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ABSTRACT 

 

Duplication and Diversification of Arabidopsis thaliana Telomerase RNP Components.  

(December 2010)  

Catherine Cifuentes Rojas, B.Sc., Universidad del Valle; M.Sc., Pontificia Universidad 

Javeriana  

Chair of Advisory Committee: Dr. Dorothy E. Shippen 

 

Telomerase is a highly regulated ribonucleoprotein complex that 

stabilizes eukaryotic genomes by replenishing telomeric repeats on 

chromosome ends. Defects in telomerase RNP components involving the 

catalytic subunit TERT or the RNA template TER lead to stem cell-related 

diseases such as dyskeratosis congenita and idiopathic pulmonary fibrosis, 

while inappropriate telomerase expression is a rate-limiting step in 

carcinogenesis.  In this study we report the discovery of a novel negative 

regulatory mechanism for telomerase that stems from duplication and 

diversification of key components of the telomerase RNP in the flowering plant 

Arabidopsis thaliana. 

We show that Arabidopsis encodes three distinct TERs: TER1, TER2 and 

a processed form of TER2 termed TER2S. Although all three RNAs can serve as 

templates for telomerase in vitro, in vivo they have different expression patterns, 

assemble into distinct RNPs with different protein binding partners, and play 

opposing roles in telomere maintenance. The TER1 RNP is analogous to the 
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telomerase enzyme previously described in other eukaryotes, but the TER2 

RNP is a negative regulator of telomerase activity and telomere maintenance in 

vivo.   

Furthermore, we demonstrate that the Protection Of Telomeres (POT1) 

paralogs in Arabidopsis (POT1a, POT1b and POT1c) are novel TER binding 

proteins. This finding is striking because in yeast and vertebrates, POT1 is an 

essential component of the telomere capping complex and functions to 

distinguish the chromosome terminus from a double-strand break. Thus, our 

data argue that Arabidopsis POT1 proteins have migrated off of the 

chromosome terminus and onto the telomerase RNP, indicating that duplication 

and diversification of Arabidopsis telomerase may be the end result of the co-

evolution of the TER and POT1 RNP components. 

 Additionally, given the dire consequences of misregulating telomerase in 

human cells, our discovery of a novel negative regulatory mechanism for 

telomerase in plants strongly suggests that additional modes of telomerase 

control remain to be elucidated in vertebrates.   
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CHAPTER I 

INTRODUCTION  

 

The history of telomeres is closely related with that of eukaryotic cellular 

aging, dating to the late 1800s. In 1881 the German biologist August Weismann 

speculated that "death takes place because a used up tissue cannot renew itself 

forever and because a capacity for increase by means of cell division is not 

everlasting but finite" (1).  

 In 1908, Alexis Carrel (Nobel Prize 1912) became interested in the 

growth of cells in culture and established a culture of chick heart fibroblast cells, 

which he cultured for 34 years in his lab. The result of this work challenged 

Weismann‘s model and led to the general acceptance that vertebrate cells can 

divide indefinitely in culture and that ―the lack of continuous cell replication was 

due to ignorance on how best to cultivate the cells‖. Since individual cells were 

"immortal", Carrel came to the conclusion that aging is ―an attribute of the 

multicellular body as a whole‖ (reviewed in (2). 

 In 1961, Carrel‘s notion of cell immortality was challenged by experiments 

published by Hayflick and Moorehead (3). They demonstrated that the finite 

replicative capacity of normal human fibroblasts corresponds to ageing at the 

cellular level. Fibroblast cultures derived from human skin would divide up to the  
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40th to 50th generation, and then stop and ―undergo senescence‖. Further 

studies showed that cells from older people underwent fewer divisions than cells 

from younger people, suggesting that it was the total number of divisions since 

birth and not the total divisions in culture, that was important (4). This model is 

called ‗‗Hayflick limit‘‘ and is the most accepted, as Carrel‘s experiments were 

never reproduced. One of several important questions raised from this work was 

what tells cells to stop dividing?  

Work done by the American geneticists Herman Muller (Nobel Prize 

1946) and Barbara McClintock (Nobel Prize 1983) in the late 1930s, in 

Drosophila and Zea mays, respectively, would be the start of a series of 

discoveries that would answer this and other related questions. Muller was 

studying the effects of X-rays on Drosophila chromosomes (5). He isolated 

several types of chromosome rearrangements, but he could not isolate a 

terminal deletion, a chromosome missing the end. Muller concluded from these 

results that the end of the chromosome is a distinct structure essential for 

chromosome stability. He named it telomere (from the Greek telos for end and 

meros for part) (5).  

Additionally, Barbara McClintock found that broken meiotic chromosomes 

would frequently fuse end to end resulting in dicentric chromosomes in maize 

which are unstable (6). Results from this work allowed her to postulate that 

chromosome ends protect the terminus from being recognized as double-strand 

DNA breaks (7). 
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The End Replication Problem 

 James Watson (Nobel Prize 1962) proposed that an end replication 

problem would result from a fundamental limitation of DNA polymerases. The 

conventional DNA polymerases cannot carry out de novo DNA synthesis. 

Instead they require a template and a pre-existing 3‘-hydroxyl group (3‘-OH) 

provided by an RNA primer to initiate synthesis. This results in the direction of 

the synthesis being constrained to the 5‘3‘ direction. Removal of RNA primers 

generate Okazaki fragments, which then provide the 3‘OH source to fill-in the 

empty spaces left by the RNA primers. Watson hypothesized that when the 

polymerase reached the end of a linear DNA, the space left by the last RNA 

primer could not be filled-in, and then there would be a problem to complete 

replication: ―the end replication problem‖ (Fig 1). 

 Linear phage genomes can overcome this problem by joining multiple 

genomes before replication, thus reducing the number of actual ends and 

minimizing the damage by incomplete replication (8).   Independent studies by 

the Russian biologist Alexei Olovnikov resulted in a similar conclusion. He 

predicted a problem with the beginning of the DNA replication instead of the end 

(9). Olovnikov also suggested a link between cell senescence and telomeres. 

They proposed that the progressive shortening of telomeres might explain the 

‗‗Hayflick limit‖ theory: that cells can only replicate for a determined number of 

times. He concluded that a mechanism for maintaining telomere length should 

exist that would act as a molecular clock. If cells cannot compensate for the end 
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replication problem, chromosomes would shorten with each round of cell division 

leading to the end of the cellular lineage due to loss of distal genes. The next 

question was: how are telomeres maintained to allow an organism to survive for 

several generations?  

 

Telomerase and Telomeres 

 In 1978, Elizabeth Blackburn (Nobel Prize 2009), joined Joseph Gall‘s lab 

at Yale as a postdoctoral fellow determine the DNA sequence of the ribosomal 

DNA (rDNA) from the ciliated protozoan Tetrahymena. She found that each 

Tetrahymena rDNA molecule terminated with 200–400 bp of TTGGGG tandem 

repeats and later it was determined that these repetitive termini were not 

exclusive of rDNA molecules (10). 

           Later  and  as result  from  the  collaborative studies with Jack Szostak in  

 yeast,  it  was  established  that  these  repetitive elements are highly conserved  

throughout evolution.  They observed that the introduction in yeast of linear DNA  

fragments  containing the Tetrahymena  repetitive sequences at  their  termini  

resulted  in  stable   maintenance  in  yeast   cells  as  artificial  minichormosomes.  

Normally, linear DNA is integrated into the genome by homologous recombination  

or   subjected  to  exonucleolytic  degradation.  Interestingly,  after  cloning  and 

sequencing  of  these  DNA  fragments  they  found  tandem  arrays of what they 

determined  was   the  yeast  telomeric  repeat  were  added  to  the  Tetrahymena 

repeats (11).  
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Figure 1.  The end replication problem. Short RNA primers (wavy black lanes) are 

made by RNA primase for lagging-strand replication. These are then extended by DNA 

polymerase to form Okazaki fragments (Green line). The RNA primer removal leaves a 

single-stranded 3‘-end G-overhangs in the lagging strand.  After cell division a small 

piece of chromosome is not replicated. 
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It was proposed that species-specific tandem arrays of sequences confer 

to eukaryotic cells the capability to store their genetic material in form of linear 

chromosomes. But, by what mechanism were these sequences added at the 

chromosome end? 

In 1984-85 Carol Greider, working as a graduate student in Elizabeth 

Blackburn‘s lab, found a biochemical activity in Tetrahymena extracts that 

extended telomeric sequences in vitro (12). Two years later she and Blackburn 

identified a telomere terminal transferase responsible for this activity. This 

activity was later renamed telomerase. Telomerase is a ribonucleoprotein 

complex whose protein and RNA subunits were essential for activity (13). 

Cloning of the RNA subunit showed that it contained CAACCCCAA, a sequence 

that was complementary to the telomeric repeat of Tetrahymena (TTGGGG), 

which it suggested that the RNA could be used as template for telomeric repeat 

synthesis (14). A year later several studies provided functional evidence for the 

RNA as template to direct reverse transcriptase activity of telomerase (15-16). 

 Further experiments resulted in the identification of yeast mutants that 

failed to add telomeres to a telomeric ―seed‖ sequence introduced in a linearized 

and stabilized plasmid (17). The shorter telomere phenotype observed in these 

mutants (EST1, EST2, EST3 and EST4) was named EST for Ever-Shorter-

Telomeres. These genes were subsequently shown to be essential components 

of the telomerase RNP or its docking site on the chromosome end (18). These 

data revealed a requirement for telomerase activity and pinpointed the cellular 
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consequences of telomerase inactivation: telomere shortening and subsequently 

cell senescence (17). 

 Altogether, these discoveries laid the ground work for an immense variety 

of research studies in the fields of telomere and stem cell biology as well as the 

application of this knowledge to human proliferative diseases like cancer among 

others. 

 

Telomere Structure and Function 

As discussed above, the DNA portion of telomeres is comprised of a 

tandem array of simple G-rich sequence repeat that vary slightly in different 

organisms. In vertebrates, telomeres consist of TTAGGG repeats (Moyzis 1988), 

while in Arabidopsis and most other plants the telomeric repeat is composed of 

TTTAGGG (19-22). 

 

G-overhangs 

 Although many of the telomere repeats exist as dsDNA, the extreme 3‘ 

end of each chromosome extends beyond the 5‘ ends, forming a G-rich single-

stranded protrusion called the G-overhang. G-overhangs were first evidenced in 

Oxytricha and Euplotes by sequencing of the 3‘ ends of macronuclear 

chromosomes (23). Later G-overhangs were found in budding yeast by non-

denaturing in-gel Southern hybridization (24). They were also found in humans 

(25), chickens (26) as well and plants (27).  
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The G-overhang is the binding site for single-stranded telomere DNA 

binding proteins that are central players in telomere end protection (28-30). It is 

also the site where telomerase acts. The G-overhang has been proposed to play 

a regulatory role in yeast (31-32). 

 The proposed mechanism of G-overhang generation comes from studies 

performed in yeast. In budding yeast, G-overhangs are ~10–14 nt for the 

majority of the cell cycle, but their length increases transiently in late S phase 

when telomeres are replicated (24). C-strands are then filled in, presumably by 

replication or repair synthesis, yielding very short G-overhangs(24, 33). This cell 

cycle-dependent control of G-overhang formation is mediated by cyclin-

dependent kinase 1 (CDK1) (34-35). Multiple nucleases and helicases have 

been identified in yeast that contribute to C-strand resection (32).  

 In contrast, mammalian telomeres have G-strand overhangs in the 150–

350-nt range that are present throughout the cell cycle (25, 36-37). There is a 

length dependency of the cell type and a correlation with the length of the 

Okazaki fragments (25, 37). Several studies indicate that the G-stand overhangs 

are present on both telomeres, although their lengths may be quite different (38). 

The telomeres of plant chromosomes may also differ in overhang length; the 

longest are in the 20–30-nt range (27) and Riha personal communication).  

Interestingly, transient C-overhangs have been detected during S phase 

in human cells and they are proposed to result from stalling of the replication 

fork on the leading-strand telomere (39). C-overhangs have been detected in 
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worms also and they appear to associate with distinct telomere binding proteins 

(40). 

 

T-loops 

G-overhangs fold back and insert into the double-stranded telomere DNA 

repeats to form higher order nucleoprotein structures that protect the ends called 

t-loops (41-42) (Fig 2). The first evidence of telomere folding was obtained from 

chromatin Immunoprecipitation (ChIP) experiments with the telomere protein 

Rap1 in budding yeast (43). The current models for yeast telomere structure 

suggest that yeast telomeres do not form t-loops, but rather a simple fold-back 

structure (44). 

T-loops have been observed on chromosomes from a variety of 

organisms, including humans, mice, ciliates, trypanosomes and plants by 

electron microscopy (41, 45-46). Inter-strand psolaren cross-linking requires the 

precise positioning of T residues on opposing strands, arguing that the G-

overhang is base-paired with an upstream region of the telomere (41). In 

addition, t-loop formation analyses using recombinant TRF2, a double stranded 

telomeric DNA binding protein indicated the requirement of G-overhangs for t-

loop formation (42). 
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Figure 2. Telomere structure. (A) Telomeres are nucleoprotein structures at the end of 

eukaryotic chromosomes. The double-stranded and single-stranded DNA portions of 

the telomere are bound by ds-DNA and ss-DNA binding proteins. Other proteins interact 

with the proteins bound to the DNA forming complexes with different cellular functions. 

Telomerase must be accessible for telomere repeat addition. This reaction is regulated 

by the protein complexes at the telomere. (B) t-loop structure formed by the DNA-

protein complexes at the end of the chromosomes. 
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Telomere Length Homeostasis 

Telomere length is maintained within a strict range in each organism. In 

yeast telomeres are short (~300 bp), while in humans telomeres range from 10 

to 15 kb in length (reviewed in(47)). Changes of telomere lengths are also 

observed in plants.  Arabidopsis telomeres are 2-5 kb long (22), whereas in 

tobacco telomeres reach 150 kb (48).  Telomere length homeostasis is achieved 

through a balance of forces that shorten and lengthen telomeres.  Telomeres 

below a minimal size threshold ―critically short‖ do not protect the chromosome 

end, resulting in activation of a DNA damage response and cell cycle arrest 

(reviewed in (49).  The opposite situation, very long telomeres, also results in 

cell growth defects (50), which suggests that the cell takes very good care of 

maintaining the equilibrium of telomere shortening and lengthening in vivo.   

 

Telomerase-Independent Telomere Maintenance 

Telomere synthesis by telomerase is a conserved mechanism of 

chromosome end protection in eukaryotes (12, 51-52). However, some 

organisms use an alternative mechanism for this purpose. For example, the 

chromosomes of poxvirus are composed of highly A-T rich hairpins which 

contain extrahelical bases (reviewed in (53)). In Drosophila melanogaster, two 

families of non-LTR retrotransposons, HeT-A, TART, and TAHRE maintain 

telomere length by occasional transposition to the chromosome terminus (54-
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56). This results in a complex array of repeats that form heterochromatin to 

protect the end of the chromosome (57). 

Telomerase-independent Alternative Telomere Lenghtening, ALT was 

first discovered in yeast. Some yeast cells, termed ―survivors‖ escape the cell 

senescence resulting from Ever-Shorter-Telomeres by maintaining telomeres 

through homologous recombination (58-59). Survivors can be classified as Type 

1, which contain longer arrays of telomeric repeats alternated with subtelomeric 

sequences and which depend on Rad51 to amplify the subtelomeric sequences 

or Type 2, which only contain telomeric repeats and are dependent on Rad50 

(60).  

 Although in most human cancers telomere lengthening is mediated by up-

regulation of telomerase activity, in 10-15% of the cases this is achieved by ALT 

(reviewed in (61). Interestingly, observations made from cellular fusions between 

normal and ALT cells show that ALT is not observed in the resulting hybrid (62), 

thus ALT is not the result of a normal function and hence  ALT is potentially a 

good target for anti-cancer therapies.  
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Telomere-Binding Proteins 

Telomeric DNA is coated with specialized single-stranded and double-

stranded DNA binding proteins that work in concert with the t-loop to protect the 

chromosome end and to prevent its recognition as a double-strand break. 

Telomere-specific proteins were identified from ciliates in the 1980s. Their high 

abundance and the stability of their interaction with telomeric-DNA facilitated 

their purification (63-64). Telomere-associated proteins contribute to the 

assembly of other protein complexes involved in telomere specific functions, as 

well as other cellular functions including DNA repair, DNA damage checkpoint 

and chromatin modification (65-66). There are two main classes of telomere-

binding proteins: those that associate with single-stranded (ss) telomeric DNA 

and those that bind double-stranded (ds) telomeric DNA binding. 

 Within the ss telomeric DNA binding proteins group we find the telomere 

end binding protein (TEBP) from the ciliate O. nova (64, 67), Cdc13 protein from 

S. cerevisiae (18, 68), and the recently identified Protection Of Telomeres (Pot1) 

proteins from S. pombe and humans (69).  Despite their highly divergent 

sequence, these proteins share conserved structural domains called OB-folds 

(oligosacharide/ oligonucleotide binding-fold).  

The OB-fold domain is a compact structural motif frequently used for 

nucleic acid recognition, although it can also participate in protein-protein 

interactions. OB-fold consists of a five-stranded β barrel and is found in many 

single-strand nucleic acid binding proteins (70).  The OB-fold containing proteins 
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are classified on the basis of their functional recognition: no sequence specificity 

(ie. hsRPA and EcSSB), sequence specificity (ie.  EcRho, yeast Cdc13, 

OnTEBP, and E. coli aspartyl-tRNA synthetase) and specificity for non-helical 

structured nucleic acids (ie. RecG and some ribosomal proteins IF1, L2 and 

S12) (70). 

The ds telomeric DNA binding proteins include Taz1 in fission yeast (71), 

Rap1 in budding yeast (72), and TRF1 and TRF2 in vertebrates (73-75).  These 

proteins associate with DNA via a Myb-like helix-turn-helix DNA binding motif 

(76-80).  Rap1 possess two Myb motifs.  Taz1, TRF1 and TRF2 proteins encode 

a single Myb domain; however, these proteins homodimerize and this interaction 

is required for binding to telomeric DNA (71, 81-83).  A specific telobox 

sequence within the Myb domain is conserved in yeast and vertebrates and is 

thought to be used for recognition of telomeric DNA (76). In addition, the Myb-

like telomere binding motif shows similarity to the third repeat of human c-Myb, 

but displays higher specificity towards telomeric DNA than common Myb 

substrates (76). 

  

Telomere protein composition in ciliates 

The G-overhang binding protein from O. nova was the first identified (63-

64).  The O. nova telomere binding protein (TEBP) is composed of two protein 

subunits, α and β (84).  The α subunit binds ssDNA via two N-terminal OB-folds 

and interacts with the OB-fold of the β subunit via a C-terminal OB-fold (85-86).  
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In the presence of telomeric ss DNA, a very stable α-β-ssDNA complex is 

formed (87).  Biochemical and crystallization studies of TEBP bound to the 

ssDNA suggest that TEBP tightly binds the extreme 3‘ terminus of the O. nova 

G-overhang, thus forming a protective cap at the chromosome end (88). 

 

Telomere protein composition in yeast 

In S. cerevisiae, ds telomeric DNA is bound by the negative regulator of 

telomere length, Rap1, repressor activator protein 1 (89). Rap1 negatively 

regulates telomere length by recruitment of Rif1 and Rif2 (Rap1-interacting 

factors 1 and 2) proteins to telomeres (90-91). The proposed mechanism for this 

regulation is called ―protein counting‖ and states that telomere size is directly 

proportional to the number of binding sites for ds telomeric DNA proteins (92). It 

is proposed the telomere length information is transduced from duplex telomeric 

DNA to the telomere terminus by G-overhang binding proteins (93). Ss telomeric 

DNA binding proteins directly regulate telomerase by affecting its recruitment 

and/or activation at the chromosome end (reviewed in (94).   

Yeast G-overhangs are bound by Cdc13p (18, 68, 95)(Garvik et al., 1995; 

Lendvay et al., 1996; Nugent et al., 1996). Cdc13p plays several important roles 

at telomeres via dynamic interactions with distinct protein complexes (reviewed 

in (96). Loss of Cdc13 results in chromosome end de-protection and extension 

of the G-overhang (68). It has been proposed that Cdc13p positively regulates 

telomere length by direct recruitment of telomerase to the chromosome end.  
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This process is mediated trough the direct interaction of Cdc13p with Est1p, a 

component of yeast telomerase.  Mutant alleles of Cdc13p that abolish the 

interaction with Est1p lead to the EST phenotype, even though telomerase is 

enzymatically active in those cells (81, 97-98). Thus, it has been proposed that 

Cdc13p recruits telomerase telomere ends in S-phase via its interaction with 

Est1p. 

In addition to its role in telomerase recruitment, other roles have been 

proposed for Cdc13p. These include negative regulation of telomere length (97, 

99), as well as coordination of G-strand and C-strand synthesis by interaction 

with the catalytic subunit of DNA polymerase α (100).  

Cdc13 forms a heterotrimeric complex with the proteins Stn1 (Suppressor 

of cdc thirteen, 1) and Ten1 (Telomeric pathways in association with Stn1, 1). 

This complex is called CST and it is involved in both telomere length control and 

telomere capping (95, 98). Mutations in CST genes result in long G-overhangs, 

C-strand resection and cell cycle arrest (99, 101). Thus, CST proteins are 

essential. Like ciliate ss DNA binding proteins, CST proteins contain OB-fold 

domains (99, 101). CST components have been found in budding yeast and its 

closely-related species. Stn1 and Ten1 have also been identified in fission yeast 

(102).  
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Figure 3. Telomere-associated complexes. Top left, Vertebrate shelterin complex: 

TRF1, TRF2, RAP1, TIN2, TPP1 and POT1. Top right, Budding yeast CST complex 

Cdc13/Stn1/Ten1 (CST) complex. Rap1 binds to ds telomeric DNA and associates with 

Rif1 and Rif2 at telomeres. Bottom left, Fission yeast telomeric complex includes 

Shelterin like components: Taz1 (TRF1/2 ortholog), Rap1, Poz1, Ccq1, Tpz1 (TPP1 

homolog) and Pot1. It also contains CST components: Stn1 and Ten1. Bottom right, 

Arabidopsis CST complex: CTC1, STN1 and TEN1. POT1 proteins do not associate 

with telomeric DNA, but may be associated with telomerase RNP. 
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The ds DNA binding protein of S. pombe is Taz1  (71).  Like ScRap1, 

SpTaz1 is a negative regulator of telomere length; extremely longer telomeres 

are observed in taz1 mutants (71).  Since loss of Taz1 leads to C strand 

degradation and increased homologous recombination at telomeres (71, 103-

104), it has been suggested that Taz1 is also involved in chromosome end 

protection.  Rap1 and Rif1 homologs have also been identified in S. pombe 

(105), but in contrast to ScRap1, SpRap1 does not bind telomeric DNA directly.  

Instead, both Rap1 and Rif1 are recruited to telomeres through interactions with 

Taz1.  SpRap1 and SpRif1, share the negative regulatory role of telomere length 

likely via an analogous protein counting mechanism (105-106) (Fig. 3).  

SpPot1 is the only single-strand telomeric DNA binding protein identified 

thus far. This protein is essential for chromosome end protection, since pot1 

mutants show immediate loss of telomeric and subtelomeric DNA, chromosome 

mis-segregation, and profound genome instability (28).  In addition, SpPot1 is 

implicated in the negative regulation of telomere length: reduction of telomere-

bound SpPot1 results in dramatic telomere lengthening (107) (Fig. 3). 

 

Telomere-associated proteins in vertebrates     

Telomeres in mammals are protected by a complex of six proteins called 

shelterin (108). Subunits include: TRF1 (Telomeric Repeat Factor binding), 

TRF2, TIN2 (TRF-interacting protein 2), POT1 (protection of telomeres 1), TPP1, 

and Rap1 (109-110) (Fig. 2). Shelterin performs many essential functions 
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including generation of t-loops, control of telomere length and protection of the 

chromosome terminus (110-112).  

In humans, telomere length regulation is primarily accomplished by the ds 

telomere binding proteins, TRF1 and TRF2 (76-77). These proteins form 

homodimers and oligomers that coat telomeric DNA (73, 77). They play different 

functions in telomere biology. TRF1 functions in negative regulation of telomere 

length (113) while TRF2 is required for chromosome end protection. 

Overexpression of a TRF2 mutant lacking both its DNA-binding domain and N-

terminal basic domain results in severe telomere defects, including loss of 3‘ G-

overhangs and chromosomal fusions (114). 

TIN2 serves to link TRF1 and TRF2 to the TPP1/POT1 complex at the G-

overhang (115-116). Human Rap1 does not bind DNA directly, but rather 

associates to TRF2 and it is implicated in negative regulation of telomere (117). 

POT1, Protection of telomeres 1, is highly conserved and binds the ss G-

overhang. POT1 was identified as a protein similar to the α-subunit of the 

telomere end binding protein (TEBP) from the ciliate Oxytricha nova (Baumann 

and Cech 2001). While humans and fission yeast have only one POT1 gene, 

mice encode two POT1 paralogs, mPOT1a and mPOT1b. Both mPOT1a and 

mPOT1b are required to prevent DNA damage responses at telomeres as well 

as cell senescence, although functional differences do exist between the two 

proteins (118-119). TPP1 shows similarity to the β-subunit of TEBP and 
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interacts with POT1 (120-121). It has been proposed that TPP1 recruits POT1 to 

telomeres through contacts with TIN2 (110-111). 

POT1 binds ss telomeric DNA through its two OB-folds (122). POT1 

depletion results in loss of G-overhangs, chromosomal fusions and apoptosis 

(Hockemayer 2005 Churikov 2006). DNA binding of POT1 results in negative 

regulation of telomerase (123). In contrast, POT1 mutants that lack DNA binding 

activity have longer telomeres (93). Thus, both positive and negative regulatory 

roles have been proposed for POT1.     

TPP1 does not directly associate with telomeric DNA. However, its 

interaction increases the affinity of POT1 for the 3‘ end of telomeric DNA (120-

121). Depletion of TPP1 results in loss of POT1 localization to chromosome 

ends which leads to telomere lengthening and activation of DNA-damage 

responses (121). It is hypothesized that binding of TPP1-POT1 complexes to the 

telomere has an inverse relationship with telomere extension (124). In 

conclusion, the shelterin complex regulates the access of telomerase to the 

telomere which results in telomere length regulation.  

 

Telomere-associated proteins in Arabidopsis 

Functional orthologs of the yeast CST complex have been identified in 

Arabidopsis and humans ((125-126)and unpublished work). AtSTN1 is essential 

for chromosome end protection. This protein contains a single OB-fold, and 

localizes to telomeres in vivo. stn1 mutants exhibit loss of telomeric and 
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subtelomeric DNA, longer G-overhangs, increased telomere recombination, and 

massive chromosome end-to-end fusions. The large subunit, Conserved 

Telomere maintenance Component (CTC1) exhibits many properties similar to 

budding yeast Cdc13. Several OB-fold domains are predicted for CTC1 and ctc1 

mutants display telomeric phenotypes similar to the stn1 mutants; this indicates 

that CTC1 also function in chromosome end protection (126). Finally, a TEN1 

ortholog was recently found in Arabidopsis. It binds AtSTN1 and seems to be 

important for telomere length maintenance (Leehy K, Song X and Shippen D, in 

preparation) (Fig 3). 

 The shelterin components Rap1, TIN2 and TPP1 do not have obvious 

sequence homologs in Arabidopsis. However, there are six TRF-like proteins 

which contain a myb-like domain in their C-terminus and bind ds telomeric DNA 

in vitro (127). Analysis of the function of these genes is difficult due to genetic 

redundancy. However, recent data indicate that AtTBP1 functions in telomere 

length regulation in a manner similar to vertebrate TRF1 (128). 

Arabidopsis contains three divergent POT1-like proteins: AtPOT1a, 

AtPOT1b and AtPOT1c. AtPOT1a and AtPOT1b contain two OB-folds (129), 

while AtPOT1c only bears one (A. Nelson, Y. Surovtseva, and D. Shippen, 

manuscript in preparation). AtPOT1a is required for telomere length 

maintenance; it physically associates with the telomerase RNP and acts in the 

same genetic pathway as telomerase, in fact, pot1a mutants show progressive 

telomere loss, like tert mutants (130). In contrast, a dominant negative allele of 
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AtPOT1b leads to chromosome fusions,suggests that could play a role in 

chromosome end protection (129). AtPOT1c corresponds to a partial duplication 

of AtPOT1a. AtPOT1c over-expression results in increased G-overhang length 

and chromosome end protection (A. Nelson, Y. Surovtseva, and D. Shippen, 

manuscript in preparation).  

Notably, a ss telomeric DNA binding activity has not been found yet for 

Arabidopsis POT1 proteins (131-132). Instead, I present evidence in Chapters I-

IV that Arabidopsis POT1 proteins have evolved to bind the RNA subunit of 

telomerase and to play distinct roles in telomerase regulation.  

 

Telomerase Ribonucleoprotein Complex 

The telomerase enzyme is a ribonucleoprotein (RNP) composed of two 

essential core elements: a catalytic reverse transcriptase component (TERT), 

and an RNA subunit (TER). Telomerase activity can be reconstituted in vitro 

from only these two components (133-134). Typically, in these reactions, TERT 

is transcribed and translated in rabbit reticulocite lysate (RRL). The TER is either 

co-expressed with TERT or in vitro transcribed and added to the RRL to carry 

out the in vitro reconstitution reaction. Additional components present in the RRL 

(e.g. chaperones) may contribute to forming an active telomerase complex (16). 

To evaluate telomerase activity in vitro, the telomeric repeat amplification 

protocol (TRAP) assay is widely used (Fig 4). In this assay, the products of the 

telomerase reaction are amplified by PCR (135). First, a G-rich ss primer 



 

 

23 

corresponding to the ss overhang of the chromosome end is elongated by 

telomerase and then a reverse primer complementary to the telomeric repeat is 

added along with DNA polymerase to amplify the telomerase elongation 

products. 

 

 

 

 

 
 
Figure 4. Telomere Repeat Amplification Protocol (TRAP). A G-rich primer is 

extended by telomerase in the presence of Mg2+, dTTP, dATP and [α-32P]-dGTP. After 

telomerase extension, dCTP is added and PCR is performed using a reverse primer 

complementary to the Arabidopsis telomeric repeat. Products are resolved by 

denaturing PAGE and visualized by phosphorimaging (Right panel). 
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Telomerase reverse transcriptase 

The catalytic TERT component was initially identified in the ciliate 

Euplotes aediculatus (136). The TERT sequence is well conserved and several 

homologs of TERT have been identified in other ciliates (137), yeast (138), 

vertebrates (including humans) (51, 139-142) and plants (52, 143). All TERTs 

share sequence homology with reverse transcriptases (RT) from retroelements 

and retroviruses. Phylogenetic analyses suggest that TERT is most closely 

related to RTs encoded by non-long terminal repeat (LTR) retrotransposons 

(144). Therefore, the TERT 3D structure is predicted to be similar to the HIV and 

MLV RTs, which resemble a right hand with fingers, palm, containing the active 

site, and thumb domains (145). Each domain of telomerase has distinct 

functional roles that promote catalysis, nucleolar localization, RNA binding, 

dimerization and recruitment of telomerase to the telomere (146-147). 

Telomerase adds one nucleotide at a time to the 3‘ end of telomeric DNA using 

its RNA subunit as template (Fig 5). The telomerase-dependent elongation 

process entails substrate recognition, elongation and translocation (148-149). 

The mechanisms for ssDNA substrate recognition are variable between 

telomerases from different organisms and have not been yet well characterized 

(150). The recognition can involve hybridization of the RNA subunit to the 

substrate, although very little complementarity to the 3‘ end is needed (136).  
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Figure 5. Mechanism of telomere elongation by human telomerase. The G-

overhang at the telomere binds to the anchor site in TERT. The 3‘ end is positioned in 

the active site and base-paired to the RNA subunit template region. (B) Telomerase 

adds one nucleotide at the time to the telomeric 3‘ end. (C) Once the 5‘ end of the RNA 

template is copied into DNA, the telomerase RNA template re-aligns it in the catalytic 

site and two different translocation processes are thought to be carried out at this time. 

One involves the movement of the DNA-RNA hybrid and the TERT catalytic site and the 

other translocation process involves repositioning the 3‘end of the primer after the entire 

RNA template has been copied. (Adapted from 22). 
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Nucleotides will be added depending on the alignment position of the 

primer on the template. Telomerase shows highest affinity for dGTP, but other 

dNTPs and rGTP can be also used by the enzyme (137). During substrate 

elongation, not all nucleotides in the template region are base paired to the 

telomeric DNA and the RNA-DNA bonds are broken at the distal end of the 

template as new bonds are formed at the proximal end (151). Telomerase 

processivity allows the synthesis of several telomere repeats without 

dissociating. Human and ciliate telomerases catalyze more than one round of 

telomere repeat synthesis while they are still bound to the same telomeric DNA 

substrate (152).  

On the contrary, telomerases from mouse and yeast are non-processive 

and generate only short products in standard reactions (138, 153). After 

elongation, the telomerase RNA template re-aligns in the catalytic site. The 

telomeric DNA interacts with TERT in a site called the anchor site (154), which 

allows the primer to remain associated with TERT when the primer translocation 

occurs (Fig 5 A, B and C).  

Both TERT and TER form dimeric complexes. Moreover, dimerization has 

been shown for endogenous and recombinant RNPs and for telomerase core 

components separately. Although the yeast and human telomerases appear to 

function as dimers, telomerases from Euplotes aediculatus and Tetrahymena act 

as monomers (146, 155-156) (Fig 6).  
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Figure 6. Telomerase RNP complexes of humans, Tetrahymena, S. cerevisiae and 
Arabidopsis. Active human telomerase is a dimer of ~650kDa (233) that includes two 

TERT, two TR and two dyskerin molecules. Tetrahymena telomerase is a monomer of 

~500kDa composed by TERT, TER and p65 (155). S. cerevisiae is proposed to be a 

dimer containing Est2p and Tlc1 (159), as well as the telomerase-associated proteins 

Est1p, Est3p and Ku. The characterization of the composition of Arabidopsis 

telomerase is the subject of this dissertation (Adapted from (157). 
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Functional studies indicate that yeast telomerase contains two active sites 

(158-159). Several hypotheses have been proposed for the role of telomerase 

dimerization. One postulates that dimerization allows telomerase to extend two 

independent substrates such as a pair of sister chromatids (123, 159). Another 

hypothesis involves template switching, the transfer of the 3‘ end of the DNA 

from one template to the alternate one after one round of elongation (123). A 

third postulate is that the template would be supplied by one TERT-TER pair and 

the anchor site would be supplied by the other pair (123, 160). 

In addition to the core TERT and TER components, other proteins that 

associate with telomerase have been identified. Many of these have roles in 

RNP biogenesis, assembly and regulation of telomerase at the end of the 

chromosome. Some of these factors are stably associated with telomerase and 

other may only interact during telomerase biogenesis (161). Like the RNA 

subunit, these accessory proteins vary from species to species (Fig. 6).  

In ciliates biochemical purification led to the identification of the 

telomerase-associated protein p43 in Euplotes aediculatus (136) and its 

homolog p65 in Tetrahymena (162). These proteins may have roles in 

telomerase maturation and activity. In yeast the EST proteins are essential for 

telomerase activity in vivo (17-18). Est1p binds the RNA subunit and recruits 

telomerase to the chromosome ends through interaction with the ssDNA binding 

protein Cdc13p (Est4) (81, 163). Est3p is also required for telomerase activity in 
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vitro, but its function is not yet understood (164). Est3 requires Est2p to interact 

with the RNA subunit (165).  

Cdc13 and Ku70/80, two protein complexes that bind chromosome ends, 

have also been shown to interact with telomerase, although they may not be 

stable constituents of the RNP in cell extracts (166). In humans, the list of 

proteins associated with telomerase is extensive. For example, chaperones like 

p23 and HSP90 stably associate with telomerase RNP (167). Other proteins like 

Ku70/80, hEST1, TEP1, KIP and PINX1, are suggested to regulate TERT 

activity through direct binding (168).  

In conclusion, although the composition of the telomerase holoenzyme 

greatly differs among diverse species, telomere maintenance is a highly 

conserved and essential function.   

 

Telomerase RNA  

TER subunits diverge greatly between eukaryotes. They show little 

sequence conservation and their sizes range from 150nt in Tetrahymena (14), to 

382-451nt in vertebrates (169), and ~1200nt in budding and fission yeast (170-

171). Despite the divergence in sequence and size, secondary structure models 

for several organisms have been constructed independently using a combination 

of phylogenetic comparative analyses and mutagenesis studies (172).  

Based on these secondary structure models some common 

characteristics are conserved between all TERs (Fig 7). The template region is 
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single stranded and typically corresponds to one and a half to two telomeric 

repeats. It is flanked by a 5‘ boundary element and a 3‘ pseudoknot domain 

(172). The 5‘ boundary element blocks telomerase from reverse transcription 

beyond the end of the template sequence in TER. In Tetrahymena, the 5‘ 

boundary element corresponds to a small TERT interacting region (173). In 

yeast there is a pairing element right upstream of the template (174-175). The 

pseudoknot domain helps in positioning the template in the catalytic pocket of 

human and yeast TERT through protein-RNA interactions. By contrast, this 

domain does not appear to be important for TERT binding in ciliates, but it 

seems to be required for telomerase assembly in vivo (176). NMR structural 

studies of human TER suggest that the pseudoknot is not a stable structure 

(177). TER may exist in equilibrium between a pseudoknot state and a single 

stem loop and might this equilibrium be shifted one way of the other in the 

prescense of TERT. 
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In addition to this conserved portion of the RNA, species-specific domains 

exist (Fig. 7). In ciliate TERs, there is helix IV, a potential TERT binding site that 

may be involved in nucleotide addition and processivity (178) and helix I, a 

probable binding site for the protein p43 (179-180). Due to its large size, the 

yeast RNA works as a scaffold for telomerase-associated proteins. Besides the 

pseudoknot, where TERT (Est2) is bound, there are three vital stem loop 

structures. Two are binding sites for the telomerase-associated proteins Est1 

and Ku70/Ku80 heterodimer (181-182). The third site at the TER 3‘ end serves 

as a binding site for Sm proteins, a key factor for TER biogenesis (181).  

In vertebrates, the CR4-CR5 and scaRNA domains have been identified. 

Like the pseudoknot domain, the CR4-CR5 domain may be important for 

telomerase activity in vitro (183-184). The scaRNA domain contains the Box H 

and ACA motifs, which are essential for RNA stability in vivo and correspond to 

the binding sites for the dyskerin complex (184). An additional element in the 

scaRNA domain, CR7, may be important for telomerase RNP localization to the 

Cajal body (185). 
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Figure 7. Proposed secondary structures of ciliate, vertebrate and 
Saccharomyces telomerase RNAs. The domain color legend indicates the color code 

for elements common between RNAs. Brackets illustrate regions defined to interact with 

a specific protein. Taken from (186). 
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Studies carried out in Tetrahymena (178) and vertebrates (183, 187) 

show that telomerase activity is reconstituted in vitro when two separate TER 

fragments, one including the template, the template boundary and the 

pseudoknot and a second RNA containing the activator domain, which interacts 

with TERT (Stem loop IV for Tetrahymena and stem loop P6 for humans), are 

added independently to the reaction. These experiments strongly suggest that 

the RNA domains required for activity do not need to be part of only one 

molecule. Instead the independent domains can be provided in trans. Thus, two 

RNA molecules can interact in the same complex to promote catalysis.  

 

Telomerase Regulation 

 The tight association of telomerase activity in cancer processes has 

captured the attention of the scientific community. The detrimental outcomes of 

telomerase activity imbalance imply that the telomerase RNP must be tightly 

regulated at different levels to guarantee proper cell proliferation. In non-

reproductive proliferative cells, progressive telomere shortening occurs and 

when telomeres reach a determined size, the cells enter in replicative 

senescence (188). 

 In this sense, telomere shortening could be a potent tumor suppressor 

pathway since it is the way to measure the ―permited‖ number of cell divisions. 

This mechanism would protect the human cells from becoming carcinogenic. 

This hypothesis is supported by the observation that expression of hTERT in 
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normal telomerase-silent cells restored telomerase activity (189) and allows 

telomeres to be elongated. Moreover, these cells showed an indefinite life span 

(135, 190). Human tumor cells derived from carcinomas bypass cellular 

senescence and DNA damage-signalling pathways. The fact that telomerase is 

frequently activated and highly expressed in advanced human cancers (190), 

coupled with the requirement of telomerase to sustain the replicative potential of 

primary cells and tumor cell lines (191) provided the basis for the hypothesis that 

telomerase is a key player in cellular immortalization (192). 

Telomerase action is controlled at several levels.  Transcriptional  and 

post-transcriptional regulation of hTERT are major determinant of enzyme 

activity (193-194) and in some cell types, hTER expression is controlled (194). 

The stability and processivity of the telomerase enzyme are also modulated by 

RNP accessory factors (120, 195-199).  In addition, telomerase access to the 

chromosome terminus is controlled in cis by telomere binding proteins. 

 

Transcriptional regulation of hTERT and hTR 

 In vitro telomerase activity can be reconstituted with TERT and TER 

(134), suggesting that these components are the major targets of telomerase 

regulation. The majority of human cells express hTR during all stages of 

development, while hTERT is expressed during early development, but it is 

undetectable in most normal somatic cells except for proliferative cells or 
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renewal tissues (200-201). Recent studies indicate that like hTERT, hTR may 

also be subject to transcriptional regulation in some cell types (194). 

 Transient transfection of the hTERT promoter-luciferase reporters reveals 

an expression pattern that mirrors that of telomerase activity: luciferase is 

inactive in normal cells and active in immortal cells (202). These observations 

suggest that the control at transcriptional level is a major mechanism to regulate 

the amount of hTERT mRNA and protein, and subsequently telomerase activity. 

Computational predictions showed that the hTERT promoter contains binding 

sites for many transcription factors and hence may be subjected to several 

levels of control in different cell types (202). Two examples of elements that up-

regulate transcription of hTERT mRNA include c-Myc and Sp1 transcription 

factors, as well as steroid hormones, among others. 

 Near the hTERT transcriptional start site, two E-box elements are 

potential binding sites of basic helix-loop-helix zipper (bHLHZ) transcription 

factors that are encoded by the Myc family of oncogenes (203). Over-expression 

of c-Myc results in increased activity of the hTERT promoter, leading to 

increased hTERT mRNA and increased telomerase activity. This is dependent 

on E-box elements (193, 204-205) induced expression of hTERT mRNA and 

telomerase activity in normal cells (205).  

 Another element that influences hTERT mRNA transcription is Sp1 (193), 

a general transcription factor that interacts with TATA binding protein to promote 

transcription. Interestingly, TATA boxes are not found in the hTERT promoter; 
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however, mutations in Sp1 binding sites completely abolish hTERT promoter 

activity (193, 202). 

 Negative regulators of hTERT transcription have also been reported. The 

first identified was WT1, Wilm‘s tumor suppressor 1. WT1 represses hTERT 

transcription by direct interaction with the hTERT promoter (206-207) and its 

expression is restricted to kidney, gonad and spleen. Since WT1 is an important 

factor in growth of kidney and gonad cells, it has been proposed that WT1 

inactivation in target tissues contributes to activation of telomerase during 

tumorigenesis (208). 

 Interestingly, Mad1, an E-box binding factor, has also been reported to 

suppress hTERT expression. Mad1 competes with c-Myc (see above) for a 

common interaction partner Max and for the E-box binding site (209). The switch 

from c-Myc/Max to Mad1/Max at the E-boxes represses hTERT expression and 

subsequently down-regulates telomerase activity (210). 

 Other factors that repress hTERT transcription by binding to the promoter 

include MZF-2, a zinc finger transcription factor (211), and a member of the E2F 

family transcription factors involved in cell-cycle progression E2F-1 (212). 

Repression of hTERT expression may also be accomplished by inhibiting 

potential activators like c-Myc, via the TGFβ/Smad signaling pathway (213) or 

BRCA1, a tumor suppressor for hereditary breast and ovarian cancers which is 

involved in DNA repair (214). Finally, it has been suggested that p53 may be 
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involved in the negative regulation of hTERT expression, because most cancers 

are deficient in p53 (215). 

 

Post-transcriptional regulation of TERT 

 Telomerase is regulated at the post-transcriptional level. Although hTERT 

mRNA and hTER are expressed in normal ovarian cells, telomerase activity is 

not detected (Ulaner 2000). In addition the expression level of hTERT mRNA is 

similar in human peripheral blood T and B cells, and in tonsils, but the levels of 

telomerase activity differ in these settings (216). 

 Observations made in blood cells reveal that telomerase activity can be 

regulated by direct phosphorylation. Telomerase activity is up regulated by an 

activator of protein kinase C (PKC) and inhibited by PKC inhibitors (Bodnar 

1996). PKC belongs to a family of phospholipid-dependent kinases that function 

in cell growth, differentiation, and carcinogenesis (216).  Another kinase involved 

in telomerase regulation is the Akt protein kinase, an important component of the 

phosphatidylinositol 3-kinase signaling pathway that promotes cell proliferation 

(217). Two phosphorylation sites for this kinase have been found in hTERT and 

Akt-mediated phosphorylation of peptides containing these sites occurs in vitro 

(218). It is proposed that hTERT phospholylation may mediate its translocation 

from cytoplasm to nucleus (219-220). 

 Ubiquitination has also been proposed to play a role in telomerase 

regulation. An ubiquitin ligase, MKRN1 interacts with hTERT through yeast-two 
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hybrid assays (221). Over-expression of MKRN1 causes degradation of TERT 

and results in decreased telomere activity and shortened telomere length. This 

finding suggests that MKRN1 functions in telomere maintenance by modulating 

TERT protein stability (221). 

 

Localization of TERT 

 As mentioned above, telomerase activity can be also regulated by 

localization of its components. The hTERT N-terminus contains amino acids 

responsible for proper localization to the nucleus during specific stages of the 

cell cycle. hTERT is found in subnuclear foci during most of the cell cycle. 

However, during S-phase, hTERT, together with hTR are present in Cajal 

bodies, where telomerase RNP is assembly occurs (222). In addition, it has 

been proposed that hTERT transport to and from the nucleolus may also 

modulate telomerase activity at the telomere (223). Ectopic expression of GFP-

hTERT fusion protein results in telomere length maintenance and cell 

immortalization. In normal fibroblasts this fusion protein localizes in nucleoli for 

most of the cell cycle, but in late S/G2, when human telomere synthesis occurs, 

the fusion protein moved to the nucleoplasm. Since telomerase activity levels did 

not change during these phases of the cell cycle, the change in localization is 

not thought to prevent the enzyme from reaching telomeres, leading to cell cycle 

dependent regulation of telomere extension (223). In immortalized cells 
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telomerase re-localization is not observed (224), suggesting that the release of 

hTERT from nucleoli allows telomerase uncontrolled access to telomeres. 

 

Telomerase RNP structure and biogenesis 

Ciliates 

 Ciliate TERs are transcribed by RNA polymerase III (14). Affinity 

purification of ciliate TERT recovered La motif containing proteins, which 

function in maturation in RNA polymerase III transcripts. p65, one such protein, 

associates with stem IV of Tetrahymena TER and helps TERT bind TER with 

higher efficiency (225). p65 depletion results in inappropiate telomerase 

assembly (162), suggesting that TER biogenesis may be similar to other RNA 

polymerase III transcripts.  

Other proteins associated with Tetrahymena telomerase include p20, p45 

and p75. Depletion of any these proteins results in telomere shortening rather 

than defects in RNP assembly (162). Thus, these proteins are implicated in 

telomerase regulation and recruitment. Finally, p80 and p95 associate with 

Tetrahymena telomerase, but are not telomerase specific (226). Interestingly, 

Euplotes crassus contains three different TERT genes, with distinct expression 

patterns during macronuclear development. EcTERT-2 expression is limited to 

the time of de novo telomere formation, whereas EcTERT-1 and -3 are mainly 

expressed when telomere maintenance is required. Furthermore, E. crassus 



 

 

40 

telomerase oligomerize in vitro and potentially assumes different conformations 

in vivo (227). 

 

Yeast 

The telomerase RNA subunit of S. cerevisiae is called TLC1 and it is the 

product of RNA polymerase II transcription. A poly(A) transcript is detected in 

the cells, however the most abundant TLC form lacks a poly(A) tail. This poly(A) 

minus form associates with TERT (228).  TLC1 shares several characteristics 

with small nuclear RNAs, inlcuding the presence of a 5‘-2, 2, 7-

trimethylguanosine or TMG cap (229)and a binding site for Sm proteins (Khusial, 

P 2005). Deletion of the Sm-motif or loss of the members of the Sm complex 

leads to reduced levels of TLC1 (229). Thus, the biogenesis pathway of TLC1 

seems to parallel that of snRNAs.  

 Fission yeast TER1 also contains a Sm binding site at its 3‘ terminus. 

Mutations in this site lead to telomere shortening and loss of telomerase activity 

(171). Interestingly, the 3‘ end of SpTER1 is processed by an unconventional 

splicing reaction in which only the first transesterification step is perform followed 

by 5‘ exon (mature TER1) release (230). 
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Vertebrates 

 Human TER, hTR, like yeast TER is an RNA polymerase II transcript and 

posseses a 5‘-TMG cap (231). In addition it contains two regions at its 3‘ end 

that are required for proper RNA localization and stability: the H/ACA box and 

the CR7 domain.  

The H/ACA motif is present in small nucleolar RNAs (snoRNAs) and it is 

bound by the protein complex dyskerin/Nhp2/Nop10/Gar1. snoRNPs function in 

the pseudouridylation of ribosomal RNA and snRNAs (232). No 

pseudouridylation target has been identified in hTR thus far. Instead, this 

complex seems to function in stabilization of hTR. In fact core active human 

telomerase is composed of TERT, TR and dyskerin (233). Dyskerin is an 

essential protein and mutations in dyskerin lead to the disease dyskeratosis 

congenita (He 2002). The ATPases pontin and reptin also function in assembly 

of telomerase RNP. Pontin and reptin are well conserved AAA+ ATPases 

(ATPases associated with various cellular activities) that were found in 

chromatin remodeling complexes, as co-factors for the transcriptional regulators 

c-Myc and β-catenin and as proteins that interact with small nucleolar RNA 

(snoRNA) complexes (234). Interestingly, these ATPases interact with the 

telomerase RNP through direct interactions with dyskerin and TERT and the 

ATPase activity of pontin is required for telomerase assembly (235), thus pontin 

and reptin are proposed targets for anti-cancer therapies. 
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The CR7 loop of hTR is also important for telomerase assembly and it 

contains a consensus localization signal for cajal bodies (CAB) (185) the nuclear 

compartments required for modification and assembly of RNPs. hTR 

accumulates in cajal bodies throughout most of the cell cycle (185, 236). At S 

phase, hTR co-localizes with hTERT at foci near telomeres, enabling telomerase 

to act at telomeres (222). Nucleotide substitutions of the CAB box do not affect 

telomerase activity, but do diminish telomerase recruitment and telomere length 

(124). Interestingly, Sm binding proteins are also found associated with active 

human telomerase and it has been proposed that this association is mediated 

through the CAB motif, since of hTR does not contain a Sm binding sites (237). 

 Hsp90 and p23 chaperones associate with hTERT. These proteins are 

required for telomerase activity and are involved in the proper assembly of the 

telomerase RNP (238). In addition, 14-3-3 protein binds hTERT and it is 

important for hTERT localization (239).  

Prior to this study, there was little biochemical information about the 

telomerase RNP complex from plants. Partial purification of telomerase from 

cauliflower suggested a molecular mass of ~670kDa (240). The TERT subunit 

from Arabidopsis was identified several years ago (143) and shown to encode a 

131kDa protein containing reverse transcriptase motifs as well as a TERT-

specific motif T-motif. Disruption of this gene by a T-DNA insertion leads to 

progressive telomere shortening, demonstrating its essential role in telomere 

maintenance (143, 241).  
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Dyskerin, a core telomerase subunit required for human RNP biogenesis 

and enzyme function in vivo, was also shown to be a component of the 

Arabidopsis telomerase RNP complex which localizes to the nucleolus and is 

essential for telomere maintenance in vivo (242). Although a null mutation the 

Arabidopsis ortholog of dyskerin, AtNAP57 is lethal, the introduction of an 

AtNAP57 allele containing a T66A mutation result in decreased telomerase 

activity in vitro and disrupted telomere length regulation on individual 

chromosome ends in vivo, suggesting that, like in humans, dyskerin is essential 

for Arabidopsis telomerase function (242). 

I show in this study that Arabidopsis telomerase associates with three 

different TER transcripts: TER1, TER2 and the processed form of TER2, TER2S. 

These transcripts assemble into different telomerase RNPs with diverse protein 

composition and distinct functions in telomere metabolism. I also show that 

AtPOT1 family members associate with telomerase RNPs and play different 

roles in telomerase regulation. 

 

Regulation of telomerase access to the chromosome end by telomere-

associated proteins 

A crucial task for telomerase is maintenance of telomere length. As 

described above, several telomere-associated proteins are negative regulators 

of telomere length. This negative regulation is most cases does not reflect on 
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telomerase activity, but rather an interference with telomerase access to the 

telomere.   

T-loops are proposed to play a key role in telomere length maintenance. 

Elizabeth Blackburn has proposed a two-state model to describe telomere length 

homeostasis (66).  In this model, telomeres alternate between ―open or 

uncapped‖ and ―closed or capped‖ conformations in which the chromosome end 

can be either accessible or inaccessible to telomerase or other enzymes (66). 

The model implies that the overall telomere length is a primary determinant for 

making telomeric DNA accessible to telomerase action. Thus, in agreement with 

the ―counting model‖: a shortened telomere, which would be associated with 

fewer proteins, would be more accessible to telomerase action while a longer 

telomere, associated to more protein molecules, would be inaccessible to 

telomerase action (243). This mechanism would maintain telomere length within 

a species- and cell type-specific narrow range and would prevent excessive 

telomere shortening or over-extension. The species-specific telomere protein 

complexes that regulate telomerase access to the telomere were described in 

previous sections. 
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Regulation of enzyme activity and recruitment of telomerase to the telomere by 

holoenzyme components 

In addition to telomere-associated proteins, telomerase-associated 

proteins also contribute to the recruitment of the RNP to the telomere. In 

budding yeast the Est1 holoenzyme component is proposed to play this role. 

est1 mutants display an Ever-Shorter-Telomere phenotype, but no effect in 

telomerase activity (244-245). Est1 binds a bulged stem of TLC1 and this 

association is not dependent of Est2, the yeast TERT (181, 244, 246) 

.Interestingly, fusion of Est1 with the DNA binding domain of Cdc13 results in 

telomere lengthening and fusion of Est1 with Cdc13 overcomes the EST 

phenotype observed in these mutants (247). These data indicates that Est1 

functions as a telomerase recruitment factor. Additional experiments suggest 

that telomerase recruitment by Est1 is specific for S phase. 

 The Ku heterodimer is also implicated in telomerase recruitment through 

a direct interaction with a stem loop in TLC1 (248). ku mutants have shorter 

telomeres with long G-overhangs (182, 249). Defects in TLC1 nuclear 

localization are observed also observed in ku mutants (250-251). It has been 

proposed that Ku functions in recruiting telomerase to the chromosome end 

during G1 phase of the cell cycle (252). 

SpEst1 is associated with telomerase in S. pombe. Interacts with TER1 

and may function in telomerase recruitment (253). Likewise, human Est1 

associates with telomerase in vivo, although its role in recruitment is still under 
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investigation (254). Interestingly, in Arabidopsis, EST sequence orthologs do not 

seem to play a role in telomere metabolism, but instead Est1b is important for 

meiosis. However, POT1a from Arabidopsis has several similarities to Est1 

protein from yeast (discussed in Chapter IV). 

 Other telomerase associated proteins function in regulating enzyme 

activity. In humans, PinX1, a TRF1 and hTERT interacting protein functions as a 

negative regulator of telomerase (255). Likewise, yeast PinX1 binds to Est2 and 

interferes with TLC1 binding (256), thus acting as a negative regulator of 

telomerase function. The Pif1 helicase has also been proposed to negatively 

regulate telomerase in budding yeast by unwinding the telomeric DNA:template 

RNA duplexes and thus removing telomerase from the telomeres (257). Thus, a 

highly conserved and complex network of protein interactions regulates 

telomerase at several stages of the RNP biogenesis, recruitment and 

accessibility to the chromosome end, although the particular proteins involved 

differ with organisms. 
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Telomeric Repeat Containing RNA (TERRA) 

One of the striking features of telomeres is that they are heterochromatic. 

Thus, it was surprising when recent studies showed that they are transcribed to 

generate TERRA. Telomeric Repeat Containing RNA, TERRA, is a long non-

coding RNA transcribed by RNA polymerase II that contains subtelomeric and 

telomereic sequences and that is part of telomeric heterochromatin in animals 

and fungi (258-260). TERRA from humans and yeast contain a 7-

methylguanosine (m7G) cap structure (reviewed in (261)) and poly(A) tails at the 

3‘ end, although in humans only 7% of the TERRA molecules appear to contain 

poly(A) (259-260). This finding indicates that the ends of TERRA transcripts are 

not post-transcriptionally processed. TERRA sizes vary widely with 100nt-9000nt 

in mammals and about 380nt in yeast (258). 

 In humans, TERRA transcription is thought to be driven from promoter-

active CpG-islands present in the subtelomeric region, since their methylation 

state inversely correlates with TERRA abundance (262). TERRA transcription is 

also affected by other chromatin imprints like H3K9 and H4K20 trimethylation, 

H3K4 di/trimethylation, H3K79 dimethylation, and the acetylation state of the H3 

and H4 tails (reviewed in (261). 

 Interestingly, ScRap1, a telomere-associated protein, regulates TERRA 

synthesis and decay (reviewed in (261). These outcomes depend on the 

presence or absence of Y‘ elements, which are conserved sequences in the 

subtelomeric region (263). Interestingly, Y‘ telomeres do not contain 
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characteristic marks of heterochromatin like histone acetylation and high Sir3 

occupancy (264).  

In humans, TERRA is restricted to the nucleus (258, 260) and 

interestingly, only TERRA lacking poly(A) is detected associated with chromatin 

(reviewed in (261), suggesting that TERRA transcripts may have different 

functions. Finally, the non-sense-mediated RNA decay (NMD) machinery may 

play a role in TERRA removal from the telomere (258). 

 Arabidopsis thaliana also contains TERRA as well as TERRA antisense 

transcripts, ARRET (265). In this plant, TERRA and ARRET are not exclusive of 

telomeres, but also are transcribed from centromeres containing telomeric DNA 

and siRNAs derived from these transcripts depend on the RNA-dependent DNA 

methylation (RdDM) pathway for their generation (265).  

 Finally, TERRA has been proposed to regulate telomerase (260, 266). A 

fraction of human TERRA is associated with telomerase. In vitro experiments 

suggest that the 3‘ telomeric sequences of TERRA base pair with the 

complementary template region of TR. TERRA may also interact with TERT 

independently of TR (266). TERRA is not thought to act as a substrate of 

telomerase, but rather a competitive inhibitor for telomeric DNA. Further 

evidence for telomerase regulation by TERRA has been obtained in yeast rat-1 

mutants, in which TERRA levels increase and telomeres shorten (259). 
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The Flowering Plant Arabidopsis as a Model Organism for Telomere 

Biology 

Arabidopsis has emerged as the premiere model system for plant biology. 

It possesses a small sequenced genome (~125Mb), has a growth period of less 

than 6 weeks and it is genetically tractable, which allows for both crosses and 

transformations. Arabidopsis is also an excellent model for telomere biology due 

to its extraordinary tolerance to telomere dysfunction.  

Similar to vertebrates, telomerase expression is tightly regulated and 

correlates with cell proliferation in Arabidopsis.  Telomerase is active in highly 

dividing tissues such as flowers, seedlings or cell culture, and is not detected in 

leaves and stems (143).  tert mutants show progressive telomere loss (143, 

241), with the appearance of anaphase bridges in the sixth generation when 

telomeres reach ~1kb in length. Plants survive up to 5 more generations. In the 

ninth or tenth generation the plants arrest in a terminal vegetative state 

demonstrating Arabidopsis high tolerance to chromosome instability (241). 

Arabidopsis telomeres were the first telomeric sequence cloned and 

characterized from a multicellular organism (22). They are are short relative to 

many eukaryotic models, making the measurement of telomere length simple by 

Terminal Restriction Fragment (TRF) analysis (267). In addition, unique 

subtelomeric sequences are present on 8 out of 10 chromosome arms in 

Arabidopsis, allowing to follow the dynamics of individual chromosome arms and 

to characterize the nature of chromosome end fusions (268). 
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Dissertation Overview 

In this dissertation I present the biochemical characterization the 

Arabidopsis thaliana telomerase RNP. Chapters I and II describe the identification 

of three telomerase RNAs in Arabidopsis thaliana: TER1, TER2 and the 

processed form of TER2, termed TER2S. Like TER1 and TER2, TER2S levels 

peak in highly proliferative tissues, however the TER2S:TER2 ratio is higher in 

flowers than in cell culture, indicating that TER2 processing is regulated in 

different settings. 

 All three RNAs serve as templates for telomere repeat incorporation in 

vitro. However, TER1 is the primary template for telomere maintenance in vivo. 

Depletion of TER1, but not TER2, leads to progressive telomere shortening. 

Moreover, mutation of the templating domain in TER1 results in the 

incorporation of mutant telomere repeats on chromosome ends at a higher 

frequency than TER2 mutant repeats. TER2, by contrast, is a negative regulator 

of telomerase. Telomerase activity increases in ter2 mutants, while TER2 over-

expression reduces the TER1 templating function and results in shortened 

telomeres in vivo. TER1 TER2 and TER2S assemble into different RNP 

complexes with distinct protein composition.  

Chapters II, III and IV show a novel RNA binding activity for AtPOT1 

family proteins. In other organisms POT1 proteins bind ss telomeric DNA, 

whereas in Arabidopsis they have evolved to bind TER. POT1a, a positive 

regulator of telomerase function, associates with TER1 to form an enzymatically 
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active RNP. The Kd of the AtPOT1a-TER1 association is 2 X 10-7 M, which 

similar to the Kd of human POT1a for single-stranded DNA. In contrast, POT1b 

and KU, negative regulators of telomerase assemble with TER2.  

Chapter IV describes the structural and sequence requirements of the 

POT1a-TER1 association. I define a minimal POT1a binding region within the 

highly divergent TER1 5‘-end. Structurally, this region is characterized by a 6nt 

U-C rich internal loop flanked by a two base paired stems. Structures with similar 

characteristics were found in putative TER subunits from Arabidopsis close 

relatives. Also, I show that AtPO1 OB-folds act as nucleic acid recognition 

domains. TER1 binding is supported by the first OB-fold, although a more robust 

interaction is observed with the combination of both OB-folds. 

Chapter V shows the initial characterization of TER2 processing into 

TER2S. I provide evidence that TER2S is a bona fide product of TER2 self-

splicing. TER2 processing results in lower levels of telomerase activity in in vitro 

reconstituted RNP reactions. Notably, TER2s production does not require 

guanosine or Mg2+ cofactors, and thus the processing of TER2 is not mediated 

by a self-splice group I or II intron mechanism. 

Finally, in Chapter VI, I discuss the contribution of this study to 

understanding the mechanisms of telomerase regulation in other eukaryotes and 

propose future experiments that will provide new knowledge into the telomerase 

RNP regulation. 
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CHAPTER II 

DISSECTING THE ARABIDOPSIS TELOMERASE RNP: DUPLICATION OF 

TER AND A NEW RNA BINDING COMPONENT, POT1a 

 

Summary 

Telomerase is a ribonucleoprotein reverse transcriptase whose essential 

RNA subunit (TER) functions as a template for telomere repeat synthesis. Here 

we report the identification of two divergent TERs in the flowering plant 

Arabidopsis thaliana. Although both TER1 and TER2 serve as templates for 

telomerase in vitro, depletion of TER1, but not TER2, leads to decreased 

telomerase activity and progressive telomere shortening in vivo. Moreover, 

mutation of the templating domain in TER1 results in the incorporation of mutant 

telomere repeats on chromosome ends. Thus, TER1 provides the major 

template for telomerase in vivo. Unexpectedly, we found that POT1a binds 

TER1 with a Kd of 2 X 10-7 M and the two components assemble into an 

enzymatically active RNP in vivo. In contrast, TER1-POT1b and TER2-POT1a 

associations were not observed. In other organisms POT1 proteins bind 

telomeric DNA and provide chromosome end protection. Thus, we propose that 

duplication of TER and POT1 in Arabidopsis fueled the evolution of novel 

protein-nucleic acid interactions and the migration of POT1 from the telomere to 

the telomerase RNP. 
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Introduction 

 The telomerase reverse transcriptase is responsible for synthesizing and 

maintaining tracts of telomeric DNA on chromosome ends. A ribonucleoprotein 

(RNP), telomerase contains two essential components: a catalytic reverse 

transcriptase subunit (TERT), and an RNA subunit (TER) that serves as a 

template for telomeric DNA addition. Telomerase activity is primarily confined to 

cells with extended proliferation potential (e.g. the germline and stem cell 

populations)(269), and in settings defined by restricted proliferation programs, 

the enzyme is inactive. The absence of telomerase leads to progressive 

telomere loss, ultimately eliciting a DNA damage response that culminates in cell 

cycle arrest, genome instability and in humans, replicative cell senescence and 

apoptosis (270).  

Telomerase access to the chromosome terminus is controlled in cis by 

telomere binding proteins. One key telomere protein is Protection Of Telomeres 

(POT1). POT1 binds single-strand G-rich telomeric DNA via 

oligonucleotide/oligosaccharide binding folds (OB-fold) (29, 122, 271) that 

evolved to specifically exclude RNA (272).  POT1 is implicated in many facets of 

telomere biology, including control of telomere replication (both positive and 

negative regulation of telomerase), suppression of the DNA damage response, 

and protection of chromosome ends from inappropriate recombination, nuclease 

attack and end-to-end fusion (108, 273). Notably, Arabidopsis thaliana encodes 

two highly divergent POT1-like paralogs, AtPOT1a and AtPOT1b (129), neither 
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of which binds to telomeric DNA in vitro (130, 274). AtPOT1a is not required for 

chromosome end protection, but rather serves as a positive regulator of 

telomerase activity that physically associates with the RNP in vivo (130).  

While TERT can readily be identified by its conserved reverse 

transcriptase motifs, TER has diverged dramatically and exhibits little sequence 

similarity and vastly different sizes, ranging from 150nt in Tetrahymena (14) to 

>1200nt in yeast (170, 253). Phylogenetic and mutational analyses reveal 

functionally conserved elements within TER including a single-stranded 

templating domain typically corresponding to one and a half telomeric repeats 

flanked by a 5‘ boundary element and a 3‘ pseudoknot domain (133, 174, 275-

276). Vertebrate TERs harbor a box H/ACA snoRNA motif, which binds dyskerin 

and is required for RNP maturation and nuclear localization (277).  

  Telomerase activity can be reconstituted in vitro (278-280) with TERT and 

TER, although additional proteins assemble with the core telomerase RNP in 

vivo. For example, Est1 is a non-catalytic component of the yeast telomerase 

that facilitates enzyme recruitment/activation at chromosome ends (98, 281). 

Relocation of the Est1 binding site to a different position in TER does not 

diminish telomerase activity in vivo (282), indicating that TER is a modular, 

highly flexible scaffold for telomerase proteins. The Ku70/80 heterodimer also 

binds TER in budding yeast and vertebrates (283-284), but not in fission yeast 

(285). Ku promotes telomerase recruitment to non-telomeric DNA for de novo 
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telomere formation in S. cerevisiae (286); its role in vertebrate telomere 

maintenance is unknown.  

We report the discovery of two distinct TERs in A. thaliana, the first TERs 

identified in the plant kingdom. Both TER1 and TER2 function as templates for 

TERT reverse transcription in vitro, but only TER1 plays a significant role in 

telomere maintenance in vivo. Moreover, we show that TER1, but not TER2, 

specifically binds POT1a in vitro and the two components assemble into an 

enzymatically active RNP in vivo. These findings underscore the evolution of 

telomerase and telomere proteins in Arabidopsis and argue that the process is 

driven by gene duplication. 

 

Results 

Identification of two TERs in Arabidopsis 

We took a biochemical approach to identify the Arabidopsis TER. 

Telomerase was partially purified from cell culture nuclear extracts by three 

sequential chromatographic steps (Fig. 8). Enzyme activity was monitored after 

each step by the telomere repeat amplification protocol (TRAP). Size exclusion 

chromatography revealed that the peak of telomerase activity correlated with a 

complex of ~670kDa, similar to the human telomerase RNP (287). Total RNA 

was extracted from heparin column peak activity fractions, 3‘ end radiolabeled 

and separated on a 6% acrylamide gel. Numerous RNAs were detected (Fig. 9). 

The gel was divided into slices, RNA was extracted and cDNA was generated by 
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reverse transcription using random pentadecamers. Sequencing reactions were 

performed with primers corresponding to the seven permutations of the 

Arabidopsis telomere repeat sequence (T3AG3)n. BLAST searches of resulting 

sequences retrieved a hit termed TER1, which maps to chromosome 1 in a 

region overlapping the 5‘ UTR and the first 2 exons and introns of an unknown 

protein coding gene, AT1G71310. TER1 encodes a putative template sequence 

(5‘-CTAAACCCTA-3‘) corresponding to 1.5 copies of Arabidopsis telomere 

repeat (Fig. 10A). 

 Unexpectedly, a second BLAST hit, termed TER2, was also 

uncovered (Fig. 10A). TER2 maps to chromosome 5, in the opposite direction 

and partially overlaps the 5‘ UTR of another unknown protein coding gene, 

AT5G24670. TER2 also contains 1.5 copies of the Arabidopsis telomere repeat.  

RT-PCR confirmed that both TER1 and TER2 RNAs were enriched in purified 

telomerase fractions, in contrast to a U6 snRNA control (Fig. 9C and 9D). 5‘ and 

3‘ mapping experiments revealed that TER1 encodes a 748nt RNA and TER2, a 

784nt RNA (Fig. 10A, 10B and Fig. 11). Unlike human (288) and yeast TER 

(228), we found no evidence of a poly-A+ tail for either Arabidopsis RNA.  
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Figure 8. Purification of Arabidopsis telomerase. The purification scheme is shown. 

Telomerase activity was followed by TRAP after each purification step. The Q-

Sepharose column was eluted using a 100mM-1.5M NaCl pH 8.4 step gradient. The 

Heparin column was eluted using a 100mM-1M NaCl pH8,0 continuous gradient. The 

Superose 6 size exclusion column was eluted with 20 ml of 100mM NaCl pH 8.0 and 

calibrated with size markers run under the same conditions. BSA (67kDa), Aldolase 

(158kDa), Ferritin (440kDa) and Thyroglobulin (669kDa) were used as markers. 

Telomerase activity was present in fractions corresponding to ~670 kDa. 
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Figure 9. Purification of putative TERs from partially purified telomerase complexes. 
(A) Strategy for identification of TERs. cDNA from the sub-pool of RNAs isolated from each 

gel slice was sequenced using seven different permutations of the predicted Arabidopsis 

RNA template and the resulting sequences were used in a BLASTN search against the 

nucleotide collection database (NCBI) and the Arabidopsis transcript database (TAIR8 –

introns +UTRs). The criterion to accept the BLAST hits as TER Candidates was the 

presence of the Arabidopsis telomeric sequence in the sequenced region. Most hits 

corresponded to rRNA. Only two RNAs were found to include the Arabidopsis telomeric 

sequence. (B) Denaturing 6% PAGE gel showing PCP labeled RNA from the peak of 

activity fractions of the heparin column. (C) RT-PCR results from cell culture nuclear 

extracts. cDNA was generated with random pentadecamers. Reactions with primers specific 

for TER1 or TER2 or both are indicated. Lane 3, top band is derived from TER2 and bottom 

band from TER1. Lane 4, U6 snRNA amplified as a control. Lane 5, primers targeting the 

TER conserved region were used for the (-) RT control. (D) RT-PCR results from 

telomerase-positive fractions obtained from two steps of ion-exchange chromatography (see 

Materials and Methods). Lanes 3-5, same as in C, except a different set of TER1 and TER2 

specific primers was used. 
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Figure 10. Identification of two TERs in Arabidopsis. (A) Diagram of TER1 and 

TER2. Templates, unique and conserved domains are shown. The region in TER1 

targeted for antisense and the T-DNA insertion in ter2-1 are indicated. Northern blot (B) 

and primer extension analysis (C) of total RNA from A. thaliana cell culture are shown. 

The probes for northern blotting and primer extension were directed at unique regions in 

the 5‘ and 3‘ ends of TER1, respectively. Closed triangles, TER1 transcript; open 

triangle, transcript that appears to be derived from AT1G71310, the protein encoding 

gene into which TER1 is embedded. In vitro transcribed TER1 served as a control for B 

and C. (D) RT-PCR analysis of total RNA from cell culture. cDNA was generated using 

random pentadecamers. Odd lanes show minus reverse transcriptase controls U6 

snRNA was amplified as a control (lanes 5,6). (E) Quantitative RT-PCR results for 

TER1, TER2, and TERT mRNA. RNA levels were normalized to U6 snRNA and to the 

efficiency of each primer pair to allow comparison. 
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TER1 and TER2 contain a 220nt stretch of ~90% identity (Fig. 10A), but 

in TER2 this segment is divided into two regions (R1 and R2) separated by an 

unrelated segment of 529nt. The 5‘ region (R1) in TER2, which corresponds to 

114nt and includes the telomere sequence, shares 85% identity with TER1. The 

downstream 75nt block (R2) exhibits 96% identity with TER1. The telomere 

sequence is located in different positions in the two RNAs. The telomere 

sequence is located in different positions in the two RNAs. In TER1 it is 

embedded in the RNA (241nt from the 5‘ end) similar to the human TER, while in 

TER2 it lies at the extreme 5‘ end of the RNA (8nt from the terminus) as in 

mouse TER (172) (Fig. 10A). Putative H/ACA boxes are present in the 3‘ ends of 

both TER1 and TER2, consistent with our previous finding that dyskerin is a 

component of Arabidopsis telomerase (242). 

Northern blotting of total cell culture RNA revealed ~750 nt transcript 

corresponding to TER1 (Fig. 10B).  Primer extension confirmed the presence of 

a TER1 transcript (Fig. 10C). Attempts to detect TER2 by Northern blotting or 

primer extension using probes that target the conserved region in the two RNAs 

or the unique region in TER2 were unsuccessful, likely due to the low 

abundance of this RNA. As an alternative approach, end-point RT-PCR was 

employed. Both TER1 and TER2 were detected by this method (Fig. 10D). 

Quantification by real time RT-PCR showed that like TERT (34), the abundance 

of TER1 and TER2 peak in cells with high telomerase activity (e.g. flowers and 

cell culture) (Fig. 10E). However, TER1 levels were consistently higher than 
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TER2. In flowers, TER1 abundance was 10-fold higher than TER2 and in cell 

culture the difference was 20-fold (Fig. 10E).  

 

Both TER1 and TER2 serve as templates for telomerase in vitro 

To test whether TER1 or TER2 form a functional telomerase RNP with 

TERT in vitro, T7-tagged TERT was expressed in rabbit reticulocyte lysate 

(RRL) and incubated with in vitro transcribed TER1 or TER2. RNP complexes 

were immunoprecipitated (IP) and telomerase activity was monitored by TRAP 

(Fig. 12A). Telomerase activity was dependent on the addition of TER1 or TER2 

(Fig. 12A and 11B). Activity was not detected with an antisense version of TER1 

or an unrelated RNA (At-oRNA-415) containing a 10nt telomeric sequence (Fig. 

12B). In addition, telomerase activity was not observed in the absence of TERT 

or a boiled sample control (Fig. 12B).  We conclude that both TER1 and TER2 

assemble into enzymatically active telomerase RNPs in vitro.  

Deletional mutagenesis was used to establish the minimal TER1 and 

TER2 sequences required for telomerase activity. For TER1, telomerase activity 

was detected from in vitro assembled RNPs containing a fragment of 534nt 

(TER1-A, Fig. 12C and E) or 478nt (TER1-B, Fig. 12C and E). Notably, the 

220nt conserved region of TER1 was sufficient to reconstitute telomerase 

activity (TER1-C, Fig. 12C and E). A minimal TER1 of 150nt, roughly 

corresponding to R1 in TER2 produced activity comparable to full length TER1 
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(TER1-D, Fig. 12C and E). As expected, no activity was recovered when a 5nt 

deletion in the TER1 template region was introduced (TER1-E, Fig. 12C and E).   

Fusion of the two conserved segments in TER2 (R1 and R2) to generate a 

contiguous 220nt segment (TER2-B), reconstituted telomerase activity to the 

level of full length TER2 (Fig. 12D and F). As with TER1, the R1 segment in 

TER2 was sufficient to fully reconstitute telomerase activity (TER2-D, Fig. 12D 

and F). However, telomerase activity was not observed when TER2 R1 plus 

129nt of downstream sequence was expressed (TER2-C, Fig. 12D and F).  This 

additional RNA segment may interfere with the folding of functional domains 

within TER2 R1. Thus, the core elements required for TER1 and TER2 function 

reside within a 150nt region conserved in both RNAs.  
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Figure 11. Strategy for 5’ and 3’ end mapping of TER1 and TER2. The approach is 

described in detail in the Supplemental Materials and Methods section. Briefly, a 3‘ 

unique DNA linker containing a 5‘-5‘ linked adenylate (rApp) and a 3‘ dideoxynucleotide 

(ddCTP) was ligated by T4 RNA ligase to RNA extracted from the peak activity fractions 

from the heparin column.  cDNA was generated and circularized using ssDNA ligase in 

the presence of ATP. PCR was carried out using oppositely oriented primers. The 

product was cloned and sequenced. The resulting sequenced region is shown and 

includes the sequence of the linker. 
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Figure 12. TER1 and TER2 function as templates for TERT in vitro. (A) Telomerase 

reconstitution with recombinant TERT and TER1. Top, TRAP results.  A. thaliana cell 

culture, positive control; buffer, negative control. Bottom, western blot analysis to 

monitor TERT expression. (B) TRAP results with recombinant TERT, TER1 or TER2. 

Controls include treatment with RNase A (RA) or RNase A plus RNase Inhibitors (RI); 

antisense TER1 (TER1AS); unrelated Arabidopsis transcript containing an 10nt telomere 

sequence (415RNA); boiled reconstituted RNPs and total protein extract from cell 

culture. (C, D) Diagram of TER1 and TER2 deletion mutants. White block in the 

template indicates a 5nt deletion. Nucleotide positions for TER1 mapping experiments 

(Fig. 14D) are indicated. (E, F) TRAP results for reconstitution reactions with truncated 

TER1 and TER2 constructs.  
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TER1 is the template for telomere maintenance in vivo 

 A T-DNA insertion line (ter1-1) is available for TER1, but it is not a null 

allele as transcripts continue to be produced from this locus. As an alternative 

strategy to study TER1 function in vivo, we expressed a TER1 antisense RNA 

from the constitutive KU70 promoter (35) in wild type plants, targeting a unique 

278nt region at the 3‘ end of TER1 (TER1AS) (Fig. 10A). Relative to wild type 

and untransformed siblings, TER1 was reduced 10-fold in first generation (T1) 

KU::TER1AS transformants and ~16-fold in the second generation (T2) (Fig. 

3A). TER2 levels were unaffected (Fig. 13A).   

Quantitative TRAP (Q-TRAP) showed that telomerase activity decreased 

8-fold in T1 and 18-fold in T2 plants (Fig. 14B), paralleling the reduction in 

TER1. Terminal restriction fragment (TRF) analysis was performed to examine 

telomere length.  As expected, plants transformed with the KU promoter alone or 

a 35S::GFP construct showed no defects in telomere maintenance (Fig. 13B). In 

contrast, telomere tracts were more heterogeneous and shorter in T1 

KU::TER1AS mutants versus wild type siblings (Fig. 14C and 13C). T2 

KU::TER1AS plants showed preferential loss of longer telomere tracts compared 

to T1 transformants, and increased length homogeneity (Fig. 14C and 13C). 

This result reflects reduced telomerase activity, since telomerase is known to 

preferentially extend the shortest telomeres in the population (289). Telomeres 

below 1kb are subject to end-to-end fusion in Arabidopsis (290). None of the 

telomeres in T2 TER1AS mutants fell below this critical threshold, and therefore 
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it was not surprising that no defects in plant morphology, fertility or genome 

instability were observed. 

 

 

Figure 13. TER1 knock-down lines. (A) TER2 levels in TER1AS plants. TER2 

measured by quantitative RT-PCR was normalized to β-actin and to TER2 in wild type 

plants. The wild type group included 15 plants. The wild type group included 15 plants.  

There were 5 plants in each TER1AS unselected (U) T1 and T2 groups and 10 plants in 

each TER1AS herbicide selected  (S) T1 and T2 groups. (B) Telomere length in 

antisense controls plants. TRF analysis of wild type (WT) plants transformed with GFP 

under the control of the 35S promoter (35S::GFP) and plants transformed with the KU 

promoter alone (KU::). Telomere length falls within the wild type range.  (C-D) Graphic 

depiction of telomere length in TER1AS (C) and TER1ASFL (D) T1 and T2 populations.  

Bars indicate range of telomere lengths from TRF analysis. 
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Figure 14. Telomere maintenance in Arabidopsis is dependent on TER1, but not 
TER2. (A) Real time RT-PCR results for first (T1) and second (T2) generation TER1AS 

and TER1ASFL transformants. Results for control plants not selected on kanamycin (Uns) 

are included. Signals were normalized to β-actin and to wild type (WT) TER1 levels. (B) 

Q-TRAP results for TER1ASFL and TER1AS. Values are normalized to telomerase activity 

from WT plants. (C, D) TRF analysis. In C, the T1 TER1AS plant selected for kanamycin 

resistance (S) is the parent of the T2 progeny. Molecular weight markers in kbp are 

shown. 
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Unlike TER1, there are several T-DNA insertions available for TER2. In 

the ter2-1 line (SAIL_556_A04), the T-DNA insertion lies directly within the 

templating domain of TER2 (Fig. 10A). No TER2 transcript is detected in plants 

homozygous for ter2-1. In striking contrast to TER1AS mutants, we found no 

defects in telomere maintenance in ter2-1 (Fig. 14D).  Simultaneous reduction of 

TER1 and TER2 was achieved by expressing an antisense RNA targeting full-

length TER1 (35S::TER1ASFL) in a ter2-1 background. In this setting, TER2 was 

undetected and TER1 was reduced 3-fold in T1 plants and 24-fold in T2 (Fig. 

14A). Q-TRAP showed that telomerase activity decreased ~3-fold in both 

generations (Fig. 14B). T1 mutants displayed highly heterogeneous telomeres 

ranging from 1-6 kb (Fig. 14D and 13D). Since telomere shortening was not 

observed in ter2-1 mutants and the reduction in telomerase activity and telomere 

length were similar in plants deficient in TER1 or both TER1/TER2, we conclude 

that TER1, not TER2, is required for telomere maintenance. 

To examine the templating function of TER1 in vivo, site-directed 

mutagenesis was used to mutate the 5‘-CUAAACCCUA-3‘ sequence in TER1 to 

5‘-CUAAAGGCUA-3‘ (TER1CC). In vitro reconstitution reactions revealed that 

mutant RNA assembled into an active RNP and synthesized TTTAGCC repeats 

(Fig. 15A and 16A).  The TER1CC construct was expressed in wild type 

Arabidopsis under the control of the powerful Cauliflower Mosaic Virus (CaMV) 

35S promoter. As expected, TRAP products were generated when the wild type 

reverse primer was used (Fig. 16B, left panel and 15A). Telomerase activity was 
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also detected in extracts from 35S::TER1CC transformants, but not from wild 

type when the TER1CC reverse primer was employed (Fig. 16B, right panel and 

15A).  

 

 

 

 

Figure 15. Experimental scheme to test TER1 telomere repeat incorporation in 

vivo. (A) Mutation of the telomere sequence in TER1. Wild type plants were 

transformed with TER1CC and were propagated for two generations before analysis. 

TRAP was performed with a reverse primer complementary to the mutant repeats (blue 

arrows). (B) Graphic depiction of PETRA assay (290). (B). Sequence information of 

PETRA products. 
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Figure 16. TER1 directs telomere repeat incorporation in vivo. (A) In vitro 

reconstitution of telomerase with TER1CC. TRAP was performed with a reverse primer 

complementary to the mutant repeats. (B) In vivo reconstitution of telomerase with 

TER1CC. Wild type (WT) plants transformed with TER1CC were propagated for two 

generations and TRAP was performed with a reverse primer directed at WT (black 

arrow) or mutant repeats (blue arrow). (C, D) Telomere amplification by PETRA. 

Results for two WT plants and two third generation TER1CC transformants with either 

WT (black) or mutant (blue) PETRA primers. (E) Representative PETRA product 

sequences depicting single or multiple TTTAGCC (blue) repeats as well as 

misincorporation events (red) are shown. 
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Primer Extension Telomere Repeat Amplification (PETRA) (Fig. 15B and 

ref. (268) was then employed to ask if TER1 specifies the telomere repeat 

sequence on chromosome ends. Using a subtelomeric primer directed at the left 

arm of chromosome 1, PETRA products were obtained from wild type plants and 

transformants expressing 35S::TER1CC (Fig. 16C). More importantly, reactions 

with PETRA-TCC generated products with 35S::TER1CC, but not wild type plants 

(Fig. 16D).  

PETRA products generated with the wild type PETRA-T primer were 

cloned from 35S::TER1CC transformants. Out of 150 clones, 85 (57%) contained 

perfect arrays of TTTAGGG repeats, consistent with the presence of wild type 

TER1 in these plants (Fig. 16E). Strikingly, 65 (43%) clones harbored one or 

more TTTAGCC repeats and in 49 cases, these repeats were characterized by 

the misincorporation of additional C or G residues (Fig. 16E), indicating that the 

TER1CC mutation decreased the fidelity of telomerase in vivo. Altogether, our 

findings indicate that TER1 assembles into an enzymatically active RNP and 

furthermore that TER1 determines the sequence of telomeres in vivo. The 

biological role of TER2 is currently under investigation and thus the remainder of 

this study focuses on analysis of TER1. 
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TER1 associates with POT1a in vitro 

 To further investigate the composition of Arabidopsis telomerase, we 

examined potential protein binding partners for TER1. T7-tagged KU70 or KU80 

was co-expressed with TER1 in RRL (Fig. 17A). IP was conducted with anti-T7 

agarose beads, the bound RNA was extracted, cDNA was generated using 

random pentadecamers and PCR was performed with primers specific for TER1. 

Only a residual amount of TER1 was detected in the KU70 or KU80 IP that was 

just above background with unprogrammed RRL or the IP with an unrelated 

protein, TRFL4 (Fig. 17A). 

We next asked whether POT1a or POT1b interact with TER1. Tagged 

POT1a or POT1b was co-expressed with TER1 in RRL (Fig. 17A), followed by 

IP and PCR as discussed above.  TER1 was enriched in the POT1a IP, but not 

in the IP with POT1b or TRFL4 (Fig. 17A).  Reactions with antisense TER1 or 

wild type TER2 failed to show an interaction with POT1a (Fig. 17A), indicating 

that TER1-POT1a binding is specific. Gel shift assays produced results 

consistent with the IP: TER1 formed an RNP complex with POT1a, but not 

POT1b (Fig. 17B). Competition experiments confirmed the specificity of TER1-

POT1a interaction and furthermore demonstrated that POT1a does not 

associate with TER2 in vitro (Fig. 17B).   

Deletional mutagenesis was used to map the POT1a-TER1 interface in 

vitro. A combination of IP and filter binding assays were performed with 

recombinant POT1a and 5‘ end labeled TER1 to identify the RNA binding site on 
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POT1a (Fig. 18A). As expected, TER1 binding was dependent on the OB-folds 

and not the C-terminal domain of POT1a. OB-1 was sufficient for TER1 binding, 

but a more robust interaction was observed with constructs containing both OB-

1 and OB-2 (Fig. 18A). Filter binding was performed with truncated TER1 

constructs to define the POT1a binding site (Fig 18B). POT1a bound within a 5‘ 

242 nt segment unique to TER1 that lies upstream of the telomere template 

sequence (Fig. 11C and 18B). 

    Finally, filter binding was used to determine the affinity of POT1a for 

TER1 in vitro (Fig. 18C). In this experiment, recombinant POT1a was incubated 

with decreasing concentrations of TER1 transcribed in vitro with a radiolabeled 

tracer. The fractions of bound and free RNA were determined to calculate the Kd 

for the POT1a-TER1 interaction (Fig. 18C). Notably, the dissociation constant for 

AtPOT1a-TER1 (Kd= 2.1 X 10-7 M) is similar to value obtained for purified 

mammalian POT1 with single-strand telomeric DNA (10-7-10-8 M) (121, 291). 
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Figure 17. TER1 protein interactions in vitro. (A) In vitro TER1 binding assays with 

recombinant POT1a, POT1b and KU (top). T7-tagged proteins were co-expressed with 

TER1 and RT-PCR was carried out after immunoprecipitation (IP). TRFL4, a double-

strand telomeric DNA binding protein (292) and TER1AS served as controls. (B) Results 

from electrophoretic mobility shift assays.  
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Figure 18. Characterization of the TER1-protein interaction in vitro. (A) Mapping 

the TER1 binding site on POT1a. Top, IP results with POT1a truncation mutants; 

middle, filter binding data; bottom, quantitation of filter binding data. FL, full length; OB-

1, first OB-fold, OB-1+2, first and second OB-folds; C-ter, C terminus; B, bound; U, 

unbound. (B) Mapping the POT1a binding site on TER1. Top, filter binding data. TER1 

truncations (in nts) are indicated on right; bottom, quantitation of filter binding data. (C) 

Binding isotherm for the POT1a-TER interaction. Values normalized against nonspecific 

binding and expressed in arbitrary phosphorimager units. Data were plotted against 

TER1 concentration (nM) and the Kd value was calculated.    
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TER1 and POT1a assemble into an enzymatically active telomerase RNP in vivo 

We employed IP assays to investigate whether TER1 and POT1a 

assemble into an RNP in vivo. As expected, telomerase activity was recovered 

from the α-TERT and α-dyskerin IP samples, but not the pre-immune serum or 

α-histone H3 antibody control (Fig. 19A, top). Western blot analysis confirmed 

that target proteins were enriched in their corresponding precipitates (Fig. 19A, 

bottom). Attempts to quantify telomerase activity by Q-TRAP were unsuccessful, 

likely due to interference by the protein A agarose beads in the fluorescence 

intensity reading. TER1 was enriched in the α-TERT and α-dyskerin precipitates, 

but not α-histone H3 (Fig. 19B and 20C). The RNA-protein interaction was 

specific; U6 snRNA was not detected in any of the IPs (Fig. 20C). A low level of 

telomerase activity was observed in α-KU70 and α-POT1b pull-downs (Fig. 

19A), and consistent with our in vitro binding results, only a background level of 

TER1 was observed (Fig. 19B and 20C). In contrast, abundant telomerase 

activity and TER1 was detected in the α-POT1a IP (Fig. 19A-B and 20C). 

Altogether, these data indicate that that TER1 assembles with TERT, dyskerin 

and POT1a in an enzymatically active RNP in vivo. 
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Figure 19. TER1 interactions in vivo. Immunoprecipitation was carried out with 

Arabidopsis cell culture extracts using the indicated antibodies. Pre-immune serum, and 

anti-histone H3 antibodies were used as negative controls. (A) Top, TRAP results with 

unbound (U) and bound (B) IP material. Bottom, Western blot analysis of IP fractions. 

(B) Quantitative RT-PCR results following IP. RNA levels were normalized to the primer 

efficiency, the levels of U6 snRNA, the pre-immune control and the antibody efficiency.  
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Figure 20. TER1-protein interactions. (A-B) RRL expression of 35S labeled protein. 
(A) Full length proteins. (B) POT1a domains. FL, full length; OB-1, first OB-fold; OB-

1+2, first and second OB-folds; C-ter, Carboxyl terminus. (C) IP was carried out with 

Arabidopsis cell culture extracts using the indicated antibodies. Pre-immune serum and 

anti-histone H3 antibodies were used as controls. End point RT-PCR from 

immunoprecipitated material. (   ) Amplification of U6; (   ) Primer dimmers. 
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Discussion 

Arabidopsis encodes two TERs, but only TER1 is required for telomere 

maintenance in vivo 

Of the more than 60 organisms, including yeast, ciliates and vertebrates, 

where telomerase RNA subunits have been reported thus far, only Arabidopsis 

harbors two TER molecules encoded by distinct genetic loci. Both Arabidopsis 

TERs are enriched in purified telomerase fractions; both associate with TERT; 

and both serve as templates for telomere repeat synthesis in vitro. Indeed a 

150nt ―mini-T‖ constituting a region conserved in both TER1 and TER2 (R1) is 

sufficient to promote telomerase activity in vitro. Strikingly, this catalytic core is 

approximately the same size as Tetrahymena TER (14) and the minimal TERs 

defined for human (210nt) (293) and S. cerevisiae (170nt) (294). 

Despite these similarities, the Arabidopsis TERs differ dramatically in 

overall nucleotide sequence, protein binding partners and roles in vivo. TER1 

and TER2 are so divergent in regions flanking the conserved catalytic core that 

they cannot be reliably aligned. Moreover, the telomere template is located in 

different positions relative to the 5‘ terminus. Experiments with circularly 

permutated Tetrahymena TER show that the template along with a few adjacent 

3‘ residues can be moved to different sites without affecting enzyme properties 

in vitro (295). Thus, the different location of the templating domains in TER1 and 

TER2 may have little impact on their function in vivo.  On the other hand, the 

unique sequences in TER1 and TER2 support distinct protein binding partners. 
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POT1a, but not POT1b, specifically associates with TER1 and not TER2. Thus, 

the Arabidopsis TERs, like their counterparts in other eukaryotes, are modular 

and flexible frameworks for protein interactions.  Finally, only TER1 functions as 

a canonical telomerase RNA subunit to promote telomere maintenance in vivo. 

 

POT1a is a novel TER1 binding protein 

Identification of the templating RNA for Arabidopsis telomerase provided 

insight into the protein composition of this RNP. We found that TER1 associates 

with both TERT and dyskerin in vivo, suggesting that like human telomerase 

(29), the core telomerase RNP in Arabidopsis is comprised of TERT, TER and 

dyskerin. We did not detect a robust interaction between Ku and TER1. This 

observation is consistent with a role for TER1 in promoting telomere replication, 

since Arabidopsis Ku is a potent negative regulator of telomere length (296). 

Our work also sheds new light on AtPOT1a, a hitherto enigmatic 

telomeric protein. Repeated attempts to detect telomeric DNA binding by POT1 

proteins from Arabidopsis and other related plant species have been 

unsuccessful (130-131), indicating that POT1 likely evolved to bind a different 

substrate than telomeric DNA in higher plants. Supporting this prediction, 

AtPOT1a is not required for chromosome end protection and instead physically 

interacts with telomerase, acting in the same genetic pathway as TERT (129-

130). We show that POT1a associates with telomerase via a direct interaction 

with TER1.  
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The migration of POT1 from the telomere to telomerase appears to be a 

relatively recent event. POT1 proteins from algae, moss, maize and Asparagales 

bind telomeric DNA in vitro (132, 274). Moreover, moss POT1, like its 

counterparts in yeast and vertebrates, is required for chromosome end 

protection (274). Our data suggest that the first OB-fold in AtPOT1a provides the 

major contacts for TER1 recognition. Similarly, the crystal structure of human 

POT1 reveals several residues in OB-1 that lie in close proximity to telomeric 

DNA (29). One of these, F62, plays a critical role in distinguishing DNA from 

RNA binding (272). Intriguingly, the corresponding residue is conserved in 

AtPOT1a, implying that the substrate for POT1a is not simply telomeric RNA, a 

conclusion supported by our binding studies which show POT1a recognizes a 

unique region of TER1 upstream of the templating domain. Finally, the Kd we 

obtained for the AtPOT1a-TER1 interaction is similar to the dissociation constant 

of purified mammalian POT1 with single-strand telomeric DNA (120-121). 

Altogether these data suggest that the switch from telomeric DNA to TER may 

reflect subtle remodeling of the nucleic acid binding pocket in POT1, and involve 

co-evolution of POT1a with TER1. 

 

Duplication of telomerase subunits  

Duplication of telomerase components has driven diversification of 

function in other eukaryotes. An instructive example is found in the ciliate 

Euplotes, which encodes three differentially expressed TERT proteins (227). 
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These TERTs assemble with a single TER into distinct RNPs that are postulated 

to promote a switch in telomerase specificity as the enzyme transitions from de 

novo telomere formation to maintenance of pre-existing telomeric DNA tracts. 

The duplication of TER in Arabidopsis has likewise led to diversification in 

function, although the specific role of TER2 is not yet understood. POT1 proteins 

are also duplicated in Arabidopsis and we have now shown that one of these 

duplicates, POT1a, is associated with the telomerase RNP through interaction 

with TER1. Altogether, our data indicate that gene duplication has provided the 

necessary components for assembly of distinct RNPs in Arabidopsis, potentially 

fueling the emergence of novel regulatory mechanisms. 

 

Materials and Methods 

Purification of telomerase 

Arabidopsis suspension culture cells were maintained as described 

previously (297). Telomerase was purified from Arabidopsis cell culture nuclear 

extract. Briefly, cells were collected from 4.5 L of cell culture and ~320g of dry 

tissue were ground in liquid nitrogen. The resulting powder was resuspended in 

nuclei isolation buffer: 50mM Tris HCl pH 8.0, 5mM EDTA, 10mM KCl, 250mM 

sucrose, 1.5mM MgCl2, 0.3% Triton X-100, 1mM DTT, 1mM spermine, 1 mM 

spermidine, 10mM ribonucleoside vanadyl complex, 1X complete protease 

inhibitors (Roche), 0.4mM Pefablock SC Plus (Roche) and spun at 4000xg for 

20 min. The pellet was resuspended in nuclei isolation buffer containing 1% 
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Triton X-100 and spun at 2000xg for 1 min and then at 4000xg for 1 min. The 

pellet was resuspended in nuclei extraction buffer: 20mM Hepes pH 8.0, 1.5mM 

MgCl2, 0.2mM EDTA, 300mM NaCl, 10% glycerol, 1% triton X-100, 0.1% NP40, 

5mM DTT, 10mM ribonucleoside vanadyl complex, 1X complete protease 

inhibitors (Roche), 0.4mM Pefablock SC Plus (Roche), incubated with rotation at 

4°C for 30 min and spun for 15 min at 14000xg at 4°C. The supernatant was 

collected, loaded into a 10 ml Q-sepharose column (Amersham Pharmacia) and 

eluted using a 100mM-1M NaCl pH 8,4 step gradient at 2ml/min. The fractions 

were collected and tested for telomerase activity by TRAP. Fractions with peak 

of activity were dialyzed against 100mM NaCl, loaded in a 5 ml Heparin Agarose 

column (Amersham Pharmacia) and eluted using a 100mM-1M NaCl pH 8,0 

gradient at 2 ml/min. Fractions were collected and tested for telomerase activity 

by TRAP. Fractions corresponding to the peak of telomerase activity were 

pooled, concentrated to 500µl and loaded onto a Superose 6® size exclusion 

column (Amersham Pharmacia) which was calibrated with size markers run 

under the same conditions (20 ml 100mM NaCl pH 8,0 elution). Molecular 

weight markers were run under the same conditions: BSA (67kDa), Aldolase 

(158kDa), Ferritin (440kDa) and Tyroglobulin (669kDa). 

 

RNA isolation 

RNA was extracted from heparin column fractions with peak activity using 

a buffer containing 50mM Tris HCl pH 9.0, 100mM NaCl, 2% SDS, 10mM EDTA 
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and 20mM β-Mercaptoethanol and standard acid phenol:chloroform extraction 

was performed. Samples were precipitated at -80°C in ethanol, sodium acetate 

and glycogen and spun at 14000xg for 30 min at 4°C. The pellet was washed 

with cold 70% ethanol, air dried at room temperature and resuspended in Tris-

EDTA buffer pH8.0. RNA was 3‘ end labeled with Cytidine-3',5' - bis 

(phosphate), [5'-32P] (Molecular Probes) in a standard overnight T4 RNA ligation 

reaction and resolved in a 6% acrylamide gel. The area of the gel was divided in 

12 slices based on the PCP-labeled RNA pattern. RNA was eluted from each 

band and RT-PCR was performed using penta-decamers for first strand 

synthesis using SuperScript III® reverse transcriptase (Invitrogen). The cDNA 

was sequenced using seven different primers corresponding to the seven 

possible permutations of the Arabidopsis telomeric repeat. One sequence was 

obtained and was used in a BLASTN search against the nucleotide collection 

database (NCBI) and the Arabidopsis transcript database (TAIR8 –introns + 

UTRs) (Fig. S2). 

 

RNA 5’ and 3’ mapping 

To map 5‘ and 3‘ ends of TER1 and TER2, a unique DNA linker (miRNA 

linker-1®, IDT) containing a 5‘-5‘ linked adenylate (rApp) to activate ligation and 

a 3‘ dideoxynucleotide (ddCTP) to prevent ligation to the 3‘ end was ligated onto 

the 3‘ end of total RNA extracted from the peak activity fractions from the 

heparin column using T4 RNA ligase (Epicentre) in the absence of ATP (Fig. 
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S3). The reaction was incubated overnight at 16°C. After enzyme inactivation, 

the reaction was purified by gel filtration to reduce non-ligated linker 

contamination. cDNA was synthesized using an oligonucleotide complementary 

to the 3‘-end linker and then circularized using CircLigase® (Epicentre) following 

the manufacturer‘s instructions. PCR was performed using the primers 

TER1#301fwd: 5‘-ACAGAGAACGATGTTCCAACT-3‘ and TER1 template rev: 

5‘-CTCC TTGAGAATCTCAGCGAGT-3‘; and primer #33: 5‘-

AACAGAACCAGAGAACGTTG-3‘ and #39: 5‘-TGTAAGCGTAGGGTTTAGT 

TGTCGTC-3‘ for TER2. Products were cloned into pDrive (Qiagen) by PCR 

cloning and sequenced using M13 primers. 

 

Northern blotting 

Northern blotting was performed with total RNA extracted from 

Arabidopsis suspension culture. Briefly, RNA was denatured for 2 min at 95ºC in 

formamide loading buffer containing 5M urea and resolved in a 4% acrylamide 

gel under denaturing conditions. T7 in vitro transcribed TER1 was used as 

control. Then, RNA was transferred to a Hybond-N+® membrane (Amersham) 

for 10h at 30min 0.5X TBE. After 1h pre-hybridization the membrane was 

hybridized for 12h at 40ºC with a pool 5‘-end 32P-ATP labeled oligonucleotides 

complementary to TER1. After washes the membrane was exposed to a 

phosphor screen.  
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Primer extension 

Primer extension was carried out on total RNA extracted from Arabidopsis 

cell culture. 0.25pmol of 5‘ end labeled oligonucleotide was incubated with total 

RNA at 95°C for 5 min and allowed to anneal in two sequential 15 min 

incubations at 72°C, and 60°C, after which extension mix (50mM Tris-HCl pH 

8.3, 15mM KCl, 3mM MgCl2, 5% DMSO, 1mM DTT, 1mM dNTPs, 1.5U 

RNAseOUT® and 200U SuperScript III® reverse transcriptase (Invitrogen)) was 

added to a 30µl final volume. The reactions were incubated at 58°C for 3 h. The 

enzyme was inactivated at 80°C for 10 min. The RNA was hydrolyzed by 

incubation at 70°C with 15µl of 1N NaOH for 10 min. The reaction was 

neutralized and precipitated with 15µl of 1N HCl, 20μl 3M NaOAc pH 5.2, 

ethanol and glycogen. The products were resolved by denaturing PAGE. 

 

In vitro telomerase reconstitution 

A TERT-pET28a plasmid with an N-terminal T7 tag was used for 

telomerase reconstitution experiments. Reactions were assembled with 100ng of 

TERT-pET28a plasmid and 0.5pmol or 0.1pmol of gel purified DNA template 

encoding TER1 or TER2 respectively, driven by a T7 promoter, in a mix 

containing Rabbit Reticulocyte Lysate (RRL) (Promega), amino acids, RNase 

inhibitors, and T7 RNA polymerase. Reactions were incubated for 90 min at 

30°C. T7 agarose beads (Novagen) were blocked with buffer W-100 (20mM 

TrisOAc [pH 7.5], 10% glycerol, 1mM EDTA, 5mM MgCl2, 0.2M NaCl, 1% NP-



 

 

87 

40, 0.5mM sodium deoxycholate, and 100mM potassium glutamate) containing 

0.5mg/ml BSA, 0.5mg/ml lysozyme, 0.05mg/ml glycogen, 1mM DTT and 1µg/ml 

yeast tRNA. The reconstitution reaction was mixed with the beads to a 200µl 

final volume and incubated for 2 h at 4°C with rotation. Beads were washed 6X 

with 800 µl of W-400 buffer (W-100 containing 400 mM potassium glutamate) 

and 3X with 800µl of TMG buffer (10mM TrisOAc [pH 7.5], 1mM MgCl2, and 

10% glycerol). After the final wash, beads were resuspended in 30µl of TMG. 2µl 

of beads were used for TRAP assays as previously described (130, 242). 

 

In vitro binding assays 

 For co-IP experiments, POT1a, POT1b, KU70 and KU80 cloned in 

pET28a with a T7 tag were co-expressed with TERs in RRL as described above. 

After IP RNA was extracted and RT-PCR was performed. Electrophoretic 

mobility shift assays used RNA transcribed in vitro with T7 RNA polymerase and 

[γ-32P]-CTP labeled TER1 and TER2. Binding reactions contained 3µl of RRL 

expressed protein, 0.1pmol of 32P labeled TER and 1X binding buffer (25mM 

Tris-HCl pH 8.0, 10mM Mg(OAc)2, 25mM KCl, 10mM DTT and 5% Glycerol) in a 

30µl final volume. 1µM yeast tRNA and 0.5µM RNA (U3AG3)4 were used as 

nonspecific competitors. After 20 min at 30°C the reaction was loaded onto a 

0.8% agarose 0.5X TBE gel and run for 2 h at 70 volts at 4°C. Gels were dried 

and exposed to phosphorimager screens.  
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 For double-filter binding assays, TERT expressed in RRL was incubated 

with decreasing concentrations of pre-folded RNA transcribed in vitro using 5-

end 32P-labeled RNA as a tracer. Binding reactions contained 0.5µl of 

recombinant protein, pre-folded TER in binding buffer (50mM Tris-HCl pH 7.5, 

200mM potassium glutamate, 0.5mg/ml BSA, 0.5mg/ml tRNA, 1mM MgCl2, 

1mM DTT and 0.01% NP-40) in a 25µl final volume. After 30 min at 30°C, the 

reactions were filtered through nitrocellulose and nylon filters using a dot-blot 

apparatus (BioRad). The membranes were washed with 600µl washing buffer 

(50mM Tris-HCl pH 7.5, 200mM potassium glutamate, 1mM MgCl2, 1mM DTT 

and 10% glycerol), dried, exposed to a phosphor storage screen and scanned 

after 2h.  Equilibrium dissociation constants, Kd, were obtained by non-linear 

regression of the binding data fitted to a one-site binding model using Graphpad 

Prism® software. 

 

End-point RT-PCR and quantitative RT-PCR 

Total RNA was extracted from 0.5 g floral or other tissue using Tri 

Reagent (Sigma). cDNAs were synthesized from total RNA using Superscript III 

reverse transcriptase (Invitrogen). Random pentadecamers were incubated with 

2 µg of total RNA in the supplied buffer at 65°C for 5 min. Reverse transcription 

(RT) was carried out with 100U of Superscript III at the following temperatures 

37°C for 20 min, 42°C for 20 min and 55°C for 20 min. Enzyme was inactivated 
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at 80°C for 10 min and RNA was degraded with RNase H (New England 

Biolabs). 1.5 µl of cDNA was used in PCR.  

 For real-time RT-PCR, 2 µl of the above cDNA was used at a 1:10 

dilution in a 20µl reaction containing 10 µl of SyBr green master mix (NEB) and 

2 µl of each primer (2µM). PCR was performed for 40 cycles with 30 s at 95°C 

and 60 s at 60°C. Threshold cycle values (Ct) were calculated using an iCycler 

iQ thermal cycler (BIO-RAD) and the supplied Optical System Software. 

 

Quantitative RT-PCR data analysis 

Amplification efficiencies were calculated for each primer pair in a 5 point 

titration curve. The slope was calculated from a standard curve where Ct was on 

the y-axis and log(cDNA dilution factor) on the x-axis. The corresponding real-

time PCR efficiency (E) was calculated according to the equation: E=(10-

1/slope)-1. To correct for intra-assay and inter-assay variability, each sample 

was evaluated by tripicate within one run in at least three different experimental 

runs. The relative expression level (R) was calculated as follows: R = 

(Etarget)∆Cttarget(control-sample) / (Ereference)∆Ctreference(control-sample) 

as previously described (4). U6 snRNA and β-actin were used as reference. 

Normalization to the pre-immune control and to the efficiency for each antibody 

was used for RNA quantification in the pull-down samples. Primers used for real-

time PCR are as follows: TER1 Q4F:5‘-CCCATTTCGTGCCTATCAGACGAC-3‘. 

TER1 Q4R: 5‘-TCTCCGACGACCATTCTCTCGATAC-3‘; TER2#38: 5‘-GACGA 
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CAACTAAACCCTACGCTTACA-3‘ and TER2#40: 5‘-CAGGATCAATCG 

GAGAGTTCAATCTC-3‘; TER2S: TER2#38 and TER2S# 193: 5‘-CCCCATCTC 

CGACGAGACGAC-3‘; TERT Q3F: 5‘-ACCGTTGCTTCG TTGTACTTCACG-3‘ 

and TERT Q3R: 5‘-CGACCCGCTTGAGAAGAAACTCC-3‘; U6-1F: 5‘-GTCCC 

TTCGGGGACATCCGA-3‘ and U6-1R: 5‘-AAAATTTGGACCATTTCTCGA-3‘ β-

Actin 2F: 5‘-TCCCTCAGCACATTCCAGCAGAT-3‘ and β-Actin 2R: 5‘-AACGATT 

CCTGGACCTGCCTCATC-3‘. 

 

Plant materials and genotyping 

Arabidopsis seeds with a T-DNA insertion in TER2 (SAIL_556_A04) were 

obtained from the Arabidopsis Biological Resource Center (Ohio State 

University, Columbus, OH). Seeds were cold-treated overnight at 4°C, and then 

placed in an environmental growth chamber and grown under a 16-h light/8-h 

dark photoperiod at 23°C. Plants were transformed using the in planta method 

(5). For genotyping, DNA was extracted from flowers and PCR was performed 

with the following sets of primers: for TER1, LP: 5'-

GAAAGACCTCAGCATCAGTGC-3' and RP: 5'-GGACTTTTTGAAAACAATTAC 

AAATC-3'; for TER2, primer #38: 5'-GACGACAACTAAACCCTACGCTTACA-3' 

and #45: 5‘-CGATGTTGTTTTTCTGCTTAGGACACA-3‘. To amplify mutant 

TER2 alleles containing a T-DNA insertion, the T-DNA specific primer was used 

along with TER 8526-01 fwd: 5‘-GAGACGCAGCGAGCGATAGCCGATAG-3‘ 

primer.  
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Antisense constructs 

 Full-length TER1 in the antisense orientation (TER1FLAS) and a 

truncated antisense version of TER1 (nucleotides 470-748) TER1AS were 

cloned into the gateway destination vector pK7WG2. The constructs were 

introduced into Agrobacterium tumefaciens strain GV3101. TER1ASFL was 

transformed into ter2-1 homozygous plants and TER1AS was transformed into 

wild type plants using the in planta method. Transformants were selected on 

Murashige and Skoog (MS) basal medium supplemented with kanamycin (50 

µg/ml). 

 

Site-directed mutagenesis and plant transformation 

To generate template mutations in the template region of TER1, site-

directed mutagenesis was performed with Pfu turbo polymerase (Stratagene) on 

TER1-pDONR221 using the primers M1: 5‘-GCCTATCAGACGACAACTAAAGG 

CTACACGCTTACA-3' and M2: 5'-TGTAAGCGTGTAGCCTTTAGTTGTCGTCT 

GATAGGC-3' according to the manufacturer‘s guidelines. The mutation was 

confirmed by sequencing. TER1CC was cloned into the destination vector 

pB7WG2 and transformed into wild type plants. After transformation the seeds 

were selected in MS agar containing kanamycin at 50µg/ml.  
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TRF analysis, TRAP and Q-TRAP assays 

TRF and TRAP assays were performed as previously described (2-3). 

TRAP products from mutant TER1CC telomerase were amplified using the 

primers CC TRAP forward: 5'-CACTATCGACTACGCGATTAG-3' and CC TRAP 

reverse: 5'- GGCTAAAGGCTAAAGGCTAAAG-3' (Fig. S4A). Q-TRAP was 

performed as previously described (242, 298-299).  

 

Antibodies, immunoprecipitation and western blotting 

AtKU70 antibodies were kindly provided by Dr. Karel Riha (Gregor 

Mendel Institute, Vienna). AtTERT and AtPOT1a antibodies have been 

previously described (130, 242). The anti-dyskerin polyclonal antibody was 

raised in rabbits against recombinant full-length AtNAP57 expressed in E. coli. 

The POT1b is an affinity-purified peptide antibody (Covance). IP efficiency was 

calculated for each antibody using 35S labeled protein expressed in rabbit 

reticulocyte lysate. Western blotting was performed with a 1:2000 dilution of anti-

KU70, anti-POT1a, anti-POT1b, anti-TERT and anti-Histone 3 antibodies 

(Upstate). The anti-dyskerin antibody was used at a 1:5000 dilution. Peroxidase-

conjugated light chain-specific mouse anti-rabbit secondary antibody (Jackson 

Immunoresearch) was used at a 1:20,000 dilution. Following IP, RNA was 

phenol:chloroform extracted from the beads and subjected to RT using 

superscript III® reverse transcriptase (Invitrogen) and random pentadecamers. 
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CHAPTER III 

ALTERNATIVE TELOMERASE RNPS IN ARABIDOPSIS WITH DISTINCT 

RNA AND PROTEIN COMPOSITION AND REGULATORY ROLES IN 

TELOMERE MAINTENANCE 

 

Summary 

The telomerase ribonucleoprotein is a highly regulated enzyme that 

stabilizes eukaryotic genomes by replenishing telomeric repeats on 

chromosome ends. The essential RNA subunit of telomerase, TER, functions as 

a template for telomere repeat synthesis by the catalytic subunit TERT. We 

previously showed that Arabidopsis encodes two TER subunits, TER1 and 

TER2. TER1 is the major template for telomere maintenance. Here we present 

the functional characterization of TER2. We show that TER2 is processed to 

form an additional TER isoform termed TER2S. Like TER1 and TER2, TER2S 

levels peak in highly proliferative tissues, however the TER2S:TER2 ratio is 

higher in flowers than in cell culture, indicating that TER2 processing is 

regulated in different settings. We further show that TER2 and TER2S assemble 

into RNP complex with proteins distinct from those associated the TER1 RNP. In 

particular, TER2, but not TER1 assembles with KU70 and POT1b. Finally, we 

demonstrate that TER2 and POT1b are both negative regulators of telomerase 

activity. Null mutations in either gene increase telomerase activity.  In contrast, 

TER2 over-expression reduces the TER1 templating function and results in 
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shortened telomeres in vivo. These findings reveal a complex and novel 

regulatory pathway for telomerase that involves multiple RNPs composed of 

different protein subunits and three different TER isoforms. 

 

Introduction 

Telomeres are replicated by telomerase, an unusual ribonucleoprotein 

reverse transcriptase, composed at its core of a reverse transcriptase (TERT) 

and an RNA template (TER).  The function of telomerase is to balance the loss 

of telomeric DNA due to the end replication problem. Telomerase activity is 

tightly controlled.  Telomerase expression is critical for cell proliferation, but 

misregulation can lead to stem cell related diseases or carcinogenesis.  

Telomerase regulation occurs at several levels including intracellular and 

extracellular signaling pathways (300-301).  Transcriptional regulation of hTERT 

is a major determinant of enzyme activity (193, 302), and in some cell types, 

hTER expression is controlled (194, 302). The stability and processivity of 

telomerase are modulated by RNP accessory factors (120, 195-199, 303). Many 

of these have roles in RNP biogenesis, assembly, recruitment and regulation of 

telomerase at the end of the chromosome.  

The telomerase catalytic subunit TERT contains universally conserved 

reverse transcriptase motifs, which has allowed identification of this moiety in 

many organisms. In contrast, the nucleotide sequence of the TER subunit is 

highly divergent. TERs can be aligned with confidence only among closely 
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related species making their identification a challenging enterprise. We 

previously demonstrated that Arabidopsis thaliana encodes two TER subunits, 

TER1 and TER2 (see Chapter II). Both TER1 and TER2 assemble with TERT 

into active RNP complexes in vitro. However, only TER1 is required for telomere 

maintenance in vivo. Depletion of TER1 alone or TER1 plus TER2 leads to a 

similar decrease in telomerase activity and telomere shortening (Chapter II). In 

contrast, a null mutation in TER2 does not inhibit telomerase activity or result in 

telomere shortening. Finally, when plants are transformed with a TER1 construct 

bearing a mutation in the templating domain, mutant telomere repeats are 

incorporated onto chromosome ends (Chapter II).  Thus, TER1 functions as the 

major template for telomerase in vivo.  The role of TER2 has not been explored. 

In conjunction with the rapid divergence of TER sequences, telomerase 

accessory proteins also vary widely. Biochemical purification led to the 

identification of p43 in the ciliate, Euplotes (180) and its homolog p65 in 

Tetrahymena (162, 304).  These proteins are implicated in telomerase 

maturation and activity, but neither has an obvious ortholog in multicellular 

organisms. Dyskerin associates with telomerase RNP in plants (242) and 

vertebrates (184, 305-306) and is required for proper RNP biogenesis (307-308) 

in the nucleolus. In contrast, the budding yeast TER (Tlc1) does not bind 

dyskerin.  Instead it associates with Sm-binding proteins (229). Deletion of the 

Sm-motif or loss of the members of the Sm complex leads to reduced levels of 
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TLC1 (229). Thus, the biogenesis pathway of TLC1 seems to parallel that of 

snRNAs. 

The non-catalytic EST proteins promote telomerase activity in budding 

yeast (98, 303, 309-310). Est1p binds the TER subunit (Tlc1) and recruits 

telomerase to the chromosome ends through interaction with the ssDNA binding 

protein Cdc13p (Est4) (98, 246, 310). Est3p is also required for telomerase 

action in vivo, but its precise role is unclear (311). Finally, in both budding yeast 

and vertebrates TER is bound by the Ku70/80 heterodimer (182, 312), however 

Ku is not associated with TER in fission yeast (285). Thus, the telomerase 

enzyme is evolving, as evidenced by the existence distinct pathways for RNP 

biogenesis, dramatic differences in protein composition and remarkable 

divergence of TER sequence (147, 313) and Chapter II). 

Besides TER, Arabidopsis encodes multiple copies of other telomere-

related genes including the TRF family of putative double-strand telomere DNA 

binding proteins (127) and three highly divergent POT1 genes, AtPOT1a, 

AtPOT1b and AtPOT1c (129-130), A. Nelson and D. Shippen, unpublished). In 

other organisms, POT1 binds single-strand telomeric DNA and functions in 

chromosome end protection (28, 122, 314-316).  Conversely, none of the POT1 

proteins from A. thaliana or its close relatives bind telomeric DNA in vitro (131). 

Furthermore, AtPOT1a binds TER1 and physically associates with the TER1 

RNP where it serves an essential role in promoting telomere maintenance (130, 

313) and Chapter II).  The functions of POT1b and POT1c are less clear.  Over-
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expression of POT1b results in chromosome fusion, implicating this protein in 

chromosome end protection. However, given the critical role of POT1a in the 

telomerase RNP and since a null mutation in POT1b has yet to be 

characterized, it is possible that the telomere deprotection phenotype associated 

with POT1b over-expression reflects a dominant negative phenotype.  The role 

of POT1c has not been explored. 

Here we present a functional analysis of TER2 and its protein binding 

partners.  We show that TER2 undergoes developmentally regulated splicing to 

generate a novel TER isoform, termed TER2s.  We also demonstrate that TER2 

assembles with POT1b and Ku70/80 in vivo, forming an RNP that is distinct in 

both RNA and protein composition from the TER1 RNP.  Finally, we 

demonstrate that the TER2 and its binding partner POT1b behave as a negative 

regulator for telomerase in vivo.  These findings reveal a complex and novel 

regulatory pathway for Arabidopsis telomerase that may be fueled by the 

duplication and diversification of key components of the RNP.   

 

Results 

TER2 is processed to form TER2S 

We previously identified two TERs in Arabidopsis: TER1 and TER2 (317) 

(Fig. 21 and Chapter II). Unexpectedly, end-point RT-PCR analysis of RNA from 

cell culture amplified a shorter product in addition to TER1 and TER2 (Fig. 21 

and 22B). Primer extension was performed with RNA from suspension cell 
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culture using an oligonucleotide complementary to a conserved region in R2 

(Fig. 22A). A similar result was obtained.  We detected major products 

corresponding to TER1 (445nt) and TER2 (740nt) as well as a 220nt product, 

which we termed TER2s. The size of the TER2s primer extension product 

suggests that its 5‘ terminus corresponds to the 5‘ end of TER2, but additional 

mapping studies will be required to define the RNA 3‘ terminus. Cloning and 

sequencing of the TER2s RT-PCR product showed that it consists of the two 

conserved domains in TER2 (R1 and R2) joined together (Fig. 21). R1 contains 

the telomere template. Sequence complementarity analyses and RNA folding 

predictions indicate that TER2S is a bona-fide transcript and not an aberrant 

reverse transcription product (see Chapter V). In addition, bioinformatic searches 

did not retrieve any high similarity hit in addition to the TER1 and TER2, arguing 

that TER2S is not encoded in the genome. Intriguingly, the characteristic 

landmarks of consensus mRNA splicing machinery (branch point, 5‘ and 3‘ 

splice sites) are not detected in TER2 (Fig. 21), suggesting that it is generated 

by an unconventional RNA processing reaction.  

Quantification by real time RT-PCR showed that like TERT (318), 

expression of all three TER isoforms peaks in cells with high telomerase activity 

(flowers and cell culture) (Fig. 22C). TER1 levels are consistently higher than 

TER2 in all samples examined. TER2 is more abundant than TER2S in 

vegetative organs (leaves and stems) (Fig. 22C). Strikingly, TER2S is highly 

enriched in flowers and is much more abundant than TER2.  Here the level of 
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TER2s and TER1 are nearly equivalent (Fig. 22C).  Conversely, in cell culture 

TER2s levels decline and TER2 is more abundant, but in this setting TER1 is 

more than 60-fold more than TER2.  We conclude that TER2 expression and 

processing are developmentally regulated.  

 

 

 

 

 

 

Figure 21. Diagram of TER1, TER2 and TER2S. Templates, unique and conserved 

domains are shown. Transcript sizes as well as the sequence of the splice junctions are 

also indicated. 
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Figure 22. Arabidopsis encodes three telomerase-associated RNAs. (A) Primer 

extension of total RNA from cell culture resolved by PAGE. A primer complementary to 

a conserved in the R2 was used. Lane 1, in vitro transcribed TER1. Lane 2, in vitro 

transcribed TER2. Lane 3, 40 μg genomic DNA (gDNA). Lane 4, minus reverse 

transcriptase control. Lane 5, 20 μg of total RNA. Lane 6, 40 μg of total RNA. Lane 7, 

40 μg of total RNA pre-treated with RNase A. (B) RT-PCR results with total RNA from 

cell culture. cDNA was generated using random pentadecamers. Odd lanes correspond 

to minus reverse transcriptase controls. Reactions with primers to detect TER1, TER2 

and/or TER2S are shown in lanes 1-6. U6 snRNA was amplified as a control (lanes 7-8). 

Lanes 9-10, reactions with a primer pair that detects both TER2 and TER2S. (C) 

Quantitative RT-PCR results for TER1, TER2, TER2S and TERT mRNA in different 

Arabidopsis tissues. RNA levels were normalized to U6 snRNA and to the efficiency of 

each primer pair to allow comparison. 
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TERT binds TER2 with a higher affinity than TER1 or TER2s in vitro 

Our previous telomerase reconstitution experiments indicate that a 

construct corresponding to TER2S can direct telomere repeat synthesis in vitro.  

Thus, all three TER isoforms assemble with TERT into functional RNPs in vivo. 

To further investigate the interaction of TERT with different TER subunits, a 

double-filter binding assay was employed (Fig. 23). RRL expressed TERT was 

incubated with decreasing concentrations of in vitro transcribed TER1, TER2 

and TER2S. A corresponding radiolabeled tracer was used for detection. After 

incubation and filtration through nitrocellulose and nylon filters, the fractions of 

bound and free RNA were determined and used to calculate the Kd value for 

each interaction (Fig. 23A and B). The Kd values for TERT-TER1 and TERT-

TER2 were 204.1 ± 11.3 nM and 22.6 ± 2.8 nM, respectively (Fig. 23B).  Thus, 

the affinity of TERT for TER2 is an order of magnitude higher than for TER1. 

Preliminary experiments suggest that the Kd value for TERT-TER2S is 

approximately 1 µM (data not shown), which is more than ~45 and ~5-fold 

greater than the values for TER2 and TER1, respectively. Hence TERT prefers 

TER2>TER1>TER2S. These differences in affinity indicate that TERT may 

preferentially bind TER2 in vivo.   
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Figure 23. TERT-TER interactions. The affinity of the TERT-TER1 and TERT-TER2 

interaction was determined by double filter binding. Top, TERT bound RNA. Bottom, 

Free RNA. (A) RNA was incubated with RRL alone or TRFL4 (a ds telomeric DNA 

binding protein) as controls for non-specific binding. Left panel, TER1. Middle panel, 

TER2. Right panel, the P4P6 domain of the Tetrahymena thermophila group I intron 

was used as control. (B-C) TER titration. TER was added in decreasing concentrations 

to a reaction containing a constant amount of TERT. (B) Top, Binding isotherm of 

TERT-TER1. Bottom, Representative filter binding assay. TER1 was titrated by a factor 

of 2 starting at 1000nM. (C) Top, Binding isotherm of TERT-TER2. Bottom, 

Representative filter binding assay. TER1 was titrated by a factor of 2 starting at 

250nM. Kd values are shown. 

A

R
R

L

T
R

F
L
4

T
E

R
T

R
R

L

T
R

F
L
4

T
E

R
T

R
R

L

T
R

F
L
4

T
E

R
T

Bound

Free

TER1 TER2 P4P6

0 200 400 600 800 1000
0

5100 4

1100 5

2100 5

2100 5

3100 5

TER1

Kd= 204.1  11.3 nM

[TER1] nM

S
p

e
c
if
ic

 B
in

d
in

g

TER1

1000 nM

Bound

Free

B

0 50 100 150 200 250
0

5100 4

1100 5

2100 5

2100 5

3100 5

TER2

Kd= 22.6  2.8 nM

[TER2] nM

S
p

e
c
if
ic

 B
in

d
in

g
250 nM

Bound

Free

TER2

C



 

 

103 

TER2 can function as template for telomerase in vivo 

Since TER2 can be used as a template for TERT reverse transcription in 

vitro (Ref and Chapter I), mutagenesis was employed to test if TER2 directs 

telomere repeat addition in vivo. The 5‘-CUAAACCCUA-3‘ sequence in TER2 

was mutated to 5‘-CUAGUACCUA-3‘ (creating an RsaI restriction site, 

TER2RSA).  As expected, mutant ACTAGGT repeats were synthesized using this 

construct in vitro (Fig. 24A). TER2RSA was placed under the control of the 

powerful Cauliflower Mosaic Virus (CaMV) 35S promoter and transformed into 

plants null for endogenous TER2 (see Chapter II). Transformants were 

propagated for two generations before analysis to facilitate assembly of mutant 

RNA into telomerase complexes and to allow incorporation of mutant telomere 

repeats onto chromosome ends.  As expected, TER1 levels were wild type and 

the mutant TER2 was over-expressed, as measured by RT-PCR (Fig. 26B). 

TRAP products were generated with the TER2RSA reverse primer (Fig. 24B, right 

panel), indicating that the mutant RNA assembled into an enzymatically active 

RNP in vivo. Unexpectedly, however, wild type telomerase activity, derived from 

endogenous TER1, was dramatically reduced in these plants (Fig. 23B, left 

panel and see below).  This finding suggests that TER2 modulates TER1 

function in vivo. 

Primer Extension Telomere Repeat Amplification (PETRA) (268) was 

used to determine if TER2 is capable of directing the incorporation of telomere 

repeats onto chromosome ends. We monitored the telomeric sequence on the 
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left arm of chromosome 1 in plants expressing 35S::TER2RSA (Fig. 24C-E). As 

expected, PETRA products were obtained from both wild type and mutant plants 

using wild type PETRA-T (Fig. 24C). Control reactions with the PETRA-TRSA 

primer failed to generate products for wild type plants or TER1CC mutants (Fig. 

24D). Notably, PETRA products were detected in reactions with one of the two 

TER2RSA mutants analyzed. Sequence analysis revealed incorporation of a 

mutant repeat in 14% of the clones (7/50) (Fig. 24E). In all cases only as single 

mutant repeat was detecte. In one clone the mutant repeat was flanked by the 

sequence TATA, which is not encoded by the template.  In another clone, the 

mutant repeat was adjacent to another partial mutant repeat (Fig. 24E).  These 

findings indicate although the template mutation TER2RSA reduces fidelity of 

telomere repeat synthesis, TER2 is capable of directing telomeric DNA 

incorporation onto chromosome ends in vivo although with low efficiency.   
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Figure 24. TER2 serves as a template for Arabidopsis telomerase in vivo. (A) 

TRAP from TER2RSA in vitro reconstituted complexes. (B) TRAP results for 

35S::TER2RSA transformants. Black arrow, reverse primer complementary to WT 

telomere repeats. Red arrow, reverse primer complementary to TER2RSA mutant 

repeats. (C-D) Results of amplification are shown with PETRA T and PETRA-A to 

detect WT telomeric DNA (C), and results with PETRA-TRSA and PETRA-A primer to 

detect TER2RSA products (D). (E) Representative PETRA product sequences depicting 

single or multiple ACTAGGT (blue) repeats as well as misincorporation events (red) are 

shown. 
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TER2 is a negative regulator of telomerase activity in vivo 

In contrast to plants with reduced TER1, ter2-1 homozygous mutants did 

not exhibit telomere maintenance defects in first or second generation mutants 

(Fig. 25B and Chapter II). As part of the characterization of ter2-1, Q-TRAP was 

performed to measure telomerase activity levels. Unexpectedly, we observed a 

dose-dependent increase in telomerase activity with a 2.1-fold increase in ter2-1 

G1 heterozygotes and 2.8-fold in G1 homozygotes, relative to wild type. A 3.7-

fold increase in telomerase activity was detected in G2 ter2-1 homozygotes (Fig. 

25D). Telomerase activity was confined to organs where telomerase is normally 

expressed (flowers); enzyme levels remained low or undetectable in leaves (Fig. 

25D). Hence, depletion of TER2 did not alter the developmental regulation of 

telomerase expression. These findings indicate that TER2 is a negative 

regulator of telomerase activity.  

TER2 over-expression should decrease enzyme activity if TER2 

negatively regulates telomerase. As predicted, an 11-fold decrease in wild type 

telomerase activity was observed in 35S::TER2RSA plants (Fig. 26A). In addition, 

although no telomere length change was observed in T1 plants (data not 

shown), telomeres were markedly shorter and less heterogeneous in T2 and T3 

35S::TER2RSA transformants (Fig. 26C), a finding consistent with reduced 

telomerase activity in vivo (143). Altogether, our data argue that TER2 functions 

as a novel negative regulator of telomerase activity in vivo. 
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Figure 25. TER2 functions as a negative regulator of telomerase. (A) Position of the 

T-DNA insertion in ter2-1. (B) TRF analysis of ter2-1 mutants. (C) Q-RT-PCR results for 

TER1 and TER2 levels in ter2-1 mutants. (D) Q-TRAP results for WT, ter2-1+/- and 

ter2-1-/- plants. Values were normalized to telomerase activity in WT plants.  
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Figure 26. TER2 over-expression results in inhibition of TER1 RNP. (A) Q-TRAP 

results for 35S::TER2RSA transformants. TRAP was performed using a reverse primer 

complementary to the wild type repeat. (B) RT-PCR for TER1 and TER2 in WT and 

TER2 over-expression (35S::TER2RSA) plants. (C) TRF analysis of second (T2) and 

third (T3) generation TER2RSA mutants. 
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TER2 associates with a set of proteins distinct from TER1 RNP components 

We previously reported that TER1 assembles with TERT, POT1a and 

dyskerin into an active telomerase RNP (317) and Chapter II). Moreover, POT1a 

does not bind TER2 in vitro, implying that TER2 may assemble with a distinct set 

of proteins in vivo. To investigate protein interactions with TER2, co-

immunoprecipitation (IP) assays were performed. T7-tagged POT1b was co-

expressed with TER1 or TER2 in RRL, followed by IP with anti-T7 agarose 

beads. The bound RNA was extracted, cDNA was generated using random 

pentadecamers and PCR was performed with primers specific for TER1 or 

TER2.  We found that POT1b binds TER2, but not TER1 (Fig. 27A). Gel shift 

analysis using in vitro transcribed RNA and recombinant proteins confirmed the 

interaction between TER2 and POT1b and demonstrated its specificity (Fig. 

27B).  As part of the analysis of TER2, we asked if it could bind the other 

Arabidopsis POT1 paralog, POT1c.  IP reactions showed that POT1c bound 

both TER1 and TER2, although a slightly stronger interaction was observed with 

TER2 (Fig 27A and data not shown). Thus, all three POT1 proteins associate 

with TER, but each protein has a different preference for the TER isoforms.  

We detected a weak interaction between KU and AtTER1 (317) and 

Chapter II). To test whether KU interacts with TER2, IP experiments were 

conducted as described above.  We found a robust interaction with KU70 and 

TER2 (Fig. 27C). No difference was observed when KU80 was added to the 

reaction. Gel shift assays revealed RNP complexes containing TER2-KU70 and 
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TER2-KU70/KU80, but no interaction between TER1 and KU (Fig. 27D). We 

conclude that TER2 can interact with POT1b, POT1c and KU in vitro.  

 

 

                

 

        

                    

       

Figure 27. TER2 associates with POT1b, POT1c and KU in vitro. (A and C) T7-

tagged proteins were co-expressed with TER1 and TER2 in RRL. RT-PCR was carried 

out after immunoprecipitation (IP). TRFL4, a ds telomeric DNA binding protein, was 

used as control. (B and D) Results from electrophoretic mobility shift assays. Labeled 

RNAs are indicated. (B) Competition experiments with TER1 and TER2. (E) 35S-labeled 

protein expression.  
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POT1b is a negative regulator of telomerase activity 

 Given its interaction with TER2, we hypothesized that POT1b might 

function in telomere maintenance.  To test this possibility, we examined the 

consequences of a null mutation in POT1b. The pot1b-1 line contains a T-DNA 

insertion in the second exon of the POT1b gene (Fig. 28A). RT-PCR was 

performed, using primers flanking the insertion sites, to determine if this T-DNA 

insertion disrupts AtPOT1b gene expression, (Fig. 28A and B). No RT-PCR 

products were detected using primers either downstream of or across the 

insertion (Figure 28B, lanes 4 and 6), confirming that expression of the full-

length AtPOT1b mRNA was abolished in the mutants. Although AtPOT1b 

transcripts from the region upstream of the T-DNA can be amplified in both wild-

type and the mutant (Fig. 28A, lanes 1 and 2), it encodes only a small (53 amino 

acid) polypeptide which is likely to be non-functional. As with ter2 null mutants, 

no obvious morphological phenotypes were associated with pot1b-1 (data not 

shown). TRF analysis revealed no difference in bulk telomere length for 

homozygous mutants versus wild type siblings (Fig. 28C). Strikingly, however, 

Q-TRAP showed a 3-fold increase in level of telomerase activity pot1b-1 flowers 

relative to wild type. This increase in telomerase activity parallels the increase 

observed in ter2-1 mutants (Fig. 28D) and implies that POT1b, like TER2, 

functions as a negative regulator of telomerase activity.  

To gain further insight into the function of POT1b, we measured TER1, 

TER2 and TER2S transcript levels in pot1b-1 null plants. As expected, no 
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change in TER1 was observed in pot1b-1 flowers compared to wild-type. 

However, TER2 and TER2S transcripts were undetectable in pot1b-1 mutants 

(Fig. 28E), suggesting that POT1b is required for stability and or accumulation of 

TER2.   Notably, TER1, TER2 and TER2S levels are unperturbed in plants null 

for POT1a (Fig. 28E). We conclude that POT1a and POT1b not only interact 

with different TER isoforms, but also they make distinct contributions to TER1 

and TER2 metabolism. 

To further investigate the TER2-POT1b interaction, filter binding assays 

were performed with TER2 deletion constructs to map the POT1b binding site. 

POT1b bound a construct lacking the TER2 3‘ unique region (TER2 Δ 3‘) (Fig. 

29 A-C). POT1b binding was also detected with TER2s and with a construct 

lacking the R2 domain (TER2 R1/IV). In contrast, no binding to the TER2 

intervening sequence (TER2 IV) was detected. TERT binding to TER2 followed 

a similar pattern of association and hence both the TERT and POT1b binding 

sites are contained within the 145 nt R1 domain of TER2. Further mapping 

studies are needed to assess whether POT1b and TERT could compete for the 

same site on TER2. 
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Figure 28. POT1b functions as a negative regulator of telomerase. (A) Position of 

the T-DNA insertion in pot1b-1. (B) RT-PCR results for POT1b mRNA in wild type and 

pot1b mutants. 1 and 4 are primer pairs are indicated in (A). (C) TRF analysis of WT 

and pot1-b mutants. (D) Q-TRAP results for WT and pot1b plants. Values were 

normalized to telomerase activity in WT plants. (E) Q-RT-PCR results for TER1 TER2 

and TER2S levels in WT, pot1b and pot1a plants. Panels A, B and C were generated by 

Dr. Eugene Shakirov. 
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Figure 29. POT1b associates with TER2S. TER2 deletion constructs were tested for 

association with POT1b and TERT by filter binding. (A) Representative filter binging 

assay. Left, bound. Right, unbound. TRFL4, a double-strand telomeric DNA binding 

protein, was used as control. (B) Graphic depiction of the TER2 deletion transcripts 

used for binding experiments. (C) Quantification of data from (B). The specific binding 

was calculated. 
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TER2 and TER2S assemble into RNPs distinct from TER1 in vivo 

We investigated whether the three TER isoforms assemble into different 

RNP complexes in vivo using glycerol gradient fractionation (Fig. 30A). 

Telomerase activity was monitored by TRAP. TER1 and TER2 were amplified by 

RT-PCR and western blot analysis was employed to detect TERT and KU (Fig. 

30A). Free TER1 and TER2 were found in the least dense fractions of the 

gradient (Fig. 30A, lanes 1-2). Fractions with telomerase activity contained 

TER1, TER2 and TERT but not KU70 (Fig. 30A, lanes 8-9). TERT and TER1 or 

TER2 were also found in inactive fractions (Fig. 30A).  Interestingly, KU70 was 

only detected in non-active fractions containing TERT and TER2.  This result 

supports our in vitro binding data and indicates that KU70 may assemble into an 

inactive TER2 RNP in vivo (Fig. 30A, lanes 4-5). Altogether, these results imply 

that Arabidopsis assembles several telomerase RNPs, which differ in TER and 

protein composition and in enzymatic activity. 

IP with Arabidopsis cell culture extracts was performed to further evaluate 

telomerase RNP interactions in vivo. Following IP, end-point and quantitative 

RT-PCR were used to monitor the three TER isoforms and the data were 

normalized to account for differences in IP efficiency and primer usage (Fig. 

30B). As expected, none of the TER isoforms were detected in Histone H3 or 

pre-immune IP control reactions (Fig. 30B).  Like TER1 (ref and Chapter II), 

TER2 was enriched in the TERT precipitate. Strikingly, only two-fold more TER1 

was precipitated relative to TER2 (Fig. 30B). Since TER1 is approximately 19-
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fold more abundant than TER2 in cell culture (Chapter II), we conclude that 

TERT preferentially associates with TER2 in vivo. TER2s was also associated 

with TERT in vivo, but it was less enriched than TER2 by approximately 8-fold.  

Since TER2 is 4-fold more abundant than TER2S in cell culture, these findings 

are consistent with our in vitro binding data showing that TERT has a lower 

affinity for TER2s than TER2. TER2, like TER1 was enriched in the dyskerin IP 

(Fig. 30B; Chapter II), in agreement with the presence of putative H/ACA boxes 

at its 3‘ terminus (data not shown). In contrast, only a trace amount of TER2s 

was seen in this IP, suggesting that the processed form of TER2 may lack the 

appropriate recognition site for dyskerin.  

In addition, KU70 antibody pulled down TER2, but only trace amounts of 

TER1. Notably, the amount of TER2 precipitated was significantly less than with 

anti-TERT antibody (Fig. 30B), suggesting that KU associates with only a subset 

of TER2 RNPs. Finally, TER2 was strongly enriched over TER1 in the anti-

POT1b pull-down (Fig. 30B), while a only small fraction of TER2 was detected in 

the anti-POT1a IP (Fig. 30B). 
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Figure 30. Distinct TER1, TER2 and TER2S RNPs in vivo. (A) Glycerol gradient 

fractionation of Arabidopsis cell culture nuclear extracts. Top, telomerase activity assay. 

Middle, TERT and KU were visualized by western blot. Bottom, TER1 and TER2 were 

detected by RT-PCR. The position of size markers is indicated below the bottom panel. 

the TRAP panel. (B) IP was carried out with Arabidopsis cell culture extracts using the 

indicated antibodies. Pre-immune serum, anti-histone H3 and anti-enolase antibodies 

were used as controls. RNA levels were normalized to the primer efficiency, the levels 

of U6 snRNA, the pre-immune control and the antibody efficiency.  
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TER2s displayed a different pattern of protein associations than TER2. 

Although a residual amount of TER2S was detected in the KU70 IP, 2-fold more 

TER2S than TER2 was detected in the anti-POT1b IP.  This finding is noteworthy 

since 7-fold more TER2S was enriched in the POT1b IP than in the TERT IP.  

Thus, TER2S appears to be primarily associated with POT1b in an RNP lacking 

TERT, dyskerin and KU. We conclude that Arabidopsis harbors multiple RNP 

complexes with distinct RNA and protein composition and different roles in 

telomere maintenance. 

 

Discussion 

All organisms studied thus far encode one TER subunit (14, 170-172, 

319-321). Arabidopsis is unusual as it encodes multiple telomerase associated 

RNAs. We previously showed that TER1 is the major template for telomere 

maintenance in vivo, leaving unresolved the role of TER2 in telomere biology.  

Here we demonstrate that TER2 assembles into an RNP that is distinct in 

protein composition from the TER1 RNP, and further that the TER2 RNP 

negatively regulates telomerase in vivo.  

 

Three TER isoforms in Arabidopsis  

 As part of our analysis of TER2, we unexpectedly discovered that it is 

processed to generate another TER isoform, TER2s.  TER2S is not encoded in 

the Arabidopsis genome and sequence analysis indicates that TER2S sequence 
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is 100% identical to the TER2 conserved regions (R1 and R2), suggesting that 

TER2S is the product of TER2 processing. In addition, TER2S is detected by 

northern blotting of total RNA from wild type flowers and tissue culture (Chapter 

V) which indicates that TER2S is a bona fide transcript and not an RT-PCR 

artifact.   Consistent with this conclusion, computer prediction analysis did not 

predict any high score branch points, nor donor or acceptor splice sites (data not 

shown).  

Although the splicing machinery is conserved throughout eukaryotes, 

plant consensus splice sites are detected in a low fraction of mRNAs (322-323), 

which suggests plant splicing sites are highly variable. Thus, TER2 may be 

processed by a non-canonical splicing mechanism. We think it is likely that 

Arabidopsis TER1 and TER2 are synthesized by RNA polymerase II like their 

counterpart in vertebrates, but we do not know whether the two RNAs contain a 

5‘ cap.  Furthermore, we could not detect a poly(A) tail on TER1 or TER2, but it 

is possible that a subset of TER2 molecules contain a poly(A) tail and these are 

processed to generate TER2.  

Processing of Saccharomyces pombe TER1 3‘ end of TER1 is required 

for telomerase function (324). Although, SpTER1 transcripts bearing a poly(A) 

tail are detected in fission yeast cells (171, 324), SpTER1 transcripts associated 

with telomerase do not contain a poly(A) tail. The mechanism of processing is 

via slicing (324), a process in which only the first transesterification reaction is 

carried out by the spliceosome. Failure to process SpTER1 results in telomerase 
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inhibition. Thus, RNA processing may play a key role in telomerase biogenesis 

and function.  

The production of TER2s is developmentally regulated in different plant 

cells and inversely correlated with the abundance of TER2. In organs lacking 

telomerase (leaves and stem) only a small amount of TER2 is observed, and 

TER2s is undetectable. In the telomerase rich setting of flowers and cell culture, 

both TER2 and TER2s levels rise. Curiously, TER2s becomes the predominate 

isoform in flowers, but in cell culture the profile flips and TER2 is more abundant 

than TER2s. While the level of TER2/TER2s does not directly correlate with 

enzyme activity, the ratio of TER1:TER2 is similar in both settings.  In cell 

culture, TER1 is approximately 19 fold more abundant than TER2 and in flowers. 

Thus, it is possible that TER2 splicing decreases the abundance of this negative 

regulator for TER1 and as a consequence results in an increase in telomerase 

activity (see below).  

 

TER1 and TER2 interact with an overlapping, but distinct set of proteins  

Our data suggest that TER1 and TER2 RNPs consist of the same core 

components, TERT and dyskerin, but then diverge with respect to their 

interactions with KU and the POT1 family of proteins.  Ku70/80 exhibits a strong 

preference for TER2 over TER1.  Intriguingly, both IP and glycerol gradient data 

indicate that Ku70 co-purifies with TER2 in fractions lacking telomerase activity. 

Hence not only is the KU-TER interaction dispensable for telomerase function in 
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Arabidopsis, the interaction of KU with TER2 may reduce the intrinsic catalytic 

function of the TER2 RNP and diminish with its ability to direct telomere repeat 

incorporation in vivo (see below).   

The POT1 paralogs also exhibit dramatically different preferences for the 

TER isoforms. POT1b interacts with TER2, but not with TER1 (Fig. 27 and 30), 

while POT1a displays the opposite specificity (Chapter II), interacting with TER1 

but not TER2 (313) and Chapter II]. POT1a binds to a CU-rich sequence within 

the highly divergent 5‘ region of TER1 that is absent from TER2 (see Chapter V). 

In contrast, POT1b recognizes the R1 domain in TER2 and TER2s, which 

contains the telomere template and displays 84% identity with TER1 (data not 

shown). This finding implies that subtle differences in TER1 and TER2 

sequence/structure will dictate the specificity of POT1b for TER2. Interestingly, 

POT1c, a product of a POT1a gene duplication composed by a single OB-fold, 

binds both TER1 and TER2 at a similar level.  These results suggest that 

specificity of the POT1a-TER1 and POT1b-TER2 interaction may reside within 

the second OB-fold domain.  

 

Duplication of TER and POT1 may fuel the evolution telomerase RNP 

complexes with distinct functions 

Although POT1 family genes have undergone duplication events in a 

wide variety of organisms (118, 325-326). Among mammals, there is a single 

POT1 gene in humans, while mice have two (118). Similarly, in Arabidopsis, 
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there are three POT1 paralogs but in papaya, a member of the same family, only 

a single POT1 gene is evident (132). In a few cases the POT1 orthologs have 

similar functions, (e.g mouse POT1a and POT1b), but frequently POT1 

duplication has resulted in different function (327). For example, Tetrahymena 

POT1a is expressed in vegetative cells and functions in telomere length 

regulation and protecting the telomere end (326). POT1b, on the other hand, is 

only expressed in mated cells where it is involved in de novo telomere formation 

(327).  

The functions and interactions of Arabidopsis POT1 have diverged 

radically from their counterparts in other organisms. Null mutations in pot1a and 

pot1b mutants do not lead to chromosome capping defects (129-130, 317) and 

this study). In addition, both POT1a and POT1b have evolved to bind TER 

instead of ssDNA. Furthermore, the function of POT1b has diverged from the 

POT1a. POT1b not only binds TER2 instead of TER1, but this interaction 

appears to be required for TER2 stability.  In contrast, the POT1a association 

with TER1 is not critical for TER1 stability.  How POT1a promotes telomere 

maintenance by TER1 remains unknown.    

We hypothesize that duplication of POT1 in Arabidopsis fueled the 

evolution of the nucleic acid pocket in POT1 allowing it to recognize TER instead 

of telomeric DNA.  This in turn stimulated the migration of POT1 from the 

chromosome terminus to the telomerase RNP.  The duplication of TER appears 

to be a much more recent event in plant evolution since TER2 has not been 
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identified outside A. thaliana.  With a second copy of TER and additional TER 

binding proteins, the groundwork was laid for the emergence of a novel 

regulatory mechanism for telomerase.  

 

The TER2 RNP functions as a negative regulator of telomerase 

Our data indicate that TER2 is a negative regulator for telomerase 

activity. Although at least a subset of TER2 molecules are assembled into 

enzymatically active RNP complexes in vivo, TER2 does not play a significant 

role in telomere maintenance.   A low level of TER2 directed telomere repeat 

incorporation was detected when the TER2RSA construct was over-expressed. In 

addition, we observed a lower frequency of TER2RSA directed incorporation of 

mutant repeats, compared to TER1CC, despite the presence of wild type TER1 in 

these plants. Therefore, we suspect that low level of repeat incorporation by 

TER2 reflects the gross over-expression of this RNA and the inhibition of TER1, 

the preferred telomerase template. 

Precisely how TER2 inhibits telomerase is unknown, but the current data 

suggest that telomerase regulation is facilitated by TER2 interacting proteins.  

TERT has a ~9-fold higher affinity for TER2 than for TER1 in vitro, and although 

additional proteins likely impact telomerase biogenesis in vivo (147, 162, 308, 

328), TER2 is over-represented in TERT-containing RNP complexes. Thus, 

TER2 may inhibit telomerase by outcompeting TER1 for the telomerase catalytic 

subunit.    
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The telomerase accessory proteins POT1b and KU appear to reinforce 

TER2-mediated negative regulation. Preliminary studies show that pot1b-1l 

mutants exhibit a three-fold increase in telomerase activity (A. Nelson and D. 

Shippen, unpublished data), similar to the increase observed in ter2-1 mutants. 

In addition, the TER2-interacting factor KU is a strong negative regulator of 

telomerase-mediated telomere elongation in Arabidopsis (296). Since 

telomerase enzyme activity levels are not increased in ku70-/- mutants (251), 

Nelson A. and D. Shippen unpublished data), KU must regulate telomere 

elongation rather than enzyme activity. One intriguing possibility is that KU is 

involved in recruitment of telomerase to the telomere as in budding yeast (182, 

252).  However, because KU is associated with the TER2 RNP, this would result 

in recruitment of the negative regulatory complex, decreasing telomere 

extension. The discovery of a novel negative regulatory mechanism for plant 

telomerase argues that additional modes of restraining telomerase remain to be 

elucidated in mammals where misregulation of this enzyme can lead to 

carcinogenesis. 

 

Materials and Methods 

Primer extension 

Primer extension was carried out on total RNA extracted from Arabidopsis 

cell culture. 0.25pmol of 5‘ end labeled oligonucleotide was incubated with total 

RNA at 95°C for 5 min and allowed to anneal in two sequential 15 min 
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incubations at 72°C, and 60°C, after which extension mix (50mM Tris-HCl pH 

8.3, 15mM KCl, 3mM MgCl2, 5% DMSO, 1mM DTT, 1mM dNTPs, 1.5U 

RNAseOUT® and 200U SuperScript III® reverse transcriptase (Invitrogen) was 

added to a 30µl final volume. The reactions were incubated at 58°C for 3 h. The 

enzyme was inactivated at 80°C for 10 min. The RNA was hydrolyzed by 

incubation at 70°C with 15µl of 1N NaOH for 10 min. The reaction was 

neutralized and precipitated with 15µl of 1N HCl, 20μl 3M NaOAc pH 5.2, 

ethanol and glycogen. The products were resolved by denaturing PAGE. 

 

In vitro telomerase reconstitution 

A TERT-pET28a plasmid with an N-terminal T7 tag was used for 

telomerase reconstitution experiments. Reactions were assembled with 100ng of 

TERT-pET28a plasmid and 0.5pmol or 0.1pmol of gel purified DNA template 

encoding TER1 or TER2 respectively, driven by a T7 promoter, in a mix 

containing Rabbit Reticulocyte Lysate (RRL) (Promega), amino acids, RNase 

inhibitors, and T7 RNA polymerase. Reactions were incubated for 90 min at 

30°C. T7 agarose beads (Novagen) were blocked with buffer W-100 (20mM 

TrisOAc [pH 7.5], 10% glycerol, 1mM EDTA, 5mM MgCl2, 0.2M NaCl, 1% NP-

40, 0.5mM sodium deoxycholate, and 100mM potassium glutamate) containing 

0.5mg/ml BSA, 0.5mg/ml lysozyme, 0.05mg/ml glycogen, 1mM DTT and 1µg/ml 

yeast tRNA. The reconstitution reaction was mixed with the beads to a 200µl 

final volume and incubated for 2 h at 4°C with rotation. Beads were washed 6X 
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with 800 µl of W-400 buffer (W-100 containing 400 mM potassium glutamate) 

and 3X with 800µl of TMG buffer (10mM TrisOAc pH 7.5, 1mM MgCl2, and 10% 

glycerol). After the final wash, beads were resuspended in 30µl of TMG. 2µl of 

beads were used for TRAP assays as previously described (130, 242). 

 

In vitro binding assays 

 For co-IP experiments, POT1a, POT1b, KU70 and KU80 cloned in 

pET28a with a T7 tag were co-expressed with TERs in RRL as described above. 

After IP RNA was extracted and RT-PCR was performed (see Supplementary 

Methods). 

 Electrophoretic mobility shift assays were performed with RNA 

transcribed in vitro with T7 RNA polymerase and [α-32P]-CTP labeled TER1 and 

TER2. Binding reactions contained 3µl of RRL expressed protein, 0.1pmol of 

32P labeled TER and 1X binding buffer (25mM Tris-HCl pH 8.0, 10mM 

Mg(OAc)2, 25mM KCl, 10mM DTT and 5% Glycerol) in a 30µl final volume. 1µM 

yeast tRNA and 0.5µM RNA (U3AG3)4 were used as nonspecific competitors. 

After 20 min at 30°C the reaction was loaded onto a 0.8% agarose 0.5X TBE gel 

and run for 2 h at 70 volts at 4°C. Gels were dried and exposed to 

phosphorimager screens.  

 For double-filter binding assays, TERT expressed in RRL was incubated 

with decreasing concentrations of pre-folded RNA transcribed in vitro using 5-

end 32P-labeled RNA as a tracer. Binding reactions contained 0.5µl of 
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recombinant protein, pre-folded TER in binding buffer (50mM Tris-HCl pH 7.5, 

200mM potassium glutamate, 0.5mg/ml BSA, 0.5mg/ml tRNA, 1mM MgCl2, 

1mM DTT and 0.01% NP-40) in a 25µl final volume. After 30 min at 30°C, the 

reactions were filtered through nitrocellulose and nylon filters using a dot-blot 

apparatus (BioRad). The membranes were washed with 600µl washing buffer 

(50mM Tris-HCl pH 7.5, 200mM potassium glutamate, 1mM MgCl2, 1mM DTT 

and 10% glycerol), dried, exposed to a phosphor storage screen and scanned 

after 2h.  Equilibrium dissociation constants, Kd, were obtained by non-linear 

regression of the binding data fitted to a one-site binding model using Graphpad 

Prism software. 

 

Plant materials and genotyping 

Arabidopsis seeds with a T-DNA insertion in TER2 (SAIL_556_A04) were 

obtained from the Arabidopsis Biological Resource Center (Ohio State 

University, Columbus, OH). Seeds were cold-treated overnight at 4°C, and then 

placed in an environmental growth chamber and grown under a 16-h light/8-h 

dark photoperiod at 23°C. Plants were transformed using the in planta method 

[88]. For genotyping, DNA was extracted from flowers and PCR was performed 

with the following sets of primers: #38: 5'-GACGACAACTAA 

ACCCTACGCTTACA-3' and #45: 5‘-CGATGTTGTTTTTCTGCTTAGGACACA-

3‘. To amplify mutant TER2 alleles containing a T-DNA insertion, the T-DNA 
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specific primer was used along with TER 8526-01 fwd: 5‘-

GAGACGCAGCGAGCGATAGCCGATAG-3‘ primer.  

 

Template mutation and plant transformation 

To generate template mutations in the template region of TER2, a PCR 

product containing the desired template mutation was generated with the 

primers TER2RSA fwd (5‘-CACCGACGACAACTAGTACCTACG CTTACA-3‘) 

and TER2 end reverse (5‘-AATTCTGTGTAGCTATGATCTTGTGGCA-3‘). The 

mutation was confirmed by sequencing. TER2RSA was cloned into the 

destination vector pB7WG2 and transformed into plants homozygous for the T-

DNA insertion in ter2-1. After transformation the seeds were selected in MS agar 

containing kanamycin at 50µg/ml.  

 

End-point RT-PCR and quantitative RT-PCR 

Total RNA was extracted from 0.5 g floral or other tissue using Tri 

Reagent (Sigma). cDNAs were synthesized from total RNA using Superscript III 

reverse transcriptase (Invitrogen). Random pentadecamers were incubated with 

2 µg of total RNA in the supplied buffer at 65°C for 5 min. Reverse transcription 

(RT) was carried out with 100U of Superscript III at the following temperatures 

37°C for 20 min, 42°C for 20 min and 55°C for 20 min. Enzyme was inactivated 

at 80°C for 10 min and RNA was degraded with RNase H (New England 

Biolabs). 1.5 µl of cDNA was used in PCR.  
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 For real-time RT-PCR, 2 µl of the above cDNA was used at a 1:10 

dilution in a 20µl reaction containing 10 µl of SyBr green master mix (NEB) and 

2 µl of each primer (2µM). PCR was performed for 40 cycles with 30 s at 95°C 

and 60 s at 60°C. Threshold cycle values (Ct) were calculated using an iCycler 

iQ thermal cycler (BIO-RAD) and the supplied Optical System Software.  

 

Quantitative RT-PCR data analysis 

Amplification efficiencies were calculated for each primer pair in a 5 point 

titration curve. The slope was calculated from a standard curve where Ct was on 

the y-axis and log(cDNA dilution factor) on the x-axis. The corresponding real-

time PCR efficiency (E) was calculated according to the equation: E=(10-

1/slope)-1. To correct for intra-assay and inter-assay variability, each sample 

was evaluated by tripicate within one run in at least three different experimental 

runs.  

The relative expression level (R) was calculated as follows: R = 

(Etarget)∆Cttarget(control-sample) / (Ereference)∆Ctreference(control-sample) 

as previously described (329). U6 snRNA and β-actin were used as reference. 

Normalization to the pre-immune control and to the efficiency for each antibody 

was used for RNA quantification in the pull-down samples. Primers used for real-

time PCR are as follows: TER1 Q4F:5‘-CCCATTTCGTGCCTATCAGACGAC-3‘. 

TER1 Q4R: 5‘-TCTCCGACGACCATTCTCTCGATAC-3‘; TER2#38: 5‘-GACGA 

CAACTAAACCCTACGCTTACA-3‘ and TER2#40: 5‘-CAGGATCAATCGGAG 
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AGTTCAATCTC-3‘; TER2S: TER2#38 and TER2S# 193: 5‘-CCCCATCTCCGA 

CGAGACGAC-3‘; TERT Q3F: 5‘-ACCGTTGCTTCGTTGTACTTCACG-3‘ and 

TERT Q3R: 5‘-CGACCCGCTTGAGAAGAAACTCC-3‘; U6-1F: 5‘-GTCCCTTCG 

GGGACATCCGA-3‘ and U6-1R: 5‘-AAAATTTGGACCATTTCTCG A-3‘ β-Actin 

2F: 5‘-TCCCTCAGCACATTCCAGCAGAT-3‘ and β-Actin 2R: 5‘-AACGATTCCT 

GGACCTGCCTCATC-3‘. 

 

TRF analysis, TRAP and Q-TRAP assays 

TRF and TRAP assays were performed as previously described [29,64]. 

TRAP products from mutant TER2RSA telomerase, a specific mutant reverse 

primer 5‘-CCTAGTACCTAGTACCTAGTACCTA-3‘ was used. Q-TRAP was 

performed as previously described (242). 

 

Antibodies, immunoprecipitation and western blotting 

AtKU70 antibodies were kindly provided by Dr. Karel Riha (Gregor 

Mendel Institute, Vienna). AtTERT and AtPOT1a antibodies have been 

previously described (130, 242). The anti-dyskerin polyclonal antibody was 

raised in rabbits against recombinant full-length AtNAP57 expressed in E. coli. 

The POT1b is an affinity-purified peptide antibody (Covance). IP efficiency was 

calculated for each antibody using 35S labeled protein expressed in rabbit 

reticulocyte lysate. Western blotting was performed with a 1:2000 dilution of anti-

KU70, anti-POT1a, anti-POT1b, anti-TERT and anti-Histone H3 antibodies 
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(Upstate). The anti-dyskerin antibody was used at a 1:5000 dilution. Peroxidase-

conjugated light chain-specific mouse anti-rabbit secondary antibody (Jackson 

Immunoresearch) was used at a 1:20,000 dilution. Following IP, RNA was 

phenol:chloroform extracted from the beads and subjected to RT using 

superscript III® reverse transcriptase (Invitrogen) and random pentadecamers. 

 

Glycerol gradient fractionation 

In vitro reconstitution reactions were scaled-up to 400μl final volume and 

fractionated on a 10 mL 10-50% glycerol gradient in 20mM HEPES, pH 8.4, 

100mM NaCl, 10mM MgCl2, 1mM EDTA, 1mM DTT, 0.1% NP40 for 20h at 

35000 rpm in a SW-40 rotor (Beckman) at 4C. Fractions of 500ul were collected 

manually from the top of the gradient. The following size standards were run 

under the same conditions: Cytochrome c (12.4 kDa, 1.8S), bovine serum 

albumin (66 kDa, 4.3S), β-amylase (200kDa, 8.9S) and Thyroglobulin (669 kDa, 

19S). 
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CHAPTER IV 

CHARACTERIZATION OF THE POT1a-TER1 INTERACTION 

 

Summary 

In most organisms the proteins that bind telomeric single-stranded DNA  

do so via OB-fold domains. In Arabidopsis, the OB-fold containing protein 

POT1a has evolved to bind TER1 and to work as a positive regulator of 

telomerase.  Here we report the structural and sequence requirements of the 

POT1a-TER1 association. Using a combination of deletional mutagenesis, 

nucleotide substitutions and RNA structure predictions we identify a minimal 

POT1a binding region of 38 nt within the hypervariable 5‘-end of TER1. This 

region is characterized by a 6nt U-C rich internal loop flanked by two base-

paired stems. Notably, structures with similar characteristics were found in 

putative TER subunits from Arabidopsis close relatives. In particular, the putative 

TER1 of Brassica is highly similar in sequence composition and architecture to 

the AtTER1-POT1a interacting region and shows co-variation in the base paired 

stem required for POT1a recognition. We show that the two AtPO1 OB-folds act 

as nucleic acid recognition domains. TER1 binding is supported by the first OB-

fold, although a more robust interaction is observed with both OB-folds. Our data 

suggest RNA binding activity is not unique to Arabidopsis POT1, but rather is a 

widespread phenomenon in plants. 
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Introduction 

  In most eukaryotes, the terminal portion of telomeric DNA is 

characterized by a single-stranded extension of the 3‘-end of the G-rich strand.  

This G-rich extension or G-overhang is required for telomere maintenance by 

telomerase, as this enzyme does not extend double-stranded blunt ends (330). 

The reverse transcriptase subunit of telomerase (TERT) employs a telomeric 

sequence within the telomerase-associated RNA (TER) as a template for the 

addition of G-rich telomeric DNA repeats (14-15). The 3‘ terminus of the G-

overhang is aligned on TER and extended one nucleotide at a time until the end 

of the template has been copied into DNA. The DNA 3‘ end is subsequently 

repositioned back to the beginning of the TER templating domain for another 

round of synthesis. 

TER molecules are highly variable in nucleotide sequence and size: 159 

nt in Tetrahymena (14), 380-560 nt in vertebrates (231, 320) and ~930-1540 nt 

in budding and fission yeast (50, 171, 331). Phylogenetic and mutational 

analysis has uncovered several functionally conserved secondary structure 

domains (Fig. 7, Chapter I). One element is the boundary domain, which is 

located immediately 5‘ of the template and defines the margins for reverse 

transcription. In addition, TER subunits are proposed to form a pseudoknot close 

to the template as well as a trans-activation domain. Vertebrate TER subunits 

contain an additional CR7 domain and a box H/ACA motif, while yeast TER 

transcripts contain sites for Est1 and Sm binding. Remarkably, telomerase 
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activity can be reconstituted in vitro with human TERT and two sub-domains 

within TER, the pseudoknot/ template region and the CR4/CR5 trans-activation 

domain (332). A truncated or ―Mini T‖ version of yeast TER has also been 

reported (294). 

 TER is modular and is a highly flexible scaffold for telomerase-associated 

proteins. These accessory factors diverge among different organisms and 

participate in biogenesis, regulation and recruitment of telomerase to the 

telomere. For instance, Tetrahymena telomerase associates with factors that 

both positively and negatively regulate enzyme function (333). Human and 

budding yeast TER subunits are bound by the Ku70/80 heterodimer (182, 312) 

and in yeast Ku acts a positive regulator of telomerase (182, 252). Additionally, 

the yeast TER binds Est1, a key regulatory protein necessary for telomerase 

recruitment to the chromosome terminus (98, 100, 247).  

In Arabidopsis, TER1 and TER2 associate with different sets of proteins 

that are proposed to influence the RNP function (see Chapters II and III). KU70, 

a powerful negative regulator of telomere length, associates preferentially with 

TER2. Interestingly, POT1 family proteins distribute to both TER subunits and 

are implicated in the positive and negative regulation of telomerase (see 

Chapters II and III). 

 POT1 (Protection of Telomeres) was first identified in fission yeast as an 

essential oligosaccharide/oligonucleotide binding fold (OB-fold) containing 

protein that binds the ss 3‘-end G-overhang. A POT1 deficiency results in rapid 
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loss of telomeric and subtelomeric DNA (28, 334). POT1 homologs have been 

found in most eukaryotes (28, 118, 129, 132, 314, 335-337) and the vast 

majority of those characterized so far are implicated in chromosome end 

protection (Ref). Vertebrate POT1, functions by preventing the activation of the 

ATR-mediated DNA damage response (118, 336, 338). In addition, POT1 forms 

a heterodimer with TPP1, a homolog of the ciliate TEBP-β, which is proposed to 

regulate telomerase activity (121, 316) and increase telomerase processivity 

(120, 197).  

While most mammals encode a single POT1, rodents express two POT1 

paralogs that share 72% identity: mPOT1a and mPOT1b (118). Both POT1a and 

POT1b associate with TPP1 and their combined function results in protection of 

the chromosome end from DNA damage response (118, 316). Notably, the 

prevention of ATR activation relies on POT1a, whereas POT1b prevents C-

strand resection (118, 339). 

 In several other organisms, including ciliates, worms, and Arabidopsis 

(40, 119, 129, 326), more than one POT1 paralog is present. These paralogs 

play different roles in telomere metabolism. Tetrahymena encodes two POT1 

homologs. In Tetrahymena, TtPOT1a is a negative regulator of telomere length 

and prevents activation of a cell-cycle checkpoint (326). The function of 

TtPOT1b is currently unknown. C. elegans encodes at least four POT1 proteins 

bearing sequence homology to the OB-fold of vertebrate POT1 (40). Notably, 

these proteins show different ligand specificities.  CeOB1 binds single-stranded 
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G-rich telomeric DNA, while CeOB2 binds single-stranded C-rich telomeric DNA. 

Depletion of either protein results in telomere length defects and increased 

recombination, although the extent of the phenotype is slightly different for each 

mutant (40). 

 Like POT1 proteins from vertebrates, Arabidopsis encodes more than one 

POT1 homologs; In this case, POT1a, POT1b and POT1c. POT1a and POT1b 

contain two N-terminal OB-folds and a C-terminal domain (129), Nelson A. and 

Shippen DE unpublished data). POT1c, though, only harbors a single OB-fold. 

POT1a and POT1b are highly divergent, displaying only 49% protein sequence 

similarity. As discussed in Chapters II and III, Arabidopsis POT1 proteins do not 

associate with single-stranded DNA, but instead have evolved to bind TER and 

to regulate telomerase activity.  

 POT1a is an accessory factor of the telomerase RNP (130, 313). 

Specifically, it associates with TER1 and functions as a positive regulator of 

telomerase (130, 313). pot1a null mutants display an ever-shorter-telomere 

phenotype, yet chromosome ends are  fully protected in these mutants (130). 

POT1b, on the other hand, associates with TER2 and negatively regulates 

telomerase (Chapter III). Strikingly, POT1c associates with both TER1 and 

TER2. Finally, over-expression of dominant negative alleles of POT1b or POT1c 

result in genome instability, suggesting that Pot1b and POT1c contact a critical 

component of the telomere capping complex in addition to their interaction with 

telomerase (129).  
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 The differences observed in nucleic acid binding specificity between 

Arabidopsis POT1 proteins and their homologs led us to dissect the fundamental 

aspects of the POT1a-TER1 interaction. Here we define a minimal POT1a 

binding site within the TER1 5‘-end hypervariable region, upstream of the 

templating domain. This region is conserved in TER1 homologs from 

Arabidopsis close relatives.  Additionally we demonstrate that POT1a, like POT1 

proteins from other organisms, binds nucleic acid through its OB-folds. Finally, 

we present evidence for functional homology between Arabidopsis POT1a and 

yeast Est1. Altogether, our results suggest that AtPOT1a has evolved to play 

multiple roles in telomeres biology. 

 

Results 

Pot1a interacts with the 5’ unique region of TER1 

With the goal of obtaining a detailed structural model of the POT1a-TER1 

complex, we sought to identify the POT1a-binding site of TER1 as the initial step 

in the characterization of their interaction. TER is so highly divergent at the 

nucleotide level that sequence alignments can be performed with confidence 

only among very closely related organisms (169-170, 172, 340-341).  This 

suggests that TER molecules from different species share conserved secondary 

structural elements (169-170, 172, 340-341). We began by generating a 

preliminary structural model of TER1 from A. thaliana.  
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Our collaborator, Dr. Yehuda Tzfati (Hebrew University) used Mfold to 

generate a putative partial secondary structure for TER1 (Fig. 31). He defined 

common elements in all the Mfold the predicted secondary structures.  

Secondary structural elements common to TER in other organisms were 

observed in the predicted AtTER1 structure. A region forming a putative 

template boundary was found immediately 5‘ of the template.  Secondary 

structure elements were also found that are consistent with the formation of a 

pseudoknot with three U-A:U base triples. To predict the rest of the secondary 

structure, Mfold was constrained to form the predicted template boundary region 

and pseudoknot, while keeping the template single-stranded.  A small stem 

resembling p6.1, a key component of the CR4/CR5 domain in vertebrate TER 

(169), as well as a perfect Sm consensus sequence (AU4G), was identified near 

the 3' end of the RNA.  These observations are consistent with modular folding 

of for TER subdomains. 
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Figure 31. Preliminary secondary structure model of A. thaliana TER1. This 

structure includes the core conserved TER domains. The single-stranded template 

region (purple line) and the template boundary element (green lines) are indicated, as 

well as a putative Sm binding site and a predicted pseudoknot.  (Model was generated 

by Dr. Yehuda Tzfati, Hebrew University). 
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We reasoned that the POT1a binding site must reside in a region of TER1 

that is not found in TER2, since POT1a binds TER1 and not TER2.  Also, since 

the highly conserved R1 region of both RNAs is sufficient to reconstitute 

telomerase activity in vitro (Chapter II), this region is bound by TERT and is 

likely to be inaccessible to other proteins. To test this hypothesis, we designed 

three constructs to test binding by electrophoretic mobility shift assay (EMSA). 

We did not observe association of POT1a with a construct containing the TER1 

R1 and R2 conserved regions nor with the construct corresponding to the TER1 

3‘unique region (Fig. 32). This finding suggests that POT1a binds within the 5‘ 

non-conserved region upstream of the template. 

The folding prediction for AtTER1 showed a gap upstream of the template 

domain that was not predicted to be part of the core functional elements of TER1 

required for telomerase activity (Fig. 31). This 160 nt gap (nucleotides 87-234) is 

contained within the 5‘ region that is unique to TER1 and not present in TER2. 

We divided the TER1 5‘ unique region into three overlapping constructs of 

~120nt and tested each one for binding to POT1a. Binding was observed with 

constructs 57-176 and 117-233, suggesting that the POT1a binding site may 

reside in the overlapping region. No association was detected with construct 1-

117, which corresponds to the most 5‘ region of TER1 and includes the 5‘-most 

86nt that are predicted to form part of the TER1 core structure (Fig. 33). 
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Figure 32. POT1a associates with the 5’ unique region of TER1. (A) Diagram of 

TER1 indicating the template, 5‘-unique, 3‘-unique and conserved regions. (B) Results 

from electrophoretic mobility shift assays. Labeled RNAs are indicated. RRL alone and 

TRFL4, a ds telomeric DNA binding protein, were used as controls.    
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Figure 33. POT1a associates with a region upstream of TER1 template. (A) 

Diagram of TER1 indicating overlapping constructs within the TER1 5‘ unique region. 

(B) Results from electrophoretic mobility shift assays. Labeled RNAs are indicated. RRL 

alone and TRFL4, a ds telomeric DNA binding protein, were used as controls.    
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We next examined 60nt overlapping constructs covering the 117-233 

region. No tested binding to POT1a was observed (data not shown), suggesting 

that the structure of TER1 may be important for POT1a binding. Since our 

secondary structure model predicts that TER1 folds into modular independent 

domains, Dr. Tzfati used Mfold to generate a secondary structure prediction for 

the TER1 5‘ unique region (http://mfold.bioinfo.rpi.edu/cgi-bin/rna-form1.cgi) 

(342).  

Nine structures were predicted for this region. Secondary structure 

elements within these predictions were analyzed. A smaller fragment (117-242) 

was fed into MC-fold program (http://www.major.iric.ca/MC-Pipeline/), which 

provides secondary structure prediction, but also include non-canonical base 

pairing patterns and tertiary structure information (343). The resulting structure is 

shown in Fig. 34. In this structure there are two main stem-loop elements 

separated by a spacer, part of which is predicted to pair with one of the loops to 

form a pseudoknot. The templating domain is located immediately 3‘ of this 

fragment and it is predicted to be in a single-stranded conformation (Fig. 34). We 

divided the structure in three domains: a 5‘ stem-loop, a ss linker and a 3‘ stem 

loop and tested these domains for binding to POT1a.  

 

 

 

 

http://mfold.bioinfo.rpi.edu/cgi-bin/rna-form1.cgi
http://www.major.iric.ca/MC-Pipeline/
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Figure 34. Secondary structure prediction the TER1 region bound by POT1a. This 

structure was generated the MC-fold software, which gives additional information about 

RNA tertiary structure (343). The template region is indicated in red font. 
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Interestingly, Pot1a binding was only observed with those constructs 

containing the 5‘ stem-loop (Fig. 35C). The 3‘-stem is very stable and predicted 

in most of the nine alternative structures. The failure of AtPOT1a to bind this 3‘-

stem is consistent with binding analysis of a fragment comprising nucleotides 

184-233 (data not shown).  

Since OB-fold domain proteins bind ss nucleic acids, we hypothesized 

that POT1a was likely to associate with a ss stretch in TER1. There are three 

potential POT1a binding sites in the 117-242 structure: two loops within the 5‘ 

stem-loop (nucleotides 117-185) and the ss linker (186-200) (Fig. 34). In vitro 

binding experiments showed that although the nucleotide composition of these 

three regions is highly similar, POT1a does not associate with the linker domain 

(Fig. 35D). Thus, the requirements for POT1a ligand recognition appear to rely 

on the RNA structure or a combination of structure and sequence. This finding 

also raises the possibility that the linker is required to form the predicted 

pseudoknot structure and ensure a proper conformation. 
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Figure 35. POT1a binds to a loop-stem-loop in the 5’ end of TER1. The POT1a 

binding site in TER1 was mapped using a combination of deletional mutagenesis and 

EMSA. (A-D) Top, predicted secondary structure of the TER1 constructs. Bottom, 

EMSA results with the corresponding radiolabeled RNA and POT1a. RRL alone was 

used as a negative control. 
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 We designed constructs containing nucleotide substitutions or deletions in 

one or both loops within the 5‘-stem-loop structure (Fig. 34 and 36A). Loop A 

corresponds to nucleotides 144-152 and loop B to nucleotides 130-133 and 163-

170. The effect of these changes was monitored by Mfold and the constructs 

were tested for POT1a association by filter binding (Fig. 36A). POT1a only 

associated with a construct that retained the wild type sequence and structure of 

the B loop (Fig. 34 and 36A) and which lacked loop A. No binding was detected 

for the other constructs, suggesting that POT1a associates with the B loop in 

TER1. The only nucleotide change within the single-stranded region of the loop 

that affected binding was cytidine 167 to adenine, indicating that this residue 

may be a major contact for POT1a (Fig. 36A). Finally, mutation of the uracils 

162-164 to adenine in the duplex region upstream of the C-U rich loop, to 

expand the loop abolished binding. Thus, binding site architecture is important 

for POT1a association. 

In summary, we obtained a minimal POT1a ligand of 42 nt (including 

three uridils to favor formation of the structure) derived from the 150nt 

immediately upstream of the template in TER1, which is composed of a C-U rich 

loop flanked by two 10-base pair stems (Fig. 36B). Although, further experiments 

are required to dissect the absolute minimal requirements for the POT1a-TER1 

interaction, this 42 nt ligand is suitable for co-crystallization studies. 
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Figure 36. POT1a binds to a bulged stem in TER1.  Additional constructs were tested 

by filter binding assay to establish the POT1a binding site in TER1. (A) Quantification of 

filter binding data. (B) Minimal POT1a-TER1 binding site. Three Uridils (red font) were 

added to facilitate secondary structure formation. Cytidine 167, as well as the three 

Uridils that disrupted POT1a association are underlined in red. 
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The POT1a binding site is conserved in TER1 from other plant species 

 Although POT1a orthologs from several plant species have been 

identified, their nucleic acid binding specificity is unknown. Notably, analysis of 

POT1a from a wide range of eudicots failed to reveal DNA binding activity in 

vitro (131) (Fig. 37). Thus we hypothesize that RNA binding activity may be a 

conserved property of POT1a from eudicots.  In collaboration with Dr. Mark 

Beilstein, putative TER1 sequences from eight close relatives of Arabidopsis 

were obtained by High-efficiency thermal asymmetric interlaced PCR (TAIL-

PCR), using degenerate primers designed based on the TER1 genomic region 

(see Materials and Methods). If TER1 binding is a conserved function of plant 

POT1a, we would expect similarities in the secondary structure and location of 

the POT1a binding site. The putative TER1 sequences from Arabidopsis close 

relatives (Fig. 38) were aligned using Clustal 2.0.10 software (EMBL-EBI). All 

sequences showed conservation from the template region through the TER1 

region overlapping the putative SnRK1-interacting protein 1 coding sequence. 

However alignment of the region upstream of the template is much less robust 

(Fig. 39) and suggests that this region of TER1 is hypervariable. 
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Based on the location of the AtPOT1a binding site in TER1, we performed 

secondary structure predictions of the 150nt upstream of the template of putative 

TER1 subunits using the MC-fold software (343). Several alternative predictions 

were generated for each TER1. Among these predictions, we found a 

consensus structure in three out of eight species (Fig. 40).  

Overall the structure can be described as two duplex regions flanking a 

C-U rich loop (Fig. 40 A-B). In two cases the C-U rich loop is located at the end 

of a stem insertion (Fig. C-D). Interestingly, the prediction for Brassica TER1 is 

highly similar to its Arabidopsis counterpart. Moreover, the three U-A base pairs 

closest to the loop, which are important for interaction of AtPOT1a with AtTER1 

show co-variation in Brassica TER1.  

In summary, these findings suggest that the stem is conserved in several 

plant species and hence may represent a functional site in TER1 for binding of 

POT1a. 
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Figure 37. Phylogenetic tree of plant POT1 proteins. DNA and RNA binding 

activities, as well as capping function of known plant POT1 proteins are indicated. 1a, 

POT1a. 1b, POT1b. (Generated by Dr. Mark Beilstein). 

 

 

 

 



 

 

152 

 

 

 

 

Figure 38. Phylogenetic tree of the Brassicaceae family.  Composite tree based on 

Beilstein et al. 2006 & Beilstein et al. 2008 that approximates the organismal phylogeny 

of Brassicaceae. , indicates the positive identification of putative TER1 or POT1a 

orthologs. (Generated by Dr. Mark Beilstein) 
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Figure 39. Sequence alignment of putative TER1 sequences of Arabidopsis close 
relatives.  Color codes are assigned to nucleotides to indicate sequence conservation: 

Green, C; Blue, T; Red, A; Yellow, G. TER1 sequences from seven different plant 

species are aligned. The conserved template domain, as well as the hypervariable 5‘ 

and 3‘ regions are indicated. Start corresponds to the start codon of the overlapping 

SnRK1  protein coding gene (Generated by Dr. Mark Beilstein).  
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Figure 40. Secondary structure prediction for Arabidopsis close relatives.  C-U 

rich loops were detected in the 5‘ divergent region of putative TER1 (red circle). MC-fold 

software was used to predict the structures (343). 
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POT1a OB-folds are responsible for TER1 binding 

 The crystal structure of human POT1a bound to its ss DNA substrate 

shows that the OB-fold domains are responsible for ligand recognition (122). We 

conducted binding studies with TER1 and a limited series of POT1a truncation 

mutants to map the RNA binding site in POT1a (see Chapter II, Fig. 18A). 

POT1a association with TER1 was dependent on the N-terminal half of the 

protein, which is predicted to encode two OB-folds. No signal above background 

level was detected with the C-terminal portion of the protein, although binding 

was detected with the first OB-fold alone, binding detected with both OB-1 and 

OB-2 was about two-fold higher than with OB-1 alone. We conclude that both 

OB-1 and OB-2 contribute to recognition of TER1. 

A phenyalanine residue, F62, located within OB-1 plays a critical role in 

the telomeric DNA interaction with human POT1 (119, 122). This residue is 

conserved in POT1 proteins from different organisms and in Arabidopsis POT1a 

it corresponds to F65 (Fig. 41A). Superimposition of AtPOT1a OB1 onto the 

crystal structure of hPOT1 predicts F65 resides within the recognition pocket 

(Croy, J. and Wuttke, D., University of Colorado, Fig 41B). Therefore, we tested 

if AtPOT1a F65 is important for TER1 recognition. A point mutation in OB-1, 

F65A, reduced the affinity of POT1a for TER1 in vitro (data not shown). In 

contrast no effect on affinity was observed when another highly conserved 

phenylalanine also located within OB-1 (data not shwon), but predicted outside 
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the recognition pocket, was mutated. We conclude that AtPOT1a recognition of 

TER1 may share characteristics of the POT1-ssDNA recognition. 

 

 

 

 

 

 

 

Figure 41. AtPOT1a Phe65 may be important for TER1 recognition. Alignment of 

POT1 proteins from different species. At, Arabidopsis thaliana; Os, Oryza sativa; Hs, 

Homo sapiens; Mm, Mus musculus; Sp, Schizosaccharomyces pombe. Arrow indicates 

the position of the highly conserved phenylalanine corresponding to F65 in AtPOT1a. 

(B) Structural docking of AtPOT1a OB-fold onto hPOT1 OB-fold. (Generated by Croy, J. 

and Wuttke, D., University of Colorado). The position of F65 and F92 are indicated. 
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Discussion 

POT1 proteins are a conserved group of OB-fold-containing proteins that 

bind ss telomeric DNA and play essential roles in chromosome-end protection 

and telomere length regulation.  The main functions of POT1 appear to be 

conserved among most eukaryotes. Arabidopsis POT1 is a notable exception. 

None of the three POT1 paralogs in this organism binds telomeric DNA (131). 

Instead, these proteins have evolved a capacity for RNA binding as well as 

functions in telomerase regulation (129-130, 313).. To further characterize the 

POT1a-TER1 interaction, and to obtain a protein-RNA complex amenable for co-

crystallization experiments, we sought to determine the minimal POT1a binding 

site in TER. 

 

Functional analogies between POT1a and EST1 

We determined that the minimal POT1a binding site is located in the 5‘-

unique region of TER1.  The binding site consists of a C/U-rich loop flanked by 

two 10 base-pair stems, approximately 70 nt immediately upstream of the 

template sequence.  Mutation of a single C residue in the loop region or base-

paired U residues in the upstream stem leads to loss of POT1a binding.  This 

suggests that POT1a makes both structure and sequence-specific contacts with 

TER1.  

 The architecture of the POT1a binding site resembles the yeast Est1 

binding site in Tlc1 (Fig 42). It is a highly conserved bulged stem structure that 



 

 

158 

was initially identified by sequence alignment of telomerase RNAs of seven 

yeast species. Mutagenesis studies indicate that this bulged stem structure is 

essential for telomerase function in vivo, by serving facilitating the association of 

Est1p, a telomerase recruitment factor (181). Like POT1a, Est1 is a component 

of yeast telomerase that binds the RNA subunit, Tlc1 (181). Antibodies raised 

against Est1 immunoprecipitate Tlc1 as well as telomerase activity (344-345).  In 

addition, est1 mutants also show the ever shorter phenotype observed in the 

telomerase reverse transcriptase, est2 mutants (17). 

There is evidence for diverse proteins from different organisms playing 

conserved roles in telomere biology.  For example, our lab showed that 

Arabidopsis CTC1 is a functional homolog of a component of the yeast CST 

complex, Cdc13, a G-overhang DNA binding protein that recruits the telomerase 

RNP via a direct interaction with Est1 (98, 247).  In line with this, preliminary 

results suggest that POT1a interacts with the C-terminal region of CTC1. 

Moreover active telomerase RNPs, containing at TERT, TER1 and POT1a, co-

purify with tagged CTC1 (Song X and Shippen D. unpublished data). Together, 

our results suggest that Arabidopsis POT1a may be a functional homolog of 

yeast EST1 and further suggest that POT1a may function as a telomerase 

recruitment factor through its interaction with CTC1.   
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Fig. 42. Structural similarities between the Est1-Tlc1 and POT1a-TER1 binding 
sites. (A) Est1 binding site in Tlc1 (Seto, et al 2002). Phylogenetically conserved 

sequence in the bulged stem of Tlc1. Indicated nucleotides are conserved between 

yeast species; * indicates nucleotides that show co-variation; and red circle indicates a 

position in the bulge where the sequence is not conserved. (B) Predicted structure of 

the POT1a-TER1 binding site in Arabidopsis thaliana. Red font, mutations in these 

nucleotides abolishes binding. Underlined green C, Cytidine 167. Purple square, 

indicates co-variation between Arabidopsis thaliana and Brassica. (C) Predicted 

Brassica POT1a-TER1 binding site. 
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The OB-folds in POT1a mediate its interaction with TER1 

The OB-fold is a conserved protein domain consisting of a five-stranded 

beta-sheet coiled to form a closed beta-barrel that is capped by an alpha-helix 

between the third and fourth strands (70).  It is found in many nucleic acid-

binding proteins and can also mediate protein-protein interactions (70).  Proteins 

of the POT1 family contain two N-terminal OB-folds that in most organisms 

serve as major points of contact ss DNA.  Arabidopsis POT1a shows a different 

nucleic acid-binding specificity, binding TER. We found that this interaction is 

also mediated through OB-folds (Chapter II, Fig 18A).  Mutation of F65, a 

conserved Phenylalanine and a major determinant in the recognition of ss 

telomeric DNA by POT1 from yeast and vertebrates, leads to reduced TER1 

binding and only a partial functional complementation in vivo (Song X and 

Shippen D. unpublished data).  This observation suggests that POT1a-TER1 

and POT1-DNA complexes may assemble in a similar manner. Interestingly, it 

was recently reported that the corresponding Phe in human POT1 (Phe 62) 

plays a major role in preventing RNA binding (272).  Thus, the structural 

characterization of the POT1a-TER1 complex may reveal how Arabidopsis 

POT1a evolved its ability to bind RNA.  

 

The POT1a binding site is conserved in other plant TER1s 

 Phylogenetic analysis revealed the existence of putative TER1 homologs 

in various Arabidopsis close relatives.  Secondary structural prediction showed 
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conserved bulged-stem structures upstream of the putative templating domain 

that are the hallmarks of a POT1a binding site.  Although additional experiments 

are required to establish the functional significance of these conserved structural 

motifs, our results suggest that the interaction between POT1a and TER1 may 

not be restricted to Arabidopsis, but may represent a fundamental function of 

POT1a from eudicots.  Intriguingly, the Est1 binding site of Tlc1 is also 

conserved among various fungal species (309, 346), which supports our 

hypothesis of the functional homology between yeast Est1 and POT1a as well 

as the co-evolution of plant POT1a and TER1.   

 

Materials and Methods 

In vitro binding assays 

 Electrophoretic mobility shift assays were performed with RNA 

transcribed in vitro with T7 RNA polymerase and [α-32P]-CTP labeled TER1. 

Binding reactions contained 3µl of RRL expressed protein, 0.1pmol of 32P 

labeled TER and 1X binding buffer (25mM Tris-HCl pH 8.0, 10mM Mg(OAc)2, 

25mM KCl, 10mM DTT and 5% Glycerol) in a 30µl final volume. 1µM yeast 

tRNA and 0.5µM RNA (U3AG3)4 were used as nonspecific competitors. After 20 

min at 30°C the reaction was loaded onto a 0.8% agarose 0.5X TBE gel and run 

for 2 h at 70 volts at 4°C. Gels were dried and exposed to phosphorimager 

screens.  
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 For double-filter binding assays, RRL expressed protein was incubated 

with decreasing concentrations of pre-folded RNA transcribed in vitro using 5-

end 32P-labeled RNA as a tracer. Binding reactions contained 0.5µl of 

recombinant protein, pre-folded TER in binding buffer (50mM Tris-HCl pH 7.5, 

200mM potassium glutamate, 0.5mg/ml BSA, 0.5mg/ml tRNA, 1mM MgCl2, 

1mM DTT and 0.01% NP-40) in a 25µl final volume. After 30 min at 30°C, the 

reactions were filtered through nitrocellulose and nylon filters using a dot-blot 

apparatus (BioRad). The membranes were washed with 600µl washing buffer 

(50mM Tris-HCl pH 7.5, 200mM potassium glutamate, 1mM MgCl2, 1mM DTT 

and 10% glycerol), dried, exposed to a phosphor storage screen and scanned 

after 2h.  Equilibrium dissociation constants, Kd, were obtained by non-linear 

regression of the binding data fitted to a one-site binding model using Graphpad 

Prism software. 

 

Structure prediction of plant POT1 proteins   

The secondary structure of each plant POT1 protein sequences was 

determined using the secondary structure prediction server PSIPRED v2.6 

(347).  Generation of theoretical structural models for the OB1 domains present 

in each plant POT1 protein was accomplished using threading techniques. Best 

structural templates for each plant POT1 protein was selected based on the best 

alignment score generated from a CLUSTAL alignment (348), which was found 

to be the N-terminal OB1 domain present in Oxytricha nova. Optimum sequence 
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alignments were done using PROMALS (349), which couples primary sequence 

homology with secondary structure prediction to align two sequences that are 

poorly conserved in primary sequence. PROMALS aligned sequences were 

submitted to the SWISS-MODEL threading server 

(www.swissmodel.expasy.org) (350).  Generated models were then subjected to 

a GROMOS96 energy minimization to adjust bond lengths, angles and 

geometries using Swiss-PDB Viewer (351). 
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CHAPTER V 

INITIAL INVESTIGATIONS INTO THE BIOGENESIS OF TER2S 

 

Summary 

Telomeres are nucleoprotein complexes that protect the ends of linear 

chromosomes from being recognized as double-strand breaks. Telomeres are 

replicated and maintained by a ribonucleoprotein reverse transcriptase called 

telomerase, which uses its essential RNA subunit (TER) to direct synthesis of 

telomeric repeats. Arabidopsis encodes three TER isoforms, TER1, TER2 and 

TER2S, a processed from of TER2. Here we present the initial characterization 

of TER2s production. We show that TER2S is a bona fide TER isoform, and the 

product of TER2 self-splicing. Notably, the processing of TER2 is not mediated 

by a group I or II self-splicing intron mechanism, since TER2S production does 

not require a guanosine or Mg2+ cofactor. TER2 processing results in lower 

levels of active telomerase from reconstituted RNPs. These findings suggest 

that TER2 self-splicing may be a novel mechanism for regulation of telomerase 

RNP in vivo.   
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Introduction 

 Organisms with linear chromosomes rely on telomeres for chromosome 

end protection. Due to the end replication problem, telomeres cannot be fully 

replicated by the conventional DNA replication machinery. Instead, the 

ribonucleoprotein telomerase is charged with replenishing the terminal 

sequences that are lost with each cell division (352). In most cell types, the 

action of telomerase is not sufficient to compensate for telomeric DNA loss, 

ultimately resulting in cellular senescence after a determined number of cell 

divisions (200, 353). Increased levels of telomerase are not the solution for cell 

aging either, since high levels of telomerase can fuel cancer (190, 270, 354).  

Telomerase, at its core, is composed of a reverse transcriptase subunit 

(TERT) and an RNA component (TER) that serves as template for nucleotide 

addition to the single-stranded G-rich telomeric 3‘ overhang (134, 149, 355-356). 

TERT, the catalytic protein component of telomerase, is highly conserved 

among most eukaryotes and resembles viral reverse transcriptases in its 

catalytic core (357). In contrast, TER molecules are extremely divergent in 

sequence and size: ~150 nt in ciliates (14), ~450 nt in humans (231), ~750nt in 

Arabidopsis  (313) and Chapter II) and ~1300 nt in budding yeast (170). 

Mutations in human TER result in the genetic disorder dyskeratosis congenita, a 

devastating disorder characterized by insufficient renewal capacity of stem cells 

in skin and bone marrow (184, 358-360). 
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Phylogenetic studies and mutational analysis reveal that TER moieties 

from different organisms share functionally conserved secondary structure 

elements (169-170, 340-341, 361), including a single-stranded templating 

domain typically corresponding to one and a half telomeric repeats flanked by a 

5‘ boundary element and a 3‘ pseudoknot domain (172). Vertebrate TER 

subunits harbor an additional CR7 domain and a box H/ACA snoRNA motif, 

which binds dyskerin and is required for RNP maturation and TER nuclear 

localization (147). In contrast, the budding yeast TER assembles with Sm-

proteins and is processed as a snRNA (246).   

 Recent studies in Saccharomyces pombe indicate that processing of the 

3‘ end of TER1 is required for telomerase function (324).  A poly(A) site is found 

in the TER1 locus and TER1 transcripts bearing a poly(A) tail are detected (171, 

324), However, the TER1 transcripts that associate with telomerase do not 

contain a poly(A) tail.  Further analysis showed that processing of the SpTER1 3‘ 

end is mediated by the spliceosome. Strikingly, the mechanism of processing is 

not via conventional splicing: only the first transesterification reaction occurs, 

releasing the active form of the RNA without exon ligation. This process has 

been termed slicing (324). Failure to process SpTER1 results in telomerase 

inhibition. Thus, RNA processing may play a key role in telomerase biogenesis 

and function. 

We have shown that Arabidopsis telomerase associates with a processed 

form of TER2, called TER2S (Chapter III). Cloning and sequencing experiments 
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indicate that TER2S is composed of the two conserved regions of TER2, joined 

together (Chapter III). The exact 5‘ and 3‘ ends of this transcript are still 

unknown. TER2S associates with TERT in vitro and in vivo (Chapter III) and 

telomerase activity can be reconstituted with a transcript corresponding to the 

conserved regions of TER2 (Chapter II). However, it is TER1 and not TER2 or 

its processed form, TER2S that functions as the primary template of telomerase 

for telomere maintenance in vivo (Chapter III). Thus, the role of TER2 

processing is unknown. Despite this lack of understanding regarding TER2S 

function, the production of this TER isoform is developmentally regulated. 

Furthermore, TER2S associates with POT1b, a negative regulator of telomerase 

activity (Chapter III). These findings suggest that TER2 processing is likely to 

play a role in telomere biology in vivo. 

In this chapter, we present an initial characterization of TER2 processing. 

We show that TER2S is a bona fide TER isoform product of TER2 self-splicing. It 

is produced in vitro independently of the addition of TERT or any other protein. 

Also, we show that the production of TER2S does not require guanosine or Mg2+ 

as cofactors, suggesting that the mechanism of TER2 processing is not related 

to that of group I or II introns.  This finding suggests that TER2S production may 

occur via a Hepatitis Delta Virus or hairpin ribozymes self-splicing mechanism. 

Finally, production of TER2S negatively affects telomerase activity of in vitro 

reconstituted in RNPs, arguing that TER2 processing can provide a mechanism 

for regulation of telomerase activity. 
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Results 

TER2S is a bona fide TER isoform 

Alignment of the TER2S sequence with TER1 and TER2 showed 100% 

identity to the conserved region of TER2.  As expected, about 90% similarity 

was observed with the conserved regions of TER1 (Fig. 43).  Computational 

analysis of plant splice sites using the NetGene2 software (362-363) did not 

predict the characteristic landmarks of consensus mRNA splicing machinery 

(branch point, donor and acceptor splice sites) in TER2 (data not shown), 

indicating an alternative mechanism of processing. It should be noted, however, 

that plant mRNAs show a great variation of consensus plant splice sites and 

branch points regions, despite the high conservation of the splicing machinery 

throughout eukaryotes (322-323, 364).  

It is possible that TER2S is an artifact of reverse transcription in vitro due 

to the presence of stable RNA structures that are not disrupted during the 

experimental protocol or to misannealing of the primer used for reverse 

transcription.  To examine this possibility, employed a combination of northern 

blotting (which is a direct detection method that gives information on molecular 

size) and secondary structural analyses of TER2. 
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Figure 43. TER2S sequence is 100% identical to TER2. (A) Alignment of TER1 with 

TER2S. (A) Alignment of TER2 with TER2S. 
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We performed northern blotting using a probe targeting the conserved 

region in TER2. A product of ~200 nt that corresponds to TER2S was detected 

(Fig. 44).  RT-PCR indicates that TER2S is more abundant in flowers than in cell 

culture (Chapter III), this is observed in the Northern blot. Although precise 

mapping of the 5‘ and 3‘ ends of the TER2S transcript is still needed, this result 

indicates that TER2S is composed mainly of the TER2 conserved region. We 

also detected a product of ~750 nt, which could correspond to TER1. 

Alternatively, this band may correspond to both TER1 and TER2, but agarose 

electrophoresis may not have resolved the two products due to their similar 

length.  

Finally, RNA folding predictions using the Mfold software show that the 

TER2 regions comprising the TER2S splice junction are not in close proximity or 

part of a common structural element in any of the TER2 predicted structures that 

could lead to a stable secondary structure that is resistant to unfolding during 

reverse transcription (Fig. 45).  Altogether, these data argue that TER2S is not 

an aberrant reverse transcription or PCR product, but rather a bona fide 

transcript. This conclusion is further supported by the developmental regulation 

of TER2 processing (Chapter III). 
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Figure 44. TER2s is a bona fide transcript. Northern blot from wild type flowers and 

cell culture total RNA (20µg, 40µg and 60µg) using a radiolabeled probe 

complementary to the conserved region in TER2. Red arrow head, TER2S. Black arrow 

head, TER1/TER2. Blue asterisk, SnRK1-like mRNA is also detected because the TER 

conserved regions are embedded in this gene. 
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Figure 45. Representative structure prediction of the TER2 transcript. The 

secondary structure of TER2 was predicted using Mfold software. Red, TER2S 5‘ splice 

region. Green, TER2S 3‘ spliced region.  
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TER2S is produced in vitro 

 Unexpectedly, we detected an RNA corresponding to TER2S in a 

telomerase reconstitution reaction programmed with TERT and TER2. In vitro 

reconstitution reactions were assembled with T7-tagged TERT and varying 

concentrations of either TER1 or TER2 (0.1–50 nM). After IP, telomerase activity 

was monitored by TRAP and RT-PCR was performed to detect RNA using 

primers specific to conserved region in TER (Fig. 46).  

Telomerase activity was retrieved from all reactions, except those 

containing either TER or TERT alone. A lower level of telomerase activity was 

observed in reactions assembled with higher concentrations of TER2 (>10 nM) 

(Fig. 46). Notably, as the amount of TER2 increased, a product of ~200 nt was 

observed in addition to the ~750 nt band corresponding to TER2. Cloning and 

sequencing of the smaller product confirmed that it corresponds to TER2S. This 

finding indicates an inverse relationship between in vitro assembled active 

telomerase RNPs and the processing of TER2 into TER2S (Fig. 45) and 

suggests that the TER2 RNP extends the substrate with more efficiency than the 

TER2 RNP. Altogether, our results indicate that TER2 processing can be 

reconstituted in vitro. They also indicate that the elements required for TER2 

processing are contained in our in vitro telomerase activity reconstitution system. 
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Fig 46. TER2S is produced in vitro. T7-immunoprecipitates of telomerase in vitro 

reconstitution reactions assembled with either TER1 or TER2. Top, Telomerase activity 

assay. Middle, RT-PCR with primers specific for TER1. RT-PCR with primers specific 

for the conserved region in TER2. Lane 1, 50nM TER1 and TER2 were added to Rabbit 

Reticulocyte Lysate (RRL). Lane 2, RRL programmed with TERT only. Lanes 3-6, In 

vitro reconstitution reactions assembled with decreasing concentrations of TER1 (50nM, 

10nM, 1nM, 0.1nM). Lanes 7-10, In vitro reconstitution reactions assembled with 

decreasing concentrations of TER2 (50nM, 10nM, 1nM, 0.1nM). TER2S is detected in 

reconstitution reactions assembled with >10nM TER2 (Lanes 7-8). Lower telomerase 

activity levels were detected in these reactions (Lanes 7-8). 
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The mechanism of TER2 processing into TER2S does not involve proteins 

 In vitro reconstitution reactions contain Rabbit Reticulocyte Lysate, buffer, 

a plasmid encoding T7-tagged TERT and TER transcripts. To further investigate 

the mechanism of TER2 processing, we modified the in vitro reconstitution 

protocol. First, since TER2S was found to associate with TERT in reconstitution 

reactions assembled with TERT and TER2, we asked whether the mechanism of 

TER2S production was dependent on TERT. We followed the in vitro 

reconstitution protocol, omitting the IP step, in order to detect TERs 

independently of their TERT association status. We assembled in vitro 

reconstitution reactions in the presence or absence of TERT and monitored the 

RNAs by northern blotting.  TERT expression was monitored by the 

incorporation of [35S]-methionine (data not shown). Notably, TER2S was 

detected in reactions with or without TERT (Fig. 47A), indicating that TER2S 

production occurs independently of TERT. 

 We next examined the contribution of the RRL in TER2 processing.  RRL 

contains the machinery required for mammalian translation, including RNA-

binding proteins as well as RNA helicase activities that may serve a chaperone 

function and aid in folding TER2 into a processing-competent state. Strikingly, 

we detected TER2S in reactions lacking RRL (Fig. 47B). Since the transcribed 

RNA is purified by denaturing PAGE prior to its addition to the reaction, there is 

no other protein component present.  These findings suggest that TER2 

processing may occur autocatalytically.  
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Figure 47. TER2 processing is autocatalytic. Northern blots with in vitro transcribed 

TER2 and a probe specific for the TER2 conserved region. All the incubations were 

performed at 30ºC. TER2* was defrosted and heated right before loading and was not 

preincubated. (A) TER2 was incubated with RRL expressed TERT or with RRL alone. 

(B) TER2 was incubated with RRL or with RRL commercial buffer in the absence of 

lysate (RBuffer). (C) TER2 was incubated with RRL commercial buffer alone or with 

cleavage buffer containing (10mM MgCl2 and 50mM NaCl) in the presence or absence 

of 200µM GTP or ATP. (D) TER2 was incubated in cleavage buffer containing 40mM 

EDTA in the presence or absence of MgCl2. 
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The in vitro transcription/translation contains nucleoside triphosphates 

required for transcription. We tested whether TER2 processing required a 

guanosine nucleophile like group I introns. TER2 was incubated with the RRL 

buffer, or a cleavage buffer including or lacking GTP (200µM). We observed the 

appearance of TER2S under all conditions, except when TER2 was heated right 

before loading (Fig. 47C). This observation indicates that TER2 processing does 

not require a guanosine or adenosine cofactor, arguing that TER2 is not 

processed by a group I intron mechanism. 

 Finally, since the cleavage buffer contained 10 mM MgCl2, we tested if 

TER2 processing involved MgCl2 as a co-factor (Fig. 47D). Accordingly, we 

incubated TER2 with cleavage buffer in the presence or absence of 10 mM 

MgCl2. Also, 40 mM EDTA was added to the reactions to ensure complete Mg2+ 

depletion. Only a slight decrease in TER2S production was observed in reactions 

lacking MgCl2 thus TER2 self-splicing appears to proceed without exogenous 

Mg2+, in contrast to group I and group II introns. 
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Discussion 

TER2 processing is autocatalytic 

        Here we present an initial investigation into the biogenesis of TER2S, an 

RNA that is derived from the two TER2 conserved regions.  Because TER2 

processing sites do not conform to consensus plant mRNA splice sites, we 

considered the possibility that TER2 splicing was autocatalytic. In support of this 

hypothesis, we find that processing of TER2 into TER2S occurs in vitro in 

reactions devoid of protein.  

  Splicing of TER2 does not require magnesium, as a vast excess of EDTA 

does not completely inhibit processing in vitro, in contrast to the magnesium-

dependent self-splicing group I and group II introns.  Additionally, TER2 splicing 

does not require a guanosine cofactor and preliminary sequence analysis has 

not revealed features reminiscent of group II introns (data not shown).   Further 

in vitro experiments aimed at revealing details of TER2 splicing are needed, as 

well as detailed sequence and secondary structural analyses.  However, the fact 

that TER2S formation does not depend on Mg2+ suggests that the self-splicing 

motif of TER2 may be more closely related to the Hepatitis Delta Virus or hairpin 

ribozymes, metal-independent self-splicing RNAs derived from plant viruses that 

function in the processing of viral RNA replication intermediates.  Furthermore, 

our data raises the interesting possibility that the functional diversification of 

Arabidopsis TER genes may have been shaped by the invasion of viral 

sequences into the TER2 locus.   



 

 

179 

A role for TER2S in telomerase regulation 

 The biological function of TER2S in remains to be elucidated, but our data 

suggests that processing of TER2 may counteract its negative regulatory role. 

Since TER2 has higher affinity for TERT than TER1, increasing the 

concentration of TER2S would release of TER2-bound TERT, freeing the RT 

subunit to associate with the more abundant TER1. TER2S can assemble into a 

functional telomerase RNP in vitro, but the affinity of TERT for TER2S is low (Kd 

~1 μM), indicating that processing of TER2 decreases the strength of its 

interaction with TERT by 50-fold (compare with 20 nM), this allows the exchange 

of TERT into a more stable complex with TER1 (Kd 200 nM). 

 TER2S associates with the TER2-binding protein POT1b, a negative 

regulator of telomerase (Chapter III).  pot1b null plants show increased 

telomerase activity, at levels similar to those observed in ter2 plants.  This result 

is consistent with a role for POT1b in the negative regulation of telomerase. 

Interestingly, neither TER2 nor TER2S are detected in pot1b null mutants, which 

suggest a role for POT1b in TER2 stability.  Thus, TER2s may function as a 

―sink‖ for POT1b (or other negative regulators), sequestering the factors needed 

to stabilize TER2. Increased TER2 splicing, (or increased association of TER2S 

with POT1b), would lead to reduced association of POT1b with TER2, causing 

the destabilization of TER2 RNP and release of TERT.  

 Further experiments are needed to understand the role(s) of TER2S in 

vivo.  These studies should be combined with an examination of the differences 
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in the catalytic activities of the TER1-, TER2-, and TER2S-TERT RNPs, and their 

differential association with telomerase accessory factors.  These experiments 

will shed light into this novel form of telomerase regulation based on alternative 

RNP subunit composition.  

  A more detailed understanding of TER2 self-splicing will clarify if this 

RNA is functionally related to either the Hepatitis Delta Virus or hairpin 

ribozymes or if it constitutes a brand-new class of self-splicing RNA.  Either way 

the findings will have a profound impact in our understanding of telomerase RNA 

function and evolution.   

 

Materials and Methods 

Northern blotting 

Northern blotting was performed with total RNA extracted from 

Arabidopsis suspension culture. Briefly, RNA was denatured for 2 min at 95ºC in 

formamide loading buffer containing 5M urea and resolved in a 4% acrylamide 

gel under denaturing conditions. T7 in vitro transcribed TER1 was used as 

control. Then, RNA was transferred to a Hybond-N+® membrane (Amersham) 

for 10h. After 1h pre-hybridization the membrane was hybridized for 12h at 40ºC 

with a pool 5‘-end 32P-ATP labeled oligonucleotides complementary to TER1. 

After washes the membrane was exposed to a phosphor screen.  
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In vitro telomerase reconstitution 

A TERT-pET28a plasmid with an N-terminal T7 tag was used for 

telomerase reconstitution experiments. Reactions were assembled with 100ng of 

TERT-pET28a plasmid and 0.5pmol or 0.1pmol of gel purified DNA template 

encoding TER1 or TER2 respectively, driven by a T7 promoter, in a mix 

containing Rabbit Reticulocyte Lysate (RRL) (Promega), amino acids, RNase 

inhibitors, and T7 RNA polymerase. Reactions were incubated for 90 min at 

30°C. T7 agarose beads (Novagen) were blocked with buffer W-100 (20mM 

TrisOAc [pH 7.5], 10% glycerol, 1mM EDTA, 5mM MgCl2, 0.2M NaCl, 1% NP-

40, 0.5mM sodium deoxycholate, and 100mM potassium glutamate) containing 

0.5mg/ml BSA, 0.5mg/ml lysozyme, 0.05mg/ml glycogen, 1mM DTT and 1µg/ml 

yeast tRNA. The reconstitution reaction was mixed with the beads to a 200µl 

final volume and incubated for 2 h at 4°C with rotation. Beads were washed 6X 

with 800 µl of W-400 buffer (W-100 containing 400 mM potassium glutamate) 

and 3X with 800µl of TMG buffer (10mM TrisOAc [pH 7.5], 1mM MgCl2, and 

10% glycerol). After the final wash, beads were resuspended in 30µl of TMG. 2µl 

of beads were used for TRAP assays as previously described (130, 242). 
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CHAPTER VI 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

An essential task for an organism is to maintain genome stability and 

integrity and thus guarantee its successful function and propagation.  In 

eukaryotes, telomeres and telomerase are key elements required in this 

enterprise. The 2009 Nobel Prize in Physiology or Medicine recognized the 

pioneering work of Elizabeth Blackburn, Carol Greider, and Jack Szostak in 

defining the DNA composition, de novo synthesis and maintenance of 

telomeres, as well as the detrimental consequences of their loss. 

The importance of telomeres in humans is evidenced by the involvement 

of telomere shortening in aspects of aging and in the chromosomal instability 

associated with human cancer.  In essence, if the telomeres shorten, cells age.  

In contrast, if telomere length is maintained by telomerase, cellular senescence 

is delayed. Telomerase activity must to be carefully regulated. Inappropriate 

telomerase expression results in the loss of control of cell proliferation and is 

one of the rate-limiting factors in carcinogenesis (365-369). On the other hand, 

not enough telomerase limits cell proliferation, resulting in loss of stem cell 

viability by telomere dysfunction and in devastating genetic disorders such as 

dyskeratosis congenita and aplastic anemia (370). Consequently, a major effort 

in the telomere field has focused on understanding telomerase composition, 

biogenesis and regulation at the chromosome terminus. 
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 Although interesting differences exist between organisms, the protection 

of chromosome ends by telomeres and telomerase is highly conserved in 

eukaryotes. The flowering plant Arabidopsis thaliana, in particular, is an 

excellent model organism to study telomere metabolism, since it is a 

multicellular organism with complex development and excellent genetic tools. In 

addition it is highly tolerant to genome instability, allowing the study of telomere-

related genes whose mutations are lethal in mammals. My dissertation focuses 

in the characterization of the Arabidopsis thaliana telomerase RNP. This chapter 

contains conclusions from this work, and proposed future directions. 

 

The Duplication of Telomerase Components in Arabidopsis Results in 

Functional Diversification 

 In most organisms studied thus far, the core components of telomerase 

are encoded in the genome as single copy genes (14, 147, 149, 171, 231, 244, 

320, 371). The only two exceptions are found in the ciliated protozoa Euplotes 

crasus and in Arabidopsis thaliana. Euplotes encodes a single TER and three 

TERT isoforms that assemble into different active sub-complexes in vivo. These 

different telomerase RNPs are required in different stages of telomere 

metabolism and promote a shift in enzyme specificity. Specifically, the enzymatic 

transitions from de novo synthesis of telomere tracts onto broken chromosome 

ends to the maintenance of the length of previously synthesized telomere tracts 

(227). 
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 In Arabidopsis, TERT is a single copy gene (143), and three TER 

isoforms are present: TER1 and TER2 which are distinct genes encoded in 

different chromosomes and TER2S, a product of TER2 processing (Chapters III 

and V). Although all three TER isoforms can assemble with TERT to direct 

telomere synthesis in vitro, these RNA subunits play different roles in vivo.  

 

TER1 has a conserved function in telomere metabolism 

AtTERT uses TER1 as the template for telomere maintenance in vivo.  

Thus, TER1 is a canonical telomerase template with a function similar to TER 

subunits from other organisms (14, 231, 319-320, 372). Depletion of TER1 

results in progressive loss of high molecular weight telomere tracts and 

decreased telomerase activity. A similar phenotype is observed in plants 

depleted of both TER1 and TER2. Additionally, mutant telomere repeats are 

incorporated into the chromosome ends of plants over-expressing TER1CC, a 

TER1 transcript bearing a mutation in the template domain (Chapter II). These 

data are in agreement with previous observations made in similar experiments 

with budding yeast (158), Tetrahymena (16) and human (373) TER subunits. 
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A conserved domain in TER1 and TER2 is sufficient to reconstitute telomerase 

activity in vitro 

The Arabidopsis TERs share a highly conserved region of 220nt that 

contains the telomere templating domain and all of the elements required for 

TERT association. A 150nt ―mini-T‖ within the 5‘ (R1) conserved region of TER1 

and TER2 and the processed form of TER2, TER2S, is sufficient to reconstitute 

telomerase activity in vitro. This size correlates with Tetrahymena TER (14) and 

is slightly smaller than the minimal TERs from humans (210nt) (293) and from S. 

cerevisiae (170nt) (294). Outside the conserved domain TER1 and TER2 share 

virtually no sequence identity and cannot be accurately aligned, implying that 

unique sequences within these RNAs specify their distinct functions and 

interaction partners in vivo. 

 

TER2 functions as a novel negative regulator of telomerase activity 

 In contrast to TER1, TER2 has an unconventional function that has not 

been reported for any TER. It works as a negative regulator of telomerase 

activity. Notably, TER2 depletion results in a dosage-dependent increase in 

enzyme activity (Chapter III), although no change in telomere length regulation is 

observed in these plants. Additionally, TER2 over-expression results in 

decreased telomerase activity and in loss of telomere length heterogeneity as 

well as in shortened telomeres, similar to those from AtTERT mutants (143). 

These observations are consistent with a negative regulatory role for TER2.   
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Moreover, since TER1 levels in the TER2 over-expression mutants are similar to 

those in wild-type plants, TER2 regulates TER1 function. 

  TER2 can assemble with TERT into a functional RNP in vitro. Strikingly, 

we find that the affinity of TERT for TER2 is ~9-fold higher than for TER1.  

Although TER2 levels are ~20-fold lower than TER1 in cell culture, the amount 

of TER1 associated to TERT is only two-fold higher than TER2 (Chapter II).  

Thus, TER2 is over-represented in TERT RNP complexes in vivo.  TER2 is not 

able to support telomere repeat maintenance in vivo.  We find a very low number 

of modified telomere repeats in chromosome ends in plants over-expressing 

TER2RSA, a TER2 transcript bearing a mutation in the templating domain 

(Chapter III).  Thus, the cellular levels of TER2 and the differences in affinity for 

TER1 and TER2 may be important for the mechanism of TER2 regulation. We 

conclude that TER2 plays a complex role in telomerase regulation.  

 Duplication and diversification of a core telomerase RNP subunit is not 

without precedent. There are reports of variant RNA subunits within the 

spliceosome and the ribosome.  Humans and Drosophila encode multiple 

isoforms of U5 snRNA, which assemble into different RNP particles, and display 

different expression profiles in vivo (374-375). Similarly, Plasmodium harbors 

two different small subunit rRNAs (376), whose differential expression and 

processing lead to stage-specific ribosome populations thought to regulate the 

translation of blood-stage or mosquito mRNAs (377).  These findings support 
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our conclusions that duplication of TER can result in a novel regulatory 

mechanism for telomerase. 

 

Arabidopsis Assembles Different Telomerase RNPs That Have Opposing 

Roles in Telomere Metabolism  

Our data demonstrate that Arabidopsis harbors at least two variant 

telomerase RNPs with distinct RNA and protein subunit composition (Chapter 

III). These complexes share the catalytic subunit TERT and the RNP maturation 

factor dyskerin, but assemble with either TER1 or TER2 and the accompanying 

TER1- or TER2-specific accessory proteins. Both TER1 and TER2 provide a 

template for telomerase reverse transcription in vivo and both can direct the 

incorporation of telomere repeats onto chromosome ends. Notably, however, the 

incorporation mediated by TER2 RNP is very inefficient compared to the TER1 

RNP (Chapters II and III). Thus TER2 may associate with chromosome termini, 

but it is not able to efficiently incorporate telomeric repeats (Fig. 48).  

We find that POT1a associates with the TER1 RNP responsible for 

maintaining telomere tracts in vivo. Telomerase activity is reduced when either 

TER1 or POT1a is depleted (Chapter II and (130, 313)).  Thus, the POT1a-

TER1 RNP association is central for telomerase function.  

In contrast, POT1b and KU associate with the TER2 RNP, a negative 

regulator of telomerase.  POT1b and KU appear to reinforce TER2-mediated 
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negative regulation. pot1b-1 mutants exhibit a three-fold increase in telomerase 

activity, similar to the increase observed in ter2-1 mutants (Chapter III).  

 

 

 

 

 

Figure 48. Arabidopsis encodes two telomerase RNPs with distinct RNA and 
protein composition and different roles in vivo. 
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In addition, the TER2-interacting factor KU is a strong negative regulator 

of telomerase-mediated telomere elongation in Arabidopsis. ku70 plants show 

an increase in telomere length (296) but telomerase enzyme activity levels are 

not increased (Nelson A. and D. Shippen unpublished data).  These findings 

suggest that KU regulates telomere elongation at the chromosome end rather 

than enzyme activity. Previous studies reveal that KU physically associates with 

the TERs from S. cerevisiae (182) and humans (312), but not from S. pombe 

(319). Our data support the conclusion that the KU-TER interaction is 

dispensable for telomerase function.  

How does KU negatively regulate telomere function in vivo?  One 

intriguing possibility is that KU is involved in recruitment of telomerase to the 

telomere in a cell cycle dependent manner.  In budding yeast KU brings 

telomerase to the telomere in G1, but the enzyme does not promote telomere 

elongation until late S/G2 (252). Because KU is associated with the TER2 RNP 

in Arabidopsis, recruitment of the negative regulatory complex in G1, could 

interfere with TER1 RNP recruitment and telomere extension (Fig. 49). It is 

striking that all of the TER2-specific RNP components (POT1b, TER2 and KU) 

identified thus far serve as a negative regulators for telomerase function.  
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Figure 49. Proposed model for the regulation of telomerase function at the 
chromosome end by the TER1 and TER2 RNPs. See text. 

 

 

 

 

 

 

 

 

 

TER2 RNP

A

T

A ATCCC

T TAGGG
|| | | | | |

AAATCCC A

T

A ATCCC

T TAGGG
|| | | | | |

A

T

A ATCCC

T TAGGG
|| | | | | |

A

T

A ATCCC

T TAGGG
|| | | | | |

A

T

A ATCCC

T TAGGG
|| | | | | |

...NNN

...NNN

TTTAGGGTTTAGGG 3‘

5’

TTTAGGG
|| | | | | |

TER1 RNP

A

T

A ATCCC

T TAGGG
|| | | | | |

AAATCCC A

T

A ATCCC

T TAGGG
|| | | | | |

A

T

A ATCCC

T TAGGG
|| | | | | |

A

T

A ATCCC

T TAGGG
|| | | | | |

A

T

A ATCCC

T TAGGG
|| | | | | |

...NNN

...NNN

TTTAGGGTTTAGGG 3‘

5’

TTTAGGG
|| | | | | |

S phase

G2/G1?

Telomere extension

No telomere extension



 

 

191 

AtPOT1 Paralogs Encode TER Binding Proteins That Play Distinct 

Functions in Telomere Biology 

 Fission yeast and humans encode a single copy POT1 protein (69), while 

other organisms, like mice (118-119), Tetrahymena (326), Euplotes (325) and C. 

elegans (40) contain more than one POT1. POT1 proteins from fission yeast 

(28, 334), mammals (28, 118) and some plants (132), share a ss telomeric DNA 

binding activity and play crucial roles in distinguishing the chromosome terminus 

from ds breaks.  

 Arabidopsis thaliana is unusual because it encodes three POT1 proteins: 

POT1a, POT1b and POT1c (129) and Nelson A. and Shippen DE unpublished 

data). Furthermore, unlike POT1 orthologs in other eukaryotes, binding 

experiments have failed to demonstrate DNA binding activity for AtPOT1 family 

members (131).  Instead, AtPOT1 proteins have evolved to bind TER (Chapters 

II, III and IV), and distribute to the two TER isoforms. POT1a associates with 

TER1, while POT1b associates with TER2. POT1c, on the other hand, 

associates with both TER1 and TER2.  

Interestingly, the dissociation constant for the POT1a-TER1 interaction 

(Kd=~200 nM) is similar to that for the hPOT1-ssDNA (Kd=~100 nM) (120-121). 

In addition, deletional mutagenesis experiments showed that, like hPOT1 (29, 

122), nucleic acid recognition by POT1a is mediated through the OB-folds, with 

the first N-terminal OB-fold being sufficient for TER1 recognition (Chapters II and 

IV).  
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We find that mutations in a highly conserved phenylalanine residue 

(Phe65) in the first OB-fold results in decreased TER1 specific binding. This 

finding correlates with observations for hPOT1-ssDNA interaction, in which the 

corresponding phenylalanine (Phe62) is a major contact with its DNA substrate 

(29, 122) and discriminantes between RNA and DNA recognition (272). 

Structural modeling analysis showed that AtPOT1a OB-fold 1 models onto the 

crystal structure of hPOT1 (Croy, J. and Wuttke, D., University of Colorado and 

Chapter IV). Thus, the switch from ss telomeric DNA to TER recognition by 

AtPOT1a does not involve appear to involve significant structural changes of its 

nucleic acid binding pocket.  

 AtPOT1a is a positive regulator of telomerase. It associates with active 

telomerase RNP in vivo through a direct interaction with TER1 (Chapter II) and it 

acts in the same genetic pathway as telomerase (130). Our findings indicate that 

like POT1a, POT1b and POT1c associate with telomerase, but in this case with 

the negative regulatory RNP.  We find that POT1b associates with both TER2, a 

negative regulator of telomerase activity and TER2S in vivo (Chapter III).  

POT1c, which contains a single OB-fold, associates with both TER1 and 

TER2, suggesting that TER specificity may be conferred by interactions through 

the second OB-fold, since this domain is absent in POT1c. It is possible that 

POT1c competes with POT1a and POT1b binding sites and alters enzyme 

activity or recruitment of the RNP complex to the telomeres. Although additional 

experiments are required to determine POT1c function in vivo, knockdown of 
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POT1c by RNAi results in increased telomerase activity levels, supporting a role 

for this protein in telomerase regulation (Nelson A. and Shippen D. unpublished 

data).  

Altogether, our results indicate that POT1 proteins are novel telomerase 

accessory factors that play different functions in telomerase regulation. They 

also indicate that indicate that duplication and diversification of Arabidopsis 

telomerase may be the end result of the co-evolution of the TER and POT1 RNP 

components.  

 

Future Directions 

POT1a, an Est1-like recruitment factor? 

 Several lines of evidence support the hypothesis that AtPOT1a functions 

in a manner analogous to the yeast protein Est1, a telomerase-associated 

protein that bind the telomerase RNA subunit and positively regulates telomere 

extension (181), Chapters II and IV). First, an Ever-Shorter-Telomere 

phenotype, characterized by the progressive shortening of telomeres from one 

generation to the next due to the lack of telomerase, is observed in both pot1a 

and est1 null mutants (18, 129). Second, telomerase activity co-

immunoprecipitates with POT1a and Est1, indicating a physical interaction 

among these components and active telomerase (130, 164). Third, the stability 

of both proteins appears to be regulated during the cell cycle (378) and 

Armstrong, S., personal communication). Fourth, POT1a interacts with CTC1, 
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the functional homolog of the G-overhang-binding protein Cdc13 (Song. X and 

Shippen D, unpublished data), which mediates Est1-dependent telomerase 

recruitment to the chromosome end in yeast (379). Finally, the architecture of 

the POT1a binding site in TER1 (Chapter IV) resembles the bulged stem 

characteristic of the Est1 binding site in yeast TLC1 (181).  

 Based on these finding I hypothesize that, like yeast EST1, POT1a 

functions as a recruitment factor that brings telomerase to the chromosome end 

through its interaction with CTC1. This hypothesis can be tested by: 1) mapping 

the regions of POT1a and CTC1 that mediate their interaction in vitro to identify 

mutations that disrupt interaction but not their nucleic acid binding properties. 

These experiments would be followed by expressing POT1a mutant alleles in 

pot1a null plants to identify those residues that affect telomere length but not 

telomerase activity.  Results of these experiments would test the hypothesis that 

interaction between POT1a and CTC1 is required for the recruitment of 

telomerase to the chromosome end.  A second line of investigation is to 

establish the pattern of telomerase-CST interactions during the cell cycle by 

performing Chromatin IP and co-localization experiments for TERT, POT1a and 

CTC1 as well as telomere and TER FISH during different stages of the cell 

cycle. A third set of experiments would involve disruption of the POT1a-TER1 

interaction and testing by ChIP or co-localization experiments if telomerase is 

recruited to telomeres or if there are changes in the pattern of association of 

telomerase with telomeres during the cell cycle. 
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POT1a as a regulator of telomerase enzymatic properties 

Notably, Est1 is not required for telomerase activity (380).  Additionally, 

EST1 binds ss telomeric DNA, although its affinity for DNA is lower than for Tlc1 

(381).  Similarly, pot1a mutants show a 10-fold decrease in telomerase activity 

(130), indicating that POT1a is required for telomerase activity. This raises the 

possibility that POT1a may play additional roles in the regulation of telomerase.    

The human sheltering components, POT1-TTP1, alternate between two 

main functions in telomere biology: protecting the chromosome end and serving 

as a processivity factor for telomerase during telomere extension (120), possibly 

through a direct interaction of TPP1 with TERT. A plausible hypothesis is that, 

like human TPP1, POT1a alone or in complex with an unidentified protein may 

affect telomerase enzymatic properties like processivity or substrate recognition. 

This hypothesis can be tested by identifying proteins that interact with 

POT1a using yeast-two hybrid and by mass spectrometry of affinity-purified 

POT1a complexes.  Potential ss telomeric DNA binding proteins or CTC1-

interacting proteins could be found that influence POT1a function.  Another 

important goal is to develop a direct activity assay for Arabidopsis telomerase 

that does not rely on PCR.  A direct assay would allow us to examine enzymatic 

properties like processivity, since the PCR-based TRAP assay is not suitable for 

these goals. With a direct assay, one could examine the effect of POT1a on 

telomerase processivity using the in vitro reconstitution system. Additionally, 

reactions could be carried out to examine the effect of POT1a on CTC1 binding. 
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In Tetrahymena, the p65 protein mutually stabilizes TER and TERT in 

enzymatically-active telomerase conformations (382). Thus, another possibility is 

that POT1a is required for enzyme activity because it enhances active an active 

RNP conformation. This possibility can be tested by: determining the effects of 

POT1a on the affinity of the TERT-TER1 interaction in vitro. The dissociation 

rate constant of the TERT-TER1 interaction could also be measured by FRET. If 

my hypothesis is correct, I expect to see an increase in affinity of the TERT-

TER1 interaction or the formation of a more stable TERT-TER1 complex in the 

presence of POT1a. 

 

Dissecting the mechanism of negative regulation by the TER2 RNP   

Human core telomerase is active as a dimer in vivo (356).  Preliminary 

results from glycerol gradient fractionation suggest Arabidopsis telomerase 

forms oligomers in vitro. To study the role of oligomerization in telomerase 

regulation, one could determine the oligomerization state of active recombinant 

Arabidopsis telomerase complex by gel filtration chromatography as has been 

done for Tetrahymena (155) and humans (356). I expect to observe distinct 

telomerase complexes, with a fraction of telomerase in TER1- or TER2-

monomers, in addition to homo- and hetero-dimeric telomerase RNP complexes 

that differ in activity in response to the oligomeric state.  Alternatively one could 

use a combination of RNA-tagging and template mutations to determine if 
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Arabidopsis telomerase forms hetero-oligomers and whether both TER1 and 

TER2 templates are used for extension. 

 

TER2 processing into TER2s 

 TER2 is processed into TER2S (Chapter III).  I hypothesize that 

processing of TER2 counteracts its negative regulatory role. TER2 splicing into 

TER2S may result in disassembly of the TER2 RNP, boosting the assembly of 

free TERT into TER1 RNPs, since the interaction of TER2S with TERT is weak.  

Thus, processing of TER2 would lead to dissociation of TER2 RNPs, allowing 

the exchange of TERT into a more stable complex with TER1 (Fig. 50). This 

model can be tested in vitro by evaluating the exchange of TERT from 

assembled TER2 RNP in the presence of TER1 and TER2S. 

 TER2S associates with the TER2-binding protein POT1b, a negative 

regulator of telomerase (Chapter III).  The fact that neither TER2 nor TER2S are 

detected in pot1b null mutants, suggests a role for POT1b in TER2 stability.  It is 

possible that TER2s functions by destabilizing the TER2 transcript through 

sequestration of POT1b. One could test the role of POT1b in TER2 stability in 

vivo, by ectopically expressing POT1b under the control of an inducible promoter 

in pot1b mutants. I would expect to find TER2 and TER2S when POT1b is 

expressed. 

 

 



 

 

198 

 

 

 

 
Figure 50. Proposed model for how TER2 may influence TER1 function in vivo. 

See text. 
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 Finally, TER2 processing occurs in the absence of proteins, guanosine 

and Mg2+ cofactors (Chapter V), which suggest that the mechanism of TER2 

self-splicing is not similar to those employed by group I and II introns. An 

alternative is that TER2s is produced by a mechanism similar to the Hepatitis 

Delta Virus or hairpin ribozymes, which does not depend on any metal cofactor 

for catalysis. This can be tested by secondary structure and FRET analysis 

aimed to identify domains in close proximity that can result in cleavage.  

In conclusion, this study indicates that duplication and diversification of 

Arabidopsis telomerase RNP may be the end result of the co-evolution of the 

TER and POT1 RNP components. Additionally, the discovery of a novel 

negative regulatory mechanism for plant telomerase argues that additional 

modes of restraining telomerase remain to be elucidated in mammals where 

misregulation of this enzyme can lead to carcinogenesis.  
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APPENDICES        

APPENDIX I   

MINIMAL PRE-mRNA SUBSTRATES WITH NATURAL AND CONVERTED 

SITES FOR FULL-ROUND U INSERTION AND U DELETION RNA EDITING IN 

TRYPANOSOMES* 

 

Summary 

Trypanosome RNA editing by uridylate insertion or deletion cycles is a 

mitochondrial mRNA maturation process catalyzed by multi-subunit complexes. 

A full-round of editing entails three consecutive steps directed by partially 

complementary guide RNAs: pre-mRNA cleavage, U addition or removal, and 

ligation. The structural and functional composition of editing complexes is 

intensively studied, but their molecular interactions in and around editing sites 

are not completely understood. In this study, we performed a systematic 

analysis of distal RNA requirements for full-round insertion and deletion by 

purified editosomes. We define minimal substrates for efficient editing of A6 and 

CYb model transcripts, and established a new substrate, RPS12. 

 

 
_____________ 
*Reprinted with permission from: ―Minimal pre-mRNA substrates with natural 
and converted sites for full-round U insertion and U deletion RNA editing in 
trypanosomes‖ by Cifuentes-Rojas C, Halbig K, Sacharidou A, De Nova-
Ocampo M, Cruz-Reyes J. 2005 Nucleic Acids Res. Nov 23; Vol 33, No. 
20:6610-20. Copyright 2005 Oxford University Press. 
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 Important differences were observed in the composition of substrates for 

insertion and deletion. Furthermore, we also showed for the first time that natural 

sites can be artificially converted in both directions: from deletion to insertion or 

from insertion to deletion. Our site conversions enabled a direct comparison of 

the two editing kinds at common sites during substrate minimization and 

demonstrate that all basic determinants directing the editosome to carry out full-

round insertion or deletion reside within each editing site. Surprisingly, we were 

able to engineer a deletion site into CYb, which exclusively undergoes insertion 

in nature.  

 

Introduction 

 Maturation of mitochondrial pre-mRNAs in kinetoplastid species including 

Trypanosoma and the evolutionarily distant Leishmania involves three-step 

cycles of uridylate insertion or deletion at many editing sites (ESs). Multisubunit 

editing complexes switch between insertion and deletion modes as editing 

progresses with a general 3‘-to-5‘ polarity. The multisubunit composition and 

function of editing complexes is currently under intense study [for reviews see 

(383-385)], and their interactions with editing substrates have not been 

identified. Each editing cycle, directed by partially complementary mitochondrial 

guide RNAs (gRNAs), entails three basic consecutive catalytic steps: first, pre-

mRNA cleavage; second, 30 terminal processing of the upstream piece by either 

nucleotide addition mediated by terminal U transferase ‗TUTase‘ (in insertion), or 
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nucleotide removal by a U-specific exonuclease (in deletion); finally, mRNA 

resealing by ligation (386-389). Apart from these basic catalytic steps, annealing 

and unwinding steps are also likely involved (390-391). The most evident 

landmarks of deletion or insertion ESs are unpaired mRNA uridylates or 

unpaired gRNA purines, respectively. Site-specific mutagenesis affecting the ES 

or adjoining residues, particularly their potential for mRNA/gRNA pairing can 

significantly impact the specificity and efficiency of full-round and partial (‗pre-

cleaved‘) editing (387-388, 392).  

In trypanosomes, it is generally accepted that natural ESs lie between two 

flanking duplexes: a proximal upstream duplex formed by a pre-mRNA 5‘ purine-

rich and gRNA 3‘ poly(U) sequences (386,387,423), and an adjacent pre-

mRNA/gRNA downstream ‗anchor‘ duplex that directs cleavage 

(386,387,388,389). Site-specific mutagenesis of the gRNA 30 region, to 

artificially stabilize the upstream duplex, can enhance full-round editing in vitro 

(392.444). In Leishmania, the need for such upstream duplex remains somewhat 

controversial (448,449).  

Trypanosome full-round deletion and insertion are currently studied in 

vitro using substrates representing fragments of the pre-edited domain in two 

mRNAs encoding ATPase subunit 6 (A6) and apo-cytochrome b (CYb) 

(387,444,447). The natural A6 pre-mRNA contains numerous insertion and 

deletion ESs, but only ES1 and ES2 are currently used to analyze full-round 

deletion and insertion in vitro, respectively. A6 substrates between 65 and 72 nt 
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long have been used (387,444). In contrast, CYb pre-mRNA exclusively contains 

insertion ESs, of which only ES1 has been analyzed in vitro using a CYb 55 nt 

substrate (444). The influence of pre-mRNA structural properties, such as 

substrate composition, folding and potential cis-elements on full-round insertion 

and deletion, has not been systematically characterized in trypanosomes. This is 

of interest because the two kinds of editing in a common complex may be 

differentially regulated, as they involve separate activities and enzymes, and 

there is evidence for their physical separation in the complex (426,427,428,429). 

Also, different gRNA features appear to be required for deletion and insertion 

(392,444,446). Thus, it is feasible that editing complex interactions with a 

processing site and its environs differs between the two editing types.  

Here, we have analyzed the effect of substrate minimization on full-round 

insertion and deletion at natural and converted sites in different substrates. Our 

studies comparing catalysis by moderately and significantly enriched editing 

complexes show that, at least for some substrates, the latter are more sensitive 

to substrate minimization. This suggests that one or more associated RNA-

binding activities are sensitive to the overall size of RNAs, and also to stringent 

purification of the complexes. Substrate minimization had significantly distinct 

effects on insertion and deletion, and the extent and direction of such effects 

varied among substrates. This implies that editing complexes are quite sensitive 

to RNA context. We also show for first time that natural sites can be converted in 

either direction, from deletion to insertion and vice versa. Such site conversion 
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not only allowed comparison of both types of editing at specific sites during 

substrate minimization, but also underscores the basic nature of the RNA 

determinants that direct complexes to carry out full-round insertion or deletion. 

 

Results 

A6 insertion and deletion editing  

The influence that pre-mRNAs features may have on editing efficiency, 

including potential cis-elements, substrate composition and RNA folding, has not 

been systematically studied. We began analyzing the contribution of upstream 

and downstream pre-mRNA features, by performing gradual terminal truncations 

on an A6 72 nt substrate (RNA1, which includes the 30-most 26 ESs) paired to a 

gRNA that directs 3U insertion at the natural ES2 (Fig. A-1A). In these studies, 

we used catalytic complexes that were enriched by Q-Sepharose ion-exchange 

chromatography (‗Q fraction‘), or complexes that were significantly purified by 

consecutive Q-Sepharose and DNA-cellulose chromatography (‗D fraction‘), as 

previously reported (28). Deletions of 10 nt from the 50 end (62 nt RNA2), 17 nt 

from the 30 end (55 nt RNA3) or both combined (45 nt RNA4) supported 

accurate 3U insertion, with both Q and D fractions (Fig. A-1B, lanes 1–4 and 5–

8, respectively).  

Quantification of accurate 3U insertion products showed that editing with 

the 45 nt RNA4 was 2-fold more efficient than with the parental 72 nt RNA1 (Fig. 

A-1C and E). The abundance of accurately edited product for each construct 
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tested, was initially calculated as the percentage of total input RNA and then 

normalized to the abundance of the corresponding product with the most active 

substrate identified. Mean and error bars from two experiments were plotted on 

a linear scale. The 45 nt RNA4 has 30 nt (including 27 purines) upstream and 15 

nt downstream of ES2. Interestingly, progressive 50 truncations of this substrate 

(43 nt RNA5, 40 nt RNA6, 37 nt RNA7 and 34 nt RNA8) showed quantitatively 

different inhibitory effects with the Q and D fractions. 3U insertion was 

moderately reduced with decreased template length in the Q fraction (Fig. A-1D, 

lanes 1–5; and Fig. A-1C). However, with the D fraction, increased truncation of 

the template had a more dramatic effect (Fig. A-1D, lanes 6–10; and Fig. A-1E), 

and no 3U insertion was detected with the shortest 34 nt template (Fig. A-1D, 

lane 10; and Fig. A-1E). Notably, the 45 nt RNA4 and shorter constructs are 

capable of forming the same upstream and downstream duplexes with gRNA 

and exhibit the same DG (Fig. A-1A), and the observed gradual drop in insertion 

parallels the extent of upstream sequence truncation.  

Thus, an ~45 nt A6 substrate is optimal for insertion at ES2 in both Q and 

D fractions, and the significant inhibition of insertion with shorter constructs may 

reflect, at least in part, loss of stimulatory cis-features (e.g. purinerichness) or a 

more general property, such as overall length or folding. To distinguish between 

these possibilities we extended the 34 nt RNA8, that is inactive in the D fraction, 

either with an artificial upstream pyrimidine run (47 nt RNA9) or its natural 

downstream pyrimidine-rich sequence (51 nt RNA10). Note that the size of these 



 

 

238 

two constructs is similar to the efficient 45 nt RNA4, although their predicted 

structure is 3- to 4-fold more stable (see DGs in Fig. A-1A). Both pyrimidine-rich 

extensions reestablished editing to at least 50%of the maximal level with RNA4 

(Fig. A-1F and G). This suggests that reduced purine-richness was not the 

cause of substrate inactivation. Consistent with this notion, a 3‘ polypurine 

extension reestablished editing to a level comparable with the pyrimidine 

extensions (data not shown). Interestingly, shortening of the A6 substrate 

caused significant reduction in the ratio of 3U to 1U insertion (Fig. A-1D). In the 

case of the smallest 34 nt RNA8, 1U insertion was the major product in the Q 

fraction (lane 5), and the only detectable product in the D fraction (lane 10). This 

effect is more evident in the Q fraction. We are currently addressing the 

mechanistic reasons for this apparent reduction in insertion fidelity. Combined, 

the data above indicate that for in vitro A6 insertion at ES2, an ~45 nt long 

substrate is optimal, and neither specific composition (upstream and 

downstream of the 34 nt RNA8 sequence) nor potential pre-mRNA folding prior 

to gRNA pairing appears critical. The particularly dramatic inhibitory effect of 

template shortening in the D fraction may be due to loss of relevant protein 

factors in the purified editing complexes.  

We next decided to compare the effect of A6 pre-mRNA minimization 

between insertion and deletion. In nature, insertion or deletion occur at separate 

ESs. Instead of analyzing different ESs, we considered the possibility of using a 

single pre-mRNA site to directly compare full-round insertion and deletion, i.e. a  
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Figure A-1. Mutagenesis of A6 pre-mRNA for full-round insertion at ES2. (A) 
Purines are in black and pyrimidines in red. The gRNA gA6[14]USD-3A [(15); lower 
strand in blue] was paired with all constructs.  ES2 (arrowhead) and predicted stability 
(kcal/mol; 3.0 Mfol, M. Zuker) of upstream and downstream duplexes are indicated. ∆G° 
of the downstream duplex for RNAs1, 2 and 10 is -21.5, and for RNAs 3–9 is -18.0. pre-
mRNA number, size and predicted stability of the pre-mRNA alone are indicated. 
(B,Dand F) Full-round insertion assayed with the peak editing fractions from Q-
Sepharose (‗Q‘) or consecutive Q-Sepharose and DNA-cellulose columns (‗D‘). The 
pre-mRNA size and number (in parentheses) are indicated, edited +3U RNA (open 
arrowhead). +1U RNA‘s also indicated when it is the major product (filled arrowhead). 
Dots indicate sites of spontaneous RNA breakage (B and D). 
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site in a natural or artificially converted form (i.e. from deletion to insertion or vice 

versa). Previous reports have shown that A6 and CYb ESs can be converted at 

least at the cleavage step (414,427), and substrates for partial ‗precleaved‘ 

editing efficiently support the second and third enzymatic steps (447,451), 

suggesting that relatively simple ES determinants may govern a complete 

editing cycle. Indeed, A6 (insertion to deletion) conversions have been used to 

establish multi-site full-round editing substrates (J. Cruz-Reyes, A. Zhelonkina 

and B. Sollner-Webb, unpublished data), but opposite conversions (deletion to 

insertion) had not been possible.  

Conversion of natural ESs in both directions would enable direct 

comparisons of full-round insertion and deletion 50 of a common pre-

mRNA/gRNA downstream ‗anchor‘ duplex. To this end, we introduced three 

uridylates at ES2 in the 72 nt RNA1 (generating 75 nt RNA11, Fig. A-2A), as 

well as appropriate gRNA changes to preserve single-strandedness of the 

targeted uridylates and other residues between the duplexes, as well as weak 

paring of proximal pairs in the upstream duplex (392). Both RNA11 and parental 

RNA1 form the same upstream and downstream duplexes with gRNA, so that 

the two substrates differ only in the structure of the internal loop (Fig. A-2B 

shows the sequence changes). Fig. A-2C shows that the converted RNA11 

supported accurate 3U deletion, thus enabling analysis of the same truncations 

in RNAs 2, 3 and 4 (compare with RNAs 12, 13 and 14; Fig. A-1A and A-2A). 
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Notably, deletion at both converted and natural sites was optimal in presence of 

mM concentrations of an adenine ribonucleotide (428) (data not shown). 

We found that the above mutations similarly affected deletion in both Q 

and D fractions (Fig. A-2C–E). Interestingly, the 75 nt RNA11 was quite efficient 

for ES2 deletion, and an upstream 10 nt resection (65 nt RNA12) had a limited 

effect. In contrast, a downstream 17 nt resection (58 nt RNA13) inhibited 

deletion by 50%, and both truncations combined (48 nt RNA14) were strongly 

inhibitory. Notably, the predicted folding stability of the latter construct is nearly 

half of the 65 nt RNA12, and about one-third of the 75 nt RNA11.  

Furthermore, terminal extensions of the inactive 48 nt RNA14 with (either 

50 or 30) artificial pyrimidine-rich sequences (65 nt RNA15 or 65 nt RNA16) re-

established efficient deletion (Fig. A-2F). Control reactions devoid of gRNA 

confirmed the position of the deletion products (data not shown). Dots indicate 

sites of spontaneous breakage typically at U positions. Together, the data in Fig. 

A-1 and A-2 indicate that in both Q and D fractions, the optimal A6 substrate for 

ES2 insertion was about 20 nt shorter than for ES2 deletion (45 nt RNA4 and 65 

nt RNA12, respectively, in Fig. A-1B and A-2B). Strikingly, while the 45 nt RNA4 

is the most efficient insertion substrate, the comparable 48 nt RNA14 failed to 

support deletion. Furthermore, our analysis suggests that distal A6 pre-mRNA 

composition (beyond the sequence of the shortest RNA analyzed) and folding 

stability may influence, but are not critical for, efficient ES2 insertion and 

deletion.  
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Figure A-2. Mutagenesis of A6 pre-mRNA for full-round deletion at converted ES2. 
(A) RNA11 is similar to RNA1 in Fig. A-1A but with three extra Us at ES2 to create a 3U 
deletion site.  The gRNA (lower strand in blue) was modified to mimic a deletion site.  
All labeling is as in Fig. A-1A.  (B) Diagram of parental and converted ES2 for full-round 
editing (the arrow indicates the direction of conversion). Watson–Crick (bar) or non-
standard (dot) pairs..A potential base pair in the internal loop is depicted with a dotted 
line (10–12). (C and F).  Full-round deletion assayed with Q or D fractions, and the 
indicated 3‘ end-labeled pre-mRNA.  deletion is indicated by an arrowhead C) RNA11 to 
48 nt RNA14, and (F) inactive 48 nt RNA14 with reconstituted derivatives bearing 
heterologous 5‘ or 3‘ terminal extensions, (D and E) Plots of relative abundance of -3U 
RNA. 
 
 

CYb insertion and deletion editing  

 To determine whether the observed size differences in minimal substrates 

for A6 deletion and insertion are specific to this pre-mRNA transcript, or are 
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shared in other substrates, we analyzed the CYb model system. To this end, we 

started with a 66 nt pre-mRNA/gRNA pair for insertion at ES1, originally 

described by Igo et al. [RNA17 in Fig. A-3A; (11)]. This substrate contains the 

entire editing domain (including 13 ESs), which only supports insertion in vivo. In 

both Q and D fractions, a 14 nt upstream resection (52 nt RNA18) and a 21 nt 

resection (45 nt RNA19) caused a gradual decrease in insertion (Fig. A-3). 

 In contrast, a 45 nt template for A6 insertion (RNA4) was optimal in both 

Q and D fractions (Fig. A-1). In further 50 truncations, the 43 nt RNA20 is 

similarly efficient as the 45 nt RNA19, whereas the 40 nt RNA21 and 37 nt 

RNA22 were significantly inhibited in both Q and D fractions (Fig. A-3C and D). 

The shortest substrate appeared inactive in the D fraction, and only 10% active 

in the Q fraction. All plotted quantifications are the average of two independent 

experiments, each one including replica series (see material and methods).  

All pre-mRNA constructs tested have similar predicted folding stability 

(Fig. A-3A). Thus, we observed efficient CYb insertion in the Q and D fractions 

with 52 nt and 66 nt substrates (RNA18 and RNA17, respectively). In contrast 

with CYb insertion, A6 insertion was quite efficient with a shorter 45 nt substrate 

(RNA4) but relatively inhibited with larger substrates (Fig. A-1B and C). This 

difference between the two substrates suggests that editing complexes are 

sensitive to transcript-specific features, in addition to absolute substrate size. In 

vivo CYb editing only involves insertion; however, it is unknown whether or not 

the CYb transcript is intrinsically resistant to deletion.  
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Figure A-3. Mutagenesis of CYb pre-mRNA for full-round insertion at ES1. (A) All 
labeling is as in Fig. A-1. (B and D) CYb insertion assays, with 3U insertion products 
indicated by an arrowhead. (C and E) Plots of relative accumulation of +3U RNA. 
 
 

 To address this question, we attempted artificial conversion of the 66 nt 

RNA17 by introducing uridylates at ES1 (generating 70 nt RNA23, Fig. A-4A) 

and corresponding gRNA sequence changes to mimic a deletion site (Fig. A-4B 
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details the changes). Notably, this construct supported accurate gRNA-directed 

3U deletion at the converted ES1 (Fig. A-4C, lane 1); therefore, the CYb 

substrate is not intrinsically resistant to deletion editing. This CYb deletion 

construct allowed us to test the upstream resections (Fig. A-4A) previously 

analyzed for CYb insertion. In the Q and D fractions, 14 and 21 nt resections (56 

nt RNA24 and 49 nt RNA25, respectively) have relatively small effects. 

 In further 50 truncations, a 44 nt RNA26, 41 nt RNA27 and 36 nt RNA28 

were less efficiently processed in both protein preparations. The shortest 

construct did not exhibit visible editing in the D fraction (Fig. A-4E, lane 8). Thus, 

CYb deletion is quite efficient with a 49 nt substrate on average in both Q and D 

fractions. In contrast, A6 deletion was significantly inhibited with the equivalent 

48 nt RNA14 in both Q and D fractions. Interestingly, CYb insertion and deletion 

exhibited similar profiles of editing activity relative to substrate size (compare 

plots in Fig. A-3 and A-4).  

This could be a reflection of the natural substrate not being exposed to 

selection pressures associated with deletion editing. Thus, the optimal 

substrate for deletion differs between A6 and CYb. Such differences in deletion, 

together with the insertion differences described above, further suggest that 

pre-mRNA size and nucleotide composition affect editing efficiency in a 

transcript-specific manner. RPS12 insertion and deletion editing The only model 

substrates currently used to study trypanosome full-round RNA editing in vitro 

are A6 and CYb.  
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Fig. A-4. Mutagenesis of CYb pre-mRNA for full-round deletion at converted ES1. 
(A) Starting RNA23 derivatives.  All labeling is as in Fig. A-1.(B) Parental  and 
converted ES1 for full-round editing (C and E) CYb deletion assays. (D and F) Plots of 
relative accumulation of -3U RNA. 
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We decided to apply the current understanding of these two systems to establish 

an RPS12 pre-mRNA (which encodes the mitochondrial ribosomal protein, 

subunit 12) substrate for both insertion and deletion editing. To this end, we 

tested a 70 nt RNA29 sequence, as well as a longer 112 nt RNA30 and shorter 

55 nt substrate (Fig. A-5A) (data not shown). These transcripts were annealed to 

a complementary gRNA designed to direct 3U deletion at the natural ES2. 

Interestingly, the largest substrate was most efficient, despite its significant 

predicted folding stability (Fig.A- 5A), and the shorter 70 nt RNA30 and 55 nt 

RNA (data not shown) exhibited corresponding decreasing efficiency in both Q 

and D fractions (Fig. A-5C) (data not shown).  

 So far we showed conversion from insertion to deletion. To determine if 

the opposite conversion can be performed (i.e. from deletion to insertion), we 

altered the natural deletion ES2 in RPS12 to mimic an insertion site, similar to 

the natural CYb ES1 and A6 ES2 (Fig. A-5B). Based on our A6 and CYb 

analysis, we tested a 43 nt construct with a complementary gRNA design 

directing 3U insertion. This RNA pair forms a potential ligation ‗bridge‘ with 

residues adjoining the ES, which stimulates insertion but is dispensable for 

deletion (392,). Also, it favors single-strand character of residues between the 

duplexes, and enables weak pairing at the 30 end of the upstream duplex, as in 

deletion sites (427,447).  
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 As predicted, the resulting 43 nt RNA31 supported accurate 3U insertion 

in both Q and D fractions (Fig. A-5D) (data not shown). Longer 51 nt and shorter 

40 nt RNAs appeared slightly more and less efficient, respectively (data not 

shown). The absolute percent of correctly edited product with the novel RPS12 

substrates reported here varied between experiments and protein preparations, 

but generally ranged between 5 and 10% of remaining pre-mRNA input. Thus, 

RPS12 substrates were established for full-round deletion and insertion. 

Furthermore, the conversion of a natural deletion site into an insertion site 

confirms that all genetic information that commit editing complexes to carry out 

full-round deletion or insertion resides within the ES and suggests that such 

information can be manipulated to reprogram the mode of the editing machinery 

at virtually any natural site.  
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Figure A-5. Establishment of RPS12 as substrate deletion and insertion.  (A) RNA29 
RNA30 for deletion and 43 nt RNA31 for insertion with partially complementary gRNAs. 
All labeling is as in Fig. A-1. (B) Parental deletion and converted insertion ES2. (C and 
D) Deletion and insertion assays. 
 
 
 
 
Discussion 

In this study, we defined minimal pre-mRNAs substrates for full-round insertion 

and deletion at specific ESs, and systematically assessed the contribution of 

distal regions on editing efficiency. We compared editing with complexes 

moderately enriched by Q-Sepharose (peak editing fraction, ‗Q fraction‘) or 

significantly enriched by consecutive Q-Sepharose and DNA-cellulose (peak 

fraction, ‗D fraction‘) columns (393). Three different model transcript substrates 

were analyzed, A6, CYb and RPS12 (the latter established in this study). 

Interestingly, in some reactions, substrate shortening caused greater inhibition of 
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insertion activity in the D fraction than in the Q fraction (e.g. see Fig. A-1D and 

A-4E), suggesting that stringent purification of editing complexes causes partial 

loss or inactivation of a relevant RNA-binding activity. Furthermore, at least in 

the case of A6, substrate shortening negatively affected the fidelity of insertion 

(Fig. A-1D, compare lanes 1 and 5, or 6 and 10).  

Our proposed loss of a relevant factor upon extensive purification of 

editing complexes may explain why some protein preparations by other 

laboratories support efficient pre-cleaved editing (using short substrates), but not 

full-round editing reactions. The best substrate size identified for each transcript 

analyzed was similar in both Q and D peak fractions (e.g. A6 insertion was best 

with a 45 nt substrate in both protein preparations); however, significant 

differences between deletion and insertion were observed: 45 and 65 nt A6 

substrates were best for insertion and deletion, respectively (Fig. A-1 and A-2), 

and longer substrates were somewhat less efficient in deletion. Notably, in 

contrast to our optimized~45 nt insertion substrate, the corresponding 48 nt 

deletion substrate (with 3Us at ES2 accounting for the size difference) was 

strongly inhibited (Fig. A-2D and E). 

 In the case of CYb editing, insertion was most efficient with a 66 nt 

transcript (Fig. A-3) (447), whereas deletion was best with 49 and 56 nt 

substrates (Fig. A-4). Significantly larger CYb insertion substrates (80 and 100 nt 

long) are somewhat less efficient (data not shown). The molecular basis of these 

differences between deletion and insertion in the same substrate, and between 



 

 

251 

the two substrates, is presently unclear. They may reflect the complexity of 

substrate recognition due to the proposed partition of functions associated with 

insertion and deletion in editing complexes, and the evidently large diversity of 

nucleotide sequences proximal and distal to sites encountered by editing 

complexes. Thus, it is feasible that one or more relevant RNA–protein 

recognitions differ between full-round insertion and deletion.  

Furthermore, such interactions appear to be significantly influenced by 

transcript-specific features in and around editing sites. Purine-rich regions 

typically found upstream of editing sites have been proposed to anneal with 

natural gRNA 3‘ (poly)U tails (386,387), and structural studies in trypanosomes 

have confirmed this interaction (422). Whether or not purine-rich regions or other 

pre-mRNA features exhibit additional cis-acting functions has not been 

determined in trypanosomes. In Leishmania, ND7 and CYb pre-mRNA 

substrates that are devoid of natural purine-rich regions are functional, although 

the presence of an uncharacterized small 5‘ determinant near the ND7 editing 

site was proposed (413,449). 

 Furthermore, a separate 34 nt A/U element, in CYb pre-mRNA, appears 

to modulate gRNA-directed, and induces gRNA-independent, insertion (30). In 

our current study, inactivating resections of the A6 upstream purine-rich region 

were rescued by pyrimidine-rich extensions. Similarly, inactivating downstream 

resections can be rescued by heterologous sequences. This indicates that the 

specific sequence and purine-richness of the truncated A6 regions have little if 
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any modulatory functions. Whether more proximal 5‘ and 3‘ sequences (not 

dissected in this study) bear specific determinants remains to be analyzed. Our 

in vitro analysis of CYb has not revealed yet the presence of critical cis-elements 

in substrates up to 100 nt long (this work and data not shown), but further 

studies may be necessary. Based on our observations with the A6 and CYb 

systems, we established RPS12 substrates for deletion and converted insertion 

at ES2.  

Interestingly, an ~100 nt long RSP12 substrate supports the best deletion 

level thus far, and shorter substrates (70 nt and 55 nt long; Fig. A-5C and data 

not shown) are correspondingly less efficient. Similar to the A6 system, we 

obtained efficient insertion with shorter substrates (~43–50 nt long, Fig. A-5C) 

(data not shown) than those needed for optimal deletion. We suspect that 

efficient model substrates of transcripts naturally undergoing both types of 

editing and deletion may be shorter for insertion than for deletion. CYb may be 

an exception as this transcript has not been exposed to natural pressures 

imposed by deletion editing. 

 Finally, the effect of pre-mRNA minimization on full-round deletion and 

insertion was directly compared at natural and artificially converted sites in three 

different substrates. Such conversions were performed in both directions: from 

deletion to insertion and from insertion to deletion, thus confirming expectations 

that the type of editing is exclusively determined by mRNA and gRNA residues 

within the ES (414,426). Importantly, both natural and converted sites for full-
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round deletion studied here exhibited the reported [mM] adenine ribonucleotide 

requirement for optimal cleavage. In contrast, both natural and converted 

insertion sites do not require such [mM] adenine ribonucleotide supplement (19). 

Thus, both the type of editing and associated nucleotide requirements were 

converted. Sites for partial (pre-cleaved) deletion and insertion editing have also 

been established on significantly altered pre-mRNA sequences (15,24). Site 

conversion within the CYb editing domain appears surprising as this substrate is 

only known to undergo insertion in vivo. If the CYb editing domain is not 

intrinsically refractory to U deletion, inserted or genomically encoded Us may be 

occasionally removed by ‗misguiding‘ (31), or by proofreading cycles (to 

eliminate extra U insertions) with cognate gRNAs. It is also conceivable that the 

natural substrate (1151 bases) uses specialized features, and/or CYb-specific 

binding factors to downregulate deletion functions of bound complexes. 

 

Materials and methods 

Pre-mRNA and gRNA substrates  

 The ATPase 6 (A6) and CYb (CYb) pre-mRNA substrates used for full-

round insertion at ES2 and ES1, respectively, are derived from the A6AC and 

CYb anchor substrates, and enhanced gRNAs, originally described by Igo et al. 

(11,15). gCYb[558]USD was modified to direct +3U insertion, and all A6 mRNA 

constructs used pre-edited ES1 to increase the stability of the downstream 

duplex. All RNAs were transcribed using the Uhlenbeck single-stranded T7 
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transcription method (25) and gel purified. Converted ESs in A6, CYb and 

RPS12 were engineered on natural pre-mRNA sequences paired with enhanced 

gRNAs (427,444,447).  

 

Preparation of crude mitochondrial extracts and enrichment of editing 

complexes  

Procyclic Trypanosoma brucei strain TREU667 was grown in Cunningham 

media, and mitochondrial extracts were prepared as described previously 

(414,434). Mitochondrial crude extract purified by Q-Sepharose ion exchange 

chromatography, or further purified by DNA-cellulose ion exchange 

chromatography to seven-major silver-stained components of editing complexes, 

was described previously (393). The elution fractions with the peak of editing 

activity were used in each case as indicated in the text (Q fractions and D 

fractions). The differences in activity by Q and D fractions described in this study 

were reproduced. Editing and quantification analysis Full-round U deletion and U 

insertion were performed as described by Cruz-Reyes et al. (19). Briefly, 30 end-

labeled pre-mRNA (10 fmol) and gRNA (1.25 pmol) were preannealed and 

incubated in 10 mM-MRB buffer [10 Mm Mg(OAc)2, 10 mM KCl, 1 mM EDTA, 

pH 8, 25 mM Tris– HCl, pH 8 and 5% glycerol]. Insertion reactions were 

supplemented with 150 mM UTP and 3 mM ATP. Deletion reactions were 

supplemented with 3 mM AMP-CP and 30 mM ATP. Aliquots containing 20 ml 

editing reactions, including 2 ml of peak editing fraction, were incubated at 26 C 



 

 

255 

for 60 min. Upon incubation, the RNA was deproteinized and resolved in 9% 

acrylamide, 8 M urea gels. Data were visualized by phosphorimaging and/or X-

ray autoradiography. Quantification of editing products was performed using a 

STORM PhosphorImager (Image Quant 5.0, Molecular Dynamics). Each panel 

in these figures corresponds to one of two replica series performed 

simultaneously (i.e. one experiment). At least two independent experiments 

were performed for each figure and the data shown is representative. The 

editing activity varied between protein preparations, but the relative efficiency of 

the constructs was consistently observed. The abundance of accurately edited 

product for each construct tested was initially calculated as the percentage of 

total input RNA and then normalized to the abundance of the corresponding 

product with the most active substrate identified. Mean and error bars were 

plotted on a linear scale.  
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APPENDIX II 

RNA EDITING COMPLEX INTERACTIONS WITH A SITE FOR 

FULL-ROUND U DELETION IN TRYPANOSOMA BRUCEI* 

 

Summary 

 Trypanosome U-insertion and U-deletion RNA editing of mitochondrial 

pre-mRNAs is catalyzed by multisubunit editing complexes as directed by 

partially complementary guide RNAs.  The basic enzymatic activities and protein 

composition of these high-molecular mass complexes have been under intense 

study, but their specific protein interactions with functional pre-mRNA/gRNA 

substrates remains unknown. 

  We show that editing complexes purified through extensive ion-exchange 

chromatography and immunoprecipitation make specific cross-linking 

interactions with A6 pre-mRNA containing a single 32P and photoreactive 4-thioU 

at the scissile bond of a functional site for full-round U deletion.  At least four 

direct protein–RNA contacts are detected at this site by cross-linking.  All four 

interactions are stimulated by unpaired residues just 5‘ of the pre-mRNA/gRNA 

anchor duplex, but strongly inhibited by pairing of the editing site region.  

 
 
_____________ 
*Reprinted with permission from: ―RNA editing complex interactions with a site 
for full-round U deletion in Trypanosoma brucei‖ by Anastasia Sacharidou, 
Catherine Cifuentes-Rojas, Kari Halbig, Alfredo Hernandez, Lawrence J. 
Dangott, Monica De Nova-Ocampo, and Jorge Cruz-Reyes. 2006. RNA. July; 
Vol. 12. No. 7: 1219–1228. Copyright © 2006 RNA Society. 
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 Furthermore, competition analysis with homologous and heterologous 

transcripts suggests preferential contacts of the editing complex with the 

mRNA/gRNA duplex substrate.  This apparent structural selectivity suggests that 

the RNA–protein interactions we observe may be involved in recognition of 

editing sites and/or catalysis in assembled complexes. 

 

Introduction 

 Mitochondrial mRNAs in trypanosomatid protozoa including 

Trypanosoma, Leishmania, and Crithidia species undergo a unique form of RNA 

editing by cycles of uridylate insertion or deletion at numerous editing sites 

(ESs).  This post-transcriptional mRNA maturation progresses with a general 3‘–

5‘ polarity and is catalyzed by a large multisubunit RNA editing complex (also 

termed 20S editosome or L-complex) proposed to contain between 8 and 20 

polypeptides depending on the purification protocol (393-397).  The smaller 

number presumably reflects high-stringency purification conditions and tight 

association of the subunits in the resulting complexes. 

  Partially complementary guide RNA (gRNA) transcripts direct this 

process, which is believed to initiate with the formation of an ‗‗anchor duplex‘‘ 

with pre-mRNA. Catalysis of a single editing cycle involves three basic activities, 

namely, mRNA endonuclease, 3‘ terminal uridylyltransferase (Tutase in 

insertion) or 3‘ to 5‘ U-specific exoribonuclease (in deletion), and RNA ligase.  

So far, the known catalytic subunits in the editing complex include a TUTase 
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(KRET2, also termed LC-6b; (396, 398), a U-specific exonuclease (KREP6, LC-

2; (399), two RNA ligases (KREL1, Band IV, LC-7a and KREL2, band V, LC-9; 

(400-402), deletion and insertion endonucleases (KREN1 and KREN2; (403-

404), respectively), and an endonuclease/exonuclease (KREPA3, band VI, LC-

7b; (405)).  All these protein subunits have been cloned and characterized in 

vitro and in vivo.  A significant amount of information has been obtained on the 

structural and functional composition of editing complexes (for reviews, see 

(383-385); however, the specific RNA–protein interactions in assembled 

complexes during recognition of pre-mRNA/gRNA duplex substrates and 

catalysis of full editing cycles are unknown.  

 Several reported protein subunits contain conserved motifs for nucleic 

acid binding, but only a purified recombinant KREPA3 has been shown to exhibit 

RNA-binding activity (405).  In addition to core essential subunits, a few auxiliary 

components involved in editing are known, including the annealing factors MRP1 

(gBP21) and MRP2 (gBP25) (390-391, 406-407), and the gRNA-binding factor 

RBP16 (408).  Other proposed factors are an RNA helicase, REAP1, and 

TbRGG1 (395, 409-411).  All factors mentioned above are either weakly or not 

associated with editing complexes and dispensable for in vitro editing (393, 395-

396, 412).  

 Here, using photocross-linking we report four protein interactions in 

intimate contact with the first editing site (ES1) for full-round U deletion in an A6 

pre-mRNA/gRNA substrate that co-purify and co-immunoprecipitate with editing 
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complexes.  All four RNA–protein cross-links exhibit structural selectivity for the 

single-stranded character of the editing site region.  Together, the data indicate 

that the cross-linking events described here are mediated by one or more stably 

bound core subunits.  To our knowledge, this is the first report of specific RNA–

protein interactions of editing complexes with a functional site for full-round RNA 

editing. 

 

Results 

 To search for RNA–protein interactions in assembled RNA editing 

complexes, we generated a 72-nt A6 pre-mRNA substrate containing a single 

32P and 4-thioU at the scissile bond of the first editing site (ES1) for U deletion 

(Fig. A-6A).  Prior to photo-crosslinking, this thiolated pre-mRNA was pre-

annealed with gRNA and mixed with editing complex preparations, as in 

standard in vitro reactions (see Materials and Methods).  Importantly, the 

thiolated pre-mRNA supports accurate in vitro deletion of three uridylates as 

directed by the partially complementary gRNA D33 (392), although slightly less 

efficiently than unmodified pre-mRNA (Fig. A-6A, B).  This indicates that the 

presence of a thio-uridylate immediately 3‘ of the scissile bond does not 

significantly interfere with editing activity.  

 We initially utilized crude mitochondrial lysate that was fractionated by Q-

sepharose chromatography (Q1 column; Fig. A-6C) to detect protein cross-links 

to ES1. This column has been previously used to enrich active editing 
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complexes (393-394, 413). Several cross-links of various intensities are evident 

across the fractionated lysate upon irradiation with 365-nm UV light. At least four 

of them, at about 40, 50, 60, and 100 kDa, appeared to closely co-purify with 

editing complexes as detected by immunoblots of known core subunits, 

particularly in the peak fractions 9–11 (‗‗peak Q1 fractions‘‘; Fig. A-6C,D). 

 

 
 
FIGURE A-6. RNA–protein interactions detected by photocross-linking co-purify with 
RECC in Q-sepharose fractionated mitochondrial extract. (A) Diagram of the 72-nt A6 
pre-mRNA substrate annealed with 33-nt gRNA D33. Boxes indicate predicted duplexes 
flanking ES1. The 4-thioU (sU) and 5‘-32P-radiolabed bond (*) are positioned at the 
double-strand/single-strand junction that defines ES1 (arrowhead). (B) U-deletion in 
vitro assay of unmodified (W.T.) and thiolated A6 pre-mRNA paired with gRNA D33. 
Input and accurate -3U deletion RNAs are indicated. (C) UV irradiation (365 nm) of the 
pre-mRNA/gRNA substrate with Q-sepharose fractions. The asterisks indicate the 
positions of four proteinase K-sensitive cross-links that co-purify with RECCs.  RECC 
was detected in immunoblots (D) of four known subunits KREL1 (also termed TbMP52), 
KREP1 (MP8), KREPA2 (MP63), and KREPA3 (TbMP42). RECC and co-purifying 
crosslinks peak in fractions 9–11. The molecular size is indicated in kilodaltons (E) 
Silver staining of  Q1-sepharose fractions. The peak Q1 fractions elute between 150 
and 200 mM KCl. 
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 Other prominent cross-links were detected at about 75, 150, and 250 kDa 

in or near these fractions.  Proteinase K inactivation of all cross-links in the peak 

Q1 fractions showed that they are protein dependent (not shown), so from here 

onward we will refer to them as p40, p50, p60, and p100.  The peak Q1 fractions 

eluted away, between 150 and 200 mM KCl, from most proteins in the 

mitochondrial crude extract, and therefore appear significantly enriched (Fig. A-

6E).  These fractions were pooled and further purified by two subsequent steps 

of ion-exchange chromatography in DNA-cellulose and Q-sepharose columns, 

respectively (Fig. A-7; data not shown). 

 Notably, p40, p50, p60, and p100 co-purify with editing activity in both 

columns. However, additional bands are detected in the DNA-cellulose column 

(‗‗D‘‘) peak fractions, although not reproducibly in our protein preparations (not 

shown).  The peak fractions of the second Q-sepharose column (‗‗Q2‘‘ fractions 

13–15) show primarily p40, p50, p60, and p100 (Fig. A-7A), precisely co-

purifying with isolated silver-stained polypeptides and full-round deletion activity 

(Fig. A-7B, C).  Notably, our peak Q2 fractions exhibit a pattern of major stained 

protein bands, plus a few additional fainter bands (Fig. A-7B), that is remarkably 

similar to that of editing complexes purified with either the same protocol (414) 

or another biochemical purification strategy (394).  

 Both the same protein pattern and relative intensity of individual bands 

are conserved whether silver or SYPRO Ruby staining is used (data not shown).  
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Importantly, p40, p50, p60, and p100 co-localize with stained bands in the Q2 

peak fractions (Fig. A-7D).  Furthermore, these cross-links are only detected if 

the targeted residue is thiolated and, therefore, upon 365-nm but not 260-nm UV 

light irradiation (data not shown).  

 

 

FIGURE A-7. p40, p50, p60, and p100 co-purify with RECC after extensive ion-
exchange chromatography. Peak Q1 fractions from Fig. A-6 were fractionated on DNA-
cellulose (D) and a second Q-sepharose column (Q2). Shown are the relevant odd 
fractions of the Q2 elution. The four protein–RNA cross-links (A) precisely co-purify with 
silver-stained RECCs (B) and U-deletion activity (C). The U-deletion activity of Q2 
fractions was assayed at the ES1 of the 3‘-end-labeled A6 pre-mRNA. The RNA input 
and accurate deletion product (-3U) are indicated. (D) The four protein–RNA cross-links 
(lane 1) co-localize with silver-stained protein components (lane 2) of the peak Q2 
fractions (no. 13–15). 
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A direct comparison of the protein content and cross-linking pattern of Q1, 

D, and Q2 peak fractions (Fig. A-8A,B) indicates that the four RNA–protein 

interactions described above are conserved throughout the purification of active 

editing complexes (Fig. A-8C) and most likely involve the same proteins.  Other 

cross-links previously observed in Q1 and occasionally in D fractions are 

significantly reduced or lost in Q2 fractions.  The peak Q2 fractions (13–15) 

contain ~1/6,000 of the original crude mitochondrial extract protein and exhibit a 

simpler protein pattern than the parental D and Q1 fractions.  This extent of 

purification is consistent with others reported using similar protocols (393-394, 

415).  There is at least a ~10-fold further purification compared to the whole-cell 

protein content; however, the specific activity of editing complexes could not be 

calculated since the in vitro editing assay is not linear with protein added, 

particularly in cruder fractions (393-394, 415); data not shown).  Together, these 

data suggest that p40, p50, p60, and p100 are tightly associated with purified 

active editing complexes and that they make intimate contacts with the targeted 

editing site.  
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FIGURE A-8.  Side-by-side gel analyses of Q1, D, and Q2 peak fractions.  (A) protein–
RNA cross-linking interactions, (B) silver staining, and (C) full-round U-deletion activity. 
The latter includes a lane with the original whole mitochondrial extract (W). 
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 To further confirm this association, we performed co-immunoprecipitation 

assays (co-IP) using monoclonal antibodies that are known to immunoprecipitate 

active editing complexes (394, 416). 

 Analysis of the peak Q1 fraction shows efficient co-IP of the p40, p50, 

p60, and p100 kDa cross-links by anti-KREPA3 antibodies (Fig. A-9).  Relative 

to a control lane showing the starting cross-linked sample (‗‗C‘‘), the unbound 

lane (‗‗U‘‘) shows a significant decrease in three cross-links, p40, p60, and p100, 

and their corresponding enrichment in the bound material (‗‗B‘‘) after two washes 

(‗‗W2‘‘).  Most cross-linking activity at ~50 kDa remains in the unbound fraction, 

but a significant amount (above background levels) co-IPs with the editing 

complex, as compared with a mock assay with no antibodies.   

We interpret this as indicative of at least two proteins comigrating at ~50 

kDa, one corresponding to a stably bound component (p50) of editing 

complexes and another representing a mitochondrial protein that is presumably 

abundant but not tightly associated with editing complexes.  Consistent with this 

notion, the latter cross-link may account for the prominent ~50-kDa band in the 

flow through and first few fractions in the initial chromatographic step (Fig. A-

6C), and apparent trailing into the peak editing fractions.  The same cross-linking 

protein is significantly reduced or lost in the D and Q2 peak fractions (Fig. A-8A), 

and in most gels, it appears to migrate slightly above the proposed p50 cross-

link (e.g., Figs. A-6C, A-8A, A-9).  
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 Co-IP assays were also performed with antibodies against two other 

editing subunits, KREPA2 and KREL1, and in cases, p40, p50, p60, and p100 

selectively immunoprecipitate with editing complexes (not shown).  Additional 

analyses were performed to confirm the specificity of the p40–100 interaction 

with editing complexes. These include a positive control showing efficient co-IP 

of radiolabeled RNA ligase subunits (via 32P-adenylylation; (394, 416)) and a 

negative control with a nonrelated antibody (not shown).  The virtual absence of 

the ~150- and ~250-kDa cross-links in Q2 fractions (Fig. A-7A) and their 

reduction to near background levels in co-IP assays (Fig. A-9) suggest that the 

cross-linking proteins are either weakly or not bound to editing complexes.  
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FIGURE A-9.  p40, p50, p60, and p100 co-immunoprecipitate with RECCs. Protein–
RNA cross-links in a peak Q1 fraction before (C lane) and after a co-IP assay with anti-
MP42 antibodies (+Ab), including the unbound (U), second wash (W2), and bound 
immunoprecipitated (B) fractions. A parallel mock co-IP assay with no antibodies (-Ab) 
is shown. 
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 Combined, our extensive chromatography purification and 

immunoprecipitation analyses show at least four RNA–proteins cross-links 

between one or more stably bound subunits of editing complexes and a site for 

full-round deletion in an A6 substrate. Notably, these cross-links specifically 

target the [32P]-labeled photoreactive 4-thioU positioned at the scissile bond of 

this functional substrate. 

 To determine whether or not the polypeptides that bind ES1 also contact 

other positions of the A6 pre-mRNA/gRNA substrate, we moved the [32P]-

labeled photo-reactive 4-thioU a few nucleotides away from the scissile bond at 

ES1 (bond 45; Fig. A-10A).  In one case, we tested the upstream bond 34 that 

corresponds to the second deletion site (ES4) in the natural A6 substrate, and in 

another, the downstream bond 51 in the never-edited region of this transcript.  

Both positions are located within the predicted upstream and downstream 

duplexes formed by the partially complementary gRNA D33, respectively (Fig. A-

10A, top and middle RNA pairs).  Notably, all four protein–RNA interactions 

detected by cross-linking at functional ES1 (bond 45) are absent at either duplex 

position (Fig. A-10B).  This suggests that the observed RNA–protein cross-

linking interactions may exhibit structural selectivity for single-strandedness of 

the editing site.   To confirm this apparent preference for single-stranded 

residues adjoining the photo-reactive 4-thioU, we annealed the pre-mRNA to a 

gRNA derivative (31.dx) that extends the upstream and downstream duplexes 

into a single contiguous duplex (Fig. A-8A, bottom pair).  We found that base-
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pairing of the ES1 region with 31.dx strongly inhibits all cross-links observed with 

the parental gRNA D33 (Fig. A-10C).  

 

 

 

 

FIGURE A-10.  All four RNA–protein interactions detected by cross-linking in Pf editing 
complexes are favored by single-strandedness at the editing site. (A) Diagrams of A6 
pre-mRNA/ D33 pairs as in Fig. A-6A, but with the [5‘- 32P] thiolated U at upstream (b-
34) or downstream (b-51) bonds (top and middle RNA pairs, respectively). The position 
of ES1 (b-45) is also indicated. The A6 pre-mRNA modified at b-45 was also paired to a 
gRNA D33 derivative (31-dx) that forms a continuous duplex across ES1 (bottom pair). 
(B) Parallel crosslinking assays in a Q2 peak fraction of radiolabeled pre-mRNA at each 
of three indicated bonds above, paired with gRNA D33. (C) Cross-links of pre-mRNA 
modified at b-45 and annealed with either D33 or a D33-like derivative (31-dx) that fully 
base-pairs the ES1 and directs no deletion. 
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 Together, our data indicate that all four cross-linking proteins observed at 

ES1 are favored by the single-strand character of the editing site.  Importantly, 

precise gRNA base-pairing across ES1 inhibits in vitro U deletion at this site 

(389). 

 To assess the specificity of the interaction between editing complexes 

and A6 pre-mRNA/D33 substrate, we supplemented the cross-linking assay with 

a molar excess of various non-radiolabeled RNA competitors (Fig. A-11A–C).  

Interestingly, addition of 10- and 25-fold excess (relative to radiolabeled A6 pre-

mRNA) of the homologous A6 pre-mRNA virtually abolished all cross-linking 

(Fig. A-11A, lanes 1–3), whereas another pre-mRNA (CYb; lanes 4–5) and tRNA 

(lanes 6–7) were only slightly inhibitory at the same concentration.  The partial 

effect of the latter heterologous competitors seems specific to these transcripts, 

as further addition (25-fold) of gRNA D33 did not affect the crosslinking 

efficiency (lanes 8–9).  Note that the assay includes pre-mRNA ((392); see 

Methods section).  The inhibition by the A6 pre-mRNA competitor is consistent 

with its ability to base-pair with gRNA D33.  Additional heterologous transcripts 

including the noncomplementary gRNA gRPS12, viral RNA H121 (25- to 50-fold 

excess), and several homopolymers (100-fold excess) were slightly or not 

inhibitory (Fig. A-11B, C; data not shown).  Up to 100-fold further addition of 

gRNA D33 (i.e., ~200-fold excess overall) in the latter assays was not inhibitory 

(Fig. A-11B, lanes 5, 6).  
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 We also tested the above RNA competitors on full-round U deletion.  As 

expected, the homologous pre-mRNA was fully inhibitory at 25-fold excess, 

whereas all other competitors in Fig. A-11A–C were little or not inhibitory at the 

same concentration (Fig. A-11D; data not shown).  Combined, the above 

competition analyses on cross-linking and editing assays suggest that editing 

complexes may be able to distinguish the pre-mRNA/gRNA duplex from 

individual substrate strands and from nonrelated structured or relatively 

nonstructured transcripts. Additional studies are currently under way in our 

laboratory to further address this question. 

  



 

 

272 

 

 

 

 

FIGURE A-11.  Homologous and heterologous RNA competitors in cross-linking and 
editing assays.   Cross-linking with or without (A) 10 and 25-molar excess of 
homologous A6 pre-mRNA (mA6) or heterologous CYb pre-mRNA (mCYb) and tRNA, 
or complementary gRNA D33. (+) Additional D33 over the standard amount (~100-fold 
excess) present in the cross-linking assay.  (B) Ten-, 25-, and 50-fold excess of 
noncomplementary gRNA gRPS12 or 50- and 100-fold excess of complementary gRNA 
D33 (over its standard level in the assay, as in A). (C) Hundred-fold excess of 15-nt 
oligomers. (D) U-deletion assay with or without 25-fold excess of the indicated 
transcripts (~125-fold overall in the case of gRNA D33).  
  

 

 

 

 

 

 



 

 

273 

 Based on the observed gel mobility of p40, p50, p60, and p100, we 

suspected that one or more of them could correspond to known subunits of 

editing complexes.  To test this possibility, we transferred the reactions to a 

membrane after cross-linking and performed Western analysis using available 

monoclonal antibodies to identify the co-localizing proteins.  Our initial analysis 

showed a precise co-localization between p60 and KREPA2 (~60 kDa; band III; 

LC-4), whereas p40 did not precisely match with KREPA3 (~40 kDa; band VI; 

LC-7b) (Fig. A-12).  Furthermore, p40 and p50 do not comigrate with the editing 

RNA ligases (32P-labeled by adenylylation; (417); data not shown).  MS analyses 

of the protein bands matching the crosslinks are under way, but due to the 

possibility of cross-contamination between similar-size subunits (particularly in 

the ~90–100 kDa and ~40–55 kDa size ranges; (383)) additional work using 

epitope-tagging of Candidate subunits will be required to establish definite 

subunit assignments for p40, p50, and p100, and confirm that p60 corresponds 

to KREPA2. 
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FIGURE A-12.  p60 colocalizes with the KREPA2 subunit. A cross-linking reaction (X-
links lane) and subsequent Western blot analysis of the same gel (Western lane) with 
anti-KREPA2 and anti-KREPA3 antibodies. 
  

 

 

 Overall, the extensive biochemical co-purification and co-

immunoprecipitation of p40, p50, p60, and p100 with active editing complexes 

indicates that the cross-links involve one or more stably bound components of 

editing complexes.  Moreover, our analysis of substrate features and response 

to RNA competitors suggests that editing complexes and possibly these 

particular RNA–protein interactions exhibit structural selectivity for the editing 

substrate used in our studies. 
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Discussion 

 The specific RNA–protein interactions in editing complexes that lead to 

their activation and catalysis of faithful RNA editing cycles in trypanosomes are 

unknown.  The purpose of this study was to identify specific pre-mRNA/protein 

contacts using assembled editing complexes and an A6 pre-mRNA/gRNA 

substrate for full-round editing in vitro. 

  We found at least four protein interactions, p40, p50, p60, and p100, in 

direct contact with ES1 for U deletion.  These interactions revealed by protein–

RNA cross-linking involve one or more tightly bound subunits of editing 

complexes since they precisely co-purify with editing activity upon extensive ion-

exchange chromatography in three consecutive columns and co-IP using 

monoclonal antibodies raised against known editing complex subunits.  The ion-

exchange chromatography (414) and immunoprecipitation (394, 402, 416) 

approaches applied in this study were previously exploited to efficiently purify 

active editing complexes and study their protein composition.  All major protein 

components of the complexes originally observed by (393) are also present in 

the complexes prepared by immunoprecipitation and similar chromatography or 

affinity purifications (394-396, 416). 

 The identification of the cross-linking polypeptides reported is evidently 

necessary to begin dissecting their potential in editing.  The protein banding 

pattern of our purified editing complexes is remarkably similar to others 

previously reported using related biochemical purification schemes (393-395), 
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and associations between specific subunits and protein bands in those patterns 

have been proposed (for reviews, see (383, 385)).  Based on the co-localization 

of p60 with band III (KREPA2; LC-4) in both silver-stained gels (Fig. A-7D) and 

immunoblots (Fig. A-12; data not shown) we speculate that p60 may indeed 

correspond to band III.  The precise molecular function of this subunit has not 

been defined, but it has been found associated with KREPC2 and KREL1 in a 

purified subcomplex that catalyzes partial (precleaved) deletion editing (418).  

These authors have speculated that KREPA2 could use its potentially regulatory 

OB-fold to coordinate the sequential enzymatic steps of U deletion.  

Furthermore, this subunit has also been proposed to play a critical structural role 

in the formation or stability of entire editing complexes (419-420).  Other 

reported subunits of predicted molecular size similar to p60, although not found 

during the peptide sequencing of band III (by Edman degradation; (419)), 

include KREN2 and KREPB2, an essential insertion-specific endonuclease and 

a potential endonuclease, respectively (403-404).  At least the essential KREN2 

is expected in our purified complexes, either migrating with band III (possibly at 

sub-stoichiometric levels) or near to it.  Another reported subunit, KRET2, 

appeared to be sub-stoichiometric (397) in similarly purified complexes. 

 p100 precisely colocalizes with the prominent band I (393), which 

corresponds to an (~99 kDa) exonuclease proposed to function in U deletion 

(KREPC2; LC-3; (383, 385).   However, we cannot exclude the possibility that 

p100 may be the closely migrating KREN1, an essential U deletion-specific 
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endonuclease (395) expected in our purified active complexes, or alternatively 

KREPC1 (~100 kDa), a Candidate editing exonuclease (395) potentially present 

in our preparation.  Any of the above likely p100 Candidates is consistent with 

our search for subunits that bind and cross-link a deletion site.  

 Several known editing complex subunits could account for the p40 and 

p50 cross-links we observe (383, 385), including five (~41- to 49-kDa) subunits 

with a conserved U1-like Zn-finger domain potentially involved in 

macromolecular interactions with RNA substrates or other proteins in the 

complex.  Two of these proteins also exhibit a C-terminal Pumilio RNA-binding 

domain and less conserved RNase III motifs potentially involved in 

endonuclease cleavage.  Our Western blot analysis revealed that p40 is not 

KREPA3 (~42 kDa; Fig. A-12). Moreover, the RNA ligases KREL1 (~52 kDa) 

and KREL2 (~45 kDa) migrate between the p40 and p50 cross-links in high-

resolution acrylamide gels and therefore are different proteins (not shown).  It is 

also conceivable that one or more of these proteins, p40, p50, and/or p100, 

correspond to novel subunits of editing complexes.  Further work is under way to 

identify these proteins and their potential roles in deletion. 

 KREPA3 (~42-kDa subunit) and five related subunits exhibit apparent Zn-

finger domains and/or an OB fold.  The former are found in many regulatory 

proteins and could mediate interactions with nucleic acids or with other proteins, 

whereas the latter typically provides a nonspecific binding platform for single- 

and double-stranded nucleic acids (421).  KREPA3 is the only subunit known so 
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far to bind RNA (405).   Surprisingly, a recombinant version of this protein was 

reported to exhibit endonuclease and (3‘–5‘) exonuclease activities on a stretch 

of unpaired uridylates in a partial RNA hybrid, although KREPA3 lacks 

recognizable nuclease domains.  While these activities are editing-like, the 

substrate used in that study is not functional, and the proposed protein–RNA 

interaction remains to be confirmed in assembled editing complexes.  RNAi 

knockdown of KREPA3 does not appreciably disassemble editing complexes, 

but reduces in vivo and in vitro editing (405).   Thus, the reported properties of 

rKREPA3 suggest that this subunit has important roles in editing.   Whether or 

not KREPA3 is functionally similar or even redundant to any structurally related 

subunit remains to be determined. KREPA3 was not detected in our analysis at 

ES1, however this may reflect a limitation of our ‗‗zero-distance‘‘ cross-linking 

approach.  That is, even if a protein specifically binds the targeted site, the 

thiolated uridylate and adjacent amino acid side chain may not be properly 

orientated with each other for efficient photoreaction. 

 A double-strand/single-strand junction just 5‘ of the downstream ‗‗anchor‘‘ 

duplex is a critical feature of functional editing sites (388-389).  Interestingly, the 

cross-links we observe are strongly inhibited by gRNA base-pairing of the editing 

site (Fig. A-10).  This observation suggests that the p40–100 interactions with 

the substrate exhibit structural selectivity for the mismatched preedited ES1, but 

are inhibited by gRNA complementarity across the edited site.   In addition to 

simple mRNA/gRNA mismatches at editing sites, structural studies have 
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indicated that other features of functional pre-mRNA/gRNA pairs may determine 

the basis for endonuclease recognition (422-423). Nevertheless, it is feasible 

that p40, p60, p50, and p100 may play important roles during recognition and/or 

catalysis at editing sites.  A previous study of U insertion in Leishmania 

proposed that two RNA cross-linking proteins, ~80 and 100 kDa, from highly 

enriched editing extracts may be associated with editing site recognition, but the 

RNA substrate positions cross-linked remain to be determined (424). 

 Our competition analyses also suggest that editing complexes may 

preferentially recognize features of the pre-mRNA/gRNA hybrid (Fig. A-11).  

gRNA D33 is supplemented at ~100-fold the level of the radiolabeled A6 

premRNA, in both standard cross-linking and editing assays, although we have 

seen that a ~200-fold excess affects neither activity (Fig. A-11B,D).  Importantly, 

we have seen in native gels that during the pre-incubation step in our assays 

virtually all radiolabeled A6 pre-mRNsA anneals to gRNA D33 (see Materials 

and Methods section; data not shown).  Addition of non-radiolabeled A6 pre-

mRNA at 10-fold excess (or less) strongly inhibits cross-linking and editing (Fig. 

A-11A; data not shown), whereas 25- to 100-fold excess of other transcripts that 

should not hybridize with gRNA D33 have little or no effect.  Interestingly, 

significantly structured transcripts such as tRNA (25-fold) appear relatively more 

inhibitory than predicted low-structured sequences, including the gRNA 

constructs (50-fold) and short RNA homopolymers (100-fold) tested (Fig. A-11; 
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data not shown).  This apparent binding preference of editing complexes for 

RNA substrates in vitro is under further investigation in our laboratory. 

 Our observation of multiple cross-linking interactions at the ES1 for 

deletion in the A6 pre-mRNA/gRNA substrate may reflect that this site is dense 

with protein contacts in editing complexes (possibly not all detected by our 

cross-linking approach).  Also the natural dynamics of interacting subunits, 

variable RNA substrate conformations, or protein breakdown may account for 

the multiple cross-links detected.  These possibilities will be further studied in 

our laboratory.  Furthermore, we observed the same cross-linking pattern in 

immunoprecipitated editing complexes enriched from bloodstream form 

trypanosomes ((425); data not shown).  Together with our extensive purification 

of the procyclic complexes, this suggests that these proteins are part of the core 

complex and may not directly account for developmental regulation. 

 Finally, editing complexes contain subgroups of apparently related 

subunits sharing similar conserved motif (383).   This may reflect the proposed 

functional and structural partition of insertion and deletion components in editing 

complexes (418, 426-429), and functions outside editing, including polycistronic 

mRNA, gRNA, and rRNA processing (430-431).  Whether the editing complex 

cross-links reported here and/or other subunits occur at different deletion or 

insertion sites and in other substrates is currently under investigation in our 

laboratory.  
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Methods 

Pre-mRNA and gRNA substrates 

 The ATPase 6 (A6) pre-mRNA editing substrates (Seiwert et al.1996) for 

deletion with gRNA D33 (392) were prepared as previously described.  The site-

specific radio-labeled and 4-thioU modified pre-mRNAs were obtained by 

ligation of two fragments as in (432).  Acceptor RNAs were transcribed using the 

Uhlenbeck single-stranded T7 transcription method (433) and gel-purified.  

Donor thiolated RNAs were chemically synthesized by Dharmacon.  The 4-thioU 

residue of the donor piece was radiolabeled to high-specific activity with 

polynucleotide kinase and [γ-32P]ATP (using a 1:2 molar ratio of 5‘ ends:ATP), 

gel-purified, and ligated to the acceptor piece using the following DNA 

oligonucleotide bridges.  A 3:1:2 molar ratio of acceptor/donor/bridge molecules 

was used. 

 

Preparation of crude mitochondrial extracts and fractions containing 

enriched or 

purified editing complexes 

 Procyclic form (Pf) T. brucei strain TREU667 was grown in Cunningham 

media, and mitochondrial crude extracts were prepared as in (434) with 

modifications as in (414).  Mitochondrial crude extracts were fractionated by ion-

exchange chromatography in consecutive Q-sepharose (Q1) DNA-cellulose (D), 

and Q-sepharose (Q2) columns, as described by (393) and (414).  The elution 
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fractions with the peak of editing complexes determined by Western blot 

analysis or editing activity also contained the peak of cross-linking activity in all 

purification steps. 

 

Editing, adenylylation, and cross-linking analysis  

 Full-round editing reactions assembled in 20-μL mixtures with pre-

annealed 3‘-end labeled A6 pre-mRNA (~10 fmol) and gRNA D33 (~1.2 pmol) 

and adenylylation of RNA ligases in editing complexes were performed as in 

(426-427) and (417), respectively.  For photocross-linking analysis, editing 

reactions were assembled as above, but in the absence of nucleotides, which 

somewhat improves cross-linking.  The complete mixtures were incubated for 10 

min at 26°C and an additional 10 min on ice prior to irradiation with 365-nm UV 

light (on ice for 10 min, ~5 cm below a Spectroline 150-V lamp) and subsequent 

treatment with RNases A and T1 (50 mg/mL and 120 U/μL) for 10 min at 37°C.  

After addition of 7 μL of 4X Laemmli buffer, the samples were analyzed by SDS-

PAGE and autoradiography.  RNA competitors at the indicated molar excess 

were included in the reaction mixture supplemented to the pre-annealed pre-

mRNA/gRNA duplex in both cross-linking and editing assays.   The 15-nt 

homopolymers were synthesized by IDT.  The 121-nt viral RNA H121 was a gift 

from Cheng C. Kao (435).  We have determined in native gels that our pre-

annealing step yields >95% of the pre-mRNA in a duplex with gRNA D33 (not 
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shown), so further gRNA addition in Fig. A-11A,B should hybridize virtually all 

pre-mRNA. 

 

 Immunoprecipitation and Western blot analysis 

 Immunoprecipitations were performed essentially as described by (394) 

with minor modifications.   For immunoprecipitation analysis of cross-linking 

proteins, editing reactions were scaled up 10 times and cross-linked as 

described above.  One hundred micro-liters of Immunomagnetic beads 

(Dynabeads M-450; Dynal) were coupled with 225 μL of monoclonal antibodies 

(kindly provided by the laboratory of Ken Stuart, SBRI Seattle) and 1% BSA.  

Editing reactions were incubated with antibody-coated beads for 1 h at 4°C 

using a bi-directional shaker and occasional tapping.  After washing two times 

with 100 μL of immunoprecipitation buffer (10 mM Tris at pH 7.2, 10 mM MgCl2, 

200 mM KCl, 0.1% Triton-X 100) the beads were resuspended with 100 μL of 

TE buffer and incubated in the presence of RNases A and T1 as described 

above.  Upon the addition of 30 μL of 4X Laemmli buffer, the bead suspension 

was boiled at 100°C for 5 min and the supernatant analyzed by SDS-PAGE and 

autoradiography.  The entire 200 μL unbound fraction and 100 μL washes mixed 

with 60 μL and 30 μL of 4X Laemmli buffer, respectively, boiled as well as 

analyzed.  For Western blot analysis with the indicated monoclonal antibodies, 

protein samples (cross-linked to RNA or not) were separated by SDS-PAGE, 

blotted, and probed with the indicated mouse monoclonal antibodies at a dilution 
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of 1:25–1:50.  The secondary antibody was applied at a 1:5,000 dilution and the 

blot developed using the ECL plus system (Amersham). 
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APPENDIX III 

SUBSTRATE DETERMINANTS FOR RNA EDITING AND EDITING COMPLEX 

INTERACTIONS AT A SITE FOR FULL-ROUND U INSERTION* 

 

Summary 

 Multisubunit RNA editing complexes catalyze uridylate insertion/deletion 

RNA editing directed by complementary guide RNAs (gRNAs).  Editing in 

trypanosome mitochondria is transcript-specific and developmentally controlled, 

but the molecular mechanisms of substrate specificity remain unknown.  

 Here we used a minimal A6 pre-mRNA/gRNA substrate to define 

functional determinants for full-round insertion and editing complex interactions 

at the editing site 2 (ES2).  Editing begins with pre-mRNA cleavage within an 

internal loop flanked by upstream and downstream duplexes with gRNA.  We 

found that substrate recognition around the internal loop is sequence-

independent and that completely artificial duplexes spanning a single helical turn 

are functional.  

 Furthermore, after our report of cross-linking interactions at the deletion 

ES1 (35), we show for the first time editing complex contacts at an insertion ES.   

 
_____________ 
*Reprinted with permission from: ―Substrate determinants for RNA editing and 
editing complex interactions at a site for full-round U insertion by Cifuentes-
Rojas C, Pavia P, Hernandez A, Osterwisch D, Puerta C, Cruz-Reyes J. 2007 
The Journal of Biological Chemistry, 282, 4265-4276. Copyright © 2010 by 
American Society for Biochemistry and Molecular Biology. 
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Our studies using site-specific ribose 2‘ substitutions defined 2‘-hydroxyls 

within the (a) gRNA loop region and (b) flanking helixes that markedly stimulate 

both pre-mRNA cleavage and editing complex interactions at ES2.  Modification 

of the downstream helix affected scissile bond specificity.  Notably, a single 2‘-

hydroxyl at ES2 is essential for cleavage but dispensable for editing complex 

cross-linking.  This study provides new insights on substrate recognition during 

full-round editing, including the relevance of secondary structure and the first 

functional association of specific (pre-mRNA and gRNA) riboses with both 

endonuclease cleavage and cross-linking activities of editing complexes at an 

ES.  Importantly, most observed cross-linking interactions are both conserved 

and relatively stable at ES2 and ES1 in hybrid substrates. However, they were 

also detected as transient low-stability contacts in a non-edited transcript. 

 

Introduction 

 The single-mitochondrion containing kinetoplastid protozoa, including 

species of Trypanosoma and Leishmania, use cycles of uridylate insertion or 

deletion at numerous editing sites (ESs) within pre-mRNAs to generate mature 

mRNAs (for recent reviews, see (383-385)).  This post-transcriptional mRNA 

maturation is catalyzed by a multisubunit editing complex (399, 403-404, 436-

437) with specificity for the ESs being directed by small transacting guide RNAs 

(gRNAs) that are partially complementary to pre-mRNA (386-387, 436, 438).  
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 A significant body of information has been accumulated on the functional 

and structural composition of editing complexes, including the identity of the 

subunits catalyzing the three steps of each editing cycle; they are mRNA 

cleavage at deletion and insertion ESs (403-404), U addition or U removal (398-

399, 439) and RNA ligation at deletion and insertion ESs (400-402, 418, 428-

429).  The complexes are heterogeneous in protein composition but share most 

of the approximately 20 subunits identified (440).  Several factors are also 

known or proposed to play auxiliary roles in editing (390-391, 395, 406-411, 

441), although they are dispensable in vitro (393, 395-396, 412).   

Much less is known about the mechanisms of substrate recognition 

including the protein subunits and substrate determinants that distinguish pre-

edited (pre-) mRNAs from other transcripts and DNA in mitochondria.  We 

recently reported the first observations of direct editing complex interactions with 

a functional site for full-round U deletion, showed preferential association with 

the editing substrate, and provided evidence for one of the interacting subunits 

corresponding to KREPA2 (442).  However, editing complex interactions at 

insertion sites have not been reported.  Other recent reports showed that 

bacterially expressed recombinant versions of the subunits KREPA3 and 

KREPA4 bind RNA (405, 443).   The latter exhibited specificity for a gRNA 3‘-

oligo(U) tail.  

 In pre-mRNA/gRNA substrates, unpaired pre-mRNA uridylates or 

unpaired gRNA purines are landmarks of deletion or insertion sites, respectively 
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(386) and the number of such residues dictates the extent of U removal or 

addition (386-388).  The two kinds of editing are likely to be differentially 

regulated as they involve separate activities and enzymes (403-404, 426-429) 

and there is evidence for their physical separation in heterogeneous complexes 

and subcomplexes (418, 440).  Interestingly, efficient deletion and insertion 

editing have distinct requirements for a proposed pre-mRNA/gRNA ligation 

bridge (392, 444) and artificially interconverted sites use differing pre-mRNA 

lengths (445).  The above observations suggest that the editing complex 

recognitions in and near an ES may also differ between the two editing types.   

Our interconversion of functional ESs from deletion to insertion and vice 

versa experimentally demonstrated that the basic determinants that commit 

editing complexes into full-cycle deletion or insertion reside within the internal 

loop containing the targeted ES (445).  However, additional features proximal 

and/or distal to an ES may modulate the efficiency of editosome assembly and 

catalysis.  For example, discrete sequence changes affecting the pairing 

potential of residues adjoining an ES can significantly impact the specificity and 

efficacy of full-round and partial (―pre-cleaved‖) editing (444, 446).  

 The current model of trypanosome RNA editing postulates that natural 

sites should be flanked by a proximal upstream duplex between a purine-rich 

pre-mRNA sequence and a gRNA 3‘ poly-U tail (386-387, 436, 438) and an 

adjacent pre-mRNA/gRNA downstream ―anchor‖ duplex that directs cleavage 

(386-389).  Mutational analysis of the gRNA 3‘ region that stabilizes the 
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upstream duplex can significantly enhance full-round editing in vitro (392, 447).  

In Leishmania tarentolae, an upstream duplex was used in model U-insertion 

substrates by one group (448-449) but was not essential according to another 

(413).  The latter group proposed that pre-mRNA purine sequences have a role 

in editing that is independent of base-pairing with gRNA (448-449).  In a CYb 

pre-mRNA substrate, a 34-nt A/U element appeared to modulate gRNA-directed 

and gRNA-independent insertion (450) and a discrete 5‘ determinant near an 

editing site in a ND7 substrate was proposed (413, 449).  In Trypanosoma 

brucei, the three model systems that currently recreate a full-round editing in 

vitro, A6, CYb, and RPS12 (387-388, 444-445, 451) are based on natural 

purine-rich pre-mRNA fragments.  

 We showed in A6 constructs that natural pre-mRNA extensions 

protruding from the upstream and downstream duplexes could be replaced by 

unnatural stretches without significant effects on editing.  In one such construct, 

about half of a 5‘  poly-purine run proposed to stimulate editing in vitro (387) was 

substituted by pyrimidines (445).  However, whether or not a specific pre-mRNA 

(or gRNA) sequence or its natural base composition modulates editing remains 

unclear.  Previous structural studies in solutions of different natural-like 

mRNA/gRNA pairs have proposed that a common secondary structure may be 

important for editing complex recognition (452) but this has not been tested in 

functional in vitro systems.  
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 Here we performed systematic sequence mutagenesis and ribose 2‘-

deoxynucleoside substitutions of a minimal A6 pre-mRNA/gRNA substrate to 

define functional determinants for both full-round U insertion and editing complex 

interactions at the targeted ES2.  Our competition analyses of editing and RNA-

protein interactions showed evidence of preferential association of editing 

complexes with the hybrid substrate.  We observed that the requirement for the 

duplexes flanking the internal loop is sequence-independent, and artificial 

helices spanning a single turn support efficient editing.  We also found that 

specific ribose 2 -hydroxyls in both strands of the downstream helix and, 

surprisingly, in the gRNAloop region strongly stimulate both pre-mRNA cleavage 

and editing complex interactions at the targeted insertion site.  Moreover, 2‘-

deoxy substitution of the downstream helix affected scissile bond selectivity, 

whereas the tested modifications in either pre-mRNA or gRNA strand had 

relatively moderate effects.  Notably, the 2 -hydroxyl moiety adjoining the scissile 

bond is an essential determinant of insertion, potentially involved in cleavage 

catalysis.  

 The current studies of trypanosome full-round insertion editing provide 

significant insights on the relevance of the substrate secondary structure rather 

than its specific sequence and suggest that specific pre-mRNA and gRNA 

riboses significantly affect both pre-mRNA cleavage and editing complex 

interactions at the targeted bond.  
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Results 

Analysis of the Natural A6 Pre-mRNA Features Proximal to ES2 for Full-

round Insertion 

 Features in the RNA substrate that are specifically recognized during full-

round editing are not fully defined in trypanosomes.  These may include the 

native pre-mRNA sequence, purine richness, and higher-order structure of the 

pre-mRNA/gRNA bimolecular substrate.  To address this question we 

characterized the proximal features of an A6 RNA pair (Pair-1) for ES2 insertion 

that uses a 45-nt pre-mRNA fragment (Fig. A-13A; Ref. 41).  We have shown 

that minimal 43–45-nt pre-mRNA substrates support efficient fullround insertion 

in the A6, CYb, and RPS12 systems (445).  For simplicity, we will refer to the 

upstream and downstream duplexes (relative to the pre-mRNA) flanking the 

internal loop containing ES2 as ―left‖ and ―right‖ helices. The terminal 5‘ 

extensions of Pair-1 will be termed pre-mRNA and gRNA protrusions, 

respectively (Fig. A-13A).  

 We first analyzed the left helix of Pair-1.  Our previous studies showed 

that virtually all natural 5‘ purines in the pre-mRNA protrusion could be 

substituted by pyrimidines (445).  It was also reported that natural pre-mRNA 

sequence beyond the residues forming the right duplex were dispensable for 

ES2 insertion (447).  To assess the importance of the natural pre-mRNA 

sequence in the left helix and the requirement for the pre-mRNA protrusion, we 

designed Pair-2 containing an artificial 15-bp blunt-ended left duplex (Fig. A-
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13A).  Furthermore, the pre-mRNA/gRNA-paired residues in this duplex were 

flipped to alternate all purines and pyrimidines (except the first two residues 

needed for T7 in vitro transcription).  Pair-2 supported insertion at a level 

comparable with the parental Pair-1 (Figs. A-13 B and C), thus showing that 

neither the natural pre-mRNA sequence nor purine richness in the left duplex or 

the pre-mRNA protrusion is required for efficient insertion.  Note that to preserve 

both a pre-mRNA functional length (445) and its purine content in Pair-1 

(77.8%), all 25 upstream purines in the parental substrate were moved to the 3‘ 

end of Pair-2 (75% purines).  

 To further analyze the functional length of the left helix, we tested Pair-2 

derivatives (Fig. A-13A) containing 12-bp (Pair-3) or 11-bp (Pair-4) helices with 

predicted stabilities similar to the parental duplex (data not shown).  

Interestingly, Pair-3 was edited less efficiently than Pair-1.  This may reflect a 

partial influence of nucleotide composition of the helix.  Notably, the artificial 11-

bp upstream duplex in Pair-4, which represents ~one turn of helical RNA (453), 

efficiently replaced the complete 5‘ region of the parental Pair-1.  Because the 

minimal length of the natural A6 pre-mRNA for efficient full-round ES2 insertion 

is ~43–45 nt (445), we trimmed the rightward region of Pair-4 to generate Pair-5 

(45-nt pre-mRNA; Fig. A-14A).  This substrate, with reduced purine content 

(71%), supported less accurate editing (i.e. 3U addition) than the parental Pair-1 

and accumulated inaccurate insertion by 1U addition (Fig. A-14B).  However, 

relocation of the protruding 3‘ purines of Pair-5 to the 5‘ end (Pair-6; 71% 
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purines) re-established 3U insertion nearly to the level of the parental Pair-1 

(lane 3).  Although the latter 45-nt constructs imply that a short protrusion may 

be more stimulatory 5‘ than 3‘ to ES2, alternative structural reasons are also 

feasible.  To determine whether or not the pre-mRNA extension in Pair-6 must 

be purine-rich, we substituted most of the protruding purines by pyrimidines 

(Pair-7).  Interestingly, Pair-7 was about as efficient as Pair-1 despite its 

relatively low (49%) purine content (Fig. A-14BC, compare the first and last 

lanes).  
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FIGURE A-13.  Analysis of the left helix in the parental A6 pre-mRNA/gRNA substrate 
for full-round insertion at ES2 (Pair-1) (41). A, the starting Pair-1 substrate and 
nomenclature of the analyzed regions. Derivative constructs are aligned. The gRNA 
gA6[14]USD-3A (447) in Pair-1 (in blue) and the ES2 (arrowhead) are indicated.  The 
predicted stability (3.0 Mfol, M. Zuker program (342)) of left and right duplexes (boxed) 
of Pair-1 are -20.5 and -21.5 kcal/mol. The based composition of the derivative 
duplexes was adjusted to conserve a similar ∆G° as in Pair-1. In the left columns the 
RNA pair assigned number and pre-mRNA size are indicated. Parental unmodified 
gRNA sequences are depicted by filled boxes. B, full-round insertion assays using 3‘-
end-labeled pre-mRNA constructs. Accurate insertion by addition of three Us is 
indicated by an arrowhead. The pre-mRNA size and assigned pair number are 
indicated. C, plots of relative accumulation of accurately edited product. 
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 Together, the above results indicate that neither the natural polypurine 

run nor the overall purine richness of A6 pre-mRNA is a critical determinant of 

ES2 insertion in vitro.  Combined with our previous observations (445), these 

features upstream of the internal loop is sequence-independent.  Furthermore, a 

single turn of helical RNA was sufficient for full-round insertion.  Additional work 

will be required to test whether smaller and less stable left helixes are efficient.  

 We then examined the features of the right helix of Pair-1 required for 

editing.  To this end we used variants of Pair-6 (Fig. A-14A) containing 14-bp 

(Pair-8) and 13-bp (Pair-9) right duplexes with a predicted stability comparable 

with the parental helix (data not shown).  Both Pair-8 and Pair-9 supported 

editing nearly as efficiently as the parental Pair-1 (Fig. A-14C).  We then tested 

derivatives bearing either 12-bp (Pair-10) or 11-bp (Pair-11) right helices.  

 Notably, whereas the base composition of the 3‘ duplex significantly 

deviated from the parental helix, these substrates were appreciably more 

efficient than Pair-1 (Figs. A-14D and E).  It is also worth noting that the 

predicted stability the right helix in Pair-11 is ~10% lower than in Pair-1 (see the 

legend to Fig. A-14).  

 Finally, we generated Pair-12 bearing a blunt-ended right duplex of 11 bp, 

and a change of the 5‘-terminal two gRNA residues to facilitate in vitro 

transcription starting with G (433).  This last construct was less efficient than 

Pair-11. It is possible that a branch structure downstream of ES2 favors insertion 

editing.  Consistent with this notion, a derivative of Pair-10 with a right blunt-
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ended duplex was also less efficient (data not shown).  Altogether, these data 

show that substrates with one turn of helical RNA at both the left and right sides 

of ES2 support efficient full-round U insertion and that the natural sequence of 

the minimal (~43–45 nt) pre-mRNA outside the internal loop is not required.  

This suggests that the basic editing complex recognitions flanking the internal 

loop involve sequence-independent features of the pre-mRNA/gRNA pair.  

 

 

FIGURE A-14.  Analysis of the right helix.  A, the starting Pair-5 and derivatives are 
aligned. All labeling is as in Fig. A-13A. B–D, full-round insertion assays are as in Fig. 
A-13B. The derivative duplexes conserved a similar predicted ∆G°, except for the right 
helix in Pair-11 and Pair-12 that dropped to -18.3 kcal/mol. The pre-mRNA size in these 
pairs was adjusted to a minimum of 43 nt (41), as the 3‘ end was truncated. Some 
sequence-dependent gel migration differences were observed (e.g. the 3‘ end of the 
last two 43-nt pre-mRNAs differ by two residues).  E, plot as in Fig. A-13C. 
 



 

 

297 

Effect of Ribose 2’ Substitutions on Full-round Insertion 

 We analyzed the contribution of ribose 2‘-hydroxyl groups to substrate 

recognition by editing complexes, by incorporating 2‘-deoxy substitutions and 

other 2‘ modifications in and around ES2 in the parental Pair-1 (summarized in 

Fig. A-18).  

 

pre-mRNA Residues Upstream of the Internal Loop 

 We first analyzed the pre-mRNA 5‘ region (Fig. A-15A) using derivatives 

containing 11 deoxynucleotides that replaced either the entire pre-mRNA 

protrusion (Pair-13) or most bases in the left helix (Pair-14).  Interestingly, both 

constructs supported insertion at about half the level of the parental Pair-1 (Fig. 

A-15B, upper panel).  This decrease in editing was largely paralleled by a 

reduction in ES2 cleavage (Fig. A-15B, lower panel, and C).  Importantly, pre-

mRNA cleavage was scored in absence of RNA ligase activity using editing 

complexes that were pretreated with 10 mM PPi (Ref. (429); see ―Experimental 

Procedures‖).  These two constructs showed that 2‘-hydroxyl groups in the pre-

mRNA protrusion and the left helix partially stimulate insertion.   

Our previous work showed that truncation of the protrusion in the minimal 

45-nt A6 pre-mRNA (see 34-nt RNA 8 in Cifuentes-Rojas et al. (445)) abrogates 

full-round insertion.  This suggests that editing complexes make sufficient 

contacts with the all-DNA protrusion to support an appreciable insertion level, 

and thus, the 2‘-hydroxyls of the pre-mRNA protrusion are significantly 
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stimulatory but not essential.  Furthermore, the left RNA/DNA heteroduplex in 

Pair-14 should adopt a shape that is more similar to the A-form (of dsRNA) than 

the mainly reflect a requirement for 2‘-hydroxyls, although shape dependent 

recognitions may also be important.  We then tested the effect of a single 2‘-

deoxynucleoside substitution adjoining the scissile bond (Pair-15).  Notably, this 

2‘-H abolished both insertion and cleavage (Figs. A-15B and C).  This may 

reflect a direct role of the 2‘-OH at ES2 in catalysis and/or site recognition or an 

indirect role due to a change in the sugar pucker (from ribose C3‘-endo to 

deoxyribose C2‘-endo conformation (453).  

 To address these two possibilities we tested other ribose 2‘ modifications 

such as 2‘-O-methyl (-OCH3; Pair-16) that favor the RNA-like sugar pucker but 

cannot act as a hydrogen bond donor (57).  2‘-OCH3 supported neither insertion 

nor cleavage (Figs. A-15B and C), but it is conceivable that the added bulk of 

this group, compared with a 2‘-OH, caused steric hindrance.  We then tested the 

smaller 2‘-fluorine (-F) modification (Pair-17), which should also promote RNA-

like C3‘-endo conformation even more than 2‘-OCH3 and is highly unlikely to 

accept a proton (454).  This substituent also completely inhibited cleavage (Fig. 

A-15C and D; see the legend).  Unfortunately, a 2‘-NH2 modified guanosine at 

ES2 is not available (Dharmacon).  

 Based on these results, it is conceivable that formation of a hydrogen 

bond by the ribose 2‘-OH group at ES2 is required for insertion.   The ribose 2‘-
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hydroxyl group at ES2 could mediate either catalysis at pre-mRNA cleavage, 

editing site recognition, or editing complex assembly onto the substrate.  

 To attempt distinguishing between these possibilities, we modified our 

recently developed photo-crosslinking assay to analyze direct editing complex 

contacts at ES1 in A6 pre-mRNA (442).  To similarly assay ES2, we placed a 

single 32P-labeled 4-thioU immediately 3‘ of the scissile bond.  Pairing of this 

residue with a guiding adenosine should extend the right helix by 1 base pair 

(Pair-15‘; Fig. A-15E).  Notably, the thiolated ES2 supported protein crosslinking 

interactions that both are similar to those reported for ES1 (442) and specifically 

co-purify and co-immunoprecipitate with editing complexes (see Fig. A-19).  

Substrates with either a 2‘-OH (Pair-1‘) or the inhibitory 2‘-H modification (Pair-

15) at ES2 exhibited identical cross-linking patterns (Fig. A-15E), suggesting a 

similar editing complex association with both the 2‘-H-substituted and 

unmodified ES2.  Thus, the single 2‘-deoxy substitution at ES2 does not seem to 

prevent editing complex interactions at ES2, adjoining the scissile bond may 

play a role in catalysis.  

 

Pre-mRNA Residues in the Right Helix 

 We then examined the pre-mRNA residues in Pair-1 that are part of a 15-

bp right duplex.  Three deoxynucleotide patches were initially compared, 10, 14, 

and 15 nt long (Pairs 18, 19, and 20, respectively; Fig. A-15A).  Note that these 

pre-mRNAs contain a 3‘-most ribonucleoside to allow end-radiolabeling with T4 
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RNA ligase (see ―Materials and methods‖ (454).  Interestingly, these ribose 

substitutions decreased both insertion and cleavage compared with Pair-1 (Figs. 

A-15F and G).  This inhibition increased with the extent of deoxy substitution.  

Notably, Pair-20 with all upstream pre-mRNA residues modified was most 

inhibited.  

 To determine the importance of the 2‘-hydroxyl immediately 3‘ of the 

cleavage site, the singly substituted Pair-21 was tested.  This substrate was 

about half inhibited in both editing and cleavage assays (Figs. A-15F and G).  

Combined, these observations indicate that the 2‘-hydroxyls just 3‘ of ES2 and 

further downstream in the duplexed pre-mRNA are significantly stimulatory.  

These deoxy substitutions did negatively impact insertion, primarily at pre-mRNA 

cleavage. 
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FIGURE A-15.  Ribose 2‘-substitution of upstream and downstream residues in the pre-
mRNA of Pair-1.  A, Pair-1 and derivatives are aligned (pre-mRNA strand is shown). 
Single or multiple 2‘-substitutions are indicated in boxes. The modifications are 2‘-deoxy 
(-H), 2‘methoxy (-OCH3) or 2‘-fluorine (-F). The latter substrate was manufactured with a 
3‘deoxynucleoside (empty box). All other labeling is as in Fig. A-13B, insertion and 
cleavage (upper and lower panels, respectively) of 5‘-substituted pre-mRNAs. A control 
lane devoid of gRNA (-g) was included. C and G, relative accumulation of accurately 
edited (black bars) and ES2 cleavage (white bars) of 3‘-end labeled pre-mRNA. D, 
cleavage of 2‘-fluorine modified, 5‘-end labeled mRNA (see ―Experimental Procedures‖).  
Precise cleavage at ES2 was confirmed using ribonuclease T1 and hydroxyl partial pre-
mRNA digestions (not shown). E, editosome photocross-linking with pre-mRNAs 
containing a single 32P and 4-ThioU at ES2 of Pair-1 and Pair-15.  Diagram indicates 
the labeled bond (*) and thiolated U (s). The right duplex was extended by one base 
pair between Thio-U and a guiding adenosine.   The size of molecular markers is 
indicated in kDa. F, insertion and cleavage assay of 3‘-substituted pre-mRNAs. 
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gRNA Residues and Duplexes Flanking the Internal Loop 

 Apart from the critical ribose 2‘-OH at the editing site, most pre-mRNA 2‘-

hydroxyl groups tested were stimulatory but not essential for ES2 insertion.  We 

then examined the effect of proximal gRNA substitutions and DNA duplexes 

(Fig. A-16A).  A 10-deoxynucleotide patch on the gRNA strand at either side of 

the internal loop (Pair-22 and Pair-24, respectively) had a slight negative effect 

on insertion (Fig. A-16B) comparable with that observed with corresponding pre-

mRNA patches (Pair-14 and Pair-18).  In contrast, DNA duplexes formed by the 

complementary patches at left (Pair-23) or right (Pair-25) of ES2 were more 

inhibitory, particularly the Pair-25 (Fig. A-16B).  In both cases, insertion and pre-

mRNA cleavage at ES2 were similarly inhibited (Fig. A-16D).  

 Interestingly, the right DNA duplex also significantly affected the scissile-

bond selectivity.  That is, the pre-mRNA of Pair-25 was cleaved at several 

residues flanking ES2; the upstream cuts are in the loop, whereas the 

downstream cuts are in the right duplex.  All these cleavages were gRNA-

dependent (not shown).  We assessed whether the inhibitory DNA duplexes 

affected the editing complex photo-cross-linking interactions with ES2.  

Interestingly, thiolated versions of these substrates (Pair-23‘ and Pair-25‘) 

reduced the level of all cross-linking subunits (Fig. A-16E). This effect was 

particularly severe with Pair-25‘.  However, because protein-RNA cross-linking 

can be quite sensitive to conformational changes, inhibition of cross-linking 

activity may reflect local structural changes of the editing site rather than 
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reduced editing complex assembly onto the RNA substrate.  A native gel 

analysis of DNA duplex-containing pairs and Pair-1 confirmed complete 

annealing of these substrates (Fig. A-16F).  

 

 

 

 

 

FIGURE A-16.  Ribose 2‘ substitution of Pair-1 pre-mRNA and gRNA strands. A, pair-1 
and derivatives are aligned. Internal loop residues around ES2 are depicted as curved 
lines with an arrowhead pointing to ES2.  Deoxynucleoside substituted residues are 
boxed. B, insertion assay. C, cleavage assay. The inaccurate cleavages with Pair-25 
are also gRNA dependent (data not shown). Plots (D) and photo-cross-linking assays 
(E) are as in Fig. A-15F, annealing assays of RNA pairs used in E. Control lanes 
without gRNA (-g) are indicated. 
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 Combined, the parallel inhibition of insertion, cleavage, and cross-linking 

activities at ES2 suggest that proximal DNA duplexes negatively impact a 

productive interaction of editing complexes with the substrate and, thereby, 

catalysis. 

 

Internal Loop Residues 

 Finally, we examined the importance of 2‘-hydroxyl groups in the internal-

loop residues containing ES2 (Fig. 5A).  Deoxy substitutions in the three 

residues 5‘ of the guanosine at ES2 (Pair-26) had virtually no effect on either 

insertion or cleavage (Fig. 5, B and C).  In contrast, 2‘-H substitution in all seven 

loop gRNA nucleotides (Pair-27) significantly reduced editing and cleavage (Fig. 

5, C and D).  Notably, modification of both strands of the internal loop (Pair-28) 

further inhibited both editing and cleavage. Furthermore, editing complex cross-

linking at ES2 was also moderately and strongly reduced in the corresponding 

Pair-27‘ and Pair-28‘ substrates, respectively (Fig. 5E). A native gel analysis 

confirmed the complete annealing of these pairs (Fig. 5F).  

 Together, these observations indicate that several hydroxyl groups in the 

internal loop are relevant determinants of insertion that largely influence both the 

efficiency of pre-mRNA cleavage and cross-linking by editing complexes.  

Interestingly, hydroxyls on the gRNA strand appeared to compensate for deoxy 

substitutions on the pre-mRNA strand but not vice versa.  That is, one or more 

2‘-hydroxyls in the gRNA internal loop residues significantly stimulate in trans 
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pre-mRNA cleavage and/or site recognition by editing complexes.  The analyses 

in Figs. 3–5 are summarized in Fig. 6.  

 

 

 

 

 
FIGURE A-17.  Ribose 2‘ substitution of internal loop residues around ES2 in Pair-1. A, 
Pair-1 and derivatives. B, insertion assay. C, cleavage assay. ES2-cleavage products 
are marked with filled dots. Note that the offset gel mobility reflects the use of the same 
pre-mRNA in Pairs 1 and 27 as well as in Pairs 26 and 28. D, plots and E, photo-cross-
linking assays are as in Fig. A-15 F, annealing assays of RNA pairs used in D. Control 
lanes without gRNA are indicated. 
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FIGURE A-18.  Summary of ribose 2‘-deoxy substitutions tested on Pair-1 for full-round 
insertion at ES2.  Upper panel, indicates the level of inhibition for the left and right sides 
of the internal loop and within the loop (each region is separated by a vertical line). Full-
round insertion and pre-mRNA cleavage (Ins/Endo) are on the left, and editosomes 
cross-linking (X-links) are at the right. The asterisk indicates that insertion and cleavage 
are affected at comparable levels. Circle types representing the level of inhibition: thick 
line, moderate; thin line, not determined (n.d.); gray (in addition to thick line), strong; 
with a pattern, no effect; black, complete. Parentheses indicate clarification notes (lower 
panel). A filled arrowhead points to the natural ES2 for full-round insertion. dsDNA 
within the right duplex induced cryptic cuts at several residues (open arrowheads) 
flanking the editing site. Middle panel, diagram of Pair-1 with individual residues shown 
as circles. Lower panel, explanatory notes on the effect of the indicated modifications. 
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Specificity of Cross-linking Interactions at the Insertion ES2 

Several observations indicate that the protein-RNA photo-crosslinking 

interactions at the insertion ES2 represent direct contacts of editing complexes 

with the substrate.  For example, the cross-links are specifically co-

immunoprecipitated by antibodies raised against protein subunits of the complex 

(Fig. A-19A and data not shown).  Also, native complexes purified by either two 

or three steps of consecutive ion-exchange chromatography exhibit comparable 

cross-linking (Fig. A-19B) and editing activities at ES2 in the minimal substrate 

analyzed (445).  Thus, although the latter preparation has a simpler protein 

composition (Fig. A-19C), the two preparations of editing complexes appear 

functionally equivalent with the substrate analyzed.  Furthermore, the presence 

of representative subunits (Fig. A-19D and data not shown) as well as all critical 

catalytic activities including editing endonucleases suggest that the functional 

and protein composition of our complexes is similar to that reported by other 

groups (383, 385).  
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FIGURE A-19.  The RNA-protein cross-linking interactions at ES2 co-immunoprecipitate 
and co-purify with native editing complexes obtained by sequential steps of 
chromatography. A, an immunoprecipitation assay using anti-KREPA3 monoclonal 
antibodies ( Ab), including the unbound (U), second wash (W2), and bound 
immunoprecipitated (B) fractions (upper panel). A parallel mock assay without 
antibodies (-Ab) is also shown (lower panel). B, the cross-linking pattern is conserved in 
the peak fractions of consecutive chromatography steps; D and Q2 represent two-step 
and three-step purification protocols, respectively (see ―Experimental Procedures‖). C, 
silver-staining of the fractions in B. D, Western blot analysis of the Q2 fraction with 
available antibodies against five different stably-bound subunits of editing complexes.
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 Together, these results indicate that the cross-linking interactions at ES2 

are specific to editing complexes.  This is consistent with our recently reported 

observations of cross-linking interactions by editing complexes at the deletion 

site ES1 in a similar A6 substrate (442).  We analyzed the specificity of the 

cross-linking and pre-mRNA cleavage activities at ES2 in competition analyses 

with homologous and heterologous transcripts (Figs. A-20 A and B).  In both 

cases the bimolecular A6 substrate was readily competed out by a 5- and 10-

fold excess of homologous pre-mRNA that can hybridize with free cognate 

gRNA (~120 times the pre-mRNA concentration in the standard mixture; see 

―Materials and methods‖).  

 In contrast, heterologous transcripts including another pre-mRNA, tRNA, 

and a non-complementary gRNA were partially or not inhibitory at greater (10- 

and 25-fold) excess.  Finally, further addition of cognate gRNA was not 

inhibitory.  Thus, both cross-linking and cleavage activities of editing complexes 

at ES2 exhibit specificity for the hybrid substrate.  These observations are also 

consistent with our reported preferential interactions of editing complexes at ES1 

(442).  Interestingly, the highly structured tRNA competitor partially affected both 

cross-linking and editing activities more at ES2 than at ES1 (Ref. (442); Fig. A-

20).  The similar gel mobility of mayor cross-links at ES2 and ES1 (Fig. A-21) 

suggested that the same subunits of editing complexes make these contacts.  

However, the cross-linking efficiency at ES1 is significantly greater than at ES2, 
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consistent with the former substrate supporting a much higher level of editing in 

vitro (392). 

 

 

 

FIGURE A-20.  Competition analysis of cross-linking and pre-mRNA endonuclease 
activities of editing complexes. Cross-linking (A) and cleavage (B) assays with or 
without a 5-, and 10-molar excess of homologous A6 pre-mRNA (mA6) or 10- and 25-
fold excess of heterologous CYb mRNA (mCYb), tRNA, and non-complementary gRNA 
gRPS12. Extra cognate gRNA (gA6) was also supplemented to the standard mixture 
containing 120-fold excess of this transcript (see ―Experimental Procedures‖). The 
cleaved pre-mRNA piece (Cut) is mixed with a 1-nt 3 -extended homologue fragment 
(asterisk) derived from T7 RNA polymerase in vitro transcription. 
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 Because the cross-linking patterns at ES2 and ES1 are similar, we asked 

whether a transcript that does not undergo editing can cross-link with editing 

complexes.  To this end we tested gRNA D33, which does not inhibit ES1 cross-

linking at a ~200-fold excess and exhibits virtually no predicted structure (442).  

Surprisingly, such a transcript containing a single photoreactive 4-thioU 

supported a level and pattern of cross-linking comparable with that of ES2.  

Nevertheless, as expected, an excess of the homologous competitor inhibited all 

cross-linking by thiolated D33, whereas the same (20–40-fold) or greater (200-

fold) excess of competitor had no effect on the cross-linking interactions at ES2 

and ES1 (Fig. A-21 and data not shown).  

 

 

 

 

FIGURE A-21.   Competition analysis of cross-linking interactions with bimolecular 
editing substrates and a non-edited transcript. Lanes 1–3, 2–5, and 7–9 show 
interactions with ES2, ES1, and D33 photo-reactive substrates, respectively. The D33 
competitor was used at the indicated molar excess. 
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 Overall, these observations suggest that the cross-linking subunits of 

editing complexes can make transient nonspecific contacts with RNA; however, 

the similar interactions at ES2 and ES1 are significantly more stable.  

 

Discussion 

 The molecular basis of substrate recognition by editing complexes and 

the regulation of RNA editing in the single mitochondrion of trypanosomes are 

still poorly understood.  The purpose of these studies was to dissect functional 

substrate determinants proximal to a site for full-round U insertion catalyzed by 

purified editing complexes.  Combined, these observations and our previous 

study (442) have important implications on the mechanisms of substrate 

recognition by editing complexes. First, the overall recognition of the insertion 

substrate outside the internal loop is sequence independent.  This notion is 

consistent with structural probing studies suggesting that related secondary 

structures of different mRNA/gRNA pairs may be important for editosome 

recognition (452). 

  Our analysis of a minimal A6 RNA pair for full-round insertion at ES2 

(445) showed that the sequence and base composition of the parental helices 

flanking the editing site, including the pre-mRNA purine-richness (93%) in the 

left duplex, are not required for efficient editing.  We had recently shown that the 

all-purine pre-mRNA protrusion could be replaced by a pyrimidine-rich stretch 

(445).  Although natural 5‘ poly-purine runs in the A6 pre-mRNA are dispensable 
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for the basic insertion reaction in vitro, it is conceivable that these structures are 

specifically recognized in vivo by factors to promote nucleation with the 

complementary uridylate tail of gRNAs or stabilization of the duplex.  In line with 

this notion, an editing complex subunit (KREPA4) was recently reported to 

exhibit binding specificity for a gRNA 3‘ U-tail (37) (443).  Furthermore, a 

proposed accessory factor (REAP-1) preferentially binds to purine-rich 

transcripts such as pre-mRNAs (455).  Notably, substrates with completely 

artificial 11-bp duplexes (i.e. one helical turn of RNA) flanking ES2 support 

efficient insertion (e.g. Pair-11 and Pair-12; Fig. A-14).  

 We speculate that one or both duplexes flanking ES2 is recognized by 

KREN2, an endonuclease subunit that specifically serves in insertion (404) and 

bears an RNase III-like domain and one double-stranded RNA binding motif 

(383, 395).  Interestingly, the 11-bp artificial helices in our substrates may be 

minimal in length, as structural studies of highly conserved double-stranded 

RNA binding motifs in other systems indicate that these proteins typically 

interact with 16-bp (~1.5 helical turns of dsRNA; Ref. (456)).  Moreover, a recent 

study proposed that the smallest dsRNA substrate for the single double-

stranded RNA binding motif in a bacterial RNases III is 11 base pairs (457).  

KREN2 may dimerize (24) like other class 1 RNase III enzymes (437), so that 

each double-stranded RNA binding motif could contact one of the 11-bp helices 

flanking ES2 in our constructs.  Typical double-stranded RNA binding motifs 

specifically bind the A-form of dsRNA through interactions that are adapted to 
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the shape of the helix, are sequence-independent, and primarily involve 

hydrogen bonds with ribose 2‘-hydroxyls (458).  This is consistent with the 

observed inhibition of both U insertion and editing complex photo-cross-linking 

interactions at ES2 by the presence of (B-form) dsDNA in the flanking helices 

(Fig. A-16B). Also in line with this notion, 2‘ deoxy substitutions in one strand 

caused more moderate negative effects (Figs. A-16 B and E) possibly because 

DNA/RNA heteroduplexes retain half of the hydroxyls and conserve more the 

RNA than the DNA helical shape (459).  An 11-bp DNA duplex 5 bp downstream 

of ES2 (Pair-25) markedly reduced accurate cleavage and, instead, stimulated 

low-level cryptic pre-mRNA cuts near ES2 (Fig. A-16C).  Such an effect on 

scissile-bond selection suggests that the modified riboses in the right duplex 

help position KREN2 to precisely cleave the bond at the single-/double-strand 

junction (ES2).  Interestingly, the significant cleavage inhibition correlates with a 

dramatic reduction of editing complex cross-linking at the same site (Fig. A-16E).  

Similarly, the presence of helical DNA 4 bp upstream the internal loop 

moderately inhibited both cleavage and RNA-protein interactions at ES2.  

 Together, these data suggest that the editing complex makes important 

contacts with both helices flanking ES2.  Such contacts with the downstream 

anchor duplex appear particularly relevant for efficient and accurate pre-mRNA 

cleavage as well as for cross-linking interactions at the editing site.  2‘–hydroxyl 

groups in the pre-mRNA protrusion (i.e. Pair-13; Fig. A-15A) also contribute to 

the insertion reaction but more moderately.  However, a construct with the 
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combined modifications of Pairs 13 and 14 significantly inhibited cleavage (data 

not shown) and, thus, further emphasize the impact of the upstream pre-mRNA 

structure on this editing step.  Single ribose 2‘ substitutions at ES2 including 2‘-

H, 2‘-OCH3, and 2‘-F showed that the 2‘-hydroxyl at this site is critical for either 

pre-mRNA cleavage or prior ES2 recognition.  Interestingly, ES2 with either a 2‘-

OH or 2‘-H supported the same pattern of editing complex cross-linking 

interactions at the editing site.  Because protein-RNA photo-cross-linking is 

sensitive to substrate conformational changes, we suspect that most protein 

interactions involved in ES2 recognition are unaffected at the 2‘-H modified site.  

 A potential role of the 2‘-hydroxyl at ES2 in catalysis could involve 1) 

formation of a critical hydrogen bond with the KREN2 endonuclease, 2) 

coordination of a divalent cation cofactor, or 3) direct nucleophilic attack on the 

scissile bond.  Editing complex-catalyzed cleavage of pre-mRNA containing a 

single 32P at ES2 produces a 5‘-labeled downstream fragment (data not shown) 

rather than a 3‘-labeled upstream fragment as would be expected if the 2‘-OH 

group forms a 2‘,3‘ cyclic phosphate upon cleavage, as occurs with RNase A 

(427).  This is consistent with previous RNase mapping that deduced the 5‘-P 

and 3‘-OH nature of the termini produced at ESs (388-389) and also is in line 

with an RNase III Mg2+-dependent type of processing (388-389).  Further work 

will be needed to dissect the precise role/s of the 2‘-hydroxyl group at ES2 in 

pre-mRNA cleavage and/or editing site recognition.  Our deoxy substitutions 

within the ES2 internal loop were also quite informative.  Interestingly, 
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substitution of the three residues 5‘ of the guanosine (bearing a critical 2‘-OH) at 

ES2 affected neither cleavage nor U-insertion; however, substitution of all 

apposing loop gRNA residues strongly inhibited both insertion at pre-mRNA 

cleavage and cross-linking activities at ES2.  These results were unanticipated 

as they reveal that the gRNA strand in the internal loop is an important 

determinant of full-round U-insertion at the level of pre-mRNA cleavage and 

suggest that the proximal pre-mRNA 2‘-OH groups upstream of the guanosine at 

ES2 are less relevant for substrate cleavage.   

Because the relative level of insertion and cleavage were similar, these 

2‘-deoxy modifications appear to have little or no effect on either U addition (by 

the terminal U-transferase, KRET2) or RNA ligation (by KREL2) in the insertion 

cycle.  It is intriuing that the combined pre-mRNA/gRNA substitutions in the loop 

were more inhibitory (in all assays tested) than gRNA modifications alone 

because pre-mRNA substitutions had no effect.  It is possible that the pre-mRNA 

deoxynucleotides facilitate a conformation of the substituted gRNA loop that is 

particularly inhibitory.  Several editing complex subunits contain conserved 

motifs that may bind single-stranded RNA around an ES.  For example, 

KREPA1 (also termed band II, LC-1; Refs.(383, 393, 396)) has an 

oligonucleotide/oligosaccharide binding (OB)-fold that could bind single-stranded 

RNA in interactions independent of ribose 2‘-hydroxyls (460).  KREPA1 was 

speculated to have a role in recognition of the editing substrate and possible 

coordination of an insertion cycle (383).  Consistent with this concept, we 
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recently proposed that the related OB-fold containing KREPA2 (band III, LC-4) 

directly binds a site for full-round U deletion (442).  Additional related subunits of 

the editing complex were also proposed to conserve an OB-fold.  Three subunits 

including KREPA1 and KREPA2 also bear C2H2 zinc-finger domains that could 

potentially bind single-stranded RNA (458, 461).  Furthermore, the RNase III-like 

insertion endonuclease KREN2 is expected to cleave single-stranded RNA at a 

single-/double-strand junction, unlike typical RNase III enzymes that cleave 

dsRNA.  KREN2 has one double-stranded RNA binding motif, one RNase III 

domain, and also a U1-like zinc finger (383).  Perhaps one or more of these 

motifs specifically interact with internal loop determinants involved in scissile-

bond selection at insertion sites.  

 All ribose 2‘-deoxy substitutions tested in this study are summarized in 

Fig. A-18. Notably, proximal changes that significantly decreased pre-mRNA 

cleavage were also associated with a parallel inhibition of editing complex cross-

linking at ES2.  Thus, the cross-linking assay we introduced here not only 

revealed for the first time direct editing complex interactions at an ES for full-

round insertion but also can help define ribose 2‘-OH groups in cis (pre-mRNA) 

or in trans (gRNA) that affect the efficiency of both cleavage catalysis and photo-

cross-linking at sites targeted by editing complexes.  

 Work is in progress to identify the photo-cross-linking subunits; however, 

due to the similar size and gel mobility of several subunits, identification of the 

cross-linking proteins is not straightforward.  We are currently combining the use 
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of mass spectroscopy techniques and epitope-tagging to produce confirmatory 

gel-shifts of Candidate subunits.  Interestingly, the cross-linking pattern at the 

insertion ES2 and deletion ES1 (442) in A6 model substrates are similar.  

Whether or not they play a role in the distinction of editing sites is uncertain, 

although the cross-linking efficiency at ES1 is significantly greater than at ES2.  

Notably, the former is the most efficient model ES known for in vitro editing 

(392).  

 Our competition analyses showed a similar response of both cross-linking 

and pre-mRNA cleavage activities and suggest a preferential association of 

editing complexes with the A6 substrate.  These results also implied a functional 

relevance of the cross-linking interactions.  Surprisingly, a transcript (D33) that 

does not interfere with cross-linking at an ~200-fold excess (442) cross-linked in 

its thiolated version with editing complexes.  However, as expected, these cross-

links were very sensitive to low concentrations of unlabeled D33 (competitor), 

whereas the similar ES2 and ES1 cross-links were resistant to the same or 

greater concentrations of D33.  This suggests that most if not all crosslinking 

subunits can make transient nonspecific contacts with RNA, which may be 

detected by the sensitive 4-thioU photoreagent.  In contrast, the associations at 

ES2 and ES1 are relatively stable.  These stabilized interactions, however, are 

sequence-independent as they are conserved at both ESs tested and may 

reflect recognition of helical irregularities (e.g. potential ESs) in hybrid 

substrates.  Our laboratory is currently exploring these possibilities. 
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Materials and methods 

Pre-mRNA, gRNA, RNA/DNA Chimeric, and Photoreactive Substrates 

 The starting substrate in these studies was the minimized ATPase 6 (A6) 

45-nt pre-mRNA (445) paired with a variant of the enhanced gRNA gA6[14]USD-

3A (447).  This substrate directs full-round insertion of 3Us at ES2 and uses pre-

edited ES1 to increase the stability of the downstream duplex.  RNAs were 

transcribed from a DNA template as described by Milligan et al. (433) gel-

purified, and quantified.  Deoxynucleoside-substituted transcripts were made by 

(IDT, Inc.), and 2‘-F and 2‘-OCH3 modified transcripts were by (Dharmacon, 

Boulder, CO).  

Photoreactive Substrates—Each pre-mRNA was obtained by ligation of two 

pieces (462). The acceptor pieces were synthesized by IDT®, and the thiolated 

donors were synthesized by Dharmacon®.  The donor pieces were radiolabeled 

to high specific activity with T4 polynucleotide kinase and [γ-32P]ATP (MP 

Biomedicals) using a 1:2 molar ratio of ends:ATP, gel-purified, and ligated to the 

acceptor piece as described (442)  

 

Purification of Editing Complexes  

 Procyclic T. brucei strain TREU667 was grown in Cunningham media and 

mitochondrial extracts were prepared as described (434).  Editing complexes 

were enriched by Q-Sepharose ion exchange chromatography and further 
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purified by DNA-cellulose affinity chromatography as reported (393, 442).  

Additional enrichment can be achieved by using another step of Q-Sepharose; 

however, both editing and cross-linking activities were equivalent in the minimal 

substrate for full-round insertion (445) by complexes from the two-step and 

three-step purifications (see Fig. A-19 and data not shown).  Fractions with the 

peak of editing activity were used for all the experiments.  

 

Editing and Cleavage Assays and Quantitation Analysis 

 Full-round U insertion was performed as described (426).  Briefly, a 2-µl 

mixture with pre-annealed 3‘-end-labeled pre-mRNA (~10 fmol) and gRNA (1.2 

pmol) was completed to 20 µl with 10 mM MRB buffer (10 mM magnesium 

acetate, 10 mM KCl, 1 mM EDTA, pH 8, 25 mM Tris-HCl, pH 8, and 5% 

glycerol), 150 µM UTP, 3 µM ATP, and 2 µl of peak editing fraction.  The 

reaction was incubated at 26 °C for 60 min, deproteinized, and resolved in 9% 

acrylamide, 7 M urea gels.  Editing complexes were pretreated with 10 mM PPi 

to score total cleavage in absence of RNA ligase activity (429).  Neither ATP nor 

UTP were added to this assay, and the cleavage products were resolved in 15% 

PAGE with 7 M urea.  Ribonuclease T1 and hydroxyl ladders were used to 

confirm the cleavage at ES2 (not shown).  All pre-mRNAs for editing were 3‘-

end-radiolabeled with [32P]cytidine 3‘,5‘-(bis)phosphate except for the 2‘-F-

modified transcript (Pair-17), which had to be made with a 3‘-terminal 

deoxynucleoside (Dharmacon).  Such a terminus prevents radiolabeling with T4 
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RNA ligase (454) so this transcript was 5‘-end-labeled with T4 polynucleotide 

kinase.  Data were visualized by phosphorimaging and/or x-ray autoradiography, 

and quantitation was p 

erformed using a STORM PhosphorImager (ImageQuant 5.0, GE 

Healthcare).  Each panel in the figures corresponds to one of two replica series 

performed simultaneously (i.e. one experiment). At least two independent 

experiments were performed for each figure, and the data shown are 

representative.  The editing activity varied between editosome preparations, but 

the relative efficiency of the constructs was always consistent.  The abundance 

of accurately edited and cleavage product for each construct tested was initially 

calculated as the percentage of total input RNA and then normalized to the 

abundance of the corresponding product by the parental Pair-1 substrate.  Mean 

and error bars were plotted on a linear scale. 

 

Annealing and Photo-cross-linking Assays 

 The efficiency of pre-mRNA/gRNA annealing was scored in native gels.  

ES2-radiolabeled mRNA(~10 fmol) and gRNA (1.2 pmol) were pre-annealed in a 

2-µl mixture for 10 min at 37 °C followed by 1h at 26 °C, as for editing assays. 

20-µl mixtures were completed with 10 mM MRB buffer (see above) containing 

xylene cyanol and bromphenol blue, incubated for an additional 10 min at 26 °C, 

loaded directly onto a 6% native PAGE, and resolved at 180 V for 6 h at 4 °C.  

0.5 X Tris-borate EDTA buffer and 1 mM MgCl2 were used in both the gel and 
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running buffer.  The photo-cross-linking assays were performed using pre-

annealed RNA pairs and under editing reaction conditions (but without 

nucleotides) as recently reported (442).  Also, coimmunoprecipitation and 

competition analyses were carried out as described (442).   All competitor 

transcripts were supplemented to mixtures and incubated for extra 10 min at 26 

°C to allow annealing (i.e. of homologous competitor with free cognate gRNA) 

before the addition of complexes and irradiation. 
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APPENDIX IV 

DETERMINANTS FOR ASSOCIATION AND gRNA-DIRECTED 

ENDONUCLEASE CLEAVAGE BY PURIFIED RNA EDITING COMPLEXES 

FROM TRYPANOSOMA BRUCEI* 

 

Summary 

 U-insertion/deletion RNA editing in the single mitochondrion of ancient 

kinetoplastids is a unique mRNA maturation process needed for translation.  

Multi-subunit editing complexes recognize many pre-mRNA sites and modify 

them via cycles of three catalytic steps: guide-RNA (gRNA) mediated cleavage, 

insertion or deletion of uridylates at the 3‘ terminus of the upstream cleaved 

piece, and ligation of the two mRNA pieces.  While catalytic and many structural 

protein subunits of these complexes have been identified, the mechanisms and 

basic determinants of substrate recognition are still poorly understood.   

 The current study defined relatively simple single- and double-stranded 

determinants for association and gRNA-directed cleavage.  To this end, we used 

an electrophoretic mobility shift assay to directly score the association of purified 

editing complexes with RNA ligands, in parallel with U.V. photocross-linking and  

 
_____________ 
*Reprinted with permission from: ―Determinants for association and gRNA-
directed endonuclease cleavage by purified RNA editing complexes from 
Trypanosoma brucei‖ by Alfredo Hernandez, Aswini Panigrahi, Catherine 
Cifuentes-Rojas, Anastasia Sacharidou, Kenneth Stuart, and Jorge Cruz-Reyes. 
2008. J Mol Biol. August 1; Vol. 381 No. 1: 35–48. Copyright © 2008 Elsevier 
Ltd. 
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functional studies.  The cleaved strand required a minimal 5‘ overhang of 12-nt 

and a ~15-bp duplex with gRNA to direct the cleavage site.  A second protruding 

element in either the cleaved or the guide strand was required unless longer 

duplexes were used.  Importantly, the single-stranded RNA requirement for 

association can be upstream or downstream of the duplex, and the binding and 

cleavage activities of purified editing complexes could be uncoupled.  The 

current observations together with our previous reports (445, 463) show that 

association, cleavage and full-round editing by purified editing complexes have 

distinct determinants that increase in complexity as these editing stages 

progress.   Finally, we found that the endonuclease KREN1 in purified 

complexes photo-crosslinks with a targeted editing site.  A model is proposed 

whereby one or more RNase III-type endonucleases in editing complexes 

mediate the initial binding and scrutiny of potential ligands, and subsequent 

catalytic selectivity triggers either insertion or deletion editing enzymes. 

 

Introduction 

 The majority of primary mRNA transcripts in the single mitochondrion of 

kinetoplastids, including species of Trypanosoma and Leishmania, are plagued 

with frame-shifts and stop codons.  Protein-encoding sequences are produced 

via an extraordinary maturation process involving specific insertion and deletion 

of uridylates at often hundreds of editing sites (ESs) in a single transcript.  This 
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process is catalyzed by megadalton multi-subunit assemblies known as L-

complexes, 20S editosomes, or editing complexes that contain between 16 and 

20 known subunits and target ESs specified by the partial complementarity of 

pre-edited mRNA (pre-mRNA) and guide RNAs (gRNAs). For recent reviews, 

see (464-465).  

 RNA editing has been recreated in vitro at single model ESs in either 

natural-like   (387-388) or completely artificial (463) substrates.  Early 

mechanistic studies indicated that all steps of deletion and insertion editing were 

catalyzed by distinct enzymatic activities (389, 392, 426, 428-429).  More 

recently, it was shown that a deletion cycle involves the consecutive action of 

endonuclease KREN1, 3‘ exo-uridylylase KREX1 and/or KREX2, and ligase 

KREL1 (399, 403, 418, 429, 466).  Similarly, an insertion cycle involves 

endonuclease REN2 or REN3, terminal uridylyl transferase KRET2, and 

preferentially, ligase KREL2 (398, 404, 418, 429, 467).  Yet, KREL1 may be 

used in absence of KREL2 in vitro and in vivo (418, 429, 468-469).  Potentially, 

KREN1 and KREX enzymes could also help proofread misedited insertion ESs 

bearing extra Us; i.e., mis-edited insertion sites could be targeted and repaired 

by deletion editing (389).  Additional observations also suggest that deletion and 

insertion activities may occur at individual ESs in vivo.  Namely, RNAi of KREN1 

down-regulates editing of CYb and COII pre-mRNAs in vivo, which only contain 

insertion ESs11.  Also, RET2 was shown to add Us at deletion sites in vitro 

(470). 
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  Pre-mRNA/gRNA hybrids are proposed to form two helical regions 

flanking an internal loop.  The downstream (relative to the scissile bond) 

―anchor‖ duplex directs endonuclease cleavage immediately 5‘ to it, whereas the 

upstream duplex is thought to tether the cleaved 5‘ piece during U-specific 

processing and re-ligation.  The mechanisms of substrate recognition in 

assembled editing complexes are currently been addressed (for a recent review 

see (471)). 

 Previous studies in our laboratory using purified native complexes have 

shown that secondary structure rather than sequence-specific features are 

primarily required for full-round insertion editing (445, 463).  In a completely 

artificial 43-nt pre-mRNA/gRNA model substrate with single-helical turns flanking 

the central loop, simple features of this loop were manipulated to interconvert 

sites between insertion and deletion editing.  Important insights on the specificity 

of substrate association with purified editing complexes were obtained in 

competition studies using parallel U.V. photo-crosslinking and full-round catalytic 

editing assays.  Such studies, using a single photo-reactive 4-thioU and a 32P 

atom at targeted ESs, showed a preferential association of complexes with 

deletion and insertion substrates, particularly with the most efficient model 

substrate currently available for full-round editing (A6 pre-mRNA/D33 gRNA 

hybrid) (392, 463).  The native complexes also exhibited a level of non-specific 

binding to unrelated transcripts. Interestingly, ribose 2‘-H substitutions on the 

downstream helix and gRNA-side of the central loop significantly inhibited both 
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pre-mRNA cleavage and photo-cross-linking activities at a targeted ES.  

Furthermore, a single 2‘-H substitution adjoining the scissile bond obliterated the 

endonucleolytic activity but had no effect on photo-crosslinking, suggesting that 

the ribose 2‘-hydroxyl at this position is relevant for catalysis not association of 

editing complexes (463). 

 One of the photo-crosslinking subunits in assembled editing complexes 

was proposed to be KREPA2 (MP63) (442), which as several other subunits, 

contains conserved domains that predict interaction with nucleic acids (383, 

385).  Studies of purified recombinant proteins established that KREPA3 

(MP42), KREPA4 (MP24) and KREPA6 (MP18) exhibit RNA-binding activity 

(405, 443, 472), but their precise function in assembled editing complexes 

remains to be determined.  KREPA4 and KREPA6 exhibited preferential binding 

to poly (U) homopolymers, suggesting a role in the recognition of the natural 3‘-

poly (U) extension of gRNAs.  These recombinant proteins also showed a 

general low-affinity binding for RNA. 

 While previous photo-crosslinking analyses provided insights on the 

specificity of the editing enzyme/substrate association, absence of crosslinking 

with certain mutant substrates could not be interpreted with certainty.  

Furthermore, whether purified editing complexes form transient or stable 

ribonucleoprotein complexes (RNPs) with cognate substrates is unknown.  In the 

current study we used an electrophoretic mobility shift assay (EMSA) to directly 

examine, for the first time, RNPs formed by purified editing complexes.  We 
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applied EMSA, photo-crosslinking and endonuclease analyses to define 

substrate determinants for association and endonuclease cleavage, the first 

catalytic step of RNA editing.  Both single-stranded (ssRNA) and double-

stranded (dsRNA) RNA were required for these two stages of editing, but ssRNA 

for association can be satisfied in different ways, whether or not endonuclease 

cleavage activity is observed.  Importantly, the determinants for association and 

cleavage can be uncoupled, and the determinants for endonuclease cleavage 

are more complex than for association but less intricate than for full-round 

editing. 

 Finally, we compared preparations of native and affinity-purified editing 

complexes in association and catalytic assays, and established that one subunit 

that photo-crosslinks at a targeted ES is the essential endonuclease KREN1.  

The subunit KREPA2 (MP63) was also confirmed to photo-crosslink.  A model is 

proposed whereby recognition of basic determinants including those defined 

here, leads to a preferential association of editing complexes with potential 

substrates.  Such initial interactions may precede subsequent specialized 

contacts that trigger catalysis by either deletion or insertion editing. 

 

Results 

 Our previous RNA-protein photo-crosslinking studies showed that purified 

native editing complexes preferentially associate with a model A6 substrate for 

full-round editing (Fig. A-20A) via recognition of secondary structure not 
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sequence-specific features (442, 463).  However, absence of cross-linking due 

to certain substrate modifications or reaction conditions leaves uncertainties 

about the editing enzyme/substrate association. 

 To directly score substrate binding by editing complexes, we established 

an electrophoretic mobility shift assay (EMSA).  A standard reaction mixture for 

full-round editing or photocrosslinking studies, using purified editing complexes 

and an ES1-labeled substrate (Fig. A-20A) 24, was briefly incubated and loaded 

onto a native agarose gel.  A fraction of radiolabeled substrate exhibited delayed 

electrophoretic mobility only in the presence of editing complexes (Fig. A-20B).  

This shifted product comigrated with complexes that were radiolabeled by 

adenylylation of ligase subunits (Fig. A-20C) (417) and was specifically 

immunodepleted by monoclonal antibodies to editing subunits (Fig. A-20D, 

upper).  As expected, adenylylatable editing ligases were enriched in the 

antibody-conjugated IgG beads but not in beads without antibodies (lower). 

 To further confirm that these ribonucleoprotein assemblies (RNPs) 

include editing complexes, we examined their substrate specificity using 

competition analysis as those performed in photo-crosslinking and full-round 

editing studies (442).  Importantly, the competition profiles in photo-crosslinking 

(that we reported in (442)) and EMSA assays were equivalent, i.e., the 

homologous A6 competitor was strongly inhibitory at 5–10 fold excess whereas 

tRNA and CYb were significantly less inhibitory at 25-fold excess (Figs. A-20E 

and A-20F, respectively; and data not shown).  Moreover, a similar competition 
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pattern was observed in assays of gRNA-directed endonuclease cleavage, the 

first enzymatic step of a full-round editing cycle (Fig. A-20G).  

 Together, these data indicate that the EMSA directly scores the editing 

enzyme/substrate association and specificity of editing complexes.  The data 

using EMSA also mirrors the observations in parallel studies of RNA-protein 

photo-crosslinking and editing enzymatic activities.  Furthermore, all these 

activities of editing complexes can be examined using common substrates and 

reaction conditions.  Based on these observations, we sought to define substrate 

determinants for association and guide-directed cleavage by editing complexes.  
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FIGURE A-20.  The association of purified editing complexes with substrates can be 
directly scored by EMSA, in parallel with UV photocrosslinking and pre-mRNA cleavage 
assays. (a) ES1-32P labeled (*) and thio-labeled (s) model A6 substrate for EMSA, UV 
photocrosslinking, and full-round U-deletion editing. (b) EMSA in a native agarose gel 
showing a shifted band (arrow) only in the presence of editing complexes. (c) Co-
migration of the shifted substrate with editing complexes that were radiolabeled by auto-
adenylylation (Adeny). (d) Specific depletion of the shifted product by 
immunoprecipitation (IP; upper) and recovery of self-adenylylatable ligase subunits in 
the beads (lower). A mock reaction devoid of antibodies. (e) Preferential association of 
editing complexes with a substrate (A6) for full-round editing in competition studies 
using UV photocrosslinking (dots indicate four major crosslinks) or parallel assays of (f) 
EMSA and (g) endonuclease cleavage (arrow).  A spurious cut (*) serves as loading 
control.  The fold excesses of unlabeled homologous A6 (5- or 10-fold) and 
heterologous CYb and tRNA competitors are indicated. No competitor is (−). 
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 We performed competition analyses, as in Figs. A-20E–G, to examine the 

effects of unlabeled derivatives of the homologous (A6) competitor (diagramed 

in Fig. A-21A).  Our standard editing mixtures include gRNA at ~120-fold excess 

over radiolabeled A6 pre-mRNA to ensure quantitative annealing (463).  In order 

to form competitor duplexes, the abundant free gRNA (―guide strand‖) in the 

standard mixture was allowed to pre-anneal with each pre-mRNA derivative 

(―substrate strand‖) added at a small, 5–10 fold, excess over radiolabeled pre-

mRNA (Fig. A-21B).  All constructs in Fig. A-21A used the same guide strand, 

and quantitative annealing was confirmed in native gels 5 (463) (see methods).  
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FIGURE A-21.  Constructs tested in competition assays. (a) A6 and derivative 
competitors (top ―substrate‖ strand) paired with gRNA D33 (lower ―guide‖ strand). The 
assigned number of each competitor RNA pair and size (nt) of the substrate strand are 
indicated, as well as the size of the predicted helix and overhangs. Cleavage sites are 
noted with an arrow. Evident (✓) or weak-to-undetected (X) competition and cleavage 
activity for each construct are indicated at the right.  (b) Cartoon of model RNA 
construct in standard functional (left) and modified competition (right) assays. 
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 Such analysis in binding and catalytic assays performed in parallel is 

illustrated in Fig. A-22.  In this example, both the homologous A6 pair and 

derivative Pair-1, whose guide strand is fully based paired (i.e., it forms a 

continuous 33-bp duplex), were strong competitors in photo-crosslinking, EMSA 

and cleavage assays (Figs. A-22A–C, respectively).  However, a second 

derivative that conserves the 33-bp duplex but lacks overhangs (Pair-2) was a 

poor competitor in all assays.  These data suggest that editing complexes 

associate with Pair-1 but not Pair-2.  Thus the presence or absence of the 

central loop region in the parental A6 construct does not significantly affect the 

binding efficiency of editing complexes, although ssRNA seems required for 

association. 
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Figure A-22.  Parallel competitions in (A) UV photo-cross-linking, (B) EMSA and (C) 
RNA cleavage assays, as in Fig. A-20.  A6 and variants (Comp) diagrammed in Fig. A-
21A were examined at the indicated fold-excess.  Cleavage assays typically include a 
size marker (M) such as the 32P-kinased donor fragment used to prepare the parental 
A6 substrate (Fig. A-20A) or control lanes with and without gRNA. 
 
 
 
 To dissect RNA requirements for association with editing complexes that 

distinguish Pair-1 from Pair-2, we designed competitors based on Pair-2 that 

contain upstream and/or substrate strand downstream overhangs of various 

lengths (Fig. A-23; diagrammed in Fig. A-21A).  While 13-nt, 18-nt and 24-nt 

extensions favored association of editing complexes (Pairs 5–10), 11-nt 

extensions at either side of the duplex (Pairs 3–4) did not.  Furthermore, 

constructs with shorter duplexes, 26-bp (Pair-5) and 20-bp long (Pairs 8–10), 

were also effective competitors.  Most of these constructs used a 44-nt substrate 

strand, however, Pair-10 with a 33-nt substrate strand was also a significant 
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competitor.  Some competitions are more evident in cross-inking and EMSA 

than in cleavage studies (Figs. A-23A–C).  This difference may reflect different 

dynamics in the assays; that is, the former two score RNP complexes that either 

are present at the time of cross-inking or that withstand gel electrophoresis, 

respectively, whereas the latter scores accumulation of cleaved product over 

time, regardless of the relative stability of RNPs.   Together, the competition 

studies in Fig. A-20–Fig. A-23 suggest that association with editing complexes 

requires recognition of a relatively simple structure bearing discrete ssRNA and 

dsRNA determinants. 
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FIGURE A-23.  (a–c) Parallel competitions as in Fig. A-22. The homologous A6 and 
derived competitors are diagrammed in Fig. A-21a. 
 

Several constructs examined so far were effective competitors, indicating that 

are bound by editing complexes, but it was unclear whether they were also 

active in enzymatic assays.  To directly address this, we tested these constructs 

for specific gRNA-directed cleavage by editing complexes (Fig. A-24).  Since the 

guide strand in these pairs fully complements the substrate strand we assayed 

for potential guide-directed cleavage at the phosphodiester bond just 5‘ of the 

duplex (388).  We have reported that this particular bond is cleaved just 5‘ of the 

upstream duplex in the parental construct (Fig. A-21A, top construct; and ahead 

in Fig. A-24B) (392).  Pairs 1, 5 and 6 generated a predicted 18-nt cleaved 
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product (Fig. A-24A) that corresponds to the 5‘-end labeled overhang.  This 

cleavage occurred only in presence of the guide strand. Furthermore, Pairs 8–10 

which form a shorter 20-bp duplex were also cleaved with comparable 

efficiencies to the parental A6 construct (Fig. A-24B).  The expected 24-nt, 18-nt 

and 13-nt cleavage products, respectively, were gRNA-dependent.  In the 

parental A6 construct, gRNA-directed cleavages occur 5‘ of both downstream 

(ES1) and upstream duplexes: the 5‘ end-labeled substrate strand accumulates 

a 31-nt product, as a result of consecutive cleavage and removal of 3Us by U-

specific exonuclease activity at ES1 (399); also, multiple cuts 5‘ of the upstream 

duplex are observed probably due to misannealing of this helix.  Spurious 

fragments of the substrate strand often accumulate due to breakage or RNase 

contamination that preferentially target Us in absence of guide strand, and are 

more evident with 5‘ labeled substrates.  
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FIGURE A-24.  (a and b) Direct cleavage assays of 5′-endlabeled substrate-strand 
transcripts paired with the parental gRNA.D33. The homologous A6 and derived 
competitors are diagrammed in Fig. A-21a. Lanes with ―+‖ and without ―−‖ gRNA (g) are 
shown. Specific cleavage only occurs in the presence of gRNA (marked by an arrow). 
Spurious fragmentation of these transcripts occurs without gRNA but is inhibited by 
annealing of gRNA.  Partial alkaline RNA hydrolysis ―OH‖ was used as sizing ladder. 
Guide-directed cleavage of the A6 construct is directed by the downstream duplex 
(ES1) and by the upstream duplex. The latter occurs at three adjacent positions (∼18-nt 
products) possibly due to alternative pairing. The short upstream duplex may be 
stabilized by coaxially stacking with the downstream duplex. 
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 Among constructs found to associate with editing complexes, Pair-7 was 

not subject to guide-directed endonuclease cleavage as its substrate strand 

lacks a 5‘ overhang and its 3‘ ssRNA extension does not undergo cleavage (Fig. 

A-21A; data not shown).  The 18-nt protrusion of Pair-7 rescued the inactive 

Pairs 2–4 in crosslinking (Fig. A-21A) and EMSA (data not shown) assays.  

 In summary, all efficient competitors in EMSA and photo-crossliking 

assays were also functional for endonuclease cleavage, except for Pair-7.  While 

both association and endonuclease cleavage activities of editing complexes 

have ssRNA and dsRNA requirements, these could be present in a way that 

promotes association but not cleavage.  Thus, association and catalysis by 

editing complexes can be uncoupled. 

 We decided to further analyze derivatives of Pair-10, the shortest 

construct tested that supported editing complex association and specific 

endonuclease cleavage activity.  This symmetric construct with 13-nt overhangs 

flanking a 20-bp duplex was ideal to dissect determinants involved in selection of 

the substrate strand.  That is, how are the substrate and guide strands 

distinguished in a duplex?  We tested Pair-10 derivatives (Pairs 11–16) bearing 

progressively shortened 5‘-overhangs in the guide strand (Figs. A-25A and 

ahead in A-25D).  In these reduced structures, a 3-nt 5‘-overhang in the guide 

strand promoted efficient cleavage of the substrate strand, but 1-nt and 2-nt 

extensions were strongly inhibitory (Pairs 15–16).  Also, the latter constructs 

were not rescued by longer (18-nt) 5‘-overhangs in the substrate strand (not 
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shown).  This suggests that 5‘ overhangs in the substrate and guide strands are 

not compensatory. 

 Analysis of constructs bearing shorter 5‘ extensions in the substrate 

strand (Pairs 17–20; Fig. A-25B) showed that 12-nt are minimally required for 

endonuclease cleavage activity (Figs. A-25D–E; and data not shown).  

Constructs with 11-nt 5‘-overhangs in the substrate strand were inactive and not 

rescued by the presence of longer guide-strand overhangs (e.g., Pairs 19–20). 

 To determine whether constructs with duplexes shorter than 20-bp are 

functional we examined Pairs-21–26 (Figs. A-25C and A-25F).  Efficient 

endonuclease cleavage was supported by Pair-21, which forms a 15-bp duplex, 

but progressive truncations of the guide-strand 5‘ overhang were increasingly 

inhibitory (Pairs 22–24).  Pair-21 also showed that the substrate strand can be 

shorter that the guide strand, and that a ~27-nt substrate strand bearing a 12-nt 

5‘-overhang supports efficient endonuclease cleavage.  In the above constructs 

the substrate-strand 5‘-extension appears to be separately recognized, as 

inactivating truncations of this element were not compensated by a longer 

duplex or extended guide-strand 5‘-ssRNA.  In contrast, the guide-strand 5‘-

overhang could be replaced by using either an extended double-stranded 

terminus (e.g., Pair-6; Fig. A-21A), or a 3‘-overhang of the substrate-strand 

(Pair-25; Fig. A-25C).  The latter pair also showed that an 18-nt guide strand, 

largely annealed with the substrate strand, directs efficient endonuclease 

cleavage activity.  Seiwert et al. reported that an 18-nt guide strand directs 
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endonuclease cleavage of a complementary 73-nt A6 mRNA (388).  Pair-25 and 

Pair-5, both of which generate the same cleaved product, were nearly as 

efficient as the parental A6 construct (Fig. A-25G; see also Fig. A-24A).  Finally, 

we found that an 11-bp duplex in Pair-26 failed to direct detectable cleavage of 

the substrate strand (not shown). Such 11-bp duplex seems relatively stable 

(−18.4 kcal/mol) and we confirmed efficient annealing with the substrate strand 

in native gels (463).  Although this simple pair is not cleaved, it binds editing 

complexes in an EMSA (see the site-specific labeled Pair-27 in Fig. A-26A).  

 Importantly, the ssRNA overhang was essential for binding, and 

substitution of a paired strand with DNA was inhibitory (Pair-28 and Pair-29, 

respectively).  We examined additional constructs for association, whether or not 

they are cleaved, (Fig. A-26B).  In this case, we prepared derivatives of the 

thiolated parental A6 (diagrammed in Fig. A-20) and tested their ability to photo-

crosslink with editing complexes.  For example, Pair-30 photo-crosslinks and is 

also cleaved (Fig. A-26B; and data not shown).  Other derivatives with an 

ssRNA overhang that crosslinked are not cleaved, whereas a blunt helix did not 

exhibit detectable crosslinking (Pairs 31–33, respectively).  The parental A6 

substrate generates more robust signals in association assays that most 

derivatives tested in our study.  
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FIGURE A-25.  Diagram of minimized substrates for endonuclease cleavage by purified 
editing complexes.  (a–c) A6 and derivative competitors (substrate strand) paired with 
parental gRNA.D33 or shorter versions (guide strand). The size of both strands in each 
pair is indicated. All other labels are as those in Fig. A-21a. Detected (✓) or undetected 
(X) cleavage activity is indicated for each construct. Cleavage activity on Pair 23 was 
relatively weak. (d–g) Cleavage assays using 3′-end-labeled substrate strand 
derivatives. 
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FIGURE A-26.  Additional RNA pairs that associate with purified editing complexes but 
are not cleaved. (a) EMSA; Pair 27 (derived from Pair 26) forms an RNP but is not 
cleaved. This RNP exhibits a faster electrophoretic mobility compared with the parental 
A6, but the reason for this is unclear. Duplexes without the 12-nt overhang or bearing a 
DNA strand failed to form an RNP (Pairs 28 and 29, respectively). (b) UV photocross-
linking assays of the A6 parental construct in Fig. A-20 and derivatives with or without 
an ssRNA overhang (Pairs 30–33). The site-specific 32P label in (a) and the 32P and thio 
labels in (b) are depicted by an asterisk and a star, respectively. 
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 In summary, the construct series in Fig. A-25 showed that purified editing 

complexes only cleave substrate strands bearing a minimal 5‘-overhang of 12-nt.  

The minimal duplex directing specific cleavage was not determined to the 

nucleotide but it could be ~15-bp long, if not smaller.  In addition to these two 

features, cleavage activity required the presence of (a) either a substrate 3‘-

overhang or a guide 5‘-overhang when using a 15-bp duplex, or (b) a larger 

duplex without additional ssRNA.  Fig. A-26 confirmed that association and 

cleavage can be uncoupled although an ssRNA overhang is essential for both 

these two stages of editing.  Importantly, association exhibits simpler 

determinants than cleavage. 

 It is feasible that some if not all determinants defined in the current study 

may be recognized by one or more RNA-binding subunits of editing complexes, 

including RNase III-type, OB-fold and zinc-finger domain-bearing subunits.  At 

least three RNase III-type endonucleases identified in editing complexes are 

thought to catalyze pre-mRNA cleavage in insertion and deletion editing (403-

404, 466-467).  However, the composition of the native editing complexes used 

here, including the presence of reported endonucleases, was unclear.  

 A mass spectrometric analysis of this protein preparation revealed nearly 

all reported subunits of affinity-purified ~20S editing complexes in T. brucei and 

L. tarentolae (403-404, 466), in addition to subunits of the MRP complex which 

are thought to transiently associate with ~20S editing complexes via an RNA 

linker (Fig. A-27A) (396).   Three other proposed editing subunits, KREPA5, 
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KREPA6 and KREH1, were not detected likely because they were either sub-

stoichiometric, insufficiently ionized in our preparation or absent. However, 

KREPA6 was recently reported to be essential (472) and was most likely 

undetected in our samples. 

 Since our previous photo-croslinking studies indicated that at least four 

subunits of purified ~20S native complexes make intimate contact with model 

editing sites (Fig. A-27B) (442, 463) we attempted the identification of a cross-

linking subunit that migrates at about 100 kDa, where the endonuclease KREN1 

was expected.  To this end, we made a TAP-KREN1 construct and expressed it 

in T. brucei procyclic cells (see Materials and Methods section) based on a 

reported protocol that generated the same cell line (440).   

Tagged-editing complexes were purified through IgG and calmodulin-

binding peptide (CBP) coupled resins and then examined by photo-crosslinking.  

We found that CBP-KREN1 complexes produced a shift of the ~100 kDa 

crosslink due to the mass added by the tag (~5kDa; Fig. A-27C).  These 

complexes also exhibited the crosslink by endogenous KREN1 and the other 

major crosslinks observed in native complexes.  As far as we know this is the 

first evidence that at least two copies of KREN1 are present in editing 

complexes.  Previous characterization of KREL1, KREN2 and KREN3 

(KREPB2) affinity-purified complexes showed that endogenous and ectopic 

copies of these subunits were also present (396, 418, 440).  Importantly, the 

shifted crosslink is specific of our tagged-KREN1 cell line, and not associated 
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with the cell culture or protein purification conditions, as affinity-purified 

complexes using a different tagged subunit (TAP-KREPB5; i.e., MP44) exhibited 

the same cross-linking pattern of native complexes (Fig. A-27C), as well as a 

similar silver staining pattern (Fig. A-27D) and full-round insertion and deletion 

editing activity (not shown).  

 

 

 

FIGURE A-27.  Composition of native editing complexes and identification of two 
photocross-linking subunits: RNase III-type endonuclease KREN1 and structural 
KREPA2 (MP63). (a) Listing of subunits detected by mass spectrometry.  Alternative 
nomenclature is indicated. Three subunits were not detected (faded). (b) Native editing 
complexes stained with silver (lane 1) or exposed onto an X-ray film after UV 
photocrosslinking (lane 2). The cross-links (dots) by KREN1 and KREPA2 and two 
more subunits to be identified (p50 and p40) are indicated. (c) Cross-links by native 
(lane 1) or affinity-purified KREPB5 (MP44) (lane 2) and KREN1 (lane 3) complexes. 
Both CBP-tagged (upshift) and endogenous KREN1 are indicted. (d) Silver staining of 
native and affinity-purified KREPB5 complexes.  (e) Two-dimensional gel of partially 
purified complexes after photocrosslinking (left) or silver staining (right). Cross-linked 
KREPA2 (boxed) was excised from the gel and identified by mass spectrometry. 
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 Consistent with the identification of KREN1 in the current study, our 

preliminary cross-linking analysis using aliquots of KREN1 and KREN2 

complexes purified and characterized in another study (440) showed that the 

former but not the latter forms the 100-kDa crosslink (data not shown).  The 

presence of these KREN proteins was mutually exclusive in the reported purified 

complexes (440). 

 Our previous 1D-analyses suggested that the crosslink at ~60 kDa was 

KREPA2 (442).  We confirmed this identification by performing a 2D-gel analysis 

of a partially purified protein preparation exhibiting significant cross-linking 

activity by editing complexes (Fig. A-27D, lower panel).  The ~60-kDa crosslink 

was resolved in a discrete region of the gel, and mass spectrometric analysis of 

the excised region only contained KREPA2.  The cross-linking subunits at about 

50 and 40 kDa were more disperse and mass spectrometric analyses of these 

gel regions were unsuccessful.  Thus, they remain to be identified. 

 Overall, the native editing complexes used in the current studies contain 

most subunits previously observed in purifications by other labs including the 

RNase III-type endonuclease KREN1, which we showed directly photo-croslinks 

with model editing sites.  This subunit may be involved in the editing complex 

recognition of the substrate determinants defined here for association and 

endonuclease cleavage, but additional work is needed to explore this possibility. 

 Finally, we compared the substrate specificity of native editing complexes 

and KREPB5 affinity-purified complexes in parallel EMSA, photo-crosslinking 
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and endonuclease cleavage assays (Fig. A-27A–C).  Native and tagged-

KREPB5 editing complexes exhibited similar substrate specificity, in presence of 

the homologous A6 (5-fold excess) and tRNA (25-fold), as positive control and 

relatively poor competitors, respectively.  Thus, the approaches adopted in these 

studies should be useful in further comparisons of native and affinity-purified 

editing RNPs that exhibit different protein and functional composition. 

 

 

 

 

FIGURE A-28.  Association and endonuclease cleavage activity of affinity-purified 
editing complexes. Parallel (a) photocross-linking assay, (b) EMSA, and (c) cleavage 
assay. All labels are as those in Fig. A-20. KREPB5-tagged complexes were directly 
compared with native ―N‖ complexes. 
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Discussion 

 The goal of the current work was to define substrate requirements for 

association of purified editing complexes and gRNA-directed cleavage, the first 

catalytic step of an editing cycle.  To this end, we used an EMSA, for the first 

time, in parallel with U.V. photo-crosslinking and gRNA-directed cleavage 

assays.  Importantly, these assays were performed under comparable reaction 

conditions and the data obtained was complementary.  The RNP assemblies 

detected by EMSA contained adenylylatable ligases and co-immunoprecipitated 

with known editing subunits (Figs. A-20B–D), and their substrate specificity was 

conserved in the association and catalytic assays (Figs. A-20E–G).  Our 

combined EMSA, photo-crosslinking and enzymatic studies defined ssRNA and 

dsRNA determinants for association and cleavage, summarized in Fig. A-21.  

Three main combinations of ssRNA and dsRNA determinants supported 

endonuclease cleavage are represented by the following pairs: Pair-22 (27-nt 

substrate and 23nt guide strands) exhibits minimal 5‘ overhangs and ~15-bp 

duplex for cleavage.  In this context, a 12-nt 5‘ overhang in the substrate strand 

was minimally required, whereas truncations of the 8-nt 5‘ overhang in the guide 

strand were gradually inhibitory.  The size of one overhang did not compensate 

for the size of the other, and thus appear to involve separate recognitions.  Pair-

25, a long substrate-strand annealed to a minimal guide-strand of 18-nt (16-nt in 

a duplex) supports efficient cleavage.  This confirms the observation by Seiwert 

et al., that an 18-nt guide strand directed endonuclease cleavage of a 
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complementary 73-nt A6 mRNA 3 (388).  Thus, a substrate 3‘-overhang can 

substitute for a guide 5‘-overhang.  Pair-6, a long duplex overrides a requirement 

for ssRNA rightward of the duplex.  Thus neither these overhangs are essential 

but an ssRNA extension, abutting a short duplex, may suffice.  In this type of 

construct, the size of the substrate 5‘-overhang was also tested.  12-nt or more 

supported cleavage (e.g., Pair-6, and data not shown) but 11-nt was inactivating 

(i.e., Pair-4; data not shown).  Additional pairs were bound but not cleaved by 

editing complexes, showing that these two aspects of editing can be uncoupled.  

Pair-27 is the simplest construct of this kind.  Competition studies or straight 

association assays by crosslinking or EMSA showed that pairs bearing blunt-

ended helices or insufficient ssRNA cannot associate with editing complexes.  

Pair-2 and Pair-28 reproducibly failed to form detectable RNPs and Pair-3 was 

significantly less effective than the parental A6 substrate (data not shown).  

Some constructs that bind but are not cleaved were examined by photo-

croslinking or EMSA using 5‘-end labeled rather than more sensitive site-specific 

labeled RNAs (Fig. A-26B; and data not shown).  

  



 

 

352 

 

 

 

FIGURE A-29.  Summary of defined ssRNA and dsRNA determinants for endonuclease 
cleavage and association by purified editing complexes. Important variations were 
observed depending on the secondary structure context. Three main types of cleaved 
constructs are illustrated by Pair 22: It bears minimal substrate 5′ and guide 3′ 
overhangs. In this context, further shortening of either element was strongly inhibitory 
and not rescued by lengthening of the other. Pair 25: Its long substrate strand allowed 
reducing the guide strand to 18 nt. Thus, a substrate 3′ overhang can substitute for a 
guide 5′ overhang. Pair 6: Its long duplex can substitute for either substrate 3′ overhang 
or guide 5′ overhang. Thus, neither of these overhangs is essential but one may suffice 
in cleaved constructs. Importantly, association can occur without cleavage although it 
also requires an essential overhang either upstream or downstream of the helix. This is 
illustrated by Pair 27 and Pair 28. Detected (✓) or undetected (X) binding (bind) and 
cleavage (cut) are indicated. 
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 Together, these constructs as well as others examined indicated that an 

appropriate combination of dsRNA and ssRNA determinants, rather than overall 

size of the bi-molecular structure, is required for both association and 

endonuclease cleavage by purified editing complexes.  The ssRNA requirement 

(12-nt) 5‘ of the scissile bond and the dsRNA/ssRNA combinations 3‘ of it seem 

to involve separate recognitions.  The smallest helix tested that directed 

endonuclease cleavage was 15-bp long (~1.5 helices) but shorter versions 

similar to Pair-26 may be feasible (Fig. A-25C).  Although the shortest functional 

guide strand tested was 18-nt long, a functional guide strand may be longer than 

the substrate strand (e.g., Pair-21).  

 Importantly, the requirements for association and for catalysis can be 

uncoupled.  This was shown by Pair-7 (Fig. A-21), Pair-27 and A6 thio-lated 

derivatives (Fig. A-26) that bind editing complexes but are not cleaved.  In Pair-

7, the substrate-strand forms a 3‘-overhang but not a 5‘-overhang.  Its substrate-

strand 3‘ ssRNA stimulates association (compare with the inactive Pair-2) but, 

as expected, is not cleaved since editing endonucleases specifically target the 

phosphodiester bond immediately 5‘ of the guiding ―anchor‖ duplex (388-389).  

On the other hand Pair-27 bears the critical 12-nt 5‘-overhang but either 

insufficient duplex or overall length for cleavage.  Furthermore, while a substrate 

5‘ 12-nt overhang is minimally required for cleavage, whether all residues need 

be unpaired or some may partially complement apposing guide-strand residues 

was not determined.  In full-round editing substrates, single-strandedness of 
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residues near the downstream ―anchor‖ duplex is strongly stimulatory.  More 

distal residues can engage in formation of a proposed upstream ―tether‖ duplex 

in deletion or insertion in vitro (392, 444).  Furthermore, the presence and/or the 

nature of gRNA residues in the internal loop may stimulate full-round editing.  

Consistent with this idea, the lack or inappropriate number of such residues 

inhibited full-round deletion and insertion editing  (392, 444) (and unpublished 

data), and 2‘-deoxy substitutions on the gRNA-side of the internal loop inhibited 

both photo-crosslinking and cleavage at the scissile bond (463). 

 Previously, our lab defined a minimal 43-nt pre-mRNA/gRNA hybrid for 

efficient full-round editing, which formed 10-bp helices flanking the ES.  These 

nearby helices may be stabilized by coaxial stacking interactions, resembling a 

continuous helix.  The smaller hybrid for endonuclease cleavage activity 

(including a ~27-nt substrate strand) and even simpler structure for binding imply 

that editing complexes require more extensive RNA contacts for the complete 

editing reaction, than for the intermediate cleavage step and the initial 

association step.  Consistent with this concept, the artificially enhanced A6 

parental substrate (392) is more efficient in all EMSA, photo-crosslinking and 

cleavage assays than most simpler derivatives tested here. 

 The fact that only one shifted product is reproducibly detected in the 

EMSA of the constructs examined suggests binding by a single editing complex, 

whether dimeric or of higher-order composition consistent with the co-purification 

of endogenous and ectopically expressed editing subunits, i.e., KREN1 in the 
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current study (Fig. A-27C) and KREN2, KREN3 (KREPB2) and KREL1 in 

previous studies (395-396, 418).  A mass spectrometric analysis revealed that 

the native complexes used in this study contain most known subunits of catalytic 

~20S editing complexes, as expected from similar biochemical purifications 

(473).  In addition, we found subunits of the MRP sub-complex as it was 

reported in purified L-complexes (385, 396), suggesting that at least some 

purified assemblies represent holoenzyme rather than core complexes.  Several 

observations lead us to suggest that some if not all determinants defined in this 

study may be recognized by one or more RNase III-type proteins.  Namely, (a) 

the shortest duplex tested that directed efficient endonuclease cleavage activity 

spanned ~1.5 turns. This is also the size of the smallest substrate identified that 

binds bacterial RNase III (457); (b) the critical role of 5‘ and 3‘ overhangs for 

cleavage at ssRNA-dsRNA junctions by the RNase III family member Drosha 

(474), and (c) the fact that KREN1 photo-crosslinks with a site for full-round 

editing (Fig. A-27).  This photo-crosslink was defined at a deletion site (Fig. A-

27C) but most likely also corresponds to a co-migrating crosslink at insertion 

sites (463).  KREN1 endonuclease was proposed to specifically cleave deletion 

sites (403), however since association and cleavage are uncoupled we propose 

a model whereby KREN1 and related RNA-binding subunits may help scrutinize 

potential ligand determinants in the earliest checkpoint of RNA editing.  

Subsequent to the binding step, catalytic selectivity based on additional specific 

substrate recognitions may activate either the deletion or insertion enzymes, 
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including proofreading of mis-edited insertion sites.  A role of REN1 in an early 

checkpoint of ligand binding may explain why KREN1 down-regulation inhibits 

editing of CYb and COII pre-mRNAs in vivo, which only have insertion sites.  It is 

known that bacterial RNase III can undertake a modulatory role as a general 

dsRNA-binding protein regardless of its catalytic action (475).  Importantly, the 

crosslinking activity of KREN1, KREPA2 (MP63) and at least two other major 

cross-linking subunits is conserved in both native and tap-tagged affinity-purified 

complexes.  Such conservation further suggests that the interactions are 

relevant, and independent of purification protocols and cell lines used.  The 

conserved OB-fold and zinc fingers of KREPA2 may also be involved in 

recognition of single-stranded determinants defined here. 

 Finally, while the current study shows that RNPs formed by purified 

editing complexes can be directly visualized, it is currently unclear if the fraction 

of substrate that remains unbound in association assays reflects the 

concentration and/or affinity of either total complexes or functional complexes.  

Also, not all RNPs formed in solution may be stable enough to withstand the 

forces of gel electrophoresis.  These and related questions will be addressed in 

separate studies. 

 



 

 

357 

Methods 

Synthesis and labeling of RNA 

 The ES1-radiolabeled A6 mRNA substrate was prepared by splint ligation 

as described (442).  All other RNAs were synthesized in vitro by the Uhlenbeck 

single-stranded enzymatic method (433) and gel-purified. 

 For the preparation of 5‘-end labeled substrates, gel-purified RNA was 

dephosphorylated by treatment by alkaline phosphatase at 37°C for one hour, 

followed by addition of SDS, EDTA and proteinase K to a final concentration of 

1.5%, 5 mM, and 40 μg/mL, respectively and additional incubation at 50°C for 30 

minutes.  RNA was purified by phenol/chloroform extraction and precipitated 

with ethanol.  5 pmols of dephosphorylated RNA were incubated at 37°C for 30 

minutes with [γ-32P] ATP (1:2 ratio of 5‘-ends to ATP) and T4 polynucleotide 

kinase and gel-purified.  For 3‘-end labeling, 5 pmoles of gel-purified RNA were 

incubated at 4°C for 12 hours with an equimolar amount of [5‘-32P] Cytidine 3‘, 

5‘-Bis (Phosphate) and 15 units of T4 RNA ligase in RNA ligase buffer (50 mM 

Tris-HCl pH 7.5, 10 mM MgCl2, 10 μg/mL BSA, 50 μM ATP, 10 mM DTT, 2U/μL 

anti-RNase (Ambion), 10% DMSO) and gel-purified. 

 

Cloning, cell culture and transfection 

 ORFs were amplified from T. brucei genomic DNA, kindly provided by 

Larry Simpson.  The primers for KREN1 were designed as reported (440).  For 

KREPB5, the primers were: forward CCC aagctt ATG AGA CGG GCT GTG 
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GTA CTC CGT AC; and reverse CGC ggatcc CCG CCC TCC CAG TGC CAG 

CGC AAC TA (Hind III and Bam HI sites are in small case letters, respectively).  

The amplified products using Pfu DNA polymerase were treated with HindIII, 

BamHI and ligated to the pLEW79TAP expression vector, kindly provided by 

Achim Schnaufer.  Constructs were linearized with NotI and used to transfect T. 

brucei strain 29.13 as described (476).  Selection of transfectants was applied 

with 2.5 μg/mL phleomycin.  KREN1 and KREPB5 expression was induced with 

100 ng/mL and 1 μg/mL tetracycline, respectively, and confirmed by 

immunoblotting with the PAP reagent (Sigma). 

 

Purification and protein composition determination of Editing Complexes 

Chromatographic purification of RNA editing complexes 

 Mitochondrial extracts were prepared from procyclic T. brucei strain 

TREU667 as described (414, 434).  Editing complexes were purified from 

mitochondrial extracts by consecutive anion exchange and DNA-affinity 

chromatography as described (393, 414).  

 

Tandem affinity purification of RNA editing complexes 

 Four liters of culture at a density of ~2.0×107 cells/mL were pelleted and 

lysed in 25 mL of 10 mM Tris-HCl, pH 8.0, 150 mM KCl, 0.1% NP-40, 1% Triton-

X-100 and one tablet of EDTA-free complete protease inhibitors (Roche) for 30 

minutes on ice.  Lysis was confirmed by microscopy.  Lysates were spun at 
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6000 X g for 15 minutes and the clarified extract purified by sequential IgG and 

Calmodulin affinity chromatography as described (477). 

Mass spectrometric analysis of native RNA editing complexes 

 Proteins in gel bands and complex mixtures were identified by LC-MS/MS 

analysis as described (473).  

 

Photo-crosslinking, RNA cleavage, Electrophoretic Mobility Shift, 

Competitions and Adenylylation assays 

 All assays are variations of the standard editing assay in our lab which 

consists of a mixture of a pre-annealed mixture of 10 fmols 32P-labeled RNA and 

1.25 pmoles unlabeled gRNA, completed to 20 μL with MRB [25 mM Tris-HCl, 

pH 8, 10 mM Mg(OAc)2, 10 mM KCl, 1 mM EDTA, pH 8, 50 μg/mL hexokinase 

and 5% glycerol] and, if applicable, competitor RNA at the indicated molar 

excess relative to the 32P-labeled substrate.  The mixture was pre-equilibrated 

for 10 minutes at 26°C and 2 μL of peak editing or TAP fraction was added.  

Prior to the assays, quantitative annealing of the RNA pairs tested was 

confirmed in native gels [as in (463)].  The sample was incubated at 26°C for 10 

minutes then treated in an assay-specific manner.  For cross-linking, samples 

were irradiated for 10 minutes under a 365 nm UV lamp, treated with RNase A 

and RNase T1 (50 μg/mL and 125 units/mL final concentrations respectively) at 

37°C for 15 minutes, supplemented with SDS loading dye and loaded onto an 

SDS-polyacrylamide gel.  For mRNA cleavage, purified editing complexes were 
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pre-treated with 10 mM tetrapotassium pyrophosphate, pH 8, in MRB, for 5 

minutes on ice to inhibit ligase activity (429); after incubation the mixture was 

deproteinized and RNAs were resolved on denaturing polyacrylamide gels.  For 

electrophoretic mobility shift assays, the reaction mixture was loaded directly (no 

loading dye) onto a 1.5% agarose gel in 0.5 X TBE (45 mM Tris-borate and 1 

mM EDTA) and run for 2 hours at ~5 V/cm at 4°C.  Following electrophoresis, 

the agarose gel was dried under vacuum.  EMSA with site-specific labeled 

transcripts were significantly more sensitive and reproducible than with end-

labeled substrates, since the splint-ligation method used to generate the former 

(see above) exclusively incorporates phosphorylated fragments.  Only the 

parental A6 substrate and Pair-27 were site-specific labeled using synthetic 

donor fragments [e.g., as in Fig. A-20; (442)], although 5‘-end labeled A6 

parental and other constructs were also compared side-by-side in shift assays.  

Immunodepletions were carried out as described for the immunoprecipitation of 

RNA cross-linking proteins (442) using a monoclonal antibody against KREPA2 

immobilized on goat anti-mouse IgG resin (Dynal).  Adenylylation assays were 

performed as described (417).  All assays can be scaled-up linearly to enhance 

signal.  The data were reproducible in at least two independent experiments.  

Each experiment included repeat assays, and those shown are representative.  

Data were visualized by phosphorimaging and/or autoradiography. 
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