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ABSTRACT

Reconstruction of 3D Neuronal Structures from Densely Packed Electron

Microscopy Data Stacks. (August 2011)

Huei-Fang Yang, B.Ed., National Taiwan Normal University, Taiwan;

M.Ed., National Taiwan Normal University, Taiwan

Chair of Advisory Committee: Dr. Yoonsuck Choe

The goal of fully decoding how the brain works requires a detailed wiring diagram

of the brain network that reveals the complete connectivity matrix. Recent advances

in high-throughput 3D electron microscopy (EM) image acquisition techniques have

made it possible to obtain high-resolution 3D imaging data that allows researchers

to follow axons and dendrites and to identify pre-synaptic and post-synaptic sites,

enabling the reconstruction of detailed neural circuits of the nervous system at the

level of synapses. However, these massive data sets pose unique challenges to struc-

tural reconstruction because the inevitable staining noise, incomplete boundaries,

and inhomogeneous staining intensities increase difficulty of 3D reconstruction and

visualization.

In this dissertation, a new set of algorithms are provided for reconstruction of

neuronal morphology from stacks of serial EM images. These algorithms include (1)

segmentation algorithms for obtaining the full geometry of neural circuits, (2) inter-

active segmentation tools for manual correction of erroneous segmentations, and (3)

a validation method for obtaining a topologically correct segmentation when a set

of segmentation alternatives are available. Experimental results obtained by using

EM images containing densely packed cells demonstrate that (1) the proposed seg-

mentation methods can successfully reconstruct full anatomical structures from EM
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images, (2) the editing tools provide a way for the user to easily and quickly refine

incorrect segmentations, (3) and the validation method is effective in combining mul-

tiple segmentation results. The algorithms presented in this dissertation are expected

to contribute to the reconstruction of the connectome and to open new directions in

the development of reconstruction methods.
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CHAPTER I

INTRODUCTION

Resolving fundamental questions of how the brain works is undoubtedly one of the

greatest challenges in neuroscience research. To overcome this challenge, neuroscien-

tists are dedicated to the study of the brain function for decades. However, the goal

of fully decoding how the brain works will not be accomplished without a detailed

wiring diagram of the brain network that reveals the complete connectivity matrix.

A wiring diagram is necessary and crucial for interpreting and understanding neu-

ral computations [1]. Recently, because of the availability of high-resolution imaging

data, reconstruction of neural circuits of the brain has been receiving significant at-

tention, and many methods for such a task are currently under development. This

dissertation aims to provide computational solutions to the task of reconstructing

detailed neural connectivity from large-scale and high-resolution data sets.

A. Motivation: Connectomics

The human brain is a complex biological structure, which consists of about 100 billion

neurons and 100 trillion synaptic connections and thus forms a highly complex and

intertwined network [2]. It is widely believed that the functioning of the brain is

highly correlated to its anatomical structures and the dynamics of the network. To

better understand how the interconnections of neurons account for the function and

dysfunction of the brain, researchers have put in a great amount of effort to map

out the full neural circuits of the nervous system. Indeed, if a complete and detailed

wiring diagram of the nervous system at the level of synapses, i.e. the connectome [3–

This dissertation follows the style of IEEE Transactions on Medical Imaging.



2

5], is reconstructed, it will provide valuable insight to understand how the electrical

signals flow within the brain and how the activities of the brain govern behaviors

and will also greatly help explain the course of development of brain disorders and

diseases [6–9].

Accomplishing the goal of obtaining a physical map of neural circuits requires

data acquisition techniques that are capable of imaging tissues at sufficiently high

resolution. In the past few years, advances in high-throughput three-dimensional

(3D) image acquisition techniques [1, 10–17] have made it possible to obtain high-

resolution imaging data, which brings promising prospects for the reconstruction of

the connectome.

The oldest imaging technique that provides sufficient resolution to follow each

neurite can be traced back to light microscopy (LM), which offers a reconstruction of

sparsely labeled neurites [12]. This approach may not reveal each neuron’s character-

ization and functionality as well as its connectivity with others. Knife-Edge Scanning

Microscopy (KESM) [18, 14, 19] is a high-throughput data acquisition technique that

images large volumes of tissues (1 cm3) at the sub-micrometer scale. In KESM, the

x -y resolution of an image is 0.3−0.6 µm/pixel with a z resolution of 0.5−1 µm/pixel.

The KESM imaging data is important for understanding the complex network of the

entire brain at sub-cellular resolution.

However, to fulfil the goal of reconstructing the connectomes that reveals synap-

tic connections, the tissue has to be imaged at a much higher resolution. Given such

high imaging resolution, electron microscopy (EM) has been offering 3D imaging data

that enables the reconstruction of neural circuits for the study of neuroanatomy at

nanometerscale for years [20, 21]. A prominent example is that of the entire nervous

system of the nematode Caenorhabditis elegans, a total of 302 neurons and over 7, 000

synaptic connections, which was completely reconstructed from serial section Trans-
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mission Electron Microscopy (ssTEM) imaging data [22]. This is the only connectome

available to date since the seminal work of White et al. back in the mid 1980’s. Over

the past several years, development of various electron microscopy (EM) techniques,

such as ssTEM [11, 20, 21], Serial Block Face Scanning Electron Microscopy (SBF-

SEM) [10], and Automatic Tape-collecting Lathe Ultramicrotome (ATLUM) [23], has

opened new roads for the reconstruction of densely labeled neurites. The EM imaging

approaches provide 3D data at a resolution that allows researchers to follow axons

and dendrites and to identify pre-synaptic and post-synaptic connectivity [1, 12]. For

instance, in SBFSEM, the lateral (x-y) resolution can be as small as 10−20 nm/pixel,

and the sectioning thickness (z resolution) is around 30 nm.

B. The Reconstruction Problem

With the significant progress made in the image acquisition process, EM instruments

are now able to image tissues at a nanometer resolution and thus produce large-scale

data volumes, which require image analysis methods for connectomic reconstruction.

The task of reconstruction is to trace individual neuronal processes to the cell body

and to identify synaptic connections between neurons. Manual tracing could be a

possible solution to reconstruction, but it is impractical. Take an SBFSEM data set

as an example. At a resolution of 10 nm × 10 nm × 50 nm, sectioning a 2003 µm3

sample tissue results in a data set of 1.6 × 1012 voxels [10]. Moreover, enormous

numbers of cells in the EM image stacks are densely packed, which can be seen in

Figure 1, where two EM (ssTEM and SBFSEM) image stacks and their sample images

are shown. Given that it took more than a decade to manually chart the nervous

system of the C. elegans from a data volume containing approximately 8, 000 serial

sections, each of which was cut at 50 nm thickness [22], manual reconstruction of the
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(a) An ssTEM image (b) An ssTEM image stack

(c) An SBFSEM image (d) An SBFSEM image stack

Fig. 1. Sample EM images and image stacks. (a) A sample ssTEM image having a size

of 512× 512 from a data set of Drosophila first instar larva ventral nerve cord

(VNC). The resolution is 4× 4× 50 nm/pixel. (b) A publicly available ssTEM

data set provided by Cardona et al. [24, 25]. (c) A sample SBFSEM image

having a size of 631 × 539 from a data set of larval zebrafish tectum. (b) An

SBFSEM image stack. Note that cells in both the ssTEM and the SBFSEM

images are densely packed.
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sheer volume of data produced by EM techniques appears to be infeasible; therefore,

automated (or semi-automated) and reliable reconstruction algorithms for analysis of

massive EM volumetric data are necessary.

1. Image Segmentation

Reconstruction involves the tracing of each neurite and the identification of the in-

terconnections. In computer vision, this process is known as image segmentation,

partitioning an image into disjoint regions, each of which shares common character-

istics. For EM images, the task of segmentation is to group voxels into different sets

that represent distinct neurons [26], which is a fundamental step toward a full analysis

of neuronal morphological models. Such a task poses unique challenges because the

inevitable staining noise, incomplete boundaries, and inhomogeneous staining inten-

sities can increase difficulty of segmentation and subsequent 3D reconstruction and

visualization.

To overcome the challenges of analyzing EM images, numerous segmentation

approaches have been proposed in the literature. The process of delineating neuron

boundaries (membranes) in the EM images can be thought of as boundary detec-

tion. Methods to detect neuronal membranes is to extract features that represent

the derived membrane information from images and are capable of distinguishing

membranes from others. These features include Radon-like features [27] or features

obtained by Hessian-based filters [28]. Other approaches include the use of machine

learning, where classifiers are trained, such as convolutional networks [29–32], ran-

dom forests [33, 34], artificial neural networks [35, 28], Adaboost [36], and support

vector machine (SVM) [37], to detect neuronal membranes in the EM images. One

potential limitation is that these methods require sufficient amount of data along

with their corresponding ground truth segmentation for training the classifier to ac-
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curately perform the labeling task. That is, creation of labeled data sets can be very

laborious. Semi-automated methods that trace neuronal contours through successive

cross-sections to build 3D anatomical structures also gained much attention [26, 38–

46, 28]. In this category, active contours [41], level-set formulation [38, 39, 47, 48],

or watersheds [49, 50] have been used to perform the 2D segmentation. The segmen-

tation work presented in this dissertation is closely related to the semi-automated

methods, but it can be easily generalized into a 3D segmentation method.

2. User Correction and Validation

Automated segmentation algorithms for reconstructing the circuitry often involve er-

rors mainly because EM data exhibit high variation in neuronal shapes and intensities,

and most of the automated methods are unable to capture all these variations. Those

errors require manual correction by using interactive editing software.

Whereas much attempt has been made to design segmentation algorithms, rela-

tively little attention has been given to the development of editing tools [51]. Hence,

editing software for segmented EM imaging data remains in its infancy [52], and more

effort in this line is needed.

In addition, it is well known that human annotations are intrinsically subjective

and biased, and the results of manual correction may vary to some extent. A valida-

tion method ensuring that the reconstruction is topologically correct when integrating

a set of alternative segmentations is also required [52].

C. Approach

To tackle the unique challenges posed by the massive and complex EM image stacks

and to achieve the ultimate goal of reconstruction of neural circuits, a unified frame-
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work that includes segmentation algorithms, interactive editing tools, and validation

methods adequate for such EM data sets is highly demanded. Thus the goal of this

dissertation is three fold:

• Develop robust segmentation algorithms for the 3D reconstruction of neu-

ronal processes from stacks of serial EM images in which neurons are tightly

packed. These include segmentation methods in both 2D and 3D. The first

method segments 2D neuronal contours in the x-y plane by minimizing an en-

ergy function into which the segmentation results from adjacent slices are in-

corporated and then tracks the extracted contours through the cross-sectional

plane. Geometrical information of adjacent slices serves as a shape prior and

constrains the segmentation process while segmenting one slice. The second

method extends the 2D method into a full 3D algorithm by extracting the 3D

shape prior directly from the data itself by using the locally symmetric prop-

erty exhibited in the anatomical structures. These methods provide promising

solutions to the reconstruction of neural circuits from EM image stacks.

• Develop interactive editing tools that allow the user to quickly correct the

erroneous segmentations produced by automated segmentation algorithms in or-

der to obtain morphologically accurate reconstructions. The interactive editing

framework provides two stages of editing. First, it gives the user a set of alter-

native segmentations from which the user can choose the most acceptable one,

aiming to minimize the amount of time for manual interaction. Second, similar

to the 2D segmentation approach in the aforementioned tracking method, the

editing task is formulated as an energy minimization problem. The algorithm

takes a number of user inputs, together with the incorrect segmentation and

image data constraints, and computes a new segmentation accordingly. These
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interactive editing tools provide an efficient way to obtain correct segmentations.

• Develop validation methods that estimate the true, unknown segmentation

of an EM image when a collection of alternative segmentations, either anno-

tated by humans or produced by segmentation algorithms, are available. This

algorithm aims to obtain a topologically correct segmentation whose topology

is capable of representing that of the true, unknown segmentation. To this end,

it iteratively modifies the topology of the estimated segmentation by means of

minimizing the topological disagreements between the estimated segmentation

and the provided set of segmentations. This segmentation validation method

provides a way to obtain an estimated segmentation that is topologically equiv-

alent and geometrically similar to the true, unknown labeling.

D. Organization of the Dissertation

In this chapter, the motivation for this dissertation work and an overview of the

approaches taken in this work were provided. The remainder of the dissertation is

organized into 6 chapters.

Chapter II provides a brief background of segmentation algorithms, particularly

focusing on Markov random fields and graph cuts, which form a basis of the segmen-

tation algorithms presented in the subsequent chapters. This chapter also provides a

review of the approaches for segmentation evaluation that measures the performance

of segmentation algorithms and a brief review of surface reconstruction methods that

create 3D models from a stack of segmented 2D contours.

In Chapter III, new segmentation methods for segmenting neuronal processes

from the stacks of serial EM images are presented. These methods utilize geometrical

information of adjacent images and incorporate it into an energy function. Such
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geometrical information serves as a constraint in the segmentation process during the

minimization of the energy function.

100% accuracy may be hard to achieve for automated segmentation methods

because EM images have high variation in neuronal shapes and show low contrast in

appearance. These errors require manual correction. Chapter IV presents interac-

tive editing tools that allow the user to refine incorrect segmentations produced by

automated segmentation algorithms.

Chapter V presents a validation method that aims to obtain a segmentation that

is topologically equivalent and geometrically similar to the true, unknown segmenta-

tion given a set of alternative segmentations.

Chapter VI presents the contributions of this dissertation, discusses the potential

limitations of the developed methods, and points out future research directions.

Finally, Chapter VII concludes this dissertation.
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CHAPTER II

BACKGROUND ON IMAGE SEGMENTATION, SEGMENTATION

VALIDATION, AND SURFACE RECONSTRUCTION

With the need of image segmentation in many domains, a large number of segmenta-

tion algorithms have been developed in the past decades. Providing a thorough and

extensive survey on all segmentation methods is beyond the scope of this dissertation

(see [53, 54] for an extensive overview). This chapter, instead, gives a brief back-

ground on state-of-the-art image segmentation algorithms, with a particular focus on

the use of Markov random fields (MRFs) and graph cuts in segmentation problems.

Aside from providing background on segmentation algorithms, this chapter also

reviews evaluation methods that have been generally employed to assess the quality

of results produced by segmentation algorithms in the literature. Particular emphasis

is placed on the use of evaluation methods that can estimate the ground truth for an

image when a set of segmentations of that image are available.

Last, this chapter provides a brief review of surface reconstruction methods that

create 3D models from a stack of segmented 2D contours in the parallel plane.

A. Image Segmentation

Image segmentation, that is the partitioning an image into disjoint regions that share

common characteristics, is a fundamental step in extracting meaningful (semantic)

objects for a higher-level analysis in diverse applications. Prior work on image segmen-

tation algorithms by means of energy minimization can be categorized into continuous

and discrete methods based on the spatial domains of the image.

In the continuous domain, parametric active contour models or ”snakes” pro-

posed by Kass et al. [55] deform a spline by iteratively minimizing an energy function
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Fig. 2. The level set method. Level set methods embed the interface as the zero

level set of the signed distance function φ and can handle topological changes,

overcoming the limitations of the parametric curve representation.

consisting of internal and external energies. The internal forces are defined over the

curvature and contour length, and the external forces are defined based on the im-

age data (e.g. gradient vectors of image intensity [56]). These two forces pull the

deformed curve towards the object boundary. However, the parametric models have

limitations: they can only represent topologically simple objects, cannot deal with

topological changes, and are sensitive to the initial conditions.

The level set method introduced by Osher and Sethian [57], which embeds the

interface as the zero level set of the signed distance function, overcomes the limitations

of the parametric curve representation. The evolution of the level set function follows

the curvature-dependent speed whose equations of motion resemble Hamilton-Jacobi

equations. As a result, the level set method can handle topological changes in any

dimension, as shown in Figure 2. Because of this property of level set methods,

numerous active contour models based on level sets have been developed. According
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to the criterion used to guide the curve evolution, they can be divided into two classes:

edge-based models [58, 59] and region-based models [60–62]. Edge-based models

move the evolving curve towards object boundaries using edge information while

region-based models guide the curve evolution based on region intensities. Active

contour models based on level sets have several advantages over parametric active

contours. However, the level set method is known for its computational demand, and

the solution may converge into local minima.

In discrete space, graph-based segmentation represents an image as a graph with

graph nodes denoting image pixels or feature points and edges being connections

between nodes. In such a setting, image segmentation turns into a graph partition

problem or a labeling problem, which is elaborated in the next section. Important

tasks in the graph partition include determination of the graph partition cost func-

tion and development of efficient optimization algorithms. To this end, the normalized

cut (Ncut) algorithm introduced by Shi and Malik [63] uses both the total similar-

ity within groups and the total dissimilarity between different groups as a partition

criterion, which is efficiently optimized by solving a generalized eigenvalue problem.

One drawback of the normalized cut is that segmenting an image may require huge

memory space for storing the matrix used to solve the eigenvalue problem.

Graph-based image segmentation can also incorporate user interaction during the

segmentation process. The user interaction has been proved to significantly facilitate

in obtaining satisfactory segmentation results. The interactive Random Walker (RW)

algorithm proposed by Grady [64] is one example that performs the segmentation

upon the user pre-labeled nodes. It determines the probability a random walker

starting from an unlabeled pixel reaches to one of the user-labeled pixels, which is

equivalent to the solution to the combinatorial Dirichlet problem and is obtained by

solving a system of linear equations. Assigning each pixel to the label that is of the
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greatest probability gives the final segmentation.

Another interactive segmentation method utilizing user specified pixels to deter-

mine the object properties is the graph cuts [65, 66]. The segmentation is formulated

as an energy minimization problem built upon the random fields, and the solution to

the energy function is obtained by the graph cuts techniques. The detailed discussions

on the random fields and graph cuts are provided in the subsequent sections.

1. Markov Random Field Modeling

Since its first introduction by German and German [67] in 1984, Markov Random

fields (MRFs) have been used to formulate many vision problems, which can be

posed as lableing problems, such as image segmentation [68]. The MRF provides

a convenient and consistent framework that uses contextual constraints based on

piecewise constancy, which is essential in the image analysis and understanding [68].

a. The Labeling Problem

Image segmentation is considered as a labeling problem that involves assigning a label

from a set of labels to each image pixel [68]. More specifically, given a set of sites

P = {1, 2, ...,M} and a set of labels L = {l1, l2, ..., lK}, the labeling problem is to

assign a label fp from L to each site p ∈ P . A possible labeling f = {f1, f2, ..., fm} is

a mapping from P to L, that is,

f : P → L , (2.1)

as shown in Figure 3. According to the random fields theory, the set of sites P is

associated with a random field F = {F1, ..., Fm}, where each random variable Fp takes

on a value fp from the set of labels L. The joint event {F1 = f1, F2 = f2, ..., FM = fM}

is called a configuration of F , abbreviated as F = f . Given that each site has the
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Fig. 3. Illustration of labeling. A labeling f is a mapping from a set of sites P to the

set of labels L. Adapted from [68].

same label set L, the space of all possible labelings, that is the configuration space,

is

F = L × L× · · · × L︸ ︷︷ ︸
m times

= Lm . (2.2)

Therefore, the goal of image segmentation is to find an optimal labeling f ∗, equivalent

to finding the maximum a posteriori (MAP) estimate of the underlying field given

the observed image data D. This is

f ∗ = argmax
f∈F

Pr (f | D) . (2.3)

b. Markov Random Fields

According to the Bayes’ rule, the posterior probability of Equation 2.3 is given by

Pr (f | D) ∝ Pr (D | f) Pr (f) , (2.4)
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where Pr (D | f) is the likelihood of D on f , and Pr (f) is the prior probability of a

particular labeling f , being modeled as a Markov random field (MRF).

An MRF satisfies the following two properties with respect to the neighborhood

system N = {Np | p ∈ P}:

Positivity : Pr (f) > 0, ∀f ∈ F , (2.5)

Markovianity : Pr
(
fp | fP−{p}

)
= Pr

(
fp | fNp

)
, ∀p ∈ P , (2.6)

where P − {p} is the set difference, fP−{p} is the set of labels of sites in P − {p}, Np

is the neighboring sites of p, and fNp denotes the set of labels of the neighboring sites

of p.

Furthermore, according to Hammersley-Clifford theorem [69], a random field

with Markov property obeys a Gibbs distribution, which takes the following form:

Pr (f) =
1

Z
exp (−E (f)) , (2.7)

where Z is a normalizing constant called the partition function that is defined as

Z =
∑
f∈F

exp (−E (f)) , (2.8)

and E (f) is the Gibbs energy function, which is

E (f) =
∑
c∈C

Vc (fc) , (2.9)

where C is the set of cliques, c is a clique defined as a subset of sites in P , and Vc (fc)

is a clique potential.

Taking a log likelihood of Equation 2.4, the MAP estimate of Pr (f | D) is equiv-
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alent to minimizing the following energy function:

− log Pr (f | D) = E (f | D) =
∑
p∈P

Vp (fp | D) +
∑
p∈P

∑
q∈Np

Vpq (fp, fq | D) , (2.10)

where Vp (fp | D) and Vpq (fp, fq | D) are the unary and piecewise clique potentials,

respectively. More specifically, the unary potential Vp (fp | D) measures the cost of

assigning node p a label fp. The piecewise potential Vpq (fp, fq | D) represents the

cost of assigning labels fp and fq to nodes p and q, respectively, which imposes the

spatial smoothness using the Potts model [70].

2. Graph Cuts

Several algorithms have been proposed to minimize the energy function shown in

Equation 2.10: the Iterated Conditional Modes (ICM) [71], the belief propagation

algorithm (BP) [72], the tree-reweighted message passing algorithm (TRW) [73], and

graph cuts [65, 66]. This section focuses on the discussion on the graph cut algorithm.

Graph cuts represent an image as a weighted directed graph G = 〈V , E〉 with

a set of vertices (nodes) V representing pixels or image regions and a set of edges

E ⊂ V ×V connecting the nodes. Each edge is associated with a nonnegative weight.

The set V includes the nodes of the set of image pixels P and two additional nodes,

the source s and the sink t. All nodes p ∈ V are linked to the terminals s and t with

weight wsp and wpt, respectively. Node p is also connected to its neighboring nodes

q, based on a specified neighborhood system, with weight wpq. Figure 4(a) shows a

graph construction example for a 3 × 3 image, where each node is connected to its

neighboring nodes by a 4-neighborhood system. Edges between the nodes and the

terminals are called t-links, and edges between a node and its neighboring nodes are

called n-links.
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T

(a) Graph construction

S

T

cut

(b) A cut

Fig. 4. Graph construction and an associated cut. (a) shows the graph construction for

a 3× 3 image. The thickness of lines represents the weighting of edge weights.

The thicker the lines are, the more weight they carry. (b) shows the minimum

cost cut that separates two terminals as well as partitions the remaining nodes

into two disjoint groups, and a segmentation of the image is hence obtained.

Adapted from [65].

A cut Ec ⊂ E , also referred to as an st-cut, is a subset of edges E that separates

terminals in the induced graph G ′ = 〈V , E \ Ec〉. Removing edges in the cut Ec par-

titions the nodes into two disjoint subsets, S and T , such that s ∈ S and t ∈ T , as

illustrated in Figure 4(b). The cost of a cut, denoted as |Ec|, is the sum of costs of

all edges in Ec, that is

|Ec| =
∑

u∈S,v∈T,(u,v)∈E

wuv , (2.11)

where u and v are nodes in the V , and wuv is the weight associated with edge (u, v).

Because a graph represents an image, the partitioning of a graph by a cut corresponds

to a segmentation of the image. Each different cut has an associated cost. Therefore,

image segmentation problem then turns into finding a minimum cost cut that best

partitions the graph. Algorithms to obtain the minimum cost cut via the calculation
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of the maximum flow based on the theorem of Ford and Fulkerson [74–76] are discussed

below.

a. Energy Minimization Using Graph Cuts

Minimizing the energy E (f | D) in Equation 2.10 is difficult because it is a noncon-

vex function. The development of graph cuts provides an efficient way to minimize

this energy function. In order for the graph cuts to minimize it, the energy function

E (f | D) should be in a specialized class such that the minimum cost cut on the con-

structed graph also minimizes the energy. Shown by Kolmogorov and Zabih [70], a

characterization of functions in this class that can be minimized by graph cuts is sub-

modular. Before any further discussion on submodular functions, an introduction to

the regular functions, which have an interesting relation to the submodular functions,

is first presented.

b. Regular Functions and Submodular Functions

Following the definition in [70], a regular function is a function of n binary variables,

denoted as E (x1, ..., xn). In order to define the regularity of arbitrary functions of

binary variables, it requires to define the projections of a function.

Definition 1. Let E (x1, ..., xn) be a function of n binary variables, and let I, J

be a disjoint partition of the set of indices {1, ..., n} : I = {i (1) , ..., i (m)} , J =

{j (1) , ..., j (n−m)}. Let αi(1), ..., αi(m) be binary constants. A projection E ′ =

E
[
xi(1) = αi(1), ..., xi(m) = αi(m)

]
is a function of n−m variables defined by

E ′
(
xj(1), ..., xj(n−m)

)
= E (x1, ..., xn) ,

where xi = αi for i ∈ I, and the variables xi(1), ..., xi(m) are fixed.
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Using the above definition, regular functions are defined as below.

Definition 2.

• All functions of one variable are regular.

• A function E of two variables is called regular if

E (0, 0) + E (1, 1) ≤ E (0, 1) + E (1, 0) .

• A function E of more than two variables is called regular if all projections of E

onto two variables are regular.

The relation between regular functions and submodular functions is established

through the following definition of submodularity of a set function.

Definition 3. Let S be a finite set and g : 2S → R be a real-valued function defined

on the set of all subsets of S. g is called submodular if, for all X ⊂ S and i, j ∈ S−X,

it satisfies

g (X ∪ {j})− g (X) ≥ g (X ∪ {i, j})− g (X ∪ {i}) .

Based on the above definition, submodularity reduces to the definition of regu-

larity; submodular functions are thus the same as regular functions [70].

Submodularity is related to the smoothness property in the labeling problem.

Using the Potts model to impose the spatial smoothness in Vpq (fp, fq | D) in Equa-

tion 2.10 ensures a labeling f is smooth in the homogeneous regions and has different

labels of adjacent pixels at object boundaries. Such an energy function is called

discontinuity preserving. Global minimization of the discontinuity-preserving energy

functions is NP-hard, so researchers focus on the development of efficient approximate

solutions. An efficient algorithm that minimizes such energy functions is the expan-

sion move algorithm proposed by Boykov et al. [74] based on graph cuts. Given a
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(a) Initial labeling (b) α-expansion

Fig. 5. An example of α-expansion. (a) The initial labeling of an image. (b) The

labeling after α-expansion is performed. As can be seen, a large number of

pixels in (b) change their labels to α. Adapted from [74].

labeling f and a label α, a new labeling f ′ is called an α-expansion from f if fα ⊂ f ′α

and f ′l ⊂ fl for any label l 6= α, meaning that a set of pixels change their labels to α,

as illustrated in Figure 5. The algorithm starts from an arbitrary labeling and itera-

tively finds a new labeling when expansion moves are allowed, that is, the energy of

the new labeling is lower than that of the current labeling. If there is no α-expansion

moves, the algorithm terminates, thus giving a labeling with the lowest energy with

respect to expansion moves. The essential step in the expansion algorithm is to find

the optimal α-expansion moves, which can be efficiently obtained by using graph cuts

that utilize the maximum flow and minimum cut algorithm.
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c. Maximum Flow and Minimum Cut

The max-flow min-cut theorem by Ford and Fulkerson [75, 76] states that given a

capacitated network, the maximum flow from the source s to the sink t is equal to

the capacity of the minimum cut. To find a maximum flow in a given directed graph,

the Ford-Fulkerson algorithm repeatedly finds an augmenting path from the source

to the sink and increases the flow by determining the excess flow capacity of this

path. The maximum flow is determined if and only if there is no augmenting paths,

hence obtaining the minimum cost cut that separates the source s and the sink t and

partitions the nodes into two subsets. The time complexity of the Ford-Fulkerson

algorithm is O (|V||E|2).

B. Segmentation Validation

Extensive development of segmentation methods raises the need for performance eval-

uation. Segmentation evaluation, also known as segmentation validation in medical

imaging or biomedical imaging, qualitatively and quantitatively analyzes segmenta-

tion algorithms’ outputs and thus provides a measure of their performance. This

section provides a review on segmentation evaluation.

1. Supervised and Unsupervised Evaluation

Segmentation evaluation can be either subjective or objective. The most common

method of subjective segmentation evaluation is that a human expert visually com-

pares the quality of segmentation results of different segmentation algorithms, which

is a tedious and time-consuming task. Besides, visual comparison also limits the eval-

uation to a small number of segmentation results. Another alternative is objective

evaluation, which can be classified into two categories, unsupervised evaluation and
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supervised evaluation, depending on whether a ground truth segmentation is used or

not.

Supervised evaluation methods assess the quality of a segmentation algorithm

by comparing its results against a reference ground truth (i.e. a manually segmented

reference image) using segmentation evaluation metrics. Commonly used evaluation

metrics for evaluating the object accuracy are Jaccard index [77], fuzzy Jaccard in-

dex [77], Dice similarity coefficient (DSC) [78], F-measure (i.e. the weighted harmonic

mean of precision and recall), and so on. Those metrics quantitatively measure the

segmentation methods’ performance by using the amount of overlap between their re-

sults and the reference images as a measure of the degree of segmentation similarity.

For assessing the boundary accuracy, the Hausdorff distance, a measure of the largest

distance between two contours, is a commonly used metric. The advantage of su-

pervised evaluation methods is that direct comparison between a machine-generated

segmentation and a human-segmented reference provides a finer resolution of eval-

uation; however, the creation of manual segmentations is subjective, arduous, and

time-consuming [79].

Conversely, unsupervised evaluation methods assess the quality of segmentation

by measuring how well the segmentation results meet a set of criteria that are defined

based on principles of visual perception, for example, Gestalt laws of perception

(law of closure, similarity, proximity, symmetry, and continuity). As a result, it is not

necessary to compare the segmentation results against the ground truth segmentation.

The criteria of a good segmentation are [79]:

• Regions should be uniform and homogeneous with respect to some characteris-

tic(s).

• Adjacent regions should have significant differences with respect to the charac-
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teristic on which they are uniform.

• Region interiors should be simple and without holes.

• Boundaries should be simple, not ragged, and be spatially accurate.

Given the above criteria, metrics for unsupervised evaluation methods aim to

measure inter-region disparity and intra-region uniformity based on color, texture,

entropy, or normalized mutual information [80] or to evaluate the shape of an object.

In addition to this, unsupervised segmentation evaluation can also be considered as

the computation of the likelihood of a pixel or a region belonging to the foreground.

The computation of the likelihood of label assignments can be associated with uncer-

tainty measure of solutions produced by inference algorithms, for instance, dynamic

graph cuts [81].

2. Methods for Generation of Ground Truth for Supervised Evaluation

In medical image segmentation evaluation, supervised evaluation methods are pre-

ferred. Because medical images have low contrast and ambiguous boundaries, an

unsupervised evaluation metric meeting the criteria of a good segmentation is hard

to define. For supervised evaluation, it requires the creation of ground truth an-

notations, where human experts manually delineate the object boundary. It is well

known that human annotators are intrinsically biased and subjective so manual seg-

mentations sometimes vary significantly. Humans not always agreeing on the object

boundary brings the problem of boundary discrepancies in the manual segmenta-

tions. A potential solution to this problem is using a combination of multiple manual

annotations to represent the true segmentation.

To find the true segmentation of multiple manual segmentations, label fusion

methods are used. Commonly used methods for label fusion are majority voting,
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global weighted voting, and local weighted voting.

Majority voting is a widely used strategy for the label fusion because of its sim-

plicity. It treats each individual segmentation equally and assigns a pixel the label

the most segmentations agree on. Mathematically, let y1, ..., yN be the N binary seg-

mentations and ŷ be the true, unknown segmentation to be estimated. The estimated

true segmentation ŷi at point i is given as

ŷi =

 1 if 1
N

∑N
j=1 y

j
i ≥ 0.5

0 otherwise
. (2.12)

Another strategy for the label fusion is global weighted voting that weights each

segmentation differently according to the performance of each evaluator. Simul-

taneous truth and performance level estimation (STAPLE) algorithm proposed by

Warfield et al. [82] belongs to this category. STAPLE uses an iterative expectation-

maximization algorithm to measure the performance of experts and estimates the

underlying true segmentation by optimally combining each segmentation depending

on each expert’s performance level. STAPLE measures two performance level pa-

rameters of each expert: (1) sensitivity (i.e. true positive rate), the probability of an

annotator labeling a pixel as foreground if the true label is foreground; and (2) speci-

ficity (i.e. 1-false positive rate), the probability of an annotator labeling a pixel as

background if the true label is background. In sum, the STAPLE algorithm iterates

between the estimation of conditional expectation of the complete data log likelihood

given the current estimates of the expert parameters (i.e. E-step) and the estima-

tion of the performance parameters by maximization (i.e. M-step). In STAPLE, The

convergence to a local optimum is guaranteed.

In addition to its usefulness on the segmentation validation, the STAPLE algo-

rithm has also been applied to atlas construction [83]. Recognizing that the accuracy
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of combined multiple classifiers is significantly higher than that of an individual clas-

sifier, Rohlfing et al. [84] extended binary segmentation combination to multi-class

combination. Commowick and Warfield [85] proposed another extension of STAPLE,

in which prior probabilities for the expert performance parameters are incorporated to

avoid convergence to undesirable local optima while dealing with partial delineations.

In contrast to giving the same weighting to each pixel in a segmentation, local

weighted voting methods [86, 87] assign each pixel a different weight according to a

local estimation of the segmentation performance. The estimated segmentation ŷi at

point i is defined as

ŷi =

 1 if
∑N

j=1 p
j
iy
j
i ≥ 0.5

0 otherwise
, (2.13)

where pji denotes the local weighting associated at point i, which is a similarity mea-

sure estimated from a local neighborhood center at point i.

C. Surface Reconstruction of Neuronal Processes

In order to visualize 3D models of neurons and to extract geometrical information,

we need to reconstruct a 3D surface from a stack of segmented 2D neuronal contours

in the x -y plane. Prior work on 3D reconstruction from 2D contours can be divided

into two categories: volumetric and contour stitching methods.

The volumetric method reconstructs 3D surface by interpolating the 2D cross-

sectional contours in the z direction. The signed distance function is usually used to

represent the 2D contour, and intermediate implicit functions are generated by lin-

early interpolating these 2D contours [88]. The 3D model of an object is reconstructed

by extracting the zero iso-contours from the interpolated functions. An alternative

approach for interpolation of adjacent contours is by morphing one contour into the



26

next [89], which propagates the input contours as 2D level sets using continuous speed

functions.

The contour stitching method for surface reconstruction focuses on connecting

the vertices of adjacent contours in order to form a mesh. The seminal work in

this category is that of Fuchs et al. [90], which creates the reconstructed surface by

finding minimum cost paths in a directed toroidal graph. Another method proposed

by Barequet et al. [91] uses the information from neighboring layers to guide the

intepolation of the current layer, thus creating a smoother surface. Bajaj et al. [92]

proposed a unified framework to address three major problems in the reconstruction:

the correspondence (how to find correct connections between the contours of adjacent

slices), tiling (how to use slice chords to triangulate the strip lying between contours

of two adjacent slices into tiling triangles), and branching (how to deal with a contour

in one slice corresponding to more than one contour in an adjacent slice) problems.

To this end, they imposed three constraints on the reconstruction surface and then

derived correspondence and tiling rules.

The contour stitching method has also been applied to reconstruction of 3D

models from segmented 2D neuronal membranes of ssTEM images by Bajaj and

Gillette [93] and Edwards and Bajaj [94]. They dealt with the problem of intersections

between neurons, which occurs because of densely packed branching structures in

neurons, while multiple neurons are visualized in the same model.

D. Summary

This chapter reviewed the theoretical fundamentals of graph cuts, which serve as a

basis for the development of segmentation methods and interactive editing tools. This

chapter also provided a review on validation methods, with a focus on approaches
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to label fusion used for the estimation of ground truth given a set of segmentations.

A limitation of these fusion methods is that the fusion is performed at a pixel level,

not taking into account the topology of the segmented regions. This motivates the

development of a fusion method ensuring that a segmentation is topologically correct,

which is presented in Chapter V. Finally, a review of surface reconstruction methods

for generating 3D models from a stack of 2D contours was also provided.
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CHAPTER III

IMAGE SEGMENTATION USING GRAPH CUTS

This chapter presents two segmentation approaches for the reconstruction of neural

circuits from the stacks of serial EM images in detail. First, a 2D segmentation

method is described. This algorithm segments neuronal contours in the x -y plane and

tracks them through the cross-sectional plane. Second, the approach to performing

a 3D segmentation in EM images is presented, which is a natural extension of the

previous 2D segmentation method.

A. 2D Contour Tracking and Segmentation Using Graph Cuts

This section details a tracking and segmentation framework that performs segmenta-

tion of neuronal contours in the x -y plane and tracks them through the z direction.

While segmenting neuronal contours in the 2D plane, this framework employs the

segmentation results from the previous image, represented by a distance function, to

overcome the problem of boundary ambiguity. Utilizing such geometrical informa-

tion (i.e. shape information) available from adjacent images greatly helps correctly

determine the boundaries of cells because the cells’ shapes between adjacent images

do not vary drastically; instead, their shapes are similar, as shown in Figure 6.

Recall from the previous chapter that given a set of sites P = {1, 2, ...,M} and

a set of labels L = {l1, l2, ..., lK}, the segmentation is to assign a label fp from L to

each site p ∈ P . The optimal segmentation is to find a labeling f that minimizes the

energy function:

E (f | D) =
∑
p∈P

Vp (fp | D) +
∑
p∈P

∑
q∈Np

Vpq (fp, fq | D) , (3.1)
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(a) (b)

Fig. 6. Two adjacent slices from an SBFSEM image stack. Cells’ shapes between

adjacent slices do not vary drastically, but are similar.

where Vp (fp | D) and Vpq (fp, fq | D) are the unary and piecewise clique potentials,

respectively. The unary potential Vp (fp | D) measures the cost of assigning node p a

label fp. The piecewise potential Vpq (fp, fq | D) represents the cost of assigning labels

fp and fq to nodes p and q, respectively. In the proposed segmentation method, the

flux of image gradients and geometrical information of adjacent images constitute the

unary potential, and the image intensity the piecewise potential.

1. Unary Potential: Flux and Shape Prior

This section elaborates on the method of calculating the flux of image gradients and

of representing the shape information of adjacent images. It also details the approach

for integrating these two terms.



30

a. Flux

Flux has recently been introduced by Vasilevskiy and Siddiqi [95] into image analysis

and computer vision. They incorporated flux into a level-set method to segment

blood vessel images. After that, flux has also been integrated into graph cuts [96, 97]

to improve the segmentation accuracy. The introduction of flux into graph cuts can

reduce the discretization artifacts that is a major shortcoming in graph cuts [96]. By

definition, considering a vector field v defined for each point in R3, the total inward

flux of the vector field through a given continuous hypersurface S is given by the

surface integral [95]

F (S) =

∫
S

〈N, v〉 dS , (3.2)

where 〈, 〉 is the Euclidean dot product, N are unit normals to surface element dS

consistent with a given orientation. Inward and outward are two possible orientations

that can be assigned to S. In the implementation of Equation 3.2, calculation of the

flux is simplified by utilizing the divergence theorem that states that the integral of

the divergence of a vector field v inside a region equals to the outward flux through

a bounding surface. The divergence theorem is given by∫
R

div v dR =

∮
S

〈N, v〉 dS , (3.3)

where R is the region. For the numerical implementations, the flux is thought of

passing through a sphere in the case of 3D. As a consequence, N is the outward

normal at each point on the contour, and v is defined as the normalized (unit) image

gradient vector field of the Gaussian smoothed image Iσ, that is,

v =
5Iσ
‖ 5 Iσ‖

, (3.4)



31

(a) SBFSEM image (b) Associated flux of (a)

Fig. 7. Flux of the gradient vector fields of an SBFSEM slice. (a) shows part of

an original gray-scale intensity image from the SBFSEM stack. (b) is the

associated flux of image gradients of (a), where the foreground objects have

negative flux (dark), and the background objects have positive flux (bright).

where σ is the standard deviation of a Gaussian kernel. The flux at a point p is given

by [98]

F (p) =
∑
q∈Np

〈Nq, vq〉 , (3.5)

where Np indicates the neighbor points of a point p, and Nq and vq are the unit

outward normal and the image gradient at point q, respectively. In this framework,

the flux is computed in 2D. Figure 7(b) shows the flux of gradient vector fields of

Figure 7(a). The foreground object has negative flux (dark) whereas the background

has positive flux (bright).
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b. Distance Function

Because the neuron appearances between adjacent images are similar, use of the shape

information from the previous segmentation can greatly help determine the correct

neuron boundary if missing or blurred boundaries are encountered. The incorporation

of this geometrical information into the energy function constrains the segmentation

of a slice, aiming to obtain a segmentation similar to those of adjacent images. The

geometrical information is represented by a distance function. Let Ot−1 denote the

object in image t− 1. The distance function D (p) at a point p in image t is given by

D (p) =

 ‖p− op‖ p is outside Ot−1

0 p is inside Ot−1

, (3.6)

where ‖p − op‖ represents the Euclidean distance from p to the nearest object pixel

op ∈ Ot−1. Figure 8(a) depicts the method of computing a distance function utilizing

the segmentation result of image t−1 shown in Figure 8(b), and Figure 8(c) shows the

resulting distance function of a segmentation. The distance function penalizes pixels

outside the previously segmented objects, but pixels inside the previously segmented

objects get no penalty. In other words, the larger the distances between the pixels out-

side the previously segmented objects and previously segmented objects’ boundaries,

the lower the possibility of those pixels belonging to the foreground. One may argue

that the choice of the above distance function is not symmetric for the foreground

and the background. Another symmetric distance function [99] to the foreground

and the background was also implemented and tested; however, the asymmetric and

symmetric distance functions both yielded similar segmentation results.
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image t-1

image t

(a) (b) (c)

Fig. 8. Illustration of how a distance function is computed and the resulting distance

function. (a) An illustration of how to compute the distance function. (b)

The segmentation result of image t− 1. (c) The resulting distance function in

which dark represents the segmentation at image t − 1, and bright indicates

the points outside the previously segmented object. This distance function

penalizes pixels outside the previously segmented objects but pixels inside the

previously segmented objects get no penalty.

c. Incorporating Flux and Distance Function

Combining the flux of gradient vector fields and the geometrical information of adja-

cent images represented as a distance function yields a new unary term. By utilizing

the method mentioned in [97] of how to set the flux in the t-links, edge weights be-

tween node p and terminals s and t that incorporate the flux and the distance function

are defined as

wsp = −min (0, F (p)) ,

wpt = max (0, F (p)) + αD (p) ,
(3.7)

where F (p) denotes the flux at point p, and α is a positive parameter adjusting the

relative importance of the shape prior D (p). In most cases, the weighting parameter

α is empirically set to a fixed value yielding the best results, but given the high

variation in illumination of EM images, the value of α is automatically tuned based
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on an image’ content. The approach for dynamically adjusting this parameter is

detailed in the next section.

d. Adaptive Weighting of Shape Prior by Curvedness

The weighting parameter α in Equation 3.7 controls the effect of the segmentations

from adjacent slices, and this influence is automatically adjusted based on the spatially

varying image data. One principle of deciding the level of effect of the shape prior

depends on the strength of edge evidence. That is, little influence of shape prior

is given at locations where demonstrate strong edge evidence. On the other hand,

more weight is assigned to regions with low edge evidence. One way to achieve this

principle is through the use of local curvature information.

The curvature is calculated as follows. Let the first-order gauge coordinates as

directions v (isophote tagent) and w (isophote normal), given by

ω̂ =
1√

L2
x + L2

y

 Lx

Ly

 (3.8)

and

v̂ = ω̂⊥ , (3.9)

where Lx and Ly denotes the first derivatives (i.e. the gradient) of an image’s lu-

minance function L (x, y) (i.e. pixel values) with respect to the x and y direction,

respectively. In this coordinate, the isophote curvature κ is defined as the rate of

change w′′ of the tangent vector w′

κ = −Lvv
Lw

. (3.10)
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In Cartesian coordinates, it becomes [100]

κ = −Lvv
Lw

= −
L2
yLxx − 2LxLxyLy + L2

xLyy(
L2
x + L2

y

)3/2 , (3.11)

where Lxx is the second derivative with respect to x, Lyy is the second derivative with

respect to y, and Lxy is the mixed partial second derivative in the x and y directions.

Here, the regularization of the relative weighting of the parameter α depends on

the curvedness [101, 102], which indicates the amount of deviation from flatness and

is defined as

C =
√
L2
xx + 2L2

xy + L2
yy . (3.12)

Note that the curvedness is low at flat areas and high around the edges of an object.

The curvedness is normalized to [0, 1] before used to calculate the weight. To give

little effect of shape prior at locations demonstrating strong edge evidence and more

effect at flat areas, the weight that controls the influence of the segmentation results

from the adjacent image at point p is given as

α (p) = exp (−C (p)) . (3.13)

This is, when the value of curvedness is close to 1, the weight is close to 0.

2. Piecewise Potential: Image Intensity

In the EM images, the foreground and background can be discriminated by their gray-

scale intensities. Compared to the background, the foreground objects usually have

higher intensity values. Boundaries can thus be determined if the intensity differences

between points are large. To capture the boundary discontinuity between pixels, the
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intensity difference

weight

Fig. 9. Illustration of weight settings for piecewise potentials. The x and y axes rep-

resent the intensity difference and weight, respectively. σ is the standard devi-

ation of the Gaussian function.

weight between node p and its neighbor q is defined as [66]

wpq = exp

(
−(Ip − Iq)2

2σ2

)
· 1

‖p− q‖
, (3.14)

where Ip and Iq are point intensities ranging from 0 to 255, ‖p− q‖ is the Euclidean

distance between p and q, and σ is a positive parameter set to 30. The first term

in the right hand side of Equation 3.14 is a Gaussian function that is illustrated

in Figure 9. Hence, Equation 3.14 penalizes a lot for edges with similar gray-scale

intensities while it penalizes less for those with larger gray-scale differences. In other

words, a cut is more likely to occur at the boundary, where the edge weights are

small. For 2D segmentation, an 8-neighborhood system is used.

3. Experimental Results

Experiments were conducted on synthetic data sets and stacks of serial EM images in

order to evaluate the performance of the proposed approach. Before the segmentation
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Fig. 10. Illustration of how Dice similarity coefficient (DSC) is computed given two

segmentations. DSC is calculated as 2|Z∩G|
|Z|+|G| , where Z and G are two segmen-

tations, |Z ∩G| is the common volume between Z and G, and | · | denotes the

number of voxels.

results are shown, the evaluation metrics used for measuring the performance of a

segmentation algorithm is first introduced in the next section.

a. Segmentation Evaluation Metrics

Dice similarity coefficient (DSC) [78] and F-measure are two evaluation metrics that

are commonly used to evaluate how good a segmentation algorithm is compared to a

human annotation. Let Z be the set of voxels of the segmentation results produced

by a segmentation algorithm and G be the ground truth annotated by a human, the

definition of these two metrics is given as follows.

• Dice Similarity Coefficient (DSC) measures the amount of overlap between

the obtained segmentation results and the ground truth, defined as

DSC =
2|Z ∩G|
|Z|+ |G|

, (3.15)

where |Z ∩G| is the common volume between Z and G, and | · | is the number

of voxels. 0 indicates no overlap between two segmentations, and 1 means two
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Table I. Quantitative results of SBFSEM data from Andres et al. [33]. A classifier

was trained for neuronal membrane segmentation, and the performance of the

classifier was evaluated on the training data and testing data. According to

their results, the acceptable values for DSC, precision, recall, and F-measure

are around 0.8 for SBFSEM data (testing data), and values above 0.87 are

considered good (training data).

DSC Precision Recall F-measure

Training 0.8770 0.8714 0.8825 0.8769

Testing 0.7788 0.7567 0.8021 0.7787

segmentations are identical. Figure 10 illustrates how DSC is computed given

two segmentations.

• F-measure is the weighted harmonic mean of precision and recall, defined as

F =
2PR

P +R
, (3.16)

where P and R are the precision and recall of the segmentation results relative

to the ground truth, which are given as

P =
|Z ∩G|
|Z|

(3.17)

and

R =
|Z ∩G|
|G|

. (3.18)

Table I shows the quantitative results from SBFSEM data in Andres et al. [33],

in which a classifier was trained for neuronal membrane segmentation. According

to their results, the acceptable values for DSC, precision, recall, and F-measure are

around 0.8 for SBFSEM data (testing data), and values above 0.87 are considered
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(a) An image from (b) (b) A synthetic image stack

Fig. 11. A synthetic image and a synthetic data set. (a) is a noisy image with 100×100

pixels selected from the synthetic image stack in (b). (b) shows one of the

two synthetic image stacks, which contains 100 images.

good (training data).

b. Synthetic Data

Two image stacks (data set 1 and data set 2) were generated, each having the size of

100× 100× 100. Gaussian noise was added to each image slice to simulate the noise

obtained during the image acquisition process. Three different levels of Gaussian

noise with standard deviation σ = 0.0447, 0.0632, and 0.0775 were added to the two

synthetic data sets, thus resulting in a total of 6 image stacks. Shown in Figure 11(b)

is one of the synthetic image stacks, and in Figure 11(a) is a noisy image from the

synthetic image stack in Figure 11(b). The reconstruction results of the two synthetic

image stacks are shown in Figure 12(b), and their ground truth is given in Figure 12(a)

accordingly. As can be seen from the close-up comparisons of the ground truth and
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(a) Ground truth (b) Recon. result (c) Close-up of (a) (d) Close-up of (b)

Fig. 12. Ground truth and reconstruction results of the synthetic data sets. (a) Ground

truth of the two synthetic data sets. (b) Reconstruction results from the image

stacks after adding Gaussian noise with σ = 0.04477. As can be seen from

the close-up comparisons of the ground truth and reconstruction results, the

reconstruction results are almost identical to the ground truth with minor

differences.

reconstruction results, the reconstruction results are almost identical to the ground

truth with minor differences.

Table II shows the DSC value of each image stack. The average DSC value

was 0.9113, demonstrating that the segmentation results produced by the proposed

method are highly overlapped with the ground truth. Table III shows the prevision-

recall pair of each image stack. The averages of precision and recall were 0.9947 and

0.8964, respectively, which yielded an average F-measure of 0.9430. As mentioned

above that values of DSC, precision, recall, and F-measure above 0.87 are consid-

ered good, the proposed method yields values higher than 0.89 using the evaluation
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Table II. Quantitative Dice similarity coefficient measure of the synthetic data with

different levels of Gaussian noise. The proposed method yields a Dice sim-

ilarity coefficient average of 0.9113, demonstrating the effectiveness of the

method.

noise σ = 0.0447 noise σ = 0.0632 noise σ = 0.0894

data set 1 0.8948 0.8903 0.8868

data set 2 0.9192 0.9112 0.9040

Table III. Quantitative precision-recall measure of the synthetic data with different

levels of Gaussian noise. The numbers of a pair in a field represent the values

of precision and recall. The averages of precision and recall are 0.9947 and

0.8964, respectively, demonstrating the effectiveness of the method.

noise σ = 0.0447 noise σ = 0.0632 noise σ = 0.0894

data set 1 (0.9971, 0.8370) (0.9976, 0.8121) (0.9974, 0.8120)

data set 2 (0.9980, 0.9864) (0.9955, 0.9797) (0.9858, 0.9674)

metrics, thus demonstrating the effectiveness of the method.

c. EM Data

Two stacks of serial EM images were used to evaluate the performance of the seg-

mentation algorithm: SBFSEM and ssTEM images.

The SBFSEM Image Stack

Experiments on the SBFSEM data were conducted on one image stack (631× 539×

561), on different parts (sub-volumes) of it. The tissue is 18.9× 16.1× 16.8 microns

in volume, with a resolution of 30× 30× 30 nm/pixel.
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(a) Result by Kaynig et al. [34] (b) Result by the proposed method

Fig. 13. Comparison of the results obtained by Kaynig et al. [34] and by the proposed

method on an SBFSEM image. Using information solely from single image

causes incorrect merger of cells at locations where edge evidence cannot pro-

vide sufficient information to distinguish two cells, as shown in (a). Utilizing

the geometrical information (i.e. shape prior) from the adjacent image, the

proposed method can correctly delineate the boundaries of cells when the

problem of boundary ambiguity occurs, as shown in (b).

To demonstrate that the incorporation of shape information greatly improves

segmentation results, the result of the proposed method is qualitatively compared to

that of Kaynig et al. [34] that performs 2D segmentation using information solely

from the single image to be segmented. With no additional information from neigh-

boring images in the image stack, their method merges adjacent cells that have weak

boundaries, as shown in Figure 13(a). By contrast, using the shape information from

adjacent images, the proposed method can determine the correct boundaries of cells

even when the problem of boundary ambiguity occurs. The result of the proposed

method is shown Figure 13(b), in which adjacent cells that do not provide suffi-
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(a) Slice 1 (b) Slice 3 (c) Slice 5

(d) Slice 7 (e) Slice 9 (f) Slice 11

(g) Slice 13 (h) Slice 15 (i) Slice 17

Fig. 14. Tracked and segmented 2D contours on selected image slices. The user man-

ually delineates the boundaries of the regions in the first image, and the

algorithm tracks and segments the selected regions in the subsequent images.
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(a) (b)

Fig. 15. Reconstruction results of SBFSEM images. (a) and (b) are the partly recon-

structed 3D structures, and part of a neuron can be seen in (a).

cient boundary information for determining the neuronal membranes are correctly

segmented.

Figure 14 shows tracked and segmented 2D contours on selected image slices,

where the user manually delineates region boundaries on the first image, and the

algorithm automatically tracks and segments these 2D contours in the subsequent

images. Figure 15 shows the reconstruction results, in which part of a neuron can be

seen.

To quantitatively measure the performance of the proposed method, a few neu-

rons were manually segmented using TrakEM2 [103], a tool for image stitching, reg-

istration, editing, and annotation. These manual segmentations served as the ground

truth in the comparison. The average DSC value of the reconstruction results was

0.8892. The average precision and recall values of the reconstruction results were

0.9901 and 0.8202, respectively, and thus the average of F-measure was 0.8972.
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The ssTEM Image Stack

A serial section Transmission Electron Microscopy (ssTEM) data set of the Drosophila

first instar larva ventral nerve cord (VNC) [24, 25] was also used for the evaluation

of the proposed method. The data set contains 30 sections, each of which having a

size of 512× 512 pixels. The tissue is 2× 2× 1.5 microns in volume, with a resolution

of 4× 4× 50 nm/voxel. This data set was manually delineated by an expert, and the

manual segmentations served as the ground truth to which the results are compared.

Due to the imperfect image acquisition process, the raw ssTEM images exhibit

inhomogeneous intensity and noise. Hence, prior to the reconstruction task being

performed, a classifier was trained to enhance the neuronal membrane and remove

noise in the raw ssTEM images. For training the classifier, a total of 8 features, 6 of

which were adapted from those used in [103], and 2 of which were newly added, were

used. The features are:

• Pixel intensity. The EM imaging technique stains extracellular space and

suppresses intracellular organelles so the gray-scale intensity at each pixel in

the raw images explicitly gives information about how to separate neurons from

each other. Neuronal membranes, in general, have lower intensity values. A

raw ssTEM image is shown in Figure 16(a), and the intensity ranges from 0 to

255.

• Gaussian blur. The smoothed image Iσ is obtained by the convolution of the

raw image I with a Gaussian kernel Gσ of a certain standard deviation σ, that

is,

Iσ = I ∗Gσ , (3.19)
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(a) ssTEM image (b) Gaussian blur (c) Sobel filter

Fig. 16. Intensity, Gaussian blur, and Sobel filter. (a) A raw ssTEM image. (b) The

Gaussian smoothed image obtained by the convolution of the raw image with

a Gaussian kernel of a standard deviation σ = 4. (c) The magnitude of the

gradients obtained by applying Sobel operators to the Gaussian smoothed

image (b).

where ∗ is the convolution operator. The Gaussian kernel is defined as

Gσ =
1√

2πσ2
exp

(
−x

2 + y2

2σ2

)
. (3.20)

Each raw image is convoluted with 3 Gaussian kernels, in which the standard

deviation σ, respectively, equals to 1, 2, and 4. Figure 16(b) shows the Gaussian

smoothed image obtained by the convolution of the raw image with a Gaussian

kernel of σ set to 4.

• Sobel filter. The smoothed image Iσ is then convoluted with two 3× 3 Sobel

operators to calculate the derivatives in the horizontal and vertical directions.

The magnitude of the gradients is used as a feature, as shown in Figure 16(c).
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(a) Trace (b) Determinant (c) Value

Fig. 17. Trace, determinant, and value of Hessian matrix of an ssTEM image.

• Hessian-based features. The Hessian matrix at a given point p is defined as

H (p) =

 Lxx (p) Lxy (p)

Lxy (p) Lyy (p)

 , (3.21)

where Lxx is the second partial derivative in the x direction, Lxy is the mixed

partial second derivative in the x and y directions, and L (p) = I (p) ∗ Gσ.

Thus, the trace TR (sum of the diagonal elements) and determinant DET of

the Hessian matrix are given as

TR = Lxx + Lyy (3.22)

and

DET = LxxLyy − L2
xy . (3.23)

These two features are invariant to the selection of x and y. Besides, another

value, computed as
√
L2
xx + LxyLyx + L2

yy, is also extracted for training. Shown

in Figures 17(a), 17(b), and 17(c), are the trace, determinant, and value, re-

spectively.
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(a) Sum (b) Mean (c) Standard deviation

(d) Median (e) Maximum (f) Minimum

Fig. 18. Sum, mean, standard deviation, median, maximum, and minimum of the

pixels in each image obtained by z-projecting 12 filtered images.

• Membrane projections. A filter of a size of 19 × 19, whose center column

is set to 1 and 0 elsewhere, is designed to detect the neuronal membranes. In

order to detect membranes in various directions, this filter is rotated clockwise

every 15 degrees, resulting in a set of 12 different filters. The raw image is then

respectively convoluted with these 12 created filters. By doing so, it generates

12 filtered images that indicate the possible locations of neuronal membranes.

These 12 images are then z-projected, and the following features are extracted:



49

(a) DoG (b) PB (c) Curvedness

Fig. 19. Difference of Gaussian (DoG), probability of boundary (PB), and curvedness

of an image.

– sum of the pixels in each image as shown in Figure 18(a).

– mean of the pixels in each image as shown in Figure 18(b).

– standard deviation of the pixels in each image as shown in Figure 18(c).

– median of the pixels in each image as shown in Figure 18(d).

– maximum of the pixels in each image as shown in Figure 18(e).

– minimum of the pixels in each image as shown in Figure 18(f).

• Difference of Gaussian (DoG). The DoG image ID is given by

ID = I ∗D, (3.24)

where I is the raw image, and D is the DoG filter and defined as the difference

of two Gaussian kernels with different standard deviations. Mathematically, the

DoG filter is

D (x, y) = Gσ1 (x, y)−Gσ2 (x, y) , (3.25)
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where Gσ is a Gaussian kernel given in Equation 3.20. Figure 19(a) shows the

resulting DoG filtered image.

• Probability of Boundary. This is a newly added feature. The probability

of a pixel belonging to a boundary is the output of a classifier that provides

the posterior probability of a boundary at each pixel. The classifier is trained

by combining local brightness, color, and texture features in order to accu-

rately detect the boundary [104]. The probability of a boundary is shown in

Figure 19(b).

• Curvedness. This is also a newly added feature. The curvedness is calculated

by using Equation 3.12 for each smoothed image. The resulting curvedness of

an image is shown in Figure 19(c).

For each pixel of an image, the above features are extracted. Using these fea-

tures, a random forest classifier [103, 105] was trained for the detection of neuronal

membranes. By definition, random forest is an ensemble of decision trees, each of

which is independently trained using randomly selected samples. This ensemble of

tress makes random forest retain the advantages of a decision tree, namely handling

of missing values and resistance to outliers, while increasing accuracy [106]. Addi-

tionally, it has few parameters and is faster to train and to predict. When random

forest is applied to a classification problem, its prediction is the class which most of

individual trees agree on (i.e. the majority vote of all individual trees). Figure 20(b)

shows the output of the classifier, in which the neuronal membranes are greatly en-

hanced, and the noise is removed compared to the raw image shown in Figure 20(a).

The resulting images processed by the random forest classifier are the inputs to the

proposed method.
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(a) A raw ssTEM image (b) The enhanced image

Fig. 20. Comparison of a raw ssTEM image and its enhanced image obtained by a

random forest classifier. The random forest classifier greatly enhances the

contrast between neurons’ interior and the neuronal membranes.

The proposed method was compared to the method by Kaynig et al. [34]. Fig-

ure 21 shows the results by the proposed method compared to Kaynig et al. and

manual segmentation. Both methods produced comparable results when qualita-

tively compared to the ground truth. Using DSC as the measure metric, the proposed

method produced a value of 0.7966, which is slightly higher than the value of 0.7853

obtained by Kaynig et al. F-measure of the proposed method was 0.7942, also slightly

better than the value of 0.7853 obtained by Kaynig et al. Table IV shows the detailed

comparison between the method by Kaynig et al. and the proposed method.

Same as the experiments on the SBFSEM images, initial segmentations provided

by a user are required in order for the segmentation algorithm to start tracking and

segmenting the neuronal contours. Figure 22 shows the segmentation and tracking

results of selected regions on the ssTEM images, where different colors in the same
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(a) The raw image (b) Ground truth

(c) Result by Kaynig et al. [34] (d) Result by the proposed method

Fig. 21. Comparison of results obtained by Kaynig et al. [34] and by the proposed

method and the ground truth on a sample ssTEM image. By qualitative

comparison, the results of Kaynig et al. and the proposed method are compa-

rable to the manual segmentation.
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(a) Slice 1 (b) Slice 3 (c) Slice 5

(d) Slice 7 (e) Slice 9 (f) Slice 11

(g) Slice 13 (h) Slice 15 (i) Slice 17

Fig. 22. Tracking results of selected regions on ssTEM images. Different colors in

the same image indicate different neurons, and same color in different slices

represent the same neuron. The proposed method successfully segments and

tracks selected regions through cross-sectional images.
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Table IV. Quantitative comparison of the method by Kaynig et al. [34] and the pro-

posed method. The proposed method yielded a DSC value of 0.7966 and

F-measure of 0.7942, both of which are slightly higher than the DSC value

of 0.7853 and F-measure of 0.7853 obtained by using the method of Kaynig

et al.

DSC Precision Recall F-measure

Kaynig et al. [34] 0.7853 0.7310 0.8484 0.7853

Proposed method 0.7966 0.8127 0.7766 0.7942

image indicate different neurons, and the same color in different slices represents the

same neuron. Figure 23 shows a few reconstruction results. The ssTEM image stack

contains only 30 slices so the reconstructions do not show whole neuron structures.

However, as can been seen, the proposed method successfully segments and correctly

tracks regions through cross-sectional images.

B. 3D Segmentation with Estimated Shape Prior

This section describes a 3D segmentation method that extends the aforementioned 2D

segmentation into a 3D. The 3D segmentation method incorporates an estimated 3D

shape prior into the energy function, which serves as a constraint in the segmentation

process. The proposed method consists of two main parts. First, different from other

methods that derive the shape prior in an offline phase, the shape prior of the objects

is estimated directly by extracting medial surfaces from the data set. Second, the 3D

image segmentation problem is posed as Maximum A Posteriori (MAP) estimation of

Markov Random Field (MRF). The energy function to be minimized contains three

constituents: the estimated shape prior, the flux of the image gradients, and the

gray-scale intensity.
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(a) (b)

Fig. 23. Reconstruction results of the ssTEM data. Because the ssTEM image stack

contains only 30 slices, the reconstruction results do not show a whole neuron

structure.

1. Symmetric Shape Prior Estimation

Shape symmetry is an important visual feature in image understanding, and the

use of symmetry, which provides shape information of an object, can significantly

improve the segmentation [107, 108]. Because the anatomical structures, such as

axons, dendrites, and soma, exhibit locally symmetric shapes to the medial axis that

is also referred to as the skeleton and is commonly used for shape representation,

one way to estimate the shape prior is to utilize this intrinsic property of anatomical

structures. Following the definition introduction by Blum [109], the medial axis of

an object is a set of points that is equidistant to its boundaries. The medial axis of

a 3D object is generally referred to as the medial surface.

Approaches to extracting medial surface include distance field based methods

[110], topological thinning, gradient vector flow methods [111], and others [112]. Here,

the method proposed by Bouix et al. [110] is used to extract the medial surface.
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(a) Original image (b) Distance map

(c) Skeleton (d) Shape prior

Fig. 24. Method of shape prior estimation. (a) An SBFSEM image. (b) The distance

map computed from the binary image. (c) The extracted skeleton (white

curves) from the distance map. (d) The estimated shape prior. Dark is the

expanded region, and bright indicates the points outside the expanded region

which are represented by a distance function.
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Gray-scale images are first converted to binary images, and a Euclidean distance

function to the nearest boundary is computed at each voxel, as shown in Figure 24(b).

Guiding the thinning procedure by exploiting properties of the average outward flux

of the gradient vector field of a distance transform, the resulting medial surface for a

particular object is shown in Figure 24(c). Finally, the estimated shape is obtained by

first expanding each point in the extracted medial surface with the shortest distance to

the boundary. The points outside the expanded region are represented by a distance

function

D (p) = ‖p− sp‖ , (3.26)

where ‖p− sp‖ represents the Euclidean distance from point p to the nearest point sp

in the expanded region. Shown in Figure 24(d) is the estimated shape prior for the

object in Figure 24(c).

2. Unary Potential: Flux and Estimated Shape Prior

Similar to the aforementioned 2D approach, the unary potential includes the flux

and estimated shape prior shown in Figure 24(d). The way to integrate these two

constituents is the same as that in the 2D case (i.e. Equation 3.7). The estimated

shape prior acts as a geometrical constraint in the minimization process.

3. Piecewise Potential: Image Intensity

The piecewise potential captures the contextual information between a point and

its neighboring points. To construct a graph in 3D, a point not only connects to

its neighbors in the same plane (x-y plane), but also connects to the points in the

adjacent images (z direction). Generally, the 6-, 18-, or 26-neighborhood system is

commonly used in 3D. Here, the 6-neighborhood system was used in the experiments.
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(a) Ground truth (b) Recon. result (c) Close-up of (a) (d) Close-up of (b)

Fig. 25. Ground truth and reconstruction results of the synthetic data sets. (a) Ground

truth of the two synthetic data sets. (b) Reconstruction results from the image

stacks in which Gaussian noise with σ = 0.04477 was added. As can be seen

from the close-up comparisons of the ground truth and the reconstruction

results, the reconstruction results are almost identical to the ground truth

with minor differences.

4. Experimental Results

Similar to the experiments carried out for the aforementioned tracking and segmen-

tation framework, the same synthetic data and SBFSEM data were used in the ex-

periments. Their results are shown in the subsequent sections.

a. Synthetic Data

The reconstruction results of the two synthetic image stacks are shown in Figure 25(b),

and their ground truth is given in Figure 25(a) accordingly. As can been seen from

the close-up comparisons of the reconstruction results and the ground truth, the
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Table V. Quantitative Dice similarity coefficient measure of the synthetic data with

different levels of Gaussian noise. The proposed method yields a DSC average

of 0.9748, demonstrating the effectiveness of the method.

noise σ = 0.0447 noise σ = 0.0632 noise σ = 0.0894

data set 1 0.9917 0.9671 0.9397

data set 2 0.9962 0.9875 0.9664

Table VI. Quantitative precision-recall measure of the synthetic data with different

levels of Gaussian noise. The numbers of a pair in a field represent the values

of precision and recall. The averages of precision and recall are 0.9659 and

0.9853, respectively, demonstrating the effectiveness of the method.

noise σ = 0.0447 noise σ = 0.0632 noise σ = 0.0894

data set 1 (0.9857, 0.9982) (0.9494, 0.9870) (0.9103, 0.9752)

data set 2 (0.9987, 0.9937) (0.9947, 0.9806) (0.9565, 0.9770)

reconstruction results are almost identical to the ground truth with minor differences.

Table V shows the DSC values for each image stack. The average DSC was

0.9748. Table VI shows the precision and recall pair, the mean values of the precision

and recall were 0.9656 and 0.9853, respectively. As a result, F-measure was 0.9755.

The 3D method yielded values of DSC, precision, recall, and F-measure above 0.9,

which is considered good as compared to the baseline value of 0.87.

The mean computation time using a Matlab implementation of the proposed

approach to process a synthetic image stack (100×100×100) on a standard PC with

Core 2 Duo CPU 2.2 GHz and 2 GB memory was 20 seconds.
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(a) (b) (c)

Fig. 26. Reconstruction results of the proposed method. (a) and (b) show parts of

neurons, and (c) shows the elongated axon structures.

b. SBFSEM Data

The reconstruction results of the proposed method are shown in Figure 26, where

Figure 26(a) and Figure 26(b) show parts of neurons, and Figure 26(c) shows the

elongated structures.

To quantitatively measure the performance of the proposed method, a few neu-

rons were manually segmented using TrakEM2 [103]. The manual segmentations

served as the ground truth in the comparison. Again, F-measure and DSC were

used as the evaluation metrics. The average precision and recall values of the re-

construction results shown in Figure 26 were 0.9660 and 0.8424, respectively, and

thus the average of F-measure was 0.9. The average DSC value of the reconstruction

results was 0.8918, showing that the proposed method can reconstruct the neuronal

structures from the SBFSEM images.
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C. Summary

This chapter presented new segmentation methods aiming to reconstruct neuronal

processes from stacks of serial EM images. The geometrical information of adjacent

images (i.e. shape priors) greatly improves the segmentation accuracy. With the help

of the shape priors, together with the flux of image gradients and image gray-scale in-

tensity, the proposed segmentation approaches effectively reconstruct the anatomical

structures from densely packed EM images.
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CHAPTER IV

INTERACTIVE EDITING THROUGH MULTIPLE CHOICE AND GRAPH

CUTS

A great majority of existing segmentation algorithms are designed for the automation

of the segmentation pipeline. However, fully automated segmentation algorithms

sometimes yield incorrect results even when their parameters are optimally tuned,

which is mainly because of their failing to capture all variations posed by the data

sets to be processed. Thus, erroneous segmentations would inevitably arise, and they

may require manual correction.

This chapter presents interactive editing tools to refine segmentation results

with minimal interaction. The framework includes two editing methods: (1) edit-

ing through multiple choice that provides a set of segmentation alternatives from

which a user can select an acceptable one, and (2) interactive editing through graph

cuts that allows a user to edit segmentation results by interactively placing editing

strokes. These tools facilitate the user to correct segmentations easily and quickly.

A. Editing through Multiple Choice

Image segmentation is an ill-posed problem. A particular feature used or parame-

ter choice for a segmentation algorithm strongly affects the quality of segmentations

[113], thus many researchers have considered multiple segmentations for an image for

the segmentation task [114, 115]. A general way to obtain multiple segmentations

of an image is to execute a segmentation algorithm several times by using differ-

ent parameter settings. Rather than simply tuning parameters of a segmentation

method, a more sophisticated approach that integrates multiple cues is usually used

to provide multiple segmentations. In this approach, each cue is integrated for the
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generation of a confidence map that indicates the probability of each pixel belonging

to a specific label. By thresholding the confidence map using different values, a pool

of segmentation alternatives are generated. The user can choose the most acceptable

one, if available, among the automatically generated segmentations before starting

any manual editing. Allowing the user to select the desired segmentation prior to

manual editing will minimize user interaction and simplify the editing process. This

approach is detailed in the subsequent sections.

1. Cues for Confidence Map Generation

It has been shown in [116] that the visual system integrates different attributes (e.g.

luminance, color, motion, and texture) for contour localization because all attributes

play an essential role for a contour localization task. This motivates the use of mul-

tiple cues, analogous to different attributes in localization of contours, to generate a

confidence map that indicates the degree of a pixel belonging to a particular label.

These cues are:

• Probability of boundary (PB). Boundary is an important cue for distin-

guishing different segments in the image segmentation task. This cue takes the

output of a classifier that provides the posterior probability of a boundary at

each pixel. The classifier is trained by combining local brightness, color, and

texture features in order to accurately detect the boundary [104]. Figure 29(a)

shows the probability of a boundary of an image.

• Random walker segmentation (RW). In contrast to a hard segmentation,

that is, a pixel belonging to either the foreground (1) or not (0) for the binary

case, random walker segmentation [64] produces a soft segmentation. Figure 27

illustrates how a segmentation is generated by the random walker segmentation
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(a) (b)

(c) (d)

Fig. 27. Illustration of random walker segmentation. (a) An image with two different

labels, L1 and L2. (b) Probability that a random walker starting from each

unlabeld node first reaches to the node with label L1. (c) Probability that

a random walker starting from each unlabeld node first reaches to the node

with label L2. (d) The segmentation obtained by assigning each point to the

label that is of the largest probability.
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(a) (b)

Fig. 28. Illustration of how the affinities between points are calculated using interven-

ing contours. (a) An image with 3 points, p1, p2, and p3. (b) The affinity

between two points is measured based on the maximum gradient magnitude

(or other measurements) of a straight-line path between them. For example,

because the straight-line path between points p1 and p2 crosses the boundary,

the affinity between them is lower than that between points p2 and p3, which

lie on the same side of the boundary. This indicates that points on the two

different sides of a boundary are more likely to belong to different segments.

algorithm. Initially, two different labels, L1 and L2, are specified by the user as

shown in Figure 27(a). The probabilities that a random walker starting from

each unlabeld node first reaches to the labeled nodes L1 and L2 are shown in

Figure 27(b) and Figure 27(c), respectively. The segmentation is obtained by

assigning each point to the label that is of the largest probability, which is shown

in Figure 27(d). Figure 29(b) shows the result of applying the random walker

segmentation to an SBFSEM image.

• Intervening contours (IC). The intervening contour [117] concept suggests
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(a) PB (b) RW

(c) IC(1) (d) IC(2)

Fig. 29. Multiple cues used for generation of a confidence map. (a) Probability of a

boundary. (c) The result of the random walker algorithm. (c) The affinity

obtained by using gradient magnitude as a measurement in the intervening

contour cue. (d) The affinity obtained by using the probability of a boundary

as a measurement in the intervening contour cue.



67

that pixels on the two different sides of a boundary are more likely to belong

to different segments. Given two pixels on an image, the affinity between them

is measured as the maximum gradient magnitude (or other measurements) of

a straight-line path between them. Figure 28 illustrates how affinities are com-

puted by using intervening contours. Because the straight-line path between

points p1 and p2 crosses the boundary, their affinity is much lower than that be-

tween points p2 and p3, which lie on the same side of the boundary. Figure 29(c)

(IC1) shows the affinities between a point inside an object and any other point,

which are computed based on the maximum gradient magnitude. In addition to

using the gradient magnitude as a measurement, the probability of a boundary

is also used to compute the affinities between pixels. Figure 29(d) (IC2) shows

the result of considering the probability of a boundary as a measurement in

computing an intervening contour cue.

2. Cue Combination

Before all of the individual cues are combined, their values are normalized to [0, 1].

Let P
(
ckp
∣∣ I) be the value at pixel p produced by cue k. The confidence value at pixel

p is defined as a linear combination of all cues, which is

P (cp|I) =
∑
k

wkP
(
ckp|I

)
, (4.1)

where wk is the relative importance of cue k, and sum of all wk is equal to 1. Currently,

the values for all wk were set empirically. A better way to obtain the weight of each

cue is to find a weight combination that yields the best results through comparing

the results obtained by various weight combinations to the ground truth, which can

be achieved by training a classifier. The confidence map shown in Figure 30(b) is

a combination of Figure 29(a) through Figure 29(d). Note that the brighter color
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indicates a higher probability of belonging to an object.

3. Segmentation Alternatives Generation

To generate multiple segmentation alternatives of an image, the confidence map is

thresholded at different values. Figure 30(c) through Figure 30(f) show the segmenta-

tion alternatives obtained by using the threshold values between 0.4 and 0.7. The user

can choose the most acceptable segmentation, if one existed, from these alternatives

before applying any editing. This reduces the amount of time for user interaction.

4. Experimental Results

The experiments were carried out on the SBFSEM image stack. A major challenge

in reconstructing neuronal morphology from SBFSEM image data lies in segmenting

densely packed cells that have blurred boundaries mainly resulting from the imperfect

image acquisition process. As a result, user editing is key to resolving the boundary

ambiguities, in which case a segmentation algorithm fails to produce a satisfactory

result.

Thirty incorrect segmentations produced by an automated segmentation algo-

rithm were used in the experiment. A few alternative segmentations generated by

using the editing through multiple choice method are shown in Figure 31. These

examples demonstrate that the generated alternatives contain a few acceptable seg-

mentations, showing that the confidence map obtained by integrating different cues

is reliable.

When the editing through multiple choice method was applied to refining incor-

rect segmentations, around 15 out of 30 segmentation errors can be corrected (i.e.,

the user can obtain an acceptable segmentation from the generated alternatives). For

quantitative evaluation, Dice similarity coefficient (DSC) and F-measure were used to
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(a) Image (b) Conf. map (c) Seg. 1

(d) Seg. 2 (e) Seg. 3 (f) Seg. 4

Fig. 30. Cue combination to generate a confidence map and multiple segmentations.

(a) is the original image. (b) is the confidence map generated by a linear

combination of different cues. Note that the brighter color indicates a higher

probability of belonging to an object. (c), (d), (e) and (f) are segmentations

obtained by thresholding the confidence map at the values of 0.4, 0.5, 0.6 and

0.7, respectively.
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(a) Image (b) Seg. 1 (c) Seg. 2 (d) Seg. 3 (e) Seg. 4

Fig. 31. Examples of generated segmentation alternatives. (a) Original images. (b)-(e)

The generated segmentation alternatives by thresholding the confidence map

at 0.4, 0.5, 0.6, and 0.7, respectively. As can be seen, the generated segmenta-

tion alternatives contain at least a few acceptable segmentations. This shows

that the confidence map obtained by integrating different cues is reliable. As

a result, generating segmentations based on the confidence map is able to

provide reasonable segmentation alternatives from which the user can choose

one.
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assess the performance of this editing method by comparing its segmentation results

against the manual segmentations. The DSC and F-measure values for this method

were 0.9670 and 0.9672 (precision = 0.9767; recall = 0.9578), respectively. Thus,

generating alternative segmentations based on the confidence map is able to provide

reasonable options for the user.

B. Interactive Editing through Graph Cuts

User interaction to correct erroneous segmentation results is key to providing accurate

segmentations that meet practical needs. The interactive editing problem is posed

as the Maximum A Posteriori (MAP) estimation of Markov Random Field (MRF).

The MAP-MRF formulation minimizes a Gibbs energy function that is defined over

the user input, presegmentation1, and image intensity. Graph cuts are then used to

obtain the optimal solution to the energy function.

1. Editing Energy Function

The goal of interactive editing is to obtain a new segmentation that satisfies a

set of constraints: the user input, presegmentation, and image data. Interactive

editing, analogous to image segmentation, is a labeling problem which involves as-

signing image pixels a set of labels [68]. Consider an image I containing a set of

pixels P = {1, 2, ...,M}, a set of labels L = {li, l2, ..., lK}, the user input U =

{up : p ∈ P , up ∈ L}, and a nearly correct presegmentation y = {yp : p ∈ P , yp ∈ L}.

The goal is to find a new optimal labeling x that minimizes the following energy

1Here, following the definition from [118], presegmentation is referred to as the
prior, incorrect, pre-existing segmentation.
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function [119]:

E (x | y,U , D) =
∑
p∈P

Vp (xp | y,U , D) +
∑
p∈P

∑
q∈Np

Vpq (xp, xq | D) , (4.2)

where Np denotes the set of neighboring pixels of p, Vp (xp | y,U , D) is the unary

clique potential, and Vpq (xp, xq | D) is the piecewise clique potential. The user input

and presegmentation are integrated into the unary potential, and image intensity is

used in the piecewise potential to impose the boundary smoothness.

2. User Input and Presegmentation Constraints

The unary potential defines the weights between a node p and terminal nodes, s and

t. The pixels the user indicates as the foreground or background serve as the hard

constraints; the edge weights between these pixels and the terminals are set to infinity

to prevent them from changing labels. Because a presegmentation is nearly correct,

the new segmentation should be similar to the presegmentation after editing. Only

the pixels with changed labels are penalized [97]. The penalty for changing a label is

defined based on the intervening contour cue. The weights are:

wsp =

 ∞ p ∈ Uf

ICb (p) p /∈ Uf
(4.3)

and

wpt =

 ∞ p ∈ Ub

ICf (p) p /∈ Ub
, (4.4)

where Uf and Ub are the foreground and background labels, respectively, and ICf (p)

and ICb (p) are the affinities between a pixel p to the nearest of the user labeled pixels

Uf and Ub, respectively. The unary potential is similar to that proposed by [118]

that suggests use of the Euclidean distance from a pixel to the nearest of the user
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labeld pixel; however, the work here considers the intervening contour cue that is

important for distinguishing different objects. Figure 32 demonstrates the difference

in using the Euclidean distance and the intervening contour cue as unary potential.

As can be seen from Figure 32(d), the color clearly shows transitions from black (low

penalty) to gray (high penalty) whereas no such transitions are shown in Figure 32(c)

in which the penalties are given based on the Euclidean distance. The transitions in

Figure 32(d) coincide with the object boundary, where a cut is more likely to occur.

3. Image Data Constraint

Piecewise potential ensures boundary smoothness by penalizing neighboring pixels

assigned different labels. Based on Potts model [66], it is given as

Vpq (xp, xq | D) = wpq · (1− δ (xp, xq)) , (4.5)

where δ (xp, xq) is the Kronecker delta defined as

δ (xp, xq) =

 0 if xp 6= xq

1 if xp = xq

, (4.6)

and wpq is a penalty for assigning two neighboring pixels, p and q, different labels,

defined using a Gaussian weighting function

wpq = exp

(
−(Ip − Iq)2

2σ2

)
· 1

‖p− q‖
, (4.7)

where Ip and Iq are pixel intensities ranging from 0 to 255, ‖p− q‖ is the Euclidean

distance between p and q, and σ is a positive parameter set to 30.
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(a) (b)

(c) (d)

Fig. 32. Comparison of the difference between using the Euclidean distance and us-

ing the intervening contour cue in the unary potential. (a) Presegmentation.

(b) User edit. The blue and green scribbles indicate the foreground and back-

ground marks, respectively. (c) The penalties, defined based on the Euclidean

distance, for changing the label of pixels classified as background in (a) to

foreground. (d) The penalties defined based on the intervening contour cue.

Using the intervening contour cue in the unary potential, the color clearly

shows transitions from black (low penalty) to gray (high penalty). The tran-

sitions coincide with the object boundary, where a cut is more likely to occur.
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(a) Incorrect seg. (b) User edit (c) Result

Fig. 33. Examples of interactive segmentation editing. The editing algorithm takes a

few of user inputs, together with the incorrect segmentation and image data

constraints, and computes a new segmentation accordingly. The blue and

green strokes represent the foreground and background marks, respectively.
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4. Experimental Results

Similar to the experiments conducted for the editing through multiple choice method,

30 incorrect segmentations were used to evaluate the performance of the editing

through graph cuts method. Figure 33 shows the examples of interactive editing

through graph cuts. The first, second, and third columns of Figure 33 show the in-

correct segmentations, user edits, and editing segmentation results. The blue and

green strokes are the foreground and background marks, respectively. This editing

tool gives the user flexibilities of placing strokes on a few pixels and produces a

segmentation that meets the user’s requirements.

For quantitative evaluation, Dice similarity coefficient (DSC) and F-measure were

used to measure the segmentation accuracy of this editing method by comparing its

segmentation results against the manual segmentations. The DSC and F-measure

values obtained by this method were 0.9763 and 0.9810 (precision = 0.9676; recall =

0.9947), respectively, indicating that the editing results are highly overlapped with

the manual segmentations.

C. Summary

This chapter presented an interactive editing framework that allows the user to correct

segmentation errors produced by automated segmentation algorithms. By threshold-

ing a confidence map using different values, the proposed editing framework first

obtains a pool of alternative segmentations from which the user can select the most

acceptable one, aiming for minimizing user interaction. In addition, the editing frame-

work includes an editing tool that the user can place editing marks on a few pixels to

produce the desired segmentation result. The editing task is formalized as an energy

minimization problem and incorporates a set of constraints, ranging from the user
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input and presegmentation to image data, into the energy function. Experimental

results showed that the proposed editing framework provides a promising solution to

the segmentation of SBFSEM image data sets.
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CHAPTER V

TOPOLOGY-BASED VALIDATION

Manual editing can correct segmentation errors produced by automated segmentation

algorithms, but it also introduces a practical challenge: the combination of multiple

users’ annotations of an image to obtain an estimation of the true, unknown la-

beling. Current estimation methods are not suited for electron microscopy (EM)

images because they typically do not take into account topological correctness of a

segmentation that can be critical in EM analysis. This chapter presents a topology-

preserving segmentation ground truth estimation method for EM images from brain

tissue. Taking a collection of annotations of an image, the algorithm aims to provide

an estimated labeling that is topologically equivalent and geometrically similar to the

true, unknown segmentation. Guided by the segmentation evaluation metric, warping

error, the algorithm iteratively modifies topology of the estimated segmentation to

maximize the topological agreements (i.e. minimize the disagreements) between the

estimated segmentation and a set of given segmentations. By gradually changing its

topology, the estimated segmentation becomes topologically equivalent to the true,

unknown segmentation.

The section below details the evaluation metric, warping error, which measures

topological errors of a segmentation against a reference labeling. Subsequently, the

proposed method is presented.

A. Topological Disagreement Measure: the Warping Error

In supervised evaluation, the performance of a segmentation algorithm is quantita-

tively measured by comparing its segmentation results against a manually labeled

ground truth (i.e. a reference image) based on evaluation metrics. Jaccard index [77],
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Dice Similarity Coefficient (DSC) [78], and F-measure are well known and widely

used metrics for segmentation evaluation. Those metrics use the amount of overlap

between a segmentation and the ground truth as a similarity measure to evaluate

the performance of a segmentation method. This makes them focus on measuring a

segmentation’s boundary accuracy at the pixel level but not take into account its topo-

logical correctness. However, in EM segmentation evaluation, measuring the degree

of the topological correctness of a segmentation is also important because obtaining

accurate analysis of the neural circuits relies on topologically correct reconstructions

[30].

The warping error metric proposed by Jain et al. [30] is a metric that mea-

sures topological disagreements between segmentations and has been shown to be

effective for EM segmentation evaluation. While comparing two segmentations, the

error metric strongly penalizes topological disagreements but tolerates minor bound-

ary localization differences. Conceptually, to calculate the topological disagreements

between a segmentation and the ground truth, the ground truth image is first trans-

formed into another image under topological and geometrical constraints, and then

the disagreements (i.e. topological errors) can be identified as the pixel differences

between the transformed image and the segmentation to be evaluated.

Before giving a formal definition of warping error, the concept of warping is first

presented. Formally, given two binary images, L∗ and L, if L∗ can be transformed into

L by flipping the labels of a sequence of pixels, L is called a warping of L∗, represented

as L / L∗. That is to say, L∗ and L are topologically equivalent and geometrically

similar. The labels of a sequence of pixels to be flipped are those of simple points

(i.e. border pixels), where a point p is defined as a simple point if both the number

of foreground connected components adjacent to p and the number of background

connected components adjacent to p equal to 1. According to the theory of digital
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Algorithm 1: A warping algorithm that warps a binary image L∗ to a seg-

mentation T . Algorithm from [30].

input : A binary image L∗, a segmentation T , and geometric constraints G

output: A warped image L

L = L*;

while true do

S = simple(L) ∩ G ;

i = argmaxj∈S|tj − lj|;

if |ti − li| > 0.5 then

li = 1− li;

else

return L;

topology, flipping the labels of simple points will not alter the object’s topology.

Now, letting T be a segmentation to be evaluated and L∗ be the reference anno-

tation, the warping error D (T ‖ L∗) is given as

D (T ‖ L∗) = min
L/L∗
|E (L, T ) | , (5.1)

where L is the optimal warping of L∗, and E (L, T ) is the difference set (i.e. the

pixels that have different labels in images L and T ), defined as E (L, T ) = L4 T .

In other words, the warping error is considered as the pixel disagreements between

the segmentation to be evaluated T and the transformed segmentation L. Note that

in order to find minimal warping error, the image L∗ is warped into L that is as

similar to segmentation T as possible. The approach to warping a labeling L∗ to

another labeling L given T is detailed in Algorithm 1, and simple(L) indicates the
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simple points of L. Figure 34 gives a detailed explanation of how the warping error is

identified. First, the ground truth annotation in Figure 34(b) is warped into another

labeling in Figure 34(c) by using the warping algorithm in Algorithm 1. Then, the

topological disagreements presented in Figure 34(e) can be calculated from the pixel

differences between the labeling in Figure 34(c) and the labeling in Figure 34(d),

which contains two topological errors, a merge (blue circle) and a split (red circle).

These errors result from the problem of boundary ambiguity in the original image, as

can be seen in Figure 34(a).

B. Ground Truth Estimation by Maximizing Topological Agreements

This section focuses on the main contribution of this chapter: estimating a segmen-

tation that is topologically equivalent and geometrically similar to the true, unknown

segmentation when a few segmentations are available.

1. Problem Definition

Given a set of N segmentations, S∗1 , ..., S
∗
N , either obtained by automated segmenta-

tion algorithms or annotated by different humans, the goal is to find an estimated

segmentation Ŝ that is topologically equivalent and geometrically similar to the un-

derlying unknown true segmentation. One potential segmentation that satisfies the

topological and geometrical constraints and is capable of representing the true, un-

known segmentation is that with a topology most of the given segmentations agree

on. In other words, the estimated segmentation Ŝ is a segmentation that minimizes

the warping error between itself and the given segmentations. Mathematically, Ŝ is

obtained by minimizing the following:

Ŝ = argmin
S

N∑
i=1

D (S ‖ S∗i ) = argmin
S

N∑
i=1

min
Si/S∗

i

|E (S, Si) | , (5.2)
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(a) (b)

(c) (d) (e)

Fig. 34. Measured warping error of a segmentation against the ground truth. (a) A

sample EM image. (b) Manually annotated ground truth. (c) A warping

of the ground truth image shown in (b) given a segmentation in (d). (d)

A segmentation to be evaluated. (e) Measured warping error. The pixel

disagreements between (c) and (d) consist of the topological errors. In this

case, two topological errors, a merge (blue circle) and a split (red circle), occur

due to the boundary ambiguity in the original image.
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where Si is the optimal warping of the labeling S∗i .

One possible method to find the estimated segmentation Ŝ is to enumerate all

possible labelings and choose one that has minimal warping error. However, enu-

merating all labelings can be computationally expensive. Another alternative is to

gradually change the topology of a segmentation and make it converge to a topology

that most segmentations agree on. The section below details this approach.

2. Topological Correction Algorithm

Changing the labeling of an image involves flipping the labels of pixels, which can

result in a merger of two adjacent regions or a splitting of a region into two. The

potential pixels whose change of label causes a topological change are those that af-

fect warping error. To achieve the goal of seeking an estimated segmentation with

a topology that most segmentations agree on, the algorithm starts with an initial

segmentation obtained by using the majority voting method. At each iteration, by

using the number of topological errors as the evaluation metric, the algorithm cor-

rects one topological disagreement between the estimated segmentation and the given

segmentations. While correcting a topological disagreement at each iteration, the al-

gorithm selects an error having a lowest flipping cost defined in Equation 5.4, detailed

in the next section. A new labeling is accepted only if it has less warping error. The

algorithm repeats the process of correcting topological errors and stops when no topo-

logical changes can lead to the reduction in the overall warping error, that is, it reaches

a segmentation that minimizes warping error defined in Equation 5.2. Algorithm 2

details this proposed method.
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Algorithm 2: Topological correction by minimizing warping error (proposed

algorithm).

input : A set of labled binary images, S∗1 , ..., S
∗
N

output: An estimate of the ground truth, Ŝ

initialize Ŝ to the result of the majority voting method given S∗1 , ..., S
∗
N ;

foreach S∗i do

Ei = D(Ŝ ‖ S∗i );

Emin =
∑

iEi;

while not converged do

assign each topological error the flipping cost based on Equation 5.4;

select a topological error with the lowest flipping cost;

flip the selected pixels in the estimated segmentation Ŝ ;

foreach S∗i do

Ei = D(Ŝ ‖ S∗i ) ;

Enew =
∑

iEi;

if Enew < Emin then

accept the new estimated ground truth Ŝ;

else

reject the new estimated ground truth and restore Ŝ back to the

previous estimation;
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3. Topological Change Cost

As mentioned above, flipping the label of pixels that contain warping error modifies

the topology of a segmentation. To better locate the pixels for topological change,

each pixel is associated with a flipping cost, and the selection of what pixels’ labels to

be changed depends on the cost associated with those pixels. More specifically, the

flipping cost of each pixel contains statistical information of an image, such as the

intensity distributions.

To define the flipping cost, two notations are first introduced. Let S be the

foreground (object) segmentation and S̄ be the background segmentation. The cost

of flipping the label of a pixel p from Sp to S̄p, f (p), is defined as

f (p) =
Pr (Ip|S)

Pr
(
Ip|S̄

)
+ Pr (Ip|S)

, (5.3)

where Ip is the intensity value of pixel p, and Pr (Ip|S) and Pr
(
Ip|S̄

)
represent how

well the intensity of pixel p fits into the intensity distributions (histograms) of fore-

ground and background, respectively. Because a set of segmentations are given, the

intensity histograms for the foreground and background are available. Figure 35 illus-

trates how Pr (Ip|S) and Pr
(
Ip|S̄

)
are calculated, where blue and red curves are the

probability of a point belonging to the foreground and background, respectively. Fig-

ure 36(a) shows the flipping cost of changing a label of each pixel from the foreground

to the background. Brighter color indicates a higher cost. Similarly, the cost of chang-

ing the label of a pixel p from S̄p to Sp is defined by Pr
(
Ip|S̄

)
/
(
Pr
(
Ip|S̄

)
+ Pr (Ip|S)

)
.

The flipping cost of changing a label of each pixel from the background to the fore-

ground is shown in Figure 36(b).

As can be seen in the example given in Figure 34, the topological change of a

segmentation requires a sequence of pixel flips. Now, let C denote a set of pixels
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Fig. 35. Probability of a point belonging to foreground (S) and background (S̄) based

on the given foreground and background intensity distributions. Red and

blue curves are the probability of a point belonging to the background and

foreground, respectively. Ip denotes the intensity of a point p, and Pr (Ip|S)

and Pr
(
Ip|S̄

)
denote the probabilities.

involved in the merger of two adjacent regions or the splitting of a region. To reduce

the computational complexity associated with calculating the flipping cost of the

pixels, a simple assumption is made that the pixel flip is independent with each

other. Therefore, the cost f (C) of flipping all points in C, is defined as sum of the

flipping cost of the individual pixels, that is,

f (C) =
∑
p∈C

f (p) . (5.4)
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(a) (b)

Fig. 36. Flipping cost of changing a label of each point in an image. (a) The flipping

cost of changing a label of each pixel from the foreground to the background.

(b) The flipping cost of changing a label of each pixel from the background

to the foreground. Brighter color indicates a higher cost.

C. Experimental Results

The experiments were carried out on a few synthetic images and on an EM data set

[24, 25]. The purpose of applying the proposed method to simple synthetic images was

to show that the proposed method can retrieve a segmentation that is topologically

equivalent to the true, unknown segmentation.

1. Synthetic Images

A set of segmentations of an image are required to evaluate the proposed method.

Four alternative segmentations were generated, and they are shown in Figures 37(a)

to 37(d). The first three segmentations separate the image into two regions (i.e. same

topology) with a slightly different boundary localization while the last (Figure 37(d))
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segments the image as a whole region (different topology from the rest). These four

segmentations present four possible segmentations of an image, and they are to be

combined to obtain an estimate of the underlying true segmentation.

Demonstrated in Figure 37 is a simple comparison between the estimated seg-

mentation obtained by the proposed method and those by majority voting and STA-

PLE. The four alternative segmentations are high quality, approaching expert levels:

The estimated sensitivities (i.e. the probability of an annotator labeling a pixel as

foreground if the true label is foreground) were 1.0000, 1.0000, 1.0000, and 1.0000,

respectively, and the estimated specificities (i.e. the probability of an annotator la-

beling a pixel as background if the true label is background) were 0.9556, 0.9556,

0.9556, and 0.9333, respectively. The estimated segmentation of the true, unknown

segmentation by using the majority voting method is shown in Figure 37(e), which

is a segmentation that most segmentations agree on. However, this estimated seg-

mentation is unable to represent the true, unknown segmentation because they are

not topologically equivalent. Different from the majority voting method that treats

each segmentation equally, STAPLE weights individual segmentation depending on

its estimated performance level. The combined estimated result by using STAPLE

is shown in Figure 37(f). However, we can see that although most of the alterna-

tive segmentations are topologically correct, such as those in Figures 37(a) to 37(c),

STAPLE is unable to produce a topologically correct estimate of the true, unknown

segmentation. This indicates its estimation is sensitive to the boundary localization

of given labelings. On the other hand, when the same set of initial segmentations

were given, our proposed algorithm produced a topologically correct estimate. The

resulting segmentation is shown in Figure 37(g), and its respective close-up in Fig-

ure 37(j).
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(a) Seg. 1 (b) Seg. 2 (c) Seg. 3 (d) Seg. 4

(e) Maj. vote (f) STAPLE (g) Proposed

(h) Maj. vote
(close-up)

(i) STAPLE
(close-up)

(j) Proposed
(close-up)

Fig. 37. Comparison between the estimated segmentation obtained by the proposed

method and those by the majority voting and STAPLE. (a)-(d) Alternative

segmentations to be fused. The first three segmentations separate the im-

age into two regions by a slightly different boundary localization. The last

segments the image as a whole region. (e) The estimated segmentation by

majority voting merges two separate regions as one, thus causing a merge

error. (f) The estimated segmentation by STAPLE also merges two separate

regions as one, thus causing a merge error. (g) The estimated segmentation

obtained by the proposed method is topologically correct. (h)-(j) Close-ups

of the results from majority voting, STAPLE, and the proposed algorithm,

respectively.
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2. EM Data

A serial section Transmission Electron Microscopy (ssTEM) data set of the Drosophila

first instar larva ventral nerve cord (VNC) from Cardona et al. [24, 25] was used for

the evaluation of the proposed method. The data set was manually delineated by an

expert, and the manual segmentations served as the ground truth the algorithm aims

to estimate.

To test the developed method, a number of segmentations were first generated by

thresholding the image at different values with additional manual editing to finally

construct alternative segmentations. Note that the main focus of the work is not

on how these alternative segmentations are generated, so any reasonable manual or

automated method will be enough. These generated segmentations represent the

alternative segmentations to be combined. Taking those segmentations as input, the

proposed method produced an estimated segmentation. Figure 38(a) shows the initial

segmentations with which the proposed method starts (majority vote), Figure 38(b)

the estimated segmentations obtained by the proposed method, and Figure 38(c) the

ground truth annotated by the expert. The topologies of the initial segmentations,

obtained by the majority voting method, do not agree with those of the ground truth,

which are indicated by the red circles. The final estimated segmentations, on the other

hand, are topologically equivalent and geometrically similar to the ground truth, with

a minor boundary localization difference.

Using the same set of input segmentations and warping error as the evaluation

metric, the quantitative comparison of the results obtained by the majority voting

method, STAPLE, and the proposed method is shown in Table VII. As we can

see, topological errors exist in the results obtained by majority voting and STAPLE

because these two methods fuse segmentation labels at the pixel level. The proposed
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(a) Initial (Majority vote) (b) Estimated (c) Ground truth

Fig. 38. Comparison of the topologies of initial segmentations, estimated segmenta-

tions, and ground truth. (a) The initial estimated segmentations with which

the validation method starts. (b) The estimated segmentations produced by

the validation method. (c) Ground truth. The topologies of the initial seg-

mentations (a) do not agree with those of the ground truth (c), which are

indicated by the red circles. The estimated segmentations (b) produced by

the proposed method, on the other hand, are topologically equivalent and

geometrically similar to the ground truth.
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Table VII. Comparison of the number of topological errors committed by the majority

voting method, STAPLE, and the proposed method on 10 different sam-

ples from the EM data set. As we can see, topological errors exist in the

results obtained by the majority voting method and STAPLE whereas the

proposed method is able to obtain topologically correct segmentations as

long as topologies of most of the alternative segmentations are correct.

Sample # 1 2 3 4 5 6 7 8 9 10

Majority voting method 6 4 8 2 2 2 0 2 6 5

STAPLE 2 4 3 5 2 0 3 2 3 2

Proposed method 0 0 0 0 0 0 0 0 0 0

method, on the contrary, can obtain topologically correct segmentations as long as

the topologies of majority of alternative segmentations are correct. Also note that,

in the experiment, the proposed method used the majority voting method’s results

as the initial estimated segmentations and gradually modified the topologies of the

estimated segmentations until convergence. The proposed method’s final estimated

segmentations are topologically equivalent to the true segmentations even it started

with segmentations containing topological errors.

D. Summary

This chapter presented a novel pooling method that seeks a segmentation topologi-

cally equivalent and geometrical similar to the true, unknown segmentation when a

set of alternative segmentations are available. This method is effective for noisy EM

images because it maximizes the topological agreements among segmentations during

the estimation process and ensures that a segmentation is topologically correct, which

is important for connection estimation for connectomics research. Experimental re-
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sults have demonstrated the effectiveness of this method.
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CHAPTER VI

DISCUSSION

This chapter starts with presenting the contributions of this dissertation, followed by

discussion, and finally offers several potential future research directions for improving

the developed algorithms.

A. Contributions

The main contribution of this dissertation is to provide a thorough framework for

reconstruction of neuronal morphology from stacks of serial EM images. This in-

cludes segmentation algorithms for obtaining structural anatomy of neural circuits,

interactive segmentation tools for manual correction of erroneous segmentations, and

a validation method for obtaining a topologically correct segmentation.

In this dissertation, a set of novel image segmentation algorithms for EM recon-

struction were first presented. The contribution lies in the utilization of geometrical

information (i.e. shape prior) available from adjacent images in 3D for the segmen-

tation task. The geometrical information serves as a constraint in the segmentation

process, and the incorporation of such information into an energy function greatly

improves segmentation accuracy, especially for SBFSEM imaging data, which can be

seen from Figure 13. Besides, creation of labeled data sets can be very laborious.

The proposed method needs no such creation of human labeled data that is required

for a machine learning method while obtaining comparable performance. The devel-

oped segmentation algorithms have yielded success in EM reconstruction, which was

demonstrated in Chapter III.

Second, interactive editing tools that allow the user to easily and quickly refine

incorrect segmentations were also provided. These tools aim to minimize the amount
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of effort required for manual correction through the two following aspects: (1) Edit-

ing through multiple choice. This tool integrates multiple cues to provide a set of

segmentation alternatives from which the user can select the most acceptable one, if

available. (2) Interactive editing through graph cuts. This tool takes user inputs and

accordingly produces a segmentation that satisfies the user’s constraints as well as

underlying image constraints.

Finally, a new segmentation validation method was proposed. When a set of seg-

mentations are available, the validation method seeks a segmentation with a topology

that most segmentations agree on (i.e. the majority voting based on the topology).

It uses warping error as a measure of topological agreements among segmentations

and minimizes this error to ensure that the reconstructions are topologically correct.

Obtaining topologically correct reconstructions is crucial for subsequent connectivity

analysis of the 3D anatomical structures.

B. Limitations

Although the proposed algorithms have successfully reconstructed anatomical struc-

tures from stacks of serial EM images, several open issues or problems remain to be

solved.

The developed tracking and segmentation algorithm requires the user to delineate

initial neuronal membranes with which the algorithm starts. To speed up reconstruc-

tion and reduce the amount of user interference, a method for automatically providing

initial delineations for the tracking algorithm should be investigated.

Another limitation of the tracking algorithm is that when an error occurs in a

slice, this error accumulates in the subsequent slices, which is a common problem in

most of the tracking algorithms. Currently, correction of these errors mainly relies on
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manual methods. To make the algorithm more robust, finding solutions to alleviating

this problem is required.

One strength of the proposed segmentation algorithms is the utilization of ge-

ometrical information available from adjacent images to constrain the segmentation

process when the problem of boundary ambiguity occurs. However, how to properly

weight this geometrical information term in the energy function is an issue. Though

using the curvedness to adaptively adjust the weighting is considered in the proposed

algorithms, it is still not perfect due to uneven illumination and noise inherent in

EM data. The influence of this geometrical information is more emphasized in the

ssTEM data because the z resolution (section thickness) is much lower than the x-y

resolution, and the shapes of cells sometimes change dramatically.

The editing through multiple choice method provides segmentation alternatives

from which the user can select the most acceptable one. This alleviates the hu-

man labor required for editing. One potential direction to improve this scheme is to

provide a confidence value for each alternative segmentation such that the user can

select a segmentation based on the given confidence measure of segmentations. Also,

such confidence values can be used by the user to quickly locate regions that need

correction.

For the topology-based validation method, it uses the warping error as a topolog-

ical measurement and thus ensures that an estimated segmentation is topologically

equivalent to the true, unknown labeling. Currently, the proposed method is for 2D

validation. To make it more general, the method of ensuring that the 3D reconstruc-

tion is topologically correct should be explored.
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C. Future Research Directions

Based on the open issues and problems discussed in the above section, several future

directions are possible for improving the performance of the developed algorithms,

including the following aspects.

Utilization of More Contextual Information. Contextual information has

been proven to be an important cue that significantly improves performance of al-

gorithms proposed for many tasks in the domain of natural image analysis, such as

detection [120–122], classification [123], and segmentation [123, 124]. Analogously,

contextual information is a helpful cue for EM segmentation, which has been demon-

strated in Chapter III. The proposed algorithms use such information available from

adjacent images to resolve the problem of boundary ambiguity. In fact, in 3D volu-

metric imaging data, rich contextual information is available when the field of view

is increased to include more images in the z direction or more neighboring objects

(regions) in the x-y plane.

Including more contextual information requires the learning of an efficient model

to represent the underlying context, a topic that remains mostly unsolved. In some

vision models, such as Markov random fields (MRF) and conditional random fields

(CRF), only short range contextual information are captured between a node and its

neighbors. How to incorporate a larger range of contextual information in a model is

a promising topic for future research.

Automated Correction of Segmentation Errors. With the availability of more

EM imaging data and more reconstruction methods developed for the analysis of EM

data, more robust validation methods for proofreading the reconstruction results are

highly necessary. Currently, manual proofreading is a commonly used approach,
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but it is time-consuming and arduous. Hence, automatic correction methods that

autonomously correct reconstruction errors will provide an ideal solution to reducing

the amount of manual interaction required for the connectomic reconstruction. To

this end, automatic correction algorithms should be equipped with the two following

properties:

• Using the knowledge of neuronal topologies to analyze the reconstruction results

and to detect potential errors.

• Capability to automatically correct segmentation errors. When errors are found

in a reconstruction, a correction algorithm should provide potential corrections.

A correction method equipped with the ability to correct segmentation errors will

not only eliminate the aforementioned problem of error accumulation in the tracking

algorithm but also provide more reliable reconstructions.

3D Topological Validation A natural extension of the proposed 2D validation

method presented in Chapter V is to extend it to 3D. Similar to the 2D case where the

proposed method takes a set of segmentations as input, a 3D validation method will

take a few 3D reconstructions (obtained by different segmentation algorithms or by

the same segmentation method with different parameter settings) as input and seek

a 3D reconstruction with a topology that most reconstructions agree on. Warping

error could be used as the evaluation metric for evaluating the topological agreement

between two 3D reconstructions. This 3D validation method will greatly facilitate

connection estimation for connectomics research.
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CHAPTER VII

CONCLUSION

With advances in the development of EM imaging techniques, vast data sets contain-

ing numerous anatomical structures have been produced in the past few years. These

data sets are key to the reconstruction of complete neural circuits of the nervous

system (i.e. the connectome) and to the elucidation of how the brain functions. How-

ever, these imaging data also pose significant challenges to reconstruction. For this,

in this dissertation, a set of methods, from segmentation methods and interactive

editing to validation methods, have been developed to facilitate the reconstruction

task. Each of these algorithms plays a unique part in the process of reconstruction:

the segmentation methods extract 3D anatomical structures from stacks of serial EM

images, interactive editing provides an efficient way to correct segmentation errors,

and finally the topology-based validation method ensures that the reconstruction is

topologically correct.

More effort is needed to achieve the grand goal of mapping the complete wiring

diagram of the nervous system. I expect the algorithms presented in this dissertation

to contribute to the reconstruction of the connectome and to open new directions in

the development of reconstruction methods.
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