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ABSTRACT

Scales and Scale-like Structures. (May 2011)

Eric Benjamin Landreneau, B.S.; M.S., Texas A&M University

Chair of Advisory Committee: Dr. Scott Schaefer

Scales are a visually striking feature that grows on many animals. These small, rigid

plates embedded in the skin form an integral part of our description of fish and

reptiles, some plants, and many extinct animals. Scales exist in many shapes and

sizes, and serve as protection, camouflage, and plumage for animals. The variety of

scales and the animals they grow from pose an interesting problem in the field of

Computer Graphics.

This dissertation presents a method for generating scales and scale-like structures

on a polygonal mesh through surface replacement. A triangular mesh was covered

with scales and one or more proxy-models were used as the scales shape. A user began

scale generation by drawing a lateral line on the model to control the distribution and

orientation of scales on the surface. Next, a vector field was created over the surface

to control an anisotropic Voronoi tessellation, which represents the region occupied by

each scale. Then these regions were replaced by cutting the proxy model to match the

boundary of the Voronoi region and deform the cut model onto the surface. The final

result is a fully connected 2-manifold that is suitable for subsequent post-processing

applications, like surface subdivision.
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CHAPTER I

INTRODUCTION

Scales are a visually striking feature that grows on many animals. These small, rigid

plates embedded in the skin form an integral part of our description of fish and

reptiles, some plants, and many extinct animals. Scales exist in many shapes and

sizes, and serve as protection, camouflage, and plumage for animals. The variety of

scales and the animals they grow from pose an interesting problem in the field of

Computer Graphics.

Creation of 3D models for graphics purposes often involves representing shapes

as surfaces of triangles. It is important that these surfaces be closed, as many sub-

division, simplification, and shadowing algorithms require a closed manifold surface.

As artists create more detailed surfaces, they are expected to preserve this closed

property. Some forms of surface details can prove difficult or tedious to model. One

such detail is the scale.

Scales overlap, have complex surfaces, and embed in the skin tissue of animals.

Overlapping shapes cause problems for artists, as does embedding shapes into sur-

faces. In the case of scales, dealing with thousands of complex overlapping shapes

can be quite problematic.

While scales are difficult to create, their creation is necessary due to their promi-

nence in nature. Scales are widespread in the animal kingdom, occurring on a variety

of animals. As external features that are easily visible, scales are commonly incorpo-

rated into 3D artwork in simple approximations as textures and displacement maps.

This dissertation follows the style of ACM Transactions on Graphics.
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However, despite their extensive use, there is little formal exploration the creation of

scales for 3D meshes. There is a large body of work for related features such as skin,

hair, and feathers, so an exploration of scales is justifiably needed for a comprehensive

representation of animals in Computer Graphics.

Artists typically approach creation of scales by first creating an underlying,

smooth mesh. This surface is then either covered manually with hundreds to thou-

sands of small scales, or painted with a repetitive texture approximating a scaly

surface. These scales must conform to the underlying surface, can overlap each other,

and each scale may individually have a detailed shape with barbs or ridges. This

application process can involve a great deal of effort and time, and gives us sufficient

motivation to automate this process.

1. Goals

This dissertation describes a method of creating self-similar, overlapping scales on a

mesh based on artistic guidance. We will present a novel technique for integrating

scales onto a triangle surface which addresses the shape, orientation, and placement of

the scales. This integration will form a watertight, geometrically 2-manifold surface

suitable for subdivision and simplification. Producing a manifold shape is important

for reasons beyond Computer Graphics as well. A manifold surface is necessary for

creating many forms of sculptures, including recent scale-like shapes created by Peter

Randall-Page [Randall-Page 2006] and Simon Thomas [Thomas 2006].

In the ensuing chapters, we first motivate scale generation by exploring the many

forms and functions of scales. From this variety of scales, we observe common proper-

ties of scales and use them as a groundwork for our scale synthesis technique. There is

scarce literature on scale synthesis for 3D graphics, so we adapt concepts from related

graphics fields towards developing our scales. We create scale geometry on a variety
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of meshes, showing that it works well across a variety of shapes and configurations.

We create scale geometry by segmenting the surface of a mesh into many single-

scale regions. We replace each of these regions with a model of a scale which is cut

and deformed to fit the region exactly and connect to neighboring scales. The work

not only provides a way to create plausible and interesting scales on surfaces, but also

gives inspiration into creation of new and unusual surface geometry.
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CHAPTER II

DEVELOPMENT AND APPLICATIONS OF SCALES

Scales have a variety of uses. They first evolved on animals millions of years ago as

a form of flexible armor. Humans adapted scales for many uses, both artistic and

practical. Scales continue to be utilized in a variety of formats today, and representing

them in Computer Graphics proves an interesting challenge.

A. Biological History

Approximately 500 million years ago, many forms of advanced invertebrate life such

as arthropods existed in Earth’s oceans. Arthropods at the time, such as trilobites

and sea scorpions, had no internal skeleton, instead relying on a hard, chitinous

exoskeleton to support and protect their bodies.

Arthropod exoskeletons form large rigid regions, restricting movement to joints

connecting regions together. An animal with an exoskeleton is not only restricted to

movements based on its exoskeleton’s segmentation, but vulnerable to attack at the

joints between segments. Damage to an exoskeletal segment might crack the entire

segment, harming or leaving vulnerable large areas of the animal’s body.

During this time of arthropod domination of the oceans in the Cambrian Period,

a new form of life appeared in the form of vertebrates. These vertebrates now had

endoskeletons, in contrast with the external skeletons of arthropods. With the inter-

nalization of vertebrate’s skeletons, they could no longer benefit from the armored

protection enjoyed by arthropod. Instead, many vertebrates evolved an alternate

defense mechanism – the scale.

Scales provided a new type of protection for organisms. Instead of surrounding

an animal in large, rigid segments, scales cover an organism in a network of small,
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armored plates. Being smaller, the scales form a flexible sheetlike surface that is both

resistant to attack and flexible. Scales can overlap, forming an imbricated network

which fully covers the animals without the weak points of exoskeleton joints. These

advantages make scales a powerful evolutionary advantage, one that persists in many

animals today.

An indirect consequence of scale development is paleontological classification.

The process of fossilization of an organism’s body often eliminates traces of soft tis-

sue. Soft-bodied animals produce poor or nonexistent fossils, and many primitive

organisms remain undiscovered due to having no fossil record. However, scales con-

tain tough materials that fossilize well, meaning that scaled animals will have a far

more robust fossil record than similar, unscaled animals. In fact, a great number of

primitive animals are identified by their scales alone, as the scales are all that remains

of their bodies after fossilization. That species can be differentiated by their scales

also emphasizes a large diversity in the structure and composition of scales.

1. Fish

The first known appearance of scales begins with primitive fish. Beginning with the

emergence of fish in oceans over 500 million years ago, the majority of fish species

have grown some form of dermal scales. In addition to protective properties, scales

provide fish with locomotive and in the case of lateral lines, sensory abilities. A fish’s

locomotion is aided by the shape of scales, which help create a laminar flow of water

around the animal. There are many varieties of fish scales, dating back to many

prehistoric fish with types of scales not seen today.
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a. Ostracoderms

Scales are a prominent feature of the first vertebrates, the ostracoderms. Ostraco-

derms are boneless, jawless fish that evolved during the late Cambrian Period, roughly

520 million years ago. The word ostracoderm comes from the Greek roots ostrako-

, meaning shell, and -derm, meaning skin. This ”shell-skin” name is due to the

bony scales covering their bodies[Radinsky 1987]. While some ostracoderms such as

anaspids grow small scales on their heads, others like the osteostracans create large

headshields, like primitive skulls. Ostracoderms survived until the late Devonian

Period, when they and many other animal species disappeared in a mass extinction.

Even at this early stage of evolutionary development, ostracoderms exhibit much

diversity in their scales. One group of ostracoderms, the thelodonts, are classified

specifically by their unique scales. The word thelodont means “nipple-tooth”, de-

scribing the pointed appearance of their spiny scales. The tooth reference in the

name is doubly apt because like teeth, thelodont scales have a hard outer coating of

dentine.

b. Acanthodians

Acanthodians, also known as spiny sharks, are the first known vertebrates with true

jaws, appearing in the late Silurian Period about 410 million years ago. These fish

are somewhat similar in form to modern sharks, but unlike sharks they have tiny

rhomboid scales. The acanthodians went extinct by the end of the Permian period,

about 250 million years ago.
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c. Placoderms

Also appearing during the Silurian Period and dying out in the Devonian extinction

are the placoderms. These fish, similar to ostracoderms, possess armored heads and

thoraxes along with a posterior sometimes covered in scales. Unlike the ostracoderms,

placoderms have true, moveable jaws.

d. Chondrichthyes

Fig. 1. Example of a cartilaginous fish, a white tip reef shark. Note that its placoid scales are

extremely small, and only visible upon close inspection of the skin. Photo Credit:US

National Oceanic and Atmospheric Administration [NOAA 2011].

Chondrichthyes, seen in Figure 1, are cartilage-skeletoned fishes evolved from pla-

coderms roughly 395 million years ago in the Devonian Period. Many of these fish

still exist today as sharks, rays and skates. These fish are covered in bony, small

scales called denticles due to their similarity to teeth. Unlike the scales of bony fish,

denticles do not grow with the fish. As chondrichthyes mature, new denticles grow in

between old scales to fill in gaps created by body enlargement.
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Fig. 2. Three examples of bony fishes. From left to right, a war-mouth bass, American

plaice, and rainbow trout. Note how the number of scales may vary significantly

depending upon species. Image credits: drawings by H.L. Todd, NOAA Photo

Library [NOAA 2011].

e. Osteichthyes

Modern bony fish, called Osteichthyes, also evolved around the same time as the

Chondrichthyes. These fish, illustrated in Figure 2, have a bony internal skeleton and

comprise the majority of modern fishes. Osteichthyes possess many types of scales:

1. Cosmoid scales consist of four layers of bony material. True cosmoid scales ex-

isted on the now extinct Crossopterygian class of lobe-finned fish. Lungfish and

coelacanths descended from the Crossopterygians and possess modified cosmoid

scales.

2. Ganoid scales, generally rhombic in shape, are similar in structure to cosmoid

scales but have a thicker layer of Ganoin. These scales are found on garfish,

sturgeon, and related fish.

3. Leptoid scales are the most common form of fish scale. Also known as elasmoid

scales, they contain much less bone and are more flexible than other types of

scales. Leptoid scales form rings as they grow, much like the rings found in the

trunks of trees. The age of a fish can be determined by counting the rings in

its scales.
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(a) Cycloid scales are smooth-edged leptoid scales.

(b) Ctenoid scales exhibit rough, serrated edges.

It is worth noting that both cycloid and ctenoid scales may be present on a

single fish, such as the flounder. The shape of individual scales may vary a

great deal on an single fish, as illustrated in Patterson et al.’s recent atlas of 48

fish species [Patterson et al. 2002].

As Osteichthyes fish grow, so do their scales, unlike Chondrichthyes. In some

cases, particularly the Japanese koi, the scales of these bony fish may grow faster

than the fish, leading to scale shedding. Some species of bony fish such as herring

have deciduous scales, meaning their scales easily fall off, usually seasonally or at

certain points in the fish’s life cycle.

f. Sarcopterygii

The Sarcopterygians, also known as lobe-finned fish, represent a pivotal moment in

vertebrate evolution. All four-limbed vertebrates, called tetrapods, are descended

from these fish. Amphibians, reptiles, dinosaurs, birds, and mammals are tetrapods.

Sarcopterygians possessed cosmoid scales, as described previously in subsection e.

2. Amphibians

Amphibians were the first tetrapods, and named for their ability to live on land and

in water. They evolved during the Devonian Period. The only amphibians to possess

scales are caecilians, which grow calcite scales embedded in their skin.
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Fig. 3. Reptile scales come in a variety of shapes. Left - A black-headed python is covered

in smooth, flat scales. Right - A rattlesnake covered in keeled, or ridged, scales.

3. Reptiles

During the late Carboniferous Period, about 310 million years ago, reptiles evolved

from amphibian labyrinthodonts. Reptiles are notable for their scaly skin, a marked

change from the mostly scaleless amphibians. Reptile scales are mostly composed of

keratin and come in a large variety of shapes. Some features of reptile scales include:

1. Imbricate reptile scales overlap similarly to many fish scales.

2. Granular scales appear as bumps on the skin of the reptile.

3. Keeled scales exhibit a ridge down the center. Figure 3 shows an example of

keeled scales on a rattlesnake.

4. Scutes are very large scales which may form bands across the animal such as

crocodiles, or form carapaces in the case of tortoises.

Like fish, reptile scales vary in shape, size, and positioning. Reptile scales may

be arranged in rows, as seen on the boa in Figure 3, form disorganized patterns, or a

combination of both on the animal. While this variation in arrangement also exists

in fish, the pattern variations formed by granular scales and the like are typically less
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ordered than any seen in fish.

The variety of reptile scales makes them a useful identifying characteristic for

each species. Identification of scale patterns is particularly useful for identification

of poisonous and nonpoisonous snakes. Nonpoisonous snakes have two rows of scales

on their belly, while poisonous snakes have a single row of scales along most of their

underside.

Reptile scales serve many additional purposes. They help in heat regulation, a

useful feature for coldblooded animals. Scale coloration serves as useful camouflage, as

well as warning colors which scare away predators. Scales are even used for locomotion

in snakes.

4. Birds

Although there is still debate over the specific origin of class Aves, or birds, many

paleontologists consider Archaeopteryx to be one of the first birds, as a transition from

the reptilian dinosaurs during the Jurassic Period 150 million years ago. Birds possess

thick scales on their feet called scutes. Interestingly, these scutes are chemically very

similar to the large scales found on the bodies of crocodiles. In addition to the scutes,

bird feet also have small scales, called reticulae, on the bottom of the digits of their

feet.

Birds do not exhibit scales apart from those on their feet. However, it is inter-

esting to note that bird feathers seem to be evolutionarily linked to reptile scales.

Some research by Zou et al.[Zou and Niswander 1996] even shows that bird scutes

can be induced to develop into feathers, suggesting a genetic correlation between a

bird’s scales and feathers.
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Fig. 4. Left - A pangolin, the only mammal possessing scales. Right - An armadillo, an-

other armored mammal. Note the hexagonal scale-like pattern on the anterior and

posterior scutes. Image credit: Jerry Segraves [Segraves 2007].

5. Mammals

The first mammals are believed to have appeared about 205 million years ago in the

Triassic Period. There is one mammal possessing scales, the pangolin (Figure 4.) or

scaly anteater. This unusual mammal’s scales are actually modified hairs, made of

keratin. Pangolin scales are particularly effective as body armor, as they can curl

into a ball for defense and the scales have sharp edges in addition to being tough.

Although the pangolin is the only mammal with scales, some other mammals

have scale-like structures. The spiny anteater, or echidna, is covered in spines. Other

mammals possess spines, including the hedgehog and porcupine. Another armored

mammal, the armadillo (Figure 4), is covered in bony scale-like scutes. The ar-

madillo’s scutes also have hexagonal patterns of bumps which appear similar to the

granular scales of reptiles.

6. Plants

Animals are not the only organisms which grow scales. Scale features exist on many

species of plant life. Even plant leaves have scale-like properties, being protective,

overlapping, symmetric features emerging from the surface of the plant; Charles
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Breder notes this commonality in his study on organic symmetry [Breder 1947].

However, for simplicity’s sake we will exclude leaves from consideration as scale-like

features and focus only on external bark structures.

One prehistoric plant had features that earned it the nickname the “scale tree.”

The Lepidodendron, an ancient lycopod, is covered in diamond-shaped leaf scars on its

midsection. Unlike animal scales, these marks are not formed by hardened subsurface

plates, and are instead created by the plant growing and shedding leaves, leaving

indentations in the bark corresponding to leaf stems. Many modern day palm trees

exhibit similar features on their trunk, created by the upward shedding of leaves as

the plant grows.

Fig. 5. Shown above are several species of Madagascar plants covered in scale-like arrange-

ments of thorns, on display at the California Academy of Sciences. From left to right

– Alluaudia montagnacii, Alluaudia ascendens, Alluaudia procera, Didierea mada-

gascariensis.

Other plants form symmetric, scale-like structures on their branches and stems.

Thorny plants such as roses exhibit scale-like properties in their thorns, although

thorns are usually too widely spaced to be classified as scale structures. There do exist

some plants with tightly packed thorns, in particular many species from Madagascar
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such as Alluaudia montagnacii and Alluaudia ascendens, shown in Figure 5. These

tightly packed thorns bear many similarities to scales, with the primary difference

being that their shapes are less flat and imbricating than typical scales. Instead of

forming a hard, ablative surface, the thorns of these plants form a pointy, piercing

surface.

We note at this time an interesting two-fold property of scales which will be

discussed further in later chapters. This property is the description of scales by their

arrangement on a surface, and by their local shape. The arrangement of scales, called

the squamation, describes where scales are positioned on the surface, and the local

shape describes the shape of a single scale at its position on the surface, as well

as how it connects to neighboring scales. What is interesting about this is that the

arrangement of the thorns on the aforementioned Madagascar species follows the same

patterns as the arrangements of animal scales. Only the local shape of the thorns

differs from animal scales.

B. Artistic History

1. Traditional Artwork

In addition to being a common biological feature, scales also feature prominently

in artwork, as they provide a visually striking way to add detail to objects. Scales

are depicted by many techniques including circular or crosshatched shapes for fish,

granular or pointed scales for reptiles, and so on. Scales appear both directly on

figures such as fish, animals and humanoid characters, and as patterns. Abstract

tiled scale patterns also appear frequently, and are especially prominent on pottery

throughout human history.
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Fig. 6. A Chinese ink illustration of dragons covered in scales. From The Nine Dragons by

Chen Rong, ca. 1244 AD [Rong 1244].

a. Fish

Fish hold significance in many human cultures, being an easily attainable and prolific

food source. Fish scales often form striking, colorful patterns, so the representation of

these scales in artwork is a natural transition. Many forms of art directly incorporate

real fish scales into jewelry or clothing.

The fish is an important religious symbol, and is represented often in religious

artwork. The ancient Philistine fertility god Dagon is depicted as a merman, with half

his body fish-like and covered in scales. The Hindu god Vishnu’s first incarnation,

Matsya, is also represented as a merman or sometimes an entire fish. The merman or

mermaid motif, often representing deities, also occurs in the artwork of the Assyrian,

Babylonian, Sumerian and Phoenician cultures. The motif appears in many places

in Greek mythology, representing Triton, Glaucus, Pan, and other gods. Traditional

folklore of many other world cultures also depict merfolk as magical creatures.

In addition to religious importance, fish are revered in many Asiatic cultures and
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their artwork, particularly carp. Both Chinese and Japanese tradition consider the

carp to represent luck, and in the Mandarin language the words “fish” and “abun-

dance” are pronounced the same. Fish are prolific in east Asian artwork, with par-

ticular emphasis on their scales.

b. Reptiles

Reptiles also appear in many forms of art. Scaly reptilians often have significant

mythological meanings. Snakes or serpents are represented in many different cultural

mythologies and have many connotations, from representing knowledge and tempta-

tion in the Christian Bible, to creation stories in the Chinese, Egyptian and Greek

cultures where a snake gives birth to humans and animals. Many other cultures incor-

porate serpent symbology into their beliefs. Serpent symbology varies considerably

across cultures with representations of good, evil, and ambivalence, and are one of

the most widespread, oldest mythological symbols. Many forms of religious artwork

incorporate serpents, and most representations feature illustration of scales on the

body of the serpent.

Tied to the depiction of serpents in artwork is images of scale-covered dragons.

Many medieval European cultures directly correlated dragons and snakes, often mix-

ing descriptions of the two. For example the Old English poem Beowulf describes a

creature with both the word for dragon, draca, and the word for serpent, wyrm. Many

European cultures interchanged descriptions of dragons and serpents, always referring

to evil, scaled mythical beasts. Artwork of these creatures usually show aggressive

forms with sharp features, with corresponding sharpness shown in the scales.

East Asian depictions of dragons, as seen in Figure 6, differ fromWestern dragons

primarily by being representations of good rather than evil. Asian dragons appear as

large, snakelike, scale-covered creatures similar to their European counterparts, but
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otherwise exhibit different symbolism. While the Western dragons are associated with

evil, fire, poison, and treasure-hoarding, Asian dragons typically symbolize strength

and luck. Dragon symbology pervades east Asian culture, with examples of artwork

dating back to the Neolithic Yangshao culture in China over six thousand years ago.

The scales of Asian dragons are said to represent the scales of a carp, and they are

typically depicted in art as flat, circular shapes. The prominence of dragons and carp

in East Asian artwork persists today.

c. Modern Art

In addition to scales appearing on animals in artwork, scales also occur in modern

abstract and mathematical art, as well as in architecture. The symmetric, patterned

nature of scales lends to the use of scales as textures and mosaics.

Because scales tend to grow closely together on animals, they form packing pat-

terns. As the animal grows, this pattern may change through the introduction of new

scales in cartilaginous fish (Section A, subsection 1d), or as the animal sheds scales.

These squamations may be very ordered and form hexagonal or square patterns, or

disordered such as those of skates and rays. These packing patterns, especially rhom-

bic and hexagonal shapes, are often adapted to artistic tilings. Less organized pat-

terns tend to form blue noise distributions, and can be represented through Voronoi

tessellations.

Scale patterns, especially those based off cycloid scales (Section A, subsection 1e),

are commonly seen in architectural designs. Many varieties of scale-based floor and

wall tiles exist. Roof shingles are generally imbricated to weatherproof to avoid

water pooling. Because most types of animal scales are also tileable, symmetric, and

imbricated, using shingles based on fish scales is intuitive. The architectural work of

Frank Gehry is particularly inspired by fish and their scales.
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One noted use of scales in a more abstract manner is in Islamic artwork. While

fish and other animals occasionally appear, Islamic artwork historically focused on

producing interesting geometric patterns. According to Denny [Denny 1974], during

the sixteenth century in the Ottoman Empire there was a particular focus on imitat-

ing Chinese blue-and-white porcelain. This naturally led to imitation of geometric

patterns present in Chinese artwork, especially scale patterns.

The popular Dutch artist M.C. Escher expressed a particular interest in scaly

animals. Much of his art involves mathematically-inspired patterns of fish, lizards,

and snakes. In particular, Escher’s Fish and Scales depicts a recursive tessellation of

fish evolving from the scales of a larger fish.

Some artwork incorporates actual animal scales. Many articles of clothing, in par-

ticular jackets, purses and boots, use scaly reptile skin for its attractive appearance.

A particular culture in northern China, the Hezhe, makes garments out of fish skin.

Even when actual animal scales are not incorporated into clothing, scale-like shapes

are often integrated into clothing to make aesthetically pleasing patterns. Many types

of jewelry also use artificial and natural scales. Popular fashion’s widespread usage

of scales attests to their visually pleasing nature.

d. Computer Graphics Artwork

Scales are often implemented in Computer Graphics, or CG, artwork, typically emerg-

ing as skin texturing for characters. A variety of scale-covered CG animals commonly

appear in commercial art, including dragons, snakes, fish, dinosaurs, lizards, and

many more. Many films include scaly animals as main characters, including dragons

in Dragonheart, Reign of Fire, Harry Potter and the Goblet of Fire and How to Train

Your Dragon, many dinosaurs in Jurassic Park and Ice Age 3, fish in Finding Nemo,

and so on.
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The scales on these creatures are usually created by artists manually painting

or modeling the scales. This process is painstaking, as a creature may be covered by

thousands of scales. Painted scales are often turned into displacement maps to add

additional shape to the scales. Larger scales may be modeled directly on the surface.

While there are a variety of artistic techniques for creating 3D scales, there has

been little formal exploration of the subject. Most techniques are specifically designed

for a single character, and not easily generalizable to other shapes.

C. Military History

Fig. 7. Examples of scale armor. Left - Gold scale parade armor worn by a Scythian royal.

The armor consists of overlapping gold scales. Photo credit: ldot [Ldot 2007] Middle

- Depiction of a battle against Sarmatians wearing scale armor. From Trajan’s

Column [Cichorius 1896]. Right - Roman scale armor, called “Lorica Squamata”.

Photo credit: Gaius Cornelius [Cornelius 2005].

As scales form a natural layer of armor for animals, it is unsurprising that they

prove useful in designing military armor. Armor covered in scales bends to conform

to the body of a soldier, deflecting attacks without sacrificing mobility. The self-

similar, tileable nature of scales also simplifies manufacture of the armor, as scales

can be mass produced and fitted to any underlying shape. The individual scales are

produced separately, then typically woven together and attached to an underlying

armor.
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The use of scales in protective armor dates back at least to the ancient Persians.

Herodotus also makes mention of Persian scaled armor, describing colored tunics

covered in iron fish scales [Laufer 1914] [Herodotus 1954], and Persian Elamite artwork

as early as the third millennium BCE depicts people wearing armor covered in scales.

During the first millennium BCE a nation of nomads, the Scythians, rose to

prominence in the region of modern day Iran. The Scythians used many forms of

scale armor to outfit their cavalry. They sewed iron and bronze scales onto leather

armor which covered the neck to hips, eventually improving the armor to cover the

shoulders and helmet. Scale armor was also adapted to fit horses. A related group

of Iranian people during this era, the Sarmatians, were called “lizard people” for

their distinctively reptilian scale armor. Figure 7 shows examples of Sarmatian and

Scythian armors.

Scale armor remained prominent throughout the reign of the Roman Empire,

providing an alternative to mail armor. Regular troops wore a variety of scale armor

named lorica squamata (see Figure 7), while officers wore a hybrid mail covered in

very small scales, called lorica plumata [Bishop and Coulston 1993]. In the Byzantine

Empire, scale armor evolved into lamellar armor, formed from arrangements of small

plates.

Armor made of scales remained popular long after the decline of the Roman

Empire, finally falling out of fashion during the Middle Ages. Some forms of scale

armor persisted elsewhere, such as the Japanese gyorin kozane worn by samurai (see

Figure 7), and Indian pangolin-scale armor.

Although scale armour declined in popularity with the advent of modern warfare,

using scales to provide flexible protection persists. One example of modern scale

armor is Dragon Skin, seen in Figure 8, a ballistic vest produced by the Pinnacle

Armor corporation. These vests contain an arrangement of ceramic plates designed
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Fig. 8. X-ray of Dragon Skin armor. Ceramic bullet-proof plates overlap in a scale-like

pattern to provide flexible protection. Image source: PEO Soldier [U.S. Army 2010].

to withstand small arms fire, and can reportedly provide protection against grenades.
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CHAPTER III

PREVIOUS AND RELATED WORK

Scale creation for Computer Graphics is a relatively unexplored field. Despite the

constant usage of scales in a variety of CG media, there is little formal or detailed

exploration of the subject matter. We seek to bridge this gap by applying concepts

from related areas of CG graphics to our scale synthesis.

A. Biological Phenomena in Computer Graphics

While scales are a relatively unexplored topic in Computer Graphics, many other

features of animals do. Many external features such as hair, feathers, or skin are

shared by entire classes of vertebrate animals, and techniques for representing these

features are invaluable to artists. Although the field of scale generation remains

fairly small, we seek to apply CG modeling of other biological concepts towards that

of scales.

Current representations of living organisms in CG focus on two kingdoms, ani-

mals and plants. One explanation for this focus is that plants and animals are the

forms of life we are most familiar with. Other kingdoms such as fungi are often micro-

scopic or amorphous and difficult to recognize, with mushrooms being the only form of

fungus easily recognized by a layman. While there is some work in graphics visualiza-

tion of fungi such as Meskkauskas et al.’s simulation of hyphal growth [Meskkauskas

et al. 2004], most CG work involving bacteria and fungi focuses on analysis and

identification, not generation.
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1. Plants

Representing botanical life is a popular topic in Computer Graphics. Plants, espe-

cially trees, provide people with food, raw construction materials, decoration, and

much more. Plants play a significant role in peoples’ lives, and as such they become

an important element to represent in Computer Graphics.

a. Trees

Trees remain a significant area of Computer Graphics work, both for artistic and

architectural purposes. Ulam [Ulam 1962] and Honda [HONDA 1971] developed

seminal methods for generating tree shapes. Honda’s work creates trees explicitly

through recursive branching, whereas Ulam’s develops a volumetric tree shape by self-

organization of many units competing for space. Many different techniques for tree

modeling now exist such as a recent interactive tree-generation method by Palubicki

et al. Palubicki [Palubicki et al. 2009], and tree generation remains an active topic.

A subset of tree modeling which relates to our scale creation is bark synthesis.

Bark of trees forms a variety of hardened, protective, protruding shapes packed on

the surface of a tree similar to scales. As mentioned previously, the bark of some trees

qualify as scales or very scale-like. These surface structures are typically implemented

as non-overlapping heightmaps such in Wang et al.’s bark model [Wang et al. 2003].

Hart et al.’s early work in bark [Hart and Baker 1996] also utilizes a force flow field

which directs bark growth, similar to the concept of water flow directing fish scales.

b. Leaves

Representing plant leaves is another useful graphics topic. Leaves and flower petals,

which are actually modified leaves, are used in a variety of artistic media for decorative
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purposes. Leaves occur on plants in high numbers and are highly visible with flexible

flat shapes, making them an interesting challenge to model. The concept of a leaf as

a self-similar shape repeating across the surface of a tree ties them closely to the idea

of a scale.

Much of the work in leaf modeling focuses on approximating their light reflectance

and geometry. As rendering is outside the scope of our work, we will mention geo-

metric methods for leaf generation. There exist a variety of techniques to recreate

the shape of leaves including hinged polygons [Bloomenthal 1985], recursive tech-

niques such as Demko et al.’s fractals [Demko et al. 1985] and Prusinkiewicz et al.’s

L-systems [Prusinkiewicz et al. 1988], and physically based methods such as Wang

et al.’s leaf growth method [Wang et al. 2004]. Some newer work by Runions et

al. [Runions et al. 2005] focuses on representing the internal venation structures of

leaves, which then directs the shape of the leaf’s silhouette.

The variety of methods for representing leaves illustrates the diversity of ap-

proaches modeling a surface feature. Although the flat shape of leaves is inappropri-

ate for the thicker shape of scales, they provide insight into using a repeating model

based on a template to cover a surface.

2. Animals

The significance of animals in Computer Graphics is obvious, as humans appear in

the majority of artistic media. Representing other animals, particularly vertebrates,

is important as well. Creating a plausible graphical representation of an animal is not

an easy task, due to the enormous complexity of biological life. However, there are

many useful techniques in CG representations of both human and non-human animal

features. There are many methods which focus on the skin and skin-related structures.

Because we seek to introduce another skin-related structure for CG modeling, it is
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worth examining these related methods.

a. Skin

Accurately depicting animal skin, especially human skin, is particularly difficult. Hu-

mans have a detailed, instinctive understanding of the appearance of skin, and subtle

inaccuracies in artificial skin are detected easily. Because skin is actually a semi-

transparent flexible tissue matrix, simulating the appearance of skin can be quite

complex. Although most skin representations concentrate on rendering skin, some

focus on the geometric properties of skin such as Wu et al.’s work on wrinkles [Wu

et al. 1997] and Takayuki et al.’s exploration of reptile skin [Itoh et al. 2003].

b. Hair

Related to the topic of skin is the creation of hair. Most mammalian characters will

have some hair partially or fully covering their body. A covering of hair may contain

millions of individual hairs, all of which may be long, flexible strands with interesting

optical properties. Because of this high number of hairs, individually modeling each

hair is prohibitively difficult. A variety of techniques exist to handle the high number

of elements in hair simulation. These methods are collected in a recent survey by

Ward et al. [Ward et al. 2007].

The problem of hair simulation is related closely to that of scale creation. Both

are biological features which grow as large numbers of self-similar elements on the skin

of living organisms. In the case of the mammalian pangolin, its scales are actually

hairs, blurring the distinction between the two. However, a difference between most

CG depictions of hair and scales lies in the hair shape’s root or anchor to the skin.

Because hairs are filament shapes, and emerge from follicles in the skin, the hair

shape itself is not integrated into the underlying surface. The distribution of the hair
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follicles, typically using a random or Poisson distribution, is examined in a study by

Streit and Heidrich [Streit and Heidrich 2001].

c. Feathers

Somewhere between scale and hair creation lies feather modeling. Similar to hair and

scales, feathers form in great numbers as an epidermal growth on animals. Like scales,

feathers form flattened, overlapping shapes. Unlike scales, feathers emerge fully from

follicles in the skin much the same way that hair does, and so integration with the

skin is less important.

Based upon Dai et al.’s preliminary investigation into feather synthesis [Dai et al.

1995], Chen et al.’s work on creating realistic feathers [Chen et al. 2002] laid major

groundwork for feather simulation. Streit’s work [Streit 2004], later expanded upon

by Bangay [Bangay 2007], explores feather coat morphogenesis. Other work further

improves feather modeling, such as Weber et al.’s method of collision avoidance [We-

ber and Gornowicz 2009]. Beyond that, the body of work remains fairly small. The

subject of feathers for CG graphics remains active, however, and many major CG

effects companies still explore the topic through proprietary research.

d. The Retina of the Eye

Some work in representing biological phenomena focuses on more specific topics.

Deering’s work on synthesizing the human eye’s retina[Deering 2005] is one exam-

ple. The technique simulates the distribution of cones in the human eye through a

physically-based growing process where cell positions shift to minimize a repulsion

energy.

Eye simulation is particularly notable because it directly ties the concept of

Poisson distributions to that of a biological feature. Yellott’s work [Yellott 1983]
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with rhesus monkey and human retinas shows that the cells of the retinas form a

Poisson-disk distribution. In this distribution, each cell tends to position itself at a

similar minimum distance from its neighbor cells. This dense packing approximates

blue noise, and creates good visual resolution for the eye.

B. Surface Patterns for Computer Graphics

To develop a method which creates scales on a surface, we look at CG surface synthesis

techniques. There are many ways to depict shapes on the on a polygonal model. The

most common approach to representing detail on a surface is by utilizing texture

mappings.

1. Surface Geometry

Typical methods for generating scale shapes involve extruding the geometry of a

surface using displacement maps [Cook 1984], and variations of displacement such as

height and tilt textures [Andersen et al. 2009]. Displacements prove useful for adding

geometric detail to a surface while retaining manifold topology. However, they are

limited because they cannot reproduce high genus surface details, and have trouble

reproducing long, thin displacements. Very recent work by Takayama et al. [Takayama

et al. 2011] allows mapping of high genus surfaces, but is concerned with mesh cloning

of large patches more than synthesis.

Recent work in shell maps [Porumbescu et al. 2005], mesh quilting [Zhou et al.

2006], and volume texturing techniques [Peng et al. 2004] address some of the limita-

tions of displacements and allows complex geometry to be generated in a parameter-

ized space surrounding a mesh surface. However, these techniques are derived from

a 2D parameterization of a set of charts covering the mesh. These charts each cover
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large portions of the mesh and create distortion in the scale generation. In contrast,

our technique, based on a centroidal Voronoi tessellation, does not require such a

parameterization.

2. Pattern Synthesis

Methods which alter the geometry of a surface provide the framework for creating

surface features, but additional work is needed to guide the surface alteration. For

example, a displacement shader may describe how to create a bump on a surface,

but does not know where to place the bump. Pattern synthesis methods provide the

information which guides this placement of features.

Although there are many different methods for pattern generation, we are pri-

marily interested in creating point-based patterns. In particular, Fleischer et al.’s cel-

lular texture synthesis [Fleischer et al. 1995] provides a biologically-inspired method

which grows a pattern of points on a surface. Another concept which proves useful in

creating a natural pattern of points on a surface is the centroidal Voronoi tessellation.

Centroidal Voronoi tessellations, or CVTs, generate well-spaced distributions of

points [Du et al. 1999] [Du et al. 2002]. They have a variety of applications, including

Deering’s retina synthesis [Deering 2005] and Streit’s feather coat generation [Streit

2004]. CVTs partition a mesh into well-formed regions, as utilized in Cohen-Steiner et

al. [Cohen-Steiner et al. 2004], without requiring a 2d parameterization of the surface.

Our method derives scale regions, each representing a scale and its surrounding skin,

from an anisotropic CVT. This CVT provides positions for scales and defines the

shape of each region to be replaced with scale geometry. Further work involving

capacity-constrained CVTs [Balzer et al. 2009] constrains the size of Voronoi cells,

and Lp CVTs [Lévy and Liu 2010] provide a method for creating stable quadrilateral

Voronoi regions. Although CVTs are very expensive to compute, there are ongoing
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efforts to improve CVT computation such as Liu et al.’s recent optimization work [Liu

et al. 2009].

While a CVT provides us with positions for scales, we also need scale orienta-

tions. Vector fields are a useful tool for defining orientations on a surface, and can

guide 2D texture synthesis as shown in [Ying et al. 2001; Fisher et al. 2007; Xu et al.

2009]. These fields also aid in generating 3D textures [Bhat et al. 2004], in geometry

orientation as shown by Zhou et al [Zhou et al. 2006], and texture orientation such

as shown by Praun et al [Praun et al. 2000]. Additional work in this area includes

improved control over vector fields [Zhang et al. 2006] and describing rotational sym-

metries on surfaces [Palacios and Zhang 2007; Ray et al. 2008]. Our work uses a

surface vector field to determine orientation of scales, as well as for anisotropy in the

Voronoi tessellation.
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CHAPTER IV

METHODOLOGY

A. Scales: Form and Function

Scales originated as a natural consequence of biological evolution. Many animals and

some plants grow them as a form of external protection. These biological scales come

in many shapes and sizes. The arrangement of scales on an animal’s body, called its

squamation, varies from species to species. Even the chemical composition of scales

varies between different hardened materials such as a bone, ganoin, or keratin.

A common feature of scales is that they grow from the outer layers of tissue of an

organism. In animals the scales grow from the dermis or epidermis. This embedding

forms a connective network of scales, functioning as a flexible exoskeleton. Each scale

can be viewed both as a distinct element and as part of the connected surface of the

scale skeleton.

The connected, embedded nature of scales sets them apart from other protective,

symmetric external animal features such as hair and feathers. While hair or feathers

are distinct from the skin, scales become part of the skin. In some animals, scales

may partially emerge or remain fully submerged under the skin, where instead of

directly observing the scales we only see the surrounding skin. As a consequence,

representations of scales should consider not only the shape and positions of scales,

but their connectivity with the skin or surface of an object.

Most types of scales are oriented in a certain direction. The reasons for this

directionality are many. Fish benefit from improved laminar flow from scales direct-

ing the flow of water around their bodies, and both the shape and orientation vary

depending on the flow of water, habits of the fish, and other environmental factors.
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Scale orientations also influence flexibility. While the segmented nature of scales

provides more flexibility than rigid armor, certain movements are restricted based on

orientation of the scale. For example, highly concave deformations may be restricted

due to scales being flattened against each other or bunched together, creating restrict-

ing layers.

1. Squamation

Fig. 9. Illustration of hexagonal tiling, and the three principal directions of its dual. Kar-

dong’s work[Kardong 1998] notes these directions appear on many fish.

Scales form both ordered arrangements and disorganized patterns on organisms.

These patterns, called squamations, are unique to each species.

a. Ordered Squamations

Squamations tend to organize into alternating rows, especially on fish. This row al-

ternation forms hexagonal tessellations across the animal. This patterning is a form
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of packing; as scales are pushed against each other under the skin as the animal ma-

tures, scales will typically organize into hexagonal arrangements. Kenneth Kardong

makes note of this pattern, mentioning that fish scales tend to follow three principal

directions[Kardong 1998]. Figure 9 illustrates the relationship between a hexagonal

tiling and these three directions.

b. Disordered Squamations

Fig. 10. Example of disordered squamation. The granular scales of anole lizards grow in a

pattern resembling a blue noise distribution.

Squamations are not always orderly. Some fish and reptiles such as the anole lizard

in Figure 10 exhibit tessellations of scales that appear to be randomly distributed

on the surface, instead of forming distinct rows like the ordered squamations. The

disordered distribution is not completely random as each scale occupies space and

pushes against the other scales, creating a distribution similar to blue noise. If we

consider scales to be roughly ellipsoid shapes, their cross-sections as they emerge from

the skin are ellipses. The scales are pushed close to each other, with some tissue in
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between, in a kind of elliptical packing. This type of Poisson distribution occurs often

in biology, such as in the cells of animal eyes[Deering 2005].

c. Squamation Synthesis

Creating a natural squamation is the first step in our technique. We will present a

plausible arrangement of scales on the surface of a mesh with good spacing. This

squamation will position scales in a distribution tending towards hexagonal patterns.

Fig. 11. Left - a white ruffle sponge, an amorphous animal exhibiting very little symmetry.

Middle - a starfish, showing radial symmetry. Right - a Caribbean spiny lobster,

exhibiting bilateral symmetry. Also note the repetitive symmetry of its 6 legs and

tail plates. Photo credits: NOAA Photo Library [NOAA 2011].

2. Symmetry

Symmetry plays a significant role in the growth of multicellular animals. The only

animals with primarily asymmetric forms are phylum Porifera, the sponges. For other

animals, symmetry plays a significant role in their development and locomotion.

a. Biological Symmetry

Many primitive forms of sea life exhibit radial symmetry. Echinoderms, such as

starfish and sea cucumbers, form radially symmetric arms; the bodies of starfish such

as seen in Figure 11 are so symmetric that an entire animal can regenerate from
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a single arm. Cnidarians, including jellyfish, coral, and sea anemones, also display

a high degree of radial symmetry. Their bodies form highly symmetric dome and

cylinder shapes, and have tentacles arranged into rings. Note that although coral

colonies typically construct very asymmetric exoskeletons, the polyp itself is highly

symmetric.

Plants also exhibit many forms of radial symmetry. The stems and trunks of

plants are usually symmetric, as are most flowers.

The form of animal symmetry we are most familiar with is bilateral symmetry.

All vertebrates, including humans, are bilaterally symmetric with left and right sides

mirroring each other such as the lobster in Figure 11. This symmetry is important

for balanced locomotion in vertebrates, and redundancy for surviving injury such as

loss of an eye.

b. Repetitive Parts

A more complex symmetry evident in organisms is their repetitive parts. Repetitive

symmetry creates similar features on an animal or plant. Rather than the mirrored

duplication of features due to bilateral or radial symmetry, body parts with repetitive

symmetry appear to be translated copies of each other.

An obvious example for repetitive symmetry on plants is leaves. The leaves on

a plant are morphologically similar, and play an important role in identification of

species. Leaves are so self-similar that a plant can be identified using one single leaf.

Scales fit into this category of symmetry due to their self-similarity. Each scale

on an animal has similar features, even if the size and shape varies slightly. Like

plants and their leaves, species of animals can often be identified by a single scale.

We utilize this repetitive symmetry in our technique to create multiple scales from

a single template. Instead of having to create each scale individually, we duplicate
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and slightly modify a single artist-created model to cover a surface. In this manner

the artist can concentrate effort into creating a single high quality scale.

3. Imbrication

Fig. 12. Left - an optimal circle packing, without overlap. Notice the unavoidable gaps

between circles. Right - Imbrication of circles removes gaps, providing full coverage

of the surface.

Imbrication, or the overlapping of parts as seen in Figure 12, describes one problem

with creation of many animal scales. As scales begin growing deep in the skin of an

animal, they grow larger and larger until they overlap each other. This overlapping

causes scales to tilt and grow at an upward angle, contributing to their eventual

emergence from the skin. The scales tilt in the same direction, typically emerging

upwards pointing towards the posterior. Not all animal scales imbricate, either from

not emerging fully from the skin or not growing large enough to overlap.

Non-imbricating scales have a disadvantage in flexibility because they cannot

move or slide without exposing weaknesses. Because of the lack of overlap, non-

imbricating scales often deform together in a mosaic or fuse together. In many cases,

the fusing of scales forms scutes or plates, as seen on the placoderms in Chapter II.

These fused structures vary wildly from animal to animal, and tend to shape specifi-
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cally to each species’s body to form inflexible carapaces.

Imbrication provides significant motivation for our work. Typical techniques

for creating scales use displacement maps to generate shapes. These mappings do

not allow overlap of shapes, causing an undesirable merging effect on the surface.

Although height-and-tilt textures[Andersen et al. 2009] allow overlap, it is unclear if

they will work for highly anisotropic scale shapes, especially thin plates. Our method

allows for unrestricted overlap by smoothly connecting the bases of scales together.

The direction of overlap depends upon the orientation of the scale.

4. Orientation

Scales are anisotropic by nature, and their orientation plays an important role. The

orientation of fish scales significantly affects the laminar flow of water around the

animal. To reduce friction with water, fish scales point towards the posterior in the

direction of water flow. In fast-swimming species, and those living in fast-flowing

rivers, the shape of the scale is also flattened and smoothed to assist locomotion.

The orientation of fish scales conforms to the lateral line, a feature common to

most bony fishes. The lateral line, which appears as a curved line along the flank of

a fish, serves as a sensory organ. The lateral line is merely an external feature of a

complex system of subdermal sensing organs. The lateral line corresponds to a row of

scales on the fish, which are oriented tangentially to the line. Lateral line scales differ

from other scales, having bony tubercles that connect them to the lateral system that

appear as bumps or small holes. As the animal grows, lateral line scales tend to grow

and emerge first, with adjacent scales appearing later in a radiating fashion.

As with other aspects of living creatures, there is a great deal of variety in lateral

lines. In addition to being unique to fish, lateral lines appear in a variety of shapes.

Some lateral lines appear on a fish’s dorsal side, some on the ventral side. Some
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species of fish have several lateral lines, and a few such as herrings do not have an

outwardly visible lateral line. The vast majority of fish, however, have a single lateral

line and begin scale growth along the line near the caudal fin.

Reptiles and other scaly animals do not exhibit lateral lines. The bodies of these

more advanced vertebrates have correspondingly more complex scale patterns, and

describing them can be ponderous. The closest analog to a lateral line on a reptile

might be backbone scales. Many species of reptile have a row of scales corresponding

directly to the spine, or multiple rows of scales along the back of the animal.

The necessity of orientations for scales motivates our technique’s directional field

and scale spawning algorithm. We utilize the concept of a lateral line to give an artist

control over this directional field as well as the overall squamation. The artist draws a

lateral line on a surface which constrains the directional field, and guides the growth

of new scales on the surface. We represent a set of scales on the lateral line in order

to constrain the squamation.
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CHAPTER V

SCALE CREATION THROUGH SURFACE REPLACEMENT

To create scales on a model, we divide the problem into two steps. The first step

concerns itself with global properties of the scales. These properties include the

segmentation of a surface into a squamation which we will position and build the

scales from and a directional field which determines orientation of each scale.

Our second step synthesizes each scale. We perform a piecewise replacement of

the mesh’s surface until it is covered in scales. Each scale’s position, orientation, and

connectivity information is inherited from the first global step of our method.

A. Squamation

The pattern of scales on the skin of an animal is called squamation [Sire and Ar-

nulf 1990]. Not only do shapes of individual scales vary from animal to animal, but

squamations vary as well. Due to this variety, we wish to develop a general pur-

pose technique for creating a plausible squamation on a mesh’s surface. Using the

squamation, our method will grow one scale from each patch on the surface.

In Chapter IV, we observe that natural squamations tend towards hexagonal

arrangements. These packed hexagonal patterns are reminiscent of Voronoi diagrams

of well-distributed points. Specifically, these patterns are similar to those produced

by CVTs [Du et al. 1999] where the points in the distribution lie at the centroid of

their Voronoi region. These tessellations tend to create hexagonal structures and have

*Reprinted with permission from ”Scales and Scale-like Structures” by Eric Lan-
dreneau and Scott Schaefer, 2010, Computer Graphics Forum, 29, 1653–1660, Copy-
right 2010 by Eric Landreneau.
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been used to describe reptile skin[Itoh et al. 2003], feather coats [Streit 2004] as well

as other natural phenomena. Because they also do not require a 2D parameterization,

as discussed in Chapter III, CVTs are ideal candidates for modeling the squamation.

We represent scales as points on the surface. These points correspond to Voronoi

sites, each located at the centroid of a corresponding Voronoi region. In this way,

each scale corresponds its own small portion of the surface.

For each scale, we also associate with that scale a direction vector ~ox, which

is defined to be in the tangent plane of the surface. We then define a orthonormal

coordinate frame at the scale by setting ~oz to be the normal of the surface and

~oy = ~oz × ~ox. This frame will orient each scale on the surface.

We define each scale’s position and direction as its scale-site. The Voronoi di-

agram of the scale-sites restricted to the surface creates a Voronoi cell associated

with each site. To approximate this Voronoi tessellation on the surface, we utilize a

method similar to Teichmann et al.’s [Teichmann and Teller Teichmann and Teller].

1. Voronoi Tessellation Creation

To create this Voronoi tessellation, we segment a polygonal mesh into Voronoi regions.

Each Voronoi region corresponds to a Voronoi site, each of which is identified by a

unique, random color for easy user visualization These site colors are first assigned

to vertices of the mesh. For each vertex in the mesh, we evaluate a distance metric

based on the distance between the vertex and a site. We assign the color of the site

with the smallest distance metric to the vertex.

This vertex coloring process gives a simple approximation of the Voronoi tessel-

lation, but has some issues. The precision of the tessellation is dependent upon the

original topology of the mesh. Surfaces with more polygons and vertices will approx-

imate the Voronoi regions better, but region edges may still have very jagged edges.
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Fig. 13. Faces split and color according to three combinations of vertex colors – one-color

(Top), two-color (Middle), and three-color (Bottom).

Because we are segmenting the surface we must color not only vertices but faces,

but each face along a boundary has an undefined color due to its vertex colors not

matching. To better approximate Voronoi region boundaries, we will subdivide these

boundary faces based on observations made by Cohen-Steiner et al.’s work [Cohen-

Steiner et al. 2004].

We observe that triangles of the mesh fall into three classifications – single-color,

two-color, and three-color. Single-color faces are faces in which all vertices share

the same color. We treat these faces as non-boundary, and assign them associated

site-color.

Two-color faces have two vertices sharing a color. The edges shared by different

colored vertices split the triangle into three smaller triangles, according to the middle

diagram in Figure 13. This split forms three triangles as shown in the figure. This
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splitting creates two new vertices, each on an edge with differently-colored vertices.

We use a robust binary splitting operation to find the split point on such an edge

which will work with any given distance metric. The reason for using this metric is

to allow for altering the distance metric from isotropic to anisotropic, a process we

discuss later in this chapter.

We perform the binary split of the two-color edges by evaluating the metric for

both Voronoi sites at the midpoint of the line. This splits the line into two segments,

one of which is same-colored at endpoints and the other which is differently-colored.

We then repeat the process for the segment with differently-colored endpoints in a

recursive manner, converging to a medial point which lies along the boundary between

the two sites. We found in practice that using four or more recursions produced

visually satisfactory results, although the level of recursion is dependent upon the

coarseness of the original mesh.

Three-color faces contain three differently-colored vertices. We split this type of

face into six triangles in the manner illustrated by the bottom diagram in Figure 13.

This process requires creation of three new edge vertices and one interior vertex.

We find the edge vertices using the same binary splitting operation as the two-color

faces. To find the interior vertex, we must subdivide the surface of the triangle

rather than an edge, so we use a recursive face-splitting operation inspired by Loop

subdivision [Loop 1987].

The recursive face-splitting operation first breaks a triangle into four smaller

triangles by creating edges between midpoints of the triangle’s boundary edges. We

evaluate the distance metric for all three sites at the centroid of each of these triangles.

To choose which of the corresponding triangles to choose for recursion, we make

the following observation about the Voronoi boundary. The medial point we are

trying to find is the point at which all three Voronoi sites have an identical distance
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metric. It then follows that the difference between each pair of site metrics is also

minimized. We sum the differences of these distance metrics to find a combined

distance approximation:

d̂(p, s0, s1, s2) = |d(p, s0)− d(p, s1)|+|d(p, s1)− d(p, s2)|+|d(p, s0)− d(p, s2)| (5.1)

where d(p, s) is the distance metric of site s at point p, and d̂(p, s0, s1, s2) is our

combined distance metric for three sites. The concern here is not to provide an exact

computation, as the exact medial point may lie outside the triangle. We merely desire

a point that lies within the triangle boundary, with little difference between distance

metrics, and whose calculation can be performed using an altered distance metric,

such as the distance to a line. We choose the triangle corresponding to the centroid

with the lowest combined distance, and recurse until we find a point.

With faces split and assigned to Voronoi sites, we now have an approximate

Voronoi tessellation of the surface. We can find the boundaries of Voronoi regions

by merging adjacent same-colored faces, or find the centroid of each Voronoi region

by summing the centroids of each triangle contained in that region, weighted by the

area of said triangle. Now that we can segment the surface given a set of scale-sites,

we need a method that positions and places the sites to produce a good squamation.

2. Lateral Line

A simple way to form a squamation is by simply randomly distributing scales (as

Voronoi sites) on a surface and use Lloyd’s algorithm [Lloyd 1982] to obtain a cen-

troidal Voronoi tessellation. This process generates evenly distributed, mostly hexag-

onal arrangements of scales, but we desire more control over the squamation. In

particular, we wish to provide a mechanism that gives an artist some control over the

shape and orientation of the squamation.
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Fig. 14. An illustration of Leucichthys sisco huronius, a Lake Huron herring. Red arrows

denote the begin and end of the lateral line, which is highlighted to improve clarity.

Image Credit: Charles B. Hudson, NOAA Photo Library [NOAA 2011].

Our inspiration for this control comes from a common anatomical feature of fish

called the lateral line. Scale morphogenesis in bony fish often follows the lateral

line [Brown 1957]. This lateral line corresponds to a row of scales across the body

of a fish, and the squamation will conform to this shape. Figure 14 illustrates a lake

herring’s lateral line, seen as a faint line across the middle of the body.

Just as a fish’s lateral line guides the growth of its scales, we employ an artist-

drawn lateral line to guide our squamation. Given a model, the artist draws a single

stroke in image space. We project this line from image space onto the model and create

scale-sites by sampling this line at intervals of γ in model space. This parameter γ

controls the approximate size of the scales and is user-defined. For each of these

scale-sites we also associate an orientation vector ~ox by sampling the derivative of

the lateral line curve, projecting this vector into the tangent plane of the surface and

renormalizing.

These lateral line scale-sites serve as seed points for the rest of the scales. We pro-
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vide a simple, coarse seeding algorithm that creates a roughly hexagonal distribution

of scales over the surface. This initial distribution will later be refined in subsection 4.

However, the initial distribution of sites affects convergence speed and quality and we

have found that this approximately hexagonal seeding pattern produces better results

in practice than random seeds.

Fig. 15. Scale-sites spawn in 6 principal directions. Arrows in red denote scale-site orien-

tations, and blue arrows represent spawning directions.

Starting with the scale-sites on the lateral line, we perform a hexagonal expan-

sion, shown in Figure 15. For each scale-site, we create new adjacent scales in 6 evenly

spaced directions using the vectors spanning the tangent plane ~ox, ~oy at distance γ.

For each new scale-site, we project it onto the surface along the normal of its parent

scale ~oz. We then create an orthogonal frame for this new scale-site by sampling

the normal of the surface at this point ~n and performing a rotation of the parent’s

frame about the axis ~oz × ~n with the angle between ~n and ~oz. If this new scale-site

lies outside the region of the mesh scales will be grown on, or the distance from the
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Fig. 16. The user draws a lateral line (Top) to create several scale-sites along that line,

colored dark, that we use to recursively spawn new scale-sites to fill the rest of the

surface (Lower Left). After running Lloyd’s algorithm with the scale-sites along the

lateral line fixed in place, the sites converge (Lower Right). The arrows depict the

orientation of each site and show how the lateral line influences the vector field.

new scale-site to any existing scale-site is less than γ, we discard the newly generated

scale-site. Otherwise, we create the scale and push a pointer to the new scale onto a

queue. This spawning process continues by popping a scale-site from the queue and

spawning again, until no more scale-sites can be grown. The resulting configuration

of scales covers the mesh with a roughly hexagonal pattern. Figure 16 shows the

distribution produced by this recursive spawning process.
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3. Surface Vector Field

There may be large deviations between adjacent scale-site orientations depending on

spawn order and the shape of the underlying surface. We wish to provide a vector field

over the entire surface to control scale orientation such that the orientation changes

smoothly over the surface. With this per-vertex orientation field, the orientation of

each scale-site will simply be inherited from the closest point on the surface. However,

there are several constraints for this vector field. First, we would like to maintain the

orientations that the user provided by drawing the lateral line. Second, the orientation

field must lie in the tangent plane of the surface.

We create this vector field using a two-level, iterative approach. First, we create

a Delaunay triangulation of the scale-sites by taking the dual of the Voronoi diagram.

Next, we perform an iterative smoothing process where each iteration consists of three

steps. First, we perform a Laplacian smoothing step using the cotan weights [Pinkall

et al. 1993] on the direction vectors associated with each scale-site and its one-ring

neighbors like so:

ˆ(~ox)i =
n∑

j

wij(~ox)j (5.2)

where ~̂ox is the resulting smoothed orientation using cotan weights w for the n neigh-

boring one-ring sites.

To find the cotan weights, we use

wij =
1

2
(cotAij + cotBij) (5.3)

where Aij and Bij are the angles opposite to the edge ij.

This smoothing process affects the lengths and directions of the vectors so that

they are no longer unit and in the tangent plane of the surface. Therefore, we reproject
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those vectors into the tangent plane at each scale-site by finding a new orientations

~̂oy = ~n× ~ox (5.4)

~̂ox = ~̂oy × ~n (5.5)

~̂oz = ~n (5.6)

We also hold the direction vectors for scale-sites along the lateral line constant to act

as constraints.

After running this process to convergence, we propagate the direction vectors at

the scale-sites to all of the surface vertices within the corresponding Voronoi region

and repeat this iterative process again using the triangulation of the surface. Again,

we hold the direction vector constant during this process for the nearest surface vertex

to each point along the lateral line. This two-level, constrained smoothing process is

similar to a multi-grid method and we observe similar increases in speed and stability

over simply performing this process on the surface vertices alone. Figure 16 shows

the result of this optimization on the direction field.

Fig. 17. We represent Voronoi sites as line segments, which can be adjusted to provide an

isotropic tessellation (left, α = 0) or anisotropic tessellation (right, α > 0). Arrows

denote the orientation of the site.
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4. Scale Region Improvement

Once we have a vector field, we create an Centroidal Voronoi Tessellation (CVT)

using Lloyd’s algorithm [Lloyd 1982] to improve the distribution of the scales. The

algorithm consists of a two-stage iterative process. In the first stage we find the cen-

troid of each Voronoi region, then move each scale-site to the centroid of its associated

region. The site projects onto the surface by tracing a ray along ~oz, then using the

normal at that surface point as the new ~oz. Once all sites have been moved to their

new positions, we create a Voronoi tessellation from the new site configuration. This

process of moving sites, then re-tessellating continues until sites eventually converge

to the centroids of their regions. While this produces a Poisson distribution of sites

constrained to the surface, the shape of the Voronoi regions will be isotropic. How-

ever, scales can form anisotropic regions where they intersect the skin, due to being

flattened discs which emerge at an angle. To represent these anisotropic regions we

must alter the way we create the CVT.

Fig. 18. Illustration of the homotopic relationship between a hexagonal tiling and rhombic

tiling’s face centers.

To create an CVT with anisotropic regions we keep much of Lloyd’s algorithm

the same: compute the Voronoi region associated with each scale-site and move the

site to the centroid of its Voronoi region. We create anisotropy by modifying the

Voronoi region itself to compute the distance to a line segment instead of a point.

For each scale-site, we extrude a line from the site’s position in the directions of ~oy
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and −~oy by a user-given amount α ≥ 0 that controls the amount of anisotropy as

shown in Figure 17. For scale-sites that are not part of the lateral line, we move the

sites to the center of their Voronoi regions and reproject them onto the surface. We

then update the frame associated with these scale-sites by setting ~oz to the normal

of the surface at that point and sampling ~ox from the orientation field on the surface

we described in subsection 3.

Fig. 19. Voronoi tessellation on a model. We tessellate the surface of a model into Voronoi

regions, where each region represents a single scale.

There is a homotopic relationship between rhombic tilings and hexagonal tilings’

face centers, as shown in Figure 18. Although we could use an anisotropic tessellation

as described by Du et al.[Du and Wang 2005], using a line segment for anisotropy

will express this homotopic relationship by distorting hexagons into approximately

rhombic regions rather than the elongated hexagons in Du et al.’s work. Many real

animal scales such as ganoid fish-scales express rhombic patterns, so this hexagonal-

to-rhombic alteration is often desirable. These rhombic shapes also interleave more

than hexagonal regions, which allows protrusions of the scales to overlap more as seen

in Figure 19.

The surface is segmented into distinct regions based on our anisotropic CVT. For

each of these regions, we wish to fill that region with geometry representing a single

scale. This scale will conform to the shape of the region while connecting seamlessly
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Fig. 20. Examples of different artist-created proxy models.

to neighboring scales.

B. Scale Synthesis

Since scales tend to be self-similar, we require the artist to provide only a single

model of a scale, which we call the proxy model. Examples of these models are

shown in Figure 20. For ease of use, we request that the scale protrude from the xy-

plane and be oriented such that the y-axis contains the greater amount of anisotropy

since we will orient the y-axis in scale space with the vector ~oy for each scale site.

Given an anisotropic CVT, we replace each region corresponding to a scale with the

proxy model, which we cut and fit to the boundary of that region. While we could

use a method like SnapPaste [Sharf et al. 2006] to create these scales, we wish to

replace the entire surface with scales that connect to each other instead of the isolated
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Fig. 21. Scale cutting, before(left) and after(right). A cutting boundary (red) derived from

the scale’s Voronoi region resizes until it fits the safety region(blue).

replacements of SnapPaste. Consequently, we create an algorithm that allows us to

process each scale independent of all other scales on the surface, which lends itself

well to a parallel implementation.

Our first step is to transform the region corresponding to a scale from global

coordinate space to the proxy model’s local coordinate space. We could perform

this transformation using some localized parameterization method such as Liu et

al. [Liu et al. 2008], but most of these regions tend to be nearly planar and simple

projection suffices. Let the scale-site be located at p with an orthonormal frame

~ox, ~oy, ~oz. Given a point v part of the scale’s Voronoi region, we transform this point

using v̂x = (v − p) · ~ox, v̂y = (v − p) · ~oy. With the Voronoi region’s polygon now in

the the same space as the proxy model, we can resize the polygon and begin the cut

operation.
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1. Cutting

To cut the proxy model such that it fits the flattened Voronoi region, we use the

boundary of the flattened Voronoi region as a cutting template. We also resize the

boundary so that it closely fits the protruding region of the scale. We begin by finding

a safety region on the proxy mesh. We mark each face containing a vertex above a

user-specified z threshold as unsafe to cut. Next, we find the outer boundary of the

proxy mesh as edges adjacent to a single face. A flood-fill marks faces inward from

this outer boundary as safe to cut, stopping when it reaches the faces marked as

unsafe. Figure 21 illustrates this safety region and cutting boundary.

Once we have marked the region of the proxy model that is unsafe to cut, we

iteratively resize the flattened Voronoi region to the scale. First, we fit the Voronoi

region to the safety region so that the scale fills as much of the Voronoi region as

possible.

To perform resizing, we first translate the flattened Voronoi region by a vector

from its centroid to the centroid of the safety region. Next, we uniformly scale the

Voronoi region by half repeatedly until it intersects the safety region, then double

its scale repeatedly until it does not intersect. The Voronoi region is now at a size

κ1 where it does not intersect, but will intersect the safety boundary if halved in

scale to a size κ2. The closest fit of the region is now bounded by the current range

[κ2, κ1]. We then perform an recursive midpoint resizing, in which we test intersection

at κmid = 0.5(κ1 + κ2), selecting a new range [κ2, κmid] if intersection fails, [κmid, κ1]

if intersection occurs.

We then find the closest edge of the safety region to the boundary and move the

Voronoi region along that safety edge’s normal until another safety edge is hit. We

label the distance moved as ρ. The Voronoi region repositions at the midpoint, at
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Fig. 22. Top left:triangulation of a proxy model with the boundary of the flattened Voronoi

region in red. Top right: stellating the proxy model triangles using the bound-

ary vertices. Bottom left: performing edge splits. Bottom right: shrinking the

triangulation and stitching to the boundary.

distance ρ

2
from its original position. Repeating this process of scaling and translating

the flattened Voronoi region generates a fit that conforms to the shape of the scale.

An affine transformation matrix T records movement information during this

process of resizing. For each uniform scale or translation we perform, we correspond-

ingly apply that operation to T . This matrix is stored so we can later invert it to

find a transformation back to the boundary’s original size and position.

Next, we cut the proxy model to fit the flattened Voronoi region using the bound-

ary of the Voronoi region. We trace each boundary vertex vertically along a z-axis ray

until the ray hits a triangle of the proxy model, which is then stellated by connecting

the projected vertex to the three vertices of the triangle (Figure 22 top right). After
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performing this repeated stellation, some of the edges of the boundary may intersect

edges of the proxy model’s polygons. For these edges, we introduce new vertices

where the edge between adjacent boundary vertices intersects the edges of the proxy

model (Figure 22, bottom left). After this process is complete, we can discard the

polygons of the proxy model that lie outside the flattened Voronoi region.

This process produces a proxy model whose boundary conforms to that of the

Voronoi region, but introduces new vertices when boundary edges intersect edges of

the proxy model. We would like to create a water-tight result when stitching adjacent

scales together and, therefore, cannot introduce new vertices along the boundary.

Our solution is to scale the cut proxy model to be slightly smaller. After scaling,

we connect the boundary vertices of the Voronoi region to the corresponding vertices

of the scaled/cut proxy model and triangulate these quadrilaterals by connecting

the remaining proxy model boundary vertices to the closest boundary vertex of the

Voronoi region (Figure 22 bottom right). The result is a proxy model whose boundary

conforms exactly to the boundary of the original Voronoi region.

2. Merging

Using the cut and triangulated model of the scale from subsection 1, we now map

this scale onto the Voronoi region on the surface model. First, we move the vertices

of the proxy model to match the original flattened Voronoi boundary by an inverse

transformation, v̂ = T−1v. Next, the vertices transform from the proxy model’s local

space to global space using v̂ = p+ vxox + vyoy + vzoz.

The proxy model protrudes from a flat plane, but the Voronoi region on the

surface is typically curved, so the transformed model will not match the Voronoi

region on the surface. Therefore, we must deform the cut proxy model to fit onto the

surface smoothly.
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We use a Laplacian deformation with implicit optimization [Sorkine et al. 2004]

to deform the surface due to its simplicity, though many other deformation methods

could be used. The deformation minimizes an energy metric

E(V ′) =
n∑

i=1

‖δi − L(v′i)‖
2 +

n∑

i=m

‖v′i − pi‖
2 (5.7)

where δi is the Laplacian coordinate of a vertex in the undeformed mesh, L(v′i) is the

Laplacian coordinate of the deformed vertex, pi is the original position of a border

vertex, border vertices have indices m...n, and V = v1, ..., vn. We find the Laplacian

coordinate of each vertex using the cotan-weighted summation:

δi = vi −
∑

j

wijvj (5.8)

with cotan weights wij for each vertex j in the one-ring.

To make sure that the mesh is water-tight with adjacent scales and that the

smoothness of the scales matches that of the surface along the scale boundaries, we

constrain the positions of the outer two rings of vertices for the cut proxy model.

Notice that the flattened Voronoi region provides a map from the xy-plane in scale

space back to the corresponding point on the surface. For each point in the 2-ring of

the boundary, we find the triangle in the flattened Voronoi region containing the point

and map the point to the surface using its barycentric coordinates in that triangle.

These points become hard constraints for the local deformation that, along with the

Laplacian optimization, create a linear system of equations for the positions of the

deformed vertices.
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C. Summary

In summary, our proposed method will procedurally generate an even distribution of

scales on a surface. An artist controls this scale creation by drawing a lateral line on

the surface, and provides a proxy model which replaces geometry at each scale. This

process provides a simple, novel interface for creating a complex pattern of scales on

a mesh.

Our scale generation technique will produce a watertight, topologically manifold

surface. The model will be suitable for simplification and subdivision operations, such

that the polygon count of the final model can be easily adjusted by popular mesh

optimization techniques such as Garland’s QEF simplification[Garland and Heckbert

1997].

Our scale generation technique is general enough to also encompass other skin

features, such as porcupine quills or sea urchin spines. As long as a proxy model

can be cut by a scale region’s boundary polygon, the proxy models can be fit to the

surface. This means that long, spindly structures such as spines or feathers can be

easily created by our method.
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CHAPTER VI

RESULTS

Fig. 23. Above and below right - Bent cylinders with two types of scales applied. Above and

below left - The pointed and rounded scales applied to the cylinders.

We tested our method on a variety of meshes, using several different proxy models.

We first tested a bent cylinder, shown in Figure 23. The user drew a small lateral

line on the upper right portion of the cylinder, and our algorithm automatically

generated scales covering the remainder of the mesh. Note that the direction of the

scales smoothly change with the shape of the cylinder, following the surface vector

field.

*Reprinted with permission from ”Scales and Scale-like Structures” by Eric Lan-
dreneau and Scott Schaefer, 2010, Computer Graphics Forum, 29, 1653–1660, Copy-
right 2010 by Eric Landreneau.
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Fig. 24. A sphere covered with high genus scales.

Our second example, in Figure 24 shows the result of testing a high genus proxy

model, containing a hole, applied on a sphere. This illustrates an advantage over dis-

placement techniques. Surface displacement alters existing geometry by subdividing

the surface and modifying vertex positions but cannot alter the genus of the surface.

Displacement works best with simple structures such as bumps or ridges where the

surface displaces along the normal. Complex structures such as serrations require

specialized displacements like height-and-tilt textures [Andersen et al. 2009]. In con-

trast, our method performs geometry replacement, which allows us to create complex,

high-genus scale structures without any displacement.

We show a practical application of our technique by applying scales to a model

of a redfish, shown in Figure 25. A user painted a region of the model as a scale

growth region to limit the region we allow scales to grow in. The user then drew a

lateral line across the body to produce the squamation present in the image. Our

method creates a plausible distribution and orientation of the scales using this input
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Fig. 25. A fish covered with 3306 scales using our technique. The scale generation region

is blue-colored (top left). The user controls the distribution and orientation of the

scales by drawing a lateral line on the fish. Our technique uses these inputs to

generate a water-tight model covered with scales (top right). The closeup (bottom

middle) illustrates the detail achieved by our method.

Fig. 26. Left - an illustration of a flounder (drawing credit: H.L. Todd, NOAA Photo

Library [NOAA 2011]) Right - A flounder with ctenoid scales applied. Bottom - a

closeup of the flounder’s scales.
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and produces a water-tight surface. We test a second fish, the flounder, in Figure 26

and apply ctenoid scales to its body.

Fig. 27. Scales applied to the extinct ostracoderm fish Drepanaspis. Two proxy models

were used, for the backbone along a lateral line (upper left) and for the rest of the

body (lower left).

We find that our technique is particularly useful for modeling fish that no longer

exist. The primitive ostracoderm Drepanaspis exists only in ancient fossils. These

fossils provide poor reference for artists, and there is a great deal of speculation as

to how the animal really looked. In Figure 27, we produce a plausible scale-covered

surface for this extinct animal.

In another test using two different scales, we create scales on the body of a lizard,

in Figure 28. The lateral line’s scales use a long, smooth spine for their proxy models

whereas other scales use a shorter, serrated spine. For such long, spindly structures,

standard displacement mapping would produce heavily distorted triangulations due

to the difference in surface area. Furthermore, the serrated pattern is incompatible

with standard displacement mapping because a single vertical displacement would

map to several points on the spine.

We applied a block-shaped scale to the head of an anole lizard in Figure 29.
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Fig. 28. A lizard model with a lateral line painted down its back. Scale sites on the lateral

line use a smooth spine for the proxy model(upper left), and the other sites use a

barbed spine (lower left). The resulting surface smoothly joins both types of scales

together.

Fig. 29. Lizard head with block-shaped scale (left) applied.
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These scales are motivated by the granular, non-imbricating scales of many reptiles.

Even with holes in the growth region for the eyes, the distribution of scales remains

even and seamless.

Fig. 30. A test of scales growing inward, under the surface, rather than outward. Left - the

proxy model used to create the surface.

We perform another test with an unusual proxy model shape in Figure 30. We

show that our scales do not necessarily need to protrude outward from a surface. In

this case, the proxy model embeds into the surface of the mesh. The scale deformation

has no restriction on the direction a scale emerges from the mesh, and handles this

case well.

In Figure 31, an artist colored the forehead as a scale generation region and

drew a lateral line up the middle of the forehead. Using the 4-pronged proxy model

provided by the user, our method grew scales up the forehead of the model. We

then performed Loop subdivision [Loop 1987] on this surface to demonstrate the

water-tight nature of our surfaces.

Figure 32 shows a practical use of our scale synthesis in modeling a Stegosaurus.

Beginning with the basic model, we wish to add spinal plates and tail spikes to the

animal. First, we paint the region along the spine to grow scales. Because the spinal
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Fig. 31. Left - A face with a four-pronged scale applied. Right - the same model with Loop

subdivision applied. Model credit: Jessica Riewe.

Fig. 32. Left A stegosaurus model, without back plates or tail spikes. The back plate

growth region is colored green, and the tail spike region is colored red. Middle -

proxy models for the plates and spikes. Right - the stegosaurus after plates and

spikes have been added.
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plates are rather large surface features, we seed a small number of scales to obtain

large Voronoi regions. After growing the spinal plates, we then re-paint the resulting

model’s tail and grow 4 spine-shaped scales. The resulting model is recognizable

as a Stegosaurus, and shows the usefulness of our technique even for large features.

This model also illustrates the usefulness of having control over anisotropy in scale

regions. Notice that the tail spikes of the stegosaurus have an isotropic shape at their

base, while, the plates are anisotropic. Using more anisotropic Voronoi regions for

the plates lets them fit their regions better, reducing the boundary space between

adjacent scales.

Fig. 33. A dragon with three types of scales applied to three different regions — the back,

flank, and head.

We also test this multi-stage approach on a dragon model in Figure 33. In this

case, we paint three different regions of the model, each time applying a different

proxy model to that region. For the spine, we use a small number of sites with a

thick, tall scale. The haunches utilize many flattened, rhombic scales. Third, we

apply rounded, slightly keeled scales to the top of the head. The final model shows

the successful integration of these scales into a single complex model. In this manner,
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an artist can iteratively paint the surface of a mesh with scale geometry.

Fig. 34. A1, B3 - photographs of a Didiera madagascariensis and Alluaudia montagnacii,

respectively. A2, B1 - CVTs from which thorn-scales were grown. A3, B2 - meshes

of the plants with thorn-scales applied.

Our technique works well for creating thorns and thorn-like shapes such as those

shown in Figure 34. Even complex thorn shapes, such as the 4-spiked thorn of the

Didiera madagascariensis plant, pose no problem for our method. In the figure it also

becomes apparent that the plants in the photos have some irregularities due to growth

and environmental figures, while the synthesized versions exhibit more regularity. We

mention a possible way to address this issue in Chapter VII

We apply rhomboid scales to an egg shape to create a scaled dragon egg in

Figure 35. We then attach high quality shaders and lighting to the model, and render

it alongside a version simplified using quadric error simplification. These examples

show that not only can we produce high degrees of detail with little effort, but the
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Fig. 35. Left - A dragon egg, covered in scales. Right - the same model, after surface

simplification has been performed.

mesh renders well even when reduced to 1/20th of its original polygon count.

Our scale generation technique is useful for more than just animals and plants.

As we noted in Chapter II, scales are used in many forms of artwork as well as in

military armor. In Figure 36, we use our method to grow scales on a hauberk. Note

that scale directions conform well to the surface, even at the shoulders.

Our approach has some limitations. Since we do not explicitly detect inter-

sections between scales, it is possible that some scales may protrude into adjacent

regions, especially in the presence of high amounts of negative curvature with respect

to the size of the scale. Figure 37 shows an example of such intersection in the center

of the saddle. Large positive curvature of the surface model such as high frequency

ridges with respect to scale size can also cause issues because we only constrain the

boundary of the scale to match the surface geometry. Laplacian deformation will

tend to create something similar to a minimal surface in this situation instead of

extrapolating the shape of the ridge. Nevertheless, in most situations, our method
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Fig. 36. A scale armored hauberk, showing scales generated by our technique.

Fig. 37. A problem case for our method. High frequency details and regions of high negative

curvature with respect to the scale size may cause self-intersection or twisting during

scale deformation.
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tends to work well.

Our process takes a fairly long time to complete. In the case of a dense mesh like

the flounder in Figure 26, completion took well over an hour on a Intel Core 2 Duo

computer. The reason for this lengthy time lies both in geometric and algorithmic

complexity. The flounder model for example contains 6.4 million polygons, due in

large part to a proxy model with 1,800 faces being used for over 4,000 scales. As

for algorithmic complexity, we found that the construction of the CVT and the final

deformation of each scale dominate the running time. In the case of the CVT, the

complexity of each Lloyd iteration is (O(mlogn)) where m is the number of vertices

and n is the number of Voronoi sites, and running to convergence may take as many

as 1000 steps. While the computation time of Lloyd’s algorithm varies based on the

complexity of the mesh, number of sites, and initial configuration of sites, performing

1000 iterations took from thirty minutes to an hour for most of our examples, again

computed on an Intel Core 2 Duo processor.

For the Laplacian-based deformation, we construct a very large sparse matrix.

The dimensionality of this matrix depends on the complexity of the proxy model, and

in some cases exceeded dimensions of 8000×8000. We use a conjugate gradient solver

with 1500 iterations to invert this sparse matrix for each scale, a process which may

take over a second. Fortunately, our process is vectorizable, as each scale is synthe-

sized completely independent of others. Every scale can be created simultaneously, so

the the computation time has a lower bound of the processing time of a single scale.

This parallelization also alleviates many memory concerns, as we can store the mesh

for each scale on disk as they are processed, rather than storing the entire mesh in

memory.



69

CHAPTER VII

CONCLUSION

A. Contribution

We have provided a novel surface-replacement technique that generates scales and

scale-like structures on a mesh. Our technique gives an artist the ability to control

the arrangement of scales using a single stroke. Our method automatically fills a

region with oriented scales and generates a well connected surface from artist-created

proxy models.

Creating these models with traditional techniques can be incredibly time con-

suming and very difficult. The polygon count of a scaled model will typically be

high, upwards of a million polys. This is a necessary consequence as a single scale

consisting of a thousand polys will be repeated thousands of times, leading to high

numbers of polys if you wish to retain geometric detail on the surface. This high

degree of geometric complexity makes them visually striking, but causes problems for

interactive 3D modeling programs such as Autodesk‘s Maya software. In addition,

thin overlapping shapes are particularly bothersome for artists to deal with in the

modeling process. Therefore, an automated scale generation technique is not only

useful, but required if we wish to have a well-formed geometric surface of scales.

Scale creation covers a neglected area in repetitive skin structures for graphics.

The two most commonly studied skin structures, feathers and hair, do share some

similarities with scales. Hair, scales, and feathers all form self-similar shapes embed-

ded in the skin of an animal. The placement of these structures tend towards Poisson

distributions, as do many other body parts such as retinal cells [Yellott 1983]. In fact,

Poisson distributions occur often in nature, even at the atomic level.
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Unlike scales, feathers and hair form very small cross-sections with the skin at

the penetration point. Feather quills and hair shafts form very small, almost point-

like intersections with the skin. In comparison to these small, isotropic intersections,

scales cover a much larger area of skin and form anisotropic regions of influence. Also,

hair and feather synthesis techniques do not typically integrate their structures into

the skin, due to the point-like nature of the intersection. In contrast, scales integrate

visibly with skin, and so topological connectivity becomes important.

The shape of scales also deviates from hair and feather shapes. Hairs form long

filaments, thin structures with imperceptible surface area. Feathers form flat, sheet-

like structures. Scales, on the other hand, form fully 3d structures. This distinction

emphasizes the importance of developing surface synthesis techniques specially tai-

lored for scales.

Creating geometric patterns on a surface by defining a region on a surface with

simple artist-provided constraints, then synthesizing geometry, is a fairly new area

of research. Surface geometry synthesis has recent developments by Takayama et

al.s Geobrush[36] tool and vector displacement tools in Pixologics Zbrush software.

As computer processing speeds increase, the complexity of 3D models will corre-

spondingly increase, and automated surface synthesis tools will become necessary for

modeling as artists move away from manipulating individual faces and vertices.

As mentioned in the introductory chapter, maintaining a topologically manifold

shape is important for architectural structures, including scale-like sculptures made

by Peter Randall-Page [Randall-Page 2006] and Simon Thomas [Thomas 2006]. Vol-

umetric shapes such as Bhat et al.’s textures [Bhat et al. 2004] are unsuitable for

most architectural applications. Many construction techniques require a manifold

surface made of connected panels to produce a lightweight, sturdy structure, so by

maintaining this manifold topology, our method produce shapes which can be used
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for creating real sculptures.

B. Future Work

Fig. 38. A torus with teapot-shaped scales applied. Our method is robust enough to handle

unusual shapes such as these.

The work in this dissertation is designed with a flexible framework in mind, which

imposes few restrictions on the artist as far as the proxy models shape. The variety

of scale shapes shown in the results reflects this robustness, even as far as allowing

teapot-shaped scales as shown in Figure 38.
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1. Scale Shape

For example, the cycloid scales of bony fishes have some characteristics in common.

The scales tend to have grooves radiating from the center of the scale, and also have

growth rings which increase with a fishs age. In juvenile fish the scales are submerged

under the skin, and emerge during maturation, then continue growing throughout the

fishs life. Possible future work could automatically generate a proxy model, adjusting

for variance in scale emergence, ring growth and grooves.

Another issue, related to parameterization of scale synthesis, is scale variation. In

our work, the scales are identical to their proxy models, tending to create patterns that

are more regular than natural objects. An example of this issue shows in Figure 34,

where the photographed vine exhibits growth irregularities. While natural scales have

self-similarity, they also slightly change across the surface of an object. To introduce

variation into scales, we need a parametric model to morph scales over the surface.

The user could constrain this morphing by specifying a scale shape at certain Voronoi

regions on the surface, and then smoothly blend between the shapes on the surface.

Because we do not handle self-intersection, one extension of our work would in-

volve collision testing for scales. Possible solutions might include a robust deformation

which constrains scale synthesis to non-intersecting regions.

2. Scale Arrangement

In addition to further exploration of controlling the shape of scales, many options

present themselves for improving squamations. One apparent improvement would be

introduction of anisotropy in the distribution of the scales. While our work presents

a method for creating anisotropy in the shape of scale regions, these regions will tend

to cover the same surface area. In some animals, particularly reptiles, scale sizes
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vary across different body regions. The topic of altering Lloyd’s algorithm to create

different sized regions has been explored thoroughly for dithering applications, using

techniques such as capacity-constrained CVT’s [Balzer et al. 2009; Li et al. 2009].

Combining such a method with some form of artist control over region sizes would

improve the realism of scales and their squamation.

Shape matching synthetic squamations to those of real animals is also a plausible

extension of our work. By developing some form of image analysis which detects scale

positions or patterns such as flow lines, we could constrain or even replace Lloyd’s

algorithm as a method for positioning scales. Statistical analysis of data obtained

from real animals could also guide scale positions by estimating a ‘realism’ quality of

scale arrangements and guiding scales towards arrangements having a higher quality

metric.

3. Texturing and Shading

Another concern with generating a complex scaled surface is texturing or painting the

surface. This dissertation creates the geometric shape of scales, producing manifold

topology suitable for texturing. However, while our framework is not based upon a 2D

parameterization, we would need to develop such a parameterization to perform 2D

texturing. A possible solution could involve parameterizing and texturing the proxy

model itself. Because the proxy model is cut and stitched with others, this process

would introduce seams along scale boundaries. However, recent advancements in

content-aware image synthesis [Barnes et al. 2009] could be applied to correct the

seams.

Shading of scales is another significant area of potential work. Animal and plant

scales have a variety of reflective properties, and representation of these properties

would be a useful area of study. Many animal scales are covered with a very thin,
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semi-transparent layer of epidermal skin. The scale core may consist of translu-

cent materials such as keratin or guanine. Many fish scales contain exotic reflecting

structures such as flattened photonic crystals, which Levy-Lior et al. recently ex-

plored [Levy-Lior et al. 2008]. Additionally, most animal species have pigmentation

patterns over their bodies, and many of these patterns repeat over scales. From

these observations, developing reflectance models for even a single species’ scales is

an interesting and nontrivial task.
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Fisher, M., Schröder, P., Desbrun, M., and Hoppe, H. 2007. Design of

tangent vector fields. ACM Trans. Graph. 26.

Fleischer, K. W., Laidlaw, D. H., Currin, B. L., and Barr, A. H. 1995.

Cellular texture generation. In Proceedings of the 22nd Annual Conference on

Computer Graphics and Interactive Techniques. New York, 239–248.

Garland, M. and Heckbert, P. S. 1997. Surface simplification using quadric

error metrics. In Proceedings of the 24th Annual Conference on Computer Graphics

and Interactive Techniques. New York, 209–216.

Hart, J. C. and Baker, B. 1996. Implicit modeling of tree surfaces. In Proceedings

of Implicit Surfaces. 143–152.

Herodotus. 1954. The Histories. Penguin Books, New York.

HONDA, H. 1971. Description of the form of trees by the parameters of the tree-like

body: Effects of the branching angle and the branch length on the shape of the

tree-like body. Theoretical Biology 31, 331–338.

Itoh, T., Miyata, K., and Shimada, K. 2003. Generating organic textures with

controlled anisotropy and directionality. IEEE Computer Graphics and Applica-

tions 23, 38–45.

Kardong, K. V. 1998. Vertebrates: Comparative Anatomy, Function, Evolution.

McGraw-Hill.

Laufer, B. 1914. Chinese Clay Figures. Vol. 13. Chicago:Field Museum of Natural

History.



78

Ldot. 2007. Issyk’s gold cataphract warrior. http://commons.wikimedia.org/

wiki/File:Issyk_Golden_Cataphract_Warrior.jpg.
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