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ABSTRACT 

 

Causal Connection Search and Structural Demand Modeling  

 on Retail-Level Scanner Data. (December 2010) 

Pei-Chun Lai, B.A., National Taiwan University; 

M.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. David Bessler 

                                                        Dr. Yanyuan Ma 

 

Many researchers would be interested in one question: If a change of X is made, 

will Y be influenced in response? However, while a lot of statistical methods are 

developed to analyze association between variables, how to find a causal relationship 

among variables is relatively neglected.  

The PC algorithm, developed on the basis of Pearl, Sprites, Glymour, and 

Scheines‟s studies, is used to find the causal pattern of the real-world observed data. 

However, PC in Tetrad produces a class of directed acyclic graphs (DAGs) that are 

statistically equivalent under a normal distribution, and therefore such a distributional 

assumption causes a series of unidentifiable DAGs because of the same joint probability.  

In 2006 Shimizu, Hoyer, Hyvärinen, and Kerminen developed the Linear 

Independent Non-Gaussian Model (LiNGAM) to do a causal search based on the 

independently non-Gaussian distributed disturbances by applying higher-order moment 

structures. The research objective of this dissertation is to examine whether the 

LiNGAM is helpful relative to the PC algorithm, to detect the causal relation of non-
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normal data. The LiNGAM algorithm is implemented by first doing independent 

component analysis (ICA) estimation and then discovering the correct ordering of 

variables. Thus, the procedures of ICA estimation and the process of finding the correct 

causal orderings in LiNGAM are illustrated. Next, we do a causal search on the retail-

level scanner data to investigate the pricing interaction between the manufacturer and the 

retailer by applying these two algorithms. While PC generates the set of 

indistinguishable DAGs, LiNGAM gives more exact causal patterns. This work 

demonstrates the algorithm based on the non-normal distribution assumption makes 

causal associations clearer. In Chapter IV, we apply a classical structural demand model 

to investigate the consumer purchase behavior in the carbonated soft drink market. 

Unfortunately, when further restrictions are imposed, we cannot get reasonable results as 

most researchers require. LiNGAM is applied to prove the existence of endogeneity for 

the brand‟s retail price and verify that the brand‟s wholesale price is not a proper 

instrument for its retail price. Therefore, consistent estimates cannot be derived as the 

theories suggest. These results imply that economic theory is not always found in 

restriction applied to observational data. 
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CHAPTER I 

INTRODUCTION 

 

 While there are plenty of statistical methods are available to analyze correlation 

between variables, the question of a causal relationship among uncontrolled variables is 

relatively neglected (Dodge and Rousson, 2001). A typical procedure used in study of 

the structural equation model is, to collect data, establish a particular model a priori 

according to the researchers‟ belief, test the model fit, and evaluate whether the 

association among variables is significant (Glymour, 2010). However, the causal 

inference analysis is also quite important and, for example, a causal understanding of the 

data is helpful to predict the possible results of given interventions or policies (Shimizu, 

Hyvärinen, Kano and Hoyer, 2005). Noticeably, even if the association between X and Y 

is statistically significant, it does not imply that X must be the cause of Y or Y must be 

the cause of X (Miller, 2005). Causal relation can be detected by doing controlled 

experiment, but real-world environment is always uncontrolled, so it is necessary to use 

other advanced methodologies to search the causal relation of real-world data.  

 

Causation and Linear Structural Equation Modeling 

Causation 

It is oftentimes assumed that: 

1. If X is a cause of Y, and Y is a cause of Z, then X is a cause of Z (transitivity), 

____________ 

This dissertation follows the style of RAND Journal of Economics. 
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2. Variable X cannot cause itself (irreflexive), and 

3. X is a cause of Y does not mean Y is a cause of X (not symmetric). 

When detecting the causal relationship of variables, actually, we are asking which 

variable occurred first. 

Linear Structural Equation Modeling 

The general equation form of causation is always shown that:  

   iii uxpafx , ,  ,....,n,i 1  (1) 

where  ixpa , Markovian Parents, represents the set of variables that determine the 

value of ix  and the iu symbolizes an error term. Equation (1) can be written as a 

generalization of the linear structural equation model (LSEM)  

    ,1   , ,...,niuxx i

ik

kiki 


  (2) 

where  ixpa  corresponds to those kx s. Applying the causal interpretation, the variables 

on the right hand side, kx s , of an LSEM are the directed causes of the dependent 

variable ix . Moreover, if 2x  is a direct cause of 1x , then there is an edge from 2x  to 1x  

in the corresponding path diagram ( 12 xx  ) (Pearl, 2009). However, establishing a 

proper structural model always depends on the researchers‟ belief or follows prior theory, 

but sometimes personal knowledge or theory may not be consistent with the reality. 

Probabilistic methods based on Pearl (2009), Glymour, Scheines and Sprites‟ research 

(2001) are widely used to examine causation among uncontrolled (or observed) variables. 

In their methodology, mean and covariance matrix are commonly applied, based on the 

assumption of data‟s normal distribution under the central limit theorem. However, this 



 

 

3 

is usually not enough. In the chapters that follow, we explore conditions to infer causal 

ordering and study scanner data refer to soft drink market as a case study. 

  

Research Objective 

The presumption of a normal distribution for sample data causes many 

unidentifiable causal patterns because those graphs have the same joint probability. 

Moreover, non-normal distributed data are oftentimes found in empirical applications. 

Shimizu et al. (2006) developed Linear Independent Non-Gaussian Model (LiNGAM) to 

do causal search based on the independently non-Gaussian distributed disturbances by 

applying higher-order moment structures. Therefore, whether higher-order moment 

structures are beneficial in detecting causal relation of variables with non-normal 

probability distribution, relative to the normal distribution presumption, is a main issue 

discussed in this thesis. In Chapter II, initially, the basic element of graph theory is 

introduced. Moreover, the procedures of searching the causal connection between two 

variables by using skewness, kurtosis, higher-order covariance and correlation are 

explained. The LiNGAM algorithm is implemented by first doing independent 

component analysis (ICA) estimation and then discovering the correct ordering of 

variables. Therefore, the theorem behind ICA and the steps of finding demixing matrix 

by doing ICA is introduced at the end of Chapter II. At the beginning of Chapter III, the 

comparison of PC algorithm, worked reliably on normally distributed or symmetrically 

non-normal distributed data, and LiNGAM algorithm, works better on the more non-

Gaussian data, is made. Then the process of deriving the correct causal orderings in 
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LiNGAM is illustrated. Finally, we do causal search on the retail-level data to 

investigate the pricing power between manufacturer and retailer in a distribution channel 

by applying these two algorithms. While PC generates a set of indistinguishable graph 

structures with the same joint probability, LiNGAM gives more exact causal patterns. 

This demonstrates the algorithm based on the non-normal distribution assumption make 

causal relations clearer. Unlike other chapters, we apply classical structural demand 

model to investigate the consumer purchase behavior in carbonated soft drink market. 

Unfortunately, when further restrictions are imposed as the theory suggests, we do not 

obtain reasonable results as most researchers require. This implies that economic theory 

may not correspond to the movement of real-world data; it also shows the importance of 

causal inference research. At the end of Chapter IV, the graphical causal inference 

method can be used to test the appropriateness of a possible instrument. 
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CHAPTER II 

CAUSAL MODEL IDENTIFICATION AND INDEPENDENT COMPONENT 

ANALYSIS 

 

Introduction 

One of the main targets in social science is the discovery of causal structure among 

variables. Directed graphs, based on the research works of Pearl (2009); Sprites, 

Glymour and Scheines (2001), can sometimes be used to find the actual data-based 

causal relationships. In these studies, I briefly introduce the relevant concepts of 

graphical representations, related algorithms, and discuss their empirical applications. 

 

Graph Theory
1
 

Paths and Edge Sequences 

A directed graph  EVG ,  consists of a set V  of vertices (or objects) and a set E 

of edges (or links) that connect arbitrary pairs of elements of V. Two vertices are said to 

be adjacent if they are connected by the same edge. A path in a graph is a sequence of 

consecutive edges (Pearl, 2009). Suppose all edges are directed as Figure 1 shows, and 

then we have a directed graph. A directed path is that, given an sequence of distinct 

vertices  nVV ...,,1 , iV  is a direct cause of 1iV  for all 10  ni . Therefore, the path 

((i,m), (m,k)) is directed, but the path ((i,m), (m,j), (j,k)) is not (Meek, 1995; Zhang, 

2008a).  

                                                 
1
 Parts of this section are summarized from Pearl‟s book (2009) and Glymour‟s paper (2010). Especially, the 

definitions of causal Markov condition and d-separation come directly from their texts. 
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FIGURE 1 A Directed Acyclic Graph 
 

 

 

 

 

 

 

 

 

 

 

Directed Acyclic Graph 

A directed cycle is a directed path that starts and ends in the same vertex. A 

directed acyclic graph (DAG) is a directed graph without directed cycles. The vertices of 

the graph represent the variables. Suppose there is a directed path starting in X and 

ending in Y, and then it is said that X is an ancestor of Y, and Y is a descendant of X. 

Other relationships between X and Y in a graph G can be summarized as 
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 a is  then in   If ,  

and the set of X‟s descendants is denoted  XDESG  (Zhang, 2008b; Richardson and 

Spirtes, 2002). 

Z is a collider if Z is at the head of two edges on a path. If a path contains two 

edges having common head Z, and the respective tails X and Y are not adjacent, then Z is 

called an unshielded collider (Glymour, 2010).  

                                         i    

  

  

                                                                      

                                         m                                j 
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Causal Markov Condition 

The Causal Markov Condition (CMC), defined by Spirtes, Glymour, and Scheines 

(2001), describes that: Suppose P is a probability distribution over the vertices in V of a 

given directed acyclic graph G. Then G and P satisfy the Causal Markov Condition if 

and only if for every X in the set V, X is independent of V\     XPARXDES GG   

conditional on  XPARG .
2
 In other words, the Causal Markov Condition states that any 

vertex (or variable) in a DAG G is  independent of its nondescendents conditional on its 

parents (Glymour, 2010). Then the joint probability density function over all the vertices 

 Vf  satisfying the CMC is given by 

     



Vv

G vPARvfVf  (3) 

D-separation 

The CMC provides a connection between graphical models and the joint 

probability over the corresponding variables. It does not, however, directly provide a 

computable procedure for determining independence relations among variables. Pearl 

developed d-separation which indicates the conditional and marginal probabilistic 

independence entailed by the CMC (Pearl, 1988; Glymour, 2010).  

For all variables X, Y where YX  in G and subsets Z not containing X and Y, X 

and Y are d-separated given Z if, and only if, every path from X to Y contains at least one 

variable iZ  such that either:  

1. iZ  is a collider, and no descendant of iZ  (including iZ  itself) is in Z; or 

                                                 
2 X\Y denote the relative complement of Y with respect to X. 

http://en.wikipedia.org/wiki/Conditionally_independent
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2. iZ  is not a collider, and iZ  is in Z. 

For example, the causal chains YZX   and causal forks YZX   

represent cases where Z d-separates X and Y. That is, X and Y are probabilistically 

dependent; but conditioning on Z, X and Y are independent, (       , YPXPYXP   

     ZYPZXPZYXP    ,but  ). For the case of the causal chain, it means that the 

direct cause, Z, removes the effect from indirect cause, X, on Y. In contrast, unshielded 

colliders (inverted fork), YZX  , represent the cases where two causes have a 

common effect. Knowledge of such colliders tends to make the causes dependent. 

Information about the collider (Z) and the occurrence of one of the causes makes the 

other more or less possible. That is, X and Y are probabilistically independent conditional 

on the set of variables excluding Z, but are probabilistically dependent conditional on Z 

(      but , YPXPYXP  if we condition on Z,      ZYPZXPZYXP    ,  ) (Pearl, 

2009).  

 

Detect a Causal Ordering between Two Variables
3
 

When we evaluate a linear regression model of X and Y, we may hesitate between 

the equation 

 YXY    (4) 

where X  is independent of Y , and the equation 

                                                 
3 Parts of this section follow Dodge and Rousson‟s paper (2001) and Hoover‟s article (2009b). Particularly, the 

operations of skewness and correlation between variables come directly from Dodge and Rousson‟s text. 
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 XYX    (5) 

where Y  is independent of X  and X  and Y  are disturbances. These coefficients 

  and  ,,  are fixed. From the viewpoint of causal structure,  X causes Y ( YX  ) is 

an implication behind the equation (4) while Y causes X  XY   is an implication 

behind the equation (5). 

When X and Y are both normally distributed, equation (4) and equation (5) are 

observationally equivalent; in other words, these two equations are not identified. The 

reason is that: If YX  , then we can write 

 
YXY

X

XY

X








   (6) 

where each error term is distributed normally with mean zero and variances 2

X  and 2

Y . 

Thus, X is normally distributed with  2,0 XN   ; Y is normally distributed with 

 222,0 YXN    and   2,cov XYX  . Instead, if XY  , then 

 
Y

XYX

Y

YX








 (7) 

Therefore, X  is normally distributed with  22,0 XYN    ; Y  is normally distributed 

with  2,0 YN   and   2,cov YYX  . Obviously, although these two cases are different 

in causal relations, they have indistinguishable mean, variance, and covariance structures. 

Hence, we cannot tell equation (4) from (5). When two equations are observationally 

equivalent, the only way to estimate the parameters is to presume a specific causal 

structure in advance (Hoover, 2009b).  
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However, if both X and Y have non-normal distributions, then equation (4) and 

equation (5) are distinguishable by using third- and even fourth-order correlation 

structure of variables. The following argument is taken from Dodge and Rousson (2001): 

The expected value of a random variable  Xg  is denoted by   XgE and the nth 

moment of X, '

n , is defined as 

    n

n XEX '  (8) 

The nth central moment of X, n , is defined as 

       XXEXEX
n

Xn

'

1   (9) 

The Taylor expansion series of )(Xf  about origin is given as: 

    
    

,
!

0

!2

0
00)( 2

"
'   n

n

X
n

f
X

f
XffXf  (10) 

Suppose tXeXf )( , and thus   tXnntXtX etXfetXfetXf  )( ...,,)( ,)( 2"'  

Therefore, the moment generating function of X, denoted by  tM X , is specified by 

apply equation (10): 

 

     

                                                                                                          
!

           

...
!

...1...
!

...
!2

1)(

'

0

2
2

n

n

n

n
n

n
n

tX

X

n

t

XE
n

t
XtEX

n

t
X

t
tXEeEtM


















 (11) 

The cumulants  Xn  of a random variable X are defined by the cumulant generating 

function, the natural logarithm of the moment-generating function: 
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              ...
!3!2!

ln
3

3

2

21

1

 




t
X

t
XtX

n

t
XeEtg

n

n

n

tX

X   (12) 

The cumulants are then given by derivatives (at zero) of  tg X  with respect to t: 

 

   

   

     .0
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'
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n
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gX
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












 (13) 

Suppose the true model is: 

 ,  XY  (14) 

where  and  are constants. Then we have 

 
Y

X
XY




   (15) 

Thus, the cumulant generating function on Y is given as: 
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










 

(16) 

        

       


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2
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'

1

0
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



XgY

XgY

Y

Y

 

 

and thus for 3n , 

          nn

nn

Yn XgY  0  (17) 
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Setting    XXf  1ln  and apply this function into the formula of Taylor expansion as 

shown in (10). Then the fact is derived as: 

     ,
432

11ln
1

432
1


















j

j
j zzz

z
j

z
z   (18) 

Suppose     ...
!

...  n
n

XE
n

t
XtEz . If we only consider the polynomial of degree 4 

of the cumulant generating function, then 

 

      
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       
42

3!3822

!4!3!2

1lnln

44224

33342242322

4
4

3
3

2
2

XEtXEXEt

XEtXEXEtXEtXEXEtXEt

XE
t

XE
t
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t

XtE

zeEtg tX

X









 (19) 

Therefore, the first, second, third, and fourth cumulants of X are 

 

       
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             .3612

430

,230

,0

,0

2

24

422

3224''''

4

3

323'''

3

2

22"

2

'

1

'

1

XXXEXEXE

XEXEXEXEgX

XXEXEXEXEgX
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 (20) 

Obviously, the second and third central moments are respectively equal to second and 

third cumulants. 

For 2n , the nth standardized cumulants of X are defined as 

  
 

  
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X

 (22) 

It means the standardized cumulant are invariant under translations and scaling so the 

standardized cumulant can be used to judge the shape of the probability density.  

The error term,  , is assumed to be normally distributed with mean   and 

variance 2

  , denoted by  2,~   N . 

For the normally distributed , the moment generating function is 
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(23) 

Consequently, the cumulant generating function of normal distributed   is 

       
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Apparently,     3for  0...43  n . Equation (24) also implies that, except for 

first and second cumulants, the other higher cumulants of normally distributed variables 

are zero. 

For 3n ,          nn

nn

Yn XgY  0 , and   0 n . Therefore, when 

error term has normal distribution,       XgY n

nn

Yn   0 , and                                                                         
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
   (25) 

Since  
 
 

1 ,1 
X

Y

n

nn

XYXY



 , it is inferred that “the nth standardized cumulant of 

the response, in absolute value, is always smaller than that of the explanatory variable 

(Dodge and Rousson, 2001)” with normally distributed error term and non-normally 

distributed variables.  

 X3  denotes the skewness of X, defined as: 

  
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
  (26) 

When 3n ,    XY 3

3

3   . Thus,  
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Since skewness provides a measure of symmetry, Equation (27) infers that the response 

variable tends to be more symmetric than the explanatory variables. The 4
th

 standardized 

cumulant is known as the kurtosis of the distribution where 

  
 

  
 

3X
4

4

2

2

4
4 

X

X

X

X








  (28) 

Kurtosis is a measure of departure from normality. Kurtosis is zero for a normally 

distributed random variable. Random variables that have a positive kurtosis are called 

superGaussian, and those with negative kurtosis are called subGaussian. A 

superGaussian distribution has a higher probability of the values near the mean and the 

values near the extreme than the Gaussian one. On the other hand, a subGaussian 

distribution, e.g., uniform distribution, has a lower, wider peak around the mean and 

thinner tails. If 4n  is plugged into equation (25), then the result implies the response 

Y is closer to a normal distribution than the controlled variable X. Equation (25) is 

feasible to determine the distribution shape only when relevant variables have non-

normal distribution, since 043    for normally distributed variables. 

The higher-order covariances and higher-order correlations are defined 

 

        
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 
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X
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
 



 (29) 

Since X and   are supposed to be mutually independent, then for any two functions, g 

and h, we have (Hyvärinen, Karhunen and Oja, 2001): 

            hEXgEhXgE   (30) 
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Besides, when   0,cov X , it infers that the relation between X and Y may come from 

their mutual association with another variable. Hence, when X and   are independent, it 

implies that no unobserved confounding variable exists in this system (Causal 

Sufficiency) (Shimizu, Hyvärinen, Hoyer and Kano, 2006). We have for 2n  (as long 

as   0,cov 0 YXn ) 
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For n=3 in (32) generates another asymmetric formula for XY . That is: 

 
 
 

 
  XY
X

YX

YX

YX











3

21

30

21 ,
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 (33) 

The above equation is satisfied if and only if variable X is asymmetrically distributed so 

that   03 X . Moreover, 
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 (34) 

In addition, with n=3 in (31), we have 
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      XYXYX 33021 ,cov,cov     

Thus, 
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By multiplying (33) and (35), the expression for the square of the correlation coefficient 

is obtained 
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   (36) 

Then dividing (27) by (36) yields (as long as 0XY ) 
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In summary, the correlation coefficient can be expressed by: 
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if   03  , 0XY  and   03 X  

Since the square of a correlation coefficient is less than or equal to one, we have 

the following relation between X and Y based on formula (38) when the real model is 

(14): 

             ,,,
2

3

2

21

2

12

2

3 XYXYXY    (39) 

In contrast, if the real condition is that Y is the cause of X, then the model could be 

formulated instead as:  
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 ,  YX  (40) 

where Y  independent of   and   is normally distributed. 

For 2n , we therefore have  
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Taking n=3 in (42) yields another asymmetric formula for XY  when Y is treated as 

controlled variable and thus 
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Here, the explanatory variable Y is assumed to be asymmetrically distributed so that 

  03 Y . Additionally, 
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 (44) 

With n=3 in (41), we have 

      YYXYX 30312 ,cov,cov     
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As a result, 
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 (45) 

By multiplying (43) and (45), the expression for the square of the correlation 

coefficient is obtained 
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   (46) 

Moreover, the cumulants of X are 
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Then dividing (47) by (46) yields 
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In summary, when the model is   YX , the correlation coefficient can be 

expressed by  
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Because the square of a correlation coefficient is less than or equal to one, equation 

(49) implies: 

             .,,
2

3

2

21

2

12

2

3 XYXYXY    (50) 

The section demonstrates that we can identify the causal ordering from X to Y or its 

opposite by using skewness and higher-order correlations when the distributions of 

variables are non-normal. Independence between explanatory and disturbance variables 

and non-normality of variables are key assumptions in the setting. Besides, it is evident 

that normality of variables restricts such applications of higher-order cumulants, and 

thus the characteristics of non-normal distribution can be helpful to evaluate the causal 

ordering than the case of normally distributed variables (Dodge and Rousson, 2001). 

 

Independent Component Analysis
4
 

The above section illustrates how to identify YX   over the reverse model 

XY   when we are only concerned with the connection between two variables. 

However, the above method works, when only considering the association between two 

non-normal series. If we attempt to know the causal relation among three variables or 

more, that is not enough. Shimizu et al. (2006) developed Linear Independent Non-

Gaussian Model (LiNGAM) to do more causal search based on the assumption of 

independently non-Gaussian distributed disturbances by applying higher-order moment 

structures. LiNGAM works even when the dimension of observed non-Gaussian 

variables is large. LiNGAM algorithm is processed by first doing independent 

                                                 
4 Parts of this section are summarized from Chapter 2 and Chapter 8 from Cover and Thomas (2006). 

Particularly, the statements of theorems and definitions of entropy come directly from that text. 
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component analysis (ICA) estimation and then discovering the correct ordering of 

variables.  

Basic Concept of Independent Component Analysis 

Based on the theory of signal processing, the Central Limit Theorem indicates that 

any mixture of independent source signals usually has a distribution which is closer to 

normal distribution than any of the constitute source signals, even if the source signals 

have quite different patterns of distribution (Stone, 2004). 

Assume that we observe n linear, invertible mixtures, nxx ,...,1 , of n independent 

signals, nss ,...,1 .
5
 

  . allfor  ,...2211 isasasax niniii   (51) 

Using the vector-matrix notation,  nxxX ,...,1 as well as  nsss ,...,1 , the linear 

mixing model shown in equation (51) could be written as 

 AsX      (52) 

where X as well as s are both column vectors, and A is called a “mixing matrix.” The 

components of s cannot be directly observed and are supposed to be mutually 

independent with non-Gaussian distribution. The objective of ICA is finding the 

“demixing matrix” W such that W maximizes the non-Gaussianity and mutual 

independence of the components of s~  where XWs
~~   and 1~  AW  (Hyvärinen, 

Karhunen and Oja, 2001; Shimizu, Hyvärinen, Hoyer and Kano, 2006; Lacerda, Spirtes, 

Ramsey and Hoyer, .2008). 

                                                 
5
 The original assumption of ICA model is that the number of observed variables must be larger or equal to the 

number of independent signals. 
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The concepts of entropy are widely applied to maximize the non-Gaussianity of 

signals in ICA model. The relevant terminologies will be initially introduced and then 

are connected with the analysis of ICA. 

Introduction of Entropy
6
 

As Cover and Thomas indicate (2006), the entropy is a measure of the amount of 

information needed on the average to describe a random variable. The entropy H(X) of a 

discrete random variable X with ΑX   and probability mass function    xXxp  Pr , 

is defined by 

      



x

xpxpXH log  (53) 

Here, the logarithm base is the number 2 and the entropy is measured in bits. Noticeably, 

the entropy is a function of the distribution of X instead of the actual values of X. 

The expected value of a random variable  Xg  is defined as 

       



x

xgxpXgE  (54) 

where  xp  denotes the probability density function of X. Suppose  
 xp

xg
1

log , and 

then 
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 (55) 

That is the entropy of X can be interpreted as the expected value of 
 Xp

1
log . 

                                                 
6 More properties of entropy and negentropy are illustrated in Appendix A. 



 

 

23 

 XH  equals to 0 when   1or  0Xp . That means when   1or  0Xp , X must be 

a specific value or not so there is no information required to know the value of X. 

Entropy of Continuous Variables 

If the concept of entropy for discrete random variables is generalized to continuous 

random variables case, it is called differential entropy. The differential entropy  xH  of 

a continuous random variable X with probability density function  xf  is defined as 

      dxxfxfXH
S log  (56) 

where S is the support set of the random variable. 

The relative entropy  gfD  between two density functions f and g is defined by: 

    
 
 

dx
xg

xf
xfgfD  log  (57) 

The relative entropy is a measure of the inefficiency when the true distribution,  xf , is 

assumed to be  xg  incorrectly. For example, if we knew the true distribution  xf , we 

could build an exact state with average needed information   xfH . However, if we 

used the code constructed on the basis of distribution  xg , we would need 

  xfH +  gfD  bits to describe x. Also, since the logarithm function,  xy log , is 

concave, thus      xExE loglog  . Consequently,  
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 (58) 



 

 

24 

Intuitively,   0gfD . 

The joint differential entropy of a set  nxxxX ,,, 21   of random variables with 

density  nxxxf ,,, 21   is defined as (Cover and Thomas, 2006) 

 

     

      n

nnnn

XXXfEdXXfXf
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
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




 (59) 

Negentropy 

Negentropy J is defined as 

        XHXHxxJXJ gaussn  ,1  (60) 

where gaussX  is a random vector of multivariate Gaussian distribution (multivariate 

normal distribution) with mean vector   and covariance matrix  . 

Higher-order cumulants is a common tool used to approximate the negentropy 

because of the difficulty of estimating the distribution of a random variable x. 

Hermite Polynomials and Gram-Charlier Series Expansion 

The Hermite‟s differential equation is given by 

 0
2

2

 iz
dx

dz
x

dx
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 (61) 

The corresponding solutions of z can be 

     22

22

1

x

i

ix
i

i e
dx

d
exH



  (62) 



 

 

25 

where iH  is called ith-degree (probabilist‟s) Hermite polynomials and the order i is a 

nonnegative integer. If x has standardized Gaussian distribution with probability density 

 x  such that   2

2

2

1
x

ex





 , therefore 
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where   xi  denote the i
th

 derivative of  x . Thus, equation (62) can be rewritten as 
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  (64) 

The basic thought of Gram-Charlier Series Expansion is that the real probability 

density of x,  xf , is close to  x . Hence,  xf  can be represented by a series 

expansion of standardized Gaussian density function and its derivatives 
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10   (65) 

For simplicity, we assume x has zero mean and unit variance. Plugging equation (64) 

into equation (65) yields Gram-Charlier Series Expansion such that 
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Multiply  xH i  on both sides and integrate respect to x of equation (66). The equation 

becomes 
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(67) 

In addition, the orthogonal property of the Hermite polynomials is defined as 
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When this property is applied to equation (67), the coefficients jb  can be computed as 
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Therefore, the first five coefficients are 
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because x is standardized to have zero mean and unit variance. 

Plug these coefficients into equation (66), and then  xf  can be estimated as 
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Obviously, the part of the departure from normality of  xf  is given by the third- and 

fourth-order cumulants in equation (71). Since the true distribution of x is presumed to 

be very near standardized normal distribution, the part of cumulants should be extremely 

small and the following approximation can be applied in the later analysis 
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The formula of  xf̂  shown in equation (71) is plugged into the definition of 

entropy in equation (56) 
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(73) 

Because of the assumption that  xf  is quite close to standardized normal distribution, 

the values of  x3  and  x4  tend to be zero, and thus part C can be simplified to 

       gaussxHdxxx  log . Besides, due to the same reason, “a third-order 

monomial of  x3  and  x4  is infinitely smaller than terms involving only second-

order monomials (Hyvärinen, Karhunen and Oja, 2001).” After applying the above 

condition and the orthogonal property in (68), the remaining part becomes 
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Therefore, the negentropy of standardized variable x is approximated by third- and 

fourth-order cumulants as (Choi, Grandhi and Canfield, 2006; Hyvärinen, Karhunen and 

Oja, 2001): 
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The objective is maximization of negentropy. 

 

Fast ICA Algorithm
7
 

Whitening 

In Fast ICA, the first step of preprocessing the observed data is to center X which 

means that the means of X are subtracted to be zero. Thus, the mean vector of s is 

calculated by mW
~

 where m is a mean vector of X before being centered. The next step is 

whitening which is that X is linearly transformed to a new vector X
~

 so the component 

of X
~

 are uncorrelated and their variances are equal to one,   IXXE T 
~~

 (Hyvärinen, 

2001).  

Suppose   denotes the covariance matrix of the centered data X. Because   is 

symmetric, then we acquire a decomposition   TT FDFXXE  , where F is an 

orthogonal matrix and the column vectors of F form an orthonormal basis for each 

eigenspace  IE   ker  and D is a diagonal matrix with eigenvalues corresponding 

                                                 
7
 Most texts of this section are summarized from Hyvärinen, A., Karhunen, J., and Oja E. (2001) 

, Independent Component Analysisand relevant matrix algebra operations are demonstrated in Appendix B. 

http://www.cis.hut.fi/aapo/
http://www.cis.hut.fi/juha/
http://www.cis.hut.fi/oja/
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to the orthonormal basis. We set TFFDV 2

1


  which is called whitening matrix. 

Whitening is implemented by: 

 XFFDVXX T2

1
~ 

  (76) 

Obviously, 
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 (77) 

After that, another orthogonal matrix Q is necessary to be found so that the 

components of VXQXQs TT 
~

ˆ  have maximal non-normality and the demixing matrix 

is calculated by VQW Tˆ  (Hyvärinen, Karhunen and Oja, 2001; Shimizu, Hoyer, 

Hyvärinen and Kerminen, 2006). 

Why Unobserved Signals are Presumed to be Non-Gaussian Distributed 

One of the most assumptions behind ICA model is that the unobserved signals, s, 

has non-Gaussian distribution. Why this assumption is needed? 

Suppose two independent signals,  21, sss   are Gaussian distributed with zero 

mean and unit variance. Therefore, their joint probability density is: 
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If the mixing matrix A is orthogonal, then 1 AAT  and     1detdet  AAT . Hence, 

after the data has been whitened, the joint density of the mixtures  21, xxX   is given 

by: 
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(79) 

(79) infers that the mixtures 1x  and 2x  are also independently Gaussian distributed. 

Apparently, the distribution of orthogonal transformation of mixtures, XAT , is identical 

with the distribution of the original mixture, X. The orthogonal mixing matrix A does not 

change the density function of X at all. It implies the mixing matrix cannot be estimated 

from observed variables when these variables have multivariate Gaussian distribution. 

Therefore, non-Gaussianity of signals is necessary to make ICA estimation feasible 

(Hyvärinen, Karhunen and Oja, 2001). 
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CHAPTER III 

CAUSAL SEARCH ON THE PRICING LEADERSHIP BETWEEN THE 

MANUFACTURER AND THE RETAILER 

 

Introduction 

Discovery of linear acyclic models from purely observational data is a significant 

topic of current research. In this section, I will briefly review the literature on two 

relevant search algorithms for discovering DAGs of real data and apply such to retail-

level scanner data on carbonated soft drinks (CSDs) sales and prices to examine the 

firm‟s pricing behavior. 

 

Search Algorithm for Finding Causal Structure 

The procedure of inferring causal structure based on probabilistic dependence is a 

two-step process. Step 1 establishes the probability model through statistical inferences 

(e.g. the parameters of means, variances, and covariances). Step 2 deduces the 

probabilistic (or causal) consequence from the inferential principle (e.g. d-separation) 

(Hoover, 2009b). Two algorithms discussed here are PC and LiNGAM. Both PC and 

LiNGAM algorithms
8
 satisfy the following assumptions that: (1) the data generating 

process is recursive
9
, so its causal structure is “one-way causation,” (2) there are no 

omitted variables that would affect the result of causal inference so the set of observed 

variables is causally sufficient, and (3) the sampled observations are identically 

                                                 
8 PC and LiNGAM algorithms are implemented in Tetrad which can be downloaded from the website 

http://www.phil.cmu.edu/projects/tetrad/. 
9 The definition of recursive is shown in Pearl‟s book (Pearl, 2009). 

http://www.phil.cmu.edu/projects/tetrad/
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independent distributed (Shimizu, Hyvärinen, Kano and Hoyer, 2005; Hoover, 2009a). 

The substantial difference between these two algorithms is the presumption of the 

underlying distribution of the data. PC algorithm works reliably with the normal 

distribution or many sorts of symmetrical but non-normal distributions, while LiNGAM 

algorithm assumes the non-Gaussianity of the error terms; the more non-Gaussian the 

better (Shimizu, Hyvärinen, Kano and Hoyer, 2005; Glymour, e-mail, 28 September 

2010).  

PC Algorithm 

PC in Tetrad
10

 produces a pattern which represents a class of DAGs that are 

statistically equivalent under a normal distribution (Glymour, e-mail, 28 September 

2010). When variables are multivariate Gaussian distributed, the second-order moment 

structure of the variables offers completely required information to define the probability 

density of the data and all conditional correlation of the variables can be calculated 

directly from the their mean and covariance matrix (Shimizu, Hyvärinen, Kano and 

Hoyer, 2005).
11

 This is why the PC algorithm can compute the causal ordering among 

variables only by using covariance matrix.  

In a graphical model, two variables are connected by a line if and only if they are 

not conditionally independent. Since PC algorithm generates a pattern in Tetrad given 

the assumption that data has multivariate normal distribution, zero partial correlation or 

zero conditional correlation implies conditional independence (Baba, Shibata, and 

Sibuya, 2004). PC algorithm starts with a “complete undirected graph (Spirtes, Glymour 

                                                 
10 Tetrad is software used to do causal search and it is developed by researcher in the department of philosophy 

at Carnegie Mellon University. 
11 How to derive conditional correlation of multivariate normal distributed data is shown in Appendix C. 
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and Scheines, 2001)” where all vertices (variables) are connected with a headless arrow. 

“It then examines the independence among any pairs of variables, conditional 

independence on sets of one variable, then two, and so forth until the set of variable is 

exhausted (Hoover, 2008).” If the correlation or conditional correlation is determined to 

be not significantly different from zero, then the edge connection between variables is 

removed. When all combinations for pairs of variables are tested, the direction of edges 

are then considered based on the relation among triples of variables. The case of inverted 

fork is initially identified. It considers cases where two variables, X and Y, are 

unconditionally independent, but related through a third variable Z. So unconditionally X 

and Y are independent, however if we have a variable Z such that conditional on Z, X and 

Y are dependent. Then: YZX  , and we say Z is an unshielded collider. When all 

unshielded colliders have been discovered, further logical rules are applied to direct 

other causal connections. Suppose we have YZX  , but Z was found not to be a 

unshielded collider previously; hence, the relation should be a causal chain such as 

YZX   (Spirtes, Glymour and Scheines, 2001; Hoover, 2008).  

PC algorithm may generate indistinguishable patterns due to the same conditional 

correlation structure (Shimizu, Hyvärinen, Kano and Hoyer, 2005). For example, in 

terms of Causal Markov Condition (CMC), we cannot tell YZX   from 

YZX   because both cases have the equivalent joint probability density: 

 
   

 Zf

ZYfZXf
ZYXf

,,
,,  . Both cases infer that X and Y are independent without 

knowledge of Z and they are independent given knowledge of Z. Actually, many patterns 
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of real-world data are extremely non-normal and not symmetric, and the assumption of 

non-Gaussian distribution is helpful to identify more causal structures which PC may not 

recognize. The algorithm Linear Non-Gaussian Acyclic Models (LiNGAM) applies non-

Gaussian data structure for model identification. 

Linear Non-Gaussian Acyclic Models 12 

For each vector  nxxxX ,,, 21  , ix  has a causal ordering. Then we could have 

the following structural equation model: 

 
   




ikjk

ijiji exbx  (80) 

where  ik  denotes a causal ordering and no variable listed later causes any variable 

listed earlier. The disturbances ie  are mutually independent and non-Gaussian 

distributed with non-zero variances. Equation (80) indicates that each ix  is a linear 

function of its preceding variables (ancestors), plus the disturbance term, but not any 

function of its descendents.  

Initially, each variable ix  is always preprocessed by subtracting out its sample 

mean, to have a zero-mean vector, and, applying the vector-matrix format, equation (80) 

can be written as: 

 eXX   (81) 

                                                 
12 Parts of this section are summarized from Shimizu, Hyvärinen, Kano and Hoyer‟s conference paper (2005) 

and Shimizu, Hoyer, Hyvärinen, and Kerminen‟s paper (2006). Particularly, the equations of algorithm come directly 

from these two texts. 
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where B is the coefficient matrix of the model. The arrangement of X can be ordered 

depending on their causal structure. Assuming 123 xxx  , then 
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Solving for X in equation (80) then we obtain 

     AeeIXeXI 
1

    (83) 

where   1
 BIA . X can be expressed as a linear function of the error terms, as long 

as  I  is nonsingular. Obviously, A is lower triangular matrix with non-zero 

elements on the diagonal. The independence and non-normality of disturbances are 

assumed in (83). Equation (83) and the above presumption of disturbances form the 

classical linear independent component analysis (ICA) model (Hyvärinen, Karhunen and 

Oja, 2001; Shimizu, Hyvärinen, Hoyer and Kano, 2006). Apparently, compared to the 

functional format of ICA in (52), the error terms in equation (83) are often treated as 

“sources” or “signals” and written s. The procedures of LiNGAM algorithm include 
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calculating the demixing matrix  BIW ˆˆ   by doing ICA estimation and then 

discovering the correct ordering of X. 

LiNGAM Discovery Algorithm 

Following the assumption behind equation (83): 

 AeX   and equivalently   XWXBIe
~~

  (84) 

Suppose an initial Ŵ  is found by applying the FastICA algorithm introduced previously.  

However, since there is no way to fix the order of independent components, e or s, 

the rows of initial estimated W are possibly randomly ordered. In other words, we may 

have the wrong correspondence between the disturbances and the observed variables. 

This problem is illustrated by extending the previous example, 
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and its corresponding causal relation is given in Figure 2. 
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FIGURE 2  The Corresponding Causal Connection of Equation (82) 
 

 

 

 

The equation (82) can be written by taking error terms on the left-hand side of the 

equation:
 13
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(85) 

Nevertheless, perhaps the form of initially demixing matrix Ŵ  and the corresponding 

order of error terms will become 
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(86) 

                                                 
13 Equations (85) to (87) and the corresponding text are summarized the powerpoint file from The LiNGAM 

Project: A Longer Introduction. Available from http://homepage.mac.com/shoheishimizu/. Accessed July, 2010. 
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so therefore the correspondence between the error terms ie  and the observed variables 

ix  is incorrect. As the example shown in (86), 3x  corresponds to 2e  instead of 3e  

erroneously. This condition occurs is because of the “permutation indeterminancy of 

ICA.” In order to obtain a proper correspondence between error terms and the observed 

variables, a permutation matrix, P, is required to permute the rows of Ŵ , so that there 

are no zeros on the main diagonal of WPW ˆ~
 (Shimizu, 2010). 

 

The objective of the algorithm which searches for the row permutation matrix is to 

make the main diagonal elements of the demixing matrix non-zero. Therefore, this 

algorithm severely penalizes small absolute values of the main diagonal elements of the 

row-permutated demixing matrix W
~

. In practice, when the number of observed variables 

is comparatively small (less or equal to eight)
 14

, the algorithm is: 

  


i
ii

P WP
P

ˆ

1
minˆ  

(87) 

where WP ˆ  permutes the rows of Ŵ . Once the permutation matrix, P̂ , is found, we can 

also discover the correct demixing matrix W
~

 with the right correspondence between 

error terms and observed variables. 

                                                 
14 The computation question of why eight? and not nine or seven is left unaddressed in this dissertation. Dr. 

Shimizu et al. indicate that it has to do with increasing computational complex algorithm at numbers higher than eight. 
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Another indeterminancy that ICA cannot solve is the scaling of the demixing 

matrix (or, equivalently, disturbance terms). In LiNGAM, since  BIW
~~

  is assumed 

in advance, the components on the main diagonal of Ŵ , which gives the weight of 

disturbance variables to the corresponding observed variables, should be fixed to one. 

According to Shimizu et al. (2006, pp. 2007), “each row of W
~

 is divided by its 

corresponding diagonal element,” so that the main diagonal elements of W
~

 are 

equivalent to one. Finally, the coefficient matrix B is calculated by WIB
~ˆ  . 

The initial values of coefficients ijb  are estimated, but the causal ordering  ik  is 

yet uncertain. In other words, the first calculated coefficient matrix, B̂ , may not be 

strictly lower triangular. Besides, when applying real finite data sets on the ICA 

decomposition algorithm, it possibly “generates estimates which are approximately zero 

for those components which should be exactly zero (Shimizu, Hoyer, Hyvärinen and 

Kerminen, 2006).” For instance, because of the estimation error, we may get: 
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(88) 

Apparently, the corresponding causal association under this estimation is given by 

Figure 3: 
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FIGURE 3 The Corresponding Causal Association of Equation (88)  
 

 

, 

 

 

 

 

This estimated result violates the structure of the DAG due to the existence of directed 

cycle. In order to achieve a DAG and discover the causal ordering, it is necessary to find 

a permutation matrix Q which permutes both rows and columns of B̂  simultaneously “as 

lower-triangular as possible” so that when the upper triangular coefficients of TQBQ ˆ  are 

set zero, the change of element‟s value is the smallest. Hence, the objective is that:
15

 

  



ji

ij

T

Q
QBQQ

2
ˆminˆ  (89) 

                                                 
15 The algorithm of equations (87) and (89) are feasible only when the number of observed variables are less or 

equal to eight. 
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When the optimal permutation, Q̂ , is discovered, the optimal strictly lower triangular 

coefficient matrix B
~

 can be calculated by setting the upper triangular components of 

QBQ ˆˆˆ to zero. The estimation process of B
~

 is shown as (Shimizu, 2010):
16

 

 

Method to Prune the Edges 

“Bentler (1983) and Mooijaart (1985) considered the generalized least squares 

approach in parameter estimation (Kano and Shimizu, 2003; Shimizu, Hoyer, Hyvärinen 

and Kerminen, 2006; Shimizu and Kano, 2008).” The developers of LiNGAM apply this 

methodology to evaluate the entire model fit and to direct the causal relation.  

The last section shows that some coefficients of B̂ , implied zero given a 

discovered causal ordering, are set to be zero. Nevertheless, some remaining edges 

between variables may be weak and are “probably zero in the generating model.” Thus, 

a significance test of nonzero element of estimated matrix B
~

 (equivalently, of W
~

, 

except the components on the main diagonal) is needed. The Wald test is used to 

                                                 
16 Equations (88) to (89) and the corresponding text are summarized from the powerpoint file from The 

LiNGAM Project: A Longer Introduction. Available from http://homepage.mac.com/shoheishimizu/. Accessed July, 

2010. 
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examine if some connection should be pruned away. The null and alternative hypotheses 

are: 

 0~:0 ijwH       versus     0~:1 ijwH      for 0~ and  ijwji  (90) 

identically, 

 0
~

:0 ijbH       versus     0
~

:1 ijbH      for 0
~

 and  ijbji  (91) 

so the corresponding Wald statistics is: 

 
 ij

ij

w

w
W

avar

2

  (92) 

where  
ijwavar  is the estimated asymptotic variance of ijw~

17
 and W has one degree of 

freedom (Bollen, 1989). 

At first, the Wald statistics of each nonzero ijw~ , except the main diagonal elements, 

is calculated. Some ijw~ s are chosen when 0H  of these ijw~ s are not rejected. Then we set 

the corresponding 0
~

ijb respect to ijw~  with highest p-value among those chosen ijw~ s. 

Therefore, we have a new matrix of B
~

: newB
~

.  

kX   nk ,,1  denotes the k-th observation of a random vector  321 ,, xxxX  , 

and then the first and i-th moment structures of a random vector are defined by: 

 ,
1

1

1 



N

k

kX
N

m  (93) 

 

                                                 
17 The formula of  

ijwavar  is explained in detail in the Appendix D of Shimizu, Hoyer, Hyvärinen, and 

Kerminen‟s paper (2006). 
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
 (94) 

where the symbol   denotes the Kronecker product. 

Because X is centered, 1m  of the structural equation model (81) is zero and 

  0eE . Hence, the overall fit of the model is evaluated by measuring the discrepancy 

between the second-order moments structure of the sample variables X, 2m , and the 

model predicted second order structure   eIX
1

 ,  22 ̂ . 2m  is a column vector 

with elements of covariance matrix of sample data itself. For example, in our modeling,  

             3322312112 var,,cov,var,,cov,,cov,var xxxxxxxxxm    

On the other hand, the model-based covariance matrix of centered X,  , can be re-

written as:
 18
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 (95) 

where    
1

2

1

Y and )cov(













 BIDeeeED T . Because the disturbance terms are 

assumed to be independent of each other, D
 
is a diagonal matrix. Furthermore, 

                                                 
18 Relevant matrix algebra operations are demonstrated in Appendix B. 
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               33322231211122 ,,,,,ˆ TTTTTT YYYYYYYYYYYY   

where  2  contains the nonzero estimated coefficients of B and the elements of D. In our 

case, 

  33221132212 ,,,, dddbb   

Then the null and alternative hypotheses of testing the overall model fit are: 

    2220 : mEH       versus        2221 : mEH  (96) 

Define 

        2222222
ˆˆˆˆ   mMmF

T
 (97) 

where 
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
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 




 (98) 

V is the covariance matrix of 2m , and n is the number of the observations.
19

 Although a 

test statistic  21 ̂FnT   could be used to test the null hypothesis displayed in (96), we 

generally require large sample sizes for 1T  to have an approximately 2  distribution, so 

relevant studies of LiNGAM apply the test statistic 2T  from Yuan-Bentler‟s suggestion 

(Yuan and Bentler, 1997): 

   
 2

1
2

ˆ1 F

T
T


  (99) 

                                                 
19 The exact form of estimated J  refers to the Appendix E of Shimizu, Hoyer, Hyvärinen, and Kerminen‟s 

paper (2006) and is illustrated in Appendix D of my dissertation. 
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“ 2T  has an approximately 2  distribution with degrees vu   of freedom where u is the 

number of the distinct moments and v is the number of elements of 2  (Shimizu, Hoyer, 

Hyvärinen and Kerminen, 2006).” 2T  only can be applied when its degree of freedom is 

larger than zero. 

Now consider that Model 1 employs B
~

 with r edges while Model 2 employs newB
~

 

with 1r  edges when estimating the model predicted second-order moment structure. 

Suppose  rT2  and  12 rT  are the statistic 2T  for Model 1 and Model 2, respectively. 

The absolute value of    122  rTrT  is also asymptotically approximately 2  

distributed. If the null hypothesis     01: 220  rTrTH  is not rejected and  12 rT  

does not reject the null hypothesis of overall model fit shown in (96), it means there is 

no significant difference in a model fit when this edge is removed. In general, a simpler 

model is preferred, so newB
~

 is accepted to substitute the original B
~

 and the weakest 

nonzero ijb
~

 is pruned out. Otherwise, the original B
~

 is accepted. Next, the second-

weakest edge is tested until all selected ijw~ s with non-significant Wald statistics are 

exhausted (Shimizu, Hoyer, Hyvärinen and Kerminen, 2006). Finally, the optimal B
~

 (or 

W
~

) is evaluated and, thus, we can have a well-fitting overall model. 

Determine the Direction of Causality 

Although statistic 2T  can be used to test the fitness of predicted model, however 

for some simple modeling, only applying second moment structures is not sufficient. For 

example, suppose  



 

 

47 

 
X

Y

yx

xy









:2 Model

  :1 Model

'

'

  

where x and y are centered. Further write moments: 
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The first-order moments of sample data, the expected values of x  and y , are not 

considered here because the sample data are centered, so     0 yExE .  

Suppose Model '1  holds true where x  and Y  are independent, then the 

corresponding model predicted second-order moment structure is given: 
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where     22

2  , ,ˆ
YExE   . Obviously, the number of the distinct sample moments is 

identical to the number of 2 . On the other hand, the second-order moments of Model '2  

are the same as Model '1 . It is said that Model '1  and Model '2  are “saturated” and 2T  

cannot be used to evaluate which model has a better model fit. Accordingly, the 

conclusion is the same as we explained in Chapter II; Model '1  cannot be identified from 

Model '2  if only second-order moment structures are concerned. 

Nevertheless, since the relevant variables and disturbance terms are assumed to be 

non-normally distributed, if the corresponding third- and fourth-order moments of Model 



 

 

48 

'1  and Model '2 are different from each other, the moments up to fourth order can be 

applied to detect the causal direction.
20

 

Following the hypotheses in (96), we extend the moment structures, used to 

evaluate an overall model fit, up to the fourth-order moment. Let us denote 

  TTTT mmmm 432  , ,  and         TTTT

443322  , ,ˆ    (102) 

where m includes components of the second- to fourth-order moments of sample data 

and   ˆ  consists of the elements of the second- to fourth-order moments of the model 

considered to data. 

Therefore, the null and alternative hypotheses of testing the overall model fit become: 

    mEH :0       versus        mEH :1  (103) 

The difference between the moments structures of sample data and assumed model is 

examined not only by using second-order moments alone but also applying up to fourth-

order moments. Thus, the corresponding test statistic  ̂F , 1T  and 2T  change into 

 

 
 
 
 

 
 
 

 

 

















ˆ1
                               

ˆ                                

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

1
2

1

44

33

22

4

3

2

44

33

22

4

3

2

F

T
T

FnT

m

m

m

M

m

m

m

F

T












































































































 
(104) 

Suppose, compared to Model '2 , Model '1  has a lower 2T  and does not reject 0H  shown 

in (103). Then it implies that Model '1  has better model-data consistency so it is the 

                                                 
20 Related proofs of higher-order moments are shown in Appendix E. 



 

 

49 

best-fitting model. Therefore, Model '1  reflects the correct causal ordering among 

variables (Kano and Shimizu, 2003; Shimizu and Kano, 2008). 

The above introduction does not concern the structure of time series data. However, 

in my application, not only “instantaneous effect” but also “lagged influences” between 

time series data itx  are considered. 

Structural Vector Autoregressive Model with LiNGAM 

Following Hyvärinen, Zhang, Shimizu, and Hoyer‟s studies (2010), suppose that 

there are n related variables,  tntt xxX ,,1 ,, , and the vector autoregression model 

combined with the framework of LiNGAM can be defined as: 

 tptpttt eXBXBXBX   110  (105) 

where p is the number of time lag used, and  

,,1

,1,11
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

. 0B  shows the 

“instantaneous effects” and reflects the causal orderings of variables. 0B  plays a role as 

B  in equation (81) and 0B  should be restricted to be a strictly lower triangular matrix. 

Moreover, iB  indicates the impact from the past to the current time for 1i . The 

disturbances te  have the same properties as what are defined in LiNGAM. Equation 

(105) can be rewritten as: 

   t

p

i

ititptptt eXBeXBXBXBI  




1

110   (106) 

This equation becomes 
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       t
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
   (107) 

where   ii BBIM
1

0


 . The way to recover the causal matrices iB  is to do vector 

autoregressive (VAR) model estimation on (107) and then we can have the estimated 

autoregressive matrices iM̂ . Hence, the residuals are calculated by 

   







p

i

itittt XMXeBIu
1

1

0
ˆˆ  (108) 

Since 

     ttttttt euBueuBIeBIu 


ˆˆˆˆ
00

1

0  (109) 

Therefore, LiNGAM estimation is performed in (109) to discover the matrix 0B . Other 

iB s are calculated by 

    ii MBIB ˆˆ
0  for 1i  (110) 

(Hyvärinen, Zhang, Shimizu, and Hoyer 2010). 

 

Strategic Interaction between Firms 

Economic theory alone cannot tell us which strategies that firms use in the real 

world and therefore empirical research of a firm‟s behavior has received considerable 

attention because many researchers are interested in realizing how firms truly behave 

(Perloff, Karp, and Golan, 2007).  

If manufacturers and retailers repeated their interaction following a specific pattern, 

the application of causality analysis on their pricing interaction can make their strategic 
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behavior clear and the DAG result can describe the firms‟ relation that is in equilibrium 

(Dominguez, 2009). Moreover, another advantage of causal analysis is that the pricing 

interaction between firms can be investigated without imposing any given structure a 

priori. 

When discussing the interactions between manufacturer and retailer, a vertically-

integrated system and Stackelberg leadership of bilateral-monopoly modeling are the 

main cases considered. A vertically-integrated system describes a situation when the 

manufacturer and retailer cooperate to work as an integrated firm and aims to maximize 

the profit of the entire channel instead of individual benefit respectively. Also, the 

manufacturer‟s price is viewed as a cost in this system and then they share the total 

margins in the distribution channel. Under this circumstance, the important character of 

this model is that both the manufacturer price and the retail price affect the sales 

condition regardless of the relation between mp  and rp . Therefore, such game may 

imply the graphs as 
q

pp mr

      


 or 

q

pp mr

      



 
(Dominguez, 2009). 

In Stackelberg leadership modeling, the Stackelberg leader is assumed to have the 

ability to envision how its opponents will react in response to his strategy while the 

follower is unable to know how his behavior affects the leader‟s strategic choice. Thus, 

the Stackelberg leader can gain a larger share of the overall channel profits and has 

stronger pricing power than the follower (Ingene, and Parry, 2004). Furthermore, the 

manufacturer‟s price can be manipulated by the retail price in Retailer Stackelberg game, 

whereas the retailer‟s price would be affected by the setting of the manufacturer‟s price 
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in Manufacturer Stackelberg game (Dominguez, 2009). Because the price leader chooses 

its own price to maximize its profit, rather than the whole channel‟s profit, the channel 

profit is less than the one under vertically-integrated system (Ingene, and Parry, 2004). 

In this study, we observe the causal relation among manufacturer‟s selling price, 

retail price and sales quantity to examine if there is a vertically-integrated connection 

between the retailer and CSD manufacturers or if the Stackelberg leadership is 

controlled by the CSD manufacturer, or by the retailer (Dominguez, 2009). 

 

Data and Empirical Result 

Database Description 

Highly disaggregate data at frequent observation intervals are properly used to 

figure out the structure of repeated-game strategies (Slade, 1992). The main data 

resource for this study is the public Dominick Database from the Kilts Center for 

Marketing at the University of Chicago‟s Booth School of Business. The scanner 

database contains weekly retail prices, the number of packages sold, and gross margin 

information for more than 3500 UPCs for over 100 stores operated by Dominick‟s Finer 

Foods (DFF) in the Chicago metropolitan area. We select the product list in the Soft 

Drinks category.  

Since VAR-LiNGAM estimation is another important issue in this essay, 

continuously observed time series data are needed. However, because this dataset has 

missing records during weeks #254 to #261, only data from weeks #1 to #253 (09/14/89-

07/20/94) is used in this study. Additionally, since there are also no records on week #24 
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and week #211 for most goods, total number of observations for each CSD is 251. The 

simulation result of Shimizu, Hyvärinen, Hoyer and Kano‟s paper (2006) indicates that 

about 80% of causal orderings are recovered when the trial number equals 250. In order 

to further simplify the data into time-ordered series rather than panel data structure, only 

sales records of store #111 are analyzed. Store #111 is located in Chicago, IL 60620. 

This database has no entries if arbitrary goods were not sold in a certain week. Thus, 

store #111 is selected because it has comparably complete sales record of the goods 

relative to records of other stores we examined. The advantage of this database is that 

the prices charged by the manufacturers can be derived through the provided gross 

margin measure. This characteristic is helpful for us to explore the relationship between 

carbonated soft drink (CSD) manufacturers and one retailer in a supply chain. 

Characteristics of Data 

The top-ten best-selling CSD brands with 6-pack, 12-pack, 24-pack, and 2 liters 

between 1996 and 1998 are considered in this study, including Coke Classic, Pepsi-Cola, 

Diet Coke, etc. The triple variables examined here consist of  imiri ppq ,,  , ,  where 

Notation Description 

iq  The number of packages sold of CSD i. 

irp ,  Retailer‟s selling price of CSD i. 

imp ,  Selling price of CSD i charged by the manufacturer. 

The manufacturers are possibly the syrup producers, such as Coca-Cola Company and 

PepsiCo, or distributed bottlers. Missing entries due to no sales in a given week do 
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occur, so only drinks with more than 240 observations are taken into account. Thus, we 

study 27 products. We reject the null hypothesis of non-stationarity by using Phillips-

Perron test for most series. These series look stationary. Some price series which do not 

reject Phillips-Perron test are verified to reject the Augmented Dickey-Fuller test with 

constant drift at a 0.05 significance level. Stationarity of the series avoids the possibility 

of spurious results. In addition, all series, except for the rp  of Canada Dry 6-pack and 

the mp  of Canada Dry 12-pack, reject normality with Kolmogorov-Smirnov test
21

 and 

about 90% of series reject the symmetry test, which help demonstrate that it is proper to 

apply LiNGAM to investigate the causal connection among these series. Generally, the 

series of the number of packages sold always has the highest kurtosis while the retail 

price series has the lowest kurtosis for each product. The average kurtosis of  mr ppq  , ,  

are (32.84, -0.518, 2.08) respectively. Moreover, the series of packages sold still have 

the highest skewness but the wholesale price series have the lowest skewness rather than 

the retail price series. The average skewness of  mr ppq  , ,  are (4.805, -0.495, -1.347) 

respectively. The only information this data reveals is the series of q  is obviously far 

from normal distribution. 

Prune Factor 

The prune factor is essentially a heuristic parameter that plays a role very similar to 

that of a significance level for the PC algorithm. Generally, the prune factor is used to 

decide how easily weak connections are pruned away. If the prune factor is equal to 0, 

there is no further pruning for the matrix of estimated connection strengths, B. The larger 

                                                 
21 The Kolmogorov-Smirnov test is exercised in matlab. 
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the prune factor is, the more edges would be pruned out. However, there is not yet a 

standard pruning method specialized to LiNGAM, according to the LiNGAM 

developers. The prune factor approach is a simplified version of bootstrapping. To Dr. 

Shimizu‟s understanding, the approach is implemented mainly for computational 

efficiency and it might not have very strong theoretical support. He suggests that it might 

be better to do bootstrapping to see if the connection between two variables is 

significant. This would involve fixing the variable ordering to be the estimated one by 

LiNGAM and doing ordinary least squares on the bootstrap samples (Shimizu, e-mail, 

16 September  2010). 

In contrast to the prune factor in LiNGAM, the significance level should decrease 

when the sample size increases in order to derive the correct result. Spirtes et al. suggest 

the proper significance level should be 0.1 with sample sizes between 100 and 300 

(Spirtes, Glymour, and Scheines 2001). In our application, most of the sample sizes are 

equal to or a little bit lower than 251, so it is reasonable to use 0.05 and 0.1 to be the 

significance level in PC.     

Empirical Results 

The default value of prune factor in the matlab package of LiNGAM is 1. 

Therefore, we use this value of prune factor when applying LiNGAM and use 0.05 to be 

the significance level when applying PC algorithm; then compare the resultant graphs 

under these two algorithms simultaneously. The results of the estimates are presented in 

Table 1. If there is no connection between variables, it implies that the corresponding 

relation strength is zero, 0ijb , in LiNGAM, while it means that the covariance of 
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these two variables is zero,   0,cov ji xx , in PC. 100% causal relations can be 

determined in LiNGAM although the resultant relationships between rp  and mp  of 7 

Up and Canada Dry are not stable. The unstable results of Canada Dry may come from 

the distribution of relevant series. For example, the series of Canada Dry 6-pack‟s retail 

price does not reject the null hypothesis of symmetry and normality test. Expanding the 

sample size possibly can bring a solution. More observations are preferred because more 

data provides more accurate LiNGAM estimations. The simulation outcome of 

LiNGAM shows that more than 95% of causal orderings are correctly recovered when 

the sample size is more than 500 (Shimizu, Hyvärinen, Hoyer and Kano, 2006). On the 

other hand, the variables are only connected by headless arrows in PC because PC 

generates several DAGs that are statistically equivalent based on the assumption of a 

normal distribution of the sample data and it does not offer the exact directed causal flow 

in our case. Such results demonstrate that the non-Gaussianity of data is a helpful aide in 

model identification compared to the presumption of normality. 

Furthermore, the LiNGAM results indicate 74% of the products have a pricing 

pattern like Retailer Stackelberg leadership, mr pp  .
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TABLE 1     Empirical Graphs of LiNGAM and PC Estimates for CSDs 

Products/Algorithm LiNGAM (Prune Factor=1) PC (Significance Level=0.05) 

Coke Classic   

6-pack 
q

pp mr

      


 

q

pp mr

     


 

12-pack 
q

pp mr

     

    
 

q

pp mr

     


 

24-pack 
q

pp mr

      


 

q

pp mr

     


 

2 liters 
q

pp mr

      


 

q

pp mr

     


 

Pepsi Cola   

6-pack 
q

pp mr

      


 

q

pp mr

     


 

12-pack 
q

pp mr

      


 

q

pp mr

     


 

24-pack 
q

pp mr

       

      
 

q

pp mr

      

      
 

2 liters 
q

pp mr

      


 

q

pp mr

     


 

Diet Coke   

6-pack 
q

pp mr

     

    
 

q

pp mr

     


 

2 liters 
q

pp mr

     

    
 

q

pp mr

     


 

Mountain Dew   

2 liters 
q

pp mr

      


 

q

pp mr

     


 

Sprite   

2 liters 
q

pp mr

      


 

q

pp mr

     


 

Dr Pepper   

2 liters 
q

pp mr

      


 

q

pp mr

     


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TABLE 1 Continued 

Products/Algorithm LiNGAM (Prune Factor=1) PC (Significance Level=0.05) 

Diet Pepsi   

6-pack 
q

pp mr

      


 

q

pp mr

     


 

12-pack 
q

pp mr

      


 

q

pp mr

     


 

2 liters 
q

pp mr

      


 

q

pp mr

     


 

7 Up   

6-pack 
q

pp mr

      


 or 

q

pp mr

      


 

q

pp mr

     


 

12-pack 
q

pp mr

      


 

q

pp mr

     


 

24-pack 
q

pp mr

      


 or 

q

pp mr

      


 

q

pp mr

     


 

2 liters 
q

pp mr

      


 

q

pp mr

     


 

CF Diet Pepsi   

12-pack 
q

pp mr

      


 

q

pp mr

     


 

2 liters 
q

pp mr

      


 

q

pp mr

     


 

Diet 7 Up   

6-pack 
q

pp mr

      


 

q

pp mr

     


 

2 liters 
q

pp mr

      


 

q

pp mr

     


 

Canada Dry   

6-pack 
q

pp mr

      


 or 

q

pp mr

      


 

q

pp mr

     


 

12-pack 
q

pp mr

      


 

 

q

pp mr

     


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TABLE 1 Continued 

Products/Algorithm LiNGAM (Prune Factor=1) PC (Significance Level=0.05) 

2 liters 
q

pp mr

      


 

q

pp mr

     


 

 

 

 

At least, it is clear that the retailer has the ability to affect the setting of the price charged 

by the manufacturers of Coke, DietPepsi, and Caffeine-Free Diet Pepsi (CF Diet Pepsi) 

regardless of the package sizes. This founding is consistent with Kadiyali, Chintagunta, 

and Vilcassim‟s (2000) conclusion. Their study calculates the pricing power, in terms of 

the gross-margin, in the distribution channel. They also study Dominick‟s scanner data 

for the period 09/14/89-11/25/93 which is very similar to the time period we use. Their 

conclusion is that although the brand with higher market share, Tropicana, has higher 

estimated manufacturer channel profit share than the brand with lower market share, 

MinuteMaid, the retailer is evaluated to own 62.35% of total channel profit on average 

in the refrigerated juice category.  

On the other hand, PC gives a set of undetermined connection graphs: 70.4% of 

these graphs describe that q , rp , and mp  are related to each other but the connection 

pattern is uncertain. Furthermore, although the connections of some products do not 

appear in LiNGAM, PC‟s outcomes show that the relationship among these variables 

exists inversely, such as series of 12-pack Coke Classic, or 6-pack Diet Coke. There is 

no exact method we can offer here to prove which algorithm offers more accurate 

patterns. In general, our results support that LiNGAM is a quite different algorithm with 
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different properties from PC (a result consistent with recent observations of Glymour, e-

mail, 28 September 2010).  

The flow qpr   is always anticipated, but we hardly see this outcome in 

LiNGAM‟s results. The relations between prices are mostly elicited while the relation 

between the number of packages sold and prices are not so apparent when the prune 

factor is supposed to be one. 

Table 2 shows the estimated causal ordering from equation ttt euBu  ˆˆ
0  when the 

lagged effects are considered. Empirically, all of the residuals tû  reject the null 

hypothesis of symmetry and normality tests. Hence, these residuals should be non-

Gaussian distributed. Schwarz Information Criterion is used to choose the optimal time 

lag for the best multivariate time series fit. Finally, only 10 products have lagged effects. 

After comparing the outcomes of Table 1 and Table 2 for the same products, generally, 

the resultant causal orderings for each good are quite similar. There is no apparent 

change in the causal interaction between retail price and manufacturer‟s price for each 

product. However, more cases of the retail price that stimulates the sales condition, 

qpr  , are drawn forth in LiNGAM. 
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TABLE 2  Causal Associations of Residuals from VAR-LiNGAM and VAR-PC 

Estimates for CSDs 

 

Products/Algorithm Lags 
VAR-LiNGAM (Prune 

Factor=1) 

VAR-PC (Significance 

Level=0.05) 

Coke Classic    

6-pack 1 
qu      

mr pp uu 
 

q

pp mr
uu

u     


 

24-pack 1 
q

pp mr
u

u      

u      
 

q

pp mr
uu

u     


 

Pepsi Cola    

24-pack 1 
q

pp mr
u

u       

u      
 

q

pp mr
uu

u     


 

Diet Coke    

6-pack 1 
q

pp mr
u

u      

u      
 

q

pp mr
uu

u     


 

7 Up    

24-pack 1 
q

pp mr
uu

u      


 

q

pp mr
uu

u     


 

CF Diet Pepsi    

12-pack 2 
q

pp mr
uu

u      


 

q

pp mr
uu

u     


 

2 liters 1 
q

pp mr
uu

u      


 

q

pp mr
uu

u     


 

Canada Dry    

6-pack 1 
q

pp mr
uu

u      


 or 

q

pp mr
uu

u      


 

q

pp mr
uu

u     


 

12-pack 1 
q

pp mr
uu

u      


 or 

q

pp mr
uu

u      


 

q

pp mr
uu

u     


 

2 liters 2 
q

pp mr
uu

u      


 

q

pp mr
uu

u     


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The differences in causal structures from LiNGAM among 6-pack, 24-pack Coke and 

24-pack Pepsi are perhaps indicative of impulse buying for the smaller quantity size 6-

pack relative to 24-pack. The latter involves more monetary out lags than the former. 

Relaxing the strength of pruning may provide more causal relation as the 

economics theory refers. Therefore, we also examine the causal pattern when the prune 

factor in LiNGAM is set to be 0.5 and significance level in PC is set to be 0.1. The 

relevant results are shown in Table 3. For PC algorithm‟s outcomes, there is no obvious 

change. As expected, more edges are remained and up to 81.5% of the graphs represent 

the mutual correlation between q , rp , and mp . On the contrary, a lot of causal patterns 

of qpr  , qpm  , and even rm pqp   appear in LiNGAM‟s outcomes. qpr   

is always assumed in most demand analysis and our results show the existence of such 

connection. Further,   qpm   is also very common to see in Table 3. It is not easy to 

explain why such condition exists directly. One possible reason is the scarcity of shelf 

space. CSDs industry is a highly competitive so the prices charged by manufacturer to 

retailer can become a good tool to pursue a better shelf location to appeal shopper‟s 

attention. Moreover, rm pqp   implies the possible cooperation between 

manufacturer and retailer to maximize their joint profits in a vertically-integrated system. 

The residual with looser pruning criterion is also examined. Primarily, the results present 

more relations between manufacturer‟s price and the number of package sold, qpm  , 

as shown in Table 3. 
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TABLE 3     Empirical Graphs of LiNGAM and PC Estimates for CSDs with 

Lower Prune Factor and Significance Level 

 

Products LiNGAM (Prune Factor=0.5) PC (Significance Level=0.1) 

Coke Classic   

6-pack 
q

pp mr

      


 

q

pp mr

     


 

12-pack 
q

pp mr

      

      
 

q

pp mr

     


 

24-pack 
q

pp mr

      

  
 

q

pp mr

     


 

2 liters 
q

pp mr

      


 

q

pp mr

     


 

Pepsi Cola   

6-pack 
q

pp mr

      


 

q

pp mr

     


 

12-pack 
q

pp mr

      


 

q

pp mr

     


 

24-pack 
q

pp mr

      


 

q

pp mr

     

     
 

2 liters 
q

pp mr

      


 

q

pp mr

     


 

Diet Coke   

6-pack 
q

pp mr

      


 

q

pp mr

     


 

2 liters 
q

pp mr

     

    
 

q

pp mr

     


 

Mountain Dew   

2 liters 
q

pp mr

      


 

q

pp mr

     


 

Sprite   

2 liters 
q

pp mr

      


 

q

pp mr

     


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TABLE 3 Continued 

Products LiNGAM (Prune Factor=0.5) PC (Significance Level=0.1) 

Dr Pepper   

2 liters 
q

pp mr

      


 

q

pp mr

     


 

Diet Pepsi   

6-pack 
q

pp mr

      


 

q

pp mr

     


 

12-pack 
q

pp mr

      


 

q

pp mr

     


 

2 liters 
q

pp mr

      



 or q

pp mr

      


 

q

pp mr

     


 

7 Up   

6-pack  
q

pp mr

      


 or 

q

pp mr

      


 

q

pp mr

     


 

12-pack 
q

pp mr

      


 

q

pp mr

     


 

24-pack 
q

pp mr

      



 or q

pp mr

      


 

q

pp mr

     


 

2 liters 
q

pp mr

      


 

q

pp mr

     


 

CF Diet Pepsi   

12-pack 
q

pp mr

      


 

q

pp mr

     


 

2 liters 
q

pp mr

      


 

q

pp mr

     


 

Diet 7 Up   

6-pack 
q

pp mr

      


 

q

pp mr

     


 

2 liters 
q

pp mr

      


 

q

pp mr

     


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TABLE 3 Continued 

Products LiNGAM (Prune Factor=0.5) PC (Significance Level=0.1) 

Canada Dry   

6-pack 
q

pp mr

      



 or q

pp mr

      


 

q

pp mr

     


 

12-pack 
q

pp mr

      


 

q

pp mr

     


 

2 liters 
q

pp mr

      


 

q

pp mr

     


 

 

 

 

Conclusion 

The most common LiNGAM resultant graphs, for the soft drinks which we study, 

indicate that the retail selling price can affect the manufacturer‟s charge for CSDs. 

Retailer‟s pricing power may come from its market share in supermarket industry or 

intensive competition among Coca-Cola, PepsiCo, and Cadbury (Kadiyali, Chintagunta, 

and Vilcassim, 2000). However, there is no proper way to prove if the above conjecture 

is correct. Although there are no other studies that can verify our results directly, the 

related research on manufacturer-retailer channel interactions in the drinks categories 

may offer some supports. For example, Kadiyali, Chintagunta, and Vilcassim (2000) set 

up a structural model to estimate the manufacturer and retailer have how much market 

pricing power respectively. Their results indicate that the retailer has a higher channel 

profit share than manufacturer in refrigerated juice product category. Also, the retailer 

has stronger pricing power, as measured by markup, rather than manufacturer for each 

national brand of refrigerated juice. Dominick database includes retailer‟s gross margin 

but lacks for the information of manufacturer‟s margin. If the manufacturer‟s gross 
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margin is available, that can provide another verification way of our result. However, 

they also indicate that the proposed vertical Nash, manufacturer Stackelberg, and retailer 

Stackelberg models are all rejected so it implies the real channel interaction is more 

complicated than the traditionally bilateral-monopoly models. Therefore, although our 

LiNGAM estimation makes the causal associations among manufacturer‟s price, 

retailer‟s price and sold amount appear, it may not be proper to conclude that such result 

can represent a specific pricing game as theory proposed. At least, our LiNGAM results 

show that retailer has stronger pricing power than CSD manufacturers in most cases. 

Obviously, the results of LiNGAM and PC algorithm are quite different. Although 

all of the estimated error terms reject the normality test, the central question is that 

whether the error terms are far enough away from the normal distribution to induce a 

correct estimation in LiNGAM. For this question, Hyvärinen et al. suggest that when 

measuring the accuracy of the estimation, bootstrapping method should be applied rather 

than testing the normality (Hyvärinen, Zhang, Shimizu, and Hoyer 2010). This 

suggestion is thus left for an additional work on causal inference under non-Gaussian 

data.
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CHAPTER IV 

STRUCTURAL DEMAND MODEL FOR THE U.S. CARBONATED SOFT 

DRINK MARKET 

 

Introduction 

The neoclassical demand system estimation, derived from constrained utility 

maximization, which assumes that quantity is a function of prices and income and 

“imposes restriction based on economic theory such adding-up, symmetry, and 

homogeneity (Perloff, Karp, and Golan, 2007).” These models, including the Almost 

Ideal Demand System (AIDS) and the Rotterdam demand model, use “flexible 

functional forms”; that is they leave the own-price and cross-price elasticities evaluated 

by the data itself without imposing additional assumptions on substitution patterns like 

Independence of Irrelevant Alternatives (Hausman, 1994). Nonetheless, if the prices of 

all pertinent goods of differentiated products are considered in neoclassical demand 

system, estimation of all parameters will be a computational burden, which is well-

known as the curse of dimensionality (Pofahl, 2006). Arguably the direct solutions 

addressing the dimensionality problem include Distance Metric demand estimation 

method (DM) and discrete choice model (DC). 

The discrete choice (DC) demand model reduces the number of coefficients by 

projecting the number of products on to the number of products‟ attribute. It also 

presumes that each agent only purchases a single unit of the good with the highest utility 

among all choices (Rojas and Peterson, 2008; Giacomo, 2004). Suppose random-
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coefficients logit models represent the theoretical framework for the DC approach. The 

utility function can be decomposed into a deterministic part and a stochastic part. The 

researcher is supposed to know the deterministic part, which consists of the observable 

consumers‟ preference and the products‟ attributes, but the distributional shape of the 

stochastic term should be made (Giacomo, 2004; Nevo, 2000). 

The advantages of Random-Coefficients Logit Models are: 

(i) The relatively small number of demand parameters has to be calculated by 

working on the characteristics space. The difference among the consumers‟ preference is 

modeled completely and substitution patterns are free to evaluate. 

(ii)  It is easier to predict consumers‟ reaction when new brands are introduced to 

the market. In a neoclassical demand system, if a new product enters the market, all 

cross-elasticities need to be re-evaluated. However, in a discrete choice model, the new 

product‟s market share and elasticities can be investigated without re-estimating the 

whole demand systems (Giacomo, 2004). 

However, one of DC‟s obvious drawbacks is its restriction on single-unit purchase 

behavior so consumers‟ multiple-unit purchases cannot be studied (Giacomo, 2004). 

Apparently, this assumption does not fit consumer‟s behavior when buying Carbonated 

Soft Drink (CSD). Dube (2004) indicated, in his studies, approximately 31% of the 

shopping trips are multiple-product purchase of CSD and 61.5% of the trips are 

multiple-unit purchase. It is clear that presumption of single unit purchase is 

inappropriate in the CSD industry. 



69 

 

 

 

 

On the other hand, the distance metric (DM) estimation method, developed by 

Pinkse, Slade and Brett (2002), solves the dimensionality problem in neoclassical 

demand models and the single purchase restriction on DC models. The DM approach 

specifies the cross-price coefficients semi-parametrically as functions of the distance 

between the products attribute space. In other words, this approach projects prices 

dimension into attributes dimension to reduce the number of estimated coefficients 

(Pofahl, 2006). For instance, in the CSD market, the distance metric ji CarbCarb   

could be employed, giving the absolute distance of the carbohydrate contents between i 

and j. 

In this chapter, I incorporate the Distance Metric (DM) estimation approach into 

Linear Approximate Almost Ideal Demand System Model (LA/AIDS) to assess the 

demand after the Cadbury and Dr Pepper/Seven-Up merger which was effective on 

March 2, 1995 in the U.S. CSD industry.  

 

The Carbonated Soft Drink Industry in the United States 

Soft drink production is the largest beverage manufacturing in the U.S., with 

annual 2006 revenue of $42.3 billion. This industry is dominated by carbonated soft 

drinks (CSD), which account for around 54.3% of industry revenue.
22

 In 2006, Coca-

                                                 
22 Soft Drink Production in the US:31211. IBISWorld Industry Report. Online Edition. Available from 

http://www.ibisworld.com/industry/default.aspx?indid=284. Accessed October, 2008. 

http://www.ibisworld.com/industry/default.aspx?indid=284
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Cola Company had 42.9% of the CSD market; Pepsi-Cola Company held a 31.2% share, 

and Cadbury Schweppes owned 14.9% of the market share.
23

 

In 1986, PepsiCo planned to buy the Seven-Up Company from Philip Morris, 

while Coca-Cola was attempting to purchase Dr Pepper. Nevertheless, both proposed 

acquisitions were rejected by Federal Trade Commission. Later, the investment bank 

Hicks& Haas purchased both Dr Pepper and the U.S. operations of Seven-Up. Cadbury 

Schweppes joined in Hicks& Haas‟s buyout of Dr Pepper and held a minor stake of Dr 

Pepper. Dr Pepper and Seven-Up are merged to form the Dr Pepper/Seven-Up 

Companies, Inc. (DPSU) on May 19, 1988.  

Since Cadbury sought to become a significant producer of noncola soft drinks; 

after its acquisition of A&W Brands Inc, their next target is to take over the DPSU. On 

March 2, 1995, Cadbury Schweppes acquired the rest of DPSU and the new company is 

called Dr Pepper/Cadbury of North America, Inc. The new company was ranked the 

third CSD manufacturer with a market share of 17 percent in the U.S. market.
24

 

Afterwards, Coca-Cola, PepsiCo, and Cadbury together now account for about 90% of 

all CSDs sold in the U.S. (Saltzman, Levy and Hilke, 1999).
 
 

 

 

 

 

                                                 
23 Soft Drinks and Bottled Water. Encyclopedia of Global Industries. Online Edition. Gale, 2009. Available 

from http://galenet.galegroup.com. Accessed October, 2008. 
24 Dr Pepper/Seven Up, Inc. Business & Company Resource Center. International Directory of Company 

Histories, Vol. 32. St. James Press, 2000. Available from http://galenet.galegroup.com. Accessed November, 2008. 

http://galenet.galegroup.com/
http://galenet.galegroup.com/
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Quantitative Methods 

The Demand Model 

Pinkse and Slade (2004) derived the aggregate-demand function of product sales 

according to “a normalized-quadratic indirect-utility function” as  

 i i ij j i i

j

q a b p e y u      (i=1,…,n). (111) 

where ijB b     is an n n  symmetric, negative-semidefinite matrix, and the relevant 

products‟ prices  1 2, ,...,
T

np p p p  and aggregate income y are normalized depending 

on dividing by the outside good‟s price. They assume that both intercept ia  and the 

diagonal elements of B are functions of the product i‟s attributes, ix . That is ( )i ia a x  

and ( )ii ib b x . The off-diagonal elements of B are supposed to be functions of the 

distance between some set of products‟ characteristics,   ,    i jij ijb g d  . The function 

 .g  is evaluated semi-parametrically rather than giving a fixed form on that, indicating 

how the distance measures, ijd , affect the strength of competition between products i 

and j. ijd  measures the closeness of the two products, i and j, in attributes space (Pinkse, 

Slade and Brett, 2002). For example, if the products were brands of bottled juice, the 

attributes of products might be sodium content, flavor, or dummy variables that indicate 

whether commodities belong to the same manufacturer. The error term iu  is mean 

independent of the observed products characteristics, 0iE u x    . If this assumption is 

violated, the estimator of the parameter of equation (111) is inconsistent. 
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Rojas (2005) and Pofahl (2006) incorporated the DM approach into the LA/AIDS. 

The substantial advantages of this model are that it can accommodate the non-linear 

aggregation over consumers and set no restrictions on the length of the panel data. 

Pinkse and Slade‟s individual indirect-utility function is a kind of Gorman polar form. 

Although it can be easily aggregated or differentiated to obtain brand-level demands, the 

problematic assumptions are that the change in an individual‟s demand for certain 

commodity with respect to a difference in personal income does not depend on earnings; 

this condition is the same for every consumer regardless of the individual‟s character. As 

a result, if a consumer does not buy a product, then the income effect for that product is 

assumed to be zero. Thus, it amounts to suppose that income effect for all products is 

zero since it would be simple to find one person who does not purchase a certain 

commodity, especially with long length time periods in a dataset (Rojas, 2005). 

Formally, let i  N,...,1  be the index of products, t  T,...,1  the set of markets 

which are defined as cluster-week pairs, 
25  Nttt ppp ,...,1  the vector of retail prices in 

market t,  Nttt qqq ,...,1  the vector of quantities demanded, and  i ititt qpX  total 

expenditures in market t. Using these notations, the LA/AIDS suggested by Deaton and 

Muellbauer (1980) is given as follows: 

  
it

t

t
ijt

N

j

ijiit P

X
pw  








 



*

1

lnln  (112) 

                                                 
25 The cross-price elasticities are zero through markets. 
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where it it
it

t

p q
w

X
  is the expenditure share for product i in market t, and the Stone price 

index is defined as follows: 

   ,)ln(ln
1

* 



N

i

ititt pwP  (113) 

It was typical to use Stone price index to linearize the AIDS model. However, 

Moschini (1995) indicated that Stone index, varies with the variation in units of 

measurement of prices and quantities. For instance, suppose we change the unit of the 

first good from bales to tons, then the corresponding price will be scaled by 4 (1 ton = 4 

bales). Since such alternation does not impact the expenditure shares, the Stone index 

would apply unchanged weights to the scaled prices. This problem makes ij  or i  

generally biased. Moschini suggested one feasible choice:  ln L

tP  which is a loglinear 

analogue of the Laspeyres index and defined as: 

      ,lnlnln 0* 
i iti

L

tt pwPP  (114) 

where 0

iw  is product i’s „base‟ share, defined as 
t iti wTw 10 , the average 

expenditure share of product i over t. 

After replacing (113) by (114), the sales share form of LA/AIDS can be written as 

  
itL

t

t
ijt

N

j

ijiit P

X
pw  








 



lnln
1

 (115) 

Normally, the (N-1) equations of (115) can be estimated by Seemingly Unrelated 

Regression method. Nevertheless, if we apply LA/AIDS model to assess the demand of 
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numerous CSD products here, the procedure has a significantly challenge in its 

evaluation due to the curse of dimensionality. 

Distance Metric Approach 

Following Rojas (2005) and Pofahl (2006), the distance metrics are added to the 

LA/AIDS model to alleviate the difficulty of estimation. Briefly, the objective function, 

(116), includes a vector, d, which is the distance measure of products‟ attributes, and the 

cross-price coefficients, ij , ji  , can be prescribed as a function  .g  of the distance 

measures, ijd . 

      
it

ij

L

t

t
ijt

k

ijitiiiit P

X
pdgpw  








 



lnln;ln  (116) 

where k equals the number of distance measures, and   is the corresponding coefficients 

to each distance metric (Pofahl, 2006). The element of d is determined by researcher. 

Inwardly, the function g shows how difference of attributes affects the strength of 

product‟s competition (Pinkse, Slade and Brett, 2002).  

The own-price parameter ii  is comprised of a constant and product i's attributes. 

Suppose carbohydrate content is a relevant attribute that has impact on the demand of 

CSD, ii  can be written as iii Carb10    ; hence,       iitititii Carbppp lnlnln 10   , 

including a price interacting term with the product characteristics. 

To have a more clear insight of DM method, let‟s make a simple example below. 

Suppose there are four commodities sold in the market, the traditional AIDS demand 

system is written as: 
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       

       
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If we impose symmetry on the cross-price parameters, six cross-price parameters need to 

be estimated. Suppose carbohydrates and sodium contents have influence on the choice 

of CSD purchase and let carb

ijd  and so

ijd symbolize the distance measures of 

carbohydrates as well as sodium content between brand i and j. The distance metric 

function for cross-price coefficients can be presumed as so

ij

carb

ij dd 210   . Given there 

are no brand attributes terms in the own-price parameter, the whole system after 

substitution becomes  
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Moreover, the demand system can be written as 
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 (117) 

For cross-price coefficients, only three parameters, 0 , 1  and 2  are necessary to be 

estimated right now. Obviously, if there are numerous products are involved in the 

demand estimation, the method‟s effect on reducing the dimensionality will be clearer. 

This is why it is said DM method can handle the challenge for “curse of 

dimensionality.”
26

  

Because the distance metrics are symmetric, symmetry can be required by making 

  equal across all equations. Once we obtain the estimated coefficients of  , it is 

simple to calculate the cross-price coefficients and elasticities. The functional form of 

 .g  can be estimated by parametric or semiparametric methods. If the parametric 

assumption is correct, then choosing the semi-parametric methods will be inefficient. 

However, we estimate  .g  semi-parametrically since it can derive as much flexibility in 

                                                 
26 This example was suggested by Dr. Pofahl. 
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the pattern of substitution as possible without depend on any arbitrary parametric form 

according to the analyst‟s uncertain knowledge or beliefs 

Additionally, the expression of Marshallian price elasticities, uncompensated price 

elasticities, can be written as (Green and Alston, 1990; Rojas, 2005) 
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Household Demographics 

In addition to demand parameter estimation, capturing variation in substitution 

patterns among across broad classifications of consumer groups should not be ignored in 

our estimation. Given the same data resource, Hoch, Kim, Montgomery, and Rossi (1995) 

indicate category-level consumer price elasticity across stores is mainly influenced by 

consumer demographic difference. In other words, zone-pricing through store chain is 

substantially activated by price discrimination on consumer‟s heterogeneity rather than 

competition between stores. Thus, demographic difference between clusters will be 

taken into consideration when estimating the demand system of CSD. 

 

Data and Preliminary Data Statistics 

Scanner Data 

The primary data resource is the administrative Dominick Database from the Kilts 

Center for Marketing at the University of Chicago‟s Booth School of Business. The 
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dataset contains weekly retail price, sold quantities, and profits for more than 3500 UPCs 

for over 100 stores operated by Dominick‟s Finer Foods (DFF) across approximately 9 

years (09/14/89-05/14/97). I select the products related to the Cadbury/DPSU merger 

from the Soft Drinks group.  

Data Preparation 

Observations were dropped if one of these variables including sold quantity, price, 

or profit, was missing. The nearest two years of pre Cadbury/DPSU merger data starting 

from 03/04/1993 to 03/01/1995, equivalent to recorded week #182 - #285 in DFF 

database, is employed to simulate the price effects of this CSD merger, while the post-

merger data is used to be a comparison with the simulated price changes. Nevertheless, 

we drop the observations in week #211 because of a lack of available price information 

for three brands on the selected list. Given selected brands, if a certain brand does not 

have sales information in some markets during the period of interest, the whole selected 

brands observations are deleted in that cluster-week pair to avoid bias in estimation. 

Finally, 5,616 observations are taken into considerations in the analysis. 

The information on nutritional facts is based on previous research, as well as 

collected from CSD package at local supermarkets or manufacturer websites. If the 

collected information from grocery stores is different from Dube (2005)
27

  and 

McMillan‟s paper (2007), we will pick up the data from their search rather than 

information on package since some brands may have been re-formulated. For example, 7 

Up has replaced sodium citrate with potassium citrate to reduce the beverage's sodium 

                                                 
27 The first version of Dube‟s paper (2004) was received on September 25, 2000 by Marketing Science. The 

products‟ characteristics table in that paper is the earliest attribution information I can find. 
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content in 2006.
 28

 For some commodities which are unavailable through their inquiries, 

unless we are very sure some brands‟ formula was altered after 1995, we presume that 

the nutrition facts on current brands are consistent with the characteristic content during 

the related period of our research. Another difficulty confronted in this research is that 

the element of CSD is treated as a business secret; consumer service employees of these 

companies refused to offer information about ingredients. Initially, different package 

sizes of specific brand are viewed as different products because of the differences in 

storability. Also, Dube‟s research outcome (2005) shows that package size is a relevant 

attribute affecting consumer‟s purchase behavior. However, the results of our 

preliminary Ordinary least squares (OLS) regressions before aggregation indicate 

package size does not have significant power affecting consumer‟s purchase behavior as 

well as shoppers have strong brand loyalty
29

. Besides, most papers applying DM method 

as Rojas‟ work in brewing industry and Pofahl‟s job in bottled juice category mainly 

focus on brand-level demand. Thus, we do the aggregate of CSD products into sixteen 

brands and that should be helpful to simply the demand estimation effectively.  

 

 

 

 

 

 

 

 

 

 

                                                 
28 See http://www.solarnavigator.net/solar_cola/7up.htm. 
29 Preliminary OLS outcomes are shown in Table F1 and F2 in Appendix F. The t-statistic of package size (Mvol) 

is -0.90 in Table F1 where the package size is used to set continuous metrics while the t-statistic of package size (Msize) 

is 2.09 in Table F2 where package size is treated as a dummy indicator. Both of them are insignificant at 5% level.   
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TABLE 4     General Traits of Typical Household in Demographic Cluster in 

DFF Database 

  Cluster 

Traits A B C D 

Description 

Established 

Suburban 

Families 

City Dwellers 
Ethnic 

Neighborhoods 

Prospering 

Suburban 

Families 

Household 

Size Medium Small Medium Large 

Married 
Married (50% 

w/ children) 
Few married Married 

Nuclear 

Families 

Children Older (6-17) Few Few Many 

Singles Few Lots Few Few 

Education 
High (36% 

college+) 

Medium (30% 

college +) 
Low education 

High (35% 

college+) 

Seniors Some Some Many Few 

Middle Age Lots Few Lots Few 

Dual Income Lots Few Few Many 

Income 
Higher (45% 

$50000+) 

Lower (42% 

$20000-) 

Lower-middle 

(80% $50000-) 

Higher (44% 

$50000+) 

Price Zone 
Moderate 

competition 

Low 

competition 
Moderate 

Very 

competitive 

Ethnicity  

Substantial 

Blacks, 

Hispanics 

  

 Notes: We thank William Minseuk Cha., the research assistant of James M. Kilts Center for Marketing, offering this 

table to us. 

* Nuclear Family primarily refers a family group is comprised of most naturally, a father, a mother and their kids. 

  

 

DFF clusters its stores into four groups: A, B, C and D. The stores within the same 

cluster as formed the same cohort and these groups are viewed as separate regional 

markets. The demographics description and summary of statistics for each cluster‟s 

demographic variables are shown in Table 4 and Table 5. This ZIP code level 

demographic data are obtained from US Government (1990) census data for the Chicago 

metropolitan area and processed by Market Metrics to generate demographic profiles for 
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each of the DFF stores.
 30 

Although it has been documented that Dominick‟s price zones 

are up to 16 for the whole Chicago area, for simplicity, the stores are classified into four 

clusters in this study. 

To further simply the analysis, CSDs aggregated by their brands of all the bottle 

size with at least a 1% sales volume share (in fluid ounces)
31

 of whole market 

consumption volumes are considered. Finally, it contains 13 brands, including the top-10 

soft drinks brands in 1994-1995 and some Cadbury‟s famous brands; representing 

approximately 68.3% share of total CSD sales by dollar value during the relevant time 

period.
 32

 Chosen brands and their market shares as well as their characteristics are 

shown in Table F4 and Table F5. Coke is the most expansive while Diet A&W Root 

Beer is the least expensive. I do not consider regional brands here because of the 

comparably small nationwide sales percentage, about 3%. 

Distance Metrics 

The brand attributes that are presumed to affect consumer‟s perception are 

comprised of: calories, milligrams of sodium, and grams of total carbohydrates content 

based on per 12 fluid ounce (355 ml) serving, as well as a set of binary variables for the 

presence of caffeine, citric acid and whether it is a cola drink. Dummy variables are 

constructed to identify different manufacturers. These chosen characteristics are 

established based on earlier work of Dube (2004 and 2005) and McMillan (2007). 

                                                 
30 See http://research.chicagogsb.edu/marketing/databases/dominicks/demo.aspx for more detail of DFF Store-

Specific Demographics database. 
31 In highly competitive differentiated industry, a new product with 0.5% market share can be considered quite 

successful (Cotterill, 1999). 
32 The ranking of top-10 best selling brands has a slight change in 1994-1995 but the list of brand for 1994 and 

1995 are the same. Database: Business Source Complete.  

http://research.chicagogsb.edu/marketing/databases/dominicks/demo.aspx
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Noticeably, it is clear that there is high correlation between calories and carbohydrates 

and therefore we only choose carbohydrates, sparing calories, in setting distance 

matrices.  

Coverage, the percentage of stores that sell specific brand, is utilized as a choice of 

continuous variable in both Pinkse and Slade‟s (2004) as well as Rojas‟s (2005) 

research. We do not consider it here since almost all of the selected CSDs are sold at 

every chain store over the interested time period that makes coverage useless here. 

Discrete and continuous matrices are set as an inverse of distance to make the 

interpretation of result easier.  

Continuous Distance Measures with Continuous Brand Attributes 

I create single-dimension distance metrics of carbohydrate content of CSD in 

continuous attribute space as:                   

 
ji

carb

ij
CarbCarb

d



21

1
 (119) 

where ji CarbCarb   is the absolute value for the difference of brand‟s rescaled-

carbohydrates content and  1,0k

ijd . If brands i and j have the same carbohydrates 

attributes, this metric reaches the maximized value of 1. As the distance in carbohydrates 

space between brands i and j grows, the metric‟s value approaches to zero. Obviously, 

the assumption behind this formula is that the strength of the competition is influenced 

by how near the brand‟s attributes are. That is to say that we use this measure to examine 

if Diet Pepsi is a stronger substitution for Diet Coke than Coke. 
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TABLE 5  Statistics of Demographics for Store Cluster in DFF Database 

    Cluster 

Variable Description A B C D 

Educ Decimal of College Graduates  
0.2716 

(0.1066) 

0.1970 

(0.1141) 

0.1303 

(0.0630) 

0.2686 

(0.0962) 

Ethnic Percentage of Blacks & Hispanic population 
0.0573 

(0.029) 

0.4851 

(0.2660) 

0.1547 

(0.1229) 

0.0942 

(0.0813) 

Hval150 Decimal of Households with Value over $150,000  
0.4832 

(0.2132) 

0.2957 

(0.2494) 

0.1495 

(0.1710) 

0.3878 

(0.2124) 

Hsizeavg Average Household Size 
2.6330 

(0.0960) 

2.3993 

(0.4230) 

2.6297 

(0.1515) 

2.8337 

(0.2059) 

Income Log of Median Income 
10.7886 

(0.1833) 

10.1291 

(0.15) 

10.4911 

(0.1078) 

10.7767 

(0.1731) 

Poverty Decimal of Population with income under $15,000  
0.0329 

(0.0117) 

0.1425 

(0.0425) 

0.0694 

(0.0174) 

0.0293 

(0.0120) 

Single Decimal of Singles  
0.2436 

(0.0205) 

0.4127 

(0.0714) 

0.2716 

(0.0217) 

0.2526 

(0.0258) 

Source: DFF database, James M. Kilts Center, University of Chicago Booth School of Business.
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The measures of the other continuous characteristics, such as sodium as well as 

carbohydrates coverage, are constructed by applying the same formula. The above one-

dimensional metrics are not singular option for making distance measure; that is we can 

define an n-dimensional Euclidian distance measure to accommodate multiple attributes 

between different brands. For instance, a two-dimensional distance metrics can be 

written as: 

    22
21

1

jiji

SCB

ij

CarbCarbSoSo
d


  (120) 

However, if we want to know which characteristic plays the most influential role in 

determining patterns of substitution, a single-dimensional metrics cannot be neglected 

(Pofahl, 2006). 

Actually, we can also apply other function forms for one-dimensional distance 

matrices 

  221

1

ji

carb

ij

CarbCarb
d


  or 

 )log()log1

1

ji

carb

ij
CarbCarb

d


   

because functional form is not an important concern for application of data-driven 

nonparametric estimations. Even if we select different forms or apply alternative non-

parametric techniques, the final estimated outcome will be quite closed or equal to each 

other. For instance, suppose the real distribution pattern of data is )sin(x . Bill uses 

xy   while Kent chooses xz
2

1
  to process evaluation. Obviously, given the same 

dataset, Bill‟s estimated solution should be    yyg sin  and Kent‟s outcome will be 



85 

 

 

8
5
 

    
















 zxzf

2

1
sin2

2

1
sin  since both results are determined by the shape of data 

itself. Although the interpretation of estimated parameters is unlike, the evaluated 

functional forms are equivalent inwardly. However, we must impose some constrains on 

the estimated coefficients or the outcome can be any arbitrary value.
33

  

Discrete Distance Measures with Continuous Brand Attributes 

Following Pinkse and Slade (2004), Rojas (2005) as well as Pofahl (2006), 

continuous commodities attributes can be used to construct two-dimensional market 

areas and these measures are derived from the Euclidean distance. Two kinds of metrics 

are considered here: the nearest-neighbor measures and the common-boundary 

measures.  

For nearest-neighbor metrics, the distance measure in sodium/carbohydrates space 

can be defined exogenously that NNSC

ijd  equals to one when brands i as well as j are 

nearest neighbors to each other in sodium/carbohydrates space, 
2

1  if brands i(j) is 

j‟s(i's) nearest neighbor but not vice versa, and 0 otherwise. Brand i‟s nearest neighbor is 

meant to be the brand having the shortest Euclidean distance from brand i in relevant 

attribute space. To derive more reasonable and reliable Euclidean distance between 

brands, continuous attributes are rescaled through dividing by its maximum value since 

each of these characteristics‟ measurement unit differs so it is better to limit the value of 

continuous characteristics between 0 and 1.  

                                                 
33 This example was suggested by Dr. Qi Li. 
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Moreover, for common-boundary metrics, CBSC

ijd  is set to be one when brands i and 

j share a common boundary in brand‟s sodium/carbohydrates space but are not nearest 

neighbors, and zero otherwise. In detail, given the coordinates of i and j as  carbso ii ,  and 

 carbso jj ,  in sodium/carbohydrates space, then a common boundary of i and j is defined 

as a set of variables  CarbSodium,  satisfying the next equation: 

        2222

carbsocarbso jCarbjSoiCarbiSo   (121)   

After solving (4.3), a linear relation between So and Carb is that: 

  soso

carbsocarbso

soso

carbcarb

ij

iijj

ij

ji
CarbSo











2

2222

 (122) 

Once above equation for all i and j are solved, the intersection points of the lines derived 

from linear equation will be determined and necessarily establish which portion of the 

lines are actual common boundaries (Rojas, 2005). 

Additionally, another set of nearest-neighbor is developed by considering brand 

attributes and per fluid ounce price together. It allows a situation that consumer‟s 

purchase decision depends on both brands‟ attributes as well as the relative prices 

between competitors simultaneously (Rojas, 2005). Following Rojas, nearest-neighbor 

metrics is set upon the summation of square for the attributes‟ Euclidean distance and 

differential in average per fl.oz. price. That is, 

         jcarbsoicarbso pjCarbjSopiCarbiSo 
2222

 (123) 
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Discrete Distance Measures with Discrete Brand Attributes 

Here, some categories distance measures are included. Although there is no 

absolute criterion on classification of CSDs, the selected commodities are classified 

based on their cola or caffeine content. In other words,  cola

ijd  is equal to one if brands i 

as well as j are cola-type soft drink and zero otherwise. Also, caff

ijd  is equal to one if both 

brands i as well as j are caffeine (or caffeine-free) soft drink and zero otherwise 

Besides, we have dummy variable indicating if the drinks have ingredient of citric 

acid and thus citric

ijd  is set to be one if brands i as well as j both contain citric acid and 

zero otherwise. These products are manufactured by Coca-Cola, PepsiCo, and Cadbury 

respectively so a discrete distance metric for manufacturer identity is created to examine 

if shoppers tend to substitute between brands with the same manufacturer when price 

change occurs. Hence, manu

ijd ‟s value is one when brands i, as well as j, belong to the 

same manufacturer and zero otherwise. 

All weighting matrices regarding product classification can be normalized; the sum 

of each row is equivalent to one and thus the weighted prices of rival commodities for 

the same type will be equal to their mean (Rojas, 2005). 

 

Estimated Results 

Even though OLS (or IV) estimated coefficients are probably inconsistent, they are 

still meaningful. Here, the percentage of stores on sales for specific brand in the same 

cluster is taken to be a part of intercept when running preliminary OLS regression. 
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Preliminary OLS Regression Result of Disaggregation 

Prior to doing an aggregate of products by their brands, there are 15,850 

observations, consisting of 50 products. Table F1 and F2 shows the estimated 

coefficients and t-statistics results of each distance measure when package size is treated 

as continuous metric and discrete metric, respectively. Regardless of the form of 

container size metrics, the OLS preliminary results indicate the own-price coefficients 

are negative and statistically significant even at 1% level.
 34

 The result also indicates that 

when the rival product‟s price increases, it stimulates the consumption of own goods.
 35

 

We do not check the level of substitution for a particular product because we cannot 

trace specific consumer‟s shopping history in the database and thus it is impossible to 

build relevant metric for this item. On the other hand, we set a brand identity, brand

ijd  to 

check if there is a stronger substitution between the carbonated soft drinks with the same 

brand. As expected, the positive coefficient on brand identity shows that a good selling 

of Coke 6-package will reduce Coke 12-package sales. In addition, both cases indicate 

the products‟ promotion activity can boost its sales.
36

 However, the estimated result of 

manu

ijd  implies consumers do not have tendency to substitute between the products of the 

same manufacturer. Finally, we pay attention on the interpretation of group 

classifications, cola

ijd  as well as caff

ijd . The coefficient on coke segment takes positive 

value while the coefficient on caffeine segment takes negative value. Since brands that 

                                                 
34 The t-statistic of the own-price coefficient is -43.88 when the package size is used to set continuous metrics 

and -42.04 when package size is treated as a dummy indicator.   
35 The t-statistic of the rival-price coefficient is 3.39 when package size is treated as a dummy indicator 
36 The t-statistic of sales coefficient is 4.02 when the package size is used to set continuous metrics and 3.82 

when package size is treated as a dummy indicator.   
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belong to the same product classification should be substitutes, the negative coefficient 

for caffeine segment seems to be a wrong sign. Nevertheless, although cola segment has 

positive coefficient, the estimated value is insignificant. The outcome shows both group 

classifications are inappropriate. The comparison between our estimation result and 

Dube‟s result (2004 and 2005) is shown in Table F3.  

Preliminary OLS Regression Result after Aggregation 

Results of our preliminary OLS regressions before aggregation indicates package 

size is not an obviously relevant attribute affecting the purchasing decision.
37

 

Consequently, the relevant data of CSD products is aggregated by their brands. 

Estimation results are reported in Table 6. Most distance metrics have similar 

effects as the result of disaggregated products. For example, sales activity can stimulate 

consumer to purchase and also the competition between products in the same category is more 

aggressive. Besides, the nearest neighbor measure with price has stronger effect than its 

counterparts. 

 

Empirical Problem and Conclusion 

When the symmetry condition is imposed in the estimation, there is a potential 

problem, not all own-price coefficients can be less than zero and not all cross-price 

parameters can be greater than zero. 

 

 

 

                                                 
37 The t-statistic of can size indicator (Msize) is 1.83 which is insignificant under 95% confidence level.   
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TABLE 6     OLS Regression Results of Estimated Coefficient on Distance Metrics 

after Aggregation 
 

Distance 
Metrics         Cross-Price 

Continuous Distance Measures with Continuous Variables Coeff t-stat. 

One-
Dimensional             

 
Carbohydrate Content 
(Mcarb)   11.85* 4.28 

  Sodium Content (Mso)     -27.52* -7.00 

Two-
Dimensional             

  
Sodium/Carbohydrate Content 
(MSC)   11.23 1.53 

Discrete Distance Measures with Continuous Variables     

Nearest 
Neighbor             

 
Sodium/Carbohydrate Content 
(MNNSC)  -7.74 -1.15 

  Sodium/Carbohydrate/Price Content (MNNSCP) 24.58* 4.18 

Common 
Boundaries             

 
Sodium/Carbohydrates Content 
(MCBSC)  -28.35* -12.49 

Discrete Distance Measures with Discrete Variables       

Product Classifications           

 Product grouping (Mgroup)   -46.38* -5.48 

  
Citric Acid Containing 
(Mcitric)     6.54 0.43 

 
1. All regressions include cluster, product, and year dummy indicators. 

2. Coefficients have been multiplied by 1,000 for readability 

3. * Significant at 1%    

 

 

 

The possible problem is price endogeneity. Dhar et al. (2003) shows AIDS model with 

retail level scanner data for differentiated products has price endogeneity, likely coming 

from retailer‟s pricing strategy or consumer heterogeneity, and that will cause 

inconsistent demand estimates as well as have large impact on price and expenditure 

elasticities. Apparently, the problem of price endogeneity should be dealt with and 

finding a suitable instrument is always a solution to this problem. 



91 

 

 

9
1
 

The first-four brands of most selling volume in our dataset are Pepsi, Coke, Diet 

Pepsi, and 7 Up, so the series of expenditure share and logarithm of these brands‟ retail 

prices are examined by LiNGAM algorithm to see their causal patterns. Noticeably, the 

retail prices series are all non-stationary so we take the first difference of the retail prices 

series to have stationary series. After taking the first difference of prices series, most 

variables studied here reject the null hypotheses of symmetry and normality tests and 

this is why LiNGAM is used in this case. In Figure 4, it shows that there is a causal 

connection between the retail price of Pepsi and Diet Pepsi; that implies the possibility 

of price endogeneity. The retail price of Pepsi and Diet Pepsi are associated because of 

their mutual relation with an unobserved common shock. Pofahl (2006) took the 

wholesale price of each good to be the instrument of the retail price because he thinks 

the wholesale price has impact on the setting of retail price of own products but should 

uncorrelated with the other wholesale prices. Therefore, the causal pattern between the 

retail price and whole price is searched again to check if the wholesale price can be a 

proper instrument. All of the retail and wholesale prices are taken first difference to have 

stationary series. 
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FIGURE 4 Causal Connection between the Expenditure Share and First Difference 

of the Retail Prices Searched by LiNGAM with Prune Factor=0.7
38

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5 Causal Connection between the Retail Price and the Wholesale Price 

Searched by LiNGAM with Prune Factor=0.7
39

 

 

 

 

 

                                                 
38 Wcoke represents the wholesale price of Coke and diffPcoke represents the first difference of the retail price 

of Coke. Other notations follow the same rules. 
39 diffretailcoke denotes the first difference of Coke‟s retail price and diffwholesalecoke denotes the first 

difference of Coke‟s wholesale price. Other notations follow the same rules. 
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In Figure 5, the results describe that the retail price has impact on the brand‟s 

charge from manufacturer. The brand‟s manufacturer‟s price is not only affected by its 

own retail price but also influenced by other brands‟ wholesale price. For example, the 

manufacturer‟s selling price of Diet Pepsi is not only influenced by its own retail price 

but also by the wholesale and retail price of Pepsi. As Dhar, Chavas, Coterill and Gould 

(2005) referred, one manufacturer (e.g. PepsiCo) has several brands sold in one market 

simultaneously so the manufacturer sales these brand with different strategy. It is not 

surprising that the wholesale prices of Pepsi and Diet Pepsi are interacted and 

manufacturer‟s marketing strategy influences the wholesale prices of its brands 

mutually. However, this also proves that wholesale price may not be a good instrument 

for the retail price as Pofahl suggested. It points out the difficulty of finding a proper 

instrument. Although the OLS results satisfy some expectation in marketing studies, the 

outcome is biased. It is difficult to have consistent estimates in our case because of the 

lack of suitable instruments. However, it emphasizes the importance of causal search. 

Even if the structural modeling is developed on the basis of sound economic theory, 

economic theory is not correct in every condition and the real world data may operate 

against the theory. Truth should be built on the evidence so how this world really work 

should not depend on the researcher‟s personal knowledge; observing the pattern of real-

world data is necessary.
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CHAPTER V  

CONCLUSIONS 

 

Key Findings 

There exists many statistical methods to evaluate the association between variables 

and test the significance of these associations. However, the significance of association 

cannot specify the causal connection between the variables. If we seek a possible result 

from a given policy or intervention, a causal knowledge is necessary. PC algorithm, 

based on the research works of Pearl (2009) and Sprites, Glymour and Scheines (2001), 

is applied to search for the causal pattern of real-world uncontrolled datasets. However, 

PC algorithm works more reliably on normally-distributed or symmetrically, but non-

normally distributed data. Its performance in discovering causal structures on extremely 

non-Gaussian dataset is not so good. Also, it is common for PC algorithm to generate a 

set of unidentifiable directed acyclic graphs (DAGs), especially in the case of fewer 

observed variables. Shimizu et al. (2006) developed Linear Independent Non-Gaussian 

Model (LiNGAM) to do causal search based on the independently non-Gaussian 

distributed disturbances by applying higher-order moment structures. More non-

Gaussian data works better in LiNGAM. 

These two algorithms are applied to retail-level scanner data in order to investigate 

the pricing power between manufacturer and retailer in carbonated soft drinks market. 

PC can only say if the variables are related, but cannot identify the causal direction. 

LiNGAM gives more exact causal patterns. In general, at least 74% of the products 
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studied have a pricing pattern such that the retail pricing affects the charge from 

manufacturer when prune factor is set to be one. If we lower the strength of pruning, the 

result that retailer has stronger pricing power than the manufacturer is still seen. In 

addition, the retail price affects the consumers‟ purchased behavior is also observed, as 

consumer theory anticipates. Surprisingly, there are several graphs uncovered that show 

that the manufacturer‟s price also affects the number of package sold. A possible reason 

for such a result is the scarcity of shelf space. The price offered from the manufacturer to 

retailer may have an impact on the product‟s shelf position and thus may affect the sales 

condition indirectly. Of course, the real pricing strategic game is very complicated and 

not well understood, so it is not proper to easily conclude a specific pricing pattern must 

represent a given strategic game, such as Retailer Stackelberg Leadership or 

Manufacturer Stackelberg Leadership. On the other hand, the estimation and framework 

of structural equation model for strategic interactions in a distribution channel is 

commonly complex. Although our model cannot provide more exact evaluation of gross-

margin or marginal operating cost, it does offer a more efficient way to check the 

interaction between manufacturer and retailer on pricing strategies and give a possible 

direction for the further research. 

In Chapter IV, we incorporate the distance metric into linearized almost ideal 

demand system to investigate the consumer purchase behavior in carbonated soft drink 

market. The ordinary least squares estimates give some reasonable outcomes as 

consumer demand analysts predict, unfortunately, when further restrictions are imposed 

as the theory suggests, we do not find reasonable results, as most researchers require. It 
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implies that economic theory does not (in this case) correspond to the movement of real-

world data; it also shows the importance of causal inference research.     

 

Possible Future Research 

In terms of future research, I would like to investigate the question of pruning and 

its possible implications and consider simulation to check the accuracy of the LiNGAM 

estimated results. As Dr. Hoyer and Dr. Shimizu suggested to me, the prune factor is 

implemented mainly for computationally efficiency and it might not have very strong 

theoretical support. Dr. Shimizu also suggests that it might be better to do bootstrapping 

to see if the connection between two variables is significant, fixing the variable ordering 

to be the estimated one by LiNGAM and doing ordinary least squares on the bootstrap 

samples. Therefore, this is the next step I attempt to do to modify the current results. 

Besides, LiNGAM works better in more non-normal distributed data. The distribution 

shape of the number of package sold is quite far from normal distribution but the other 

two variables, retail price and manufacturer‟s price, are not extremely departed from 

normality. Therefore, a simulation is necessary to check the accuracy of our current 

estimates. 
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APPENDIX A 

PROPERTIES OF ENTROPY AND NEGENTROPY 

Most text of this section is summarized from Chapter 2 and Chapter 8 from Cover and 

Thomas (2006); Hyvärinen, Karhunen and Oja (2001). 

 

Entropy 

Suppose two random variables X and Y with a joint density function  yxf ,  and 

marginal probability density function  xf  and  yf  respectively. 

Then the joint differential entropy  YXH ,  is defined as 

         yxfEdxdyyxfyxfYXH ,log,log,,     

The conditional entropy of X given Y is the expected value of the entropies of X 

conditional on all ranges of Y: 

 

            
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    dydxyxfyxf

dydxyxfyxf
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dydxyxf
yf
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yf

dydxyxfyxfyfdyyYXHyfYXH

























log,             

log,
1

             

log
,

             

log

  

The conditional entropy can be interpreted to be the amount of unknown information of 

X after Y is revealed. Noticeably, when X and Y are independent, the conditional entropy 

of X given Y equals to the entropy of X itself: 
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            
   

    

    )(log             
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dxxfdyyxf

dydxxfyxf

dydxyxfyxfyfdyyYXHyfYXH
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

 

 



  

This equation describes that Y cannot offer any information for the understanding of X 

given the independent relationship. 

In general,    
 yf

yxf
yxf

,
 , so the conditional entropy can be re-written as: 
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,log,log,             

,
log,log,

  

Thus,      YHYXHYXH , . Inductively, if  YXH ,  is necessary to describe and X 

and Y completely when  YH  is known, the system still needs the amount of 

information  YXH  bits. If X and Y are independent,        XHYHYXHYXH ,  

 YH . Under this situation, the joint differential entropy is the summation of their 

individual entropies. 

Suppose a single random variable X is multiplied by a scalar constant, w. That is 

  wxXgy   and  
w

y
ygx  1  where  yg 1  is the inverse function of  Xg . 
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According to the theorem of calculus on the change of variable,  
 

  ygf
dy
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yf XY
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1
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Suppose  XGY   of n equations so  YGX 1 , Y is written as 
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and the Jacobian matrix of the coordinate transformation  XGY   is 
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Taking the differential of Y 

   dXxxJBdXYdY nX ,,det 1    

and 
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        nXXnnYY yyGfxxJByyf
nn
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If   WXXGY  , then   WxxJB n ,,1   and 
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 where  Wdet  denotes the determinant of matrix W. 

Negentropy 

Negentropy J is defined as 

        XHXHxxJXJ gaussn  ,1   

where gaussX  is a random vector of multivariate Gaussian distribution (multivariate 

normal distribution) with mean vector   and covariance matrix  . The probability 

density function of 
n

gauss RX   is defined: 

  
   

   
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
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XX
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T

eXf
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2

1

2

1

2 det2

1
  

Obviously, given the information of mean vector (the first-order moment structure) and 

covariance matrix (the second-order moment structure) is enough to define the 

multivariate Gaussian probability density completely. It infers that the higher-order 
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(more than two) moment structures are not required for the understanding of the 

multivariate Gaussian distribution. Additionally, 
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 Noticeably, with an identical covariance matrix, multivariate normal probability 

distribution maximizes the entropy over all the distributions. The reason is that: 

Let the random vector nRX   have zero mean. Suppose  Xg  is an arbitrary 

probability density function other than  gaussXf . Another assumption is  Xg  has the 

same covariance matrix as  gaussXf , so     jidXxxXfdXxxXg jigaussijji , allfor      . 
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Then, if there is a quadratic form such as  
gaussXflog  exists, then 

         gaussgaussgauss XfXfXfXg loglog . Based on the probability density form of 

multivariate normal probability distribution  gaussXf  and the result of (58), we have 
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It infers that     gaussXHXgH  , and the Gaussian distribution maximizes the entropy 

over all distributions with the same covariance matrix. Because of the above reason, 

negentropy is always nonnegative and is zero if and only if X has a Gaussian distribution. 

Besides, if there is a linear transformation, WXY  , and then negentropy of Y is 
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The above formula proves negentropy is scale-invariate for invertible linear 

transformation. Because of the above properties, negentropy is used to be a non-

normality measure in independent component analysis (ICA).  

 



109 

 

 

1
0
9
 

APPENDIX B 

NOTES OF LINEAR AND MATRIX ALGEBRA 

Parts of this appendix‟s text are summarized from Searle and Willett (2001); Leon 

(2006). Some components of what follows particularly the statements of matrix 

operation come directly from the text. 

Linear Transformation: 

(1) Let WVL :  be a linear transformation. The kernel of L, denoted by  Lker , is 

defined by: 

     
W

vLVvL 0:ker    

 

Suppose A and B are square, non-singular nn  matrices: 

(1) The transpose of a product matrix is the product of the transposed matrices taken in 

reverse order:   TTT
ABAB  . 

(2) The inverse of a product matrix is the product of the inverse matrices taken in reverse 

sequence:   111 
 ABAB . 

(3) Suppose A is an nn  symmetric matrix, and then )(Avech  is to stack the elements 

of each column of A which is on and below the main diagonal: 
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
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)(Avech  removes the redundant elements of A. 

 

Suppose G is a qp  matrix and H is an nm , then the Kronecker product of matrix G 

and H is defined as: 

 




































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H
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q
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q













1

111

1

111

  

which is a qnpm  matrix. 

 

Suppose D is an nn  diagonal matrix: 

(1) The transpose of D is equal to itself: DDT   

(2) If there are non-negative entries in D‟s main diagonal, then the square root of D is 

calculated by taking the square roots of the main diagonal elements: 























nnd

d

d

D









00

00

00

22

11

2

1

,  and thus D’s decomposition can be written as:  
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DDD   
 

 (3) The inverse of D is calculated by taking the inverses of the main diagonal elements:  

 












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
















1

1

22

1

11

1

00

00

00

nnd

d

d

D









  

Properties of Determinants: 

(1) The determinant of the transpose of a given square matrix is the same as the 

determinant of the matrix itself: )det()det( AAT  . 

(2) When A and B are nn  matrices, then the determinant of a matrix product is the 

product of the determinants: )det()det()det( BAAB  . 

 

An nn  matrix Q is called an orthogonal matrix, and then 

(1) IQQT  . 

(2) 1 QQT . 

(3) 
22

XQX  . 

(4)           2detdetdetdetdet1 QQQQQI TT  , so     1detdet  QQT  

 

Orthogonal Diagonalizable:  

(1) A is orthogonal diagonalizable if and only if A is symmetric. 
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(2) A is orthogonal diagonalizable if there is an orthogonal matrix Q such that 

AQQD 1  is diagonal. 

(3) If A is orthogonal diagonalizable, Q consists of an orthonormal basis for each 

eigenspace  IAE   ker . 
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APPENDIX C 

PROOF OF CONDITONAL DISTRIBUTION OF MULTIVARIATE NORMAL 

DISTRIBUTION 

Most text is summarized from Baba, Shibata, and Sibuya‟s paper (2004) and Appendix 

A: Conditional and Marginal of Multivariate Gaussian. (n.d.). Retrieved November 14, 

2006, from http://fourier.eng.hmc.edu/e161/lectures/ gaussianprocess/node5.html. 

 

Assume a two-dimensional random vector, 









1x

Y
V  has a normal distribution 

 ,,VN  with 

 
 
  



















11 x

Y

xE

YE




  and 










111

1

xxxY

YxYY




  

where       111
xExYEYEYx   and   is a symmetric matrix. 

The conditional covariance of 1x  and 2x  given Y is defined: 

         YYxExYxExEYxxCov
Yxx 221121,

21
   

Then the conditional covariance matrix is denoted by: 

 













YxxYxx

YxxYxx

Yxx

2212

2111

21 


  

and for the conditional correlation 

 
YxxYxx

Yxx

Yxx

2211

21

21 


    
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The joint probability density of Y and 1x  is 

 

   
   

   

   
 
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

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
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
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1

2

1

1

2
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2

1
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det2

1
         

2

1
exp

det2

1
,

xYQ

VVxYfVf
T






  

where  

 

       

 
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x
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where 1A  is symmetric, 2112 aa  . Also, 1

2221

1211 









aa

aa
A  and therefore 
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It is defined that 
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Hence, the elements of A can be simplified to 
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As a result, 
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Suppose 
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Then the joint probability density can be written as: 
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Therefore, the conditional normal distribution of 1x  given Y is 
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with mean 

    Y

YY

Yx

x YFYxE 



  1

11   

We can calculate  YxE 2  following the same procedure and then it is easy to derive the 

conditional covariance of 1x  and 2x  given Y.
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APPENDIX D 

PROOF OF EXACT FORM ON 
 

TJ



ˆ

ˆ
2




  

Most text here is summarized from the Appendix E of Shimizu, Hoyer, Hyvärinen, and 

Kerminen‟s paper (2006). 

 

Suppose n is the number of the dimension of X. The model-based variance-

covariance matrix of X,  , is defined as: 
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




 BID  is a lower triangular matrix, B is a strictly lower triangular 

matrix, and D is a diagonal matrix. Obviously,   is a function of Y, which is in turn a 

function of B and D. Therefore, 
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where klb  and kkd  are scalar from elements of B and D, respectively, and 
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Besides, since IYY 1  
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from which 
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where  BID 


2

1

1-Y . Thus, 
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where klL  is a nn  matrix with 1 at kth row and lth column, and zero otherwise. 

Finally, we have 
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As a result, in our case, when 3n  
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APPENDIX E 

The text offers the proof of that the third- and fourth-order moment structures of Model 

'1 : Yxy    and Xyx  :2 Model '  are different to each other. Most proof here is 

summarized from Shimizu and Hoyer‟s paper (2008). 

 

First, following the rule of ordinary least square method,   and   can be written 

as the functions of covariance between x and y and variances of x and y like: 

 
 
 

 
 

.
var

,cov
              ,

var

,cov

y

yx

x

yx
    

Hence, the square of correlation coefficient is equal to   and it is required here that  

 10     

Suppose x and y are centered and have finite fourth-order moments. The expected 

values of error terms are assumed to be zero. Let     11 ˆ
ii   and     22 ˆ

ii   denote the i-th 

moment structures of Model '1  and '2 , respectively. Also, fourth cumulant of a random 

variable z with   0zE  is denoted by      224

4 3 zEzEz  .  

Denote 



N

k

j

k

i

kij yx
N

m
1

1
. When Model '1  holds true, then its third-order moments 

are that: 
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On the other hand, if Model '2  holds true, then the third-order moments of Model '2  

are: 
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Once we assume the third-order moments of Model '1  and Model '2  are equivalent, then 

the following conditions hold: 

        332323         and        yExEyExE     

from which it follows that 

     01 3  xE   

Since 1  has been assumed, then the condition, satisfying that the third order 

moment structures of Model '1  and Model '2  are the same, is   03 xE . However, x is 

required to be non-normal distributed so it is impossible to have   03 xE . Furthermore, 

using (E1) and (E2), we have   03 xE  and therefore   03 YE  . However, because the 

exogenous variable and error term are assumed to be non-normal,     033  YExE   

does not hold. Thus, the conclusion is that          2

3

2

3

1

3

1

3
ˆˆ    with non-normal 

variables and error terms. 

Moreover, the fourth-order moments can apply the same framework as above 

discussion. That is: 
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and 
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Similarly, if          2

4

2

4

1

4

1

4
ˆˆ    is presumed, then it follows     01 4  x . Since 

the correlation coefficient between x and y is set to be not equal to 1 or -1, therefore 

  04 x  and then   04 Y . Nevertheless,     0 and 0 44  Yx   due to non-

normal distribution and thus          2

4

2

4

1

4

1

4
ˆˆ    does not hold. 
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APPENDIX F 

TABLE F1     OLS Results of Estimated Coefficient on Distance Metrics of 

Disaggregate CSD (Package Size is Treated as a Continuous  

Variable) 
 
Distance 
Metrics     Cross-Price 

Continuous Distance Measures with Continuous Variables Coeff t-stat. 

One-
Dimensional             

 
Carbohydrate Content 
(Mcarb)   -2.68* -2.85 

 Sodium Content (Mso)   0.41 0.38 

 Container Volume (Mvol)   -0.34 -0.90 

Two-
Dimensional             

 Sodium/Carbohydrate Content (MSC)  31.84* 6.45 

 
Sodium/Volume Content 
(MSV)   -23.98* -16.05 

 Carbohydrate/Volume Content (MCV)  19.20* 13.48 

Discrete Distance Measures with Continuous Variables       

Nearest 
Neighbor             

 
Sodium/Carbohydrate Content 
(MNNSC)  -26.86* -5.74 

 
Sodium/Carbohydrate Content with Price 
(MNNSCP) 7.41* 4.07 

  Sodium/Carbohydrate/Volume Content (MNNSCV) -2.09 -1.2 

Common 
Boundaries             

 
Sodium/Carbohydrate Content 
(MCBSC)  2.09** 2.54 

 
Carbohydrates/Volume Content 
(MCBCV)  1.4 1.74 

Discrete Distance Measures with Discrete Variables       

Product Classifications           

 
Manufacturer Identity 
(Mmanu)   4.35 0.55 

 Brand Identity (Mbrand)   28.24* 4.08 

 Product grouping (Mgroup)   -51.07* -5.93 

  Citric Acid Containing (Mcitric)     15.53 0.98 

   
All regressions include cluster, product, and year dummy indicators. 

Coefficients have been multiplied by 1,000 for readability 

* Significant at 1% , ** Significant at 5%
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TABLE F2     OLS Results of Estimated Coefficient on Distance Metrics of 

Disaggregate CSD (Package Size is Treated as a Dummy Variable) 
 

Distance Metrics     Cross-Price 

Continuous Distance Measures with Continuous Variables Coeff t-stat. 

One-Dimensional             

 
Carbohydrate Content 
(Mcarb)   2.86* 2.82 

 Sodium Content (Mso)   -5.24* -5.50 

Two-Dimensional             

 Sodium/Carbohydrate Content (MSC)  -26.92** -2.27 

Discrete Distance Measures with Continuous Variables     

Nearest Neighbor             

 
Sodium/Carbohydrate Content 
(MNNSC)  30.1* 2.77 

  Sodium/Carbohydrate/Price Content (MNNSCP) 8.8* 5.18 

Common 
Boundaries             

 
Sodium/Carbohydrates Content 
(MCBSC)  1.65* 3.14 

Discrete Distance Measures with Discrete Variables       

Product Classifications           

 
Manufacturer Identity 
(Mmanu)   -14.62 -1.70 

 Brand Identity (Mbrand)   15.24** 2.18 

 
Cola Product Grouping 
(Mcola)   12.79 1.21 

 
Caffeine Product Grouping  
(Mcaff)    -18.86 -1.28 

 Size classification (Msize)   1.53 0.55 

  
Citric Acid Containing 
(Mcitric)     24.73 1.70 

 
All regressions include cluster, product, and year dummy indicators. 

Coefficients have been multiplied by 1,000 for readability 

* Significant at 1%, ** Significant at 5% 
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TABLE F3     The Comparison between Our Disaggregate Estimation Results and 

Dube’s Results 
 

  Our result Dube's result 

Activities and 

Attributes 

Sign or 

explanation 
Significant 

Sign or 

explanation 
Significant 

On Promotion 

Promotion 

activity 

stimulates the 

consumption. 

Yes 

Both feature 

ads and 

displays have 

a positive 

influence on 

perceived 

product 

quality. 

yes 

Brand 

There is a 

stronger 

substitution 

between 

products with 

different size 

of a given 

brand. 

Yes 

Consumer 

has strong 

loyalty to 

specific brand 

than to a 

given 

product. 

yes 

Manufacturer 

Consumers 

do not have 

tendency to 

substitute 

between the 

products 

produced by 

the same 

manufacturer. 

No unknown unknown 

Package Size Either No positive yes 

 
Dube‟s result is summarized from his papers, “Multiple Discreteness and Product Differentiation: Demand for 

Carbonated Soft Drinks” and “Product Differentiation and Mergers in the Carbonated Soft Drink Industry” published 

in 2004 and 2005 respectively. 
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TABLE F4     List of Aggregate Brands with the Average Retail Price and Their 

Shares of All Sold Volume (Ordered by Aggregate Sales Volume 

Shares) 

 

Product 
Description 

Average 
Retail 
Price 
($/fl. 
oz.) 

Cluster 
A 

Cluster 
B 

Cluster 
C 

Cluster 
D 

Total 

Pepsi 0.0258 0.0554 0.0327 0.0811 0.0807 0.2499 

Coke 0.027 0.0500 0.0258 0.0424 0.0605 0.1787 

Diet Pepsi 0.0242 0.0323 0.0116 0.0283 0.0419 0.1140 

7 Up 0.0256 0.0240 0.0167 0.0326 0.0281 0.1013 

Diet Coke 0.0251 0.0332 0.0104 0.0193 0.0378 0.1007 

Diet 7 Up 0.0254 0.0103 0.0042 0.0094 0.0117 0.0356 

Diet Caffeine Free 
Pepsi 

0.0257 0.0105 0.0026 0.0069 0.0139 0.0340 

Dr Pepper 0.0254 0.0087 0.0030 0.0080 0.0130 0.0328 

Sprite 0.0252 0.0086 0.0046 0.0079 0.0102 0.0313 

Diet Caffeine Free 
Coke 

0.0267 0.0105 0.0023 0.0040 0.0115 0.0283 

Canada Dry Ginger 
Ale 

0.0195 0.0061 0.0044 0.0057 0.0068 0.0231 

Mountain Dew 
Soda 

0.0256 0.0057 0.0024 0.0046 0.0087 0.0215 

A&W Root Beer 0.0225 0.0034 0.0013 0.0030 0.0045 0.0122 
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TABLE F5     Attributes of CSD Brands Used in Our Dataset 

Manufacturer Product  Calories Sodium (mg) Carbohydrates (g) Caffeine 
Contain Citric 

Acid  
Cola 

Coca Cola 

Coke  140 50 39 1 0 1 

Diet Coke  0 40 0 1 1 1 

Diet Caffeine Free Coke  0 40 0 0 1 1 

Sprite  140 70 38 0 1 0 

PepsiCo 

Pepsi 150 35 41 1 1 1 

Diet Pepsi  0 35 0 1 1 1 

Diet Caffeine Free Pepsi 0 35 0 0 1 1 

Mountain Dew Soda 170 70 46 1 1 0 

Cadbury 

Dr Pepper  150 55 40 1 0 0 

7 Up 140 75 39 0 1 0 

Diet 7 Up 0 35 0 0 1 0 

Canada Dry Ginger Ale 140 50 36 0 1 0 

A&W Root Beer 170 65 47 0 0 0 

 
Characteristics are per 12-oz serving.   

Data Source:1.https://www.wegmans.com/webapp/wcs/stores/servlet/HomepageView?storeId=10052&catalogId=10002&langId=-1 

                       2.http://www.pepsiproductfacts.com/infobycategory_print.php?pc=p1062&t=1026&s=8&i=ntrtn
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