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ABSTRACT 

 

Evaluation of Packaging Film Mechanical Integrity Using a Standardized Scratch Test. 

(Ausgust 2011) 

Brian Anthony Hare, B.S., The University of Texas at Austin 

Chair of Advisory Committee: Dr. Hung-Jue Sue 

 

Polymeric packaging films see widespread use in the food packaging industry, 

and their mechanical integrity is paramount to maintaining product appearance, 

freshness, and overall food safety. Current testing methods, such as tensile or puncture 

tests, do not necessarily correlate well with field damages that are observed to be 

scratch-like. The standardized linearly increasing load scratch test was investigated as a 

new means of evaluating the mechanical integrity of packaging films.  

 Mechanical clamp and vacuum fixtures were considered for securing the films to 

a set of backing materials and tested under various testing rates and film orientation 

conditions. Film performance was evaluated according to their puncture load. Based on 

the above study, the vacuum fixture offers the most consistent and meaningful results by 

providing a more intimate contact between film and backing and minimizing extraneous 

motion of the film during testing. Additional testing was also carried out on a 

commercial film to confirm similarity between damage observed in the scratched films 

and that from the field. The scratch test gave good correlation between field 

performance and scratch test results on a set of commercial films.  



 iv 

 Scratch-induced damages on multi-layer commercial packaging films were

investigated using cross- and longitudinal-sectioning. Scratch test results showed clear 

distinction between the two tested systems on both the inside and outside surfaces. 

Microscopy was performed to investigate the feasibility of utilizing this methodology as 

a tool for packaging film structure evaluation by determining the effect each layer has on 

the resistance of scratch damages. It was shown that the film showing superior scratch test 

results also shows significantly better stress distribution through its layers during the 

scratch test, as well as better layer adhesion during severe deformation.  

The scratch test showed good correlation between field test results and lab results 

for the tested film systems, and could be used to replace unnecessary or expensive 

testing methods. In addition, the scratch test showed good ability to provide more in-depth 

analysis of tested films by allowing for layer-by-layer analysis of damages and layer 

adhesion after testing, unlike current testing methods.  
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NOMENCLATURE 

 

FEM Finite Element Modeling 

LDPE Low Density Polyethylene 

LLDPE Linear Low Density Polyethylene 

MRE Meal, Ready to Eat 

met Metalized 

oPET Oriented Polyethylene Terepthalate 

PMMA Poly(methyl-methacrylate) 

MD Machine Direction 

TD Transverse Direction 

AS Air Side 

FS Food Side 

VLSCM Violet Laser Scanning Confocal Microscope 
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1. INTRODUCTION 

 

 Polymeric packaging films dominate the food packaging industry, and their 

strength and integrity are important factors in maintaining product life, appearance, and 

freshness. While other properties are important in packaging films, including glass 

transition temperature, melting temperature, heat-seal temperature, biodegradable 

properties, printing capabilities, and oxygen and moisture permeability, the mechanical 

properties of packaging films that are relevant to field performance are not as easy to 

quantify. Current test methods used to evaluate the mechanical integrity of packaging 

films include puncture, Trouser tear, tensile, J-Integral, essential work of fracture, and 

Gelbo flex [1-4]. It is not clear which of these tests provides the most useful information 

required in determining the relevant mechanical properties needed to evaluate the 

mechanical integrity of each film during packaging assembly, transportation, and 

handling. The tests also do not take into account all relevant properties which could 

affect field performance, such as the coefficient of friction of the packaging surface. For 

example, a higher coefficient of friction could cause an increase in the stress build-up on 

the surface of a package, potentially causing an earlier failure than a similar material 

with a lower coefficient of friction. It is understood that often times the above test 

methods do not correlate well with field performance.  Thus, it is desirable to adopt a 

new testing method that may correlate better with performance observed in the field and 

provide meaningful information for ranking and developing better packaging films.  

____________ 
This thesis follows the style of Journal of Materials Science. 
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Observations of several commercial packages indicated that failure was not necessarily a 

simple puncture, with observed field damages similar to a scratch. These scratch-like 

damages can be seen in Fig. 1. It would therefore be desirable to replicate these damages 

in a controlled fashion in order to provide meaningful, quantifiable testing results for 

packaging film performance evaluation in a laboratory setting.  

 

 

Fig. 1 Scratch-like damages in production packaging. (a) Microscopic damage and (b) 
macroscopic damage 

 
 
 

Because of the complex requirements of food packaging films, multi-layer 

structures are typically utilized in order to fulfill different requirements. It is therefore 

important that each layer maintain its integrity and adhesion to the surrounding layers 

even under high imposed stress and strain conditions during filling, shipping, or 

handling. By understanding how specific layers of laminated films influence its 

resistance to scratch-induced damages, a better film structure can be engineered, 

allowing for better maintenance of product appearance, freshness, sterility, or other 

critical attributes. A key advantage of the scratch test over other testing methods is the 
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potential ability to analyze damages associated with the test on a layer-by-layer basis 

through cross- and longitudinal-sectioning of scratch-damaged samples. 

The ASTM polymer scratch test method was originally developed and 

demonstrated to be able to quantitatively evaluate the scratch performance of bulk 

polymer and coating samples [5-8]. This method utilizes a constant velocity linearly 

increasing normal load with a specialized tip traversed over a fixed length of the 

specimen. Significant research has been carried out in order to develop an objective 

method for standardized scratch testing [9-15], as well as research carried out to 

understand the effects of various parameters and material characteristics on the damage 

mechanisms associated with scratch. This includes research on the effect of additives 

[9,15-17], testing rate [18], and temperature [19]. Significant research has also been 

conducted on coating systems using various substrates, including determination of 

adhesion strength between coating and substrate [20-30] and wear and scratch resistance 

characterization [31-35]. In addition to experimental observations, numerical modeling 

has been performed on both bulk systems [36-38] and coating systems [39-48]. With this 

method, not only can damage type be assessed, but the damage transition zones can be 

seen and quantitatively pinpointed due to the correlation between normal load and 

scratch length. These findings have provided an excellent understanding of the scratch 

behavior and visibility of both bulk and coating systems, but little research has been 

done on scratch testing of polymeric films. 

Due to the flexible nature of free standing films, applying the scratch test 

methodology requires the use of a backing material, which performs a similar function 
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as the substrate in a coating system. Because of the free standing nature and thinness of 

the packaging films, often less than 100 micrometers thick, the effect of the backing 

material can have drastic influences on the scratch performance. Three-dimensional 

modeling using finite element methods (FEM) analysis has been performed to determine 

the stress states for coating systems with various thicknesses, and to correlate the stress 

states with damages observed during the scratch [39-42,44-48]. Based on these FEM 

modeling efforts, it is intuitively clear that the film thickness will have a notable effect 

on its scratch performance, having thicker films performing better.  

Prior research has been performed attempting to apply the scratch testing 

methodology to films, and to correlate other test results to the scratch performance [49]. 

Based on a series of laminated films, it was shown that there tended to be a good 

correlation between scratch-induced failure loads and puncture test loads. This trend 

continued when tests were performed at low (-30°C) and elevated (82°C) temperatures. 

It was seen that the failure loads from the scratch test dropped significantly with an 

increase in temperature. High temperature performance of the tested films was 

confirmed to degrade through tensile tests, specifically a decrease in Young’s modulus 

and tensile strength. Additional damages were also observed with the scratch test, 

including layer delamination and foil layer failure prior to puncture. It was also shown 

that the scratch rate had a small but noticeable effect on the film tested, and was 

expected to exhibit similar trends for other packaging films. Testing also confirmed that 

scratch performance may vary with film orientation and the backing material utilized, 

such as aluminum or rubber.  
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Current research focuses on refining the testing parameters used during the 

scratch test so that reproducible, reliable, and meaningful results are obtained. The 

scratch test variables that will be tested include the fixture used to secure the film, 

scratch speed, backing material, film orientation, and film side. It is hoped that the 

present study will help develop an acceptable test methodology that can be reliably 

utilized for evaluation of packaging film mechanical integrity in a lab setting, but 

correlating well with their field performance. Current research also investigates the 

feasibility of utilizing the scratch test to investigate the effect a film structure has on the 

resistance of scratch-induced damages on a layer-by-layer basis. By combining scratch 

test results with the layer analysis of the damaged sample, a film can be more quickly 

and easily evaluated and retailored to meet the specific needs of the product. 
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2. EXPERIMENTAL 

 

2.1 Model Film Systems 

The model material used in the test method development experiments is a 

nominal 7.0 mil (177.8 µm) thickness low-density polyethylene (LDPE)/linear-low-

density polyethylene (LLDPE) blend single-layer film provided by Cadillac Products 

Packaging Company (Troy, MI). This film was created as a high strength replacement 

for Meal, Ready to Eat (MRE) menu bags. Commercial films were also tested, including 

a 3.0 mil (76.2 µm) LDPE based film, and a set of three multi-layer oriented 

polyethylene terephthalate (oPET)/LDPE films with a total thickness of 97 µm, 88 µm, 

and 123 µm, respectively. 

Two commercially available model film systems were used in these experiments. 

The first is a three-layer film with nominal thickness of 3.5 mil (88.9 µm), containing a 

metalized oPET film laminated to coextruded with two additional polyolefin films. The 

second is a four-layer film with a nominal thickness of 3.2 mil (81.3 µm), containing a 

metalized oPET film laminated to coextruded films containing both nylon and 

polyolefins. A schematic of their structures can be seen in Fig. 2. As shown, the interior 

surface of the film refers to the scratch tip being initially in contact with the polyolefin 

sealant layer, and the exterior surface of the film refers to the scratch tip being initially in 

contact with the oPET layer. The films are labeled as System 1 and System 2, 

respectively. 
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Fig. 2 Structure schematic for the tested System 1 and System 2 films 
 
 
 

Scratch test specimens were cut to 6” in length, and 2.5” wide (15.24 cm x 6.35 

cm) for vacuum fixture samples, and 1” wide (2.54 cm) for clamp fixture samples. 

Scratch testing was performed on a fourth generation scratch machine built by Surface 

Machine Systems. A minimum of four samples were used for each test. 

 

2.2. Test Variables 

The testing methodology for this project is based on the current progressive load 

scratch testing standard, ASTM D7027-05/ISO 19252:2008, but modified for use with 

free standing films [5,6]. A number of variables were investigated to determine an 

acceptable testing methodology for packaging films. These variables were also used to 

learn how free standing films behave when subjected to the progressive load scratch test. 
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The scratch test parameters investigated included the method with which the film is 

secured, the scratch speed, the amount of vacuum drawn on the specimen when using the 

vacuum fixture, and the backing material. The film variables investigated included film 

side and film orientation. 

 

2.2.1 Scratch Test Parameters 

The scratch tip used for these tests comes from the original ASTM standard, and 

is a 1mm diameter spherical stainless steel tip. Different tip geometries can also be used 

depending on field conditions and preference.  

The loading applied to the film is dependent on the film and the backing material 

on which it is being tested. The criteria for selecting a loading level is to ensure that the 

puncture caused by the scratch test does not occur too soon or too late in the test, but will 

still occur in a repeatable fashion. Generally, it is desirable for the puncture to occur 

between 50-75% of the scratch length. In general, the loading range for the films tested 

was set at 1 – 30N.   

Because free standing films are so flexible, the method with which to secure the 

film was also investigated. Two fixture types were used to secure the film during the 

scratch test: a mechanical clamp fixture, which holds the film around the edges of the 

scratch path, and a vacuum fixture, which draws a vacuum beneath the sample and uses 

ambient air pressure to secure the film to the backing. Images of these two fixtures can 

be seen in Fig. 3.  
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Fig. 3 (a) Clamp fixture and (b) vacuum fixture 

 

Since mechanical properties of polymers can be highly rate dependent due to 

their viscoelastic nature, scratch speeds at 1 mm/s, 10 mm/s, and 100 mm/s were chosen 

to determine how the scratch behavior varies with rate of testing. These speeds were 

chosen to correlate with typical filling, transport, and handling speeds, respectively, 

experienced by food packaging films. The scratch length was set at a constant of 100 

mm. 

The amount of vacuum drawn on the film was also investigated, with vacuum 

pressures of 25 in. Hg, 15 in. Hg, and 5 in. Hg (84.65 kPa, 50.79 kPa, and 16.93 kPa).  

Finally, because packaging films are so thin, their performance can be significantly 

influenced by the backing material they are tested on. This is analogous to a coating’s 

performance differing based on different substrate type [49,31,50]. In this regard, the 

backing material used can be selected to create a laboratory analog with which to mimic 

real life performance. For example, if a film is to experience field conditions that subject 

it to contact with metal or very hard surfaces, an aluminum backing can be used. 

Conversely, a neoprene rubber backing could be used to simulate a softer backing such 
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as air. Additional backings could be used depending on the product requirements and the 

meaningfulness of the results acquired. 

 All tests were performed at room temperature. 

 

2.2.2 Film Property Variables 

To address the film orientation effect due to blown film processing, from which 

the molecular chains are likely to orient on the stretching or extrusion direction, two 

different film orientations were tested: the Machine Direction (MD), and the Transverse 

Direction (TD).  

The different sides of the film were tested, and are labeled as Air Side (AS) and 

Food Side (FS). The sides were differentiated based on their intended use in field as 

MRE menu bags. The different sides for the films used during multi-layer film analysis 

are labeled as the interior and exterior surfaces, and are differentiated by their intended 

use in field service. 

 

2.3 Scratch Damage Analysis 

Similar to scratch testing of bulk polymers, stick-slip behavior can be observed 

on packaging films when tested against a relatively stiff backing material, such as 

PMMA or aluminum [43,51]. According to Jiang et al, while the scratch test is designed 

to move at a constant velocity, the actual tip velocity oscillates due to the surface contact 

between the tip and the tested material [11]. Stick-slip behavior is observed when the tip 

induces large deformation of the material, resulting in a build-up of material in front of 
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the tip, which introduces additional resistance force. When this stored strain energy 

becomes greater than the resistance due to both friction and material deformation, the 

scratch tip moves over the material hindrance and resumes moving forward at full speed. 

This process repeats itself, resulting in a periodic stick-slip pattern, which can be readily 

observed through optical microscopy of the film surface (Fig. 4). 

 
 

 

Fig. 4 An example of periodic stick-slip behavior observed on the surface of the System 
1 film 

 
 
 

The point at which the first puncture occurred was analyzed visually, and 

confirmed using an Olympus BX60 optical microscope. The point at which puncture 

occurred was measured using a millimeter scale ruler. The load at which puncture 

occurred was determined directly from the output of the scratch machine and based on 
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the measurement of the distance from the start of the scratch test to where the puncture 

occurred.  

Cross- and longitudinal-sectioning of scratch damaged samples was performed. 

Samples were sectioned by isolating the entirety of the scratch from the test sample, 

resulting in a sample approximately 10mm wide by 110mm long. The film was placed 

on a glass backing with the oPET layer in contact with the glass. A fresh razor blade was 

pressed straight down through the soft polyolefin layers towards the oPET layer 

perpendicular to the scratch direction at the location of interest, resulting in a cross-

sectional view of the damaged film at the desired location when viewed looking head-on 

to the scratch path. Similarly, longitudinal-section cuts were made parallel to the scratch 

direction and in the center of the scratch path, thus allowing a view of the damage 

alongside the scratch path. Sectioned samples were placed in modeling clay for 

stabilization and viewed under a Keyence VK-9700 Violet Laser Scanning Confocal 

Microscope (VLSCM). To confirm that the sectioning method described above did not 

introduce artifacts, sectioned film samples were placed in epoxy and allowed to set for 

over 24 hours, followed by polishing using sandpaper followed by polishing cloths using 

a solution of 0.3μm alumina oxide to achieve a 0.4 μm average smoothness for VLSCM 

observation. Microscopy images of the damaged film samples prepared between the two 

methods were then compared.  
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3. RESULTS AND DISCUSSION 

 

3.1 Effect of Scratch Testing Parameters on Scratch Performance 

3.1.1    Fixture Analysis 

Since the clamp fixture secures the sample around its edges, there is no intimate 

contact between the film and the backing except immediately beneath the scratch tip and 

around the edges where they were secured. Because of this, the film deforms and 

buckles uncontrollably over the length of the scratch test. The vacuum fixture draws a 

vacuum beneath the edges of the sample, allowing atmospheric air pressure to push the 

sample onto the fixture. This provides intimate contact between the film and the backing 

whether the tip is in contact with the film or not. This results in a controlled buckling of 

the film during the scratch. 

 

3.1.2    Scratch Rate 

From food filling to transport to handling, packaging films can experience a wide 

range of damages introduced at differing speeds. The critical loads for the formation of 

the stick slip point for all the films investigated are shown in Fig. 5, and those for the 

puncture point shown in Fig. 6. Tests were performed on the food side of the film using 

aluminum as the backing material. As seen in Fig. 5, the films do show some rate 

dependency on the critical loads for the onset formation of stick-slip damage, with an 

overall decrease in performance at slower test speeds. Due to the complex multi-axial 

stress state involved during scratch testing, no explanation is currently given for this 
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behavior, as this section focuses on test method development. What can be definitively 

seen is that for this model system, there is a noticeable rate dependency on scratch test 

results. As can also be seen, the vacuum fixture produces consistent trends with lower 

standard deviations than the clamp fixture. The critical loads for puncture formation 

show similar trends, as seen in Fig. 6. Again, the vacuum fixture shows more consistent 

trends with lower standard deviations. For the tested film, it can be seen that the largest 

differences between the different film orientations can be observed at a slower testing 

speed. 

 

 

Fig. 5 Rate effect on the stick slip point 
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Fig. 6 Rate effect on puncture point 
 
 
 

3.1.3    Vacuum Pressure 

The amount of vacuum drawn was varied to 25, 15, and 5 in. Hg. This 

corresponds to a holding pressure of 12.3 psi, 7.4 psi, and 2.5 psi, respectively (84.65 

kPa, 50.79 kPa, and 16.93 kPa). The test was performed on the air side of the control 

film on an aluminum backing at 100 mm/s. The results from the test for the MD 

orientation can be seen in Fig. 7. As seen in the figure, the critical load for stick-slip 

formation shows a minor decrease with a decrease in holding pressure, and there is a 

relatively minor decrease in the loads required to cause puncture despite a large range of 

holding pressure changes. Vacuum pressures below 5 in. Hg (2.5 psi, 16.93 kPa) were 
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range of holding pressures used here, with the best performance seen by using the 

maximum holding pressure of 85 kPa. 

 
 

 

Fig. 7 Effect of variable vacuum pressure on control film 
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appears to be only a minor difference between values for MD and TD orientation, the 

rubber backing seems to neutralize any anisotropy effect due to more uniform 

deformation of the film around the scratch tip.  

 
 

 

Fig. 8 Effect of backing material on scratch induced puncture load 
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Fig. 9 Effect of PMMA backing material on critical loads for onset of stick-slip and 
puncture 
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speed is evident, with good repeatability for the formation of both stick-slip and 

puncture. 

 
 

 

Fig. 10 Film side effect for the stick slip point 
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Fig. 11 Film side effect for puncture point 
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material than those introduced by the clamp fixture, indicating good materialistic 
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response of the film, absent of bucking induced damages caused by poor contact 

between film and backing. Because of the consistent trends in testing performance and 

the more uniform and meaningful scratch damages produced by the vacuum fixture, it is 

recommended that vacuum fixture be utilized for securing polymeric films for scratch 

testing. 

 
 

 

Fig. 12 Damages observed on control film surface using the clamp fixture. (a) Smooth 
deformation, (b), continued smooth deformation, (c) stick-slip point, and (d) puncture. 

Test performed on aluminum backing at 100 mm/s scratch rate, using 1mm SS spherical 
tip 
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Fig. 13 Damages observed on control film surface using the vacuum fixture. (a) Smooth 
deformation, (b) small-scale stick-slip, (c) stick-slip point, and (d) puncture. Test 

performed on aluminum backing at 100 mm/s scratch rate, using 1mm SS spherical tip 
 
 
 

3.4 Correlation with Commercial Films 

A 3.0 mil (76.2 µm) nominal thickness film used by a large commercial food 

packaging corporation was also tested. Products in field were observed to have scratch-

like damages on their packaging (Fig. 1). Damages observed by the clamp and vacuum 

fixtures were similar to the control film, and can be seen in Fig. 14 and Fig. 15. The 

damages observed in the commercial film are similar to what is seen in the control film, 

with uniform damages similar to that of the bulk when tested with the vacuum fixture.  
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Fig. 14 Damages observed on commercial film surface using the clamp fixture. (a) 
Smooth deformation, (b), periodic stick-slip, and (c) puncture. Test performed on 

aluminum backing at 100 mm/s scratch rate 
 
 
 

 

Fig. 15 Damages observed on commercial film surface using the vacuum fixture. (a) 
Smooth deformation, (b) stick-slip, and (c) puncture. Test performed on aluminum 

backing at 100 mm/s scratch rate, using 1mm SS spherical tip 
 
 
 

When testing the effect of vacuum pressure, the control film shows similar minor 

decrease in performance as the control film did, and was consistent between the MD and 

TD orientations (Table 1).  Interestingly, the commercial film showed no scratch rate 

dependency, with uniform onset puncture performance with the differing scratch rates. 
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While this is unlike the control film, it is evidence that different films can show differing 

behaviors depending on structure, as expected (Table 2). 

 
 

Table 1 Variable Vacuum Pressure Effect on LDPE Based Commercial Film 

Film Orientation kPa Puncture (N) Std. Dev. (N) 

LDPE Commercial Film TD 85 11.21 0.23 
LDPE Commercial Film TD 51 11.02 0.18 
LDPE Commercial Film TD 17 10.31 0.39 

 
    

LDPE Commercial Film MD 85 11.17 0.58 
LDPE Commercial Film MD 51 11.03 0.86 
LDPE Commercial Film MD 17 10.67 0.51 

 
 
 

Table 2 Rate Effect on LDPE Based Commercial Film 

Film Orientation Scratch Rate Puncture (N) Std. Dev (N) 

LDPE Commercial Film TD 100 mm/s 11.82 0.61 
LDPE Commercial Film TD 10 mm/s 12.19 0.36 
LDPE Commercial Film TD 1 mm/s 11.27 1.08 

     LDPE Commercial Film MD 100 mm/s 12.12 0.71 
LDPE Commercial Film MD 10 mm/s 12.83 0.06 
LDPE Commercial Film MD 1 mm/s 12.70 0.27 

 
 
 

The LDPE based commercial film was tested on an aluminum backing and a 

PMMA backing. The test was performed at 100 mm/s on the vacuum fixture. The results 

are summarized in Table 3. As seen, there is no significant difference in scratch load 

required to create a puncture between the aluminum and PMMA backings.  These results 

correlate well with the control film in Fig. 9.   
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Table 3 Backing Effect on LDPE Based Commercial Film 

Film Orientation Backing Puncture (N) Std. Dev (N) 

LDPE Commercial Film TD Aluminum 11.82 0.61 
LDPE Commercial Film MD Aluminum 12.12 0.71 

     LDPE Commercial Film TD PMMA 11.28 0.92 
LDPE Commercial Film MD PMMA 11.45 0.70 

 
 
 
Additionally, three commercial films intended for use in the same product as 

used by a major food packaging company were also tested. These films were ranked in 

field performance as good, better, and best. The “good” film is nominally 97 µm thick; 

the “better” film is nominally 88 µm thick; the “best” film is nominally 123 µm thick. 

The films were tested using the vacuum fixture at 100 mm/s using a PMMA backing.   

The results are shown in Table 4. As seen in the table, the critical load required for 

scratch induced puncture increases in both TD and MD orientations. While the 

thicknesses are different between the three films, the increase in the puncture loads is 

significantly more than the change in thickness would indicate. Despite the “better” film 

being thinner than the “good” film, it still performs better under the scratch test. This 

indicates that the scratch test could be used as a testing method to evaluate film 

performance, and to better correlate lab results to field results.  
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Table 4 Ranked oPET/LDPE Commercial Films 

 
Orientation Puncture (N) Std. Dev. (N) 

"Good" TD 9.87 0.72 
"Better" TD 11.07 1.13 
"Best" TD 17.1 1.86 

    "Good" MD 10.57 0.46 
"Better" MD 10.85 0.46 
"Best" MD 16.98 0.58 

 
 

As most packaging films contain multi-layer structures either through co-

extrusion or lamination, their mechanical integrity depends not only on the material 

performance of each layer but also on how the multi-layer films are formed.  In the case 

of the laminated multi-layer films, the choice of tie layers and their thicknesses can 

critically influence their performance.  It is therefore important that the lab testing 

protocol be able to differentiate how the above factors can individually affect the 

packaging film performance.  The proposed scratch testing methodology appears to have 

the potential to address the above concerns.  It has been shown earlier that the scratch 

test can reveal the load from which delamination takes place in some foil laminated 

films [49] and on some coating systems [50]. It is therefore possible to analyze specific 

failures between layers or within a layer itself through three-dimensional imaging of 

transparent samples via laser confocal microscopy or through other microscopy tools for 

opaque samples. By understanding how and where the laminate structure fails, a 

packaging film can be more accurately analyzed and its structure formulated to better 

resist scratch-induced damages. Consequently, it can be logically seen that the proposed 
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scratch test can serve as an effective tool for both evaluation and development of 

packaging films with greatly improved mechanical integrity. 

 

3.5 Scratch Test Results of Multi-Layer Films 

Films were subjected to the modified scratch test methodology described 

previously to determine mechanical integrity and scratch performance. The results can 

be seen in Fig. 16. Because these films provided were used in commercial applications, 

it is important to compare these laboratory results to field performance. Field 

performance data indicates that System 2 is the superior film, and that the majority of 

punctures were initiated from the exterior surface. This correlates well with the data 

generated by the scratch test, with System 2 showing significantly better performance on 

both the interior and exterior surfaces compared to System 1. Additionally, the lowest 

puncture loads are found when testing the exterior surface of the films.  

 



 28 

 

Fig. 16 Scratch test results for System 1 and System 2 films tested on both the inside and 
outside surface. Films were tested in the TD orientation at 1 mm/s on a PMMA backing 

 
 
 
 The difference in scratch performance between the two film sides can be 

attributed to the structure of the films. The scratch behavior of the films shows strong 

similarity to the scratch behavior of coating systems. Jiang, et al performed modeling of 

soft coatings on hard substrates and soft coatings on hard substrates and found that when 

a soft coating on a hard substrate undergoes a scratch, only the coating layer shows 

significant deformation, while the substrate remains undamaged. However, when a hard 

coating is tested on a soft substrate, the soft substrate deforms along with the hard 

coating layer, distributing the stresses over a larger area [50]. In relation to the tested 

film systems, the soft coating/substrate corresponds with the polyolefin sealant layers 

and the hard coating/substrate corresponds with the oPET layer. As shown in Fig. 17a, 

when tested on the exterior surface, the polyolefin sealant layers will show significant 

damage, while the oPET layer will remain undamaged. Puncture occurs after the scratch 
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tip removes the sealant layers entirely and traverses across the oPET layer until failure. 

When tested on the outside surface, illustrated in Fig. 17b, the oPET layer deforms along 

with the polyolefin sealant layers beneath it. When the normal load increases to a critical 

point, the oPET layer can no longer conform to the deformation of the soft sealant 

layers, and subsequently breaks. Following this, the scratch tip pushes easily through the 

softer layers, generating a puncture. 

 
 

 

Fig. 17 Illustration of deformation undergone by test films when tested on (a) inside and 
(b) outside surfaces. Illustration adapted from [50] 
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3.6 Observations of Multi-Layer Film Scratch Induced Damages 

3.6.1    Top View of Interior Film Surface of Multi-Layer Films 

Both systems deform in a similar manner, and show similar damage features 

when viewed from the top of the scratch. Microscopy was performed to determine major 

damage feature and their transitions during the scratching process. The representative 

damage features are shown based on System 1, but are applicable to System 2, as well. 

Subtle scratch damage is readily visible at the start of the test, beginning with smooth 

deformation, seen in Fig. 18a. As the normal load increases, damage becomes more 

severe, transforming into periodic stick-slip behavior similar to bulk material, seen in 

Fig. 18b. Stick-slip behavior continues and becomes more severe as the load increases. 

Eventually, the polyolefin sealant layers are removed, fully exposing the oPET layer to 

the scratch tip, seen in Fig. 18c. Following the sealant removal point, the scratch tip 

continues traversing along the oPET layer, damaging it while pushing the sealant layers 

to the edge of the scratch path, shown in Fig. 19. The critical load is reached and the 

oPET layer fails, generating puncture. 
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Fig. 18 Top down view of a scratch on the System 1 film on the inside surface. (a) 
Smooth deformation, (b) transition to periodic stick slip behavior, and (c) removal of 

sealant layers 
 
 
 

 

Fig. 19 Top down view of a scratch on the inside surface of the System 1 film after the 
sealant layers have been removed 

 
 
 

3.6.2    Top View of Exterior Film Surface of Multi-Layer Films 

As with the interior surfaces, both model systems show similar damages when 

viewed from a top down view of the interior film surfaces. Damage is slightly visible 

from the beginning of the test, seen in Fig. 20. However, because of the significantly 

lower loads involved and the sealant layers distributing the stress beneath the tip over a 

larger area, the damages at the start of the test are much less severe. As the normal load 

increases, smooth deformation becomes noticeably visible, seen in Fig. 20a. Smooth 

deformation eventually leads to large scale stick-slip behavior, Fig. 20b left, as the tip 

moves over the buildup of material in front of it. Once the critical load is reached, the 
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sealant layers deform to a point that the oPET layer cannot, resulting in failure of the 

oPET layer. Following failure, the exposed sealant layers are easily removed by the 

scratch tip, resulting in puncture as seen in Fig. 20c right. 

 
 

 

Fig. 20 Top down view of a scratch on the outside surface of the System 1 film. (a) 
Beginning of visible smooth deformation, and (b) stick slip and puncture 

 
 
 

3.6.3    Cross- and Longitudinal-Section View of Multi-Layer Film Reference Samples 

Cross- and longitudinal-sectioning of the scratch-damaged samples allows us to 

investigate, on a layer-by-layer basis, the damages associated with the scratch test and 

how each layer contributes to resisting scratch damage. The sectioning and imaging 

method used in this study utilizes freshly cut samples for imaging without sample 

embedding and polishing, as is customary for optical microscopy sample preparation. It 

is important to verify that any artifacts generated do not noticeably affect the analysis of 

the damages observed using the direct razor blade cutting. Artifacts can include, but are 

not limited to, damages such as compression of the sealant layers or delamination 

between layers. Comparisons between razor blade cutting and polished undamaged 

reference samples for Systems 1 and 2 can be seen in Fig. 21 and Fig. 22. No 
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delaminations were observed due to razor blade cutting, or after polishing. As shown in 

both figures, the films show good layer integrity and demarcation.  

 
 

 

Fig. 21 Comparison between undamaged reference images for System 1. (a) Before and 
(b) after polishing 

 
 
 

 

Fig. 22 Comparison between undamaged reference images for System 2. (a) Before and 
(b) after polishing 
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Verification of the sectioning and imaging method of scratch damaged regions 

was also completed. Cross-sections were taken from the late stick-slip region prior to 

sealant removal. The straight razor blade cutting and polished sample images for System 

1 and 2 are shown in Fig. 23 and Fig. 24. Like the undamaged reference images, 

damaged samples show good layer demarcation, integrity, and adhesion, without 

observable delaminations or significant artifacts before or after razor blade cutting. The 

two images, while taken from the same location of the same sample, are not exactly the 

same as material is partially removed during polishing and possible partial relaxation of 

the deformed material during curing of the epoxy mount. Through these comparisons, it 

is seen that the sectioning and imaging method developed in this study allows us to 

effectively analyze scratch induced damages, layer integrity, and inter-layer adhesion of 

multi-layer packaging films without the need for additional polishing steps.  

In all the undamaged samples observed, delaminations were rarely seen. System 2 was 

never observed to have delaminations between any layers. System 1 occasionally 

showed delaminations between the oPET layer and the sealant layers, an example of 

which is shown in Fig. 25. This indicates that, even before undergoing damage, the 

adhesion between these two layers is not ideal. 
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Fig. 23 Comparison between scratch damaged sample images for System 1. (a) Before 
and (b) after polishing 
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Fig. 24 Comparison between scratch damaged sample images for System 2. (a) Before 
and (b) after polishing 
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Fig. 25 Delamination occurring between polyolefin layer and oPET layer in System 1 
without scratch induced damages 

 
 
 

3.6.4    Cross- and Longitudinal-Section View of Multi-Layer Film Interior Surface 

Scratch 

Cross-sectional imaging was performed on samples tested from the interior 

surfaces. The cross-sectional views of each film correspond with the damage zones 

described previously, smooth deformation, early stage stick-slip, late stage stick-slip, 

and sealant removal. The tests begin with smooth deformation, shown in Fig. 26a and b. 

As can be seen, System 1 shows compressive damage in the very top of the polyolefin 

sealant layer; while System 2 shows its layers deforming more uniformly. Damage 

continues to increase with an increasing normal load as seen in Fig. 26c and d. System 1 

shows tearing in the top sealant layer, whereas System 2 continues to distribute the 

stresses throughout all of the layers. As damage continues into the late stick-slip stage 
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(Fig. 26e and f), the tearing of the top layer in System 1 continues. On the other hand, 

System 2 exhibits pile up around the edges of the sample, similar to bulk material 

behavior [11]. Throughout the test to this point, the second polyolefin layer of System 1 

has shown no damage, with the entirety of damage concentrated in the top sealant layer. 

Contrary to this, System 2 distributes the scratch-induced damages throughout its layers, 

and layers remain adhered even under severe deformation.  

A longitudinal-section of both systems was taken at the point of sealant removal. 

Fig. 26g and h shows the removal of the sealant layers, exposing the oPET directly to the 

scratch tip. It is important to note that the secondary polyolefin layer is removed quickly 

following the removal of the top sealant layer. This furthers the conclusion that this 

secondary layer does not aide in resisting scratch damages. System 2 shows a significant 

reduction in size of the final polyolefin layer, indicating it was compressed prior to final 

removal. Thus, the final polyolefin layer in System 2 contributed to resistance of scratch 

damages. The superior layer integrity and stress distribution of the System 2 structure 

contributes to its higher scratch resistance and higher normal load required to generate a 

puncture. 
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Fig. 26 Cross-sectional imaging showing the progression of scratch induced damages on 
the layered structure of System 1, on the left, and System 2, on the right. Damage begins 
with (a,b) smooth deformation, transitioning into (c,d) early periodic stick slip behavior, 
continuing into (e,f) later and more severe periodic stick slip behavior, followed by (g,h) 

sealant layer removal 
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3.6.5    Cross- and Longitudinal-Section View of Multi-Layer Film Exterior Surface 

Scratch  

Cross-sectional imaging was performed on samples tested on the exterior surface. 

Because of the low load ranges and distribution of the stress induced by the scratch tip 

through the soft polyolefin sealant layers, the point at which a scratch could be seen in a 

cross-sectional image was not observed until approximately half-way through the test, 

where visible smooth deformation begins. Any visibility of the scratch in the top down 

view is likely attributed to an increase in surface roughness of the oPET layer, which is 

known to cause an increase in light scattering and therefore scratch visibility [16]. 

Additional images were taken during the stick-slip phase and a longitudinal-section was 

taken at the puncture point.  

From the start of visible smooth deformation seen in Fig. 27a and b, System 1 

again shows more damage to the polyolefin sealant layer, with in-layer tearing caused by 

its deformation beneath the scratch tip. System 2 does not show this, with all layers 

deforming concurrently during the scratch. The curvature of the scratch damaged region 

is likely caused by friction between the oPET surface and the scratch tip, causing the 

film to be pulled up slightly behind the scratch tip. When the stick-slip point is reached 

for the films, shown in Fig. 27c and d, delamination is observed on the edges of the 

scratch for System 1, whereas System 2 exhibits similar behavior as during smooth 

deformation. As the normal load continues to increase, System 1 shows more 

delamination between the polyolefin layer and the oPET layer, shown in Fig. 27e. 

However, System 2 continues to deform uniformly until puncture.  
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Fig. 27 Cross-sectional imaging of scratch induced damages on the outside surface of 
System 1, on the left, and System 2, on the right. Damage becomes visible within the 

layers approximately halfway through, and begins with (a,b) smooth deformation, 
followed by (c,d) early periodic stick-slip, System 2 continues this damage until failure. 

This continues into the (e) later stick-slip region for System 1 
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A longitudinal-section was taken of the puncture point, shown in Fig. 28. Since 

both systems fail in the same manner, only System 1 is shown to provide a clearer 

image. The oPET layer fails, and the remaining sealant layers are readily pushed away 

by the scratch tip. Puncture is observed on the right side of the image. As with scratch 

damages on the interior surface, the second polyolefin layer in System 1 does not show 

significant damage during the scratching process, with all visible damage observed in the 

sealant layer. In addition, the second polyolefin layer continues to show delamination 

between it and the oPET layer, again highlighting that the adhesive bonding between the 

two is not sufficient. System 2 shows excellent layer integrity and adhesion through the 

test, with no visible delamination occurring. These results correlate well with the scratch 

test, and the layer adhesion and integrity and stress distribution characteristics of System 

2 structure contribute to its higher load required to generate a puncture.  

 
 

 

Fig. 28 Puncture caused by failure of the oPET layer in System 1. System 2 shows same 
failure mechanism 
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The present study has shown that the proposed scratch test is effective for 

quantitative evaluation of the mechanical integrity of polymeric packaging films. 

Damages produced through the scratch test methodology show correlation to damages 

observed on some commercial films. The scratch test provides a relevant alternative 

testing metric with which packaging films can be evaluated. In addition, the scratch test 

can allow for a more comprehensive evaluation of film performance by enabling 

analysis of the film structure on a layer-by-layer basis after scratch damages are 

introduced to the sample. Because the proposed scratch test provides meaningful and 

repeatable results, this methodology may give packaging film engineers with more in-

depth analysis of packaging film structure and their corresponding mechanical 

performance.  

While this study has highlighted the usefulness and applicability of the scratch 

test in the scenarios presented, there are limitations that must be mentioned. The scratch 

test may not correlate well with field performance results in all cases. Some film 

damages observed in field service may not be scratch-like, and may be dominated by 

tearing or puncture. The scratch test may better correlate with film field performance if 

the film is subjected to abrasive or scratch-like damages, such as during transportation 

and sliding of the packages. The scratch test is also unlikely to correlate with mechanical 

integrity of heat sealed or bonded joints between two films, where a T-peel test would be 

applicable.  

Furthermore, the tip used in these experiments was a 1mm stainless steel 

spherical tip. However, a different tip geometry and material type may better correlate 
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with the product field performance depending on the objects causing damage to the film.  

Similarly, a different backing material, such as neoprene rubber to simulate an air 

backing, can also result in different scratch performance. It is prudent that the scratch 

tests be performed under scenarios closely simulating realistic field conditions in order 

to achieve good correlation with field performance. While there are limitations, the 

scratch test methodology offers significant flexibility in testing conditions to address the 

needs of packaging film mechanical integrity evaluation and laminate structure design 

optimization. 
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4. CONCLUSIONS 

 

While still in the early stages of development, the application of the progressive 

load scratch test for evaluating mechanical integrity of packaging films shows promising 

preliminary results. By using the vacuum fixture to secure the film, repeatable and 

meaningful results have been observed for both stick slip and puncture points along the 

scratch path. The use of the vacuum fixture coupled with a hard backing for the film 

yields damages that are similar to those seen in the bulk material behavior during the 

scratch test. For the tested control film, slower testing rates show the most significant 

differences between different film orientations. Tests on commercial films showed 

similar trends and behavior as the control film, and a set of field-ranked commercial 

films correlated well with the scratch test results.  

The scratch test method has been shown to differentiate between good and bad 

multi-layer commercial food packaging films. Through cross-sectional and longitudinal-

sectioning of the damaged films, the scratch test can be used as a tool to evaluate the 

integrity and adhesion of the films on a layer-by-layer basis, and how each layer 

contributes to the scratch resistance of the films. Two model films were tested and it was 

found that System 1 had a polyolefin layer that did not appear to contribute to the 

strength of the film, and was prone to delamination between it and the oPET layer. 

System 2 shows good layer integrity and adhesion throughout the test, which contributed 

to its higher normal load required to generate a puncture in the film. While still early in 

the development process of this methodology, meaningful correlations are observed. The 
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scratch test offers a key advantage over other traditional testing methods in that it allows 

for investigation of inter-layer adhesion and the role of each layer plays in the 

mechanical integrity of the laminated films. 

Future work will focus on refining and standardizing the testing methodology 

described here such that additional multi-layer commercial film systems can be 

effectively tested and compared to observed field results. Secondly, further testing of 

different backing materials, such as polypropylene or polyethylene, will be carried out in 

order to investigate their effect. Thirdly, the effect of different scratch tip geometries will 

be investigated. Finally, an investigation will be carried out in order to investigate the 

differences in scratch performance and layer integrity and adhesion between a set of 

model film systems formed through adhesive lamination and extrusion lamination. 
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