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ABSTRACT

Inference-based Geometric Modeling for the

Generation of Complex Cluttered Virtual Environments. (May 2011)

Keith Edward Biggers, B.S., Texas Wesleyan University;

M.S., Texas A&M University

Co–Chairs of Advisory Committee: Dr. John Keyser
Dr. Glen Williams

As the use of simulation increases across many different application domains,

the need for high-fidelity three-dimensional virtual representations of real-world envi-

ronments has never been greater. This need has driven the research and development

of both faster and easier methodologies for creating such representations. In this re-

search, we present two different inference-based geometric modeling techniques that

support the automatic construction of complex cluttered environments.

The first method we present is a surface reconstruction-based approach that

is capable of reconstructing solid models from a point cloud capture of a cluttered

environment. Our algorithm is capable of identifying objects of interest amongst a

cluttered scene, and reconstructing complete representations of these objects even in

the presence of occluded surfaces. This approach incorporates a predictive modeling

framework that uses a set of user provided models for prior knowledge, and applies

this knowledge to the iterative identification and construction process. Our approach

uses a local to global construction process guided by rules for fitting high quality

surface patches obtained from these prior models. We demonstrate the application of

this algorithm on several synthetic and real-world datasets containing heavy clutter
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and occlusion.

The second method we present is a generative modeling-based approach that can

construct a wide variety of diverse models based on user provided templates. This

technique leverages an inference-based construction algorithm for developing solid

models from these template objects. This algorithm samples and extracts surface

patches from the input models, and develops a Petri net structure that is used by our

algorithm for properly fitting these patches in a consistent fashion. Our approach uses

this generated structure, along with a defined parameterization (either user-defined

through a simple sketch-based interface or algorithmically defined through various

methods), to automatically construct objects of varying sizes and configurations.

These variations can include arbitrary articulation, and repetition and interchanging

of parts sampled from the input models.

Finally, we affirm our motivation by showing an application of these two ap-

proaches. We demonstrate how the constructed environments can be easily used

within a physically-based simulation, capable of supporting many different applica-

tion domains.
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CHAPTER I

INTRODUCTION

A. Motivation

As the use of simulation increases across many different domains, the need for high-

fidelity three-dimensional virtual representations of complex environments has never

been greater. This need has driven the research and development of both faster and

easier methodologies for creating such environments. The objective of these methods

is to allow for the construction of very realistic and detailed virtual representations

more quickly and easily. These constructed environments can then be incorporated

into different types of applications and utilized in areas such as virtual testing and

evaluation of equipment, rehearsal of real-world operations, and analysis of concepts

related to the introduction of new technology.

Figure 1 shows a very complex real-world environment that serves as an inspira-

tion for our work. This environment contains clutter, a collection of objects residing

in a small amount of space. Accurately modeling by hand an environment such as

that shown would be an extremely difficult and time consuming process. Capturing

the full detail in a faithful fashion would involve great attention to detail, and an

intricate modeling process. In many cases such an approach is not a feasible option

due to the underlying cost and complexity required. Thus, more automated methods

capable of automatically re-creating an environment to an appropriate level of detail

are necessary.

Due to the portability and availability of three-dimensional data acquisition de-

This dissertation follows the style of IEEE Transactions on Visualization and
Computer Graphics.
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Fig. 1. Real-world complex environment that serves as an inspiration for our work.

vices, efficient and accurate representations of even extremely complex scenes such

as that shown in Figure 1 can be rapidly and easily obtained. The challenge then

becomes how to process the collected data samples (i.e., a point cloud) into a rep-

resentation that adequately captures a scene’s details in an automated and timely

fashion. Surface reconstruction from point cloud data provides one such option. The

underlying problem of surface reconstruction focuses on, given a set C of unstruc-

tured three-dimensional points (i.e., a point cloud assumed to sample an unknown

surface), generate an approximated surface representation S that characterizes these

point samples.

Many existing automated reconstruction algorithms are capable of developing

such an accurate representation while minimizing involvement by the user (i.e., re-

quiring only minimal parameter tuning). This trade-off between automated recon-

struction and interactive geometric editing has been a topic of previous study [1].
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Fig. 2. Surface splatting applied to a point cloud dataset.

However, the underlying complexity of environments such as that shown in Figure 1,

and the level of fidelity of which the reconstructed environment may need to entail,

can create major challenges for any automated or manual modeling process.

Depending on the underlying application requirements in which a virtual rep-

resentation is to be used, the level of detail of the reconstructed environment may

vary. There is a wide spectrum of techniques capable of generating different fidelity

results. At one end of this spectrum is a simple point-based representation of the

sampled surfaces in an environment. Figure 2 shows an example output of such an

approach generated using a surface splatting technique [2][3]. These methods recon-

struct visually continuous surfaces by leveraging the graphics hardware and using the

point samples themselves as display primitives. In many applications this simple rep-

resentation may suffice (e.g., for visual navigation and analysis of an environment),

but these approaches do not provide a physically continuous surface representation
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Fig. 3. Moving Least Squares and contouring applied to a point cloud dataset.

necessary in most simulation-based domains.

Residing in the middle of the spectrum are those approaches that reconstruct a

single continuous representation of only the visible surfaces captured by the sampled

data. Figure 3 shows an example of such an approach generated by constructing a

Moving Least Squares surface representation [4], followed by a contouring algorithm

to obtain a polygonal mesh representation [5]. In many applications this higher

fidelity representation is necessary (e.g., for virtual testing of navigation algorithms

and sensor equipment). These approaches are typically slower due to a more expensive

reconstruction process, but they provide a smooth and continuous reconstruction

of the sampled surfaces. These approaches are limited to working with the point

cloud data only, and thus reconstruct only a single continuous surface of the sampled

surfaces captured in the point cloud (i.e., only the visible surfaces). As a result, they
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Fig. 4. Our solid modeling algorithm applied to a point cloud dataset.

are not able to distinguish between nor break apart individual objects.

At the far opposite extreme of the spectrum are those techniques that perform

a full reconstruction of a scene, where each object is a distinct and complete element

capable of being transformed and interacting with other objects in the environment.

For many simulation-based applications this highest fidelity reconstruction is required

(e.g., for analysis of structural stability or environmental analysis). Figure 4 shows

an example of such an approach generated using an inference-based solid modeling

algorithm presented in this dissertation. This method provides a full reconstruction

of an environment using individual solid models, but must deal with many challenges.

These challenges include handling the complexity involved with clutter, and the result-

ing occlusion that can result within a point cloud. A reconstruction approach capable

of generating a result to this level of detail would greatly benefit any simulation-based
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domain that requires full dynamics of objects within an environment.

All of the previously discussed methods provide approaches for reconstructing a

real-world environment from a captured point cloud representation. In some cases

this captured data may not be readily available during the modeling process. Thus,

alternative methods to reconstruction must also exist to allow for quick generation

of environments in these situations. These modeled environments may not be exact

reconstructions, but still need to embody similar characteristics and be very realistic

in form.

The real-world environment shown in Figure 1 contains a large number of objects

composed of similar features, yet each individual object consists of a different under-

lying composition. Thus, to more easily re-create such an environment, generative

techniques that allow for a wide range of objects to be developed very quickly requir-

ing only minimal effort by the user are critical. Using one of these techniques, a user

would simply provide an object template that is then used to guide the underlying

construction process. A series of different objects with common underlying traits, but

different overall form could then be constructed.

Both the reconstruction and generative modeling approaches discussed allow for

the construction of virtual representations of a wide variety of different types of

complex environments. These virtual representations can then be used to help support

applications across many different domains.

B. Overview of Research

In this dissertation, we propose two alternative modeling approaches capable of de-

veloping solid model representations for different situations. Both approaches center

on the idea of taking one or more user provided template models as input, and us-
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ing these templates to define and guide a construction process. A set of patches is

extracted from each input model, and then iteratively fit together under different

conditions to fully define the boundary of an object. The output of both methods is

a set of one or more solid models defined from these fitted patches.

We illustrate two different approaches based on this underlying idea. The first

approach focuses on reconstruction from point cloud data, and using this technique

we demonstrate the ability to recognize and reconstruct objects within a captured

cluttered environment. The second approach focuses on generative modeling, and

using this technique we demonstrate the ability to easily construct different object

configurations that include articulation, and repetition and interchanging of parts

from a provided template. These two proposed methods build on and extend exist-

ing methods by providing a new technique for constructing solid models from user

provided templates.

The motivation of our work is to create virtual environments with characteristics

similar to the real-world cluttered environment shown in Figure 1. Our approaches

illustrate how solid model reconstruction can be performed within cluttered point

cloud datasets, as well as how to construct a wide range of varying objects when trying

to model similar environments. These constructed environments need to consist of

a set of solid model objects, in order to allow for their most effective use within

simulation-based applications.

We provide our proposed techniques and a detailed analysis of their capabilities

in this dissertation. We also show many different synthetic and real-world results

using our approaches, and to affirm our motivation, we demonstrate the application

of generated results from our techniques to the simulation domain. The discussions in

the remainder of this dissertation will provide a detailed look at, and an understanding

of the work that we performed.
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C. Thesis Statement

The thesis of this dissertation is as follows:

Inference-based modeling, where locally defined surface patches along with

corresponding patch interaction rules are extracted from a provided tem-

plate model and incrementally fit around observed locally available in-

formation, provides an effective means of constructing solid models in a

variety of situations. Inference-based modeling allows for reconstruction of

statically defined objects within point cloud data, as well as dynamically

defined objects around a characterizing parameterization.

There are several key ideas within this statement. Inference-based modeling relies

on a provided template model in which to extract the underlying elements used as

part of a fitting process. As these patches are incrementally fit, they fully define the

boundary of an object, and can be integrated together to define a solid representation.

These patches are fit around observed locally available information which may include

surface samples (i.e., obtained from a point cloud) during reconstruction, or a defined

parameterization (i.e., characterized by a user or an algorithm) during generative

modeling.

The objective of this approach is to provide a means for developing a wide va-

riety of solid models under different types of circumstances. This approach can be

used to recognize and reconstruct statically defined objects from within a point cloud

representation of a complex environment through using the patch fitting process and

validating the object in an iterative fashion. This approach can also be used to con-

struct dynamically defined objects with differing underlying characteristics by simply

fitting patches together in a consistent and correct fashion around an underlying

parameterization.
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D. Accomplishments

The goal of this dissertation is to understand and evaluate a modeling technique for

constructing solid models by consistently fitting together patches obtained from a pro-

vided template object. We propose two different methods centered on the previously

defined concept of inference-based modeling.

The primary contributions of this dissertation are:

• We propose and evaluate an inference-based surface reconstruction approach

that is capable of identifying objects of interest amongst a cluttered scene,

and reconstructing solid model representations even in the presence of occluded

surfaces.

• We propose and evaluate a generative modeling approach that centers on an

inference-based construction process and is capable of developing a diverse set

of models from a provided set of templates.

• We affirm our motivation by demonstrating an application of our proposed

approach through incorporating the generated results of each method into a

physically-based simulation.

Our reconstruction approach also provides three sub-contributions:

• We provide an organized and efficient weighted sampling strategy to recognize

objects of interest within a point cloud dataset containing clutter.

• We provide a predictive modeling technique that uses an extracted set of surface

patches and rules regarding their relationships to incrementally identify and

reconstruct the complete structure of an object, even under very uncertain
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situations. This avoids the more difficult approach of performing a global rigid

object fitting used by many existing methods.

• We demonstrate how our recurrent local to global matching and fitting approach

can be used to iteratively fit objects in a cluttered scene, beginning with those

that are easily identified, and over time handling those that are more difficult

to recognize and reconstruct.

Finally, our generative modeling approach provides three sub-contributions as well:

• We provide an efficient algorithm that locally fits patches around a defined

parameterization in a globally consistent fashion, and is capable of generating

a solid model representation of the object.

• We provide a means in which this process can function in both a semi-automated

and a fully automated fashion using a series of techniques for obtaining the

underlying parameterization around which the object is constructed.

• We provide several extensions of our basic algorithm that allow for more com-

plex object definitions through the use of articulation, repetition of parts, and

interchangeable parts.

E. Overview of Chapters

The organization of the remainder of this dissertation is as follows:

• Chapter II provides background material relevant to our work. We first provide

a detailed look at the typical construction process. Next, we provide a de-

scription of the relevant prior work. Finally, we overview some of the primary

challenges behind our rationale.
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• Chapter III describes our proposed inference-based reconstruction approach

that is capable of reconstructing solid models from a point cloud capture of

a cluttered scene.

• Chapter IV describes our proposed inference-based generative modeling ap-

proach that allows the construction of a wide variety of models from a user

provided template.

• Chapter V describes an extension of our work to the simulation domain. We

show how the results of both proposed approaches can be easily integrated into

a physically-based simulation.

• Chapter VI concludes the dissertation with a review of the major aspects and

a look at future directions for this work.
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CHAPTER II

BACKGROUND

A. Problem Background

The process of developing a virtual environment with clutter can be performed in

several different fashions, and depending on the environment’s underlying complexity,

may entail a great deal of work. One alternative is to use state-of-the-art modeling

tools to create complex sets of geometric models. This approach typically requires

manual construction and placement of each individual object into an environment,

and may incorporate a variety of different techniques. This approach does not require

any specialized resources which allows greater flexibility, but can be complex and

expensive (in both time and resources) to perform.

A second alternative is to acquire a three-dimensional representation of a real-

world environment using a scanner or other spatial sampling device. Different recon-

struction techniques can then be used to re-create a representation at an appropriate

level of detail. This approach requires specialized hardware, but can be very efficiently

and effectively performed for even complex scenes.

1. Geometric Modeling

Geometric modeling (or simply modeling) is the process of defining the underlying

geometrical and topological properties for an object of interest. The general process

for modeling an environment can be broken down into five stages (shown in Figure

5). The first and second stages prepare for the modeling process. In the third and

forth stages, the object is constructed and then placed into an environment. This

process is iteratively performed until the environment is complete and ready to be
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Fig. 5. Overview of the geometric modeling process for an environment.

used in an application for rendering or simulation.

a. Preparation

The process of modeling an environment can be decomposed into modeling one or

more individual objects. Thus, it usually begins with the modeler identifying an

object of interest. There are many different representations that can be used when

modeling an object (i.e., ranging from polygonal meshes, to parametric representa-

tions, to constructive solid geometries and many others). The modeler must then

decide on an appropriate representation. Once a selection has been made, the mod-

eler must adequately characterize the object using the selected representation. This

process is typically performed using an interactive editing environment.

b. Construction, Placement, and Usage

There are a wide variety of applications that allow for geometric editing of different

types of objects using different representations. These range from computer-aided

design-based applications, to those used as part of the animation, movie, and game

industries. In general these applications allow for the interactive definition and con-

struction of objects and environments. These editors can allow for the construction
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of an object in either a bottom-up or top-down fashion, and the modeling process is

performed by iteratively adjusting the properties of an object until it simply “looks

correct.”

Once an object is constructed using the tools provided by the editor, it then

needs to be placed within the virtual environment in a realistic pose and position.

This overall approach is repeated iteratively until an adequate number of objects have

been developed and placed within a scene. The result is an environment that can be

used in a variety of applications.

As environments become larger and more complex, these manual methods for

modeling an environment become more time consuming and complicated. Thus,

improvements to this overall process are necessary, as well as the incorporation of

more automated techniques.

2. Reconstruction

The process of reconstruction uses collected data and specialized techniques to develop

a virtual representation in a more automated fashion. This process has been used to

obtain high-fidelity representations of everything from sculptures [6], to architecture

and historical sites [7]. A reconstruction-based process for constructing a virtual

environment can be decomposed into four stages (shown in Figure 6).

The first stage, data acquisition, collects a digital sampling of the environment

through a laser scanning process. The second stage, data processing, integrates the

individual scans into a common coordinate frame and generates a normal for each

point sample. The third stage, data reconstruction, generates a continuous represen-

tation of the surface to the desired level of fidelity. Finally, the fourth stage takes

the resulting reconstructed environment, converts it into a portable format for use by

other systems.
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Fig. 6. Overview of the full reconstruction process for an environment.

a. Data Acquisition and Processing

The first stage in the process is to collect a representative dataset. Data can be col-

lected using different methods. The first method is through a standard laser scanning

process. This data is typically collected using a series of scans, where each scan is

captured from a fixed position and within a fixed field of view (Figures 7 and 8 show

two examples of this scanning process). In order to capture adequate detail of an

environment, multiple scans from different positions and angles must be captured.

As the complexity of the environment increases, more scans must be taken to capture

enough detail amongst the clutter of objects. Note that this scanning process is only

able to acquire samples from visible surfaces. Thus, any hidden surfaces will not be

captured.

The output of this scanning process is a series of individual scans. These scans

may be in the form of a point cloud, or in some cases may contain simple surface

definitions. Figures 9 and 10 show several scans of real-world environments captured

using both the ground-based and table-based scanners, and integrated into point

clouds.

Scanning is not the only alternative for capturing a point cloud representation

though. A second alternative uses a series of digital photographs taken from different
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Fig. 7. A ground-based scanning process capable of scanning very large environments.

locations and angles. The collection of these pictures serves as a capture of the

environment. Software such as the Bundler package [8] can then be used to produce

a reconstruction of the camera locations and sparse scene geometry. The output

from Bundler can then be passed to the CMVS software package [9] to reconstruct

the sampled three-dimensional structure from the set of collected images. The final

output of this process is an extracted point cloud representation of the scene in a

similar fashion as obtained with a digital scanner. Figure 11 shows an example point

cloud obtained using this method. One important note is that these point clouds

usually contain a higher degree of noise, and in some cases may contain voids in the

data, due to the feature-based methods used to align and transform the images in

space. The differences can clearly be seen between the two different datasets shown

in Figures 10 and 11.
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Fig. 8. A table-based scanning process capable of scanning smaller environments.
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Fig. 9. Examples of ground-based point clouds of cluttered environments.

Once the data has been acquired, the second stage then processes the collected

data into a form for use by the reconstruction algorithms. There are several steps

involved with this processing. For data that was collected using a series of different

captures, a registration and integration of the individual captures into a common

coordinate system must be performed. Registration is the process of aligning two

different datasets, and the method commonly used for this is an Iterative Closest Point

(ICP) algorithm [10]. ICP begins with an initial rough estimation, and then iteratively

refines the fitting by rigidly transforming one dataset while trying to minimize the

error between the two. There are many variations of this classic technique that

incorporate different methods for point selection, matching, weighting, rejecting, and

error terms [11]. After all of the datasets have been registered, the result is an

integrated set of surface samples residing within a common basis (i.e., a point cloud).
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Fig. 10. An example of a table scanner-based point cloud of a cluttered environment.

Fig. 11. An example of a photo-based point cloud of a cluttered environment.
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Most reconstruction methods work with oriented point samples and require an

associated normal with each sample. Thus, the next step must process the data and

estimate the normals, if they are not already provided. The most commonly used

technique for this process is to perform a least squares fitting using a Principal Com-

ponent Analysis (PCA) of the covariance matrix of the k -nearest neighbors around a

given point [12]. PCA does not guarantee a consistent orientation of surface normals,

thus an extra step must be performed to ensure all normals are correctly oriented.

For all datasets in this dissertation, we use the known scanner location and a simple

dot product between this normal, and the vector from a sample contributing to the

plane to the scanner location, to determine if a normal needs to be flipped. The

output of this stage is an integrated point cloud consisting of oriented point samples.

b. Reconstruction and Usage

The next stage in the process is to develop or reconstruct a surface representa-

tion. There are many techniques that can be used for this step, each with their

own strengths and weaknesses, and we will summarize these techniques within the

next section. These methods range in complexity from a simple point-based approx-

imation, to a more complex surface-based representation, and finally to solid model

reconstructions.

Once the reconstruction is complete, the final constructed environment can be

imported into an external application for usage. One important aspect that must be

addressed is that the environment must be stored in an understandable and portable

format for easy integration into an external application.
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B. Previous Work

There is a large body of research related to object modeling and reconstruction in

Computer Graphics. Our work draws on ideas related to the areas of surface re-

construction, procedural/generative modeling, parts-based/example-based/feature-

based modeling, and object recognition. In the following sections, a discussion of

the major previous work in each of these areas is provided.

1. Surface Reconstruction

The area of surface reconstruction has been widely studied, and as a result many

different techniques exist. These techniques have resulted in different representations

that range from point-based to those that construct a continuous surface description.

a. Point-based Surface Reconstruction

Point-based surface representations provide a simple alternative for visualizing con-

tinuous surfaces through the use of the point samples themselves as display primitives.

The most widely used of these techniques is surface splatting [2][3]. These approaches

are fast and have been shown to scale well to very large datasets [13]. Surface splat-

ting fits a small fixed-size elliptical disc such that it is centered on the point and is

perpendicular to the point’s normal. Then, using a weighted contribution where the

influence diminishes towards the edge of the disc according to a Gaussian distribu-

tion, these overlapping discs can be blended together into a visually smooth surface.

An illustration of this process is provided in Figure 12 and a full example was pre-

viously shown in Figure 2. These approaches rely heavily on graphics hardware, and

can provide very efficient, high-quality rendering that does not require the storage of

topological information.
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Fig. 12. Point cloud samples and fitted surface splats of increasing size.

b. Patch-based Surface Reconstruction

Patch-based representations provide a slightly more complex method of reconstruc-

tion. These approaches fit localized surface patches to groups of related neighboring

points. These patches can then be blended together in a follow-on step to provide a

continuous surface visualization. The approach by Boubekeur et al. generates locally

overlapping 2D Delaunay triangulations of the point set, and then locally aggregates

the meshes to obtain a visually continuous surface [14]. Jenke et al. proposed a ro-

bust and efficient patch-graph reconstruction algorithm that builds a graph of locally

constructed surface patches (from the point cloud data) which is then used as part of

a feature-preserving reconstruction process [15].
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c. Standard Surface Reconstruction

There are many standard reconstruction-based approaches that generate a continu-

ous representation of the surface the samples represent. Some of the more popular

techniques are triangulation-based and implicit-based methods, where each category

has their own methodologies as well as advantages and disadvantages.

Triangulation-based approaches represent the classical method of reconstructing

a surface using a series of connected triangles (i.e., a piecewise linear surface commonly

referred to as a mesh). Some example approaches are Alpha Shapes [16][17], Crust

[18], and Cocone [19][20]. The triangulation-based methods generate an accurate sur-

face, interpolating and precisely fitting the data, which may be good or bad depending

on the accuracy and noise-level of the dataset itself. These surfaces are both easily

stored and rendered with standard graphics hardware, but are often computationally

expensive to generate. The Delaunay-based triangulation algorithms provide certain

theoretical guarantees that can ensure the integrity of the resulting mesh (e.g., com-

posing angles of the generated triangles). However, these guarantees come at a price

as these algorithms typically run slower and do not scale (due to time and memory re-

quirements) to larger datasets without using some form of spatial decomposition and

a series of local reconstructions, followed by a patch integration/stitching to define a

globally continuous surface [20].

Implicit-based approaches generate a smooth and continuous surface that approx-

imates the data. Some example approaches are Signed Distance Functions [12][21],

Radial Basis Functions [22], Moving Least Squares [23][4], and Poisson reconstruc-

tion [24]. In general, these approaches tend to work well with noisy data but make

generating sharp and concave features, as well as fine-grained detail, very difficult

without some form of post-processing. These approaches are fast and can usually
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scale to larger datasets. The result of these approaches is an implicit surface that is

difficult to store and render without first converting it into a meshed representation.

The previously shown example in Figure 3 illustrates the result of generating an im-

plicit surface and contouring this representation. Aside from these general surface

reconstruction methods, there are many other specialized extensions that have been

developed.

d. Interactive Surface Reconstruction

The first specialized extension to surface reconstruction centers around interactive

reconstruction. Interactive surface reconstruction is the method of allowing user

involvement to dynamically control parameters during the reconstruction process.

This could involve anything from parametric ’tweaking,’ to controlling the level of

detail of the final reconstructed surface. This area of research has resulted in only a

few methods.

Kobbelt and Botsch introduced an interactive approach that works with different

types of data (e.g., point clouds, polygons, and NURBS-patches) [25]. This approach

allows for adjustment of the orientation and resolution of the triangulated mesh based

on the user’s interactively specified demands. However, this approach is a very manual

process requiring the user to select the area in which to place a patch, scale and orient

it, and then the algorithm automatically stitches the patch into the surrounding

elements in the mesh.

Mencl also describes an interactive approach to surface reconstruction [26]. This

approach allows manual insertion/deletion of vertices, manual adjustment of the un-

derlying feature description graph, manual surface connection of disjoint surfaces,

and a manual point selection driven reconstruction. This interactivity overrides the

underlying rules used by the automated process.
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e. Progressive Surface Reconstruction

The second specialized extension to surface reconstruction uses a progressive scheme

for reconstruction. Progressive surface reconstruction (also referred to as incremental

reconstruction) involves a stepwise process that performs the reconstruction in stages.

Each stage results in a more accurate surface and can provide visual feedback to the

user. This process executes in either a bottom-up or top-down fashion [27].

A bottom-up approach develops a surface based on a predefined set of seed

elements and the surface grows outwards to surrounding points of the same surface

type. This process continues until encountering a boundary. There are many different

bottom-up approaches. Early work took more of a brute force approach [28][29]. Later

work used a divide-and-conquer approach to decompose the problem into a series

of smaller sub-problems which are locally solved, and then the results are merged

[20][30][31][32]. A third approach uses an incremental approach where the surface

is constructed element by element in a growing fashion until a boundary is reached

[33][34][35].

In a top-down approach the process begins with an assumption that all points be-

long to a single surface. As the algorithm incorporates additional data, it adds/removes

detail to/from this surface and performs an integration process to merge elements.

The top-down approach is a less commonly used technique. Ivrissimtzis et al. intro-

duced Growing Cell Structures which function as an incrementally expanding Neural

Network (defined as a Neural Mesh) that randomly samples the dataset and adjusts

the connectivity of the network based on the selected data points [36]. The nodes and

connectivity within this network represent a dual to the vertices and connectivity in

the mesh. This approach uses the edge collapse and vertex split transformations as

previously defined by Hoppe [37] for evolving a mesh as more data is incorporated.
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f. Feature-based Surface Reconstruction

A third specialized extension to surface reconstruction centers around feature-based

reconstruction methods. Feature-based methods attempt to identify major elements

within a point cloud to ensure that they are accurately represented in the generated

surface. This area of research has also resulted in multiple methods functioning in

different fashions.

An early approach by Mencl and Muller proposes a method that first creates a

surface description graph (i.e., a wire frame of the surface that characterizes certain

basic elements identified), and then uses the graph to drive the reconstruction process

[38]. Gumhold et al. propose a similar approach that extracts several different feature

types (e.g., crease lines, crease junctions, crease loops, border loops, and singleton

ends) as part of a preprocessing step, and these features are then used to refine and

ensure an accurate surface gets generated during the reconstruction process [39]. A

later approach by Fleishman et al. uses a robust Moving Least Squares technique

to reconstruct a piecewise smooth surface, and is capable of defining sharp features

while using implicit surfaces [40].

g. Hole Filling and Augmentation

Finally, as scene complexity rises, occlusion can cause trouble for many reconstruction

algorithms. Some implicit methods can inherently handle smaller voids in data (e.g.,

[22]). Other approaches have been developed to deal with larger holes by using under-

lying assumptions (e.g., information from similar surrounding areas [41][42]) or ad-

ditionally provided information (e.g., geometric/shape prior information [43][44][45])

to fill in the missing details. The approach by Shalom et al. uses the point samples

for both position estimation, and to obtain global visibility information to define a
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better approximated signed distance function and implicit surface [46]. These differ-

ent approaches have been shown to work well on a wide variety of models. There has

also been work attempting to fill larger voids in the data where significant pieces are

missing [47]. This approach makes the assumption that the surface can be restored

using simple primitives and has been shown to work well for CAD models.

2. Procedural Modeling

Procedural/generative modeling methods have been used in a wide range of appli-

cations. In general, many different approaches have been proposed for generating

textures, environmental effects, and modeling [48]. Modeling methods have been de-

veloped for automatically generating buildings and roads [49][50][51], trees and plants

[52][53], and terrain [54][55]. The output from these different methods has been used

in real-time games and simulations, and incorporated into animation and movies.

These techniques are being used to develop entire mathematically-based worlds [56].

Procedural approaches leverage techniques such as fractals [57], Perlin noise [58], L-

Systems [59], tiling [60], and shape grammars [61] to drive the underlying generation

process.

Many methods have been developed for generating cities, buildings, architecture,

and roads. Kelly and McCabe provide a survey of common techniques [49], and Wat-

son et al. provide an overview of state of the art techniques and applications for

city generation [50]. The common approach used begins with the definition of a road

network, followed by the generation of a set of buildings around this network. Com-

mon methods for developing road networks include L-systems, Voronoi diagrams, and

tensor fields [49]. Buildings can then be generated using techniques such as stochas-

tic L-Systems where, based on a building’s selected style, it is generated from its

footprint using a series of L-system modules/operations that include transformation,
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extrusion, branching and termination, and selection of geometric templates for defin-

ing roofs and various other features [62]. Other approaches include the use of shape

grammars where context sensitive shape rules are used to define the interaction be-

tween entities of a hierarchical shape description, thereby allowing for a wider range

of buildings to be developed [63]. These techniques focus on generation of realistic

external structures, but other approaches go beyond just modeling the exterior prop-

erties and focus on developing more realistic interior structure as well. Whiting et al.

focus on developing structurally sound buildings by incorporating physical constraints

and static analysis into each step of the procedural modeling process [64]. Merrell et

al. propose a method for generating realistic residential floor plans along with the

corresponding three-dimensional structure by using a Bayesian network trained on

data obtained from real-world houses [65].

Procedural generation of trees and plants has also resulted in many methods.

The classic approach for generating plants is through the use of L-Systems [52]. Ex-

tensions of this approach include incorporation of environmental parameters into the

construction process [66] and more expressive attributes for developing more complex

models [67]. In a different approach by Weber and Penn, a model that depicts the un-

derlying structural development of trees is proposed [68]. In a different area, Deussen

et al. focus on the distribution of plants in a realistic and natural fashion to form

ecosystems [69]. Multi-resolution generation of plants and trees is also important

because it allows generation at different levels of detail for more efficient rendering

[70].

Procedural generation of terrain has been another key area of research. The

classic approach is to generate a height field (also referred to as a height-map) rep-

resentation that stores relative altitude at regular intervals. As a result of it being

stored in a regular grid, this structure can be easily converted into a meshed repre-



29

sentation. Ebert et al. [48] and Smelik et al. [54] both provide good overviews of the

many different methods used for this type of terrain generation. Fractals and Perlin

noise provide two classic methods for generating height-maps. Additional techniques

such as image filtering and cellular automata can also be used to develop the effects of

physical phenomena (e.g., erosion and weathering). Other more advanced techniques

build on these ideas and are able to leverage the GPU to evaluate and polygonize

signed density functions to obtain very complex dynamic terrains at interactive frame

rates [71].

Of the many different approaches described, the most closely related to our pro-

posed work is the model synthesis approach by Merrell [72]. His approach extends

the 2D texture synthesis problem into higher dimensions, and is capable of generat-

ing very large consistent models from a provided example. In later work Merrel et

al. extend this idea to continuous model synthesis [73], and allowing for additional

geometric constraints to provide a user greater control over the final results [74].

3. Parts and Example-based Modeling

Parts-based and example-based modeling methods have become increasingly popular.

These methods commonly use information from known/high quality models for a

variety of operations with other unknown/lower quality models. These approaches

are not limited to just models, and some have been shown to work well with point

cloud data also. These approaches can be broken down into several categories.

The first category fits simple primitives (i.e., planes, cylinders, spheres, etc.) to

point cloud data [75][76]. An extension of this idea uses constrained graphs of different

primitive shape configurations to describe features, and works well with point clouds

from architectural domains [77].

A second category goes beyond simple primitives and relies on a database of
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object models for extracting the fitting elements. These approaches usually focus on

fitting more functional items (i.e., an arm, leg, handle, wheel, etc.). They have made

use of ideas such as interchangeable parts [78][79], salient parts [80], and hierarchical

analogies between parts [81]. They typically deal with meshed models as opposed to

point clouds.

Gal et al. propose another approach that uses a database of local shape priors to

augment point clouds during reconstruction. Their approach matches and fits shape

priors extracted from provided high quality models to specific regions in a point cloud.

These fitted patches are then integrated as part of the reconstruction process. Their

approach produces higher quality results by using the fitted priors to smooth out

noisy data and fill small gaps [45].

A third category assumes no prior knowledge and simply uses data available

from the model itself. These approaches focus on the identification of symmetry and

regular geometry within models (i.e., reoccurring parts/features) [82]. Extensions of

this work use graphs of salient features [83] and feature lines [84] to help with the

process. In general, these approaches are feature-oriented and deal with structural

regularity across a dataset (e.g., finding regular patterns of window facades across

the surface of a building). These features can then be iteratively transformed across

the dataset to define a regular pattern. These approaches have been shown to work

with both point cloud data and meshed models and can be used for model repair,

compression, and geometry synthesis [82].

4. CAD/CAM Feature-based Modeling

Our work is partially inspired by the large area of feature-based modeling from the

CAD/CAM communities. In general, these approaches commonly use a set of defined

primitives (i.e., the data) along with a set of rules for primitive interaction (i.e., the
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relationships between data) to construct solid model representations. There are many

survey papers that provide overviews of the different feature-based techniques that

have been developed (e.g., [85][86]).

5. Object Recognition and Matching

One major component of our approach is the identification of an object of interest

within a larger scene. Many techniques have been developed to solve various problems

in object recognition and matching [87][88]. As the complexity of a scene increases,

recognition becomes more complex because objects may be only partially visible. This

problem is well understood in Computer Vision.

In 2D, many partial recognition techniques have been developed to segment a

scene into smaller pieces and then iteratively group the segmented pieces to identify

an object [89][90]. Similarly, in both 2D and 3D, geometric hashing can detect local

features in a scene using coordinate frames [91]. In 3D, the Spin Image technique

uses a local surface matching process followed by a global iterative fit, and has been

shown to work well with complex datasets [92]. Other regional point descriptors such

as 3D shape contexts and harmonic shape contexts have been proposed as well [93].

The parts-based classification of Huber et al. is a technique that matches local parts

(from a database of objects) to possibly occluded objects in a scene and can recognize

different classes of known objects [94]. Pairwise alignment techniques such as the

4PCS algorithm allow for partial matching/fitting of two three-dimensional point

sets, and can work effectively in the presence of noise [95]. Finally, many of these

techniques were developed to support applications for automatic target detection and

recognition [96].

Object/shape matching addresses the problem of how to effectively determine

the similarity/dissimilarity between two shapes. Tangelder and Veltkamp provide
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a survey of the overall matching process, as well as a description of some of the

more common approaches used [97]. They decompose the matching methods into

three primary categories: feature-based (e.g., global features, spatial maps, and local

features), graph-based (e.g., model graphs, skeletons, and Reeb graphs), and other

methods (e.g., view-based, volumetric error, weighted point set, and deformation-

based similarity). Bustos et al. provide a detailed survey of the feature-based methods

[98]. Finally, the research at Princeton’s Shape Retrieval and Analysis Group has

addressed many related issues in the context of matching for shape retrieval [99].

C. Challenges and Solutions

There are many challenges with both geometric modeling and reconstruction of en-

vironments such as that shown in Figure 1. All of the methods discussed as part of

the previous work attempt to address different aspects of this problem domain, but

none provide a complete solution. Thus, as the environments to be modeled become

larger and the level of complexity increases, new methodologies must be developed

to address these challenges. The methods we propose in this dissertation provide two

such alternatives.

Most of the prior work in surface reconstruction focuses on generating a single

continuous surface representation from a point cloud. In all of the methods presented,

an assumption is made that the point cloud provided as input represents a single

element (i.e., an object, building, etc.), and as a result a single surface representation

would suffice. Our work takes a different approach. We instead assume that multiple

objects exist in the point cloud dataset, and we reconstruct each distinct object

individually until no more objects can be identified. As a result, information from

provided template models must be used to distinguish between different objects within
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a scene, and to fill occluded regions that were not captured during the acquisition

process due to occlusion.

The prior work in generative modeling provides many alternatives for construct-

ing different elements of an environment such as architecture, vegetation, and terrain.

In general, these approaches are limited to developing models of a specific type. The

construction process for many of these methods center on an underlying formal gram-

mar (e.g., L-systems for building generation) or a mathematical basis (e.g., Perlin

noise for terrain generation). In the case of formal grammars, the underlying rules

used must be designed and carefully specified by a user to ensure proper models are

obtained. In the case of the mathematical approaches, careful selection and tuning

must occur to ensure interesting results are obtained. We take a very different ap-

proach. Our method takes a template model as input, and automatically constructs

a rule set based on it. The user then has a choice whether to provide an object

parameterization for an object, or to allow for a more automated approach. Our

approach is not limited to a particular type of object, and differs from many existing

approaches whose primary focus is on developing realistic visuals only, in that we

focus on constructing arbitrary models in a solid model fashion.

Both of our proposed approaches extend on parts-based and example-based mod-

eling. Our reconstruction approach relies on matching and fitting of extracted patches

(from provided object models) to a point cloud. These fitted parts are used to define

a complete solid representation for each object in the environment. In our genera-

tive modeling approach, defined regions on the template model (which in many cases

correspond to parts from an object) are replicated and interchanged to define new

variations of the provided template model. We show how the idea of fitting basic

elements based on an established set of rules, both of which are obtained from a tem-

plate model, can provide basic building blocks necessary to construct entire objects
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of different forms.

Object recognition approaches typically focus on the identification of an object

within a larger scene. Our approach is not only able to recognize an object, but

also reconstructs a solid representation of it. Our approach can also distinguish

between similar yet different objects, and identify objects of varying scale. Most

partial recognition techniques use localized information within a point cloud to make

a decision about whether an object exists or not, followed by a rigid global fitting of

the object to that space. We use an iterative approach that fits extracted patches from

the input model in a stepwise fashion to incrementally recognize an object. Thus,

localized information is used across a larger region in the point cloud to correctly

identify and construct an object.

The two approaches that we propose and evaluate within this dissertation at-

tempt to provide easier and more efficient alternatives for constructing virtual rep-

resentations of cluttered environments. Our approaches build on and extend from

these previous works, and provide new alternatives focused on constructing solid

model representations for easier generation of virtual environments.
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CHAPTER III

INFERENCE-BASED POINT CLOUD RECONSTRUCTION

A. Overview

As three-dimensional data acquisition devices have become more portable and widely

used, the range of applications for digital reconstructions and the complexity of en-

vironments being captured has steadily grown. Thus, there is an increasing need for

more efficient and accurate reconstruction methods capable of handling more complex

environments.

Figure 13 shows an example environment containing clutter, a collection of ob-

jects residing in a small amount of space. Many automated reconstruction methods

run into trouble with such environments due to the number of distinct surfaces and

their spatial proximity. Reconstruction algorithms typically develop a representation

of only the visible surfaces which the points sample, combining these points into a

continuous surface representation that does not distinguish between separate objects

nor capture the complete volumetric structure of distinct objects. Such a represen-

tation is not adequate for many application areas, where an unambiguous complete

solid representation of each individual object is necessary (e.g., physically-based mod-

eling, environmental analysis, etc.). Thus, taking information from observed portions

of an object and inferring details about missing or occluded regions is important for

distinguishing between objects and for solid model reconstruction.

A method to reconstruct environments such as the example in Figure 13 must

deal with this inherent clutter. Prior research [91][92][93] on cluttered environments

has identified several key challenges:

• Clutter hinders the environment capture process by occluding portions of an
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Fig. 13. An example cluttered environment (left) and corresponding captured point

cloud (right).

object’s surface, resulting in an incomplete surface sampling.

• It can complicate the segmentation of point samples for one object due to the

close proximity of other objects in space, often requiring partial recognition

techniques to correctly identify an object.

• If two objects have similar local features but different overall global structures,

distinguishing between the two objects can be hard. Occluded surfaces make

this determination even more difficult.

Our approach uses a partial object recognition strategy along with prior knowl-

edge to infer the details of hidden or unclear structure in point clouds of cluttered

environments. This allows us to reconstruct solid models from the point cloud, rather

than just a single continuous surface. Our work builds on existing techniques and pro-

vides three main contributions:

• We provide an organized and efficient weighted sampling strategy to recognize

objects of interest within a point cloud dataset containing clutter.
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• We provide a predictive modeling technique that uses an extracted set of sur-

face patches and rules regarding their relationships to incrementally identify and

reconstruct the complete structure of an object, even under very uncertain sit-

uations. This avoids the more difficult, and often times less accurate, approach

of performing a global rigid object fitting used by many existing methods.

• We demonstrate how our recurrent local to global matching and fitting approach

can be used to iteratively fit objects in a cluttered scene, beginning with those

that are easily identified, and over time handling those that are more difficult

to recognize and reconstruct.

B. Algorithm Details

Our approach is decomposed into three phases (shown in Figure 14) and extends

the augmentation work of Gal et al. [45]. The first phase constructs the underlying

data structures used by the inference process. The second phase identifies individual

objects in the scene and fits a series of patches to define an object’s boundary. The

final phase uses the set of fitted patches to construct a solid representation, followed

by removing the contributing point cloud samples so they will not be considered as

part of other objects.

The recognition and reconstruction phases function in an automated and iterative

fashion, starting with the very apparent and easier to identify objects, and moving

on to those that are more difficult to handle. The algorithm continues until there is

no longer sufficient evidence to identify an object.
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1. Phase I: Setup

The setup phase (described in Algorithm 1) is a precomputation step in which infor-

mation is collected for objects to be identified and reconstructed within a scene. We

take as input a set of one or more models. We then uniformly sample these models

to construct localized surface patches, capture properties of each patch for weight-

ing purposes, and organize the patches into a graph structure that describes their

relationship across the object.

Algorithm 1
1. modelsel ∈ InputModels;
2. uniform samples = UniformSampleModel(modelsel);
3.
4. for sample ∈ uniform samples
5. p = ConstructShapePrior(sample, δ, α);
6. UniformSubsamplePatch(p, s);
7. Tp→n = NormalizePatch(p);
8. sigp = BuildSignature(p, ω);
9. wfeat = FindFeatureDensityProperty(p);
10. woccl = FindAmbientOcclusionProperty(p);
11. StorePatchInList(P, p, Tp→n, sigp, wfeat, woccl);
12.
13. G = BuildNeighborGraph(P );

a. Prior Construction

The first step in the setup process constructs a set of shape priors for each input

model. A shape prior (or simply prior) is defined as a sampling of the local structure

of a surface (i.e., a surface patch). The collection of these patches across an object

serves as the core elements leveraged by both the recognition and reconstruction

phases of our algorithm.

Sampling

The set of priors P is constructed by uniformly sampling the faces of a model’s
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mesh using an area weighted scheme, followed by a relaxation procedure to ensure an

even distribution of samples across the surface [100]. This uniform sampling process

is explained in Appendix A. A prior p ∈ P at a sample µ is defined as the set of faces

F (with corresponding face vertices V and face normals N) residing inside a fixed

support region s. A support region is defined as a sphere of radius δ located at µ

that filters out any samples with a normal angle deviation greater than α. Thus, p is

formally defined in Equation 3.1 as:

p = {F ⋃V ⋃N | dist(vF , µ) ≤ δ, arccos(nF · nµ) ≤ α} (3.1)

where the vertex vF ∈ V , the normal nF ∈ N , and nµ is the surface normal at µ.

Configuring the support distance δ and support angle α allows customizable control

over the discrimination the patches provide, which can be important for recognition

in heavily cluttered scenes [92]. We found that an α of 95◦ provided adequate discrim-

ination for all of the examples used in this dissertation. However, a smaller/larger

angle could be used for situations where less/more surface variance is necessary. The

value of δ varied based on the input models used, with values ranging from 1.5 to

3.75. An example model sampling is shown in Figure 15.

Signatures

In order to efficiently match the shape priors to regions in the point cloud data, a

unique defining signature must be computed for each prior p ∈ P . We use geometric

moments (described by Elad et al. [101]) for this surface signature, due to several

key traits:

• They are fast to compute and compare, and provide a good descriptor of the

essence of a shape.
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Fig. 15. On the left is a sampled model and on the right is a sub-sampled prior patch

(the samples are shown in green, the sub-samples in blue, and the mesh ver-

tices in red).

• They can effectively measure the similarity between two surfaces.

• They work well with point sampled data and do not require extra information

(e.g., normals, connectivity information, etc.).

• When computed on normalized data, they are position, rotation, and uniform-

scale invariant.

As described by Elad et al. [101], the moment integral can be approximated by

a summation over a set of sub-sampled points (shown in Equation 3.2). Thus, for a

shape consisting of a sub-sample size N the (p, q, r)-th moment is defined as follows:

m̂p,q,r =
1

N

N∑
i=1

xpi y
q
i z
r
i (3.2)

To develop a signature sig(p) for a prior p, the faces making up the prior are first

uniformly sub-sampled (using the process as defined by Turk [100] with the additional
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constraint that the sub-samples must reside inside s; a more detailed explanation of

this process is provided in Appendix A). An example sub-sampling of a patch is shown

in Figure 15.

These sub-sampled points need to be normalized to a common basis so the com-

parison of two calculated signatures is invariant to spatial position, rotation, and

uniform-scale. Our normalization process follows that defined by Elad et al. [101],

and first aligns the points’ center of mass with the origin (0, 0, 0), then aligns the

points’ principal components with the primary coordinate axes, and finally uniformly

rescales them so their largest principal component is of unit length. The canonical

information Tp→n used to normalize p is stored for use during the later recognition

and reconstruction phases. The resulting sig(p) is then defined by a finite vector of

scalars from these normalized points (shown in Equation 3.3).

sig(p) = 〈m1,0,0,m0,1,0,m0,0,1, . . . ,m0,0,ω | p+ q + r ≤ ω〉 (3.3)

Depending on the complexity of the data, different dimensions of moments ω

can be used. With higher dimension the signature is more descriptive, but also

takes longer to compute and compare. In our experiments we found that an ω of 5

provided adequate results, but a higher dimension could easily be used for capturing

more detail. Finally, sig(p) is a simple finite vector and two different signatures siga

and sigb representing two different patches can be compared using a distance metric

d(siga, sigb) (shown in Equation 3.4).

d(siga, sigb) = ‖siga − sigb‖2 (3.4)

While a variety of metrics are reasonable, including ones weighting some moments

more than others, we found a simple Euclidean distance-based metric to be sufficient.
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Two signatures are similar if this resulting distance is small; for evaluation we typically

use 1/d(siga, sigb) as our similarity score/value. This value can be used to gauge

partial similarity between two patches as well.

To allow for more effective matching of patches, we compute two additional

“weights” for each prior. The first is based on feature density, and the second on

ambient occlusion. These weights, which will be presented next, are used during the

recognition process explained in detail within Section 2.

Feature Density Weighting

The feature density weight wfeat (shown in Equation 3.5 and illustrated in Figure

16) characterizes the level of features represented within a patch. Sharp features are

often the most distinguishing characteristics of objects. As a simple example, the

corners of a cube are better for matching than the flat centers of faces. Thus, for

each patch we determine the total feature length by first analyzing the edges between

adjacent faces and marking those that have a dihedral angle greater than a defined

angle (we use 45◦ in all of our examples). We then sum the lengths of all such feature

edges in a patch, and assign a weight for a prior p as the ratio of this sum over the

maximum from all of the priors.

wfeat(p) =
( ∑

lengthfeature edge(p)

max(total length(p1)..total length(pn))

)2

(3.5)

We use a quadratic because it allows better variability of the weights based on the

magnitude of feature density near a sample. Finally, for objects that do not contain

any features (i.e., in the case of a sphere), all weights are set equally to 1.0.

Ambient Occlusion Weighting

The ambient occlusion weight woccl (shown in Equation 3.6 and illustrated in

Figure 16) characterizes the degree to which a sample is occluded from the outside
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Fig. 16. Feature density and ambient occlusion weights. Lighter colors represent higher

weights.

environment. Since the point cloud is collected using line-of-sight sensors from loca-

tions surrounding the cluttered scene, we assume that areas of high ambient occlusion

are less likely to be sampled and thus are less likely to be matched. As an example,

a sample on the inside center of a long tube is less likely to be seen than one on

the outside. Thus, woccl measures how likely a sample is to be chosen based on its

visibility.

woccl(p) =
√

count(raysvisible(p))
count(raysvisible(p)+raysnot visible(p))

(3.6)

For each model, a bounding sphere of radius τ is computed and uniformly sam-

pled using Hammersley points (using a fixed sample size). A standard ray tracing

procedure is then used to shoot rays from each prior sample µ to the samples on the

bounding sphere. The weight for a given prior p is the percentage of these rays that

hit the sphere (i.e., the fraction of directions from which the sample can be seen from

at least τ distance away). We use a square root function for this weight to moderate

the effect of its measure.
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Fig. 17. An example neighbor graph (a green node corresponds to a prior sample and

a red edge connects two priors whose support spheres overlap in space).

b. Graph Construction

The next step in our setup phase determines the relationship between different priors,

thereby representing the structural behavior across an object. We construct a neighbor

graph G = (N,E) where the nodes N correspond to the individual prior samples from

P . Two nodes ni and nj are connected with an edge ei if the defining support spheres

for the two priors overlap. This graph will be used by the matching algorithm to

ensure an unambiguous surface definition. An example graph construction is shown

in Figure 17.

The result of the setup process (organized in Figure 18) is a collection of prior

patches that accurately describe both the local behavior of the model’s surface (the

individual prior signatures), as well as the interconnectivity of these different local
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Fig. 18. The various elements that are constructed during the setup stage for use

during the recognition and reconstruction stages.

behaviors across the global structure of the object (the prior neighbor graph). These

elements will be the basis for the recognition and reconstruction process explained in

the next section.

2. Phase II: Object Recognition

Our primary motivation is to identify and reconstruct objects within a larger cluttered

environment. Our recognition algorithm centers on a predictive modeling technique

using the graph of prior patches. This recognition phase (described in Algorithm 2)

takes as input a point cloud dataset consisting of a set of oriented points. We then

try to identify instances of objects in this dataset by matching one of the provided

prior models.

a. Initial Matching

To begin reconstructing an object, we must first identify a possible object within the

point cloud. The first step of this recognition phase searches the dataset to find a

high likelihood local surface match, and then iteratively fits patches to surrounding

areas of less certainty.
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Algorithm 2
1. matchFound = false;
2. repeat
3. for o ∈ O
4. χ = PickRandomSample(o);
5. c = ConstructCloudPatch(C, χ, δ, α);
6. Tc→n = NormalizePatch(c);
7. sigc = BuildSignature(c, ω);
8.
9. for p ∈ P
10. scoreroot = GetRootScore(p, c);
11. if scoreroot < tolroot
12. then Discard(c) and continue;
13.
14. scorering = GetRingScore(p, c, rmax);
15. if scorering < tolring
16. then Discard(c) and continue;
17. else matchFound = true and break;
18. until matchFound == true;
19.
20. pfitted = FitPatch(C, p, c, Tp→n, Tn→c);
21. RefinePatchF itting(C, pfitted);

Searching

To efficiently and evenly search a point cloud C, we use an octree (an example

is shown in Figure 19). The octree provides both an organization of the data into a

grid for uniform sampling, and an efficient tool for neighbor searching. Our sampling

process keeps a list of the active octree leaf nodes O (i.e., those with unselected point

samples), and in each iteration a single point cloud sample χ is selected from each

octree node o ∈ O. A node is removed from O when it no longer has any unselected

points.

For each selected sample χ, a cloud patch c is captured. All cloud samples

residing inside a spherical support region (of radius δ and centered at χ) are captured,

and the support angle α is used to filter out (based on normal angle deviation) any

potential points belonging to other objects. The cloud patch is then normalized and
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Fig. 19. An octree is used to uniformly search the point cloud dataset.

the canonical information Tc→n used to normalize it is stored. Finally, a geometric

moment signature sig(c) is constructed using the cloud points themselves as the

corresponding sub-samples. Note that in areas void of data this signature may be a

very inaccurate representation, and will thus never be adequately matched to a prior

in P .

Root Matching

Once a sig(c) has been generated, the next step is to compare it with the set of

prior patches and identify any potential matches. To provide effective recognition, a

two phased comparison is employed. In the first phase the cloud patch c is compared

to each prior patch p ∈ P using a weighted similarity score scoreroot(p, c). This

weighting scheme incorporates several key components about a prior patch’s local

behavior, and these weights ensure an adequate patch is chosen to begin the fitting

process. This root comparison score (shown in Equation 3.7) takes into account

the similarity s(p, c) between the two patches, as well as the weights describing the
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prior patch’s feature density wfeat(p) and degree of ambient occlusion woccl(p). The

similarity s(p, c) is defined as the distance (we use the Euclidean distance as previously

described in Equation 3.4) between the moment signatures sig(p) and sig(c).

scoreroot(p, c) = wfeat(p) · woccl(p) · s(p, c) (3.7)

Given scoreroot(p, c), we then compare this score to a defined tolerance tolroot,

keeping any items with sufficiently high score, and discarding others. The process for

determining tolroot will be described later in Section 3.

Often, this one-to-one matching of a single prior may not be sufficient to identify

an object since only a locally defined similarity is determined. In some cases an object

may be locally similar, but globally different. There are two extensions that allow for

better identification of such objects. First, we could make the support neighborhoods

substantially larger to capture enough information to distinguish between patches.

This approach diminishes the robustness of these patches when matching amongst

clutter, as a larger area must now be confidently matched. A second alternative,

the approach we use, is to analyze the areas surrounding the patch of interest and

incorporate their match quality to further filter potential matches.

Ring Matching

The second phase in our patch comparison analyzes a set of neighbors surround-

ing each patch being compared to ensure a proper match is obtained. For a prior

patch p ∈ P , the graph provides an easy lookup of a neighboring element pi. For a

cloud patch c, finding the corresponding neighboring element ci within C is slightly

more difficult. The prior’s normalization information Tp→n and the inverse of the

canonical information found during searching Tn→c are used to define an initial ba-

sis. Then the relative oriented offset for each node in the graph (i.e., σprior offset) is
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used to find the corresponding relative position within cloud space σcloud offset (i.e., a

vector between the two nodes in graph space can be transformed to define a relative

position in cloud space). This transformation is described formally in Equation 3.8.

σcloud offset = Tn→c(Tp→n(σprior offset)) (3.8)

A defined ring size rmax is used to control how far from the root node to incor-

porate additional elements. For all examples provided in this dissertation, an rmax

ranging from zero to two was used depending upon the level of similarity between the

objects being analyzed. For each selected node a support sphere is determined, the

intersecting cloud points are found, and a signature is calculated.

The signatures of these nearby elements are then used to determine an overall

matching score scorering(p, c) for the patch of interest (shown in Equation 3.9). This

score does not incorporate the wfeat and woccl weights used during matching of the

root patch; the weights help identify a good starting patch, but we want the ring score

to solely reflect the similarity between the two surfaces. The ring score is computed as

a weighted average based on the ring distance back to the root node where: s(pi, ci) is

the similarity between the pi and ci patches on a ring; ri is the ring length for the prior

pi, given by the number of edges in the shortest distance to the root node rroot = 0;

the summations are taken over the set of priors such that a prior pi’s distance must

be less than rmax from rroot. The weights falloff exponentially based on ring distance,

and 0.5 provided a good base that worked well in all of our examples.

scorering(p, c) =

∑
i

s(pi, ci) · 0.5ri∑
i

0.5ri
(3.9)

The ring score is then compared to a tolerance threshold tolring. If the patch

passes, it next needs to be fit to its respective position in the point cloud. A prior’s
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oriented position σprior and normalization information Tp→n, along with the inverse of

the canonical information Tn→c, are used to determine this initial fitting σfitted within

C (described in Equation 3.10).

σfitted = Tn→c(Tp→n(σprior)) (3.10)

Finally, an Iterative Closest Point (ICP) algorithm [10][11] is used to refine this

initial fitting σfitted. ICP allows for the refinement between two datasets by iteratively

trying to minimize the error between them. The result is the starting element for

recognizing and reconstructing the remaining structure of the object within C.

b. Structure Recognition

In the previous subsection we described the process for matching an initial high

likelihood prior patch to a region within the point cloud. Based on this initial fitting

and through the use of the rules defined as part of the graph, the process can quickly

expand outwards, iteratively matching and fitting patches until a complete boundary

of the object has been defined. This stepwise procedure is the basis for recognizing

an object (described in Algorithm 3). Figure 20 shows an example of this process.

The recognition algorithm uses a breadth first search of the prior graph (begin-

ning at the node of the matched root prior) to fit the remaining priors. This process

fits patches to both regions with samples, as well as occluded regions missing samples,

to ensure a complete object definition.

Validity Testing

As each node in the graph is visited (with corresponding prior psel), several tests

must be performed to ensure that a surface is properly matched and fit to the corre-

sponding cloud patch csel. The first test evaluates whether there is an adequate num-
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ber of point samples to perform the process. The number of cloud points contained

in csel is compared to a predefined threshold min sample sz (i.e., a fixed percentage

of the prior sub-sample size; we used 50% of the sub-sample size for all examples in

this dissertation).

Algorithm 3
1. FindNeighborsToF it(pfitted, nodesToF it);
2. repeat
3. psel = GetNextNode(nodesToF it);
4. csel = FindCloudPatch(C, psel, Tp→n, Tn→c);
5. FindNeighborsToF it(psel, nodesToF it);
6.
7. if GetNumSamples(csel) < min sample sz
8. then FitPatch(C, psel, csel, Tp→n, Tn→c);
9. continue;
10.
11. skewp = GetThirdCentralMoment(sigpsel);
12. skewc = GetThirdCentralMoment(sigcsel);
13. skewdiff = abs(skewp − skewc);
14. if skewdiff > tolskew
15. then FitPatch(C, psel, csel, Tp→n, Tn→c);
16. continue;
17.
18. if GetRootScore(psel, csel) < tolroot
19. then exit as an invalid match was found;
20.
21. pfitted = FitPatch(C, psel, csel, Tp→n, Tn→c);
22. RefinePatchF itting(C, pfitted);
23. until nodesToF it == ∅;

If enough samples exist, then a second test evaluates the distribution of the

corresponding normalized points as compared to the normalized sub-samples in the

prior patch to ensure the data is not skewed (i.e., allowing for a feasible match between

the two). This test simply evaluates the difference between the third central moments

from the two signatures sig(psel) and sig(csel). If either of these tests fail, then psel

is simply fit using the default transformation σfitted without ICP refinement because

this region involves a potentially occluded surface (or at least a partially occluded



53

Fig. 20. Several iterations of the patch fitting process.

surface lacking enough data to make a valid determination). If both tests pass then

the matching/fitting process continues.

A third test, one that we do not currently perform, could be included to check for

samples residing in expected locations only. This test would identify when samples

reside in a region where they should not if the algorithm is correctly reconstructing

an object (e.g., it might discover samples residing in the interior of an object and

alert the matching process of an invalid state).

Handling Matches Versus Errors

If enough samples exist in the region of interest in the point cloud, then the next

step matches the signature obtained from these samples sig(csel) to the expected

signature of the corresponding node in the graph sig(psel). If a match is found, then

it can be fit and refined. The process then continues on to the next queued patch.
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If an invalid match is found, then the matching/fitting process has failed. In this

case, all fitted patches for this object need to be removed and the point cloud samples

returned for later use. By allowing failure during the matching process, objects with

similar local surface qualities can be distinguished. As shown later in the results,

this provides an effective procedure for only identifying objects of interest within a

scene, and can be used to distinguish between similar yet different objects. However,

for an object to fail it requires the distinguishing characteristics to be visible during

the initial capture process. If these characteristics are entirely hidden, our algorithm

has no way of determining a difference and will simply perform a best determination

based on the available information.

When a valid match is found, the prior psel must be fit to the point cloud data. As

in the fitting of the matched root patch, an initial estimation of fitting is determined

(i.e., using a relative oriented offset σprior offset between the two graph nodes, and

applying Equation 3.8) and the patch fitting must then be refined.

Iterative Patch Refinement

The initial fitting of each patch is iteratively refined using a weighted ICP al-

gorithm [10][11]. This refinement helps fit the surface patch more closely to nearby

point cloud samples, ensuring a better overall fit in well-sampled regions. The patch

positioning σfitted obtained from applying the transformation ensures that a patch

begins with a reasonable default fitting (i.e., even in poorly sampled regions). The

refinement process then improves the fitting based on the locally available point cloud

data. In cases with extreme variation between the point cloud samples and a fitted

patch (a distance metric of 20% of the support distance δ was used in all of our

examples), we ignore all of these extreme point cloud samples and do not consider

them during the ICP process.
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Scaling

In some situations it is beneficial to match objects of varying scales (e.g., several

balls of different sizes). To address this need, a special stepwise support distance

δstep can be used when sampling the point cloud. This stepwise distance allows for

sampling at different ranges around a sample (i.e., using concentric spheres) and

constructing a scaled patch c̃. Only the samples that reside within a given range’s

sphere are captured, they are then filtered and normalized, and a signature determined

as previously defined in Section 2. For c̃, the canonical information Tc̃→n is stored

and since the calculated moments are scale invariant, they can be easily matched

with the priors in P . The fitting process for c̃ is then performed by using Equation

3.10 and substituting Tn→c̃ for Tn→c. This simple extension allows the graph to be

scale invariant and allows handling objects across differently defined scales (i.e., both

smaller and larger) from a defined model.

3. Phase III: Object Reconstruction

Given an object recognized by the previous phase, the goal of the third and final phase

is to reconstruct a solid model representation and prepare the dataset for further

object recognition (described in Algorithm 4). This multi-phase recognition and

reconstruction process is repeated until no more objects are found.

Algorithm 4
1. ⊇C = MergePatchesIntoPointCloud(Pfitted);

2. Simpl = GenerateMLSSurface(⊇C);
3. Smesh = GenerateMarchingCubesSurface(Simpl);
4.
5. if DoesUserAcceptReconstruction(Smesh)
6. then KeepModel(Smesh);
7. b = FindOrientedBoundingBox(Smesh);
8. RemoveCloudPointsInsideBox(C, b);
9. else Discard(Smesh) and start over;
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a. Solid Model Construction

Once the full boundary of the object has been identified and fitted with a set of priors

Pfitted, the next step in our process is to create a solid model representation by joining

the fitted priors pfitted ∈ Pfitted together to form a watertight and smooth surface S.

The sub-samples from each pfitted are combined into an integrated point cloud ⊇C.

Note that as described by Gal et al. [45], these sub-samples are high quality with

accurate normals since they were generated from the original input model. Thus, we

use these sub-samples as the basis of the reconstruction process to follow.

Next, a projection-based Moving Least Squares (MLS) reconstruction [4] is per-

formed on ⊇C. MLS is beneficial because it provides a smooth surface approximation,

can handle noisy data, and is capable of approximating a continuous surface, even

with noisy data (e.g., in the case of overlapping patches that may not perfectly align,

causing somewhat noisy and/or discontinuous samples; these are easily smoothed us-

ing this procedure). There are many other variants of MLS that could also be used

[102]. A detailed description of the MLS process we use is provided in Appendix B.

The result of the MLS process is an implicit representation Simpl that smoothly

and continuously defines the surface. It is a concise representation, but one that is

not easily rendered or used by many applications (e.g., simulations). Thus, a more

portable representation is desired. We use Marching Cubes to contour this MLS

implicit surface [5]. Marching Cubes is a simple and commonly used approach that

calculates a polygonal representation from an implicit definition.

Marching Cubes subdivides the space into a voxel grid, and then iteratively

traverses and evaluates each voxel’s contribution to the surface. An iso-value is de-

termined at each corner of a voxel and tested to see if it is inside/outside the surface.

If a voxel is found to intersect a surface, then the points of intersection along each
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Fig. 21. A final contoured model obtained from integrating the fitted patches.

edge can be found through interpolation. A set of rules (i.e., a pre-calculated array

of configurations) then defines the correct set of facets to model the surface within

the voxel. The original Marching Cubes algorithm [5] contained several ambiguities

which may result in a discontinuous surface definition across two adjacent voxels.

As a result, different variants to resolve these ambiguities [103][104] and alternative

approaches to voxel interpolation [105] have been proposed.

Marching Cubes generates a piecewise smooth surface that approximates the

implicit surface, but may have trouble when trying to reconstruct sharp features

and may also result in large meshes. Alternative contouring approaches exist that

are both feature-preserving and can generate better quality meshes. Some alternative

approaches include Extended Marching Cubes [106], Dual Contouring [107][108], Dual

Marching Cubes [109], and Unconstrained Isosurface Extraction on Arbitrary Octrees

[110]. A robust MLS fitting [40] provides a different alternative for obtaining sharp

features from the implicit surface.



58

The final output of this step is a meshed representation Smesh of the recognized

object. Figure 21 shows an example contoured model obtained from the patch fitting

shown earlier in Figure 20.

b. Final Processing

The final step in our process is to remove the contributing point samples for the

constructed object. In addition, the tolerances used during the matching process can

be adjusted based on the overall progress.

Contributing Sample Removal

Our approach functions in both fully automated and semi-automated modes.

During semi-automated reconstructions, the user can decide whether to keep a re-

constructed model or discard it in the case of an undesired fitting. In both modes,

after the contoured representation has been generated and deemed acceptable, the

final step is to remove the point cloud samples that contributed to this construction

to avoid negatively influencing future object recognitions and reconstructions. Since

we assume the environment is composed of more than a single object, these points

must be removed so they are not noise for later fittings. We perform this operation

by first finding an oriented bounding box b around the constructed object and use

the octree discussed previously to efficiently find the set of points that reside inside

this box.

Depending on the level of clutter in the scene, we allow two options for selecting

the points to remove:

• Remove all points that lie inside b.

• Find the iso-value of each point sample inside b (i.e., using MLS to calculate

the distance from the point to the surface), and determine if it lies inside or
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Fig. 22. A bounding box is used to locate the contributing point samples that should

be removed once an object has been reconstructed.

within a certain distance from the surface. If so, then the point is discarded,

and if not the point is kept for use by later iterations.

The first approach is an efficient solution, but may remove excess points that

do not belong to the object (i.e., if part of another object intersects b). The second

alternative is much less efficient, but provides a more accurate solution. We use the

first approach in all of our examples. Figure 22 shows an example bounding box used

for removing the contributing samples.

Incremental Recognition

After the points have been removed, the process then begins again to find and

reconstruct another object. As the iterative search process continues, it gradually

becomes more efficient as the number of points being analyzed gets reduced. However,
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the degree to which the samples represent a remaining object’s surface may decline.

Our approach begins by setting the matching tolerances tolroot and tolring high (i.e.,

requiring a better matching score), and then iteratively performs the recognition

process, decreasing the tolerances over time. The initial tolerances are determined

based on a user-guided trial and error process where the user decides when a valid

match has been obtained and the score gets recorded. After performing a series of

these tests, the maximum identified scores provide a good starting estimation for

the tolerance values. More automated approaches could be investigated and used to

reduce the front-end work required.

These initially established tolerances are reduced over time for more probable

matching. If at any point, greater than 50% of the remaining points in the point

cloud have been marked as selected but a sufficient match is not yet found, then we

assume there is a lack of evidence to identify an object. Rather than aimlessly moving

forward, the matching process is stopped and reset, the matching tolerances are each

decreased by 5%, and the matching process can then move on and match against

slightly less strict criteria.

This stepwise process allows matching of objects in an iterative fashion where

those easily identified are found and handled first, and then over time the more

difficult or harder to identify objects are found. Note that the reconstructions of

those objects identified later in the process (i.e., using lower tolerances) may not be

quite as accurate due to the lower quality matching requirements and reduced set of

point cloud samples. Once there are not enough points left to identify an object, the

process is terminated and the result is a set of models representing the objects within

the captured environment.
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C. Results

In order to adequately demonstrate the different capabilities of our proposed ap-

proach, we provide several examples containing various levels of object clutter and

complexity. We experimented with three different methods for generating the un-

derlying point cloud datasets used, and the database of priors consisted of a set of

models representative of the objects appearing in the corresponding synthetic and

real-world scenes. All results were generated using an Intel Xeon 2.67 GHz CPU with

4GB of memory. Currently, our algorithm implementation performs all computations

on the CPU and uses the GPU only for rendering. The dataset details and respective

execution times for each example are shown in Table 1.

The first method for evaluation uses an application that simulates the scanning

process to build several synthetic datasets. This simulation allows control over the

number and density of scans performed, as well as the incorporation of various degrees

of noise. Figures 23, 24, 25, 26, and 27 (i.e., Examples 1-5) show the point clouds and

corresponding reconstructions generated using our approach. The examples shown in

these figures illustrate many different capabilities of our algorithm:

• Example 1 demonstrates the ability of our algorithm to distinguish amongst the

clutter and identify different object types, and reconstruct each accordingly.

• Example 2 demonstrates the ability of our algorithm to distinguish between

similar yet different objects. Objects such as those shown can complicate the

partial recognition process. Our approach uses a combination of the differ-

ent matching weights and the trial and error process to correctly identify and

reconstruct each distinct object.

• Example 3 demonstrates the ability of our algorithm to work with noisy data.
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Gaussian noise was added to all samples in the point cloud where one standard

deviation corresponds to 5% of the largest dimension of the object. Since our

algorithm heavily relies on correctly matching the surface patches, if the noise

becomes too excessive the overall process can break down.

• Example 4 demonstrates our algorithm working with limited data and heavy

occlusion. Here the point cloud consists of a single scan taken from a single fixed

viewpoint and view direction. Our algorithm is able to iteratively identify and

correctly reconstruct each of the objects. Initially some of the objects with more

point samples are handled, and gradually over time those with fewer samples

(i.e., due to occlusion) are handled based on the available information.

• The objective of Example 5 is to locate the bunny amongst a larger pile of

more geometrically complex objects. In this example, the initial root search

time is slower because finding an accurate identifiable match for the object is

more difficult. In addition, fitting of the linked patches is slower due to lengthy

convergence times of the ICP algorithm. However, once the patches have been

fit a high quality reconstruction is obtained as shown in the figure.

The second method for evaluation uses a standard laser scan (a NextEngine 3D

Scanner HD) for generating the point clouds. Objects were placed on a turntable and

scanned from multiple directions. Figures 28, 29, and 30 (i.e., Examples 6-8) show

the original scenes, the corresponding point clouds, and the generated reconstructions

using our approach.

The third method for evaluation uses a photo-based approach for generating the

point clouds. A series of digital photographs was taken from different locations and

angles, and the Bundler software package [8] was used to produce a reconstruction of

the camera locations and sparse scene geometry. The output from Bundler was then
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Fig. 23. A synthetically generated example that demonstrates the identification and

reconstruction of multiple objects in clutter (Example 1).

Fig. 24. A synthetically generated example that demonstrates our approach’s ability

to handle locally similar, but globally different objects (Example 2).
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Fig. 25. A synthetically generated example that demonstrates our approach’s ability

to handle noisy data (Example 3).

Fig. 26. A synthetically generated example that demonstrates our approach’s ability

to handle heavy occlusion (Example 4).
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Fig. 27. A synthetically generated example that demonstrates our approach’s ability

to identify an object of interest surrounded by heavy clutter (Example 5).

passed to the CMVS software package [9] to reconstruct the sampled 3D structure

from the set of collected images. The final output of this process is a point cloud

representation of the scene. Figures 31, 32, and 33 (i.e., Examples 9-11) show the

original scenes, the corresponding point clouds, and the generated reconstructions

using our approach.

Figures 34 and 35 (i.e., Examples 12-13) show two special applications of our

approach using real-world data. Figure 34 shows the ability of our algorithm to

recognize and reconstruct similar yet different objects. In this example a ring size of

2 and a smaller support sphere were used to allow proper distinguishability between

the two different objects. Figure 35 shows an example of our approach using a single

input model to match multiple objects at different scales. In this example, the method

as defined earlier was used to match the two differently sized objects.

Finally, in order to evaluate the robustness of our approach with respect to

dataset resolution, we performed a series of tests with datasets of varying reduced

sizes. We began with the dataset from Example 7 (Figure 29), and then randomly
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Fig. 28. A laser scan-based point cloud and corresponding set of reconstructed models

(Example 6).
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Fig. 29. A laser scan-based point cloud and corresponding set of reconstructed models

(Example 7).
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Fig. 30. A laser scan-based point cloud and corresponding set of reconstructed models

(Example 8).
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Fig. 31. A photo-based point cloud and corresponding set of reconstructed models

(Example 9).
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Fig. 32. A photo-based point cloud and corresponding set of reconstructed models

(Example 10).
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Fig. 33. A photo-based point cloud and corresponding set of reconstructed models

(Example 11).
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Fig. 34. A photo-based example illustrating the handling of similar, but differently

structured objects (Example 12).
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Fig. 35. A photo-based example illustrating the handling of similar, but differently

scaled objects (Example 13).
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Table 2. Details of the Reduced Reconstructed Datasets

Dataset Size Point Cloud

Samples

Total Runtime Total Objects

Found

Errors

100% 80,940 653.2s 12 0

50% 40,470 595.5s 12 6

25% 20,235 567.3s 12 5

12.5% 10,117 485.8s 12 6

6.25% 5,058 516.7s 12 6

3.125% 2,529 366.5s 9 9

reduced it by 50% over several iterations. Our reconstruction process was then per-

formed using a fixed set of parameters in a semi-automated fashion so the user could

validate when an identification and reconstruction was successful. The details for

each dataset are shown in Table 2 and the final results are shown in Figure 36. Each

dataset is half the size of the previous dataset, and as data is reduced, more errors

occur. An error is defined as the matching and fitting of a wrong object, fitting of an

object in a wrong orientation, or not recognizing an object at all.

At 100%, our approach functions without any errors. At 50%, it is able to

handle the more heavily sampled objects on the outer areas easily, but begins to have

trouble on some of the inner objects that are more occluded and have fewer samples.

In this example, a couple of objects are misidentified and others reconstructed in

an incorrect orientation. As data is reduced in already poorly sampled regions, the

matching process breaks down and can misidentify the starting element for an object

(i.e., these objects are typically matched later in the process with lower tolerance
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Fig. 36. A series of tests were performed on reduced data to evaluate the robustness

of our overall process with respect to dataset resolution.
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values). If the matching tolerances are low when matching a root element, it may also

cause incorrect iterative fitting of surrounding patches as well. These two behaviors

can result in misidentification of objects, fitting of objects in a wrong orientation,

and various other errors such as object/object intersections. When reconstructing an

individual object we currently do not take into account the location of other already

constructed objects, so we are unable to analyze whether an object intersects the

boundary of another. At 25%, 12.5%, and 6.25%, similar behaviors occur and the

errors are with many of the same objects. At 3.125%, the recognition process begins to

break down completely. We are only able to correctly identify and reconstruct three

objects, and the overall process cannot match and identify many of other objects

within an acceptable tolerance range. Thus, they are never found.

Our approach heavily depends on having adequate samples to correctly identify

an object as our method does not address sparse recognition. In addition, clutter

does affect the data collection process by occluding objects, and those objects that

are less visible will have fewer samples describing them. The more visible objects

tend to have many more samples. This is apparent in our reduced datasets as those

objects more hidden are the first to encounter difficulty, and the more visible objects

are more easily identified. Thus, it is critical that an adequate data collection process

is used to fully capture and sample the environment to ensure proper reconstruction.

D. Discussion

The closest methods to our proposed approach are those described by Johnson and

Hebert [92], Jenke et al. [15], Schnabel et al. [47], and Gal et al. [45]. The recog-

nition approach described by Johnson and Hebert [92] also uses a local matching

procedure for identifying objects in clutter, but they perform a global fitting of the
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object in space (i.e., using a rigid transformation). Our approach avoids this global

fitting process by performing a reconstruction of locally fitted patches into a globally

complete object. Their local matching and global fitting process can run into trouble

with objects such as those shown in Figure 34, unless a carefully selected sampling

size is used to ensure the two similar objects can be adequately distinguished. We

are also able to easily handle objects across different scales, an aspect they do not

address. Finally, our approach incorporates a weighting scheme to avoid false positive

matches and ensures a better starting location for the fitting process.

The patch-graph approach described by Jenke et al. [15] allows a feature-

preserving reconstruction of the visible surfaces (i.e., only those represented with

point samples) of an object. Their approach is similar to our work in that it uses

a graph of locally constructed surface patches as part of the overall reconstruction

process. However, their patches are constructed using a locally defined reconstruction

and a subsequent subdivision approach (in a feature-aware fashion), and is limited

to using only the information provided from the point samples. The authors do not

address reconstructing occluded areas as in our work, but simply focus on performing

a reconstruction in an efficient and robust manner.

Schnabel et al. [47] provide an approach for filling large occluded surfaces on

a single object using simple primitives. Their approach does not require a prior

model as input, and they demonstrate that it works well for very regular geometric

objects. Through the use of the prior models, our approach allows for a wider range

of reconstructions including more irregular and free-form objects.

Our work builds on the augmented reconstruction algorithm presented by Gal

et al. [45]. Through our graph-based inference approach, the matching and fitting of

prior patches across the model can be performed very efficiently without having to

fully search, match, and fit each patch on an individual basis. In addition, the authors
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demonstrate the filling of missing areas using shape priors, but this was limited to

smaller areas near a fitted prior. Through the use of the prior graph, our approach

is capable of inferring and reconstructing major portions of the structure of even a

highly occluded object. The focus of Gal et al. was on augmenting the reconstruction

process for a single object, whereas our work goes beyond this concept to identify and

reconstruct objects within a larger scene.

Finally, the proposed matching algorithm described in Section 2 provides one

alternative for identification of a potential object within the scene. However, other

alternatives also exist. The 4PCS algorithm allows fast and robust pairwise alignment

of 3D point sets and is resilient to noise [95]. An extension of this approach could be

used for identifying a potential object (using the priors) and establishing an initial

alignment. ICP could then be used to refine this alignment, and the remaining

recognition and reconstruction stages of our algorithm used to iteratively fit the priors

and construct a solid model representation.

E. Limitations and Future Work

This current work has several ways in which it could be improved. One significant

issue is that a user must provide as input a database of specific objects to be rec-

ognized and reconstructed. This requirement could be eased by allowing the user to

define objects with annotated behaviors (e.g., optional parts, repetitive parts, vari-

able articulation, etc.) such as through a shape grammar, thereby allowing a single

object to match a larger variety of scene elements. This approach would increase the

difficulty and runtime for searching and recognizing objects within the point cloud,

as many different configurations must now be robustly matched. However, such an

approach would also require fewer models to be provided as input by the user.
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We also require a minimal set of point cloud samples to recognize an object.

Reconstruction will be difficult if the object is almost completely hidden during the

capture process. One possible solution would be to allow a sketch-based interface

where the user could illustrate the likely location of these hidden objects, and the

automated algorithm could then take this information as prior knowledge and try to

fit a corresponding object based on the minimal data.

If noise becomes too excessive, the matching algorithm cannot adequately iden-

tify the object and an invalid fitting may take place. We have shown that our approach

works fine with the low levels of noise in our real-world datasets, but if noise becomes

too extreme, it would create problems. Allowing user intervention and guidance as

previously mentioned, would help in these cases also.

Finally, our algorithm does not analyze the physics of a reconstructed environ-

ment. As a result, two objects in real-world contact may be reconstructed slightly

separated or possibly intersecting. This is due to the variance in the patch fitting

process by noise, removal of “incorrect” samples during the iterative object construc-

tion process, and other factors. A simple follow-on post-processing that incorporates

a simple relaxation process would easily address these issues, resulting in a more

accurately constructed environment.

There are several additional ways in which our work might be extended. Much

of the approach could be parallelized relatively straightforwardly. Both the recogni-

tion and reconstruction phases work around data stored in a regularized grid (i.e.,

the octree and voxel grid) which could be used to decompose the problem space into

smaller parallelized sub-problems. Another interesting direction would be to dynam-

ically extend the rule set based on observed behaviors in the dataset, allowing the

reconstruction of objects based on observed examples. As new parts and behaviors

are found, the graph could be dynamically updated with data captured from the
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point cloud. However, in some cases this data may not be as high quality as the prior

patches so this must be taken into account during the matching process. Along with

the ideas mentioned above (shape grammars, user guidance, incorporating physics),

these extensions would allow for handling a wider range of objects allowing this tech-

nique to be extended to larger and more complex environments.
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CHAPTER IV

INFERENCE-BASED GENERATIVE MODELING

A. Overview

In many situations, a point cloud capture may not be available during the modeling

process. In addition, the environment to be constructed may be quite complex and

contain a large number of very diverse objects. Figure 1 provides a good real-world

example of such an environment. Manually developing an extensive model library

can be a very expensive and tedious task. However, reproducing identical objects

repeatedly throughout a scene can decrease the underlying realism of the environment,

thereby reducing overall user immersion. Thus, there is a cost versus realism trade-off

that must be evaluated when modeling such an environment.

The cluttered scene in Figure 1 contains a large number of objects composed of

similar features, yet each object consists of different underlying composition. Trying

to model all of these objects manually would be a painstakingly complex process.

One alternative to alleviate this dilemma is to use more automated methods capa-

ble of constructing different variations from rules or templates. Such methods have

been used for generating foundational elements such as buildings and cities [49], and

vegetation and terrain [54].

The focus of the work we present in this chapter is on constructing variations of

individual object models such that they can be easily incorporated into any simulation-

based environment. Thus, using a technique such as the generative approach we pro-

pose allows a wide range of objects to be developed very quickly with only minimal

effort by the user, who simply provides an object template that is used to guide the

underlying construction process.
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In this chapter, we present a novel generative modeling technique centered on

an inference-based construction algorithm for developing diverse models from a set of

object templates. Our approach extracts surface patches from a template model, and

then fits these patches together in a consistent fashion to fully define the boundary

of an object. A parameterization serves as a “road map” for object construction,

and patches are incrementally fit around it to define an object. Different behaviors

can be dynamically incorporated into the construction process, which allows a wider

variety of object configurations to be developed. As a result, this approach is capable

of generating a rich collection of different solid model representations. Our work

provides three main contributions:

• We provide an efficient algorithm that locally fits patches around a defined

parameterization in a globally consistent fashion, and is capable of generating

a solid model representation of the object.

• We provide a means in which this process can function in both a semi-automated

and a fully automated fashion using a series of techniques for obtaining the

underlying parameterization around which the object is constructed.

• We provide several extensions of our basic algorithm that allow for more com-

plex object definitions through the use of articulation, repetition of parts, and

interchangeable parts.

B. Algorithm Details

The overall methodology we describe extends our inference-based reconstruction algo-

rithm previously presented. Our process for constructing objects and incorporating

them into a virtual environment is broken down into five stages, and is shown in

Figure 37.
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Fig. 37. Overview of the generative construction process.

The first stage takes as input a set of object templates (i.e., polygonal meshed

models), and samples and extracts a set of representative surface patches and a struc-

ture description from each. It then generates and initializes the data structures used

by the patch fitting process. The second stage obtains a defined parameterization of

the object to be constructed using one of several different automated/semi-automated

methods. The third stage then takes the sampled patches, the fitting process data

structures, and the defined parameterization, and uses an inference-based fitting pro-

cess to construct an object based on these defining elements. In the fourth stage, the

fitted patches are used to reconstruct a solid model representation of the final object.

Finally, the last stage integrates the final constructed object into the environment

being constructed.

1. Structure Sampling and Annotation

Our approach takes as input one or more annotated polygonal meshed models that

represent templates for the objects to be constructed. The first stage in our process

takes these input models and samples them, constructing surface patches that capture

the local surface properties of each object. These patches will serve as the underly-
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Fig. 38. Example model sampling (green points), patch sub-sampling (blue points),

and neighbor graph (nodes in green and edges in red).

ing fitting elements used during the later construction process. A neighbor graph

that defines the interconnectivity of these patches, thereby capturing the underlying

structure of the object, is then generated. Finally, the data structures used for the

fitting process are constructed.

Structure sampling is performed using a similar process as was defined in Chapter

III. Each model is first uniformly sampled (described in detail in Appendix A) using

a random area weighted scheme, followed by a relaxation procedure that ensures an

even distribution of samples across the model’s surface [100]. For each sample, the

faces and vertices that intersect the volume of a support sphere (i.e., of a fixed user-

defined size, centered at that sample, and containing a normal which resides inside

a defined support angle around the sample’s normal) are captured and stored as the

defining elements for the patch. An example sampling of a model is shown in Figure

38 where the samples are shown in green.

Each identified patch is then independently sub-sampled (again using the process

as defined by Turk [100]) with the additional constraint that the sub-samples must

reside inside the support sphere. Figure 38 shows an example sub-sampling of a patch
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where the sub-samples are shown in blue. These sub-samples are then normalized

(using the process defined by Elad et al. [101]) and stored. These patches provide a

characterization of the local behavior of an object’s surface.

A neighbor graph is then constructed from the patches. Nodes in this graph

correspond to the patch samples, and two nodes are connected with an edge in the

graph when their respective support spheres overlap in space. An example of such a

graph is shown in Figure 38. Here nodes are represented by the green points and an

edge between nodes with a red line. This graph serves as a definition of relationships

between different patches, and will be utilized during the later inference-based fitting

process to guide the creation of the underlying data structures used during fitting.

Our algorithm makes the assumption that each template model provided is axis-

aligned and that its primary features are defined along a particular axis dimension.

A one-dimensional parameterization is then inherently defined along each axis line.

A parameterization is simply defined as the specification of a curve which maps the

structure of an object from 0.0 to 1.0 along that particular axis line. This parameter-

ization provides a simple topological skeleton of the object along that axis direction,

but does not incorporate branching as with the definition of a medial axis. This

approach works well for objects that are very regularly defined along an axis (e.g.,

a block, pipe, etc.) and may not work well for other objects that are more irregu-

lar/organically defined (e.g, a rock, telephone, etc.). This parameterization will be

used for determining correct and consistent placement of patches within the mapping

process described later in this chapter.

Finally, for each model a user can annotate special regions used during the fitting

process. Figure 39 shows an example of an annotated model. The region shown in

yellow corresponds to a part that can be repeated iteratively along a parameterization,

and those in blue are regions that can be interchanged. Any annotated sample that
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Fig. 39. Example annotated model (left) and corresponding annotated samples (right).

resides inside one of these regions, and any graph edges that cross its boundaries, are

identified and marked for later use. In some cases, these regions can also be used

for filtering patch sub-samples external to their boundary to provide more accurate

constructions. Any sample not residing inside one of these regions is referred to as

an anchor sample. Anchor samples serve as base elements to begin the construction

process with, and the remaining annotated samples are then used to dynamically

build the object around an arbitrarily defined parameterization. The details behind

how these items are used within the construction process will be described in the next

two sections.

2. Fitting Process Initialization

The goal of our approach is to define the boundary of a new object by consistently

fitting a set of extracted patches from the template model in an alternative config-

uration. This patch fitting process is driven by our inference-based algorithm which

leverages a colored Petri net data structure. This process allows patches to be locally

fit in a stepwise fashion while ensuring consistency between adjacent items. It also

allows the incorporation of different extensions for the generation of a wider variety

of different constructed objects. The next step in our process generates and initializes
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Fig. 40. Colored Petri net structure defining the process for fitting a given node in the

neighbor graph. Places are illustrated as circles and transitions as rectangles.

the Petri net data structure used during the fitting process.

Petri nets are powerful data structures because they provide a natural methodol-

ogy for modeling stepwise processes that include action, choice, iteration, parallelism,

synchronization, and dependency [111]. Each of these properties is very applicable

to our construction process because our algorithm attempts to logically fit together

pieces of an object in a stepwise, yet consistent fashion. A Petri net is a directed graph

containing two types of nodes, places and transitions (an example Petri net is shown

in Figure 40). A colored Petri net allows the storage of values in the tokens that

are passed through the network, which can be very beneficial for tracking statuses.

Appendix C provides a detailed overview of Petri nets and how they function.

When modeling a system/process with a Petri net, places (shown as circles) cor-

respond to the states of the system and transitions (shown as rectangles) correspond

to actions that the system can perform. In order for the Petri net to define the con-

struction process for a given template model, a set of states and transitions must be

defined and joined accordingly to describe the steps necessary for constructing the
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object from the set of patches.

Thus, we begin by taking the previously described samples, patches, and neighbor

graph developed during structure sampling, and use these items to construct a Petri

net structure. The objective of this structure is to help define, guide, and track the

distributed fitting process, and ensure that it is done in a correct fashion during the

later fitting process. For each node in the neighbor graph a matching status place,

a fit ready place, a validation transition, and a fitting transition are constructed. A

structure similar to that shown in Figure 40 is then built for each node in the neighbor

graph using these elements. This structure defines the steps necessary for fitting a

patch. These locally developed structures, when combined, form a global network

that fully defines the process for constructing the template object.

For each node the pre-conditions necessary for, and the post-conditions that

result from fitting a patch are modeled as places (i.e., using the matching status

places). In addition, two transitions are added. The first, the validation transition,

determines when a patch is capable of being fit (i.e., if all of the adjacent nodes have

been marked as possible fits) and after firing, moves the item into a fitting state.

The second, the fitting transition, prompts the fitting process to start, and updates

all adjacent nodes after the actual fitting has been performed. As a node is fit, its

adjacent nodes are alerted to this fact. As enough information about the neighbors

of an adjacent node becomes available, it is in turn fit.

3. Parameterization

The construction process begins by obtaining a parameterization that defines the

basic configuration of the object to be constructed. This parameterization is defined

with a piecewise smooth curve, and serves as a “road map” for the patch fitting

process. It is somewhat similar to an object’s skeleton, but it is a piecewise linear
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curve only and based on its definition, different behaviors extracted from the template

model can be dynamically incorporated into the constructed object. Patches are fit

around this curve, but fit relative to each other in a consistent fashion based on their

original definition in the template model. This allows a reconfigurable definition of

an object that still fully defines a complete boundary. We have experimented with

four different methods for obtaining this parameterization, including methods that

function in both fully automated and semi-automated fashions.

The first approach, a sketch-based interface, allows the user to define a configura-

tion using a simple 2D drawing interface. The user simply sketches a curve along one

of the three fixed axis-aligned dimensions. The resulting two-dimensional curve can

then be easily transformed into the third dimension to guide the construction process.

Figure 41 shows an example of our user interface, and an example of a sketch-based

curve is shown in the top left of Figure 42. This user-defined approach allows the

generation of a wide variety of customized curves.

The second approach, a random walk, is fully automated and generates a com-

pletely random curve. In this approach minimum and maximum numbers of vertices

are defined, and a random size within this range selected. Vertices are then randomly

placed in space, and the respective edges are defined based on the order of vertex

creation. This approach is fast and can be used to generate an unbounded number of

curves. However, it lacks intelligent placement of vertices and often results in over-

lapping line segments in the final curve which may be bad for object construction.

An example of a random walk curve is shown in the top right of Figure 42.

The third approach, a turtle graphic [112], uses a slightly more sophisticated

method. This approach begins by finding a uniform sampling of the defined space for

the object, and then picks a random starting point within this sampling. The pen

(i.e., the turtle) has a position and orientation, and for each step it automatically
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Fig. 41. Our sketch-based interface for defining a parameterization.

Fig. 42. Example parameterizations we have experimented with.
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picks a random adjacent sample to move to. It is careful to not use a sample more

than once, it moves only a predefined number of steps, and for each movement a line

is drawn between the samples. This approach can generate nice regular curves that

are nonintersecting, but the method is limited in its creativity because for each step

the pen can only move to an adjacent point. An example of a generated curve using

this method is shown in the bottom left of Figure 42.

The fourth approach, the Hilbert space-filling curve [113], uses a more sophis-

ticated method and generates fractal-based curves that fill the defined space for the

object. This approach subdivides the space into a set of cells, and recursively con-

structs the curve using a defined mathematical function and an extension of the

previously described turtle graphic approach. Defining higher order curves can pro-

duce larger and more detailed parameterizations. This approach can produce some

very interesting results, but there are many other space filling curves [113] that could

work equally well. An example of a generated curve using this approach is shown in

the bottom right of Figure 42.

All four methods provide an easy means for quickly defining the general con-

figuration of the object to be constructed, and this set of methods can be used to

generate a wide collection of very different results. The defined parameterization

obtained from this step is passed to the next stage to guide the construction process.

4. Inference-Based Fitting

The inference-based construction process incrementally fits surface patches extracted

from the user provided template, around the defined parameterization. This fitting

must be done in a consistent fashion to ensure that an accurate and complete object

definition is generated (i.e., adjacent patches must have consistent overlapping areas

to define a smooth and complete surface when joined; dynamic behaviors such as
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repetition and interchanging of parts makes this fitting process more complex).

Once the Petri net structure has been generated and a parameterization defined,

then the iterative fitting process can begin. The fitting process then iteratively prop-

agates over the surface of the object, fitting patches along the way. The general flow

of this process is described in Algorithm 5, and the details behind each step of the

process will be explained in the remainder of this section.

Algorithm 5
1. node = FindStartingNode();
2. AddStartingTokenToNode(node);
3.
4. repeat
5. FirePetriNet();
6. PerformPostF ireCleanup();
7. anyFittingsReady = CheckPetriForF ittings();
8.
9. if anyFittingsReady
10. then HandlePetriF ittings();
11. else SearchNewPetriF itting();
12. until CheckIfF ittingProcessF inished() == true;

a. Initialization and Stepwise Fitting

The first step in this process must determine the starting sample/patch in which to

begin the fitting. This item is found by analyzing the samples with respect to the

parameterizations defined in the original model space (i.e., referred to as template

space), and identifying the sample with a minimum value along the parameterization

of the longest primary axis (i.e., if it is defined in the XY plane, and has a general

horizontal orientation, then the X range is evaluated). The selected sample must also

be an anchor sample to ensure a correct start to the overall fitting process.

Once the starting element has been identified, an initial matching token is placed

into the fit ready place for that respective item. This will trigger the fitting process to

begin on the next firing of the Petri net. Since we use a colored Petri net, the added



94

token is capable of storing values. For each token, the current state (i.e., match,

trial, or invalid), the location of the node the token is set for, the current repetition

iteration and/or interchangeable part index, and the current offset (i.e., as a result

of repetition of regions in the template) are stored. Each of these values will be used

during later steps of the fitting procedure.

The iterative process begins by first firing the Petri net. For a validation or

fitting transition to fire, all of the incoming places must contain a match or trial

token that matches the respective inputs for the current item. In addition, a check is

performed to ensure that the patch has not already been fit to that particular location

in construction space. If these conditions hold and a validation transition fires, then

the matching tokens are removed and a token is placed into the item’s fitting place.

This triggers the start of the fitting process for the patch. Upon the next fire of the

network, the patch will be fit and the post-conditions are handled. As a result, all

adjacent elements (including the item being fit itself) are given a new matching token.

These new tokens imply that the adjacent patches may be ready for fitting based on

the information obtained from previously handled items.

For each iteration in the fitting process, the network is fired, some post-firing

cleanup is performed (this will be explained later), and a check is performed to see

if any patches are ready to be fit (i.e., by checking if any of the fitting transitions

fired). If it is determined that there is not adequate information to fit a patch, a new

item must be selected. This selection process is performed by iterating over all of the

validation transitions, and for each item, analyzing the tokens that exist within the

item’s incoming places. The transition that contains the highest number of incoming

places (i.e., has the most supporting information) is selected as the next “best” node

to fit. In this case, a trial token is added to each element’s matching status place

that does not currently have a valid matching token. This allows a test fitting to be
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performed upon the next fire of the Petri net.

The overall fitting process is performed incrementally, fitting patches across the

surface of the object based on the progressive fitting of neighboring patches. This pro-

cess is performed until all items in the original template object have been used, and

there are no longer any items left to be handled. The propagation across the parame-

terization, fitting patches along the way, ensures that all elements of the constructed

object are handled and a complete object defined.

b. Patch Mapping

Once a patch is selected for fitting, it must be mapped from the original template

space to the space in which object is being constructed (i.e., referred to as construction

space). The fitting process begins with the selected starting patch that resides along

the minimum of the determined primary axis, and this patch is fit to the starting point

of the constructed model parameterization (i.e., at t = 0 of the parameterization).

To fit the patch in construction space, a transformation must be applied to all of its

elements (i.e., its sample, sub-samples, etc.). Algorithm 6 provides an overview of

this process.

Algorithm 6
1. param = GetParameterization();
2. for x ∈ samples

⋃
subsamples

3. t = FindRelativeTV alue(x);
4. TransformPositionAlongParameterization(x, t);

For each element in the patch, a respective t value is found within model space

and used to determine the correct position along the parameterization in construction

space. Each element is then translated to the position such that it maintains the

features of the item in template space, but is fit relative to the defined curve in

construction space. Finally, the element is rotated such that its three principal axes
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Fig. 43. An illustration of the patch mapping process used to fit a patch from the

template model to its correct position and orientation along the defined pa-

rameterization. The extracted patch is translated along the parameterization

to the determined t value, and then rotated such that its principal axes are

aligned with the sketched curve.

are aligned with that of the sketched curve. The result of this fitting process is a

sample, and set of sub-samples, that encompass the features of the template object

but are fit to the parameterization. Figure 43 provides a two-dimensional illustration

of this mapping process.

After the initial patch is fit, and as new adjacent patches are selected, they

must be fit relative to the initial item to ensure a proper surface definition. This

operation is performed by again finding a t value for each item taken from template

space, but this value must be relative to the initial fitted patch in construction space.
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Fig. 44. Mapping of samples and sub-samples along a defined parameterization.

Thus, this process fits the patches exactly as they exist in template space, but simply

transformed around the new parameterization. Figure 44 shows an example of the

results from this mapping process. The blue lines illustrate the t mapping for each

sample to the underlying parameterization.

c. Handling Articulation

The parameterized curves allow the definition of articulated joints. As a result, the

fitting patches must be properly mapped around these regions. For patches that are

split across a boundary defined by a joint, gaps are created in the samples above



98

Fig. 45. The before/after states for cleanly mapping patches across articulated joints.

the curve and excess points will appear below the curve (i.e., from an inter-surface

intersection) due to the discontinuity in the mapping process. The left side of Figure

45 illustrates an example of such a case. In order to ensure a solid model is constructed

during the later stages, these gaps must be adequately filled with samples and the

excess points inside the surface removed. Algorithm 7 provides an overview of this

process.

To fill a gap caused by a break in a patch, we begin with the original patch as

defined in template space, and identify the crease in which the patch is being broken

(i.e., using the chosen sketch plane and the parameterization). A region of a fixed

width on either side, and along the full length of this crease is found (e.g., using

a fixed percentage of the defined support distance), and the samples residing within

each region on either side are identified. The nearest neighbor for each sample residing

in the opposite region is then found, and a line between the two samples is created
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and sub-sampled, and transformed into construction space. The collection of these

sub-sampled lines “stretches” the patch across the gap and provides the necessary

filler to ensure proper reconstruction. Figure 46 illustrates this process and Figure 45

shows an example of its results.

Algorithm 7
1. for x ∈ patchesEffectedByArticulation
2. crease = FindCreaseDetails(x);
3. FindRegionsOnBothSidesOfCrease(x, crease, leftRegion, rightRegion);
4. leftSamples = FindSamplesInsideRegion(leftRegion);
5. rightSamples = FindSamplesInsideRegion(rightRegion);
6. for l ∈ leftSamples
7. adjNeighbors = FindAdjacentNeighbor(l, rightSamples);
8. lineSamples = ConnectWithLineAndSubsample(l, adjNeighbors);
9. TransformAndStoreSubsamples(lineSamples);
10.
11. for r ∈ rightSamples
12. adjNeighbors = FindAdjacentNeighbor(r, leftSamples);
13. lineSamples = ConnectWithLineAndSubsample(r, adjNeighbors);
14. TransformAndStoreSubsamples(lineSamples);
15.
16. plane = FindBisectionP lane(crease);
17. for s ∈ samples

⋃
subsamples

18. if ResidesOnOppositeSideOfBisectionP lane(s, plane)
19. then RemovePoint(s);
20. else KeepPoint(s);

To remove the excess points, the bisection plane for the joint is found and a simple

test performed. All points that are determined to belong to one side of the split in

template space, yet reside on the opposite side of the bisection plane in construction

space are removed. Figure 47 illustrates this process and Figure 45 shows an example

of its results.

d. Handling Repetition

Another aspect of our approach is the ability to fit an object to a parameterization

that may be much longer than the originally defined template object. The example
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Fig. 46. Gaps in the surface definition caused by articulation can be filled by “stretch-

ing” a patch across the void. This is performed by identifying a fixed width

region on either side of the crease in template space, locating the samples in

each region and their corresponding nearest neighbor in the opposite region,

and then sub-sampling the line connecting each pair of samples.

Fig. 47. Points from an inter-surface intersection caused by articulation can be re-

moved by finding the bisection plane at the joint, and performing a simple

spatial test to identify the points that lie on one side of this plane in template

space and the opposite side in construction space.
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shown in Figure 48 illustrates such behavior. In this example, a simple rectangular

block was used to construct a much larger and more complex object. In order to

adequately handle these cases, repetition of the previously described user annotated

regions is used. Through storing additional values within the tokens in the Petri

net, and using post-firing manipulation of these tokens, this behavior can be easily

handled. Algorithm 8 provides an overview of this process.

Algorithm 8
1. for tok ∈ tokensCrossingRepetitionBoundary
2. selReg = GetRegionCrossed(tok);
3. if DidTokenEnterRegion(tok, selReg)
4. then
5. enterStatus = IsF irstT imeRepRegionEntered(tok, selReg);
6. if enterStatus == true
7. then
8. IncreaseRepetitionCounter(tok.repCounter);
9. if enterStatus == true
10. then markedF irstNode = GetNodeFromToken(tok);

11.
12. if DidTokenExitRegion(tok, region)
13. then
14. if IsAnotherRepetitionNeeded()
15. then
16. // update/move token to the first marked node of repetition
17. RemoveTokenFromNode(tok);
18. IncreaseRepetitionCounter(tok.repCounter);
19. UpdateOffset(tok.offset);
20. AddTokenToNode(tok,markedF irstNode);
21. else
22. // leave the token where it is, but invalidate it
23. InvalidateRepetitionCounter(tok.repCounter);
24. UpdateOffset(tok.offset);

As tokens are moved through the network from the places corresponding to the

anchor samples, across the edges intersecting the boundary of a repetition region and

into those places corresponding to repetition samples, the values of the token must

be adjusted to represent the current iteration of repetition. If a token is entering into

a region for the first time, then it must be marked with a valid repetition iteration
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Fig. 48. Results of the patch fitting process using articulation and repetition of parts.

The top image shows the fitted patches and the bottom shows the repeated

parts.



103

(i.e., the repetition counter is set to zero). This value is a simple counter that tracks

which chosen repetition the token belongs to, and helps determine the necessary offset

transformation for correct fitting. Note that a place may contain tokens from several

different iterations. Thus, this value must be checked during transition firing, and for

a place to fire, all tokens must be of the same iteration. Finally, if this is the first

repetition place to receive a token, it is recorded as the initial starting place for the

repetition region.

If a token is leaving one of these repetition regions and going back into an anchor

region, then the token must be captured and an analysis performed to see if another

repetition is needed to fully define an object for the parameterized curve. If it is

determined that another iteration needs to be started, then the token is removed

from the outgoing place it currently resides in, and it is reinserted at the previously

captured starting place for the repetition with an incremented iteration value. If it is

determined that another repetition is not needed, then the token is passed on to the

adjacent node but only after marking its iteration value as invalid.

Finally, as tokens move out of a repetition region and into an anchor region, the

offset value stored in the token must be updated. For anchor regions that appear

after a repetition region with respect to the defined parameterization, the offset value

stored in the token is kept. For regions that appear before the repetition region, the

value is set back to zero. This is an important step as this offset is used to determine

the correct final fitting location of the patches in construction space (i.e., by finding

an offset t value based on the repetition part size to correctly fit a patch).

Figure 48 shows the result of the patch fitting process when using repetition of

parts. In this figure, the top image shows the individual fitted patches and the bottom

image shows the actual repeated parts (i.e. each repetition is assigned a unique color,

and repetition is performed until the parameterization has been satisfied). The areas
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in purple along each joint in the parameterization are the samples added to fill the

surface disconnects due to articulation. These samples cap the holes created when

splitting the patches. The full set of these samples defines the boundary of the object,

and can be passed on for integration into a solid model representation.

e. Handling Interchanging

The final aspect of our approach is the fitting of interchangeable parts obtained

from the input template. Figure 49 shows an example of this behavior using the

annotations from Figure 39. In this example, the user marked two different parts as

being interchangeable (i.e., the two blue circles). One part corresponds to a peg, and

the other to a flat region. Interchanging these two parts randomly, along repeated

regions, allows the creation of many different configurations of the object (one such

example is shown in Figure 49). Similar to the repetition of parts, through analyzing

and manipulating the tokens moving through the Petri net, this behavior can be easily

handled. Algorithm 9 provides an overview of this process.

Algorithm 9
1. for tok ∈ tokensCrossingInterchangeBoundary
2. selReg = GetRegionCrossed(tok);
3. if DidTokenEnterRegion(tok, selReg)
4. then
5. if IsF irstT imeInterchangeRegionEntered(tok, selReg)
6. then
7. annlist = GetListOfInterchangeAnnotations(selReg);
8. randReg = ChooseRandomRegion(annlist);
9. fitParams = GetTransformParams(selReg, randReg);
10. offset = GetRelativeOffset(tok);
11. node = FindClosestNodeInRegion(randReg, offset);
12. tokenCreated = InstantiateNodeForPartF itting(node);
13. SetupRepetitionDetails(tokenCreated);
14. else
15. DiscardToken(tok); // part already started
16. if DidTokenExitRegion(tok, region)
17. then DiscardToken(tok); // do nothing on an exit but discard token
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Fig. 49. Results of the patch fitting process using interchangeable parts. The top

image shows the fitted patches and the bottom shows the interchanged parts.

As a token moves through the network from a non-interchangeable region, into

a region defining an interchangeable part, a check must be performed to see if this is

the first time the region and repetition has been entered. If it is the first time, then

a new part must be selected for fitting. If it is not the first time, then the token is

discarded as the region has already been handled and a fitting is underway.

The process for selecting a new part involves several steps. First, a random

selection is made from the list of available parts as defined by the user annotations.

During the annotation process, the user identifies which elements are swappable. This

step simply chooses a random item from this corresponding list. Once the selection

has been made, then information to support the fitting process for the selected part

must be obtained.
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In order to fit a randomly selected part to the correct location along a param-

eterization, several steps must be performed. This process begins by finding the

parameters needed to transform the randomly selected part to the selected part be-

ing fit to the parameterization (i.e., a transformation between each of these items

as they are defined in template space). Next, the relative offset of the selected in-

terchangeable sample to the center of the interchangeable region is found. Using the

transformation, this offset is then used to find the closest corresponding sample within

the randomly selected part. This sample will serve as the starting point for fitting

the remainder of this part.

Now that the starting element has been found, a token can be instantiated and

initialized with a starting set of values (e.g., current interchange index and repetition,

randomly selected interchange index, and location). Finally, the token is added to

the corresponding place for this starting element to begin the fitting process for the

part. On subsequent iterations of fitting, the patches making up the selected region

will be fit until all have been handled and the part is fully defined.

Note that the interchange case must be handled in conjunction with the repetition

case, as repeated regions can encompass different interchangeable parts. The image

in Figure 49 shows an example of this behavior. With each repetition, a different

set of randomly selected parts is chosen. Using a combination of these two behaviors

allows easy generation of a wide variety of different model configurations.

5. Solid Model Reconstruction and Integration

Once the inference-based patch fitting process has completed, the next stage in the

construction process is to integrate the patches and their corresponding samples into

a solid model. We use a process similar to that defined in Chapter III for this overall

operation.
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Fig. 50. An example constructed object (center) from a block template (top left).

The reconstruction process begins by taking the point samples from all of the

fitted patches, and those that were added to fill the gaps, and combines them to

form a single point cloud representation of the object (i.e., a set of samples that fully

defines the boundary of the object). A projection-based Moving Least Squares (MLS)

approach [4] is then used to obtain a smooth and continuous surface definition. A

detailed description of the MLS process we use is provided in Appendix B. A Marching

Cubes contouring algorithm [5] is then used to generate a polygonal representation

from the implicit surface. As discussed in Chapter III, Marching Cubes is a simple

and efficient technique, but many other alternative contouring algorithms could also

be used. An example constructed object is shown in Figure 50, and the underlying

template object used is shown in the top left corner.
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Fig. 51. Example environment composed of several constructed objects.

The final stage of our process takes the constructed object and integrates it into

an overall environment. Integration is an important step, as the object must be in-

serted into the environment in a believable position and pose such that it looks natural

to the user. Since our work is focused on creating very cluttered environments such as

the real-world example shown in Figure 1, we use a simple method for insertion. Each

object starts at a predefined height above the pile and is simply dropped into place.

A physically-based simulation then moves the object and determines its final resting

place. The result provides an adequate re-creation of such environments. Figure 51

provides an example of a generated environment using this approach.
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Table 3. Details of the Generative Modeling Examples

Dataset Num.

Objects

Total

Sampling

Ave.

Fitting

Ave.

Solid

Total

Runtime

Example 1 10 2.2s 0.9s 12.7s 218.3s

Example 2 8 2.0s 1.1s 9.0s 189.5s

Example 3 6 5.8s 2.7s 23.7s 237.4s

Example 4 8 3.6s 0.9s 15.9s 217.9s

Example 5 30 25.2s 6.6s 21.3s 1,470.1s

C. Results

In order to demonstrate the application of our approach, we provide several results

along with the details of their execution. All results were captured using an Intel

Xeon 2.67 GHz CPU with 4GB of memory. Currently, our algorithm implementation

performs all computations on the CPU and uses the GPU only for rendering. The

dataset details and respective execution times for each stage (i.e., structure sampling,

patch fitting, and solid model construction) of the provided examples are shown in

Table 3. The total runtime summarizes the complete construction time and the

amount of time for integrating the objects into a simulation-based environment. This

integration process will be described in more detail later in Chapter V.

Figures 52, 53, 54, 55, and 56 show some results generated by our approach.

In these examples, we show how different types of objects can be easily constructed.

Through the use of articulation, repetition, and interchanging of parts, many different

object configurations can be quickly developed. The template object used for each
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Fig. 52. Constructed blocks using articulation and part repetition (Example 1).

example is shown in the top left corner of each figure.

D. Discussion

The closest methods to our proposed approach are the model synthesis technique

described by Merrell et al. [72][73][74], shape grammars (e.g., [63]), and parts-based

and example-based modeling methods (e.g., [78][79][45][82]).

The work by Merrell et al. [72][73][74] has a common theme to ours, but takes

a different underlying approach. Similar to our method, they allow arbitrary gener-

ation of random models by extracting regions from a provided template. However,

their approach centers around the satisfaction of different types of constraints (e.g.,

adjacency, algebraic, incidence, connectivity, and large-scale). These constraints gov-

ern the dynamic growing/creation of a model using model synthesis. Our approach
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Fig. 53. Constructed bricks using only part repetition (Example 2).

is different and is focused on fitting the extracted patches around an already defined

parameterization. While their work allows the construction of arbitrary models, their

models are generally regularly defined and self similar. Our approach allows very

different models to be constructed from the template through the use of arbitrary

articulation, as well as random interchanging of parts. Finally, the authors state that

the time and memory requirements involved in their construction heavily depends

on the number of vertices generated during the synthesis process. As a result, their

approach does not work well with curved or highly tessellated models. With the

exception of the grid size used during contouring, our approach does not have these

same challenges.

The general approach of shape grammars has some similarity to our work as

well. These methods center around taking one or more primitive shapes, along with
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Fig. 54. Constructed pipes using articulation and part repetition (Example 3).

a set of defined rules for transforming these parts, to develop arbitrary geometric

models. These approaches are commonly used for defining architecture (e.g., [63]).

The biggest difference between our work and many of these approaches is that we

use the template model as a means of automatically developing the rules for how to

properly fit patches together in a consistent fashion. The shape grammar approaches

typically rely on user-defined rule sets, along with primitive shapes for construction.

Our approach avoids this process of manually defining rules typically required of these

approaches (e.g., as in the case of constructing buildings [63]).

The parts-based and example-based modeling approaches also have some simi-

larities to our work. There are several different variations of these techniques. Some

methods extract patches and parts from a model provided for modeling by example

[78][79] or improved reconstruction [45]. Other methods identify structural regu-
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Fig. 55. Constructed blocks using articulation, and repetition and interchanging parts

(Example 4). A peg is interchangeable with a flat region, and these elements

can be repeatedly swapped across the model.
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Fig. 56. Constructed environment similar to the provided real-world example that in-

spired this approach (Example 5). The different configurations of pallets were

generated using random interchanging and repetition of board configurations.
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larity within a given model to analyze scene detail for cleanup, compression, etc.

[82][83][84]. While these approaches all extract patches/parts from a provided tem-

plate, their underlying purpose is for very different reasons. These methods all focus

on model repair, higher quality reconstructions, and geometry synthesis of existing

models/datasets as their underlying rationale. Our approach is different as we use

the patches as underlying primitives in a construction process, for fully defining the

boundary of an object.

E. Limitations and Future Work

Our generative approach allows the definition of many different object configurations,

but currently has several limitations that hinder its creativeness. First, it only allows

fitting of patches from within a single provided model. It also requires two adja-

cent patches being fit to have smooth and similar transitions in overlapping areas

(i.e., to correctly join the patches together). MLS can smooth small discontinuities,

but large gaps between patches will result in poorly constructed models. Finally,

the parameterizations proposed allow for only limited control over the object being

constructed.

In order for this approach to be more effective, patches/parts need to be obtained

and analyzed from a database of models, rather than just from a single object. De-

formation/manipulation of patches to ensure proper fitting between adjacent patches

would also have to be performed (e.g., possibly through an approach similar to that

described by Pauly et al. [43]). Better and more expressive parameterizations also

need to be developed. Each of these ideas allows our approach to be more creative,

as well as other improvements that can be made to address construction quality and

performance.
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The “stretching” approach we use for filling the voids caused by articulation

simply extends the patch across the gap, and may not generate ideal results. In some

cases a sharp corner may look more natural, and in other cases a curved transition

may look best. Allowing various void filling methods based on user preference, or

identified behaviors in the template model, could be incorporated to provide better

quality constructions. Another alternative is to use deformation of other nearby

similar patches across the void. These alternative methods would simply replace our

existing technique, as each of these methods would simply generate additional “filler”

points in a similar fashion as the existing technique.

If a parameterization contains a high number of joints (e.g., as in the case of a

very irregular free form sketch), the construction process will be much more expensive

as many smaller voids must be filled for the larger set of defined joints. Our current

approach will take much longer as each joint has to be addressed. Improving the ef-

ficiency of the void filling algorithm through alternative methods (e.g., replacing the

adjacent neighbor identification, linking, and sub-sampling process) or parallelization

of existing methods (e.g., handling joints is a localized problem that could be ad-

dressed independently of others) would allow this process to be more efficient and

scale to larger parameterizations.

Finally, there are several additional ways in which our work might be extended.

First, the sketch-based approach can be extended beyond the simple definition we

use, to a more expressive system that allows the user to draw symbols and better

defined illustrations for annotating desired behaviors. Second, by alleviating the user

from annotating the input models (for marking specialized regions), and replacing

this step with a more automated approach, the overall construction process becomes

much simpler. Performing a formal analysis and verification of the generated Petri

nets could ensure sound structure, prove there are no deadlocks, and allow for an
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interesting analysis of underlying properties of these generated networks and the

objects they construct. The incorporation of these different ideas, combined with

addressing this approach’s current limitations, would allow a more flexible approach

that could generate a wider variety of models.
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CHAPTER V

EXTENSION TO SIMULATION

A. Overview

The overall goal of our work is to develop a virtual environment consisting of one or

more individual solid model representations that can be easily incorporated into any

application. In particular, we are very interested in how these objects can support

simulation-based applications. In order to demonstrate the potential capabilities of

our approach to this domain, we provide examples of several constructed environ-

ments using our approaches into a physically-based simulation. We also describe the

general process used for performing this incorporation, as well as alternative methods

necessary for possible migration to other applications.

1. Convex Hull Generation

Many simulations and games cannot provide real-time performance using a collec-

tion of fully detailed models. Thus, most applications use the fully detailed model

for rendering, but use a simpler convex hull representation for computational pur-

poses. This allows real-time physics calculations where the convex hull is used to

determine object/object interactions, with the resulting effects. Since our goal is to

integrate these objects into a simulation, a convex representation must be generated

for each constructed object. We use an existing convex decomposition method that

can quickly generate a simple approximation of the input object [114]. Figure 57

shows an example of a constructed model along with its generated convex hull. Once

the hull has been generated, the final step in our process integrates the object into

the simulation.
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Fig. 57. Constructed object with its corresponding convex hull.
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Fig. 58. Results from two different synthetic datasets (Examples 1 and 2) recon-

structed and incorporated into a physically-based simulation.

B. Point Cloud Reconstruction Examples

Figures 58, 59, and 60 show the integration of several reconstructed environments

into a physically-based simulation (i.e., a synthetic, a scan-based, and a photo-based

dataset). Note that in these examples, each reconstructed object is a complete solid

meshed model. As a result, each is capable of interacting and influencing others

within the simulation. These figures show the point cloud reconstruction, and the

resulting effects after a force has been applied to the object pile.
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Fig. 59. Results from a scan-based dataset (Example 7) reconstructed and incorpo-

rated into a physically-based simulation.
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Fig. 60. Results from a photo-based dataset (Example 9) reconstructed and incorpo-

rated into a physically-based simulation.
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Fig. 61. Results of a generative modeling-based environment incorporated into a phys-

ically-based simulation.

C. Generative Modeling Examples

Figure 61 shows the integration of a generative modeled environment into a simula-

tion. In this example we show the before, during, and after images of an upwards

force being applied to the center of the pile of objects. As illustrated, once the force is

applied the underlying dynamics cause a shift in the set of objects. Thus, these gener-

ated solid models can be easily integrated and used in many different simulation-based

applications.
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1. External Simulation Integration

Finally, each of the previous examples shows integrating a constructed environment

directly into a simulation. These environments are also easily incorporated into other

commercial systems by simply exporting the environment into a portable format.

There are many available formats that provide transportable representations for

interchanging models between different applications. For this example we chose the

COLLADA (COLLAborative Design Activity) file format, an XML-based represen-

tation for easily transporting three-dimensional models [115]. COLLADA provides

a flexible and powerful format, and has been used by many companies including

Autodesk, Google, and Sony. The process begins by first converting the set of con-

structed objects into a COLLADA formatted file. This file describes the detailed

structure of the modeled objects (i.e., the vertex and face details). It can also de-

scribe other elements of the objects such as the visual attributes (i.e., color, texture,

etc.) and physical attributes (i.e., mass, friction, etc.) if they are available. This rep-

resentation contains all of the information required for the set of constructed objects

to be imported into another system.

To demonstrate the integration of a reconstructed environment within an external

simulation, we chose to incorporate the results from a simple reconstruction into the

Unreal Engine [116]. The Unreal Engine provides a very flexible environment for

incorporating external content. It also supports the COLLADA format for importing

models. Thus, using the Unreal Editor [117], the generated models can be easily

integrated.

To construct a simulated environment using these imported objects, a secondary

tool was developed to export an environment in the Unreal T3D format, a text for-

matted file that characterizes the details of the environment including lighting details,
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Fig. 62. A reconstructed environment incorporated into a commercial game engine.
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position and orientation of the defined objects, etc. Our process automatically ex-

ports this file from the reconstructed results directly into the Unreal Editor. The

combination of the COLLADA and T3D files fully describe the environment needed

for simulation. Once imported, this environment can then be compiled and loaded

as a game environment where the user can manipulate objects in whatever fashion

required. There are many potential applications for such a constructed world.

Figure 62 shows an example of this environment in action. Note that while we

chose to integrate this example into the Unreal Engine, the presented approach could

easily extend to other applications equally well. For example, it could be used to

integrate reconstructed environments into systems such as OLIVE [118], Second Life

[119], RealWorld [120] or other similar virtual environments.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this dissertation, we have introduced two inference-based geometric modeling al-

gorithms for developing solid models under different conditions. We have shown that

these methods provide different alternatives for re-creating complex virtual environ-

ments in two different fashions. We have described the background and technical

details behind these approaches, and evaluated them on several different types of

datasets. Finally, we have demonstrated the application of our results within the

simulation domain to illustrate our underlying motivation.

We believe that our inference-based surface reconstruction algorithm provides

an effective means of reconstructing point cloud representations of cluttered environ-

ments. We have shown that this approach is capable of recognizing and reconstructing

solid models, even amongst heavy clutter and object occlusion. We also believe that

our generative modeling approach provides an efficient means for re-creating various

models based on a user provided template. We have shown that this process can

function in both a fully automated and semi-automated fashion, and can robustly

construct solid model definitions that include articulation, and repetition and inter-

changing of parts obtained from a template model.

While each of these methods provide a means for modeling objects under different

conditions, the broader objective of our work is to develop high-fidelity virtual en-

vironments for anything from games and entertainment, to various simulation-based

applications. In each of these application areas, having a solid representation of each

object for simulation purposes is critical. Figures 58, 59, 60, and 61 provide a hint of
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how such an application could work. Figures 58, 59 and 60 show examples where an

initial environment capture is reconstructed and ultimately used to support a simula-

tion. Figure 61 shows an example where an environment is automatically generated,

and also incorporated into a simulation. Overall, our techniques help to address

the requirements of many different application areas by supporting the automated

construction of more complex environments in a quicker and easier fashion.

B. Future Work

There are many future extensions to this work and we have discussed several specific

ideas already. However, we envision several broader directions this work could take

to lead to future research problems. We briefly discuss a few such ideas.

The approaches we have presented have all been focused on using automated

techniques. While automation is important because it reduces the burden on the

user, it also limits overall effectiveness and robustness of an approach when working

with more complex data and/or environments. The first significant extension of this

work is to analyze and better incorporate user interaction into the overall construction

process. Previously we proposed sketch-based interaction to allow user intervention

to help resolve ambiguity or uncertainty during reconstruction. However, allowing

sketch-based interfaces where a user could very quickly annotate their desired behav-

ior, followed by an automated construction algorithm that understands how to digest

this information and construct the corresponding scene elements, would be an incred-

ibly powerful capability for modeling. Our generative modeling approach attempts

to take an initial step in this direction, but much more complex gestures/behaviors

need to be incorporated that allow for better definition of a scene and the individual

objects within it. This underlying idea could be applied to both the reconstruction
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and generative approaches presented.

The second extension we propose is to incorporate the notion of physics into our

overall approach. We previously mentioned incorporating physics as a relaxation step

during the reconstruction algorithm to obtain more natural looking results. However,

future work could also address “cause and effect” relationships within a constructed

environment. What if the scene in Figure 1 represented the “after state” of a col-

lapse? Obtaining a reconstruction of this “after state” and then analyzing the state

of objects, how they are resting, their physical properties, etc., combined with a

physically-based model, could provide a means of stepping backwards to determine

the original state of an environment. This could allow a better understanding of the

cause of a collapse, and a glimpse of the before and after states.

Finally, we have presented the two methods in a separate fashion. However, these

methods could be combined to form an integrated system that allows the development

of a wider range of environments. For example, trying to reconstruct solid models

from a real-world capture of the environment shown in Figure 1 would be a very

challenging problem. While there are many different similar objects within it, they

all have substantial differences. There are also many objects that are incomplete and

in pieces. Using a combination of the two techniques could allow general identification

of objects that are visible within the point cloud data, followed by constructing general

approximations using generative modeling. Once all of the visible objects have been

constructed, the generative approach could then be used to develop representative

objects that reside lower in the pile and not necessarily visible within a capture.

Such an approach would have to analyze potential voids and incorporate the physical

nature of the environment to determine correct placement of objects within a pile.

Combining these two techniques would allow a more complete re-creation of the real-

world environment, while avoiding the manual modeling of such a complex scene.
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[27] T. Várady, R. R. Martin, and J. Cox, “Reverse Engineering of Geometric Models

- An Introduction,” Computer-Aided Design, vol. 29, no. 4, pp. 255–268, 1997.

[28] G. Turk and M. Levoy, “Zippered Polygon Meshes from Range Images,” Pro-

ceedings of the 21st Annual Conference on Computer Graphics and Interactive

Techniques, pp. 311–318, ACM, 1994.

[29] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, “The

Ball-Pivoting Algorithm for Surface Reconstruction,” IEEE Transactions on

Visualization and Computer Graphics, vol. 5, no. 4, pp. 349–359, 1999.

[30] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel, “Multi-level Parti-

tion of Unity Implicits,” ACM Transactions on Graphics, vol. 22, no. 3, pp. 463–

470, 2003.

[31] I. Tobor, P. Reuter, and C. Schlick, “Efficient Reconstruction of Large Scattered

Geometric Datasets Using the Partition of Unity and Radial Basis Functions,”

Journal of WSCG 2004, vol. 12, pp. 467–474, 2004.

[32] T. Boubekeur, W. Heidrich, X. Granier, and C. Schlick, “Volume-Surface



134

Trees,” Computer Graphics Forum (Proceedings of Eurographics), vol. 25, no. 3,

pp. 399–406, 2006.

[33] P. J. Crossno and E. S. Angel, “Spiraling Edge: Fast Surface Reconstruction

from Partially Organized Sample Points,” Proceedings of the 10th IEEE Visu-

alization Conference, pp. 317–324, IEEE Computer Society, 1999.

[34] M. Gopi, S. Krishnan, and C. Silva, “Surface Reconstruction Based on Lower

Dimensional Localized Delaunay Triangulation,” Computer Graphics Forum

(Proceedings of Eurographics), vol. 19, no. 3, pp. 363–371, 2000.

[35] C.-C. Kuo and H.-T. Yau, “A Delaunay-based Region-growing Approach to Sur-

face Reconstruction from Unorganized Points,” Computer-Aided Design, vol. 37,

no. 8, pp. 825–835, 2005.

[36] I. Ivrissimtzis, W.-K. Jeong, and H.-P. Seidel, “Using Growing Cell Structures

for Surface Reconstruction,” Proceedings of the Shape Modeling International

2003, pp. 78–86, IEEE Computer Society, 2003.

[37] H. Hoppe, “Progressive Meshes,” Proceedings of the 23rd Annual Conference

on Computer Graphics and Interactive Techniques, pp. 99–108, ACM, 1996.

[38] R. Mencl and H. Müller, “Graph-Based Surface Reconstruction Using Struc-

tures in Scattered Point Sets,” Proceedings of the Computer Graphics Interna-

tional 1998, pp. 298–311, IEEE Computer Society, 1998.

[39] S. Gumhold, X. Wang, and R. Macleod, “Feature Extraction from Point

Clouds,” Proceedings of the 10th International Meshing Roundtable, pp. 293–

305, Sandia National Laboratories, 2001.

[40] S. Fleishman, D. Cohen-Or, and C. T. Silva, “Robust Moving Least-squares



135

Fitting with Sharp Features,” ACM Transactions on Graphics, vol. 24, no. 3,

pp. 544–552, 2005.

[41] J. Davis, S. Marschner, M. Garr, and M. Levoy, “Filling Holes in Complex

Surfaces Using Volumetric Diffusion,” Proceedings of the First International

Symposium on 3D Data Processing, Visualization, and Transmission, pp. 428–

438, IEEE Computer Society, 2002.

[42] A. Sharf, M. Alexa, and D. Cohen-Or, “Context-based Surface Completion,”

ACM Transactions on Graphics, vol. 23, no. 3, pp. 878–887, 2004.

[43] M. Pauly, N. J. Mitra, J. Giesen, L. J. Guibas, and M. Gross, “Example-based

3D Scan Completion,” Proceedings of the Third Eurographics Symposium on

Geometry Processing, pp. 23–32, Eurographics Association, 2005.

[44] V. Kraevoy and A. Sheffer, “Template-Based Mesh Completion,” Proceedings

of the Third Eurographics Symposium on Geometry Processing, pp. 13–22, Eu-

rographics Association, 2005.

[45] R. Gal, A. Shamir, T. Hassner, M. Pauly, and D. Cohen-Or, “Surface Re-

construction Using Local Shape Priors,” Proceedings of the Fifth Eurographics

Symposium on Geometry Processing, pp. 253–262, Eurographics Association,

2007.

[46] S. Shalom, A. Shamir, H. Zhang, and D. Cohen-Or, “Cone Carving for Surface

Reconstruction,” ACM Transactions on Graphics, vol. 29, no. 6, pp. 1–10, 2010.

[47] R. Schnabel, P. Degener, and R. Klein, “Completion and Reconstruction with

Primitive Shapes,” Computer Graphics Forum (Proceedings of Eurographics),

vol. 28, no. 2, pp. 503–512, 2009.



136

[48] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley, Texturing

and Modeling: A Procedural Approach, 3rd Edition. San Francisco, CA: Morgan

Kaufmann Publishers Inc., 2002.

[49] G. Kelly and H. McCabe, “A Survey of Procedural Techniques for City Gen-

eration,” Institute of Technology Blanchardstown Journal, vol. 14, pp. 87–130,

2006.

[50] B. Watson, P. Müller, P. Wonka, C. Sexton, O. Veryovka, and A. Fuller, “Proce-

dural Urban Modeling in Practice,” IEEE Computer Graphics and Applications,

vol. 28, no. 3, pp. 18–26, 2008.

[51] I. Procedural, “CityEngine: 3D Modeling Software for Urban Environments.”

http://www.procedural.com/, February 2011.

[52] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants. New

York, NY: Springer-Verlag, Inc., 1990.

[53] I. D. V. Inc., “SpeedTree.” http://www.speedtree.com/, February 2011.

[54] R. M. Smelik, K. J. de Kraker, S. A. Groenewegen, T. Tutenel, and R. Bidarra,

“A Survey of Procedural Methods for Terrain Modeling,” Proceedings of the

CASA Workshop on 3D Advanced Media in Gaming and Simulation (A. Egges,

W. Hürst, and R. C. Veltkamp, eds.), pp. 25–34, 2009.

[55] P. Software, “Planetside.” http://www.planetside.co.uk/, February 2011.

[56] P. Inc., “MojoWorld.” http://www.mojoworld.org/, February 2011.

[57] M. Barnsley, Fractals Everywhere, 2nd Edition. San Diego, CA: Academic Press

Professional, Inc., 1993.



137

[58] K. Perlin, “An Image Synthesizer,” SIGGRAPH Computer Graphics, vol. 19,

no. 3, pp. 287–296, 1985.

[59] A. Lindenmayer, “Mathematical Models for Cellular Interactions in Develop-

ment I and II,” Journal of Theoretical Biology, vol. 18, no. 3, pp. 280–315,

1968.

[60] S. Lefebvre and F. Neyret, “Pattern Based Procedural Textures,” Proceedings

of the 2003 Symposium on Interactive 3D Graphics, pp. 203–212, ACM, 2003.

[61] G. N. Stiny, Pictorial and Formal Aspects of Shape and Shape Grammars and

Aesthetic Systems. PhD thesis, University of California, Los Angeles, CA, 1975.

[62] Y. I. H. Parish and P. Müller, “Procedural Modeling of Cities,” Proceedings of

the 28th Annual Conference on Computer Graphics and Interactive Techniques,

pp. 301–308, ACM, 2001.

[63] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool, “Procedural

Modeling of Buildings,” ACM Transactions on Graphics, vol. 25, no. 3, pp. 614–

623, 2006.

[64] E. Whiting, J. Ochsendorf, and F. Durand, “Procedural Modeling of

Structurally-Sound Masonry Buildings,” ACM Transactions on Graphics,

vol. 28, no. 5, pp. 1–9, 2009.

[65] P. Merrell, E. Schkufza, and V. Koltun, “Computer-Generated Residential

Building Layouts,” ACM Transactions on Graphics, vol. 29, no. 6, pp. 1–12,

2010.
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APPENDIX A

UNIFORM SAMPLING OF A MESHED MODEL

The process of uniformly sampling a meshed surface was discussed as part of

both modeling approaches previously presented. Uniform sampling of a mesh can be

accomplished using the method defined by Turk [100], and in the remainder of this

appendix, we explain his algorithm in more detail.

This uniform sampling process is broken down into two main stages. A random

surface sampling is performed first, followed by a relaxation procedure. This algorithm

outputs a set of samples that resides on the surface of a model that is (approximately)

uniformly distributed across its surface. Figure 63 shows an example of both the

initial random sampling of a model, and the uniform sampling once the relaxation

has been performed. The input to this process is a triangulated meshed model M

and a defined sample size n. The user can select a desired value for n, or this value

can be automatically chosen based on the total surface area of the model or some

other heuristic method.

The sampling process begins by first distributing the n samples randomly on the

surface of M (i.e., choosing from the total set of model faces F obtained from M).

The position of each sample µ is selected such that it lies on a polygonal face. A

face f ∈ F in which to place µ is chosen by using a random area-weighted selection

criteria. A list of all face areas is calculated and sorted during a precomputation step.

A random selection from this list can then be found efficiently using a binary search

through the list of partial sums calculated from the areas stored in this list. Once a

face has been selected, µ is positioned within f using randomly chosen barycentric

coordinates.
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Once all of the samples have been randomly placed on the surface of M , the

second stage of this process performs a relaxation procedure that allows for a more

regular distribution of the samples across the surface. This procedure is performed

by iteratively repelling the nearby neighbors of each sample, thereby evenly spacing

the samples on the surface. In order for two samples to repel each other, they must

be within a repulsive radius r of each other (defined in Equation A.1):

r = 2
√
a/n (A.1)

where a is the total area of the surface, and n is the number of samples to place on

the surface. If two samples are greater than r distance away, they will not affect each

other and the repulsive force falls off linearly with distance.

Algorithm 10
1. for i← 1 to k
2.
3. for µ ∈ samples
4. A = GetTheFaceSampleLiesOn(µ, F );
5. near points = DetermineNearbySamples(µ, samples);
6. for γ ∈ near points
7. MapNearbyPointOntoP lane(γ,A);
8. V = ComputeRepulsiveForce(µ, near points);
9. StoreRepulsiveForce(µ, V, forces);
10.
11. for µ ∈ samples
12. µnew = ComputeNewPositionFromForces(µ, forces);
13. MapNearbyPointBackOntoSurface(µnew, F );

The relaxation process is described in Algorithm 10 and is performed over k

iterations. The process begins by first finding the nearby samples of µ by identifying

all those samples that reside within a repulsive radius r of µ. The total force applied

to µ from these nearby samples is then determined. The total force applied to a

sample µ that resides on a face A is calculated by mapping all of the nearby samples
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Fig. 63. An initial random sampling (left) and uniform sampling after relaxation

(right).

onto the plane defined by A. A nearby sample is mapped onto this plane according

to one of the following rules:

• A sample γ that already lies on A, remains where it is defined.

• A sample γ that lies on a face B that shares an edge with A, is rotated about

the shared edge between A and B until γ lies on the plane defined by A.

• A sample γ that is on a face B that is not adjacent to A (i.e., it is remote) is

first rotated about the nearest edge of A, and then projected onto the plane

defined by A.

Figure 64 provides an illustration (similar to that provided by Turk [121]) of how this

mapping process functions for both an adjacent face, as well as a remote face.
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Fig. 64. An illustration of the mapping of samples onto a common plane for both

adjacent faces (left) and remote faces (right).

Once the samples have been mapped onto a common plane, then a vector V can

be found for µ that stores the sum of all repelling forces from the nearby samples.

A corresponding V is found for each sample, then a second pass is made where the

forces are applied to each sample and a new position µnew is determined for each (as

defined in Equation A.2):

µnew = µ+ kV (A.2)

where µ is the original position of the sample, V is the vector storing the summed

forces, and k is a small scaling factor that can help control the magnitude of sample

displacement during each iteration.

If µnew still lies within the bounds of the face A, then the process moves on to

the next sample. However, if µnew is not within the bounds of the face A, then it is
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no longer on the surface of M and must be mapped back to its appropriate position

on the surface. The edge of A that µ was pushed across must first be identified, and

the adjacent face B that shares this edge is found. Next, the sample µnew is rotated

about the shared edge between A and B such that it will lie on the plane defined

by the face B. This process is performed iteratively until µnew lies on the surface of

M (or within a defined tolerance). Each step in this process gets µnew closer to the

surface, and after several iterations, µnew should lie on the surface. Most faces should

share an edge with another face, but if a sample is moved across an edge with no

defined adjacent face, then it is simply moved back to the nearest position such that

it lies on a face of M .

This sampling process can be used for both the full surface of an object, as well

as a localized region (e.g., for the sub-sampling step described in Chapters III and

IV). In order to sub-sample a localized region on the surface of an object, the usable

surface region must first be found. Given a surface sample, this region is found using

the surface intersection approach described in Chapter III. To subsample the patch

found, an extension of the process described for full surface sampling can be used.

The only difference with sub-sampling is that a subsample must remain inside the

bounding sphere that defines the underlying surface patch (even if the face it lies

on extends outside of this boundary). An extra check is performed to ensure that

the subsamples do not move outside this bounding sphere, and if they do, they are

snapped back to the nearest position on a face within the boundary.

This process provides a quick and easy way to sample most any meshed model.

We use this approach to sample a triangulated meshed object, but it easily extends

to an polygonal object. Turk also provides other extensions [100] that we do not

incorporate within this work (e.g., adjusting the sampling along regions of heavy

curvature).
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APPENDIX B

MOVING LEAST SQUARES SURFACE FITTING

Least Squares (LS) approximation is a mathematical technique commonly used

for fitting a continuous function (i.e., a polynomial of degree M and spatial dimension

D) to a scattered set of data points [122]. LS centers on minimizing the sum of the

squared error (i.e., the residual difference between the observed and modeled values)

over the set of points. Figure 65 shows a simple two-dimensional example of a LS

fitting for a random set of points.

The objective of a LS fitting is to find a globally defined function f(x) that

approximates a given set of scalar values fi at points xi, with a minimal amount of

error/residual. The standard approach (shown in Equation B.1) is to formulate this

problem as a minimization over
∏D
M , the set of polynomials of degree M and spatial

dimension D.

argmin
f∈
∏D

M

∑
i

‖f(xi)− fi‖2 (B.1)

Moving Least Squares (MLS) is an extension of standard LS fitting that also

allows for reconstruction of a continuous function from a set of unorganized points,

but does so using a series of locally weighted fittings to define the curve [122]. For

each location r where the surface should be evaluated, a polynomial is computed

using a weighted least squares fitting. The influence of data points to this fitting is

based on a weighting function that typically incorporates both the distance of each

neighboring point to r, and the sampling density of the neighborhood around r. This

weighting biases the fitting to localized regions immediately around r, and penalizes

the influence of points further away. The value of this local approximation provides
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Fig. 65. A simple least squares fitting for a random set of points.

the definition of the curve at r, and the set of these locally approximated values

defines the implicit surface. Equation B.2 provides the standard definition of MLS:

argmin
f∈
∏D

M

∑
i

‖f(xi)− fi‖2θ(‖x− xi‖) (B.2)

where θ(d) serves as a non-negative decreasing weighting function. A Gaussian func-

tion (shown in Equation B.3 where d is the distance and h is a fixed parameter

describing point density) is a commonly used function for θ(d). Figure 66 shows a

simple two-dimensional example of a MLS fitting. In this example the color of the

samples depict their weights, and the collection of these localized fittings define the

overall approximated surface.

θ(d) = e
d2

h2 (B.3)

Moving Least Squares has become a very popular technique within the field of

Computer Graphics. It has been used in areas such as surface reconstruction [23],

image deformation [123], and physically-based animation [124].
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Fig. 66. A Moving Least Squares fitting for a random set of points. The top illustration

shows the local fitting process, and the bottom illustration shows how the set

of these local fittings form the approximated surface.
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Both modeling approaches presented within this dissertation incorporate MLS

as part of their construction process. Cheng et al. [102] describe two main classifica-

tions of MLS-based approaches, projection-based methods (i.e., those that employ a

stationary projection in their definition) and implicit-based methods (i.e., those that

employ a scalar field in their definition). As previously presented, our algorithms both

use a projection-based MLS method for reconstructing a continuous surface definition

from a point cloud representation. The remainder of this appendix will describe in

detail the projection-based process employed by our work.

Projection-based MLS was first introduced by Levin [125][126] as a means of

determining a smooth approximation of unstructured surface data. This idea was

later extended by Alexa et al. and shown to be an efficient tool for reconstructing

high quality surfaces and could scale to large datasets [23]. Many different alternatives

to these two approaches have been proposed as well [102]. We chose the approach

defined by Amenta and Kil [4] to implement within our work, but many of these

alternative solutions could be used in place of our chosen method.

The MLS surface reconstruction algorithm takes as input an oriented set of points

P = {p1, ..., pn} ∈ R3 assumed to sample an unknown surface. It can be assumed

that these samples may contain noise and the points are irregularly located in space.

The objective of projection-based MLS is to obtain a surface approximation S that

smoothly and continuously approximates these point samples by projecting them

onto the implicitly defined surface. For a given location r where the surface should

be evaluated, the projection-based procedure iteratively transforms r until it lies on

the surface defined by S.

The projection procedure by Amenta and Kil gives an explicit definition of MLS

in terms of the critical points of an energy function e(x, a) on lines determined by a

vector field n(x) [4]. The energy function (defined in Equation B.4) takes a point x
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and an un-oriented direction vector a as input, and measures the quality of fit (using

a weighted distance measure) of a plane through x with normal a to the points in P .

eMLS(x, a) =
∑
pi∈P

(〈a, pi〉 − 〈a, x〉)2θ(x, pi) (B.4)

The un-oriented vector field (defined in Equation B.5) assigns a direction vector at x

by finding the normal of the plane through x that is the best fit to that local region of

the point cloud. This normal is determined based on finding the smallest Eigenvalue

(and corresponding Eigenvector) from the minimization of the matrix of weighted

covariances [23].

nMLS(x) = argminaeMLS(x, a) (B.5)

The MLS surface S is then described as the set of points described using a minimiza-

tion of e(x, a) along a line found from n(x) (defined in Equation B.6).

SMLS = {x|x ∈ arglocalminy∈lx,n(x)
e(y, n(x))} (B.6)

The projection-based MLS surface is then found as follows. For each iteration, a

direction vector n(xi) which defines a line lxi,n(xi) through xi is found from the vector

field. The local minimum of the energy function e(xi, n(xi)) along this line is then

found. This new location is defined as xi+1, and this minimization process can be

performed iteratively. For each step taken, the total energy should decrease. As a

result, this process will eventually converge to the point xn which lies on the surface

S. Figure 67 provides an illustration (similar to that provided by Amenta and Kil

[4]) of this iterative projection process.

Amenta and Kil follow up this formal definition of MLS with a second more

detailed definition that is used for implementation. If oriented normals are provided
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Fig. 67. An illustration of the iterative convergence process for projecting a point onto

the surface. After n iterations, the point x will reside on the surface S.

with the input P , then a vector average can be used to find n(x) (defined in Equation

B.7).

n(x) =
∑
i

aiθN(x, pi) (B.7)

A weighted average is computed using a normalized Gaussian weighting function

(defined in Equation B.8). This allows the energy to be greater than zero even when

a sample is far from the surface.

θN(x, pi) =
e−d

2(x,pi)/h
2∑

j e
−d2(x,pj)/h2

(B.8)

A Mahalanobis distance (similar to Euclidean distance, but using an elliptical

unit ball rather than spherical; defined in Equation B.9) is used to define the distance

of x to a point pi.
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dM(pi, ai, x) = 〈(x− pi), ai〉2 + c‖(x− pi)− 〈(x− pi), ai〉ai‖2 (B.9)

The parameter c is a scaling factor that controls the effects of the distance metric.

Amenta and Kil provide several examples of surfaces generated using different values

for c [4]. The energy function e(x, a) is defined in Equation B.10 as:

e(x, a) =
∑
i

dM(pi, ai, x)θN(x, pi) (B.10)

Our implementation uses Equations B.7 and B.10 to define the surface S, and

follows the details provided by Amenta and Kil [4]. We use a kd -tree to efficiently find

nearby samples within P . The neighbor size used varied by dataset, and the density

of samples each dataset contained. The energy minimization was performed using

an implementation of Brent’s method for one-dimensional non-linear optimization

provided in Numerical Recipes in C [127]. This procedure was used to find the

minimum of e(x, n(x)) along the line lx,n(x) by identifying a bounded region (described

by a lower and upper bound), and then reducing the intervals until a minimum is

found (within a defined tolerance).

MLS provides a powerful and efficient tool for generating a continuous surface

approximation from a scattered set of data points. Once the surface has been defined,

then a contouring algorithm can be used to quickly generate a polygonal representa-

tion of the implicit surface. The approach we have described provides one alternative

for reconstruction, but there are many alternative MLS-based approaches that offer

a variety of improvements (e.g., sharp features, more robust fittings with noisy data,

etc. [102]).



158

APPENDIX C

OVERVIEW OF PETRI NETS

A Petri net is a formal modeling language capable of describing concurrent and

distributed systems [111]. Petri nets were first introduced in the dissertation of Carl

Adam Petri [128]. These structures were presented as a model for information flow in

distributed systems, where asynchronous and concurrent operations of different parts

are necessary. Petri nets allow these different parts to work together through the use

of a graph/network structure. They provide a natural means for modeling processes

that include action, choice, iteration, parallelism, synchronization, and dependency

[111].

Since Petri nets were first introduced, they have since been used in many domains

as a means of modeling information flow, as generators of formal languages, and for

managing resource allocation/distribution [111]. The remainder of this appendix will

describe both the main concepts behind the basic Petri net structure, and the colored

Petri net extension used within our research. This description follows that provided

by Peterson [111].

A Petri net is represented as a directed bipartite graph composed of two types

of elements.

• A set of nodes, referred to as places, that correspond to states/conditions within

the modeled system.

• A set of bars, referred to as transitions, that correspond to events within the

modeled system.
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Fig. 68. A simple Petri net composed of three places and a single transition for vali-

dating user access to a system.

Places and transitions are connected together with directed arcs, defined only from

places to transitions and transitions back to places, to describe relationships between

the elements. Figure 68 shows a simple example of a Petri net used to model a user

validation system. This example shows that once a user has entered a valid username

and password combination, the transition will fire and validate the user, and grant

them access to a system as a result.

A Petri net is executed by passing tokens between places based on transition

firing, where a transition will only enable and fire if all of its incoming places contain

valid tokens. When a transition fires, tokens are removed from the incoming places

and new tokens added to all of the output places. This token passing process may

result in further firings of other adjacent transitions in future iterations. Figure 69

shows an example of this token passing scheme. Notice that the place holding a token

at the bottom left of each Petri net instance does not fire (and release its token) until

both incoming places into the respective transition hold a token.

The distribution of tokens in a Petri net defines the current state of the system,

and is referred to as a marking. The firing of a Petri net is atomic and performed

as a single non-interruptible step. After each firing, this marking may change based
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Fig. 69. An example of the iterative token passing process used within a Petri net.

Places are illustrated as circles and transitions as rectangles.
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on the underlying firing of transitions. Petri net firing is done in an iterative fashion.

For each firing, the full set of transitions is analyzed using the current marking, and

all those that are in a valid state are fired. In some cases two overlapping transitions

may both be in a valid state and capable of firing, but by firing one transition it

disables the other (and vice versa). These two transitions are said to be in conflict.

Two potential fixes to address this situation are to allow for a unique prioritization of

each transition that defines which transition takes precedence over another, or using

a randomized selection criteria. Once the firing has executed, tokens are moved, and

a new marking is generated. This overall process can then be repeated with the new

state.

Petri nets allow for modeling a system composed of a series of discrete events

whose order of occurrence is governed based on the defined state of the system. This

allows for asynchronous execution of dependent events, and once one event has been

chosen, subsequent events are decided based on established conditions in the network.

Petri nets also allow for concurrent execution of sets of events. Events can occur

simultaneously or sequentially depending on their definition. By using the Petri net

as the guiding definition of a system, very complex processes can be performed in an

overall globally consistent fashion. Petri nets have the capability of being hierarchical,

where a single abstract place in one model may be replaced with another entire sub-

model. Thus, Petri nets can be used for both bottom-up and top-down modeling of

systems.

Petri nets have certain underlying mathematical properties that make them very

interesting. Given a network and a marking, different properties can be analyzed

such as reachability, liveness, and boundedness. Analyzing these properties allows for

a more formal understating of the model, and identification of potential issues. Petri

nets have also been used as a means for studying formal languages and automata.
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In the generative modeling approach previously presented, we used a colored

Petri net. Colored Petri nets are an extension to the standard approach that allows

for tokens to store one or more values. These values can be as simple as a single

integer, or complex structures with many fields. As the tokens are passed through

the Petri net, these values can be checked and used to determine whether to fire a

transition or not, as well as adjusted during the firing process.

Petri nets provide a simple data structure that allows for handling asynchronous

and concurrent behavior within a distributed system. In this dissertation we have

shown one application, but many others exist. There are also many other specific

extensions to the Petri net structure not incorporated into our approach. Peterson

provides a very good overview of the many capabilities and extensions of this powerful

technique [111].
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