
OUTAGE CAPACITY AND CODE DESIGN FOR DYING CHANNELS

A Dissertation

by

MENG ZENG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2011

Major Subject: Electrical Engineering



OUTAGE CAPACITY AND CODE DESIGN FOR DYING CHANNELS

A Dissertation

by

MENG ZENG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Shuguang Cui
Committee Members, Tie Liu

Alex Sprintson
Georgia-Ann Klutke

Head of Department, Costas Georghiades

August 2011

Major Subject: Electrical Engineering



iii

ABSTRACT

Outage Capacity and Code Design for Dying Channels. (August 2011)

Meng Zeng,

B.S., University of Electronic Science and Technology of China;

M.S., University of Electronic Science and Technology of China

Chair of Advisory Committee: Shuguang Cui

In wireless networks, communication links may be subject to random fatal im-

pacts: for example, sensor networks under sudden power losses or cognitive radio

networks with unpredictable primary user spectrum occupancy. Under such circum-

stances, it is critical to quantify how fast and reliably the information can be collected

over attacked links. For a single point-to-point channel subject to a random attack,

named as a dying channel, we model it as a block-fading (BF) channel with a finite

and random channel length. First, we study the outage probability when the coding

length K is fixed and uniform power allocation is assumed. Furthermore, we discuss

the optimization over K and the power allocation vector PK to minimize the out-

age probability. In addition, we extend the single point-to-point dying channel case

to the parallel multi-channel case where each sub-channel is a dying channel, and

investigate the corresponding asymptotic behavior of the overall outage probability

with two different attack models: the independent-attack case and the m-dependent-

attack case. It can be shown that the overall outage probability diminishes to zero

for both cases as the number of sub-channels increases if the rate per unit cost is less

than a certain threshold. The outage exponents are also studied to reveal how fast

the outage probability improves over the number of sub-channels.

Besides the information-theoretical results, we also study a practical coding

scheme for the dying binary erasure channel (DBEC), which is a binary erasure chan-
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nel (BEC) subject to a random fatal failure. We consider the rateless codes and

optimize the degree distribution to maximize the average recovery probability. In

particular, we first study the upper bound of the average recovery probability, based

on which we define the objective function as the gap between the upper bound and

the average recovery probability achieved by a particular degree distribution. We

then seek the optimal degree distribution by minimizing the objective function. A

simple and heuristic approach is also proposed to provide a suboptimal but good

degree distribution.
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CHAPTER I

INTRODUCTION

Wireless communications is a broad and dynamic field that spurred tremendous ex-

citement and technological advances over the last decades [1]. Wireless communica-

tion channels are significantly different from other communication channels, such as

wireline communication channels and underwater communication channels. In par-

ticular, the wireless radio channel poses a severe challenge as a medium for reliable

high-speed communication, not only due to its vulnerability to noise, interference,

and other channel impediments, but also the random variation of the above factors

as a result of user movement and environmental dynamics. Different fading models

have been proposed to capture the dynamics of the wireless radio channels, based

on which various transmission schemes have been studied. Typically, in the optimal

wireless transmission schemes, the number of channel uses is assumed to be either

infinite or deterministically finite, which may not be true in certain scenarios such as

cognitive radio communication or stressed military communication. In this disserta-

tion, we will study the fundamental limits of unreliable channel links whose number

of channel uses is finite but random. In addition, practical coding schemes over such

channels will also be discussed.1

A. Overview of Prior Works

Information-theoretic limits of fading channels have been thoroughly studied in the lit-

erature and to date many important results are known (see [2] and references therein).

Generally speaking, if the transmission delay is not of concern, the classic Shannon

1This dissertation follows the style of IEEE Transactions on Communications.
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capacity for a deterministic additive white Gaussian noise (AWGN) channel can be

extended to the ergodic capacity for a fading AWGN channel, which is achievable

by a random Gaussian codebook with infinite-length codewords spanning over many

fading blocks such that the randomness induced by fading can be averaged out [3] [4].

With the perfect transmitter and receiver channel state information (CSI), the adap-

tive power allocation serves as an effective method to increase the ergodic capacity.

This allocation has the well-known “water-filling” structure [3], where power is allo-

cated over the channel state space. With such an allocation scheme, a user transmits

at high power when the channel is good and at low or zero power when the channel

is poor. When the CSI is only known at the receiver, the capacity is achievable with

special “single-codebook, constant-power” schemes [5].

The validity of the ergodic capacity is based on the assumption that the channel

length is infinite. However, many wireless communication applications have certain

delay constraints, which limit the practical codeword length to be finite. Thus, the

ergodic capacity is no longer a meaningful performance measure. Such situations give

rise to the notions of outage capacity, delay-limited capacity, and average capacity

[6] [7], each of which provides a more meaningful performance measure than the

ergodic capacity. In particular, there usually exists a capacity-versus-outage tradeoff

for transmissions over fading channels with finite channel length [8], where a higher

target rate results in a larger outage probability. The maximum transmit rate that

can be reliably communicated under some prescribed transmit power budget and

outage probability constraint is known as the outage capacity. In the extreme case of

requiring zero outage probability, the outage capacity then becomes the zero-outage or

delay-limited capacity [9]. To study the delay-limited system, the author in [6] adopts

a K-block block-fading (BF) AWGN channel model, where K indicates the constraint

on transmission delay or the maximum codeword length in blocks. If the CSI for
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each K-block transmission is known non-causally at the transmitter, transmit power

control can significantly improve the outage capacity of the K-block BF channel [5].

When the CSI can be only revealed to the transmitter in a causal manner, a dynamic

programming algorithm is developed to achieve the outage capacity of the K-block

BF channel in [10].

B. Challenges and Motivation

In the above works, the channel length is either infinite or finite but deterministic.

However, there are indeed some practical scenarios where the channel length is finite

and random. For example, in a wireless sensor network operating in a hostile envi-

ronment, sensors may die due to sudden physical attacks such as fire or power losses.

Another example may be a cognitive radio network with opportunistic spectrum shar-

ing between the secondary and primary users, where an active secondary link can be

corrupted unpredictably when the channel is reoccupied by a primary transmission.

How fast and reliably can a piece of information be transmitted over such a channel?

This question motivates us to formally define the maximum achievable information

rate over a channel with a random and finite channel length, named as a dying chan-

nel. This type of dying channels has never been thoroughly studied in the traditional

information theory, and important theorems are missing to address the fundamental

capacity limits.

C. Overview of Contributions

In this dissertation, we investigate such channels by first focusing on a single point-

to-point dying link and modelling it as a K-block BF channel subject to a fatal attack

that may happen at a random moment within any of the K transmission blocks, or
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may not happen at all over K blocks. An independent work with similar motivations

can be found in [11], where the channel model is a modified binary symmetric channel

(BSC). Comparing to their work, we have a different channel model, which is based

on the BF-AWGN channel. In addition, we also consider the power allocation over

the blocks instead of only considering the optimal coding length. In practice, due

to the possible channel death, we cannot assume that there is a reliable feedback

channel. As a result, the dynamic programming based method and the automatic

repeat request (ARQ) based approach [12] are not considered in this dissertation.

Dying channels also exist in systems with multiple parallel sub-channels (e.g., in

a OFDM-based system), where each sub-channel may be under a potential random

attack. In such a scenario, we are interested in the overall system outage probabil-

ity and how the outage probability behaves as the number of sub-channels increases.

This leads us to examine the asymptotic outage behavior for the case of a parallel

dying channel. We will consider two models of random attacks over the sub-channels:

1) the case of independent random attacks, where the attacks across the sub-channels

are independently and identically distributed (i.i.d.); and 2) the case of m-dependent

random attacks, where the attacks over m adjacent sub-channels are correlated and

the attacks on sub-channels that are m-sub-channels away from each other are inde-

pendent.

Besides the information theoretical results, we also consider practical coding

schemes over the dying channel, especially for the dying binary erasure channel

(DBEC). Rateless codes are considered and the degree distribution is optimized to

maximize the average recovery probability of the coded bits.

The notations are given as following.

• R indicates the set of real numbers, R+ is the set of nonnegative real numbers,
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and R
N
+ is the set of N -dimensional nonnegative real vectors.

• The Q-function: Q(x) = 1√
2π

∫∞
x

e−
t2

2 dt.

• log(x) is the natural logarithm.

• ⌈·⌉ is the ceiling operator and ⌊·⌋ is the floor operator.

D. Organization

The rest of the dissertation is organized as following. In Chapter II, we study the

single dying channel by first introducing the system model and defining the outage

probability as performance measure. Then we investigate the outage probability by

assuming the uniform power allocation and fixed coding length. Lower and upper

bounds for the outage probability are obtained. In particular, the relation between

the outage probability and the multiplexing gain is discussed in the high SNR regime.

For low and moderate SNR regimes, Gaussian approximation is applied to obtain the

approximated outage probability. Furthermore, we consider the optimization over the

coding length and the power vector to minimize the outage probability. In Chapter

III, we extend the results from single dying channel case to the parallel dying channel

case. In this chapter, we consider the independent random attack case and dependent

random attack case respectively, where the resulting numbers of survived blocks on

each sub-channel are independent or m-dependent. The overall outage probabilities

for these two cases are examined. In addition, the outage exponents for these two cases

are studied to reveal how fast the outage probability goes to zero as the number of sub-

channel increases. After studying the information-theoretical aspects for the dying

channel, we then consider the practical code design for the dying channel in Chapter

IV. Specifically, we consider the LT codes for the dying binary erasure channel and
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redesign the degree distribution of the LT codes. First, we review the upper bound of

the average recovery probability and then optimize the degree distribution such that

the resulting average recovery probability is as close to the upper bound as possible.

At last, we conclude our work in Chapter V.
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CHAPTER II

OUTAGE CAPACITY OF A SINGLE DYING CHANNEL

We consider a narrowband point-to-point delay-limited fading channel subject to a

random fatal attack, where the exact timing of the attack is unknown to the transmit-

ter and the receiver. Only the distribution of the random attack time is known. We

further assume that there is no channel state information at the transmitter (CSIT)

while there is perfect channel state information at the receiver (CSIR). We build our

model of a dying link based on the K-block BF-AWGN channel [6], where the channel

remains constant over a block but changes independently from one block to another.

The k-th received symbol in the i-th block is given by:

yk,i =
√

Pihixk,i + zk,i, (2.1)

where i = 1, · · · , K indicates the block number, k = 1, · · · , B indicates the channel

uses within a block, Pi is the transmit power in block i, hi is the channel gain that

is circularly symmetric complex Gaussian with unit variance and zero mean, and the

noise is assumed to have unit variance throughout this chapter.

 B

K blocks

T

Fig. 1.: Point-to-point dying channel model

As shown in Fig. 1, in our model of the dying channel, the transmitter transmits

a codeword over K blocks; and when the fatal attack occurs at time T , which is
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normalized by the block length B, the communication link is cut off immediately

with the current and rest of the blocks lost. The number of survived transmitted

blocks is thus a random variable that is less than or equal to K due to the fact that a

random attack may happen within any block out of the K blocks or may not happen

at all within the K blocks. As we know from the results of BF-AWGN channel [13],

we can decode the codeword even if the attack happens within the K blocks as long

as the average mutual information of surviving blocks is greater than the code rate

R of the transmission, i.e.,

1

K

L
∑

i=1

log(1 + αiPi) ≥ R, (2.2)

where the random integer L = min(K, ⌊T ⌋) with ⌊·⌋ being the floor operator and αi’s

are the fading gains, i.e., αi = |hi|2, i = 1, . . . , K.

The dying channel is apparently non-ergodic and an appropriately defined outage

capacity serves as the reasonable performance measure, which is formally defined as

follows:

Definition 1. The outage capacity of a K-block BF-AWGN dying channel with an

average transmit power constraint P and a required outage probability η is expressed

as

Cout(P, η) , max
K

sup
P K :

∑K
i=1 Pi≤KP

{

R :

P

[

1

K

L
∑

i=1

log(1 + αiPi) < R} < η

]}

. (2.3)

Note that the outage probability above is defined over the distributions of the

αi’s and T , where we assume that the αi’s and T are independent of each other.

In addition, we assume that the transmitter only knows the distributions of the

αi’s and T , not their instantaneous values. In this chapter, we frequently assume
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Rayleigh fading channels and exponentially distributed random attack time T . Since

the life span of the electronic devices usually follows the exponential distribution, the

exponentially distributed attack time could accurately model the scenario where the

channel death is caused by the device failures. However, many of the findings in the

dissertation can also be applied to general distributions of αi’s and T as pointed out

later. From the perspective of optimal transmission schemes, the outage capacity

maximization problem is equivalent to the outage probability minimization problem

[5]. Therefore, we first discuss the outage probability in the following.

A. Outage Probability with Fixed Coding Length and Uniform Power Allocation

In this section, we study the outage probability when the coding length K is fixed and

uniform power allocation is adopted. According to the law of total probability, the

outage probability can be rewritten as a summation of the probabilities conditioned

on different numbers of surviving blocks, i.e.:

pout(R,P,K) , P

[

1

K

L
∑

i=1

log(1 + αiP ) < R

]

= w0 +

K−1
∑

j=1

P

[

1

K

j
∑

i=1

log(1 + αiP ) < R

]

wj

+P

[

1

K

K
∑

i=1

log(1 + αiP ) < R

]

w∗
K , (2.4)

where wi = P[i < T ≤ i+ 1] for i = 0, · · · , K − 1, and w∗
K = P[T > K]. In general,

there are no tractable closed-form expressions for pout given in (2.4). However, we

could identify some meaningful bounds of pout and study its asymptotic relationship

with SNR and rate.
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1. Outage Probability Lower Bound

Notice that the following relationship holds:

P

[

j
∑

i=1

log(1 + αiP ) < KR

]

≥ P

[

j log(1 + max
i=1,··· ,j

αiP ) < KR

]

(a)
=

j
∏

i=1

P

[

log (1 + αiP ) <
KR

j

]

=

{

F

(

e
KR
j − 1

P

)}j

, (2.5)

where F (x) is the cumulative distribution function (CDF) of the random variable αi

and step (a) comes from the fact that αi’s are i.i.d.. Therefore, with the relationship

in (2.5), we have a lower bound for the outage probability in (2.4) as

P

[

1

K

L
∑

i=1

log(1 + αiP ) < R

]

≥ w0 +

K−1
∑

i=1

{

F

(

eKR/i − 1

P

)}i

wi

+

{

F

(

eR − 1

P

)}K

w∗
K . (2.6)

2. Outage Probability Upper Bound

On the other hand, there exists an upper bound for the outage probability with a

counterpart argument as that for (2.5):

P

[

j
∑

i=1

log(1 + αiP ) < KR

]

≤ P

[

j log(1 + min
i=1,··· ,j

αiP ) < KR

]

= 1−
j
∏

i=1

(

1− P

[

log(1 + αiP ) <
KR

j

])

= 1−
{

F̄

(

e
KR
j − 1

P

)}j

, (2.7)
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where F̄ (x) = 1 − F (x). Therefore, an upper bound for the outage probability in

(2.4) is given as

P

[

1

K

L
∑

i=1

log(1 + αiP ) < R

]

≤ 1−
K−1
∑

i=1

{

F̄

(

eKR/i − 1

P

)}i

wi

−
{

F̄

(

eR − 1

P

)}K

w∗
K . (2.8)

In Fig. 2, we numerically evaluate the bounds by assuming a Rayleigh fading channel,

an exponentially distributed attack time T with mean equal to 10, a coding length

K = 10, and a target rate R = 1 nat/s/Hz. As shown in Fig. 2, these bounds are

tight in high SNR regime but loose in low and moderate SNR regimes1. Note that

the above lower and upper bounds are valid beyond the Rayleigh fading channel and

exponential random attack cases.

3. Gaussian Approximation for Outage Probability

Let Vi , log(1 + αiP ). When αi follows the exponential distribution with parameter

λ = 1, the mean and variance of Vi are given in [14] [15] as following:

µ(P ) = E[log(1 + αiP )] = e1/PE1

(

1

P

)

, (2.9)

σ2(P ) =
2

P
e1/PG4,0

3,4

(

1

P
|0,0,00,−1,−1,−1

)

− µ2(P ), (2.10)

where E1(x) =
∫∞
1

t−1extdt and Gm,n
p,q

(

z|a1,a2,··· ,apb1,b2,··· ,bq

)

is the Meijer G-function [16].

Motivated by the central limit theorem (CLT), we approximate the term 1
j

∑j
i=1 Vi

by a Gaussian variable with mean µ(P ) and variance σ2(P )/j. In our simulation, we

1We assume unit noise power, hence SNR=P . By low SNR, we mean that P ≪ 1;
and by high SNR, we mean P ≫ 1.
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find that the accuracy of the approximation is satisfactory even j is small. Therefore,

P

[

1

K

j
∑

i=1

log(1 + αiP ) < R

]

= P

[

1

j

j
∑

i=1

log(1 + αiP ) <
KR

j

]

≈ Q

(

µ(P )−KR/j

σ(P )/
√
j

)

. (2.11)

As a result, according to (2.4), we have the approximated outage probability as

pout = P

[

1

K

L
∑

i=1

log(1 + αiP ) < R

]

≈ w0 +

K−1
∑

i=1

Q

(

µ(P )−KR/i

σ(P )/
√
i

)

wi +Q

(

µ(P )−R

σ(P )/
√
K

)

w∗
K . (2.12)

We use the following example to show the accuracy of the Gaussian approximation,

where we assume exponential random attack time with mean 1/λ = 10, K = 10,

and R = 1 nat/s/Hz. As we can see from Fig. 3, the Gaussian approximation

(GA) is quite accurate for all the SNR regime of interest. Note that the Gaussian

approximation approach is also applicable to other random attack time distributions.

4. Asymptotic Outage Probability over SNR

As we see from (2.4), the minimum achievable outage probability is w0, which is only

determined by the statistics of the random attack time. In the Rayleigh fading case,

we would like to know the asymptotic relationship among the rate R, the SNR, and

the outage probability.

Theorem 1. Let limP→∞
R

logP
= r and w0 < w < 1; then

lim
P→∞

P

[

1

K

L
∑

i=1

log(1 + αiP ) < R

]

=























w0, if r < 1/K

w, if 1/K ≤ r ≤ 1

1, if r > 1.
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Proof. See Appendix A.

According to the above theorem, in order to achieve minimum outage probability

w0, the rate R can only increase at the speed of r logP , where the pre-log factor

r should be less than 1/K. If the pre-log factor r is larger than one, the outage

probability goes to one as the SNR increases. Any r between 1/K and one leads to

an outage probability between w0 and one.

B. Optimization over Coding Length

As shown in (2.3), we can optimize over the coding length K and the power vec-

tor PK to maximize the outage capacity, or equivalently to minimize the outage

probability [5]. If a uniform power allocation strategy is adopted, the only thing

left for optimization is the coding length K. On one hand, we can have a larger

L = min(K, ⌊T ⌋) by increasing K, meaning that we potentially have higher diversity

to achieve a lower outage probability. On the other hand, a larger K incurs a higher

percentage of blocks being lost after the attack such that the average achievable mu-

tual information per block is lower, which results in a larger outage probability. Since

the random attack time determines the number of surviving blocks and K determines

the average base, we are interested in finding a proper value of K to “match” the

random attack property in the sense that the outage probability is minimized.

1. Low SNR Regime

When SNR is low, we have log(1 + αiP ) ≈ αiP . Thus, when we span a codeword

over K blocks, the outage probability conditioned on T (suppose the corresponding



16

number of survived block is j) is given as

pout|T = P

[

j
∑

i=1

log(1 + αiP ) < KR

]

≈ P

[

j
∑

i=1

αi < KR/P

]

. (2.13)

When using a repetition transmission (over blocks) with maximal-ratio-combining

(MRC), the outage probability is given as

prepout|T = P

[

log(1 +

j
∑

i=1

αiP ) < KR

]

≈ P

[

j
∑

i=1

αi < KR/P

]

. (2.14)

Comparing (2.13) and (2.14), we see that the outage performances of these two

schemes are the same in the low-SNR regime. This is due to fact that in low SNR

regime it is SNR-limited rather than degree-of-freedom-limited such that coding over

different blocks does not help to decrease the outage probability. Hence, repetition

transmission is approximately optimal for a dying channel in the low SNR regime.

Correspondingly, the optimal coding length K∗ = 1. Note that this result is not

limited to the Rayleigh fading and exponential random attack time case.

2. High SNR Regime

For K-block fading channel model in high SNR regime, outage typically occurs when

each sub-channel cannot support an evenly-divided rate budget (see Exercise 5.18

in [13]). Thus, conditioned on the attack time T , the outage probability can be

written as :

pout|T = P

[

1

K

j
∑

i=1

log(1 + αiP ) < R

]

≈
(

P

[

log(1 + αiP ) <
K

j
R

])j

. (2.15)
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For Rayleigh fading, we have P [αi < 1/x] ≈ 1/x when x is large. Thus, when SNR

is high, we can simplify (2.15) as

pout|T ≈ eKR

P j
. (2.16)

With the conditional outage probability given by (2.16), the overall outage probability

is

pout(K) = w0 +

K−1
∑

i=1

eKR

P i
wi +

eKR

PK
w∗

K . (2.17)

Let G(t) be the CDF of the attack time, which is assumed to be exponentially dis-

tributed with parameter λ. Let w∗
K = 1−G(K), wi = G(i+1)−G(i) = e−λi(1−e−λ) =

βic (for i = 1, · · · , K − 1) with c = 1− e−λ and β = e−λ. We can rewrite (2.17) as

pout(K) = eKR
K−1
∑

i=1

βic

P i
+

eKR

PK
[1−G(K)] + w0

= eKRc
β
P
− ( β

P
)K

1− β
P

+
1−G(K)

PKe−KR
+ w0. (2.18)

For high SNR, with 0 < β < 1, β/P is small. Hence, β/P−(β/P )K

1−β/P
≈ β/P

1−β/P
when

K ≥ 2, and (2.18) can be approximated to:

pout(K) ≈ ξeKR +
1

PKe(λ−R)K
+ w0, (2.19)

where ξ = (1− e−λ) β/P
1−β/P

. In order to obtain the optimal K by minimizing pout(K),

we first treat (2.19) as a continuous function of K, although K is an integer.

Let us first consider the convexity of (2.19) over a real-valued K. By taking the

second-order derivative of (2.19) over K, we have the following:

∂2pout(K)

∂K2
= ξR2eKR +

[λ+ logP −R]2

(Peλ−R)K
. (2.20)

Since we have λ > 0 and 1 − β/P > 0 in the high SNR regime, it holds that ξ > 0.
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Therefore, (2.20) is non-negative in the high SNR regime, which means that (2.19) is

convex over real-valued K.

Given the convexity of (2.19), the optimal K can be derived by setting its first-

order derivative to zero and finding the root. Consequently, the optimal solution K∗

is obtained as follows:

K∗ = log

[

λ+ logP −R

ξR

]

1

λ+ logP
.

Obviously, K∗ is unique given a set of ξ, P, R, and λ. Since a feasible K for the

original problem should be an integer, we need to choose the optimal integer solution

from ⌊K∗⌋ and ⌈K∗⌉, whichever gives a smaller value of (2.19).

C. Optimization over Power Vector

In the previous section, we investigated the optimal coding length K that minimizes

the outage probability by assuming uniform power allocation. We now consider the

optimization over both the coding length K and the power vector PK to minimize

the outage probability. Note that optimizing over K is in general a 1-D search over

integers, which is not complex. Since the main complexity of minimizing the outage

probability lies in the optimization over PK , we first focus on the outage probability

minimization problem over PK for a given fixed K, which is expressed as:

min
P K

P

[

1

K

L
∑

i=1

log(1 + αiPi) < R

]

s.t.
1

K

K
∑

i=1

Pi ≤ P. (2.21)

After obtaining the optimal outage probabilities conditioned on a range of K values,

we choose the minimum one as the global optimal value.
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1. Properties of Optimal Power Allocation

We start solving the above optimization problem by investigating the general prop-

erties of the optimal power allocation over a dying channel for a given K.

With the law of total probability, we can expand the outage probability in the

objective of (2.21) as follows,

P

[

1

K

L
∑

i=1

log(1 + αiPi) < R

]

= w0 +

K−1
∑

j=1

P

[

1

K

j
∑

i=1

log(1 + αiP ) < R

]

wj

+P

[

1

K

K
∑

i=1

log(1 + αiP ) < R

]

w∗
K , (2.22)

where wi’s are defined in Section A. With the above result, we then discuss the

optimal power allocation for a dying channel under different conditions.

Case 1: i.i.d. Fading Gains

Theorem 2. When fading gains over blocks are i.i.d., the optimal power allocation

profile is non-increasing.

Proof. The proof is provided in Appendix B.

This is a general result regardless of the specific distributions of fading gains.

That is, the optimal power vector lies in a convex cone D+ = {PK ∈ R
K
+ : P1 ≥ P2 ≥

· · · ≥ PK}, no matter what distribution the fading gain follows, as long as the i.i.d.

assumption holds.

Case 2: Identically Fading Gains Now we consider the case where the fading

gains over all the blocks are the same, while they are still random. This represents

the case where fading gains are highly correlated in time.
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Theorem 3. When the fading gains αi’s are the same, the optimal coding length is

K = 1 with P1 = P .

Proof. The proof is provided in Appendix C.

This result implies that the optimal transmission scheme for a highly corre-

lated dying channel is to simply transmit independent blocks instead of jointly-coded

blocks. Note that both Theorem 2 and Theorem 3 can be applied for general channel

and attack time distributions.

2. Power Allocations for High SNR Regime

For the case of Rayleigh fading and exponential random attack time, we can further

convert the corresponding optimization problem into convex one and derive the opti-

mal power vector efficiently. Given (2.15) and conditioned on the attack time T , the

conditional outage probability can be written as:

pout|T = P

[

j
∑

i=1

log(1 + αiPi) < KR

]

≈
j
∏

i=1

P

[

log(1 + αiPi) <
K

j
R

]

. (2.23)

For Rayleigh fading, we have Pr(αi < 1/x) ≈ 1/x when x is large. Thus, when SNR

is high, we can simplify (2.23) as

pout|T ≈ (eKR/j − 1)j
∏j

i=1 Pi

. (2.24)

The outage probability with Rayleigh fading in high SNR is approximated as

below by substituting (2.24) into (2.22):

pout(K) ≈ w0 +
eKR − 1

P1
w1 +

(eKR/2 − 1)2

P1P2
w2 + · · ·+ (eKR/K − 1)K

∏K
i=1 Pi

w∗
K . (2.25)
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Denoting ci = wi(e
KR/i − 1)i, we further simplify (2.25) as

pout(K) ≈ w0 +
c1
P1

+
c2

P1P2
+ · · ·+ cK

∏K
i=1 Pi

.

Since the optimal power vector lies in a convex cone as shown in Theorem 2, the

problem can be formulated as a convex optimization problem (refer to Appendix D

for the convexity proof):

min
P K∈D+

w0 +
c1
P1

+
c2

P1P2
+ · · ·+ cK

∏K
i=1 Pi

s.t.

K
∑

i=1

Pi ≤ KP, (2.26)

where D+ = {P ∈ R
K
+ : P1 ≥ P2 ≥ · · · ≥ PK ≥ 0} is a convex cone. Thus, the

optimal power vector can be efficiently solved with standard convex optimization

algorithms such as the interior point method [17].

We set the R = 0.5 nats/s/Hz, 1/λ = 5 for the exponential random attack, and

average power P = 10 dB. As we can see in Fig. 4, the power vector derived by

solving problem (2.26) achieves better performance in terms of the outage probability

than the uniform power allocation case.

D. Summary

In this chapter, we defined the outage capacity of a single dying channel. Based

on the definition, we first investigated the outage probability when uniform power

allocation and fixed coding length are given. In high SNR regime, the tradeoff between

the multiplexing gain and the outage probability is discussed. Then, we optimized

over the coding length and the power vector to minimize the outage probability.

Specifically, some general optimal transmission schemes, which are independent of

the statistics of the random attack time and the fading gains, are presented.



22

1 1.5 2 2.5 3 3.5 4
0.2

0.21

0.22

0.23

0.24

0.25

0.26

Number of blocks K

O
ut

ag
e 

pr
ob

ab
ili

ty

1/λ=5, P=10 dB

 

 

optimal power allocation
uniform power allocation

Fig. 4.: Outage probability with non-uniform and uniform power allocation, for
exponential random attack time and Rayleigh fading.



23

CHAPTER III

OUTAGE PROBABILITY OVER PARALLEL DYING CHANNELS

In the dying channel example of cognitive radio networks, secondary users have access

to vacant frequency bands that are licensed to primary users. Some primary users may

suddenly show up and take over some frequency bands, which results in connection

losses if these frequency bands are being used by certain secondary users. Hence,

each sub-channel (a frequency band) may have a different random delay constraint

for information transmission due to the uncertainty of non-uniform primary user

occupancy patterns. Specifically, the above system can be modeled as follows. Given

a link with N parallel sub-channels as shown in Fig. 5, the codeword is spanned

in the time domain over K blocks and also across all the N sub-channels. In some

sub-channels, random attacks terminate the transmission before it is completed such

that less than K blocks are delivered. For other sub-channels, K blocks are assumed

to be safely transmitted. What is the maximum rate for reliable communication

over such a link? For the single channel case, it turns out that there is no way to

achieve arbitrarily small outage with a finite transmit power. However, in this chapter,

we extend the results of the single dying channel to the parallel multi-channel case

and show that an arbitrarily small outage probability is achievable by exploiting the

inherent multi-channel diversity.

A. Outage Probability Definition

Definition 2. The outage probability of the parallel multi-channel case is given as

pout(R,P,N) = P

[

N
∑

i=1

1

K

Li
∑

k=1

log(1 + α
(i)
k P/N) < R

]

, (3.1)
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where R is the total rate over N sub-channels, α
(i)
k is the fading gain of block k

at sub-channel i, N is the number of sub-channels, Li = min{K, ⌊Ti⌋} is the random

number of surviving blocks at sub-channel i, K is the number of blocks over which

a codeword is spanned in the time domain, and P is the total average power such

that P/N is the average power for each sub-channel. Since the asymptotic behavior

is concerned, uniform power allocation is assumed over N sub-channels. According

to different attack models, in the next two sections we investigate the asymptotic

behavior of the above outage probability in two cases: the independent random attack

case and the m-dependent random attack case.
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B. Independent Random Attack Case

Let the average power P be finite. Since log(1 + x) ≈ x if |x| ≪ 1, when N is large,

we rewrite (3.1) as

pout(R,P,N) ≈ P

[

1

N

N
∑

i=1

1

K

Li
∑

k=1

α
(i)
k P < R

]

. (3.2)

We assume that the fading gains α
(i)
k ’s are i.i.d., and let the random variable Yi be

Yi =
1

K

Li
∑

k=1

α
(i)
k .

For the case of independent random attack, we assume that Li’s are i.i.d., and hence

Yi’s are i.i.d..

The outage probability given by (3.2) can be recast as:

pout(R,P,N) ≈ P

[

1

N

N
∑

i=1

Yi < R/P

]

. (3.3)

Motivated by the central limit theorem, we approximate 1
N

∑N
i=1 Yi by a Gaussian

random variable with the mean µY and variance as σ2
Y /N , where the mean and

variance of Yi are given as following.

According to Theorem 7.4 in [18] on the sum of a random number of random

variables, we derive the following relations:

µY =
1

K
E(L)E(α) (3.4)

σ2
Y =

1

K2
[E(L)V ar(α) + V ar(L)E(α)2], (3.5)

where α is a nominal random variable denoting the fading gain, L is a nominal integer

random variable denoting the number of surviving blocks of each sub-channel, and

E(·) and V ar(·) denote the expectation and variance, respectively. As such, according
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to the Gaussian approximation, the outage probability can be approximated as:

pout(R,P,N) ≈ Q

(

µY − R/P

σY /
√
N

)

. (3.6)

As N → ∞, according to the law of large number, 1
N

∑N
i=1 Yi converges to µY .

The outage probability decreases to 0 over N if R/P is less than µY , or converges

to 1 if R/P is larger than µY .
1 That is, even though all sub-channels are subject

to fatal attacks, the outage probability can still be made arbitrarily small when N

is large enough if the rate per unit cost is set in a conservative fashion, where µY is

a key threshold. This is remarkably different from the single dying channel case in

which the outage probability is always finite since there are only a finite and random

number of blocks to span a codeword.

C. m-dependent Random Attack Case

In the previous section, we discussed the case where Li’s are independent. However,

in a practical system, such as cognitive radio networks, the primary users usually use

a bunch of adjacent sub-channels instead of dispersive sub-channels. Thus, the Li’s

across adjacent sub-channels are possibly correlated; and consequently the achievable

rates across adjacent sub-channels are also correlated. On the other hand, if two sub-

channels are far away from each other, it is reasonable to treat them as independent.

Thus, we assume that Yi’s are strictly stationary 2 and m-dependent3 with the same

1R/P is interpreted as the rate per unit cost in [19]. It is interesting to see that
the quantity of rate per unit cost plays an important role here, which is due to the
fact that we operate over both a finite power and a finite coding length.

2Call a sequence {Xn, n ≥ 1} strictly stationary if, for every k, the joint distribu-
tion of (Xn+1, · · · , Xn+k) is independent of n.

3Call a sequence {Xn, n ≥ 1} m-dependent if for any integer t, the σ-fields
σ(Xj, j ≤ t) and σ(Xj , j ≥ t + m + 1) are independent. Simply put, Xi and Xj

are independent if |i− j| > m.
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mean and variance.

1. Central Limit Theorem for m-Dependent Random Variables

We first cite the central limit theorem for stationary and m-dependent summands

from [20] (Theorem 9.1 therein).

Theorem 4 (Hoeffding and Robbins). Suppose {Xn, n ≥ 1} is a strictly stationary

m-dependent sequence with E(Xi) = µ and V ar(Xi) = σ2 < ∞. Then as N → ∞,

we have

1√
N

N
∑

i=1

(Xi − µ) → N (0, υm), (3.7)

where υm = σ2 + 2
∑m

i=1Cov(Xt, Xt+i) with Cov(Xt, Xt+i) the covariance of Xt and

Xt+i.

Proof. The detailed proof can be found in [21].

2. Approximate Outage Probability

As assumed, the random sequence {Y1, Y2, · · · , YN} is stationary and m-dependent,

and Yi’s have the same mean and variance. Then the covariance is given as:

Cov(YiYi+h) =

{

0 |h| > m

γ(h)− µ2
Y |h| ≤ m,

(3.8)

where µY is the expectation of Yi given in (3.4) and γ(h) = E(YiYi+h). Meanwhile,

υm = σ2
Y + 2

m
∑

h=1

(

γ(h)− µ2
Y

)

. (3.9)

Due to the fact that the fading gains α
(i)
p and α

(i+h)
q are independent if p 6= q or
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h 6= 0, we could easily obtain γ(h) for |h| ≤ m, h 6= 0, as:

γ(h) =
1

K2
E

[

Li
∑

p=1

α(i)
p

Li+h
∑

q=1

α(i+h)
q

]

=
1

K2
E

[

E

(

Li
∑

p=1

α(i)
p

Li+h
∑

q=1

α(i+h)
q

∣

∣

∣

∣

LiLi+h

)]

=
µ2
α

K2
E(LiLi+h) (3.10)

Assume that Li and Lj have the same correlation coefficient ρ if |i − j| ≤ m and

i 6= j. Then (3.10) is simplified as

γ(h) =
µ2
α

K2
(ρσ2

L + µ2
L), (3.11)

where ρ is a non-negative correlation coefficient, µL and σL are the mean and variance

of the random variable L, respectively.

Substituting (3.4), (3.5), and (3.11) into (3.9), we have

υm = σ2
Y + 2m

ρµ2
ασ

2
L

K2

=
µLσ

2
α

K2
+

µ2
ασ

2
L

K2
(1 + 2mρ). (3.12)

Motivated by the central limit theorem for m-dependent random sequence, we

again approximate 1
N

∑N
i=1 Yi by a Gaussian random variable with mean µY and the

variance υm/N , where µY is given in (3.4) and υm is given in (3.12). Hence, the outage

probability for the m-dependent random attack case can be written as follows,

pout(R,P,N) ≈ Q

(

µY − R/P
√

υm/N

)

. (3.13)

As we see from (3.12) that υm ≥ σ2
Y , comparing (3.6) and (3.13), we conclude that

the outage probability of the independent attack case is smaller than that of the m-

dependent case given the same setting when the rate per unit cost R/P is less than
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µY and the number of sub-channels N is large.

D. Outage Exponent for Parallel Dying Channels

As we learn from the previous sections, the outage probability over parallel multiple

channels goes to zero as N increases if R/P < µY for both of the two attack cases. In

this section, we investigate how fast the outage probability decreases as N increases

for both cases, which is measured by the outage exponent [22] defined as

E(t) = lim
N→∞

− log pout(R,P,N)

N
, (3.14)

where t = R/P .

1. Independent Attack Case

According to the results in [22], we could derive the outage exponent for the inde-

pendent attack case as

E(t) = sup
s≤0

{st− Λ(s)} , (3.15)

for ∀t ≤ t0, where t0 = µY and

Λ(s) := logE [exp(sYi)] = logMY (s), (3.16)

with MY (s) the moment generating function of Yi. According to Theorem 7.5 in [18],

we have MY (s) = h(f(s/K)) where h(z) and f(s) are the probability generating

function of the discrete random variable Li and the moment generating function of

the continuous random variable α
(i)
k , respectively. 4

4The moment generating function of the sum of a random number of random
variables, i.e., SL = X1 +X2 + · · ·+XL, is the compound function h(f(s)), where L
is a random integer independent of Xi, h(z) is the probability generating function of
L, and f(s) is the moment generating functions of Xi.
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Example: If Rayleigh fading is assumed, α
(i)
k is exponentially distributed; hence

the corresponding moment generating function is f(s) = (1 − s/λα)
−1, where λα is

the parameter for the distribution of the α
(i)
k . Assuming that the random attack

time has an exponential distribution, L is an integer random variable with following

distribution:

w0 = P [0 ≤ T < 1] , w1 = P [1 ≤ T < 2] , · · · , wK−1 = P [K − 1 ≤ T < K] , wK = P [T ≥ K] .

Thus, we have h(z) =
∑K

i=0wiz
i and MY (s) =

∑K
i=0wi(1−s/(Kλα))

−i. Then we can

derive the outage exponent numerically by solving (3.15) for a given t.

2. m-Dependent Attack Case

For the m-dependent attack case, the large deviation result for the m-dependent

random sequence is given as follows [23],

Emdp(t) = sup
u≤0

{tu− Λ(u)} , (3.17)

where

Λ(u) := lim
N→∞

1

N
logE [exp(uSn)] (3.18)

and SN =
∑N

i=1 Yi. As N → ∞, according to Theorem 4, SN is approximately equal

to a Gaussian random variable of distribution N (Nµ,Nυm). Thus, we have

lim
N→∞

1

N
E[exp(uSN)] = uµ+

1

2
u2υm. (3.19)

As a result, the outage exponent for the m-dependent attack case is given as

Emdp(t) = sup
u≤0

{

u(t− µY )−
1

2
u2υm

}

=
(µY − t)2

2υm
, (3.20)

where υm is given in (3.12).
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Numerical results are provided here to validate our analysis for the parallel multi-

channel case. We choose the random attack time T to be exponentially distributed

with parameter 1/λ = 5 and K is chosen to be 5. Rayleigh fading is assumed and

the fading gain α
(i)
k is exponentially distributed with parameter 1 and the noise has

unit power. First, we demonstrate the convergence of the outage probability for the

independent attack case and the m-dependent attack case, where the value of µY

according to the above simulation setup is 0.571. For the independent attack case,

as shown in Fig. 6, the solid and dashed curves are derived by (3.6) while the circles

and crosses are obtained by simulations. We also observe similar convergence for the

m-dependent attack case in Fig. 7. In both figures, the outage probability goes to

0 if R/P < µY , or goes to 1 if R/P > µY . We see that the accuracy of Gaussian

approximations is acceptable with reasonably large N values.

Second, we compare the outage probability performance between the independent

case and the m-dependent case. Here P = 2 and R = 0.5 nats/s. As shown in Fig. 8,

the outage performance of them-dependent case is worse than that of the independent

case even when m = 1 and ρ = 0.8. This is due to the fact that when R/P < µY ,

the independent attack case is expected to have a smaller outage probability as we

discussed at the end of Section 2. However, the outage probability of them-dependent

case still decreases to 0 but at a slower rate as the number of sub-channels N increases,

which is caused by the fact that the m-dependent attack case has a smaller outage

exponent.

In Fig. 9, we compare the various outage exponent values between these two

cases over the rate per unit cost R/P with the simulation setup as follows: K = 5,

m = 1, and ρ = 0.8. First, we see that the outage exponent for the independent

attack case is larger than that of the m-dependent attack case when the average

attack time 1/λ is the same. Second, for both of the independent attack case and the
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m-dependent attack case, a larger average attack time 1/λ results in a larger outage

exponent.
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Fig. 6.: Outage probability convergence behavior of the independent case: µY =0.571 and
P=2.

E. Summary

In this chapter, we extended the results in single dying channel to the parallel dying

channel. First, we give the outage probability definition for the parallel dying chan-

nel and then investigate asymptotic behavior of the outage probability as the number

of sub-channels increases. In particular, we consider the independent random at-
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tack model and the m-dependent random attack model. For both cases, the outage

probability will go to zero if the rate per unit cost is larger than a given threshold.

In addition, the outage exponents are studied for both cases to reveal how fast the

outage probability goes to zero.
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CHAPTER IV

ON DESIGN OF RATELESS CODES

OVER DYING BINARY ERASURE CHANNEL

In this chapter, we consider a practical coding scheme over the dying binary erasure

channel (DBEC). In particularly, we consider transmitting a trunk of data over a

DBEC with a large message length k. Since reliable communication is not achiev-

able over the dying channel, our objective is to convey as many information bits1

as possible. For a given message length k, the problem is equivalent to maximizing

the recovery probability of the received bits. Since the transmitter has no knowledge

on the actual channel length before transmitting, it cannot pre-determine the rate

and the associated codeword length. Therefore, the fixed-rate codes are not suit-

able. Instead, the rateless codes [24–26] could serve as good candidates. In 1974, the

concept of incremental redundancy (IR) was proposed in [24]. Afterwards, people

have been trying to combine the IR concept with error control codes to fully exploit

each received symbol at the receiver. The resulting codes are called rateless codes,

which are characterized by a continuous stream of coded bits generated from a single

fixed-length message. Specifically, the transmitter continuously produces and trans-

mits such coded bits until the receiver collects enough information to reliably recover

the original message. In particular, the Luby Transform (LT) codes [25] and Rap-

tor codes [26] are two most well-known rateless codes, where they are both designed

to recover the whole frame of message bits with high probability when the coding

overhead r, which is defined as the ratio between the number of received bits and

the number of message bits k, is just slightly larger than 1. However, when r is less

1In this dissertation, we assume the symbol to be binary without loss of generality.
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than the required, only a small fraction of message bits can be recovered. As a result,

the author of [27] investigated the asymptotic recovery probability when r < 1 and

provided a tight outer bound on the fraction of recoverable bits. In addition, the au-

thors in [28] also studied the intermediate performance and characterized the Pareto

tradeoff. In the above works, the authors are only interested in the region over r < 1

and try to maximize the recovery probability for a fixed r. In this dissertation, we

consider the case where r is a random variable, which can be either less or larger than

1 due to the random attack. Our objective is to seek a single degree distribution

that is tuned to the statistics of the dying channel such that the average recovery

probability is maximized.

A. System Model

In general, a DBEC is a special binary erasure channel that has a finite but random

number of channel uses, as opposed to the ordinary BEC that has an infinite number

of channel uses. We define the life span of a DBEC as its channel length, denoted as

T , which is a random variable. We assume that the probability distribution of the

life span is known a priori by both the transmitter and the receiver. All the channel

realizations that have the same life span differ from each other by the number of

erasures and the positions where the erasures occur. We now consider rateless codes

and define following preliminaries.

Let Ω1, · · · ,ΩD be a probability distribution such that Ωi denotes the probability

that the integer i is chosen and
∑D

i=1Ωi = 1, where D is the largest degree for the

degree distribution used for the rateless codes. We could represent such a distribution

by the coefficients of the generator polynomial Ω(x) =
∑D

i=1Ωix
i. Suppose we encode

k message bits with the degree distribution specified by Ω(x). Each coded bit is
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generated as follows.

• Randomly choose a degree realization d from a degree distribution specified by

Ω(x).

• Choose uniformly at random d distinct input symbols as neighbors.

• The value of the encoding symbol is the exclusive-or of the d chosen neighbors.

Repeat the above procedure, we will obtain a string of coded bits.

The relationship between the message bits and coded bits can be represented by

a bipartite graph, where the message bits are represented by variable nodes and the

generated coded bits are represented by check nodes. The chosen variable nodes for

each check node are called the neighbors of that check node. A particular encoding

process can be specified by a generator matrix G with k rows and t columns such

that a codeword c of length t can be represented as c = mG, where m is a row vector

containing k message bits, the matrix element Gi,j = 1 if the i-th message bit is chosen

as the neighbor of the coded bit j, and otherwise Gij = 0, i = 1, · · · , k, j = 1, · · · , t.

The number of 1’s in each column of G is called weight, and the weight distribution

is determined by Ω(x). Given Ω(x), we denote GΩ(x) as the ensemble of generator

matrices G’s whose weight distribution is specified by Ω(x).

LT codes are decoded by applying the belief-propagation (BP) decoder [29] to N

of the output symbols of the encoder. The required value of N depends on the output

degree distribution of the LT codes and the desired success probability of the decoder.

According to the results in [25], if k message bits are encoded and transmitted over

the ordinary BEC, any subset of symbols of size k + O(
√
k ln2(k/δ)) is sufficient to

recover the original k message bits successfully with a probability at least 1 − δ (In

fact, the actual decoding failure probability is much smaller than δ, which is suggested

by Luby’s conservative analysis [30].).
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We assume that the encoder and decoder share the same random number gener-

ator such that the random number d and the indices of the randomly chosen neigh-

boring message bits for each coded bits are known by both the encoder and decoder.

The transmitter keeps sending the coded bits and the receiver keeps receiving the

bits without feedback. At the moment that the channel dies, the receiver detects

the event and starts to decode the message bits. In particular, the actual number of

transmitted coded bits before the channel dies, denoted as N1, is a random variable

equal to the life span of the channel realization. In addition, the actual number of

received coded bits, denoted as N2, is also a random variable less than or equal to

N1 due to the erasures that occurred during the transmissions. For a given message

length k, the received coding overhead R is defined as R = N2/k. Subsequently, we

define the following quantities.

Definition 3. Let nd be the number of recoverable bits. The recovery probability

conditioned on the degree distribution Ω(x) and R = r is defined as

s(r,Ω(x)) , E
GΩ(x)

[nd

k
|R = r,Ω(x)

]

. (4.1)

The degree d for each coded bit is randomly generated according to the degree

distribution Ω(x). In addition, the neighboring message bits for each coded bits

are randomly chosen. Therefore, all the realizations of d and random choices of

neighboring message bits form the ensemble of random graphs, denoted as GΩ(x).

Taking expectation over the ensemble, we have the conditional recovery probability

s(r,Ω(x)). Furthermore, by taking expectation over R, we have the expected recovery

probability as follows.

Definition 4. The average recovery probability η(Ω(x)) for a given degree distribution
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Ω(x) is defined as

η(Ω(x)) , E

[

s(R,Ω(x))
]

=

∫

r

h(r)s(r,Ω(x))dr, (4.2)

where h(r) is probability density function of R.

Note that the underlying message length is k, such that different choices of k

lead to different probability distributions of r and thus yield different results. In this

dissertation, we would like to find a degree distribution Ω(x) to maximize the average

recovery probability at the decoder for a fixed message length k, i.e.,

max
Ω(x)

η(Ω(x)) (4.3)

s.t.

D
∑

i=1

Ωi = 1.

B. Degree Distribution Optimization

In order to maximize η(Ω(x)), we first find an upper bound and then minimize the

gap between the upper bound and the achievable η(Ω(x)). The upper bound can be

obtained by individually maximizing the conditional recovery probability s(r,Ω(x))

for each given r and then taking expectation over R.

1. Upper Bound of Recovery Probability

Here we consider the asymptotic case with k → ∞ for the ease of analysis, since

the message length k in consideration is assumed to be large. Such an asymptotic

approximation leads to acceptable performance as later shown in Section C.

Definition 5. Let the asymptotical maximum recovery probability for a given r be

z = lim
k→∞

max
Ω(x)

s(r,Ω(x)), (4.4)
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where the corresponding optimal Ω(x) is denoted as ΩC(x).

As we see that z is the limit 2 of the maximum value of s(r,Ω(x)) for a given r

as k → ∞. According to [27], the relationship between r, z, and the achieving degree

distribution ΩC(x) is given as follows.

Lemma 1. 1. When z ∈ [0, 1/2), r = − log(1 − z) and ΩC(x) = x, where log is

the natural logarithm.

2. When z ∈ [1/2, 2/3], r = − log(1−z)
2z

and ΩC(x) = x2.

3. When z ∈ (2/3, 1), let m be an integer such that m−1
m

< z < m
m+1

, then

r =
m− 1

m
+

1

mzm−1

∑

i≥m

zi

i
. (4.5)

The coefficients of ΩC(x) are given as

Ωi =























1
ri(i−1)

2 ≤ i ≤ m− 1

1− m−2
r(m−1)

i = m

0 otherwise.

(4.6)

Proof. The proof is given in [27].

Proposition 1. r(z) given in Lemma 1 is a montonically increasing function of z

for 0 ≤ z < 1 .

Proof. The proof is given in Appendix E.

According to Proposition 1, there exists a bijective mapping between r and z.

Therefore, we can instead view z as a monotonically increasing function z = u(r) for

r ∈ [0, 1). In addition, when r ≥ 1, we have z = 1 and the corresponding ΩC(x) is

2It is shown in [31] that the limit is well-defined, i.e., the limit exists.
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Fig. 10.: Demonstration of Lemma 1 for 0 ≤ r ≤ 1.

the soliton distribution [25], which is given as following.

Ωi =











1/k i = 1

1
i(i−1)

i = 2, · · ·k
.

Therefore, the overall function is given as

z = U(r) =

{

u(r) r ∈ [0, 1)

1 r ≥ 1
, (4.7)

which is given in Fig. 10.
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As a result, for a given R = r, there is a unique maximum recovery probability

z and a corresponding optimal degree distribution ΩC(x) to achieve z. If we know r

non-causally before transmission, we can determine the optimal degree distribution

according to Lemma 1; Hence such an non-causal assumption gives us the upper

bound for η(Ω(x)) as

g1 =

∫

r

h(r)U(r)dr, (4.8)

where h(r) is probability density function of R. In practice, it is impossible to know

r before transmission over the DBEC. In addition, no single degree distribution can

achieve U(r) over the whole region. Thus g1 is not achievable with a single degree

distribution in general except for some special cases where R follows some special

probability distributions. For example, if Pr{0 ≤ r ≤ log 2} = 1, Ω(x) = x achieves

g1.

2. Optimizing Degree Distribution

The achievable average recovery probability for the rateless codes with a given degree

distribution Ω(x) is

g2 =

∫

r

h(r)s(r,Ω(x))dr. (4.9)

Consequently, by taking (4.8) and (4.9) into account, the gap to the upper bound is

given as

g(Ω(x)) =

∫

r

h(r)

(

U(r)− s(r,Ω(x))

)

dr. (4.10)
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Therefore, maximizing η(Ω(x)) can be transformed into the following optimization

problem:

min
Ω(x)

g(Ω(x)) (4.11)

s.t.
D
∑

i=1

Ωi = 1,Ωi ≥ 0, i = 1, · · · , D.

It is easy to see in (4.10) that the distance U(r)− s(r,Ω(x)) at r has a large weight if

h(r) is large and vice versa. As such, in order to minimize (4.10), we choose Ω(x) to

make the s(r,Ω(x)) close to and even achieving the corresponding upper bound U(r)

in the regions with high h(r) values and allow it to be relatively far away from U(r)

in other regions. In order to solve (4.11) efficiently, we need to evaluate s(r,Ω(x))

without extensive Monte-Carlo simulations. According to the results on AND-OR

tree analysis in [32] and [33], we have the following lemma.

Lemma 2. Let α be the convergent value of the following iteration:

yl = δ(1− β(1− yl−1)), (4.12)

where β(x) = Ω′(x)
Ω′(1)

and δ(x) = eµr(x−1) with µ = Ω′(1) and y0 = 1. Then s(r,Ω(x)) =

1− α.

Proof. Given the proof in [33], this result is staightfoward.

It has been shown in [33] that the sequence {yl} is convergent with respect to the

number of decoding iterations l. Note that the AND-OR tree analysis is also based

on the assumption that k → ∞. However, in our simulations, it is shown that the

recovery probability obtained by the AND-OR tree analysis accurately matches the

recovery probability obtained by the belief-propagation (BP) decoder for finite but

large enough k.
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Remark 1

Since s(r,Ω(x)) does not have a closed-form expression and can only be evaluated

numerically as in (4.12), in order to compute the integral in (4.10), we adopt the

Riemann sum to approximate the integral. Specifically, we first limit the range of r

to [0, R] such that Pr(r > R) is negligible, and then partition the range of [0, R] into

N equal intervals of length ∆r. Let pi = h(r̂i)∆r for i = 1, · · · , N , where r̂i is the

mid-point of interval i. After determining pi’s, we normalize them and obtain the

weight wi = pi/
∑

i pi, i = 1, · · · , N.

Now (4.10) can be rewritten as

ĝ(Ω(x)) =

N
∑

i=1

wi

(

U(r̂i)− S(r̂i,Ω(x))

)

, (4.13)

where the upper-bound value of U(r̂i)’s can be determined beforehand. Subsequently,

(4.11) is recast as:

min
Ω(x)

ĝ(Ω(x)) (4.14)

s.t.

D
∑

i=1

Ωi = 1,Ωi ≥ 0, i = 1, · · · , D.

It is easy to see that s(r̂i,Ω(x)) is a nonlinear function over Ωi’s since δ(x) = eµr(x−1)

in (4.12). The problem (4.14) is thus a constrained nonlinear optimization problem

and generally non-convex, where the sequential quadratic programming (SQP) tech-

nique [34] can be applied to find a locally optimal solution. The numerical results in

Section C show that a significant performance improvement can be achieved over the

conventional LT codes even with the locally optimal solutions.

Remark 2

In the case that it is difficult to find the exact probability distribution of r, we could

make the following simplifications. Suppose that the channel life span is N1, and
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the number of received bits N2 follows a binomial distribution given N1. Then we

have Pr{N2 = n|N1} =
(

N1

n

)

(1 − ǫ)nǫN1−n, where the ǫ is the erasure probability.

When N1 is large, the binomial distribution can be approximated as a Gaussian

distribution [35]: N (N1(1 − ǫ), N1(1 − ǫ)ǫ). Therefore, N2 falls out of the region

[N1(1− ǫ)− 3
√

N1(1− ǫ)ǫ, N1(1− ǫ) + 3
√

N1(1− ǫ)ǫ] with a very small probability.

In addition, when N1 is large, we have
√

N1(1− ǫ)ǫ ≪ N1(1− ǫ), which implies that

the number of received bits concentrates around the value N1(1 − ǫ). Therefore, we

could approximate the number of received bits as N2 = (1 − ǫ)N1; and consequently

the distribution of r = N1(1 − ǫ)/k can be easily derived from the distribution of

N1 by scaling. In addition, although r is just of rational values since the number of

received bits and the message length k are both integers, when k is large, we could

approximately treat r as a continuous random variable.

3. Linearly Mixed Degree Distributions

Since exactly solving (4.14) involves nonlinear optimization, which could be compli-

cated, we now seek a simple heuristic approach that can exploit the key feature of the

dying channel, which is the randomness of the coding overhead r. Since different re-

gions of r lead to different optimal degree distributions that optimize the conditional

recovery probability, we propose the following simple approach to linearly mix three

basic probability-weighted degree distributions out of three non-overlapping regions

that divide the domain of r.

Let w1 = Pr{0 ≤ r < log 2}, w2 = Pr{log 2 ≤ r < 1}, and w3 = Pr{r ≥ 1}.

Correspondingly, we consider three degree distributions Ω(1)(x) = x, Ω(2)(x) = x2,

and Ω(3) being the soliton distribution. Then we linearly combine Ω(1)(x), Ω(2)(x),
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and Ω(3)(x) with weight vector w = (w1, w2, w3), i.e.,

ΩL(x) =

3
∑

i=1

wiΩ
(i)(x). (4.15)

Note that when 3/4 log 3 < r < 1, the optimal degree distribution is not Ω(x) =

x2 but in a complicated form as given in (4.6). However, as shown in [27], the

conditional recovery probability s(Ω(x), r) with Ω(x) = x2 is at most 20% smaller

than the corresponding upper bound in the region 3/4 log 3 < r < 1. Hence, for the

sake of simplicity, we use Ω(x) = x2 as the degree distribution for the whole region

log 2 ≤ r < 1.

Intuitively, by using the corresponding probability as weight, we assign a larger

weight to the degree distribution Ω(i)(x) that is close to the optimal one. Conse-

quently, we can take advantage of the knowledge over the statistics of the DBEC.

This method does not require solving any optimization problem and hence enjoys a

high simplicity. Although this approach is heuristic, the numerical results in Sec-

tion C show that it could achieve a significant performance improvement over the

conventional LT codes.

C. Simulation Results

In the simulation, we evaluate the average recovery probabilities for rateless codes

with the optimized degree distribution Ω(x)∗ obtained by solving (4.14) via SQP

(labeled as “Optimized Ω∗(x)”), the linearly mixed degree distribution ΩL(x) obtained

by (4.15) (labeled as “Linearly mixed ΩL(x)”), and the robust soliton distribution

(i.e., the conventional LT codes, labeled as “LT codes” ). For each case, we simulate

the average recovery probabilities by using the AND-OR tree analysis and the BP

decoder, respectively.
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We start with the case where the channel life span N1 follows an exponential

distribution with a mean value of 1×104 and the channel erasure probability ǫ is 0.2.

Since the life span of the electrical devices typically follows the exponential distribu-

tion, the exponential life span of DBEC models the scenario where the channel death

is caused by the device failures. First, we present the average recovery probabilities

η(Ω(x)) for the rateless codes with Ω∗(x)’s and ΩL(x)’s for different k’s over 200

channel realizations. As shown in Fig. 11, the average recovery probabilities given

by the AND-OR analysis and the BP decoder match very well, which shows that our

previous analysis, which is based on the assumption of asymptotically large k, is valid.

Second, the performance of the rateless codes with Ω∗(x) and ΩL(x) are significantly

better than that of the conventional LT codes. As k increases, the performance gain

becomes more and more significant. In addition, the average recovery probabilities

with Ω∗(x) and ΩL(x) are close to the upper bound, which is obtained by non-causally

knowing the received coding overhead r. At last, we plot the conditional recovery

probabilities s(r,Ω∗(x)) in Fig. 12 over different message length k’s. In addition,

the optimal Ω∗(x)’s are reported in Table I. As we see, when k = 1 × 103, we have

Pr{r ≥ 1} = 0.8825. Thus, s(r,Ω∗(x)) is very close to U(r) for r ≥ 1 and Ω∗(x) is

similar to the soliton distribution, which is the optimal degree distribution for r ≥ 1.

On the other hand, when k = 1.8 × 104, Ω∗(x) changes such that the conditional

recovery probability s(r,Ω∗(x)) is very close to U(r) in the region 0 ≤ r ≤ log 2, since

Pr{0 ≤ r ≤ log 2} = 0.7883. From the above results, we see that the optimal degree

distribution of the rateless codes has been indeed tuned to the statistics of the DBEC.

In addition, we also examine the case where the channel life span follows a

truncated Gaussian distribution, which models the scenario where the channel death

is caused by a random attack. Note that we restrict the channel life span to be

nonnegative integers and hence it only approximately follows a truncated and quan-
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tized Gaussian distribution. We assume the channel life span N1 ∼ N (µ, σ2) with

µ = 1 × 104, σ = 4 × 103. We also plot the average recovery probabilities for the

conventional LT codes and the rateless codes with Ω∗(x) and ΩL(x), respectively. As

we see from Fig. 13, significant performance gains are achieved over the conventional

LT codes. In addition, the performances with Ω∗(x) and ΩL(x) are both close to the

upper bound. The Ω∗(x)’s with different k’s are reported in Table II and the cor-

responding s(r,Ω∗(x)) is plotted in Fig. 14. The results are similar to the case of

exponentially distributed channel life span.

D. Summary

In this chapter, a practical code was proposed to deliver a large trunk of data over the

dying binary erasure channel. The rateless coding scheme was adopted and the degree

distribution Ω(x) was optimized to maximize the average recovery probability given

the statistics of the DBEC. We first defined the objective function as the gap between

the average recovery probability upper bound and the average recovery probability

induced by a particular degree distribution Ω(x). Then the optimal degree distribu-

tion was sought by minimizing the objective function. An efficient heuristic approach

was also proposed to reduce the implementation complexity by linearly mixing three

basic degree distributions. Simulation results were presented to show that we can

achieve a significant performance gain over the conventional LT codes in terms of the

average recovery probability.
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Table I.: Ω(x)∗ for different message length k over exponentially distributed channel life
span

Ω∗(x)

k = 1× 103 0.0412x+ 0.4937x2 + 0.1610x3 + 0.0784x4 + 0.0457x5

+0.0297x6 + 0.0208x7 + 0.0157x8 + 0.0128x9 + 0.0108x10 + 0.0096x11

+0.0088x12 + 0.0084x13 + 0.0083x14 + 0.0083x15 + 0.0085x16 + 0.0089x17

+0.0093x18 + 0.0098x19 + 0.0103x20

k = 2× 103 0.1177x+ 0.4050x2 + 0.4773x3

k = 6× 103 0.3727x+ 0.6273x2

k = 1.0× 104 0.6596x+ 0.2343x2 + 0.0542x3 + 0.0518x4

k = 1.8× 104 0.6582x+ 0.3418x2

Table II.: Ω(x)∗ for different message length k over Gaussian distributed channel life span

Ω∗(x)

k = 2× 103 0.032x+ 0.4471x2 + 0.2738x3 + 0.1111x4 + 0.0028x5

0.0728x6 + 0.0538x7 + 0.2738x3 + 0.0002x8

k = 6× 103 0.06x+ 0.8323x2 + 0.0577x5 + 0.0472x6

k = 1.0× 104 0.2204x+ 0.7796x2

k = 1.8× 104 0.7838x+ 0.2087x2 + 0.0043x6 + 0.0032x7
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CHAPTER V

CONCLUSION

In this dissertation, we proposed the dying channel and studied its outage probabil-

ity. In Chapter II, we started with the single dying channel. We first introduced the

system model and defined the outage probability as performance measure. Then we

investigated the outage probability by assuming the uniform power allocation and

fixed coding length. Lower and upper bounds for the outage probability were ob-

tained. For high SNR regime, the relation between the outage probability and the

multiplexing gain was discussed, where it was shown that the outage probability will

converged to a non-zero value if the multiplexing gain is smaller than 1/K. For

low and moderate SNR regimes, although no close-form formula was found for the

outage probability, Gaussian approximation has been applied to obtain the approx-

imated outage probability. Furthermore, we considered the optimization over the

coding length and the power vector to minimize the outage probability. In Chap-

ter III, we extended the results from single dying channel case to the parallel dying

channel case. In this chapter, we considered the independent random attack case

and dependent random attack case respectively, where the corresponding numbers of

survived blocks on each sub-channel were modeled as independent or m-dependent

random sequence. The overall outage probabilities for these two cases were exam-

ined and analysis showed that the outage probability can go to zero as the number

of sub-channels increases, as long as the rate per unit cost is smaller than a given

threshold. In addition, the outage exponents for these two cases were studied to

reveal how fast the outage probability goes to zero as the number of sub-channel

increases. After studying the information-theoretical aspects for the dying channel,

we then considered the practical code design for the dying channel in Chapter IV.
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Specifically, we consider the LT codes for the dying binary erasure channel. We first

reviewed the upper bound of the recovery probability for each bit to be decodable.

Then we redesigned the degree distribution of the LT codes such that the resulting

average recovery probability is as close to the upper bound as possible. A simple but

effective suboptimal degree distribution was also presented.
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APPENDIX A

PROOF OF THEOREM 1

1. According to (2.7), for Rayleigh fading, let R = r logP

P

[

j
∑

i=1

log(1 + αiP ) < KR

]

≤ 1− exp
(

−j(eKR/j−logP − 1/P )
)

= 1− exp
(

−j(e(Kr/j−1) logP − 1/P )
)

As P → ∞, when r < j/K, P
[

∑j
i=1 log(1 + αiP ) < KR

]

→ 0 since the expo-

nent of the exponential function in the upper bound goes to 0. As pout can be

written as:

pout = w0 +

K−1
∑

j=1

P

[

j
∑

i=1

log(1 + αiP ) ≤ KR

]

wj

+P

[

K
∑

i=1

log(1 + αiP ) ≤ KR

]

w∗
K ,

if r < 1/K, all terms except w0 go to 0; and hence pout goes to w0.

2. Similarly, according to (2.5), we have

P

[

j
∑

i=1

log(1 + αiP ) < KR

]

≥
[

1− exp
(

−eKR/j−logP + 1/P
)]j

,

=
[

1− exp
(

−e(Kr/j−1) logP + 1/P
)]j

.

As P → ∞, when r > j/K, P
[

∑j
i=1 log(1 + αiP ) < KR

]

→ 1 since the expo-

nent of the exponential function goes to −∞. As pout can be written as:

pout = w0 +

K−1
∑

j=1

P

[

j
∑

i=1

log2(1 + αiP ) ≤ KR

]

wj

+P

[

K
∑

i=1

log2(1 + αiP ) ≤ KR

]

w∗
K ,
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if r > 1, P
[

∑j
i=1 log2(1 + αiP ) < KR

]

goes to 1 for j = 1 · · · , K. Thus, pout

goes to 1.

3. If 1/K ≤ r ≤ 1, w0 < pout < 1.
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APPENDIX B

PROOF OF THEOREM 2

Let us consider minimizing the outage probability given by (2.22). When K = 1, the

proof is trivial.

When K = 2, the outage probability is

pout(2) = w0 + P [log(1 + α1P1) < 2R]w1 + P [log(1 + α1P1) + log(1 + α2P2) < 2R]w∗
2.

As we see from the above equation, if P1 < P2, we have P [log(1 + α1P2) < 2R] <

P [log(1 + α1P1) < 2R]. Hence, we can achieve a smaller pout(2) by swapping P1 and

P2, since the last term in pout(2) is not affected by such a swapping while the second

term is decreased.

When K ≥ 3, for any j > i, (i, j ∈ {1, · · · , K}), if Pi < Pj, by swapping Pi

and Pj , all the terms containing both Pi and Pj , i.e., all the probability terms in the

form of P
[

· · ·+ log(1 + αiPi)+ · · ·+ log(1 + αjPj) + · · · < KR
]

will not be affected.

However, the probability terms containing Pi but not Pj can be decreased by such a

swapping. Thus, we could achieve a smaller outage probability in total.

Therefore, the optimal power allocation profile over i.i.d. fading is always non-

increasing, i.e., P1 ≥ P2 ≥ · · · ≥ PK ≥ 0.
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APPENDIX C

PROOF OF THEOREM 3

When the coding length K = 1, the outage probability is

pout(1) = P [log(1 + αP ) < R]P [T > 1] + w0.

When we choose any other arbitrary values for K, i.e., K = M and M 6= 1, according

to (2.22), the outage probability is

pout(M) = P

[

1

M

M
∑

i=1

log(1 + αPi) < R

]

P [T > M ] + w0

+

M−1
∑

i=1

P

[

1

M

i
∑

l=1

log(1 + αPl) < R

]

wi.

Due to the concavity of the log function, we have 1
M

∑M
i=1 log(1+αPi) ≤ log(1+αP ).

Hence,

P

[

1

M

M
∑

l=1

log(1 + αPl) < R

]

≥ P [log(1 + αP ) < R] . (C.1)

Moreover, it is obvious that summing over only a portion of the M blocks yields an

even smaller value, i.e., 1
M

∑i
l=1 log(1 + αPl) ≤ log(1 + αP ), with 1 ≤ i ≤ M − 1. If

∃Pj > 0, for i < j ≤ M , the strong inequality holds. Therefore, we have

P

[

1

M

i
∑

l=1

log(1 + αPl) < R

]

≥ P [log(1 + αP ) < R] . (C.2)

Noting that
∑M−1

i=1 wi = P [1 < T ≤ M ], and considering (C.1) and (C.2), the follow-

ing inequality can be derived for (C.1):

pout(M) ≥ w0 + P [log(1 + αP ) < R] (P [T > M ] + P [1 < T ≤ M ]) = pout(1). (C.3)
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From (C.3), we see that pout(1) has the smallest outage probability when fading gains

are the same, which means that the optimal coding length is K = 1 with P1 = P .
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APPENDIX D

CONVEXITY OF THE OPTIMIZATION PROBLEM

We first check the Hessian matrix of the objective function in terms of Pi.

∇2pout = ∇2 c1
P1

+ · · ·+∇2 cK
∏K

i=1 Pi

. (D.1)

The jth term is:

∇2

(

cj
∏j

i=1 Pi

)

= cj





















2

P 3
1

∏j
i=2 Pi

1

P 2
1 P

2
2

∏j
i=3 Pi

· · · 1

P 2
1 P

2
j

∏j−1
i=2 Pi

0

1

P 2
1 P

2
2

∏j
i=3 Pi

2

P1P 3
2

∏j
i=3 Pi

· · · 1

P 2
2 P

2
j

∏j−1
i=1,i6=2 Pi

0

· · · · · · . . . · · ·

0 0





















(D.2)

Let z ∈ R
K , then

zT∇2

(

cj
∏j

i=1 Pi

)

z =
1

∏j
i=1 Pi

zTP (j)(P (j))Tz+ zTMz ≥ 0,

where P (j) = (1/P1, 1/P2, · · · , 1/Pj, 0, · · · , 0)T , andM = diag
(

1
P 2
1
, 1
P 2
2
, · · · , 1

P 2
j

, 0, · · · , 0
)

.

Therefore, (D.1) as the summation of all the K terms is positive semi-definite. Hence

pout is a convex function in terms of PK . In addition, PK lies in a convex cone as

shown in Theorem. 2. Hence the problem is a convex problem.
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APPENDIX E

PROOF OF PROPOSITION 1

1. When 0 ≤ z < 1/2, it is easy to see that r = − log(1 − z) is a monotonically

increasing function of z.

2. When 1/2 ≤ z ≤ 2/3, dr
dz

= 2z
1−z

+ 2 log(1 − z) and d2r
dz2

= −2z
(1−z)2

< 0. Since

dr
dz

∣

∣

z=2/3
> 0, dr

dz
> 0 for 1/2 ≤ z ≤ 2/3. Therefore, r = − log(1−z)

2z
is a monotoni-

cally increasing function over 1/2 ≤ z ≤ 2/3.

3. When 2/3 < z < 1, if m−1
m

< z1 < z2 <
m

m+1
, it is easy to see that r(z1) < r(z2).

If m−1
m

< z1 <
m

m+1
< z2, we have

r(z2)− r(z1) =
1

m(m+ 1)
+

1

m+ 1

∑

i≥m+1

zi−m
2

i
− 1

m

∑

i≥m

zi−m+1
1

i

>
1

m(m+ 1)
+

1

(m+ 1)m

(

∑

i≥m+1

m( m
m+1

)i−m

i

−
∑

i≥m

(m+ 1)( m
m+1

)i−m+1

i

)

= 0

Therefore, r(z) is also a monotonically increasing function over z ∈ (2/3, 1).

As a result, r(z) is a monotonically increasing function over z ∈ [0, 1).
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