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ABSTRACT

Performance of Early Retransmission Scheme

and Delay Based Protocol in Video Streaming. (May 2011)

Zhiyuan Yin, B.En., Shanghai Jiao Tong University

Co–Chairs of Advisory Committee: Dr. Hussein Al Nuweiri
Dr. A. L. Narasimha Reddy

In this paper, we propose an early retransmission scheme to improve TCP’s

performance in delivering time-sensitive media. Our extensive ns2 simulations show

significant improvement. When integrated into a traditional TCP variant, namely

TCP-SACK, the early retransmission scheme can substantially reduce the latency

caused by retransmission timeout. As a result, it can help TCP-SACK achieve a con-

siderably higher success rate in delivering real time media. Early Retransmission also

enhances the performance of a delay-based TCP variant, namely PERT. Furthermore,

we also explore the improvement brought by employing a fine-grained retransmission

timer, and compare it with ER. We find out that ER outperforms the fine grained

timer in a variety of conditions and the combination of the two can further improve

performance.



iv

ACKNOWLEDGMENTS

I would like to thank Dr. A. L. Narasimha Reddy, Dr. Hasari Celebi and Dr.

Hussein Al Nuweiri for their great help in this work.



v

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II BACKGROUND AND RELATED WORK . . . . . . . . . . . . 3

A. Background . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1. TCP Tahoe, Reno, NewReno, and SACK . . . . . . . 3

2. TCP-Vegas . . . . . . . . . . . . . . . . . . . . . . . . 6

a. Congestion Avoidance . . . . . . . . . . . . . . . 6

b. Loss Recovery . . . . . . . . . . . . . . . . . . . . 6

3. PERT . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

a. Congestion Avoidance . . . . . . . . . . . . . . . 7

B. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 8

III EARLY RETRANSMISSION . . . . . . . . . . . . . . . . . . . 12

A. Problem With SACK . . . . . . . . . . . . . . . . . . . . . 12

B. Implementing ER . . . . . . . . . . . . . . . . . . . . . . . 14

IV EXPERIMENTAL EVALUATION OF EARLY RETRANS-

MISSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A. Simulation Methodology . . . . . . . . . . . . . . . . . . . 18

B. SACK vs. SACK-ER . . . . . . . . . . . . . . . . . . . . . 19

1. Session Frozen Time . . . . . . . . . . . . . . . . . . . 19

2. Standard Deviation of Inter Packet Arrival Time . . . 21

3. Successful Streaming Rate . . . . . . . . . . . . . . . . 26

C. PERT-ER . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1. Session Frozen Time . . . . . . . . . . . . . . . . . . . 27

2. Standard Deviation of Inter Packet Arrival Time . . . 28

3. Successful Streaming Rate . . . . . . . . . . . . . . . . 28

a. Varying Buffer Size . . . . . . . . . . . . . . . . . 28

b. Varying Drop Rate . . . . . . . . . . . . . . . . . 29

V ER VS. FINE GRAINED RTO . . . . . . . . . . . . . . . . . . 41

A. Simulation Methodology . . . . . . . . . . . . . . . . . . . 41

B. Number of Timeouts and SFT . . . . . . . . . . . . . . . . 43



vi

CHAPTER Page

C. Successful Streaming Rate . . . . . . . . . . . . . . . . . . 46

VI CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



vii

LIST OF TABLES

TABLE Page

I Difference in SS and CA Scheme between Vegas and Other TCP

Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II Difference in Fast Retransmission/Fast Recovery between Tahoe,

Reno, NewReno and SACK . . . . . . . . . . . . . . . . . . . . . . . 11

III Simulation Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

IV RTO Number and SFT Comparison . . . . . . . . . . . . . . . . . . 43

V Fine Grained Timer vs. ER: Fraction of Successful Streaming . . . . 46



viii

LIST OF FIGURES

FIGURE Page

1 Comparison of NewReno and SACK . . . . . . . . . . . . . . . . . . 5

2 Probabilistic Response Function . . . . . . . . . . . . . . . . . . . . . 9

3 Comparison of Early Retransmission and Normal Retransmission . . 13

4 DUPACK Elapsed Time and Fine Grained RTO . . . . . . . . . . . . 15

5 Dumbbell Network Topology . . . . . . . . . . . . . . . . . . . . . . 19

6 SACK vs. SACK-ER: Session Frozen Time . . . . . . . . . . . . . . . 22

7 SACK vs. SACK-ER: Drop Rate . . . . . . . . . . . . . . . . . . . . 23

8 SACK vs. SACK-ER: IPAT STDDEV . . . . . . . . . . . . . . . . . 24

9 SACK vs. SACK-ER: Successful Streaming Rate, BUF=80KB . . . . 30

10 SACK vs. SACK-ER: Successful Streaming Rate, BUF=160KB . . . 31

11 SACK vs. SACK-ER: Successful Streaming Rate, BUF=240KB . . . 32

12 SACK vs. SACK-ER: Successful Streaming Rate, BUF=320KB . . . 33

13 PERT vs. PERT-ER: Session Frozen Time . . . . . . . . . . . . . . . 34

14 PERT vs. PERT-ER: IPAT STDDEV . . . . . . . . . . . . . . . . . 35

15 PERT vs. PERT-ER: Successful Streaming Rate, BUF=80KB . . . . 36

16 PERT vs. PERT-ER: Successful Streaming Rate, BUF=160KB . . . 37

17 PERT vs. PERT-ER: Successful Streaming Rate, BUF=240KB . . . 38

18 PERT vs. PERT-ER: Successful Streaming Rate, BUF=320KB . . . 39



ix

FIGURE Page

19 SACK vs. SACK-ER vs. PERT vs. PERT-ER: Successful Stream-

ing Rate With Varied Drop Rate . . . . . . . . . . . . . . . . . . . . 40

20 Fine Grained Timer vs. ER: Number of Retransmission Timeouts,

SFT and Drop Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

21 Fine Grained Timer vs. ER: F-RTT and ER RTO Estimate . . . . . 45

22 Fine Grained Timer vs. ER: Fraction of Successful Streaming,

BUF=80KB, 160KB . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

23 Fine Grained Timer vs. ER: Fraction of Successful Streaming,

BUF=240KB, 320KB . . . . . . . . . . . . . . . . . . . . . . . . . . 48



1

CHAPTER I

INTRODUCTION

TCP’s proven stability and scalability has made it the most widely used transport

layer protocol for more than twenty years. However, as multimedia applications

become ubiquitous over the Internet, TCP has been found incapable of meeting their

requirements, as its flow control, congestion control and loss recovery can introduce

extra latency and rate fluctuation when delivering streaming media. Because of that,

many multimedia applications turn to UDP as their underlying transport protocol.

However, as UDP doesn’t come with any congestion control mechanism, it’s now the

application’s responsibility to implement rate control, and many of those application

level rate control algorithms have similar behaviors as TCP. Apart from that, the fact

that UDP only provides best effort delivery also causes problem since nowadays media

content are normally significantly compressed, which makes them very sensitive to

loss [1]. Finally, study shows TCP is still being used for streaming on a large scale

[2] [3]. All those make exploring ways to improve TCP’s performance in delivering

streaming media a meaningful topic.

This paper focuses on two inherent nature of TCP that are undesirable for me-

dia streaming. Its emphasis on reliable in-order delivery that introduces latency

which interrupts media play-out[4] and its coarse-grained Retransmission Timeout

(RTO) along with the back-off mechanism which is detrimental to any real-time

based application[5].

We show that by integrating an Early Retransmission (ER) scheme into typ-

ical TCP implementation (specifically, TCP-SACK), we can reduce Retransmission

The journal model is IEEE Transactions on Automatic Control.
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Timeouts to a great extent, keep packet delay at a significantly lower level, and lower

the achieved throughput requirement by 20% to achieve zero late packet when deliv-

ering real-time media. What’s more, combining ER into another delay based TCP

variant, namely Probabilistic Early Response TCP (PERT) can help further improve

its performance in low bandwidth network conditions. Finally, having a fine grained

Retransmission Timer can also improve TCP’s performance in small bottleneck buffer

scenario and the combination of ER and fine grained RTO can give us a even better

result.

The rest of the paper is organized as follows: Chapter II introduces some back-

ground information on the congestion control algorithms of all the TCP variants that

are in the scope of this paper, as well as the related work to improve TCP’s perfor-

mance in delivering time-sensitive media. Chapter III provides the details of Early

Retransmission. Chapter IV presents the simulation based performance analysis on

the improvements caused by integrating ER into one typical TCP implementation,

namely TCP-SACK and the delay based TCP-PERT. Chapter V shows the compar-

ison result between ER and fine grained RTO . Conclusions and future directions are

presented in Chapter VI.
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CHAPTER II

BACKGROUND AND RELATED WORK

A. Background

Congestion control in TCP is achieved using four distinct algorithms, each of which

plays an important part. The first of those is Slow Start (SS), which starts TCP slowly

to avoid congestion at early stage[6]. The second is Congestion Avoidance, which

aims at probing for available bandwidth by slowly increasing the number of maxi-

mum outstanding packets, i.e. Congestion Window (CWND) Size, while preventing

congestion from happening. The other two are closely related to each other: Fast

Retransmission and Fast Recovery (FR/FR). They help TCP achieve reliable trans-

mission while preserving throughput. The difference between Tahoe, Reno, NewReno,

and SACK lies in the different approaches taken to implement those four features.

1. TCP Tahoe, Reno, NewReno, and SACK

These four variants all share the same algorithm in SS and CA, which is shown in

Table I. In short, in SS state, CWND is increased exponentially in order to acquire

bandwidth quickly enough. In CA state, CWND is increased linearly to probe for

available bandwidth in a conservative way.

However, they do have different approaches in Fast Retransmission/Fast Recov-

ery stage, which is summarized in Table II. To be concise, in NewReno and SACK,

the new ACK that comes after retransmission will not pull the sender out of fast

recovery unless it has a higher sequence number than any of the packet sent before

retransmission. This scheme, which is referred to as Partial ACK in [7], enables

NewReno and SACK to recover from multiple packet drops in one CWND without
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Table I.: Difference in SS and CA Scheme between Vegas and Other TCP Variants

TCP Vegas PERT

SS:

Init: cwnd = 1 Init: cwnd = 2. Same as TCP.

Each New ACK: cwnd++ every other RTT. No early response

cwnd++ until Switch to CA when in Slow Start.

ssthresh actual throughput

is reached. drops below

expected throughput.

CA:

cwnd += 1/cwnd actual = cwnd/RTT With pearly,

for each new ACK. expected = cwnd/baseRTT cwnd -= β * cwnd

diff = expected-actual With 1− pearly,

If diff < α; cwnd ++; cwnd += α/cwnd

If diff > β; cwnd --;

Else cwnd unchanged

invoking Retransmission Timeout. For the improvements brought by the introduction

of Partial ACK and its importance in avoiding timeouts, please refer to [7], where

insightful simulation-based comparison is made.

For the extra performance enhancement brought about by SACK, Figure 1 shows

how NewReno and SACK behave differently in the same case where two packets are

dropped in one CWND. Although both protocols successfully recovered from packet

drop without resorting to RTO. SACK was able to fill the gap at receiver’s side within

one Round Trip Time (RTT), whereas it took NewReno two RTTs to achieve that.
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2. TCP-Vegas

a. Congestion Avoidance

As discussed above, the most different feature of TCP Vegas is its CA scheme, which

is performed once per RTT according to the logic shown in Table I, where α, and β

are two static threshold values.

b. Loss Recovery

• Retransmission: TCP Vegas’ retransmission scheme also differs from that

of its counterparts in that it doesn’t use 3rd duplicate acknowledgement (3rd

DUPACK) as the signal to trigger fast retransmission. Vegas sender keeps

track of the RTT of every packet sent and sets a fine grained timer based on

those more precise measurements of the network conditions. Once a duplicate

ACK is received, the RTT for that packet is compared to the timer. If the timer

has expired, the sender will determine a packet drop occurred and retransmits

the packet immediately. This is the so-called early retransmission (ER) feature.

After the retransmission, the RTT of the first and second non-DUPACK is also

compared with the fine-grained timer, and retransmission is also triggered if

their timers expire. It’s easy to find out that this feature is identical to the

Partial ACK mechanism in NewReno and SACK, and according to [8], it is the

second most contributive feature of Vegas in improving throughput in a high

traffic load environment.

• Recovery: Vegas’ another effective feature in recovering from loss lies in its

Fast Recovery algorithm. Upon detecting a dropped packet, instead of halving

the CWND like the rest of the TCP variants do, a Vegas sender will decrease



7

its CWND by only 1/4, which has two major effects: 1) During fast recovery,

Vegas sender will only wait for half as many DUPACKs as Reno to send out

new packets. 2) After recovering from loss, Vegas sender’s CWND will be 3/4 of

what it was before, whereas it would be only half the CWND for other variants.

As mentioned by [8], this scheme contributes the most to its high throughput by

allowing Vegas to “steal” bandwidth from Reno, therefore causing unfairness.

In the later section, we will show that TCP-ER stays fair with TCP in a large

scale, fast network condition.

3. PERT

a. Congestion Avoidance

As is summarized in Table I, PERT will also perform proactive slow down as Vegas

did, but with 4 major differences:

• To avoid inaccurate measurement of RTT, which may be due to noise and busty

traffic, PERT uses the Exponentially Weighted Moving Average (EWMA) of

RTT with a weight of 0.99, which is refer to as srtt0.99, to help predict network

congestion.

• Using srtt0.99, PERT will compute an early drop probability pearly with a given

response function. For each new ACK, PERT will perform proactive slow down

with a probability of pearly. The early response function can be chosen such

that PERT will emulate AQM at end host. Within the scope of this thesis,

we focus on PERT emulating “gentle” variant of Random Early Drop (RED),

whose early response function is shown in Figure 2.

• Instead of decreasing CWND linearly during proactive slow down, PERT de-
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creases multiplicativly with a fraction of β, which is computed as

Current Queuing Delay
Current Queuing Delay+Max Queuing Delay. The rationale behind this is that

when we perform early response when router queue is not full, it will take less

time for the queue to be drained, and therefore halving congestion window by

half will be overkill. Also, relating the window decrease factor with queuing

delay will mitigate the impact of false alarm, and help PERT maintain high

throughput in a high noise environment. Similar approach is used in TCP-

Veno.

• To be able to compete with other loss based protocol, PERT will increase

CWND additively by α

CWND, where α = 1 + Early Drop Probability
Drop Probability .

The performance of PERT in homogeneous environment has been explored in

[9], and [10] addressed the problem of PERT not being able to compete with loss

based protocols in a heterogeneous environment by associating the window increase

factor with drop rate and early reaction rate. In later chapters, we will show that

the integration of ER can further help improve PERT’s performance, which is most

obvious when available bandwidth is low.

B. Related Work

Researchers have proposed several approaches to improve TCP’s performance in de-

livering real time media as well as alternatives to TCP.

TCP friendly congestion control protocols without packet retransmission such as

[12] have been proposed to eliminate the latency induced by reliable transmission.

However, the effect of packet loss in video streaming can be very severe. For instance,

loss of packet that is a part of an I-frame in MPEG movie can cause a large group of

surrounding frames to be un-viewable. Therefore, those scheme usually rely on FEC
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to overcome this problem.

In [13], a discrete-time Markov model was developed for both live and stored

video streaming over TCP. Using this model and extensive ns2 simulations, they find

out TCP requires the achievable bandwidth to be roughly twice the streaming rate

to achieve successful streaming. Besides that, they also find out that in the case of

live streaming, fraction of late packets increase as video length increase. In the case

of stored streaming, the situation is the other way around.

Attention has also been focused on evaluating performance of delay based TCPs.

It has been shown in [14] that TCP-Vegas only require the achievable bandwidth to

be 1.5 times the streaming rate to achieve successful streaming. Qian et al. find out
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for PERT, the requirement is 1.6 times the streaming rate[11].

Finally, various researchers have put effort in reducing the latency induced by

TCP’s inherent nature. Goel et al. proposed an approach to reducing the latency

caused by TCP’s sender side buffering by dynamically tuning TCP’s send buffer[15].

Chung et al. target at alleviating latency caused by packet loss and modify TCP’s in

order delivery scheme by allowing receiver to skip holes in receive buffer to make sure

application thread never be blocked due to packet loss[4]. Our approach, TCP-ER

which also aims at reducing this latency by avoiding Retransmission Timeouts can

therefore be classified into this category.
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Table II.: Difference in Fast Retransmission/Fast Recovery between Tahoe, Reno,

NewReno and SACK

FR/FR

Tahoe:

Triggered by Three DUPACKs,

cwnd = cwnd / 2.

Go to SS.

Reno:

Triggered by Three DUPACKs,

cwnd = cwnd / 2, dupwnd = 3.

For every DUPACKs received,

inflate dupwnd by one

and send a new packet

if permitted by cwnd+dupwnd.

Go to CA if new ACK received.

NewReno:

Same as Reno except:

When triggered, set recov = maxseq.

Go to CA only if new ACK is not

lower than recov.

SACK:

Same as NewReno except:

SACK field notifies sender of the

dropped packets, which will be rtxed

before any new packets.
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CHAPTER III

EARLY RETRANSMISSION

A. Problem With SACK

Despite the improvement brought about by adding SACK into TCP, there are still

cases where SACK cannot prevent RTO from happening, which is when not enough

DUPACKs are generated in time to trigger FR/FR, and all the improvements intro-

duced by SACK become useless. TCP will fall back to RTO for helping. This case

usually happen when multiple drops occurred in one window of packets[7] and when

CWND size is small.

Figure 3a illustrates the problem of TCP’s 3 duplicate ACK drop detection

scheme when the current CWND is small. 1 It can be seen that even though the

singledup option is turned on, a retransmission timeout still happened before the

arrival of the 3rd duplicate ACK. This also serves as a good example of the inter-

packet arrival jitter caused by TCP’s reliable transmission constraint[4], as all the

high sequence numbered packet sent after the dropped packet will not be delivered to

the application until RTO happened. The error recovery implementation of PERT is

the same as that of traditional TCP, it will therefore suffer from the same problem.

On the other hand, if we allow TCP to start FR/FR without waiting for the

arrival of the 3rd DUPACK, such a RTO can be avoided, as is shown in Figure 3b.

Essentially, this means if we don’t strictly follow the classic 3 DUPACK heuristic,

the loss recovery process can be speed up by avoiding retransmission timeouts. As

mentioned earlier, such an Early Retransmission (ER) scheme is employed by TCP-

Vegas and is shown to contribute to its good performance by [14].

1Figure 3a and Figure 3b both use data obtained from ns2 simulation runs
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B. Implementing ER

It has been shown in [16] that 91.1% of the packet reordering in the current Internet

doesn’t exceed a distance of 3 packet, and thus the 3 DUPACK threshold serves as a

good heuristic for prevent packet reordering from having negative effect on through-

put. But not sticking to the 3 duplicate ACK rules means we are at the risk of

suffering from false alarm caused by packet reordering. Therefore, we need to find

another heuristic to guard against that.

TCP-Vegas uses a fine grained timeout value as a heuristic, whose value is com-

pared with the RTT of each DUPACK to determine whether enter FR/FR or not. We

follow the same direction to implement TCP-ER with a fine grained timeout value.

Before introducing the way timeout value is obtained, let’s first take a look at

the arrival patterns of DUPACKs, as is shown in Figure 4. Using data obtained from

a test run in the later sections, where RTT is 50ms and buffer size is 0.5 BDP and

1.0 BDP, we collect the time difference between the arrival of DUPACKs and the

sending time of the packet that has the same sequence number as the DUPACK.

We will refer to this time difference as Elapsed Time from now on. We can see

two clear gathering of elapsed time in Figure 4. The lower gathering is composed

of the DUPACKs generated by the packets from the same window as the dropped

packet. Since drop-tail queue is used in the simulation, packet drop occurs when buffer

overflows at the bottleneck. Hence, the lower gathering is around the maximum RTT

experienced by the flow, which can be represented as

RTTmax = Delaypropagation +Delaymaxqueueing (3.1)

.

On the other hand, DUPACKs that acknowledge the same sequence number can
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be generated by packets sent in different windows, which is the reason why there are

two gatherings in Figure 4.2 The elapsed time of different gatherings should therefore

be differed by one round trip time, and thus the elapsed time for the higher gathering

can be represented as

RTTmax + RTT’ (3.2)

As congestion level at bottleneck buffer may be varied after overflows happens,

different RTT ′ may be experienced, which is the reason why the higher gathering is

not as concentrated as the lower one.

Given the above, we need our heuristic to allow DUPACKs only from the higher

gathering to trigger ER. By doing that, we can tolerate packet reordering of one round

trip time. To implement this, we need the timer value to be able to distinguish the

two gatherings. RTTmax can be estimated using TCP-like RTO estimators. In our

implementation

RTO(t) = SRTTi + 2× SVARi (3.3)

is used as our estimator, where

SRTTi = 15/16× SRTTi−1 + 1/16× SRTTi (3.4)

and

SVARi = 3/4× SVARi−1 + 1/4× VARi (3.5)

We use the minimum round trip time experienced RTTmin to provide a lower bound

for RTT ′, and our threshold value can therefore be represented as

F-RTO = SRTTi + 2× SVARi +RTTmin (3.6)

2If ER is not employed, there may be a third, or even a fourth gathering, until
the TCP RTO value is reached. This is because of the single dup option to keep the
TCP fly wheel running.
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Its value is also plotted in Figure 4, from which we can see F-RTO provides a good

threshold value to differ the two gatherings, and therefore provide good performance

in deciding when to enter Early Retransmission. One thing worth mentioning is

that the classic 3 DUPACK rule is still left unchanged, and DUPACKs in the lower

gathering can still trigger FR/FR.
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CHAPTER IV

EXPERIMENTAL EVALUATION OF EARLY RETRANSMISSION

In this chapter, we performed exhaustive ns2 simulation to evaluate ER’s improve-

ment to TCP’s ability to deliver video streaming. We mainly focus on the integration

of ER to two different TCP flavours: TCP-SACK and PERT.

A. Simulation Methodology

Throughout this paper, a dumbbell network topology shown in Figure 5 is used,

where different TCP flows are given enough bandwidth at access link, but compete

for limited bandwidth at the bottleneck link.

Values for various parameters of ns2 simulation are shown in Table III.

We use a pair of Constant Bit Rate (CBR) traffic generator and receiver to

simulate a video streaming flow. In addition to that, FTP and HTTP flows are

introduce to create cross traffic and cause congestion at the bottleneck link. PERT,

PERT-ER and TCP-SACK is used as the underlying transport protocol for CBR

flows, and their performance compared to see how AQM and ER can improve the

performance of delivering real time media. Both FTP and HTTP background flows

use TCP-SACK as their transport layer protocol.

In order to evaluate the improvement brought by ER and AQM under different

conditions, we fix the number of CBR flows to be the same as the number of FTP

flows, and vary the number of those two flows to create a different ratio between

achievable bandwidth and CBR rate, which is 300kbps. From now on, we will refer

to this ratio as T/µ . 1 HTTP flows are fixed at 200. The number of flows are picked

1T is calculated by dividing the measured overall bandwidth by the total number
of flows. µ is simply the CBR sending rate.
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Fig. 5.: Dumbbell Network Topology

such that their T/µ fall into the range of [1.2−2.4]. In addition to that, we also vary

the buffer size at bottleneck link from 0.5 × BDP to 2.0 × BDP to obtain a drop

rate range from 0 to 8%.

Each simulation was run for 10 times with a duration of 1000 seconds, during

which both the CBR and FTP flows started randomly from 0 to 50 seconds.

B. SACK vs. SACK-ER

1. Session Frozen Time

We define Session Frozen Time (SFT) to be the total time during which a TCP sender

is starved with new ACK until an RTO occurs. The reason why we are interested in

that is because we expect the ER feature to greatly reduce the number of timeouts

and SFT is directly related to number of timeouts and loss in delivered QoS. We
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Table III.: Simulation Setups

Parameter Value

Simulation Duration 1000s

Bottleneck Link Bandwidth 25Mbps

Access Link Bandwidth 10Mbps

Round-trip Prop. Delay 50ms

Router Buffer 0.5 BDP ∼ 2.0 BDP

CBR Flow # 16 ∼ 40

FTP Background Flow # 16 ∼ 40

HTTP Background Flows 200

Background Flow Protocol TCP-SACK

MSS 1000Byte

Media Encoding Rate 300kbps

TCP Maximum Window Size 64KB

didn’t simply measure the total number of RTOs due to the exponential back-off of

Retransmission Timer. 2

Figure 6 shows the average Session Frozen Time of the test runs as well as the

error bars representing 90% confidence intervals.

It is obvious that SFT decreases as bottleneck buffer and T/µ increases. This is

intuitive as increment in those two factors result in a lower packet drop rate, which

is shown in Figure 7. However, the introduction of early retransmission does make a

2During simulation, we observed timeout value ranges from 0.2 seconds to as great
as 16 seconds, and therefore, smaller number of timeouts doesn’t necessarily mean
good performance.
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difference. Especially in the case of small buffer size and small T/µ cases. Note in

all of the three cases shown, when buffer size is 80KB, SACK’s average total frozen

time is 80.58, 25.20, and 6.01 seconds respectively. On the other hand, if the early

retransmission scheme is employed, SFT in those three extreme cases were reduced

to 23.02, 4.72 and 1.22 seconds respectively, which are only 28.4%, 18.8%, and 20.3%

of those without the ER scheme.

In Figure 7, we also plot the drop rate of all the test cases, which shows a very

clear trend of decreasing as buffer size and T/µ increase. In addition to that, Figure

7 also shows that by doing ER, TCP’S drop rate doesn’t get increased.

Essentially, Figure 6 and Figure 7 shows that under the same drop rate condition,

ER can help TCP reduce the chances of relying on retransmission timeout for loss

recovery.

It’s easy to find out the improvement is most obvious when T/µ is small and

become less evident in high T/µ case. This shows the Early Retransmission and Loss

Recovery scheme in SACK-ER have the most effect in avoiding timeouts under a

severely congested environment. In later sections, we will show that the improvement

in successful streaming rate also follows the similar pattern.

2. Standard Deviation of Inter Packet Arrival Time

As discussed in [17], human perception is more sensitive to frame jitter than low

quality video when watching streaming video. Standard deviation (STDDEV) of

inter-packet arrival time (IPAT) was used here to evaluate delay jitter and was shown

in Figure 8.

Figure 8 shows the average IPAT STDDEV and 90% confidence interval corre-

sponding to the 10 test runs in the previous section.

As can be seen from Figure 8, IPAT also decreases as T/µ and buffer size increase.
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The figure shows when bottleneck buffer size is 80KB, average standard deviation of

IPAT of SACK is as high as 80ms, 58ms and 30ms in the three T/µ cases respectively.

That is much bigger than the theoretical packet inter-arrival time, which is roughly

27ms for 300kbps CBR stream. The reason for this is as follows. To simulate the

delay experienced by real-time applications, we didn’t mark the packet as received

until all the lower-sequence numbered packets arrived, thereby taking into account the

delay introduced by TCP’s retransmission and in order delivery. Because of that, in

extreme conditions like the 80KB and [1.2, 1.6] T/µ case, RTO occurs often in SACK,

and therefore delay caused by retransmission can be as high as several seconds. That

contribute most to the delay jitter experienced by the application, which manifest

themselves as huge spikes on the packet inter-arrival time curve. This is because

packets with higher sequence numbers are stuck at the receiver’s side buffer and

cannot be delivered to the application until retransmission timeout occurred. What’s

more, after that hole is filled by a lengthy timeout retransmission, all the packets

that are delayed in the receiver’s buffer will all be delivered to the application at the

same time, with “zero” inter-packet arrival time. Those are the reasons for the high

standard deviation of IPAT , and the root cause of delay jitter introduced by TCP’s

reliable transmission.

On the other hand, SACK-ER has a consistently smaller delay jitter than SACK,

which is especially obvious when drop rate is high. (40ms, 20ms and 15ms in the 3

T/µ cases when buffer size is 80KB, which is 40%, 50% and 50% of that of SACK)

This is because ER can help TCP recover dropped packets with FR/FR and avoid

RTO, and therefore limiting the delay jitter to several RTTs in most cases.
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3. Successful Streaming Rate

To provide a good metrics for evaluating media delivery performance, we modify the

TcpSink module in ns2 to record the time when a packet is ready to be fed to

layer-5 application and put all those timestamps into a log file. After the simulation

run, different start up delay (SUD) is applied against those timestamps to collect

the number of packets that miss play out deadline (Late Packets). As [1] shows

that a late packets percentage of as little as 3% can affect up to 30% of the frames in

MPEG-1 video, we define a video stream to be successful if less then 0.01% of its total

packets sent miss their play out deadline. [13] and [14] also use identical methods.

Figures 9 to 12 show the results of SACK and SACK-ER when 4 different buffer

sizes are applied. It is also very obvious that both SACK and SACK-ER have a higher

success rate as buffer size and T/µ increase, and SACK-ER has a higher success rate

than SACK in all cases. As [13] claims, when 10 seconds of SUD is applied, TCP

can roughly achieve zero late packets when T/µ is higher than 2.0. Our experiment

also shows similar results, as SACK has a success rate close to 1 in all but the 80KB

buffer size case, when SUD is 10 seconds. In addition to that, we also observe that

when T/µ increase from [1.2, 1.6] to [1.6, 2.0], SACK has a much larger increase in

success rate compared to when T/µ increase from [1.6, 2.0] to [2.0, 2.4]. This finding

is also in accordance with those in [13].

When ER is integrated into SACK, we can see that close to 100% success can be

achieved when T/µ is in the region of [1.2, 1.6] in all but the 80KB buffer case, which

means ER can help lower TCP’s requirement for success streaming by 20%. Besides

that, in the small T/µ case, SACK-ER’s success rate grows much faster that that of

SACK’s. In the worst case, SACK-ER can achieve 50% success rate when SUD is

greater than 5 seconds, while SACK needs 15 seconds to achieve the same level.
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The success stream results also matches the SFT results in Figure 6, where we

see ER’s improvement in reducing timeouts are most obvious in low T/µ and small

buffer size cases. In the case of success rate, when SUD is 10 seconds and T/µ is in

[1.2, 1.6], SACK-ER’s success rate is 250%, 80%, 50%, and 40% higher than SACK’s

in the 80KB, 160KB, 240KB and 320KB buffer case respectively.

C. PERT-ER

In this chapter, we put PERT and PERT-ER into the same network environment as

the one used for SACK and SACK-ER to evaluate how ER can improve the perfor-

mance of a delay based protocol. To provide better comparison between all four TCP

flavours, we also calculate the success rate of each protocol when different drop rates

are experienced.

1. Session Frozen Time

Using the same simulation settings as in Table III, we put PERT and PERT-ER into

test and perform similar measurements. The result is shown in Figure 13.

Again, we notice the clear trend of SFT decreasing as T/µ increase and buffer

size increase. Also, it is obvious that PERT has a smaller SFT than SACK. When

buffer size is 80KB (0.5 BDP), PERT has an average SFT of 50s, 17s and 3.2s in the

three T/µ cases, which is 12s, 8s and 2.8s less than that of SACK. This is verified by

the findings in [18]. Since PERT will try to reduce buffer queue size by proactively

slowing down before congestion event happens, this result is quite intuitive.

When early retransmission is employed in PERT, we see that the SFT for 80KB

buffer size case is further reduced to 22s, 5s and 1.5s, which is 28s, 12, and 1.7s less

than that of PERT.



28

In addition to that, we also noticed that PERT-ER performs better than SACK-

ER in low T/µ case. For instance, when T/µ is in the range of [1.2, 1.6] and buffer

size is 0.5 and 1.0 BDP, SACK-ER has an average SFT of 23s and 7s respectively,

whereas PERT-ER only has 16s and 5s in the above two cases. This difference also

diminishes as T/µ increase, which is intuitive as drop rate will become smaller as

buffer size and T/µ gets bigger, and both of them will suffer from very small number

of timeouts.

2. Standard Deviation of Inter Packet Arrival Time

Figure 14 shows similar results with SACK, when bottleneck buffer is 80KB (0.5

BDP), PERT’s IPAT STDDEV is 47ms, 32ms and 23ms in the three T/µ case, which

is roughly 60%, 55% and 70% of SACK’s IPAT STDDEV. With the help of early

retransmission, we can see the standard deviation of IPAT is further reduced to 30ms,

20ms and 15ms in the three cases.

3. Successful Streaming Rate

a. Varying Buffer Size

Figures 15 to 18 shows the comparison between PERT and PERT-ER in the 0.5 BDP,

1.0 BDP, 1.5 BDP and 2.0 BDP case respectively. Unlike SACK, both PERT and

PERT-ER show a slight decrease of success rate as bottleneck buffer size increases.

This is not unexpected as [10] already shows PERT having problem competing with

loss based protocol when big buffer size is applied.

Despite the fact that PERT’s performance will be slightly affected in the face of

big buffer, we see clear performance improvement from SACK to PERT. When T/µ

is in [1.6, 2.0], PERT can achieve close to 100% success rate in all buffer size cases,
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which is better than both SACK and SACK-ER. The reason for this improvement is

out of scope, we refer the reader to [9] and [10] for more details.

When ER is applied to PERT, the improvement in performance also has similar

pattern as that of SACK-ER. With the same buffer size, ER’s help become less evident

as T/µ increase. When T/µ is fixed, ER’s improvement diminishes as buffer increases.

b. Varying Drop Rate

To provide a overall view of how AQM and Early Retransmission can improve TCP’s

performance, we collected the drop rate of all the flows running under the conditions

in Table III, and calculate the success rate of the flows whose drop rate falls into the

region of [0, 0.04] and [0.04, 0.08].

Figure 19 shows the result, from which we can see clearly that PERT’s perfor-

mance is not affected by drop rate as much as SACK is. Especially in the high drop

rate cases, we can see that SACK’s success rate never exceeds 70% when drop rate

is higher than 4%. Whereas PERT is able to achieve 100% success rate if the SUD

is big enough. This finding is also very similar to the ones in [11]. We speculate

the reason for that is because of the reduce factor of PERT is associated with the

smoothed delay estimate srtt0.99, and therefore when drop occurred due to sudden

burst of packet injection, PERT will decrease the sending rate much more gently than

SACK does.

Early retransmission, on the other hand, is able to help improve both SACK and

PERT’s performance across both drop rate cases. This is not surprising, as we have

shown in previous sections that with the same drop rate, ER is able to help prevent

RTO to a great extent and therefore reducing number of late packets.

This result also assures us that ER and AQM are compatible with each other,

and their effect can be combined to improve TCP’s performance to a greater extent.
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CHAPTER V

ER VS. FINE GRAINED RTO

With the increase in speed of modern processors, several current OS support fine

grained timer for calculating retransmission timeout value [19]. Linux, for example,

now has a timer granularity of 10ms and minimum a minimum RTO value of 200ms

[19]. So is the TCP implementation in ns2.

By having a finer granularity in calculating RTO, we essentially allow TCP to

consider a packet to be dropped with a shorter waiting time, which will help TCP

recover from loss faster. However, being more aggressive in this sense can also lead

to a higher drop rate. In [18], TCP’s performance in video streaming was shown to

be improved by making both the timer granularity and minimum RTO value to 1ms.

In this section, we also set the two values 1 in PERT to be 1ms and compare its

performance improvement with ER. Besides that, we also want to explore if PERT-ER

can be further improved by having a fine grained RTO timer.

A. Simulation Methodology

The same simulation settings in Table III are used in this chapter. Among all the

test flows, we pick those with T/µ falling into the region of [1.0, 1.5] and collect

total number of timeouts, SFT, drop rate and successful streaming rates of PERT,

PERT-ER and those two with fine grained RTO.
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Table IV.: RTO Number and SFT Comparison

PERT PERT with fine PERT-ER PERT-ER with

grained RTO fine grained RTO

80KB
RTO Numbers 253 335 (82) 96 149 (53)

SFT(sec) 61 40 (-21) 29 14 (-15)

160KB
RTO Numbers 140 205 (65) 43 83 (40)

SFT(sec) 33 28 (-5) 12 9 (-3)

240KB
RTO Numbers 80 117 (37) 21 35 (14)

SFT(sec) 18 16 (-2) 5 5 (0)

320KB
RTO Numbers 52 72 (20) 14 25 (11)

SFT(sec) 9 11 (+2) 3 5 (+2)

B. Number of Timeouts and SFT

We collect the average RTO Number and SFT of all the 1240 flows involved in the

test and plot them in Figure 20a and Figure 20b respectively. Error bars show 90%

confidence interval.

Figure 20a shows that when fine grained RTO is applied, PERT and PERT-ER

both have a higher number of timeouts than before. This means although having a

smaller RTO value will enable TCP to start recovering earlier, it also increases the

possibility of a retransmitted packet also being dropped, as the bottleneck may not

have enough time to drain the backlog and buffer overflow will still occur. Besides

that, the extra number or RTOs induced by the fine grained RTO also decreases as

1tcp tick and minrto in ns2
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buffer size increase, as can be seen from Table IV. We believe two reasons contribute

to this. Firstly, drop rate gets lower as buffer size increases. Secondly, fine grained

RTO value gets closer to the 200ms clamp.

Figure 20b, shows that fine grained timer helps reduce SFT , which is the time

spent in waiting for timeout to expire, especially in the case of small buffer sizes.

Table IV shows that when buffer size is 80KB (0.5 BDP) and 160 KB (1.0 BDP), fine

grained RTO helps reduce SFT of PERT by 21 seconds and 5 seconds respectively.

In the case of PERT-ER, it helps reduce SFT by 15 seconds and 3 seconds. The is

because when small buffer is applied, the fine grained RTO value computed is much

smaller than the default 200ms, which can be seen in Figure 21a, where fine grained

RTO is shown to be around 80ms and 120ms when buffer size is 0.5 BDP and 1.0

BDP . Therefore, even though total number of timeouts are increased, SFT is still

reduced.

When compared the improvement fine grained RTO brings to PERT and PERT-

ER, we find PERT benefits more from fine grained RTO . Table IV shows PERT’s

SFT is reduced by 21 sec, 5 sec and 2 sec when buffer size is 80KB, 160KB and

240KB, while PERT-ER has a decrease of 15 sec, 3 sec and 0 sec. We believe this

is because PERT suffers from a bigger RTO number than PERT-ER, and therefore

more time can be saved from employing the fine grained RTO .

We also notice that ER’s ability to reduce SFT is better than that of fine grained

timer, which can be proven by the fact that the SFT curve of PERT-ER stays below

that of PERT with fine grained RTO across all buffer size cases.
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C. Successful Streaming Rate

Figure 22 and Figure 23 show the successful streaming rate of all buffer size cases.

Table V shows the successful streaming rate comparison when SUD is 5 seconds.

First of all, it’s quite obvious that the help of fine grained RTO decreases as buffer

size increases, which is clearly demonstrated in Table V. Note that when buffer size is

320KB(2.0 BDP ), fine grained RTO will cause PERT-ER’s success rate to decrease

by 2%. This is in accordance with the slight increase in SFT in the big buffer case,

which is discussed in the previous section.

Table V.: Fine Grained Timer vs. ER: Fraction of Successful Streaming

PERT PERT with fine PERT-ER PERT-ER with fine

with grained RTO with grained RTO

80KB(0.5 BDP ) 56% 80% (24%) 89% 97% (8%)

160KB(1.0 BDP ) 52% 70% (18%) 84% 90% (6%)

240KB(1.5 BDP ) 42% 50% (8%) 64% 68% (4%)

320KB(2.0 BDP ) 32% 33% (1%) 47% 45% (-2%)

Secondly, we also notice fine grained RTO help PERT more than it helps PERT-

ER, which can be seen in both Figure 22, Figure 23 and Table V. This corresponds

our findings in SFT , where fine grained RTO is shown to have a bigger effect on

PERT than on PERT-ER. PERT-ER is also shown to perform better than PERT

with fine grained RTO across all buffer cases.
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CHAPTER VI

CONCLUSION

In this paper, we show that early retransmission can help TCP-SACK in reducing

the latency caused by RTOs, which in turn increase the rate of successful streaming

in a variety of network settings. We also demonstrate that the same improvement

can be produced by integrating the ER scheme into a delay based protocol, namely

PERT. Our test results show a clear trend of improvement from SACK to PERT, and

from PERT to PERT-ER. This means AQM and early retransmission are orthogonal

to each other and the combination of the two can help improve TCP’s capability

in delivering time sensitive media to a greater extent. Moreover, compared to the

help brought by removing the lower bound on TCP’s RTO estimate and increasing

its granularity, ER’s improvement is more consistent and obvious. We also show

the effect of fine grained RTO and ER can be combined to produce a even better

performance.
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