indicates 

that although position errors are typically lower, they are also more variable than for 

strong or weak cyclones. The outliers for the weak and moderate storms range 

between 400 and 800 km, which can be a very large, and potentially deadly track 

analysis error. Again, for the moderate storms, the distribution of errors is skewed 

toward higher errors, whereas the strong and weak cyclone track error distributions 

are fairly symmetric.  
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b. DOTSTAR 

 Although the DOTSTAR data leads to only an average of less than 1 hPa 

improvement over the analysis lifetime of Typhoon Mindulle, the t-test indicates that 

the small improvement is significant at the 90% confidence level. The RSM LETKF 

ANL DS did not indicate significant improvement for track analysis on average.  

 The distribution of the RSM LETKF ANL DS errors in Fig. 25 indicates the 

strong similarity in the two cases for both minimum SLP and track. Minimum SLP 

distributions for both cases are skewed heavily toward higher errors. The distributions 

of the two experiments are almost identical. This assessment of the difference between 

the two cases provides no obvious conclusion as to which is more accurate.  

 

 
Fig. 25. RMSE distribution for A) minimum SLP and B) position for the RSM LETKF 
ANL QS and RSM LETKF ANL DS cases. 
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 c. Increased Resolution  

 The RSM LETKF ANL 24 does not show a significant improvement over 

RSM LETKF ANL QS in capturing minimum SLP. Fig. 26 shows the average 

difference between minimum SLP error between the two experiments over the course 

of each of the three cyclones. None of the cyclone analyses indicate a significant 

difference in minimum SLP error and the errors shown in Fig. 27 are all fairly 

clustered and small in magnitude. One cyclone produced a (track) value that was 

significant, showing that the RSM LETKF ANL 24 degrades that track analysis, 

which is confirmed by Fig. 28.  

 The box plot shown in Fig. 29A indicates that the distribution of SLP errors is 

nearly identical for the RSM LETKF ANL QS and RSM LETKF ANL 24 km 

experiments. Fig. 29B shows slight differences between distributions of track errors. 

The LETKF ANL 24 case shows more variability of track error with a slightly larger 

inter-quartile range, but fewer outliers.  
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Fig. 26. RSM LETKF ANL QS minus RSM LETKF ANL 24 RMSE for A) (track) and B) 

(SLP) for each of the three cyclones. Shaded boxes indicate the only significant differences 
for either (track) or (SLP). 
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Fig. 27. RMSE in minimum SLP analysis for RSM LETKF ANL 
QS vs. RSM LETKF ANL 24 for all data points. The scatter plot 
also shows the 45° line between the errors.  

 
 

 
Fig. 28. RMSE in position analysis for RSM LETKF ANL QS 
vs. RSM LETKF ANL 24 for all data points. The scatter plot 
also shows the 45° line between the errors.  
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Fig. 29. RMSE distribution for A) minimum SLP and B) position for the RSM LETKF ANL 
QS and RSM LETKF ANL 24 cases. 
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6. FORECAST VERIFICATION RESULTS 

 

 Deterministic forecasts were started from three analysis times and ran for 120 

h. Forecast 1 was started on June 26 at 0000 UTC using GFS LETKF ANL, RSM 

LETKF ANL, RSM LETKF ANL QS, and the GFS operational analysis truncated to 

T62 resolution (RSM T62-O). Typhoons Mindulle (10) and Tingting (11) were 

observed during this time. Just after initialization, both underwent rapid 

intensification. Forecast 2 was started on July 27 at 0000 UTC using the same set of 

five cases as initial and boundary conditions. Typhoon Namtheun was observed at its 

peak intensity at the time of initialization. Lastly, Forecast 3 was started on August 9 

at 1800 UTC. Typhoon Rananim was observed during the first 84 h of the forecast, 

thus only 14 time steps were analyzed for this case versus the 21 of the other 

initialization times.  

 Again, testing the performance of each system component with the t-test for 

correlated data, we find that results are slightly ambiguous with the smaller sample 

size. First, the system is tested against a deterministic operationally based forecast 

with  defined as RSM LETKF FCST minus RSM T62-O FCST. None of the 

forecasts resulted in (track) that is significant at the 90% confidence level. 

Namtheun is the only forecast to provide statistically significant (SLP), which 

showed an average 0.4 hPa increase of skill by the RSM T62-O FCST.  

 Testing the significance of the regional component of the system is done by 

using  defined as GFS LETKF FCST minus RSM LETKF FCST. The analysis of 
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(SLP) shows that significant differences exist for both Mindulle and Tingting, where 

the RSM LETKF FCST performs better by about 0.7 hPa. The results of the (track) 

comparison show that none of the storm tracks are significantly improved or degraded 

by the RSM LETKF FCST.  

 The differences between RSM LETKF FCST and RSM LETKF FCST QS 

cases provide mixed results. None of the (SLP) values is significant, however 

(track) is significant for Typhoon Rananim. Although the RSM LETKF FCST QS 

shows only a slight improvement of about 18 km, it is significant. In the case of 

Typhoon Namtheun, both  comparisons were several orders of magnitude smaller 

than the values observed for the other cyclones. This is likely due to the absence of 

QuikSCAT data within the regional domain at the time of initialization. The analyses 

at initialization show slight differences in minimum SLP, but the overall perturbation 

is not enough to result in different forecasts.   

 Time evolution of forecast errors is as important, if not more important, than 

the average error when analyzing the value of system components. Fig. 30 shows the 

forecast time series of minimum SLP error from Typhoon Mindulle over 120 h 

starting on June 26 at 0000 UTC. During the first half of the forecast period, the RSM 

T62-O performed most poorly. This continued until Mindulle reached its maximum 

strength, at which time all of the forecasts provided similar intensities, with no evident 

skill-leader. Fig. 31 is the same as Fig. 30 for Typhoon Tingting. At t = 60 h, all cases 

begin performing similar and continue to do so until the last 24 h. At Day 5, the RSM 

LETKF FCST QS has the lowest minimum SLP errors. The Namtheun forecast of 
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minimum SLP (Fig. 32) is much more conclusive. For short-term forecasts, each 

experiment has very similar error. At t = 48 h, the RSM T62-O FCST begins to 

consistently provide the superior forecast. For the last 72 h of the period, RSM 

LETKF FCST (identical to RSM LETKF FCST QS for this initialization) performs 

better than GFS LETKF FCST. Finally, Rananim (Fig. 33) shows a similar pattern as 

Namtheun in that the forecasts are all similar for short lead times, but after t = 36 h, 

GFS LETKF FCST consistently has the highest amount of errors.  

 

 
Fig. 30. RMSE for minimum SLP forecast initialized on June 26 0000 UTC for Typhoon 
Mindulle. Best Track minimum SLP (black) corresponds to the secondary axis, while all 
other series are error in the forecast and correspond to the primary axis.  
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Fig. 31. Same as Fig. 30 except for Typhoon Tingting.  

 
 

 
Fig. 32. Same as Fig. 30 except initialized at 0000 UTC July 27 for Typhoon Namtheun. 
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Fig. 33. Same as Fig. 30  except initialized at 1800 UTC August 9 for Typhoon Rananim. 

 
 
 Root mean square error for track position is shown in Fig. 32 for Mindulle. 

None of the cases displays a noticeable trend in time, which is unexpected since 

forecast error should grow with time. Fig. 33 shows the forecast track error for 

Tingting. Each of the track forecasts show an increasing trend in error over the entire 

120 h, however the slope increases upward rapidly in the last 24 h. Namtheun track 

forecast error (Fig. 34) shows that the GFS LETKF FCST consistently performs best 

out of all FCST cases. Again, the forecast error increases with time for all forecasts 

with a steeper slope than occurred in the Tingting forecast. . Finally, Rananim track 

errors (Fig. 35) show that past 48 h, the GFS LETKF FCST provides an enhanced 
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track forecast over the RSM forecasts. The errors of all the RSM forecasts increase 

rapidly after approximately 24 h.  

 

 
Fig. 34. RMSE for track forecast initialized on June 26 0000 UTC for Typhoon Mindulle.  
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Fig. 35. Same as Fig. 34 except for Typhoon Tingting. 

 
 

 
Fig. 36. Same as Fig. 34 except initialized at 0000 UTC July 27 for Typhoon Namtheun. 
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Fig. 37. Same as Fig. 34 except initialized at 1800 UTC August 9 for Typhoon Rananim. 
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7. CONCLUSIONS 

 We successfully implemented a coupled global-limited-area ensemble based 

data assimilation system with the aim of improving the analysis of tropical cyclones 

(TCs) in the Northwest Pacific: analysis/forecast experiments for a two-month period 

of the 2004 typhoon season showed the system to be adequate at analyzing tropical 

cyclones without TC relocation or bogusing techniques and the regional component of 

the data assimilation system enhanced the TC analyses and forecasts for many of the 

TCs. The inclusion of additional scatterometer observations and targeted dropsonde 

observations from the DOTSTAR program led to very modest changes in the quality 

of the analyses and forecasts.  

 The comparison of the global component of our system with the NCEP 

Reanalysis showed that the track analysis in our system was more accurate by an 

average of 25 – 180 km over the lifetime of the TCs. Another comparison with the 

operational, high-resolution, NCEP global analysis, which assimilated a large number 

of satellite radiance observations in addition to the observations assimilated in our 

system, demonstrated that the use of the LETKF analysis scheme alone was sufficient 

to achieve a similar performance in analyzing the track as the operational system with 

its advanced features. The comparison of track analysis errors between the ensemble-

based global and regional analyses showed that the regional analyses were more 

accurate by 20 – 175 km over the lifetime of most TCs. The analysis track error 

distribution also depended on cyclone intensity: low intensity cyclones tended to 

produce more variable track errors with many outliers. 
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Comparisons of the minimum sea level pressure (SLP) analyses were made 

against the benchmarks. When comparing our analyses of SLP to the benchmarks we 

found that our global analysis was more accurate than the NCEP Reanalysis by about 

2 hPa on average; the operational GFS and the global component of our system were 

of similar quality; and, the regional component improved the global ensemble-based 

analysis of the SLP by as much as a few hPa in some instances. We showed, in 

agreement with the published literature, that minimum SLP analysis errors increased 

with increasing cyclone intensity. This response is likely due to the grid spacing being 

insufficient in a coarse-resolution model to resolve the structure of the eye of the TC. 

The addition of extra data in the regional data assimilation step did not consistently 

enhance position or intensity analysis. The inclusion of QuikSCAT data led to 

statistically significant improvement for only one of the eight TCs. In the case of the 

one storm for which DOTSTAR data were available, the SLP error was reduced, but 

track error was not significantly changed.  

Deterministic forecasts were started from the mean analyses of global and regional 

components of the ensemble-based system, and regional forecasts were also started 

from the operational NCEP analyses. The comparison of the track forecasts shows that 

the accuracy of the track forecasts from the regional ensemble-mean were not 

significantly different, on average, from those started from the NCEP operational 

analysis; and, differences between errors in the global and regional track forecasts 

were not statistically significant. The inclusion of QuikSCAT data led to a significant 

improvement for only one of the four storms. The quality of the SLP forecasts was 
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similar for all regional forecasts and the regional forecasts all proved more accurate 

SLP forecasts than the global forecast. On average, the regional experiments 

performed better for longer than 48 h SLP forecasts, while the global forecast 

performed better in predicting the track for longer than 48 h.   
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